
DRAFT CHAPTER OF THE
OFFICIAL PyMOL MANUAL

(For PyMOL Sponsors)

A new installment

This chapter is part of a comprehensive manual-in-progress, so you will find references
to chapters that are not included here. Nonetheless, we think you may find it helpful,
especially if you are a new user. Please email help@schrodinger.com if you find it in any
way confusing or incomplete.

Only for sponsors

This is an incentive product for PyMOL sponsors. Please do not post it publicly or
otherwise share it with the general public. Incentive products, such as this manual, are
exclusively for sponsors, and sponsors are what make possible PyMOL’s continued
development, documentation, and support. To confirm or inquire about sponsorship,
please email sales@pymol.org.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 1

mailto:help@schrodinger.com?subject=PyMOL%20-%20Question%20about%20Draft%20Manual
mailto:help@schrodinger.com?subject=PyMOL%20-%20Question%20about%20Draft%20Manual
mailto:sales@pymol.org
mailto:sales@pymol.org

Copyright

© 2010 Schrödinger, LLC. All Rights Reserved.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 2

Chapter TC. Typing Commands
Chapter HTGR2 presents a few typed commands to help new users

get started. This chapter gives a more thorough view of the range of
PyMOL Commands, and Chapter ES explores the details of Selection

Expressions. This information corresponds to PyMOL version 1_2r1.

Two other resources are indispensable for working with typed
commands. The first is the PyMOL help utility, accessed through the

command line. Type help or help command for a full list of

PyMOL commands. Choose a command from the list that appears in

the command history area and type help <command-name> to get
information (see Figure TC.1). The other great resource for

information on commands is the set of reference pages for PyMOL

sponsors at http://pymol.org/id/command. For settings, in addition
to the reference pages at http://pymol.org/id/setting, the PyMOL

Wiki provides a growing compendium of expanded explanations.

Commands and settings that are not explained in this chapter can be
found in these resources.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 3

http://pymol.org
http://pymol.org
http://pymol.org
http://pymol.org
http://pymolwiki.org/index.php/Category:Settings
http://pymolwiki.org/index.php/Category:Settings

Figure TC.1 Help on PyMOL’s commands is shown in the command history and diagnostics area. To
enlarge that area on a Windows PC (left), place the cursor at the bottom of the Tk window and drag down.
On the Mac, place the cursor on the dot below the command line (shown at the tip of the cursor on the right)
and drag down.

Contents

Keywords
 6

Selection-expressions and name patterns
 7

Commands with Default Arguments
 8

Menu-equivalent Commands
 10

Representation
11

Scene-manipulation
 14

Measurement
 15

Structural comparison
18

File input and output
 20

Settings
 23

Command Line Features
 27

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 4

Command completion using TAB
 27

Command inference
 28

Command argument inference
 28

File name completion using TAB
 28

Climbing the stack of commands
 29

Viewing commands in the Display Area
 30

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 5

Keywords
A typed PyMOL command always starts with a keyword, a word that calls PyMOL to
execute an action. It ends when you hit enter or return on your keyboard. PyMOL
commands can be typed into a command line in a PyMOL window (see Figure TC.2),
and into scripts that PyMOL can read and execute.

Figure TC.2 PyMOL’s upper
command line is useful when you are
tracking the command history in the
window just above it. The lower
command line is more convenient
when your eyes are engaged in the
Display Area.

The simplest commands consist of a keyword alone. For example, typing

PyMOL> quit

will end your PyMOL session and close the program. The quit command never takes
an argument. (An argument is just one or more keywords that PyMOL uses to complete
a command.)

Other single-keyword PyMOL commands correspond to menu choices or buttons on a
PyMOL window (see Figure TC.3). For example, typing

PyMOL> reinitialize

causes PyMOL to delete all objects and restore the default program settings, as does
clicking the reinitialize button in the top bank of buttons.

In Chapter HTGR1, we reviewed several ways to deselect the current selection. Typing

PyMOL> deselect

is another way to disable all enabled selections. Typing

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 6

PyMOL> reset

causes PyMOL to restore the view of a molecule that it originally displayed when the
coordinates were first loaded. Typing

PyMOL> full_screen

causes the PyMOL window to fill you computer screen. This command works as a
toggle switch. To return to the previous display size, type full_screen again.

