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Abstract 

Wind energy is the fastest-growing energy source in the world nowadays and most 

wind turbines are installed at remote areas, e.g. country side, off sea-shore. Having a 

reliable fault diagnosis and fault tolerant control (FTC) scheme is crucial to improve 

the reliability of wind turbines and reduce expensive repair cost. This PhD work is 

motivated by this fact and a model-based fault diagnosis and FTC scheme is developed 

for a doubly fed induction generator (DFIG) based wind turbine system. In particular, 

an electrical and a mechanical fault scenarios, the DFIG winding short circuit and 

drive train faults, are considered due to their high occurrence rates. 

For the DFIG winding short circuit fault, two mathematical models of DFIG with 

respect to two types of faults, i.e. single-phase and multi-phase faults, are proposed 

which can represent all possible cases of the faults. Moreover, the state-space 

representations of these models are derived by using reference frame transformation 

theory, such that the faults are represented by some unknown variables or parameters. 

Based on these models, an adaptive observer based fault diagnosis scheme is proposed 

to diagnose short circuit faults via online estimation of unknown variables or 

parameters. By dong this, the fault level and location can be online diagnosed. To 

consider the effects of model uncertainties, two robust adaptive observers are proposed 

based on the H∞ optimization and high-gain observer techniques, respectively, which 

can ensure the accuracy and robustness of fault estimations. In addition, a 

self-scheduled LPV adaptive observer is developed with consideration of rotor speed 

variations, which is suitable for the fault diagnosis under non-stationary conditions. In 

the context of FTC, a fault compensator is developed based on fault information 

provided by the fault diagnosis scheme, and it incorporates with a traditional controller 

(i.e. stator flux oriented controller) to provide an online fault compensation of winding 

short circuit faults. 
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For the mechanical drive train fault, the work focuses on FTC rather than diagnosis. 

Without using an explicit fault diagnosis scheme, an active FTC scheme is directly 

designed by employing an adaptive input-output linearizing control (AIOLC) 

technique. It provides a perfect reference tracking of the torque and reactive power no 

matter whether the fault occurs. In addition, a robust AIOLC is proposed in order to 

ensure FTC performance against model uncertainties. 
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Nomenclature 

Symbols 

In this thesis, the bold letters denote matrices or vectors. 

Electrical & Magnetic Symbols 

    Fault level parameter (percentage of the shorted turns) 

μ    Fault level parameter matrix 

xf    Fault position vector 

i    Instantaneous phase current 

i    Current vector 

I    Current phasor 

v    Instantaneous phase voltage 

v    Voltage vector 

V    Voltage phasor 

    Instantaneous phase flux 

ψ    Flux vector 

    Flux phasor 

r    Resistance 

R    Resistance matrix 

L    Inductance 

L    Inductance matrix 

M    Mutual inductance 

    Angle (rotating position) 

T    Torque 

p    Number of pole pair 
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s    Synchronous speed 

r    Electrical rotor speed of generator 

wt    Wind turbine speed 

g    Mechanical rotor speed of generator  

f    Frequency 

P    Instantaneous active power 

Q    Instantaneous reactive power 

w    Wind speed 

_w rat   Rated wind speed 

_w cin   Cut in wind speed 

_w cout   Cut out wind speed 

    Air density 

wtR    Wind turbine radius 

    Tip-speed ratio 

    Blade pitch angle 

J    Moment of inertia 

B    Torsion damping coefficient  

gN    Drive train gear ratio 

K    Stiffness 

32T    Transformation matrix (from abc to dq) 

23T        Inverse transformation matrix (from dq to abc) 

nI    Identity matrix with dimension n  

n m0   Zero matrix with dimension n m  
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j    1  

 

Mathematical Symbols 

   Space of real numbers 

n    N-dimensional real space 

n n   nn dimensional real space 

TA    Transpose of vector or matrix A  

1A    Inverse of matrix A  

A    Absolute value of number A  

max ( )A   Maximum eigenvalue of matrix A  

min ( )A   Minimum eigenvalue of matrix A  

iA    i-th element of vector A   

ˆ( )x t   Estimate of variable ( )x t  

( )T s


  H  norm of transfer function ( )T s  

( )x t   L2 norm of signal ( )x t  

sup ( )f x  Supreme of function ( )f x  

( )






  Partial differential operator 

   Cross product 

 

Subscripts 

s     Stator 

r     Rotor 

m     Mutual  

, ,a b c   abc reference frame 

,d q   dq reference frame 
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u    Un-faulted quantities 

f    Faulted quantities  

    Leakage  

g       Generator 

wt    Wind turbine 

w       Wind 

rated   Rated value 

ls       Low speed shaft 

hs       High speed shaft 

 

Superscripts 

h     Healthy component 

*     Reference value 

+, -   Positive and negative sequence components 

 

Abbreviations 

VSCF:  Variable Speed Constant Frequency 

FDD:  Fault Detection and Diagnosis 

FTC:  Fault Tolerant Control 

MCSA:  Machine Current Signature Analysis 

VFC:  Variable Frequency Converter 

DFIG:  Doubly Fed Induction Generator 

PNSC:  Positive Negative Sequence Components 

UIO:  Unknown Input Observer 

LS:   Least Square 

LMS:  Least Mean Square 

RLS:  Recursive Least Square 

LIT:  Linear Time Invariant 
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LPV:  Linear parameter varying 

SPR:  Strictly Positive Real 

PI:   Proportional Integer 

ARE:  Algebraic Riccati Equation 

LMI:  Linear Matrix Inequality 

AIOLC  Adaptive input-output linearizing control 
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1. Introduction 

1.1. Overview 

Wind energy, considered as a nonpolluting, renewable and economical energy, has 

experienced a rapid increase in its share in power generation all over the world. 

Particularly in the United States and Europe, wind power capacity has grown at a rate 

of 20%-30% per year over the past decade [11]. In order to capture the maximum wind 

power, many new wind farms have employed DFIG for power generation, which 

offers many advantages over other generators, such as variable speed constant 

frequency (VSCF) operation, low mechanical stresses, high system efficiency [1], [3]. 

  Wind turbines are usually constructed in mountainous or off-shore regions with 

harsh environmental conditions. Because of the temperature variation, material 

corrosion, mechanical stress, and voltage stress, etc., faults may occur at any 

components of wind turbine systems. Hence a reliable online fault detection and 

diagnosis (FDD) system is requisite to prevent further failures and deteriorating other 

parts of the wind turbine via early detection [12]. In addition, most existing control 

algorithms of DFIG based wind turbine systems are designed based on the nominal 

conditions. Nevertheless, when a fault occurs, the system performances could be 

severely deteriorated by using standard nominal control scenario. Therefore, 

introducing FTC scheme is important to maintain appropriate operations from the time 

a fault is detected to the next planned service [14]. 

It has been reported that most failures in wind turbine systems are linked to two 

components: the DFIG and drive train [13], [15]. Additionally, the majority of the 

DFIG failures are caused by winding faults [16]. Therefore, in this PhD study, we 

mainly focus on these two types of faults (i.e. DFIG winding and drive train faults) and 

aims to develop FDD and FTC schemes to diagnose and tolerate these faults. 

  Within the last two decades, the theoretical background of fault diagnosis algorithms 
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has been established, which has been widely applied to cope with faults in many 

industrial systems including wind turbine systems [12], [22], [18]-[31]. The common 

approaches can be classified into three categories: signal-based approach, 

knowledge-based approach, and model-based approach. Signal-based approaches are 

the most commonly used technique in wind turbine systems [12]. The approaches such 

as motor current signature analysis (MCSA) [70], [71] and vibration monitoring [17] 

[81], have been extensively used to diagnose electrical and mechanical faults in the 

generator, drive train, and other important components in wind turbine systems. 

However, these signal-based approaches require explicit priori knowledge of the 

relationship between signal symptoms (e.g. spectrum) and faults, and most of existing 

studies mainly focus on fault detection rather than diagnosis. In addition, most 

traditional signal-based methods (e.g. MSCA) are not suitable for the non-stationary 

analysis [14]. The knowledge-based approaches employ the historical data in both 

nominal and faulty conditions to train qualitative models built by artificial intelligent 

techniques (e.g. neural network, or fuzzy system), in order to capture the fault patterns, 

The research in this area is very active recently and it has many applications in wind 

turbine systems [96], [97]. However, it only focuses on identifying the current system 

condition, without necessarily providing detailed information of the faults. As long as 

an accurate mathematical model can be constructed, model-based approach is often 

considered as a preferable method, which allows to diagnose the fault (i.e. level and 

location) quantitatively and it can be applied to both stationary and non-stationary 

conditions [23]. The latter characteristic is especially suitable for wind turbine systems, 

as it predominately operates under non-stationary conditions [70]. For this reason, in 

this PhD work, we aim to develop a model-based FDD scheme with application to 

DFIG based wind turbine systems. 

  In the field of model-based FDD, a large amount of results have been reported 

recently with different applications [18]-[20], [26]-[33]. Many different approaches 

have been proposed such as parity relation, parameter estimation, state estimation, and 

joint state/parameter estimation based approaches. Parameter estimation is considered 

as a direct and simple approach, whenever the fault can be reflected through parameter 
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changes (e.g. multiplicative fault) [27]. However, sometimes the unknown states of the 

post-fault system are also required to reconstruct or modify the controller in order to 

tolerate the fault. Therefore, a combination of state and parameter estimation based 

approach is probably more appropriate in the context of both fault diagnosis and fault 

tolerance. Some recent results of fault diagnosis by using adaptive observers have been 

proposed in [43]-[46], [49], [78]. This approach belongs to the field of joint state and 

parameter estimation, which is able to provide an online estimation of constant or 

slowly varying faults, and simultaneously estimate system states for the purpose of 

control reconfiguration. In this PhD study, we attempt to employ adaptive observer 

techniques to diagnose DFIG winding short circuit faults, and also use the estimated 

states to reconstruct the controller so as to compensate the effects of faults. 

  In many cases, the degradation of system performance in faulty condition can be 

avoided by applying appropriate FTCs. In general, FTC can be achieved by two 

approaches: the passive approach and the active approach [51]. In passive approach, a 

fixed controller is applied throughout the normal and faulty conditions, which can 

maintain acceptable performance against a limited numbers of faults. However, as the 

number and level of faults increase, the passive controllers become more conservative, 

and attainable control performance may be deteriorated [55]. In active approaches, 

faults are compensated either by switching to a pre-designed control algorithm or by 

online synthesizing a new control algorithm. For the latter method, adaptive control is 

commonly employed, which has been extensively used to accommodate the fault [54], 

[55], [60]-[64]. In comparison with other methods, it does not heavily rely on the fault 

diagnosis decision and no explicit knowledge of the faults is needed to reconstruct the 

controller. In this thesis, the active FTC approach is employed to compensate the DFIG 

winding short circuit and drive train faults. The first fault is compensated based on the 

information from fault diagnosis systems, and then the controller is switched from the 

nominal to faulty mode. The second one is accommodated by a parameter adaptive 

controller which can ensure the closed-loop system performance in the presence of 

fault-induced parameter variations. 
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1.2. Thesis Objectives 

The primary objective of this work is to develop an online model-based fault diagnosis 

and FTC scheme for DFIG based wind turbine systems. In particular, two fault 

scenarios are considered: DFIG winding short circuit fault and drive train fault. To 

facilitate the design of model-based fault diagnosis and FTC schemes, and also to 

provide a simulation environment to test the schemes, a mathematical model of DFIG 

based wind turbine system subject to such two fault scenarios are expected to be 

developed. The detailed objectives can be listed as follows. 

1. Investigate the characteristics of DFIG winding short circuit faults, and develop a 

mathematical model of the DFIG which can generally represent all possible 

scenarios of this fault. 

2. Parameterize the model in terms of DFIG winding short circuit faults and develop 

a model-based fault diagnosis scheme in order to online estimate the fault-related 

parameters. 

3. Improve the robustness of developed diagnosis schemes against model 

uncertainties. 

4. Develop a FTC scheme for the DFIG winding short circuit fault based on the 

information obtained from fault diagnosis scheme. 

5. Build a mathematical model of drive train system, and parameterize this model in 

terms of drive train fault. 

6. Based on this model, develop a FTC strategy to accommodate drive train fault and 

maintain closed-loop performance. 

7. Enhance the robustness of the developed FTC scheme against model uncertainties. 

1.3. Thesis Contributions 

The main contributions of this PhD work are summarized as follows: 

1. Modeling of DFIG with winding short circuit faults. 

Two mathematical models of the DFIG with respect to winding short circuit faults 
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are proposed. One is used to represent the fault in a single phase (i.e. single-phase 

short circuit fault), and the other is used to represent the faults in several phases 

simultaneously (i.e. multi-phase short circuit fault). By using these two models, the 

short circuit faults at any levels and in any phases can be quantitatively represented. In 

addition, the state-space representations of these two models are developed by using 

the reference frame transformation theory, which largely facilitate the digital 

simulation and the development of fault diagnosis schemes. Equivalent circuits of 

DFIG with respect to short circuit faults are also derived from the proposed 

mathematical models, based on which the properties of the short circuits are analyzed. 

These proposed models provide a base for the studies of model-based fault diagnosis 

and FTC approaches, and also provide a model test bench for evaluating other 

approaches. 

2. Fault diagnosis and compensation of winding short circuit faults 

Based on these proposed fault models, an adaptive observer based fault diagnosis 

scheme is proposed which allows online diagnosing the fault level and location. To 

consider the effects of model uncertainties, two robust adaptive observers are proposed 

by using H∞ optimization and high-gain observer techniques, respectively. These 

observers can ensure accurate fault diagnosis in the presence of model uncertainties. In 

addition, a self-scheduled LPV adaptive observer is developed with consideration of 

the rotor speed variation, which is suitable for the fault diagnosis under non-stationary 

conditions. This characteristic is especially significant for the wind turbine system as it 

predominantly operates under such conditions. 

  Based on the proposed fault diagnosis scheme, a fault compensator is developed and 

integrated with a traditional control algorithm (i.e. stator flux oriented control), which 

is able to provide online compensation of any possible winding short circuit faults, 

regardless their level and location. The simulation studies show that this fault 

compensator can highly reduce the oscillations in the electromagnetic torque, output 

power and some other electrical quantities in the presence of short circuit faults. 

3.  FTC of DFIG based wind turbine system subjected to drive train fault 

An active FTC scheme is proposed based on adaptive input-output linearizing 
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control technique, which can ensure perfect reference tracking of the torque and 

reactive power in the presence of drive train fault. In addition, a robust adaptive 

control algorithm is proposed, which can ensure desired control performance against 

model uncertainties. 

1.4. Thesis Outline 

In this section, a general overview of this thesis is presented.  

  Chapter 2: Literature Review gives a brief introduction to the field of fault 

diagnosis and FTC. Additionally, their applications to wind turbine system are 

investigated. This chapter starts with Section 2.1 on a general description of DFIG 

based wind turbine system. Section 2.2 summaries the available methods used in the 

field of fault diagnosis and FTC. Section 2.3 introduces the current status and some 

existing methods of fault diagnosis and FTC in wind turbine systems.  

  Chapter 3: Modeling of DFIG with winding short circuit Fault proposes two 

mathematical models of DFIG for the single-phase and multi-phase short circuit faults 

respectively. These models are initially developed in the natural a-b-c coordinate, and 

then transformed into the d-q coordinate. Finally, the equivalent circuit diagrams of 

DFIG with respect to short circuit faults are provided based on which an explicit 

analysis of the fault characteristics and its effects on the DFIG behaviour is provided. 

  Chapter 4: Diagnosis of Single-Phase Short Circuit Fault in DFIG proposes an 

adaptive observer based fault diagnosis scheme for the short circuit fault in a single 

phase. In Section 4.2, a common sinusoidal signal decomposition technique, i.e. 

sequence component decomposition, is introduced. In Section 4.3, by using this 

technique, the single-phase fault model proposed in Section 3.2 is transformed into a 

state-space model representation and the fault is formulated into an additive fault 

represented by two unknown variables. In Section 4.4, a conventional adaptive 

observer is firstly applied to estimate these unknown variables so as to diagnose the 

fault. In Section 4.5, the effects of model uncertainties are considered and a robust 

adaptive observer is proposed based on H optimization technique. In Section 4.6, the 
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effects of the speed variation are considered and a self-scheduled LPV adaptive 

observer with guaranteed H performance is proposed which can cope with both 

model uncertainties and speed variations.  

  Chapter 5: Diagnosis of Multi-Phase Short Circuit Fault in DFIG proposes a 

fault diagnosis scheme for short circuit faults in multiple phases simultaneously. 

Similar to Chapter 4, it is also based on adaptive observers. A state-space 

representation of the DFIG model with respect to multi-phase fault is presented in 

Section 5.2. In this model, faults are quantitatively represented by a set of unknown 

model parameters. In Section 5.3, a conventional adaptive observer is firstly applied to 

estimate the unknown parameters so as to diagnose the fault. In Section 5.4, a modified 

adaptive observer is designed to relax the SPR condition required by the conventional 

adaptive observer. In Section 5.5, the effects of model uncertainties are considered and 

a robust adaptive observer is proposed based on high gain estimation technique. In 

Section 5.6, the effects of speed variations are considered and a LTV adaptive observer 

is designed to cope with speed variations. 

Chapter 6: Fault Compensation for Short Circuit Fault in DFIG Wind Turbine 

Systems proposes a fault compensator to compensate the effects of winding short 

circuit faults in a closed-loop controlled DFIG wind turbine system. This fault 

compensator is based the adaptive observer proposed in Chapter 5. In Section 6.2, a 

traditional control strategy: stator flux oriented control, is firstly introduced. And then 

in Section 6.3 a fault compensator is developed and incorporates with this traditional 

control strategy to maintain a continued operation of DFIG in the presence of winding 

short circuit faults. 

Chapter 7: Adaptive Nonlinear Control of DFIG Wind Turbine System with 

Drive Train Fault proposes a FTC strategy for DFIG wind turbine system to tolerate 

the drive train fault. In Section 7.2, a one-mass model of the drive train is presented 

and the faults are considered as the unexpected change of the parameter in this model. 

In Section 7.3, an adaptive input-output linearizing control algorithm is developed for 

the adaption of the parameter variations and the decoupled control of the torque and 

reactive power. In Section 7.4, a robust control algorithm is developed to ensure the 
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desired reference tracking of the torque and reactive power in the presence of model 

uncertainties. 

Finally, concluding remarks are made in Chapter 8. 
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2. Literature Review 

Equation Chapter 2 Section 1 

This chapter gives a brief introduction to the field of fault diagnosis and FTC. 

Additionally, its application to wind turbine systems is investigated. This chapter starts 

by Section 2.1 on a general description of DFIG based wind turbine systems. Section 

2.2 summaries the available methods used in the field of fault diagnosis and FTC. 

Section 2.3 introduces the current status and some existing methods of fault diagnosis 

and FTC in wind turbine systems. 

2.1. DFIG Based Wind Turbine System Description 

A brief description of DFIG based wind turbine system is given in this section. Figure 

2.1 presents the basic configuration of a DFIG based wind turbine system [1]. The 

wind turbine is connected to DFIG through a drive train system, which contains high 

and low speed shafts, bearings and a gearbox. The DFIG is constructed from a wound 

rotor induction machine [2]. Its stator is directly connected to the grid while its rotor is 

fed by a bi-directional variable frequency converter (VFC). The generator and 

converters are protected by a crowbar from over-current by disconnecting the rotor 

side converter. The main components of the DFIG based wind turbine system, i.e. wind 

turbine, DFIG, driven train and VFC, which will be introduced in the following 

subsections, respectively. 
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Figure 2.1. Configuration of a DFIG wind turbine system. 

2.1.1. Wind Turbine 

The wind turbine is the key device in wind power generation systems, whose basic 

functionality is to transfer the wind power into the mechanical power on the rotor shaft. 

The amount of captured wind power is controlled by adjusting blade angle and 

rotational speed of wind turbine.  

The wind turbine is designed to perform different behaviours on different regions of 

the wind speed [3]. The wind turbine starts running as soon as wind speed exceeds the 

lower bound (i.e. cut-in speed), usually around 5m/s. While when the wind speed 

exceeds the upper bound (i.e. cut-out speed) usually around 25m/s, the wind turbine 

stops running to avoid damages. Additionally, when the wind speed is higher than a 

certain value (i.e. rated speed) at which the generator achieves its rated power, the 

blade angle of wind turbine is changed to release a part of excess wind energy in order 

to protect the generator. The wind turbine mostly operates at the region between cut-in 

speed and rated speed. At this region the mechanical power captured from the wind can 

be calculated by the following formula [4]. 

2 31
( ) ( , )

2
wt w wt p wP R C                       (2.1) 

where,   is the air density. wtR  is the wind turbine radius. w  is the wind speed. 

( , )pC    is called the power coefficient, which is a function of the tip-speed ratio ( ) 
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and the blade pitch angle (  ). The power coefficient is given by the wind turbine 

manufacturer depending on the blade design. According to Betz‟s law [7], the ideal 

power coefficient is 59%. However, in practice, a wind turbine with good blade profile 

can only reach to 50%. The output power of wind turbine on different regions of wind 

speed is given as follows: 

_ _

_ _

_ _
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0 ; and
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            (2.2) 

where ratedP , _w rat , _w cin  and _w cout  are the rated power, rated wind speed, cut-in 

wind speed and cut-out wind speed, respectively. 

In Chapter 6, the characteristic of the output power is further investigated, based on 

which an optimum power control strategy (i.e. Maximum Power Point Tracking) is 

introduced and employed to the control of DFIG based wind turbines.  

2.1.2. DFIG 

DFIG is the most commonly used generator in wind power generation systems [1]. 

Since it is constructed from a wound rotor induction machine, its stator and rotor both 

have winding structures. The stator windings are directly connected to the three-phase 

grid, while the rotor windings are connected to the rotor side converter by slip rings 

and brushes. A voltage is injected into the rotor circuit through slip rings in order to 

control the rotational speed of the DFIG [2]. The DFIG operates in two speed regions: 

super-synchronous and sub-synchronous regions [8], which are decided by the rotor 

voltages. The effects of the rotor voltages can be observed from the torque-slip 

characteristic plot as given in Figure 2. In this figure, „pu‟ stands for per unit. Curve (1), 

(2) and (3) correspond to zero, negative and positive rotor voltages, respectively. 

Assume that DFIG initially operates at synchronous speed with slip 0s  . The speed 

can be increased to super-synchronous speed (A point) by injecting a negative rotor 

voltage, or decreased to sub-synchronous speed (B point) by injecting a positive rotor 

voltage. 
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Figure 2.2. Torque-Slip Characteristic of the DFIG. 

 

The power flow of DFIG at super-synchronous and sub-synchronous regions is 

given in Figure 2.3. As it is shown, when DFIG operates at super-synchronous region, 

the rotor produces power and the power is delivered to the grid through converters. On 

the other hand, if DFIG runs at sub-synchronous region, the rotor absorbs power and a 

part of stator power enters into the rotor circuits. Neglecting the losses, the power 

delivered by the stator and rotor can be calculated as [1] 

r sP sP                                  (2.3) 

1

grid

s

P
P

s



                                (2.4) 

where sP  is the power delivered by the stator, rP  is the power delivered by the rotor, 

gridP  is the total power generated and delivered to the grid. s  is the slip. 
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Figure 2.3. Power flow of DFIG. 

In this PhD work, we focus on investigating the behaviours of DFIG in the presence 

of a common electrical fault, i.e. winding short circuit fault. In this following chapters, 

a mathematical model of DFIG subjected to this type of fault is developed, and based 

on this model the fault diagnosis and FTC schemes are proposed, respectively in 

Chapter 4, 5, and 6.  

2.1.3. Drive Train 

The drive train is an important component of DFIG wind turbine systems. It connects 

wind turbine with DFIG and transfers the aerodynamic mechanical power to DFIG. 