Figure TC.3 The same commands given by pointing and clicking on buttons can be typed in the
command line. Many of the button commands have no arguments. Others have default arguments.

Selection-expressions and name patterns

A selection-expression is one of the two types of command argument that specify the
object of a command. Several selection-expressions were introduced in the Typing
Commands section of Chapter HTGR2. For example, 1uwh, resi 100, polymer
and resi 100, resn glu+asp, and chain b+d+e are all selection-expressions.
Selection-expressions always refer to atoms, though they may use molecular object
names. When a selection-expression contains a list with more than one item, no spaces
are allowed, as in resn glu+asp, and chain b+d+e.

A different type of command argument, called a name pattern, is used to specify data
files, objects (such as measurements), and parts of objects (such as bonds) that are not
atoms. For example, the file name 1uwh.pdb and the measurement object names
measure01 and measure03 do not specify atoms, so they belong in the category of
© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 7

name patterns. When there is more than one item in a name pattern, the items are
separated by spaces, as in

PyMOL> fetch 1t45 1t46

Usually, a selection name or selection keyword is present in a selection-expression,
signaling to PyMOL that it must select atoms. Otherwise, you can ensure that PyMOL
treats a command argument as a selection-expression by enclosing it in parentheses, as
in

PyMOL> color white, (symbol C)

The parentheses are optional, but they help to distinguish selection expressions from
name patterns and other types of command arguments.

Commands with Default Arguments
Many commands have default arguments, so you can type the command keyword alone
and PyMOL will supply the rest. For example, the default argument to zoom is the
selection-expression all. When you type

PyMOL> zoom

and hit return or enter, PyMOL scales and translates (without rotation) the enabled
representations to display all in the Display Area. If you want PyMOL to zoom in on a
specific set of atoms, as in Figure TC.4, add a selection-expression argument to the
command. For example,

PyMOL> zoom chain b and organic

zoom chain b and

organic
rotate with mouse zoom reset

Figure TC.4 The zoom command (with no argument) maintains the rotation of objects, while including as
many of its atoms as possible in the view. The reset command rotates the view back to its original rotation.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 8

Table TC.1 gives the most familiar commands that have default arguments, along with
descriptions of what they do. In most, but not all, cases, the default arguments are
selection-expressions.
Table TC.1 Commands with default arguments

Keyword Default Argument Result

center all
translates the Display Area, the clipping slab,
and the origin to a point centered within the
specified atoms

bg_color black
changes the color of the Display Area
background

color all changes the color of the specified atoms

disable all turns off the display of the specified atoms

draw
current size of
Display Area

creates an image in the Display Area that is not
ray-traced

enable all turns on the display of the specified atoms

get_view
destination of

output

returns and optionally prints out the current
view information in a format that can be
embedded into a command script, and can be
used in subsequent commands to set_view

h_add all adds hydrogens onto a molecule

help
all PyMOL
commands prints out help in the command history window

hide all turns off atom and bond representations

orient all
aligns the principal components of the specified
atoms with the XYZ axes

origin all sets the center of rotation

ray
current size of
Display Area

creates a ray-traced image in the Display Area
(this can take some minutes, depending on the
complexity of the image)

show all turns on representations for the specified atoms

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 9

zoom all
scales and translates the enabled representations
in the Display Area to display the specified
atoms

The command get_view is a useful alternative to saving scenes when you are
interested in returning only to the position of the camera, and not to all the other
characteristics of the display. For more information, see the online documentation.

The default argument all is a selection-expression. In the Selecting Atoms section, we
will explore other selection-expressions.

Some keywords require one argument and supply another argument by default. For
example, the keyword color requires one argument, the color-name. If you do not
specify which atoms to color by adding a selection-expression, PyMOL supplies the
default selection-expression all.

SYNTAX: color color-name
color color-name, selection-expression

EXAMPLES: PyMOL> color red
All representations are colored red.

PyMOL> color red, name ca
Only the representations of atoms named C-alpha are colored red.

PyMOL> color red, 1uwh
In this case the selection-expression is the name of an object, and
every atom in the input file 1uwh.pdb is colored red.

When you type a command that has more than one argument, a comma must separate
the arguments, as in

PyMOL> color red, 1uwh

A complete listing of color names defined in PyMOL is found at http://pymolwiki.org/
index.php/Color_Values.

Menu-equivalent Commands

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 10

http://delsci.info/id/command:get_view
http://delsci.info/id/command:get_view
http://pymolwiki.org/index.php/Color_Values
http://pymolwiki.org/index.php/Color_Values
http://pymolwiki.org/index.php/Color_Values
http://pymolwiki.org/index.php/Color_Values

Representation

In the Making and Representing Selections section of Chapter HTGR1, we showed
how to use menus to control the representations of objects & selections. Most of the
menu choices have typed command equivalents (see Figure TC.5). These typed
commands have two arguments. The first is the form of the representation, and the
second is a selection-expression.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 11

Figure TC.5 Several typed commands are equivalent to the menu choices that pop-up next to the names of
objects & selections. The selection-expression in the command is just the name of the object or selection.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 12

Figure TC.6 demonstrates typed representation commands, starting with named objects
& selections from Figure X.16. A selection-expression can be the name of a named object
or selection, or it can be something more complicated (see Chapter ES).

Figure TC.6 Starting from Figure X.16 (top), the following typed commands create the bottom image:
PyMOL> hide cartoon
PyMOL> color orange, aromatics
PyMOL> color black, 1mbn_pol_conts
PyMOL> show spheres, oxygen
PyMOL> set sphere_scale=0.5
PyMOL> hide sticks, aromatics and not resn his
Manipulate the image with the mouse to show the bonds to the oxygen and heme.
PyMOL> ray

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 13

Scene-manipulation

Scenes were introduced in the Save As You Go section of Chapter HTGR1, using Menu
choices to give commands. Scenes can also be created and manipulated by typing. To
store the current representation in the Display Area as a Scene, type

PyMOL> scene new, store

PyMOL automatically assigns a name to to the Scene as it stores the representation. The
default naming system is simply a numeric series, starting with 001. As you continue to
add Scenes, they will be assigned numeric names in the order of creation.

Use the keyword insert_after or insert_before, and a Scene name (001, 002,
etc.) , to place the representation in the Display Area anywhere in a series of two or more
Scenes, as in

PyMOL> scene new, insert_before, 002

Any Scene can be updated to match the view currently being displayed by typing the
Scene name as the first argument and update as the second, as in

PyMOL> scene 001, update

If you are updating the last Scene created, you can use the keyword auto in place of the
Scene name, as in

PyMOL> scene auto, update

You can also add a note to the current Scene by typing in the command line. For
example, typing

PyMOL> scene auto, update, Annotation information

will display "Annotation information" the next time the current Scene is recalled.

To display a stored Scene (Scene 001, for example) type

PyMOL> scene 001, recall

using the assigned Scene name, 001, as the first argument, and the action, recall, in
this case, as the second argument.

See the online documentation for a complete description of Scene commands.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 14

http://delsci.info/id/command:scene
http://delsci.info/id/command:scene

Measurement

Distance measurements To determine the distances between atoms, you can use
PyMOL’s Distance Wizard, described in Chapter HTGR2, or you can type the distance
command with two selection-expression arguments. For example, typing

PyMOL> distance 17/nh2, 6/cz

will create a distance object. (By default, the object will be named dist01 for the first
distance object you create in a session and dist02 for the second, etc.) The distance object
name and menu will be displayed in the objects & selections area, and a line between
specified atoms, labeled with the distance in Ångstroms, will be added to the Display
Area, as shown in Figure TC.7.

Figure TC.7 An anonymous distance command is given in the lower command line, resulting in a distance
object named dist01, which is displayed in the objects & selections list.

If you want to name distance objects differently, type the name as the first argument to
the distance command, as shown in Figure TC.8.

Figure TC.8 A named distance command is given, and the object takes the given name.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 15

The distance command works for atoms, residues, chains, and even objects, creating a
measurement object that includes a distance line and label for every possible pair with
one atom from each of the two selection-expressions. This may be more information than
you want, so you can provide a cutoff distance, restricting the measurements to atoms
no further apart than the cutoff. Figure TC.9 shows that

PyMOL> distance prot-lig-dists, ligand, protein, 3

will create a distance object called prot_lig_dists that contains only atom pairs within 3
Å of each other.

Figure TC.9 A named distance command is given with a final argument that limits the distances separating
the pairs that are returned in the distance object.