The drive train system consists of the low and high speed shafts, gearbox, bearings and 

other mechanical components, which can be represented a two-mass model as shown 

in Figure 2.4 [6]. In this figure, the big mass is used to represent the low speed shaft, 

and the small mass is used to represent the high speed shaft. The connecting the 

resilient shaft is modeled as a spring-damper system. The gearbox is modeled as a gear 

ratio without any loss. Before presenting the dynamic equations of the whole drive 

train system, the motion equations of these four main components are given 

individually.  
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Figure 2.4. Two-mass model of the drive train.  

 

The dynamics of the low speed shaft (bigger mass) is expressed as 

( ) ( ) ( )wt wt lsJ t T t T t                              (2.5) 

where wtJ  is the moment of inertia of the low speed shaft.  

( )wtT t  is the aerodynamic torque from the wind turbine. 

( )lsT t  is the torque acting the on the low speed shaft. 

( )wt t  is the angular speed of the low speed shaft. 

The dynamics of the high speed shaft (small mass) is expressed as 

( ) ( ) ( )g g hs gJ t T t T t                              (2.6) 

where gJ  is the moment of inertia of the low speed shaft.  

( )gT t  is the electromagnetic torque from the generator. 

( )hsT t  is the torque acting the on the high speed shaft. 

( )g t  is the mechanical angular speed of the high speed shaft, or called 

generator rotor speed. 

The behaviour of the gearbox is modeled as a gear ratio defined as below. 

( )
( ) ls

hs

g

T t
T t

N
                             (2.7) 

where gN  is the drive train gear ratio. 

The dynamics of the resilient shaft (spring-damper system) can be expressed as 
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( ) ( ) ( )ls dt dtT t K t B t                         (2.8) 

where  
( )

( ) ( )
g

wt

g

t
t t

N


     

dtB  is the torsion damping coefficient of the shaft. 

      
dtK  is the torsion stiffness of the shaft. 

      ( )wt t  is the angle of the low speed shaft. 

      ( )g t  is the angle of the high speed shaft. 

Above equations are reorganized to obtain the dynamic equations for the whole 

drive train system.  
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           (2.9) 

This first order differential equation group can represent the dynamics of the drive 

train system. In Chapter 7, a simpler model, i.e. one-mass model, is presented by only 

considering the dynamic of the high speed dynamics. Based on this model, a fault 

tolerant control algorithm is developed to control the DFIG wind turbine in the 

presence of drive train fault. 

2.1.4. Variable Frequency Converter (VFC) 

The VFC consists of two AC/DC IGBT based voltage source converters: grid side 

converter (GSC) and rotor side converter (RSC), connected back to back by a DC 

capacitor. GSC is used to maintain the DC link voltage constant and provide a channel 

for the power on rotor side [5]. RSC is used to yield voltage required by the DFIG 

controller. The configuration of VFC is given in Figure 2.5. As it is shown, the GSC 

and RSC both consist of six insulated gate bipolar transistors (IGBT). Pulse width 
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modulation (PWM) topology is implemented to control the gates of IGBT in order to 

change the amplitude and frequency of the output voltages [10]. 

Rotor

side

Grid

sideDC

link

 

Figure 2.5. Configuration of VFC. 

2.2.  Fault Scenarios in Wind Turbine System 

Wind turbines are usually built in mountainous and off-shore regions, where the 

working environment is very harsh. Because of the temperature variation, material 

corrosion, mechanical stress, and voltage stress, etc., faults can occur at any 

components of wind turbine systems. An overview of main components to be 

monitored is shown in Figure 2.6. These components can be generally classified into 

the following sub-systems: rotor blades, drive train, generator, yaw system, tower, and 

sensors. 

 
Figure 2.6. Main components of the wind turbine system. 
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Figure 2.7. Wind turbine downtime distribution (extracted from [15]). 

 

An investigation of the failure statistics from four wind farms: two separate wind 

farms from Sweden, one from Finland, and one from Germany is presented in [15]. 

The downtime distribution of the wind turbine system is given in Figure 2.7. 

According to their studies, faults in the generator and drive train (includes gear box, 

main shafts, and bearings) are the most crucial and widely observed failures, which 

dominate over 60% of the downtime in wind turbine systems. 

It is also known that a major cause of generator failures is the windings short circuit, 

or called the inter-turn short circuit in some literatures [91], [94]. It has been stated in 

[16] that over 38% failures of the generator are caused by this type of fault. This fault 

is difficult to be detected, especially in the initial stage. However, undetected winding 

short circuit faults may lead to a catastrophic fault and bring an irreversible damage to 

the generator. Therefore, in recent years, a large amount of research efforts are 

attracted to study this type of electrical fault. 

  In this PhD study, the generator winding short circuit and drive train faults are 

explicitly investigated due to their high occurrence rates, for which model-based fault 

diagnosis and FTC schemes are developed in the following chapters. 
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2.3.  Fault Diagnosis and Fault Tolerant Control 

Techniques 

2.3.1. Fault Diagnosis  

Due to the importance of safety and reliability in industrial systems, fault detection and 

diagnosis (FDD) algorithms and their industrial applications have been investigated 

extensively over the past two decades. The main tasks of a FDD algorithm consist of 

fault detection (indicate whether a fault occurs in the monitored system), fault isolation 

(determine the exact location of the fault), and fault identification (determine the shape 

and size of the fault) [27]. The last two tasks are usually referred as fault diagnosis 

according to [29]. Based on this classification, FDD often represent the functions 

including fault detection and diagnosis, or simply called fault diagnosis in some 

literatures [31]. 

Many different FDD approaches have been developed, which are summarized in 

some survey literatures [23]-[25]. According to different properties and applications, 

these approaches can be generally classified into three main categories: 

 Signal-based approach. 

 Knowledge-based approach. 

 Model-based approach. 

In this thesis, we focus on the model-based approach, as it is more suitable for 

online and non-stationary FDD. Therefore, the theoretical background of only the last 

approach is provided in later this chapter. However, a brief review of applications in 

wind turbines of all the three approaches are discussed in Section 2.4.1, since the first 

two approaches are still commonly used techniques in practice. 

In model-based approaches, an accurate mathematical model is required to represent 

the system. Such a model runs in parallel to the system and is supplied with the same 

input signals. In an ideal situation, the model variables can well track the real system 

variables in the absence of fault and present an obvious derivation when fault occurs. 
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This derivation is measured in terms of a residual, which is obtained by subtracting the 

measured system variables with their estimates provided by the model. The residual 

contains important information with respect to the fault. The fault detection and 

diagnosis can be then achieved by observing and analyzing this residual. A schematic 

description of the model-based FDD scheme is given in Figure 2.8, which is 

accomplished by two steps: the residual generation and residual evaluation [32]. 

System

System 

Model

Residual 

processing 
Decision 

Logic

Input Output

Residual

Residual Generation Residual Evaluation

- Knowledge 

of faults

 

Figure 2.8. Schematic description of the model-based FDD. 

 

Different model-based FDD approaches have been developed in the past two 

decades. The survey papers [18], [19], [23], [26]-[30] by Isermann, Frank, Patton, etc., 

provide a good overview of the development and achievements in the field of 

model-based FDD, and the book by Isermann [31] presents a clear framework of the 

model-based FDD. Four most commonly used approaches are 

 State estimation (or called observer based approach)  

 Parity relation 

 Parameter estimation  

 Joint state and parameter estimation 

Based on this classification, several important and common model-based FDD 

algorithms are classified and summarized in Figure 2.9. 
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Figure 2.9. Classification of the model-based FDD approaches. 

 

For the purpose of fault detection only, the first two approaches (i.e. state estimation, 

parity relation) are commonly used, which use the residual signal as fault indicator. As 

mentioned previously, this is simply due to that the residual remains at zero in the 

absence of fault, while runs away from zero when fault occurs. However, actually the 

residual is not only affected by fault, but also influenced by the model uncertainties, 

measurement noise and external disturbances. For these reasons, researchers have 

sought to develop a residual sensitive to fault but insensitive to disturbances. The 

dominate approaches can be divided into two classes. One strategy is to decouple the 

residual signals from the disturbances [33], [34]. The unknown input observer (UIO) is 

a typical method belongs to this sort of approaches [20], [21], [35]. The other sort of 

approaches aim at attenuating the effects of the disturbances on the residuals, which is 

usually applied to the situation that complete decoupling is impossible. The typical 

method is H filter [36], [37]. 

Compared to fault detection, fault diagnosis is a much more challenging task, as it 

requires further estimating and quantifying the location and magnitude of the faults 

apart from simply reporting them [78]. The last two approaches listed above (i.e. 

parameter estimation, joint parameter/state estimation) are commonly used in the 

context of fault diagnosis, while they are applicable whenever the fault can be reflected 

through the parameter changes [38] (e.g. multiplicative fault). The basic idea of these 

two approaches is to estimate some fault-related parameters so as to obtain the 

information of the faults (i.e. location and level) by analyzing these estimated 

parameters. This idea is further illustrated as follows [39]. 
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1. Construct a parametric model of a system under study. 

2. Determine the relationship between the model parameter vector   and 

physical parameter vector p . 

( )f p                             (2.10) 

3. Estimate the model parameter vector   using the input-output 

measurements. 

4. Calculate the physical parameter vector from the estimated  . 

1( )p f                           (2.11) 

5. Compare the p  with its nominal values, and obtain the deviation p . 

6. Determine the fault location and size by exploiting the relationship between 

fault and p . 

Some classical system identification techniques [27], [31], e.g. least squares (LS), 

least mean square (LMS), are commonly used to estimate unknown parameters so as to 

diagnose the fault. When online fault diagnosis is required, some recursive algorithm, 

e.g. recursive least squares, can be employed can be directly applied for fault diagnosis. 

However, such approaches are often implemented to the discretized input-output 

models and assume all the state variables are known. For a state-space model with 

unknown state variables, the parameter estimation problem becomes much more 

difficult. In such situations, two methods more suitable for the state-space models, i.e. 

extended and adaptive observers, are widely used. These methods belong to the field of 

the joint state and parameter estimation based approaches, which can simultaneously 

estimate the parameters as well as the unknown states online. Since sometimes the 

state variables of the system are required to reconstruct the controller after the fault 

occurs for the purpose of fault tolerance, these methods can not only provide the 

functionality of fault diagnosis, but also incorporate with the controller in the context 

of fault tolerance. 

In extended observer based approaches, the unknown parameters (used to represent 

the faults) are regarded as extra states of the system, and then a state observer is 
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constructed to estimate all the extended states including the unknown parameters. A 

large amount of work on the extended observer has been reported in literatures [40]- 

[41]. In [40], an extended Kalman filter is applied to estimate the unknown parameters 

as well as the states for a linear system. In [41], descriptor observer approach is applied 

for a multivariable system simultaneously subjected to the actuator fault, senor fault, 

input disturbances and measurement noises. However, sometimes this approach might 

destroy the simple structure of the original system due to the nonlinearities and 

time-dependent terms can be introduced during the transformation of system 

parameters into the extra states. For instance, a linear time invariant system can be 

transformed into a nonlinear time varying system. Hence more advanced observer 

techniques (e.g. nonlinear or time-varying observer) are required to estimate the 

extended states. 

An alternative approach is the adaptive observer based approach. Without destroying 

the simple system structure, it directly designs a simple observer (e.g. Luenberger 

observer) for the original system assuming that all the parameters are known, and tries 

to find some appropriate adaptive laws to estimate unknown parameters so as to keep 

the observer convergences. This approach does not need to employ complex observer 

algorithms, which make it easier to be implemented and computationally efficient in 

comparison with extended observers. A detailed comparison of these two methods is 

given in [42], and the connections between these two methods are presented in [43]. 

Various adaptive observer based fault diagnosis approaches have been proposed in 

literatures in different context. In [44], adaptive observer is used for fault diagnosis in 

order to deal with slowing varying or constant faults. In [45], a fast adaptive fault 

estimator is proposed to estimate time-varying faults. In [78], adaptive observer is first 

used for the diagnosis of the actuator faults in LTI systems. An extension of this 

research to both sensor and actuator faults is presented in [46]. 