You can set a mode argument to determine the types of atom pairs that are measured.
For example, typing

PyMOL> distance prot_lig_all, protein, ligand, mode=1

will measure bond distances between the objects or selections named protein and ligand.
Type mode=0 to create a distance object containing all interatomic distances (between
bonded and nonbonded pairs), or mode=2 to measure only polar contact distances.
Combining a cutoff argument with mode=2 is useful for examining putative hydrogen
bonds, as in

PyMOL> distance hbonds, all, all, 3.2, mode=2

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 16

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 17

Angle and dihedral measurements Unlike the distance command, the angle
command requires an angle object name as its first argument. The following three
arguments select the atoms that define the angle, as in

PyMOL> angle required_name, 93/ca, 93/cb, 93/cg

Figure TC.10 shows the angle object that appears in the object & selections list and the
representation of the angle (in blue) that appears in the Display Area.

Similarly, the dihedral command requires, as its first argument, a name for the
dihedral object PyMOL will create. The following four arguments select the atoms that
define the dihedral, as in

PyMOL> dihedral heme-his-dih, 93/ce1, 93/ne2, 155/fe, 55/na

Figure TC.10 show the corresponding dihedral object.

Figure TC.10 A named dihedral angle command is given with the three arguments that define
the dihedral.

Structural comparison

Aligning structures Chapter HTGR2 showed how to use the A Action menus that
invoke PyMOL’s sequence and structural alignment routines to compare structures, and
how to use the Pair Fitting Wizard to produce alignments based on specific atom pairs.
The typed pair_fit and align commands were introduced there, as well. Typed
alignment commands give you more control than the menu alignment commands

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 18

because they allow you to choose the atoms for the computations. Typed pair fitting
commands give you maximum control because they allow you to choose any number of
specific atom pairs.

Figure TC.11 compares the alignment of 1z5m with 1t46 using (left) C-alphas from the
entire chains and (right) C-alphas from two specific beta-strands. Alignment across the
entire chains is typed as

PyMOL> align 1z5m////ca, 1t46////ca, object=aln_name

This corresponds to the menu-based alignment command. An alignment based on C-
alphas of the specific range of residues is typed as

PyMOL> align 1z5m///85-100/ca, 1t46///592-607/ca, object=a_name

The third argument, object=object_name, is optional. It causes PyMOL to display
yellow cgo_lines connecting the atom pairs used in the computation, to grey out the
atoms that are not aligned in the Sequence Viewer, and to add the named alignment
object and its menus to the list of objects & selections (so you can show or hide the
cgo_lines).

Figure TC.11 The typed alignment command allows you to specify a set of atoms for computing the
alignment. (left) PyMOL> align 1z5m, 1t46, object= aln_name;
(right) PyMOL> align 1z5m///85-100/ca, 1t46///592-607/ca, object=a_name
In these figures, the cgo_line_radius was set to 0.35, and the ribbon_radius was set to 0.2 (see the Settings
section).

The two objects in the alignment need not contain the same number of atoms. PyMOL’s
alignment routine begins with a dynamic-programming protein sequence alignment,
which passes only matching atoms on to the structural alignment computation.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 19

Pair-fitting structures The pair_fit command requires you to select at least two
different pairs of atoms (or pairs of selection-expressions) as a basis for superposing two
molecular objects.

As noted in Chapter HTGR2, the pair_fit command requires that each of the paired
selections contains the same number of atoms. Pair fitting does not produce a pair_fit
object, but simply computes a pairwise RMS fit, superposes the structures in the Display
Area, and reports the RMSD of the fit in the command history area.

For example, Figure TC.11 shows the pair_fit of two transfer RNAs, 1yfg and 3cw5,
resulting from the typed command

PyMOL> pair_fit (1yfg and resid

2+7+12+18+21+31+36+41+51+56+61+66+71 and name P), (3cw5 and resid

2+7+12+18+21+31+36+41+51+56+61+66+71 and name P)

Figure TC.11 Cartoon structures of tRNAs 1yfg and 3cw5 (left) were superposed (right) using
the pair_fit command above. The cartoon style was selected by typing
PyMOL> set cartoon_ring_mode, 3
(See the Settings section).

File input and output

To save or import a file in any program, you need to choose the location where the files
are stored. In PyMOL, you can navigate to files using the File menu, or, if you are
familiar with Unix, you can enter the Unix navigation commands cd, pwd, ls, etc., in
the PyMOL command lines, and use typed commands for input and output.

Input The fetch command we have been using stores files in the user’s home
directory. When PyMOL is launched, the directory is set to be the user’s home directory,
so you can simply type, for example,

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 20

PyMOL> load 1yfg.pdb, yeast-t

to open a data file that resides there. The argument yeast-t is an optional object name,
which PyMOL then assigns to the object. The comma between the arguments keeps
PyMOL from interpreting them as a name pattern, and looking for a file named
yeast-t. Without the second argument, as in

PyMOL> load ~/1yfg.pdb

PyMOL gives the loaded object the name of the data file, 1yfg in this case.

A PyMOL installation creates directories, usually aliased with the pathname
$PYMOL_PATH, in which data, examples, and other resources are stored. Users may
find it convenient to use and store data in those directories. For example, the command

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb

will locate the pept.pdb file and load it with the object name pept, and

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb, test

will load the same file and name the object test.

If you choose to cd to another directory, subsequent input and output commands will
originate from the current directory. The following input and output commands work
with files in the current directory.

In addition to fetching and loading data files, you can type the command to run a script,
as in

PyMOL> @ ./my_script.pml

Output Scripts can be tested and recorded by creating logs of commands during a
PyMOL session. To create and open a log file called my_log, for example, type

PyMOL> log_open ./my_log

Typing

PyMOL> log_close

will close any log file that is open.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 21

The typed command, save, is used to save sessions, molecules, and single images. The
first argument to any save command is the path and name of the file to be saved. The
file name must be complete with its file name extension because PyMOL uses it to
determine which kind of file to create. For example, to save a session file, type

PyMOL> save ./my_session.pse

To save a show file, type

PyMOL> save ./my_show.psw

(Recall that session and show files can be interconverted by trading file name
extensions.)

Saving the coordinates of a molecule requires an additional argument, the selection (or
object) to be saved. For example, to save the coordinates for pept in PDB format, type

PyMOL> save ./pept.pdb, pept

Images may be saved in PNG files by typing, for example,

PyMOL> save ./my_image.png

A more powerful typed command for saving images is png. The basic png command is

PyMOL> png ./my_image

The brief save and png commands create images the current size of the Display Area.
By adding arguments to the png command, you can control the size of the image. For
example, typing

PyMOL> png ./my_image, 1200, 800

will produce an image 1200 pixels wide and 800 pixels high. If you only specify the
width, PyMOL will produce an image with the given width, and scale the height to
match the proportions of the current Display Area. Or, to produce an image the same
size as the current Display Area, but with a specified resolution, type the argument dpi=
with the desired number of dots per inch, as in

PyMOL> png ./my_image, dpi=300

An additional optional argument is ray=. ray=1, as in

PyMOL> png ./my_image, 1200, 800, ray=1

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 22

prompts PyMOL to ray trace the image before writing the file to disk, and ray=0, as in

PyMOL> png ./my_image, 1200, 800, ray=0

 prompts PyMOL to write an image file that has not been ray traced,

Settings

PyMOL is almost infinitely customizable, with hundreds of settings accessible to the
user. The Display menu, as well as the Setting menu, offer frequently used settings for
point-and-click manipulation. Choosing Setting / Edit also calls up a graphical interface
for editing settings. In addition, you can manipulate settings with typed commands.
Typed equivalents for settings available from the Display menu are given in Figure
TC12. Several settings from the Setting menu are illustrated in the figures that follow.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 23

Figure TC. 12 (Left) Several settings from the Display menu are set to on by typed commands, which are
echoed in the command history and diagnostics area. (Right) These same settings are set to off, or changed
to contrasting values. The checkered background in the ray-traced display is an indication that the
background in the PNG file is transparent.
The related settings, seq_view_format, opaque_background, line_width, and antialias, and the
bg_color command are also shown. Descriptions of the individual settings are given in the PyMOL Wiki
(seq_view, seq_view_format, opaque_background, antialias, valence, line_width, line_smooth, depth_cue,
two_sided_lighting, specular), and in Appendix-Settings-ToCome.