In the classical adaptive observer designs [47], the state and parameter estimations 

both converge to their true values under assumption that the system model is a „true‟ 

model which can perfectly represent the system. Nevertheless, problems will certainly 

arise when applying these approaches to practical systems, due to the existence of 
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model uncertainties. A typical problem is the so called parameter estimation drift (i.e. 

parameter estimation diverge to infinity). To prevent such drift, several techniques 

have been introduced to modify the observer structure, for instant the parameter 

projection, dead zone, dynamic normalization, etc. For more comprehensive 

introduction of these methods, readers can refer to [48]. Another important 

modification is to add a leakage term (i.e. σ-modification) to the parameter adaptive 

law, which is able to ensure bounded parameter estimations. However, inappropriate 

selection of observer parameters will still induce large estimation errors that certainly 

can not satisfy the accuracy requirements of fault diagnosis [49].  

In this PhD study, the adaptive observer based approach is implemented for the fault 

diagnosis of the DFIG winding short circuit based on a state-space formed fault model. 

Due to the online property of adaptive observers, the fault location and level can be 

online diagnosed by estimating a set of fault related parameters. Meanwhile, the 

unknown states can be also estimated, which are used to reconstruct the controller in 

order to tolerate the fault. The effects of model uncertainties are considered in this 

work, the σ-modification is employed to ensure bounded parameter estimations, while 

in order to obtain enough small estimation errors for the sake of the accuracy of fault 

diagnosis, H∞ optimization and high gain observer techniques are implemented to 

synthesis a robust adaptive observer, which allows accurate estimations in the presence 

of model uncertainties.  

2.3.2. Fault Tolerant Control  

Fault tolerant control (FTC) is an advanced control technique that can accommodate 

system faults, assure system stability, and maintain system performance, not only 

under normal condition but also in the presence of faults. Several survey papers 

present a comprehensive review on development of FTC system since 1990s [50]-[52]. 

Some books on this subject have also been published recently [53], [54]. In these 

literatures, FTC approaches can be generally divided into two types: the passive and 

active approaches. 
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In the passive FTC, the same controller is used throughout the normal condition as 

well as the fault condition. Since only one fixed controller is used in the entire control 

process, the passive FTC is easily to be implemented. However, it can only tolerate a 

limited numbers of faults, which are assumed known prior to the controller design. 

Besides, as the number and level of the fault increase, this approach becomes very 

conservative, and attainable performance may become unsatisfactory. Most passive 

FTC algorithms are based on robust control techniques by treating the faults as model 

uncertainties or disturbances. For instant, the H robust control theory integrated with 

the Algebraic Riccati Equation (ARE) [56], [57] or Linear Matrix Inequality (LMI) 

[58], [59] methods are usually employed in the passive FTC design to guarantee the 

stability and acceptable performance of the closed-loop system in the presence of 

faults.  

The other approach is known as active FTC, the name indicates that it reacts to the 

system fault actively and allows online fault accommodation. An active FTC system 

can compensates the fault effects by either online selecting a pre-computed control law, 

or by online synthesizing a new control law. The general structure of an active FTC 

system is shown in Figure 2.10 [51], which has three subsystems: a reconfigurable 

controller, a FDD mechanism, and a control reconfiguration mechanism. An overview 

of existing active FTC methods with a detailed classification of different approaches 

has been provided in a recent review [51]. Among all these methods, adaptive control 

is one of the favorites and with wide applications recently. It principle is similar to the 

adaptive observer by considering the fault as some unknown variations of the plant 

parameters, and design a suitable parameter adaptive law to estimate such parameter 

variations so as to maintain consistent system performance in the presence of faults.    

In comparison with other methods, it does not heavily rely on the FDD decision and no 

quantitative knowledge of the fault is required to reconstruct the controller. Methods 

like direct and indirect parameter adaptive controller can ensure an acceptable 

performance of the closed-loop system in the presence of a wide range of unknown 

faults [54], [60], [61]. 
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Figure 2.10. General structure of an active FTC system. 

 

Adaptive control techniques have been applied to solve many FTC problems. In [54] 

and [60], a direct adaptive state feedback controller is developed for LTI system 

against actuator faults. A similar work using output feedback is given in [61]. 

Moreover, an adaptive fault tolerant H controller is developed to cope with model 

uncertainties in [62]. All these studies focused only on linear systems and their 

applications are mainly related to the aircraft flight control. For nonlinear systems, an 

adaptive feedback linearization method is discussed in [63]. More recently, combing 

this method with sliding model control has been applied to induction motors to tolerant 

resistant variation and sensor faults [64]. However, so far very few case studies have 

been reported on the application to wind turbine systems. 

In this PhD study, the active FTC strategy is employed to tolerate two common 

faults of wind turbine systems, i.e. DFIG winding short circuit and drive train fault. 

For the first fault, as an explicit fault diagnosis scheme is firstly developed in this work, 

thus the FTC for this fault is based on the fault information provided by this scheme. 

However, for the second fault, as no fault diagnosis scheme is provided in this work, 

we employ the adaptive control technique, specifically adaptive feedback linearization 

control, to synthesize the FTC, as it dose not rely the fault diagnosis scheme. 
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2.4.  Fault Diagnosis and Fault Tolerant Control of 

Wind Turbine System 

2.4.1. Fault Diagnosis of Wind Turbine System  

A number of methodologies are available and applicable for the FDD of wind turbine 

systems, which have been briefly introduced in last section. Several review papers 

have been published recently [11]-[13], which present the state of the art achieved so 

far in the FDD of wind turbine systems. The results reviewed in these papers covers 

each component of the wind turbine system including drive train, rotor blades, 

generator, power electronics, etc. In this section, we only review the work relating to 

the generator and drive train faults, and the methods can be roughly classified into 

three categories. 

 Signal-based approach 

Signal-based approach is mainly based on the time and frequency domain analysis 

of some process measurements, such as generator currents, rotor speed, vibration, 

temperature. Fault indicators are then extracted from these process measurements by 

using various signal processing techniques. The most popular one is the spectrum 

analysis [70], [71], [85], [86]. The spectrum of the generator stator electrical quantities 

(e.g. stator voltage, line current [71], [85], instantaneous power [89]) is firstly 

extracted, and then the observation of some particular frequency components can be 

perceived as an indication of fault. Machine current signature analysis (MCSA) is a 

widely used spectrum analysis method, which is based on the steady-state line currents 

of the stator and is usually used to detect generator winding faults [71], [85]. In [87] 

and [88], the authors use rotor measurements (i.e. rotor modulating signal) to diagnose 

the fault. The experimental results show that this signal can provide a more clear 

evidence of the generator winding faults than using stator currents. Sequence 

component analysis has also been suggested as an effective approach of detecting 

generator winding faults by observing the negative sequence stator current [90], [91] or 
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sequence impedance matrix [92]. Nevertheless, these methods are sensitive to the 

machine inherent structure asymmetries and power supply imbalance, and thus they 

are not reliable on detecting the faults in such situations. 

These methods mentioned above are mainly used in the steady-state analysis. In [70], 

the author raised an important feature of wind turbine systems, i.e. variable speed 

operation, and proposed a new problem, i.e. non-stationary fault diagnosis. To solve 

this problem, a new non-stationary analysis technique, i.e. wavelet analysis, has been 

extensively applied to wind turbine systems in the recent years [82], [95]. This 

technique can be also integrated with many traditional fault diagnosis methods. For 

instance, a combination of the wavelet analysis and power spectrum density analysis 

has been applied to detect generator winding faults in [80]. 

Drive train faults are usually diagnosed by observing the vibration signals or 

generator terminal currents (i.e. stator and rotor currents). Some of the methods 

mentioned above such as spectrum analysis and wavelets analysis, can be also applied 

for the diagnosis of drive train faults (i.e. gearbox fault, bearing fault and shaft fault). 

For instance, in [17] a new vibration spectrum analysis technique based on wavelet 

neural work is proposed for the diagnosis of gearbox faults. In [83], the wavelet 

analysis technique is applied to diagnose faults in a multistage gearbox by extracting 

the fault frequencies from the current signals through a discrete wavelet transform. In 

[84], the wavelet analysis technique is employed to analyze the stator currents so as to 

detect bearing defects. 

 Knowledge-based approach 

When a system is too complex to be modeled analytically, the knowledge-based 

approaches are usually employed to diagnose the faults. These techniques are based on 

qualitative models rather than quantitative mathematical model, which are developed 

by some artificial intelligence techniques, such as expert systems, neural network, and 

fuzzy systems. Different operation conditions including normal and faulty ones are 

treated as a family of patterns, then the neural network, fuzzy system or expert system 

is applied to evaluate the online measurements and map them into a known pattern 
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such that the current condition of the system can be identified. The research in this 

field becomes very active recently due to the fast development of artificial intelligence 

techniques and it also has many applications in wind turbine systems. For instance, a 

combination of neural network and fuzzy techniques [97] are applied to diagnose the 

generator winding faults through current and voltage measurements. An intelligent 

system for predictive maintenance based on artificial intelligent techniques has been 

recently developed and tested in wind turbine system to monitor the behaviour of wind 

turbine gearbox [98]. 

 Model-based approach 

The model-based fault detection began in the early 1970s. This method requires a 

good analytical model of the system and fault. As most structural/internal faults are 

very complex, and difficult to be modeled analytically, model-based approach is 

usually applied to detect some external faults such as actuator or sensor faults (see 

[101], [102]). For wind turbine systems, there are also very few literatures relating to 

the structural/internal faults. Until recently several papers have been published, but 

only relating to the generator faults. The first paper appeared in 2006 [73], which is 

based on parameter estimation based approaches. In this paper, a new model of 

squirrel-cage induction machine (it is another common generator of wind turbine 

systems different from DFIG, its rotor is composed of longitudinal conductive bars) 

under stator and rotor faults is firstly developed, and some additional parameters are 

introduced to explain the faults in both stator windings and rotor bars. Fault detection 

is conducted by estimating these additional parameters by using two common 

identification techniques: equation error (EE) and output error (OE). A similar work of 

squirrel-cage induction machine fault detection was proposed in [74], which is also 

based on parameter estimation approach. In this work, instead of developing a new 

model to represent the faults, the author focused on finding the relationship between 

the faults and some physical parameters (e.g. resistance, mutual/self inductance). An 

adaptive Kalman filter is proposed to online estimate the parameters associated with 

faults. The observer based fault detection approaches are proposed in [75]-[77], which 
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only focus on detecting stator winding faults. In particular in [76], a state observer is 

constructed to generate a residual in form of vector, which allows for a fast detection 

of the faults independent of the phase where fault occurs. All this work mentioned 

above mainly focuses on fault detection rather than diagnosis. It is well known that the 

effectiveness of model-based fault diagnosis approaches highly rely on the model 

accuracy. Due to the saturation phenomenon and parameter variations during the 

operation process, model uncertainties generally exist in various generator models, 

which make robustness an important issue in the context of fault diagnosis. However, 

this issue is not discussed in this work mentioned above. 

In this PhD work, the model based approach is employed to synthesize the fault 

diagnosis scheme of DFIG based wind turbines, as it allows for online and 

non-stationary FDD. The work is mainly concerned with fault diagnosis (i.e. identify 

the fault magnitude and location) as it is more challenging in comparison with fault 

detection. The effects of the model uncertainties are also considered in this work in 

order to improve the reliability of the fault diagnosis scheme. 

2.4.2. Fault Tolerant Control of Wind Turbine System  

Currently, FTC of wind turbine systems is mainly realized by hardware redundancy 

[14], but that leads to the problem of extra hardware costs and additional weight and 

space to accommodate the equipments. For this reason, it is necessary to develop 

analytical FTC approaches. However, limited studies are reported on analytical FTC 

for wind turbine system, especially for generator and drive train faults. Until recently, 

two papers relating to the FTC of wind turbine systems appear which both belong to 

the field of active FTC. The first work proposes a FTC for generator in the presence of 

both stator and rotor faults [99]. In this work, the possible faults are modeled as 

functions of time within a parameterized family. An internal model of this family is 

designed by using nonlinear output regulation theory, and embedded to the controller 

to offset the effects of all the possible faults. The second work is given in [100]. It 

addresses the fact that the fault development can be evaded or postponed by reducing 
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the torque stress. In this context, a demodulated torque control of the generator is 

proposed, Its basic idea is to reduce the torque whenever the magnetic flux moves to 

the areas affecting the damaged components, and increase the torque back to nominal 

value after the magnetic flux pass such areas. In this PhD study, we aim to develop an 

analytical FTC scheme for the DFIG based wind turbine system and mainly focus on 

the generator and drive train faults.  