Settings are commanded by typing three keywords: set, unset, and get, where set
changes the value of a setting, unset returns the setting to its default value (the value
PyMOL opens with), and get displays the current value of the setting. Some set
commands are toggle switches. That is, you can type set to switch from the default
value to its alternative, and unset to switch back to the default. For example,

PyMOL> set auto_show_spheres

changes the default off value of auto_show_spheres to on, causing PyMOL to
display all objects as spheres when they are loaded. Typing

PyMOL> unset auto_show_spheres

reverts auto_show_spheres to its default value of off, and all subsequently loaded
objects are displayed as lines. To determine the value of auto_show_spheres, type

PyMOL> get auto_show_spheres

and the value will be displayed in the command history window. Figure TC.12 shows
other settings that are set from default values of off to on.

 set set
 default cartoon_cylindrical_helices cartoon_fancy_helices
 (round helices)

Figure TC.12 Cartoon_cylindrical_helices and cartoon_fancy_helices are off by default,
while cartoon_round_helices is on. In the Setting menu and submenus, Cartoon, Ribbon, Surface,
Transparency, and Rendering, checks appear next to settings when they are on.

Figure TC.13 shows a few settings that are set from default values of on to off.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 24

http://www.pymolwiki.org/index.php/Seq_view
http://www.pymolwiki.org/index.php/Seq_view
http://www.pymolwiki.org/index.php/Seq_view_format
http://www.pymolwiki.org/index.php/Seq_view_format
http://www.pymolwiki.org/index.php/Opaque_background
http://www.pymolwiki.org/index.php/Opaque_background
http://pymolwiki.org/index.php/Antialias
http://pymolwiki.org/index.php/Antialias
http://www.pymolwiki.org/index.php/Valence
http://www.pymolwiki.org/index.php/Valence
http://www.pymolwiki.org/index.php/Line_width
http://www.pymolwiki.org/index.php/Line_width
http://www.pymolwiki.org/index.php/Line_smooth
http://www.pymolwiki.org/index.php/Line_smooth
http://www.pymolwiki.org/index.php/Depth_cue
http://www.pymolwiki.org/index.php/Depth_cue
http://www.pymolwiki.org/index.php/Two_sided_lighting
http://www.pymolwiki.org/index.php/Two_sided_lighting
http://www.pymolwiki.org/index.php/Two_sided_lighting
http://www.pymolwiki.org/index.php/Two_sided_lighting
http://www.pymolwiki.org/index.php/Specular
http://www.pymolwiki.org/index.php/Specular

Other set commands require two arguments: the name of the setting and the value you
wish to set. For example, cartoon representations of nucleic acid bases are available in
several modes, chosen by typing

PyMOL> set cartoon_ring_mode, 1

set cartoon_flat_sheets,

off

set cartoon_fancy_sheets,

off

set ray_trace_fog, off

Figure TC.13 Note that, when cartoon_fancy_sheets is off (middle), no arrowheads are drawn to
indicate the N to C direction of the chain, and that when ray_trace_fog is off (right), the background
parts of the chain are just as intensely colored as the helix in the foreground of the ray-traced image. Fog, or
fading of the more distant parts of the image, is one of PyMOL’s graphical subtleties for giving three-
dimensional depth to images.

Cartoon_ring_mode can be set to values of 0 through 5 (see Figure TC.14).

set cartoon_ring_mode, 0 set cartoon_ring_mode, 1 set cartoon_ring_mode, 2

set cartoon_ring_mode, 3 set cartoon_ring_mode, 4 set cartoon_ring_mode, 5

Figure TC.14 cartoon_ring_mode 2 differs from cartoon_ring_mode 1 in the treatment of the
edges of the rings. The edges are round in mode 1 and square in mode 2.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 25

A third, optional, argument can be added, to specify the object that gets the new setting,
as shown in Figure TC.15 (top). Without a third argument, the setting applies to all.

(top) The radius for sticks was set for only the lower object, pept, by the command
PyMOL> set stick_radius, 0.5, pept

(middle) The global value of stick_radius was then set to 0.0 by the command
PyMOL> unset stick_radius

The top object disappeared because its stick radius became 0.0.

(bottom) The stick_radius having been set for the object pept, the correct
command for unsetting its stick_radius is
PyMOL> unset stick_radius, pept
Alternatively, the default value of stick_radius, 0.25, could be set for all
PyMOL> set stick_radius, 0.25, all

Figure TC.15

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 26

In general, settings are customizable for objects, including all, but not for selections (lists
of atoms). However, there are exceptions: sphere_color, surface_color,
mesh_color, label_color, dot_color, cartoon_color, ribbon_color,
transparency (for surfaces), and sphere_transparency can be set for selections.
While these settings can be altered for selections by typed commands, the current values
of the settings for the given selections cannot be retrieved with the get command.

Like the set command, the unset command can apply globally, to specified objects, or
to selections in certain cases. If you type an unset command with only the setting name
argument, as in

PyMOL> unset stick_radius

the global value will be set to zero or to off. Figure TC.15 (middle) shows what may
unexpectedly happen when the stick_radius is set for an object, but the unset
command is given globally.

Command Line Features
Both PyMOL’s upper and lower command lines provide shortcuts for typing commands
and filenames.

Command completion using TAB

If you type the first few characters of a command and then hit TAB, PyMOL will either
complete the command or print out a list of the commands that begin with the letters
you typed. For example, if you type

PyMOL> sel

and then hit the TAB key, PyMOL will complete the command word,

PyMOL> select

If you type

PyMOL> se

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 27

and then hit TAB, PyMOL will provide a list of commands that begin with se in the
command history and diagnostics area. If you hit the TAB key on a blank command line,
PyMOL will provide a list of all its commands.

Command inference

If you are confident that the command you need begins with a unique string of a few
letters, then you can type those few letters and PyMOL will infer the rest and perform
the command. For example, rather than typing

PyMOL> select name ca

you can get the same result by typing

PyMOL> sel name ca

Command argument inference

The same principle works for command arguments. If the command argument you need
begins with a unique string of a few letters, then you only need type those few letters.
For example, rather than typing

PyMOL> show sticks, resn his

you can type

PyMOL> show st, resn his

and PyMOL recognize that st stands for the argument sticks. You can put command
and argument completion together, and type

PyMOL> sh st, resn his

with the same result.

File name completion using TAB

If you use the command line for commanding input and output, rather than navigating
through the file menu, you may have to enter some long paths and file names. PyMOL
can increase your efficiency by completing unambiguous paths and file names. For
instance, if a file named crystal.pdb exists in the current directory, typing

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 28

PyMOL> load cry

and hitting TAB will generate

PyMOL> load cystal.pdb

in the command line, and the file will be loaded when you hit return.

If there is some ambiguity in the file name, PyMOL will complete the name up to the
point of ambiguity and then print (in the command history and diagnostics area) the
matching file names in the directory.

Climbing the stack of commands

The PyMOL commands you type are kept accessible to you in a stack. PyMOL will
display the previous command each time you press the up-arrow key on your keyboard.
It displays the subsequent command when you press the down-arrow key. So if you
want to repeat a command, use the arrow keys to display it, and then hit return.

Editing in the upper command line

The upper command line has an additional feature: it is editable. You can move the
cursor in this (upper) command line using the left- and right-arrow keys; you can select,
cut, copy and paste by dragging the cursor, and you can use the delete key to edit. You
can copy and paste from one line of commands to another, and you can copy selection
macros and commands from the command history area. On a Windows PC, select the
text and use Ctrl-X to cut, Ctrl-C to copy, and Ctrl-V to paste. On a Mac, the apple key
replaces Ctrl.

When you click on atoms in the Display Area, PyMOL provides a notice in the command
history and diagnostics area identifying the atoms, as in

You clicked /1mbn//A/LYS`56/NZ

It’s often convenient to cut an paste such macro identifiers into subsequent commands.

You can also cut and paste PyMOL commands to and from text files. This can be
convenient when you are developing and testing a script.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 29

Viewing commands in the Display Area

By default, command history and diagnostics are shown in the window above the upper
command line. Alternatively, you can set PyMOL to show this text in the Display Area
by choosing Show Text, which replaces the molecular display, or Overlay Text, which
shows text over the molecular display, from the Setting menu. Choosing Hide Text will
remove it from the Display Area.

© 2 0 1 0 S c h r ö d i n g e r, L L C J a n 2 0 1 0 D r a f t F o r P y M O L S p o n s o r s O n l y 30