2.5.  Summary 

This chapter briefly reviewed the field of fault diagnosis and FTC and its application to 

wind turbine system. For the fault diagnosis of wind turbine system, most existing 

studies are based on signal or knowledge based approaches. These studies mainly 

focused on fault detection rather than fault diagnosis, and most of them are not suitable 

for non-stationary analysis. For the FTC of wind turbine systems, it is mainly realized 

by hardware redundancy, but that leads to the problem of extra hardware costs and 

additional weight and space to accommodate the equipments. For this reason, it is 

requisite to develop analytical FTC approaches. In this chapter, model-based fault 

diagnosis approaches and an analytical FTC approach, i.e. active FTC, are mainly 

reviewed, and their properties, advantages to other methods and applications in wind 

turbine systems are investigated. 

Therefore, in this thesis, we focused on the model-based approaches and active FTC 

for the fault diagnosis and tolerant control of wind turbine systems, which are 

presented in the following chapters.  
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3. Modeling of DFIG with Winding Short 

Circuit Fault 

Equation Chapter 3 Section 1 

3.1. Introduction 

The winding short circuit fault is one of the most common faults in electric machines 

including DFIGs, which is caused by many reasons such as mechanical stress, 

insulation damage and transient over-voltages. This fault may occur within one phase 

or sometimes in several phases simultaneously. In this work, we denote the former case 

the single-phase fault and latter case the multi-phase fault. In this chapter, two 

mathematical models are developed with respect to these two types of faults. The 

modeling strategy is to consider the short circuit loops as some additional circuits 

placed in parallel to the original winding circuits of DFIG, and then represent the 

electrical and magnetic relationships among all these circuits by using circuit theory. 

This idea is firstly brought by Tallam in 2002 [91], where a simple model of induction 

motor was developed. A similar work for DFIG is presented in [69]. Both modeling 

results are supported by experimental data, whereas both of the work considers a 

special case that the short circuit only occurs at the stator phase „a‟. In this chapter, 

their work is extended to more general cases that the short circuits occur at an arbitrary 

phase or even multiple phases simultaneously. Additionally, two general mathematical 

models of DFIG (i.e. one for single-phase and the other for multi-phase fault) are 

proposed. For each model, it is firstly developed in the natural a-b-c coordinate (see in 

Figure 3.2), and then transformed into the d-q coordinate (see in Figure 3.2 and Figure 

3.4) to simplify the model structure. A set of new model parameters (   and xf  for 

the single-phase fault, and sa , sb , sc , ra , rb , rc  for the multi-phase fault) 
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are introduced to represent the fault quantitatively. Different fault scenarios can be then 

represented by defining these parameters properly. In this chapter, the models are all 

given in terms of the voltage and flux equations, which is a common representation of 

the DFIG model. In the next chapter, the state-space representations of these models 

are developed for the purpose of fault diagnosis. 

This chapter is organized as follows. In Section 3.2, the models for the single-phase 

fault in the a-b-c and d-q coordinates are developed, respectively. In Section 3.3, the 

models for the multi-phase fault in the a-b-c and d-q coordinates are developed, 

respectively. In Section 3.4, the equivalent circuits of the DFIG are provided, based on 

which the characteristics of the short circuit fault and its effects on the DFIG are 

analyzed. In Section 3.5, some simulations of the proposed models are carried out to 

evaluate the behaviours of DFIG in the presence of winding short circuit faults. Finally, 

a summary is given in Section 3.6. 

3.2. Modeling of DFIG with Single-Phase Fault 

The aim of this section is to develop a mathematical model of DFIG with respect to the 

single-phase short circuit fault. First, a 3-phase model in the natural a-b-c coordinate is 

developed. In this model, the short circuit fault is represented by two parameters: fault 

level parameter   (as in (3.1)) and fault position parameter xf  (as in (3.2)). By 

transforming this model into a stationary d-q coordinate, a d-q model is then developed, 

where a new fault position parameter xdqf  is defined (as in (3.23)). For both of these 

models, their corresponding electromagnetic torques are presented in (3.19) and (3.29), 

respectively.     

3.2.1. Model in a-b-c Coordinate 

Figure 3.1 shows the winding configuration of a DFIG with a short circuit fault in 

stator phase „a‟. As shown in this figure, the fault splits the faulty phase into two parts: 

the shorted turns (as2) and un-shorted turns (as1). The shorted turns (as2) form a 
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closed-loop circuit, which can be modeled as a new phase of the stator. It is also 

known that the rotor of DFIG has three phase windings as well. Therefore, this faulty 

DFIG can be interpreted as a multi-phase induction machine with 4 stator phase 

windings and 3 rotor phase windings. Using this strategy, the mathematical model of 

the faulty DFIG can be easily obtained by representing the electrical and magnetic 

relationships among these phase windings using circuit theory. In this subsection, we 

will start with developing the model for a special case that the fault only occurs at 

stator phase „a‟. In the next, this model is generalized to represent the fault in any 

single phase of the stator. Before deriving the models, some assumptions have been 

made. 

 Each stator phase of the machine has the same number of turns and uniform spatial 

displacement. 

 The three phase stator and rotor windings are sinusoidally distributed. 

 The machine is operating at an unsaturated point. 

 The skin or slot effect is not considered. 

 Insulation break resistance fr  is negligible.  

sb sc

sa

as1

 as2  if

isa

isb
iscs

sb sc

sa

as1

 as2

isa

isb
iscs

 if frfr

 

Figure 3.1. Stator winding configuration with a short circuit fault in stator phase „a‟. 

3.2.1.1 Fault definition 

The single-phase short circuit fault can be defined by two parameters: the fault level 

parameter   and the fault location parameter xf .   represents the percentage of 
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the shorted turns which is used to quantify the severity of the fault. It is calculated by 

the following formula [73]. 

 
Number of shorted turns

Total number of turns in a healthy phase
               (3.1) 

where 0 1  . 0   corresponds to the healthy condition. 

The fault position parameter 
xf  is a vector and can take three different values 

which correspond to different fault in phase „a‟, „b‟ and „c‟, respectively, 

 1 0 0
T

a f ,  0 1 0
T

b f ,  0 0 1
T

c f             (3.2) 

These two parameters will be employed later to develop the model of DFIG with 

respect to single-phase short circuit fault. 

3.2.1.2 DFIG model for a special case: short circuit only occurs at 

stator phase ‘a’ 

As described earlier, a DFIG with a single-phase short circuit fault can be interpreted 

as a multi-phase induction machine with four stator phases and three rotor phases. By 

taking the case that fault in stator phase „a‟ as an example, the relationship among 

these magnetically coupled phases can be expressed by the following voltage and flux 

equations. 

Voltage equation: 
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Flux equation: 

1 1 1 1 2 1 1 1 1 1

2 2 1 2 2 2 2 2 2 2

1 2

1 2
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  
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         (3.4) 

where the subscripts „ s ‟ and „ r ‟ denote stator and rotor, and the subscripts „ a ‟ , 

„ b ‟and „ c ‟ denote phase „a‟, „b‟ and „c‟. Therefore, , , , , andsa sb sc ra rb rcv v v v v v  

represent the voltages of each phase. , , , , andsa sb sc ra rb rci i i i i i  represent the currents 

of each phase. fi  is the short circuit current. 1 2andsa sa   are the magnetic fluxes 

for the un-shorted and shorted turns respectively. , , , andsb sc ra rb rc      are the 

magnetic fluxes for the stator phase „a‟, „b‟ and rotor phases, respectively.  

The parameters in above model equation can be classified into two groups, the 

fault-affected parameters and fault-free parameters as shown in Table 3.1, where the 

parameters with subscript „sa‟ is affected by the fault and can be expressed as a 

function of the fault level parameter  .  

Table 3.1. Parameters of model (3.3)-(3.4). 

 Fault-affected parameters Fault-free parameters 

Resistance 
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1 1
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1 1
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In this table, sr  and rr  represent the stator and rotor resistances. sL  and sL  

represent the stator and rotor leakage inductances. r  represents the electrical angle 

between the stator and rotor. sM  and rM  represent the mutual inductances of the 

stator and rotor. srM  represents the stator-rotor mutual inductance. By referring the 

rotor parameters to stator side, these mutual inductances are equal: 

s r srM M M                              (3.5) 

By adding the first two rows of (3.3) and (3.4), a more compact representation of the 

model is obtained,  
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where the bold letters denote the vectors and matrices. The variable vectors are given 

as 

 , ,
T

sabc sa sb scv v vv ,  , ,
T

rabc ra rb rcv v vv . 

 , ,
T

sabc sa sb sci i ii ,  , ,
T

rabc ra rb rci i ii . 

   
 , ,

T

sabc sa sb sc  ψ ,  , ,
T

rabc ra rb rc  ψ  

where sa  represents the total magnetic flux in stator phase „a‟ which is the sum of 
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1sa  and 2sa , and 2sa
 
is renamed as f  in this model. 

The parameter matrices of model (3.6)-(3.7) are given as  

3s srR I , 
3r rrR I ,  1 0 0

T

srR                  (3.8) 

1 1

2 2
1 1

2 2
1 1

2 2

s s s s

ss s s s s

s s s s

L M M M

M L M M

M M L M







 
   

 
    
 
 
   

 

L , 

1 1

2 2
1 1

2 2
1 1

2 2

r s s s

rr s r s s

s s r s

L M M M

M L M M

M M L M







 
   

 
    
 
 
   

 

L   (3.9) 

2 2
cos( ) cos( ) cos( )

3 3
2 2

cos( ) cos( ) cos( )
3 3

2 2
cos( ) cos( ) cos( )

3 3

r r r

sr s r r r

r r r

M

 
  

 
  

 
  

 
  

 
   
 
 

  
 

L               (3.10) 

1

1 1

2 2

T

s s s sL M M M

 
    
 

L 2

2 2
cos( ) cos( ) cos( )

3 3

T

r r r

 
  

 
   
 

L  (3.11) 

DD s sL L M                          (3.12) 

This subsection presents an example to explain how to derive a mathematical model 

of DFIG with respect to the single-phase short circuit fault. A compact matrix 

representation of the model is obtained as in (3.6)-(3.7). This representation is 

employed in next subsection, based on which a general model is developed. 

3.2.1.3 Generalized DFIG model 

In this subsection, a more general model of DFIG is proposed, which allows 

representing the short circuit fault in any phase of the stator. The same method as 

described in previous subsection is employed here to derive the models for the short 

circuit in the other phases i.e. „b‟ and „c‟, respectively. The models for these two cases 

are with the same structure as given in (3.6)-(3.7). All the parameter matrices are still 

the same parameter matrices except for matrices 1R , 1L  and 2L . Their expression 
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are different with respect to the faults in different phases „a‟, „b‟ and „c‟ as given in 

Table 3.2. 

Table 3.2.  Matrices 
1R , 

1L  and 
2L  with respect to the faults in different phases „a‟, 

„b‟ and „c‟. 

 Fault in „sa‟ Fault in „sb‟ Fault in „sc‟ 

1R   0 0
T

sr   0 0
T

sr   0 0
T

sr  

1L  

1

2
1

2

s s

s

s

L M

M

M



 
 
 
 
 
 
  

 

1

2

1

2

s

s s

s

M

L M

M



 
 

 


 
 


  

 

1

2
1

2

s

s

s s

M

M

L M

 
 

 
 
 
 
 
 

 

2L  
cos( )

2
cos( )

3
2

cos( )
3

r

r

r









 
 
 
 
 
 

 
 

 

2
cos( )

3
cos( )

2
cos( )

3

r

r

r









 
 

 
 
 

  

 

2
cos( )

3
2

cos( )
3

cos( )

r

r

r









 
 

 
 
 
 
 
 

 

The fault position parameter xf  (as in (3.2)) is employed here to give a unified 

representation of matrices 1R , 1L  and 2L  

 1 s xrR f , 1 ss xL L f , 2 sr xL L f                    (3.13) 

where parameter sr , ssL  and srL  have been given in (3.9)-(3.10). 

By replacing 1R , 1L  and 2L  in (3.6)-(3.7) with (3.13), the generalized DFIG 

model  can be expressed as  

3 3

3 3 3 1

1 3
0

sabc s s x sabc sabc

rabc r rabc rabc

T
f fs x s

r
d

dt
ir r



 



 



      
        
      

           

v R 0 f i ψ

v 0 R 0 i ψ

f 0
            (3.14) 

ss sr ss xsabc sabc
T

rabc sr rr sr x rabc

T T T T
f fx ss x sr DD

iL





   

    
         
        

L L L fψ i

ψ L L L f i

f L f L
               (3.15) 

This is a general model for the single-phase short circuit fault, which can represent 
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the short circuit fault at any level in any phase, by setting appropriate values of 

parameters   and 
xf  according to (3.2). For instance, with =0.01  and 

=[0, 1, 0]T

xf , model (3.14)-(3.15) can represent a DFIG with a 1% short circuit fault 

(i.e. 1% phase winding is shorted) in stator phase „a‟. 

3.2.1.4 Electromagnetic torque calculation 

In this section, the electromagnetic torque of the DFIG under the faulty condition is 

provided. As mentioned earlier, a DFIG with a single-phase short circuit fault can be 

considered as a multi-phase induction machine. Therefore, the torque calculation 

formula for the multi-phase induction machine is employed here to calculate the torque 

under faulty condition. This formula is given as [117] 

1

2

T

g

r

T p







L
i i                            (3.16) 

where i  represents the current vector containing all the phase currents. L  represents 

the inductance matrix composed of all the self and mutual inductances. p  is the 

number of pole pairs.  

By applying this formula to model (3.3)-(3.4), the electromagnetic toque for a 

special faulty case that the short circuit only occurs at stator „a‟ can be calculated as 

2 2
{sin( ) sin( ) sin( ) }

3 3

T sr
g sabc rabc s f r ra r rb r rc

r

T p pM i i i i
 

   



     



L
i i   (3.17) 

where sr

r





L
 represent the first derivative of srL with respect to r  which can be 

calculated as  

2 2
sin( ) sin( ) sin( )

3 3
2 2

sin( ) sin( ) sin( )
3 3

2 2
sin( ) sin( ) sin( )

3 3

r r r

sr
s r r r

r

r r r

M

 
  

 
  


 

  

 
  

 


    
  

 
  

 

L
           (3.18) 

Applying the same method, a general representation of the electromagnetic torque 
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for any single-phase short circuit fault is obtained as  

( )T Tsr sr
g sabc rabc f x rabc

r r

T p i
 

 
 

 

L L
i i f i                  (3.19) 

The influences of the short circuit fault on the electromagnetic torque can be 

observed from this equation. An explicit analysis of these influences is given later in 

Section 3.4. 

3.2.2. Model in Stationary d-q Coordinate 

The faulty DFIG model (3.14)-(3.15) developed in last section is given in two different 

coordinates: the stator a-b-c coordinate and rotor a-b-c coordinate. The former is 

stationary while the latter is rotating at an angular speed r  relative to the former. For 

this reason, the model parameters (as in (3.10) and Table 3.2) vary with the relative 

position r  between these two coordinates that leads to a coupled and time-varying 

expression of model (3.14)-(3.15). To simplify this model, the d-q transformation is 

applied to project the model into a two-axis stationary coordinate, known as stationary 

d-q coordinate. In this coordinate, q-axis is 90 degree ahead of the d-axis, and d-axis 

coincides with stator phase „a‟. The stationary d-q coordinate and its relationship with 

the stator a-b-c coordinate and rotor a-b-c coordinate are presented in Figure 3.2. 

0
r

r

d(sa)

q

ra

sb

sc

rb

rc  

Figure 3.2. Stationary d-q coordinate and its relationship with the stator a-b-c coordinate 

and rotor a-b-c coordinate. 
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The general d-q transformation matrix 32T (from abc to dq) is given as [113] 

32

2 cos cos( 2 / 3) cos( 2 / 3)

sin sin( 2 / 3) sin( 2 / 3)3

    

    

  
       

T           (3.20) 

Then the variables in the stationary d-q coordinate can be transferred from the 

variables in the a-b-c coordinate by following formulas. 

32 320
,

r
sdq s rdq r   

 x T x x T x                     (3.21) 

The fault variables fi  and f  are also projected to this coordinate by using 

following transformation. 

fdq xdq fxx f                             (3.22) 

where xdqf  is obtained from xf  and used to represent the fault position in the 

stationary d-q coordinate. It can take three different values which corresponding to the 

short circuit fault in phases „a‟, „b‟ and „c‟, respectively. 

 1 0
T

adq f , 
1 3

2 2

T

bdq

 
  
 

f , 
1 3

2 2

T

cdq

 
   
 

f .            (3.23) 

By applying these transformations to model (3.14) and (3.15), a d-q model of the 

faulted DFIG in the stationary d-q coordinate can be obtained as 

Voltage equation: 

' '
2 2

2 2 2 2 2 2
'

2 2 2 2 2 2 2 2

'
2 2 2 2 2 22 22 1

2

3
s s

sdq sdqsdq sdq

rdq r rdq rdq r rdq

T
s xdq xdq s fdq fdq fdq

d

dt
r





 


  

   

  

 
          

                     
                 

 

R 0 R ψ ψv i 0 0 0

v 0 R 0 i ψ 0 J 0 ψ

0 0 0f f 0 R0 i ψ ψ

(3.24) 

Flux equation: 

' ' '

' ' '

' '
2

2

3
2

3

ss sr ss

sdq sdq

rdq sr rr sr rdq

T T
fdq fdq

xdq xdq ss xdq xdq sr DDL





  

 
    

    
     
    
    
 
 

L L L
ψ i

ψ L L L i

ψ if f L f f L I

          (3.25) 

where the variable vectors are given as 
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[ , ]T

sdq sd sqv vv , [ , ]T

rdq rd rqv vv , [ , ]T

sdq sd sqi ii , [ , ]T

rdq rd rqi ii ,  

[ , ]T

fdq fd fqi ii , [ , ]T

sdq sd sq ψ , [ , ]T

rdq rd rq ψ , [ , ]T

fdq fd fq ψ .  

The parameter matrices are given as 

'

2s srR I , '

2r rrR I ,                        (3.26) 

'

2( )ss s mL L L I , '

2( )rr r mL L L I  and '

2sr mLL I        (3.27) 

0 1

1 0

 
  
 

J                             (3.28) 

with 
3

2
m sL M . DDL  has been given in (3.12). 

By applying the d-q transformation to torque equation (3.19), we can obtain a new 

representation of the electromagnetic torque in the stationary d-q coordinate. 

3 2
( )

2 3

T T

g m sdq rdq fdq rdqT pL    i i i i                 (3.29) 

where   represents cross product. 

It can be observed from (3.24)-(3.25)) that the time-dependent terms (i.e. cos( )r in 

the 3-phase model) are removed from this d-q model. Moreover, it has contains less 

state variables than the 3-phase model (i.e. the dimension of d-q model is six, while the 

dimension of 3-phase model is nine). Essentially, the d-q model is equivalent to the 

3-phase, while the d-q model gives a time-invariant (assume rotor speed r  is 

invariant) and reduced-dimension representation, which is computationally more 

efficient for the simulation and easier for the fault analysis. Based on this d-q model, a 

fault diagnosis scheme for the single-phase short circuit fault is proposed later in 

Chapter 4. 

3.3.  Modeling of DFIG with Multiple-Phase Fault 

In the previous section, we have discussed a simple fault scenario that the short circuit 

fault only occurs at a single phase of stator. However, as mentioned earlier in this 

Chapter, the fault may also occur at several phases simultaneously, sometime may even 
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at the rotor side. To consider such more complex fault scenario (i.e. multi-phase fault), 

a new DFIG model is developed in this section. Essentially, the single-phase fault can 

be regarded as a special case of the multi-phase fault, and thus this new model can also 

be used to represent the fault scenario (i.e. single-phase fault) discussed in the last 

section. In this new model, a group of parameters (i.e. sa , sb , sc , ra , rb , and 

rc ) are introduced in order to represent how much percentage of the windings are 

shorted for each phase. By defining these six parameters properly, the short circuit 

fault at any levels in any phases can be quantitatively described. The model derivation 

in this section adopts the same procedure and methods as in the previous section. 

Firstly, a 3-phase model in the natural a-b-c coordinate is developed. Then, a d-q 

model is developed by transforming the 3-phase into the d-q coordinate.  

3.3.1. Model in a-b-c Coordinate  

sa

isa

isb

isc

s

 isfa

isfb

isfcsb sc      

ra

ira

irb

irc

r

 irfa

irfb

irfcrb rc  

Figure 3.3. Winding configuration of the DFIG with multi-phase faults. (a) Stator 

winding configuration. (b) Rotor winding configuration 

 

In order to consider all the possible positions where the faults may happen, we add the 

short circuit to each phase in both stator and rotor no matter it is faulted or not as 

depicted in Figure 3.3. The healthy and faulted phases are discriminated by setting 

their corresponding fault level parameters (i.e. sa , sb , sc , ra , rb , or rc ). For 

the healthy phases their corresponding   are set as zeros, while for the faulted 

phases their corresponding   are set to some real numbers between 0 and 1. 
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Therefore, by setting   for each phase appropriately, the short circuit fault at any 

level can be easily introduced to any phases. In addition, each phase is separated by the 

fault into two parts (i.e. shorted turns and un-shorted turns) which can be modeled as 

two independent phases. The amount of shorted turns are determined by its 

corresponding  , while the amount of un-shorted turns are determined by 1  . 

Hence this faulty DFIG can be interpreted as a multi-phase induction machine with six 

phases in stator and six phases in rotor. The electrical and magnetic relationship among 

these phases can be represented by the following equations. 

Voltage equations: 

3 1

3 1

( )

( )

su
s su s

sf

sf s sf

ru
r ru r

rf

rf r rf

d

dt

d

dt

d

dt

d

dt





 

  

 

  

ψ
v R i

ψ
0 R i i

ψ
v R i

ψ
0 R i i

                      (3.30) 

Flux equations: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

su susu s susf s sf suru r surf r rf

sf sfsu s sfsf s sf sfru r sfrf r rf

ru rusu s rusf s sf ruru r rurf r rf

rf rfsu s rfsf s sf rfru r rfrf r rf

     

     

     

     

ψ L i L i i L i L i i

ψ L i L i i L i L i i

ψ L i L i i L i L i i

ψ L i L i i L i L i i

           (3.31) 

where, the subscripts „ s ‟ and „ r ‟ denote the stator and rotor, and the subscripts „u ‟ 

and „ f ‟ denote the un-shorted turns and shorted turns. The flux vectors suψ , sfψ  

ruψ , and rfψ  contain the fluxes in the un-shorted turns and shorted turns in the stator 

and rotor, respectively. The current vectors si  and ri  contain the currents through 

each phase of the stator and rotor. The current vectors sfi  and rfi contains the fault 

currents through the short circuit loops. All these variable vectors are given in a-b-c 

coordinate and can be explicitly expressed as 

 = , ,
T

s sa sb scv v vv ,  = , ,
T

r ra rb rcv v vv                           
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 , ,
T

s sa sb sci i ii ,  , ,
T

r ra rb rci i ii                              

, ,
T

sf sfa sfb sfci i i   i , , ,
T

rf rfa rfb rfci i i   i                    (3.32) 

 = , ,
T

su sua sub suc  ψ , = , ,
T

sf sfa sfb sfc    ψ                  

 = , ,
T

ru rua rub ruc  ψ , = , ,
T

rf rfa rfb rfc    ψ                  

For the simplicity of the model representation, the fault level parameters are 

organized into two matrices 

0 0

0 0

0 0

sa

s sb

sc







 
 


 
  

μ , 

0 0

0 0

0 0

ra

r rb

rc







 
 


 
  

μ               (3.33) 

Before introducing the model parameters in (3.30) and (3.31), two matrices 0L  and 

r
L  are firstly defined as 

0 (0)sML g , ( )s rr
M L g                  (3.34) 

cos(0) cos(0 2 / 3) cos(0 2 / 3)

(0) cos(0 2 / 3) cos(0) cos(0 2 / 3)

cos(0 2 / 3) cos(0 2 / 3) cos(0)

 

 

 

  
 

  
 
   

g

 

cos( ) cos( 2 / 3) cos( 2 / 3)

( ) cos( 2 / 3) cos( ) cos( 2 / 3)

cos( 2 / 3) cos( 2 / 3) cos( )

r r r

r r r

r r r

    

     

    

  
 

  
 
   

g

 

Based on these two matrices, the model parameter matrices in (3.30)-(3.31) are 

summarized in Table 3.3. 

 

Table 3.3. Parameter matrices of model (3.30)-(3.31). 

Resistance matrices 
3( )su s sr R I μ , sf s srR μ , 3( )ru r rr R I μ , rf r rrR μ  

Self-inductance 

matrices 

3 3 0 3( ) ( ) ( )susu s s s sL    L I μ I μ L I μ  

0sfsf s s s sL L μ μ L μ  

3 3 0 3( ) ( ) ( )ruru r r r rL    L I μ I μ L I μ  
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0rfrf r r r rL L μ μ L μ  

Mutual-inductance 

matrices 

3 0( )susf sfsu s s  L L I μ L μ , 3 0( )rurf rfru r r  L L I μ L μ  

3 3( ) ( )
r

T

suru rusu s r   L L I μ L I μ ，
r

T

sfrf rfsf s r L L μ L μ  

3( )
r

T

surf rfsu s r  L L I μ L μ ， 3( )
r

T

sfru rusf s r  L L μ L I μ  

The parameters in this table have been defined earlier in Table 3.3. 

Model (3.30)-(3.31) can be re-organized into a more compact matrix form, by 

adding the second equation to the first one and adding the fourth equation to the third 

one. In this way, a new expression of the model in terms of the phase quantities (i.e. 

phase currents, phase fluxes, and phase voltages) can be obtained as  

3 3 3 3

3 3 3 3

3 1 3 3 3 3

3 1 3 3 3 3

s ss s s s

r rr r r r

sf sfs s s s

r r r r rf rf

d

dt

 

 

  

  

      
      
       

       
             

i ψv R 0 R μ 0
i ψv 0 R 0 R μ
i ψ0 μ R 0 R μ 0

0 0 μ R 0 R μ i ψ
             (3.35) 

0

0

( )

( )
r

r

ss sr ss s sr rs s
T T
sr rr sr s rr rr r

s ss s sr s s s s s rsf sf

T T
rf rfr sr r rr r s r r r r

L

L

 

 

     
     
    

      
          

L L L μ L μψ i

L L L μ L μψ i

μ L μ L μ μ L μ μ L μψ i

ψ iμ L μ L μ L μ μ μ L μ
      (3.36) 

where flux vectors sψ  and rψ  contain the phase fluxes in each phase of the stator 

and rotor, respectively. They are given as 

 = , ,
T

s sa sb sc  ψ                     (3.37) 

 = , ,
T

r ra rb rc  ψ                     (3.38) 

The other variable vectors have been defined in (3.32). The parameter matrices in 

above model are given as 3 0ss sL L I L , 
rsr L L  and 3 0rr rL L I L , where 

matrices sμ , rμ , 0L  and 
r

L have been defined in (3.33) and (3.34). 

By using the torque calculation formula (3.16), the electromagnetic torque for this 

model can be computed as 

(( ) ( ))
2

T sr
g s s sf r r rf

r

p
T




  



L
i μ i i μ i                 (3.39) 
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where 
(.)

r




 represents the partial differential operator. sr

r





L
 has been given in 

(3.18). 

Model (3.35)-(3.36) can represent the short circuit fault at any levels in any phases, 

by setting appropriate values of parameters sa , sb , sc , ra , rb , and rc . This 

model is a time-dependent system due to the existence of term cos( )r . In the next 

section, a linear model is developed by projecting this nonlinear model into a rotating 

d-q coordinate. 

3.3.2. Model in Synchronous d-q Coordinate 

In this subsection, the d-q transformation is used to reduce the number of variables and 

remove the time-dependent term (i.e. cos( )r ) in model (3.35)-(3.36). All the variables 

of model (3.35)-(3.36) are projected to a two-axis coordinate rotating at the 

synchronous speed s  (i.e. synchronous d-q coordinate). This new coordinate and its 

relationship with the stator a-b-c coordinate and rotor a-b-c coordinate are given in 

Figure 3.4. It is worth noting that the d-q coordinate used in this section is different 

from the one in Section 3.2.2. The latter is stationary, while the former is rotating at the 

synchronous speed. By using this non-stationary coordinate, current and voltage 

become AC signals. This transformation will largely facilitate the controller design 

problem discussed in Chapter 6. 
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Figure 3.4. Synchronous d-q coordinate and its relationship with the stator a-b-c 

coordinate and rotor a-b-c coordinate. 

 

The general d-q transformation matrix 32T  (from abc to dq) and its 

corresponding inverse d-q transformation matrix  23T  (from dq to abc) is given 

as follows [113] 

32

2 cos cos( 2 / 3) cos( 2 / 3)

sin sin( 2 / 3) sin( 2 / 3)3

    

    

  
       

T           (3.40) 

23

cos sin

cos( 2 / 3) sin( 2 / 3)

cos( 2 / 3) sin( 2 / 3)

 
   
   

 
    
    

T                (3.41) 

Then the d and q variables in the synchronous d-q coordinate can be obtained from  

a, b, c variables by using the following transformations. 

32 32| , |
s s rsdq s rdq r       x T x x T x              (3.42) 

By using these transformations, a new DFIG model in the synchronous d-q 

coordinate is derived 

' '

2 2 2 2
2 2 2

' '

2 2 2 2
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2 2 2 22 1
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2 1 2 2 2 2
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      
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R 0 R μ 0 i ψv J 0 0
0 R 0 R μ i ψv
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(3.43) 

' ' ' '

' ' ' '

' ' ' '

' ' ' '

( )

( )

ss sr ss sdq sr rdqsdq

rdq sr rr sr sdq rr rdq

sfdq sdq ss sdq sr s sdq sdq sr sdq sdq sr rdq

rfdq rdq sr rdq rr rdq sr sdq r rdq rdq sr rdq

L

L





   
             
  

     

L L L μ L μψ

ψ L L L μ L μ

ψ μ L μ L μ μ L μ μ L μ

ψ μ L μ L μ L μ μ μ L μ

sdq

rdq

sfdq

rfdq

 
 
 
 
 
  

i

i

i

i
 

(3.44) 

where the variable vector are given as 

[ , ]T

sdq sd sqv vv , [ , ]T

rdq rd rqv vv ,  

[ , ]T

sdq sd sqi ii , [ , ]T

rdq rd rqi ii [ , ]T

sfdq sfd sfqi ii , [ , ]T

rfdq rfd rfqi ii . 

[ , ]T

sdq sd sq ψ , [ , ]T

rdq rd rq ψ , [ , ]T

sfdq sfd sfq ψ , [ , ]T

rfdq rfd rfq ψ . 

Matrices sdqμ  and rdqμ  are transferred from matrices sμ  and rμ  (see in (3.33)) 

which is defined as 

32 23| |
s ssdq s    μ T μ T , 32 23| |

s r s rrdq r        μ T μ T          (3.45) 

Correspondingly, the electromagnetic torque in the synchronous d-q coordinate is 

given as 

3
( ) ( )

2
g m sdq sdq sfdq rdq rdq rfdqT pL   i μ i i μ i              (3.46) 

The d-q model (3.43)-(3.44) is a linear model, and it has smaller dimension than the 

3-phase model presented in the last section (i.e. the dimension of d-q model is eight, 

while the dimension of 3-phase model is twelve). Based on this d-q model, a fault 

diagnosis scheme for the multi-phase short circuit fault is proposed later in Chapter 4. 

3.4.  Equivalent Circuits of DFIG 

As it is well known, the equivalent circuit is an important tool in analyzing the 

characteristics of electric machines. The complex electrical and magnetic relationships 

among the circuits of an electric machine can directly be observed from a simple 

equivalent circuit. In this Section, the equivalent circuits of the DFIG with the short 

circuit fault are developed in order to better understand the essential characteristic of 
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the short circuit fault and its effects on the DFIG (i.e. output currents and torque). This 

equivalent circuit is based on the d-q model proposed in Section 3.3.2. By analyzing 

model (3.43)-(3.44) carefully, we can find that the first two rows of these equations can 

be organized into a new form as 

( )

( ) ( )

sdq

sdq s sdq sdq sfdq s sdq

rdq

rdq r rdq rdq rfdq s r rdq

d
r

dt

d
r

dt



 


   





    

ψ
v i μ i J ψ

ψ
v i μ i J ψ

                (3.47) 

( ) ( )

( ) ( )

sdq s sdq sdq sfdq m rdq rdq rfdq

rdq r rdq rdq rfdq m sdq sdq sfdq

L L

L L

    


   

ψ i μ i i μ i

ψ i μ i i μ i
                    (3.48) 

These two equations represent the characteristics (i.e. electrical and magnetic 

characteristics) of the stator and rotor circuits which can be elegantly expressed by a 

dynamic equivalent circuit as given in Figure 3.5. 

sr rrsL rL

( )s r rdq J ψs sdqJ ψ

sdqv rdqvsdq sfdqμ i sdqψ rdqψ
rdq rfdqμ i

mL

rdqi
sdqi

 

Figure 3.5. Equivalent circuit of a DFIG with short circuit fault: stator and rotor 

circuits. 

 

As it is shown in this figure, when the short circuit faults occur at the stator and 

rotor simultaneously, the effects of the faults can be viewed as injecting two 

independent current sources into the stator and rotor circuits, respectively. The 

amplitudes of these current sources are decided by sdqμ  and rdqμ  (they represent the 

fault levels as in (3.33) and (3.45)) as well as sfdqi  and rfdqi (they represent the fault 

currents). Actually, the faults only affect the output currents (i.e. sdqi  and rdqi ), while 

other quantities (i.e. fluxes sdqψ  and rdqψ ) inside the stator and rotor circuits are 
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independent from the faults. Moreover, by analyzing equation (3.46), it can be noted 

that the electromagnetic torque gT  is also independent from the fault. This is because 

gT  only functionally depends on sdq sdq sfdqi μ i  and rdq rdq rfdqi μ i  which are not 

affected by the faults. This can be easily observed from Figure 3.5. 

In the next, the characteristics of the short circuit loops are investigated. Based on 

(3.43)-(3.44), the dynamics of the short circuit loops can be expressed by following 

equations. 

1

2

1
( ) ( ) ( ) ( )s

sdq sfdq sdq sfdq s sdq sfdq sdq sdq sdq

s s

rd

dt L L 

     μ i μ i J μ i μ I μ v          (3.49) 

1

2

1
( ) ( ) ( )( ) ( )r

rdq rfdq rdq rfdq s r rdq rfdq rdq rdq rdq

r r

rd

dt L L 

       μ i μ i J μ i μ I μ v     (3.50) 

Defining the flux equations as 

sfdq s sfdqLψ i , rfdq r rfdqLψ i                       (3.51) 

then the voltage equations can be obtained as 

1

2( )sdq sdq s sfdq sfdq s sfdq

d
r

dt
   I μ v i ψ J ψ               (3.52) 

1

2( ) ( )rdq rdq r rfdq rfdq s r rfdq

d
r

dt
     I μ v i ψ J ψ          (3.53) 

Based on these flux and voltage equations, the equivalent circuits of the stator short 

circuit loop and rotor short circuit loop can be drawn as shown in Figure 3.6. 

sr

sL

s sfdqJ ψ

1

2( )sdq sdq

I μ v sfdqψ

sfdqi

        

rr

rL

( )s r rfdq J ψ

1

2( )rdq rdq

I μ v rfdqψ

rfdqi

 

(a)                                  (b) 

Figure 3.6. Equivalent circuit of a DFIG with stator circuit fault: (a) stator short-circuit 

loop. (b) rotor short-circuit loop. 
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As it is shown in Figure 3.6, the stator short-circuit loop and rotor short-circuit loop 

are independent of each other and also independent of the stator and rotor circuits. 

Fault currents sfdqi  and rfdqi  are decided by the fault levels sdqμ  and rdqμ as well as 

the stator and rotor voltages (i.e. sdqv  and rdqv ). 

Based on the above analysis, several important observations are summarized. 

1. The effects of the short circuit faults can be considered as additive new currents to 

the existing output currents. The amplitudes of the new currents are decided by the 

fault levels and the input voltages. 

2. The electromagnetic torque is independent of the short circuit faults. 

3. The faults in one side, e.g. the stator, do not affect the current performance in the 

other side, e.g. the rotor, and vice verse. 

These observations are further illustrated through the simulations in the following 

section. 

3.5. Simulation Studies 

In this section, the models proposed in above sections are simulated in order to analyze 

and evaluate the behaviours of DFIG in the presence of different short-circuit faults. 

The simulation studies in this section are carried out in the Matlab/Simulink 

environment, and the schematic diagram of the implemented system is given in Figure 

2.1. The DFIG is rated at 2MW, and its parameters are provided in Appendix A. In this 

section, we only evaluate the behaviours of the DFIG under open-loop operation, and 

closed-loop operation is considered later in Chapter 6. The DFIG is supplied with a 

constant stator supply voltage ( ( )s phasev = 130 V, sf = 50 Hz) and a constant rotor 

control voltage ( ( )r phasev   8.2V, rf  4Hz). The wind turbine outputs a constant torque 

( wtT = -250Nm) to the DFIG. In the following, two important issues (i.e. effects of the 

short circuit faults and behaviours of the fault current fdqi ) are studied, and the results 

of the second one will be used later in Chapter 4 in the context of fault diagnosis. 
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3.5.1. Effects of Short Circuit Fault on Currents and Torque 

In this section, the 3-phase models (i.e. model in a-b-c coordinate) proposed in Section 

3.2.1 and Section 3.3.1 are simulated to study the dynamic behaviours of DFIG in the 

presence of single-phase and multi-phase faults. The results are presented in Figure 3.7 

and Figure 3.8. As it is shown in Figure 3.7(a)-(b) and Figure 3.8(a)-(b), the three 

phase currents become asymmetrical when the fault occurs, and an obvious increase 

can be observed in the current of the faulted phase. This is because the effective 

impedance of the faulted phase is reduced by the short circuit. Figure 3.8(a) shows that 

the phase with more serious fault (i.e. higher percentage short circuit) presents larger 

increase in its current. It also can be observed that the currents in un-faulted phases are 

not affected by the fault. In Figure 3.7(c) and Figure 3.8(c), we can observe that the 

short circuit fault induces a small disturbance in the electromagnetic toque, whereas 

after a short period the torque goes back to its original value. This result is consistent 

with the conclusions given in Section 3.4. 

 

 

(a) Stator currents 

 

(b) Rotor currents 
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(c) Electromagnetic torque 

Figure 3.7. Dynamic behavors of DFIG in the presence of single-phase short circuit fault: 

A 5% ( 0.05  ) short circuit fault is applied to stator phase „a‟ at t=2 sec. 

 

(a) Stator currents 

 

(b) Rotor currents 

 

(c) Electromagnetic torque 

Figure 3.8. Dynamic behaviours of DFIG in the presence of multi-phase short circuit 

fault: 1% ( 0.01sa  ) and 2% ( 0.02sb  ) short circuit faults are applied to stator 

phases „a‟ and „b‟ simultaneously at t=2sec, thereafter, 10% ( 0.01rc  ) short circuit 

faults is applied to rotor phase „c‟ at t=2.5sec. 



 73 

3.5.2. Behaviour of Fault Current fdqi   

In the previous subsection, the effects of short circuit faults on the currents and torque 

have been analyzed based on the simulations of the 3-phase models. In this subsection, 

we aim to analyze the behaviours of the fault current fdqi  (i.e. a vector composed of 

fdi  and fqi ), which is generated from the simulations of the d-q model proposed in 

Section 3.2.2. The analysis results will be used later in Chapter 4 for the fault diagnosis. 

A short circuit fault is introduced into stator phase „a‟, „b‟ and „c‟, respectively, and for 

each case the simulations results are presented in Figure 3.9.  

 

 

 

Figure 3.9. Fault current fdqi  in time domain. 
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Figure 3.10. Fault current fdqi  in d-q plane. 

As it is shown in this figure, fault current fdqi  has different signatures for three 

different fault positions (i.e. phase „a‟, „b‟, or „c‟) in the time domain. It is essentially 

due to the selection of different fault position parameter xdqf  (see in (3.23)). However, 

it would be more convenient to identify such difference in the d-q plane as given in 

Figure 3.10. It can be noticed that the phase angle of fdqi  is in accordance with the 

physical position of the faulted phase, hence it can be used to indicate the fault position. 

In other words, when fault occurs in any phase, it will be reflected in the corresponding 

positions as indicated in Figure 3.10. This result is important as it will be employed for 

the fault diagnosis later in Chapter 4. However, this result can only be used to detect 

the fault position, for the diagnosis of the magnitude of the fault (i.e. short circuit 

current), other approaches need to be used as discussed in Chapter 5. 

3.6. Summary 

This chapter is concerned with the modeling of DFIG with winding short circuit faults. 

The single-phase short circuit and multi-phase short circuit are regarded as two 

different fault scenarios, and modeled separately. For them, two mathematical models 

are proposed, where a set of new parameters are introduced to quantitatively represent 

the fault. The model derivation for both of these fault scenarios follows the same 

procedure. Firstly, 3-phase models in the a-b-c coordinate are developed. Thereafter 

simplified d-q models (i.e. linear and reduced order) are derived by using d-q 
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transformation. Based on the model equations, the dynamic equivalent circuits of 

DFIG with the short circuit faults are provided. By analyzing the equivalent circuits, 

the characteristics of the fault and its effects on the DFIG (i.e. electromagnetic torque 

and phase currents) are concluded in Section 3.4 and further demonstrated via the 

simulation studies.    
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4. Diagnosis of Single-Phase Short Circuit 

Fault in DFIG 

Equation Chapter (Next) Section 1 

4.1. Introduction 

In the previous chapter, the winding short circuit fault has been explicitly 

investigated, and two mathematical models for the single-phase and multi-phase 

faults have been developed. In this chapter, we focus on diagnosing the first fault (i.e. 

single-phase fault). A model-based fault diagnosis scheme is developed, which is 

based on the model proposed in Section 3.2. Since most model-based methods are 

based on the model represented in the state-space form, thus in this chapter, an 

important sinusoidal signal decomposition technique, i.e. sequence component 

decomposition technique [103] is applied to transform the model developed in the 

previous chapter (expressed by the voltage and flux equations as in (3.24)-(3.25)) into 

a state-space representation. In this way, the single-phase fault can be formulated as 

an additive term in the state space model (i.e. the additive fault). To diagnose this 

fault, a conventional adaptive observer [118] is firstly designed, which can provide an 

unbiased estimation of the fault under the assumption that no model uncertainties 

exist in the DFIG. However, in practice, due to the magnetic saturation and parameter 

variations (e.g. resistance varies with the temperature), etc., the model uncertainties 

may occur. In such situation, the conventional adaptive may fail to estimate the fault. 

Hence, a new robust adaptive observer is developed in this chapter by adding a 

leakage term to the adaptive law, which allows the bounded estimation errors of the 

states and faults. Additionally, to improve the accuracy of the fault estimation, H∞ 

optimization technique [104] is implemented to optimally design the parameters of 

the adaptive observer so as to minimize the estimation errors. The condition that 
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DFIG operates under varying speed is also discussed in this chapter. To ensure the 

stability of the adaptive observer in the presence of speed variation, a LPV adaptive 

observer is developed based on the self-scheduled theory [105], [106]. Its stability 

condition is provided by means of Linear Matrix Inequalities (LMIs). 

This chapter is organized as follows. Section 4.2 introduces the principles of the 

sequence component decomposition, and derives the positive and negative sequence 

models of the DFIG with the single-phase short circuit fault. In Section 4.3, these two 

models are organized into a standard linear state-space representation. In Section 4.4, a 

conventional adaptive observer is designed to estimate the fault. To enhance the 

robustness of the fault estimation, in Section 4.5, a robust adaptive observer is 

proposed, followed by an H design of the observer parameters. Based on this result, a 

LPV adaptive observer for the varying speed condition is proposed in Section 4.6. In 

Section 4.7, the simulation studies illustrate the effectiveness of the proposed fault 

diagnosis scheme.  

4.2.  Sequence Component Decomposition 

The sequence component decomposition is a widely used technique dealing with the 

structural asymmetry problems of the electric machines [92], [93], [107]. In this 

section, this technique is employed to decompose the model of the faulty DFIG (as in 

Section 3.2.2) into two sub-models, namely positive-sequence model and 

negative-sequence model, and then organize them into the state-space representations. 

4.2.1. Principle of Sequence Component Decomposition 

According to [103], a sinusoidal vector dqf  ( = ( ), ( )
T

dq d qf t f t  f , where ( )df t  and 

( )qf t  are the sinusoidal signals) can be represented in terms of the positive-sequence 

phasor ( F  ) and negative-sequence phasor ( F  ), which are given as 

1 1

2 2

j t j t

dq F e F e    f                        (4.1) 

where superscripts „+‟ and „—‟ represent the positive sequence and negative sequence, 
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respectively.   is the angular frequency of the sinusoidal signals. In the rectangular 

notation, these phasors are given as 

d qF F jF    , d qF F jF                       (4.2) 

where dF   and qF   are the d and q variables in the d-q coordinate rotating at   (or 

denoted as +(dq) coordinate), while dF 
 and qF   are the d and q variables in the d-q 

coordinate rotating at   (or denoted as (dq) coordinate). Since these variables are 

independent of frequency  , thus in the sinusoidal steady-state they become 

constants. 

Figure 4.1 demonstrates the basic principle of the sequence component 

decomposition. A sinusoidal signal is projected into two opposite rotating d-q 

coordinates (one is rotating at  , and the other is rotating at  ). By doing this, the 

signal of each channel is converted into a direct current (DC) signal corrupted with a 

double frequency alternating current (AC) signal. These DC signals correspond to the 

positive-sequence and negative-sequence phasors, which need to be preserved. Hence, 

the low pass filters tuned at double frequency are adopted to remove the AC signals. 

Low pass 

filter (     )2
j te 

dqf

F

Fj te  Low pass 

filter (     )2

 

Figure 4.1 . The principle of the sequence component decomposition. 

4.2.2. Positive-Sequence and Negative-Sequence Models 

As mentioned earlier in Section 3.2.2, model (3.24)-(3.25) is given in the stationary 

d-q coordinate, therefore its variable vectors are the sinusoidal vectors with 

synchronous frequency s . By applying the sequence component decomposition, this 

model can be decomposed into two sub-models: positive-sequence model and 
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negative-sequence model, which are given as follows 

Positive sequence model: 

2
( )

3

( )

s s s f s s s

r r r r s r r

d
V r I I j

dt

d
V r I j

dt

 

 

    

   


     


      


             (4.3) 

2
( )

3

2
( )

3

s s s f m r

r r r m s f

L I I L I

L I L I I





   

   


   

   


                    (4.4) 

Negative sequence model: 

2
( )

3

( )

s s s f s s s

r r r r s r r

d
V r I I j

dt

d
V r I j

dt

 

 

    

   


     


      


             (4.5) 

2
( )

3

2
( )

3

s s s f m r

r r r m s f

L I I L I

L I L I I





   

   


   

   


                    (4.6) 

where, subscripts „ s ‟ and „ r ‟ represent the stator and rotor. The variables with symbol 

„ ~ ‟ are the phasors. Therefore sV 
, sV  , rV 

, and rV   represent the 

positive-sequence and negative-sequence phasors of the stator and rotor voltages, 

respectively. sI 
, sI  , rI 

, and rI   represent the positive-sequence and 

negative-sequence phasors of the stator and rotor currents, respectively. s

 , s

 , 

r

 , and r

  are the positive-sequence and negative-sequence phasors of the stator 

and rotor fluxes, respectively. fI 
 and fI 

 are the positive-sequence and 

negative-sequence phasors of the fault current, respectively. 

4.3.  State Space Model Representation 

To facilitate the observer design in the following sections, the models proposed in last 

subsection are transformed into the state-space representations. It has been mentioned 
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earlier that the sequence components are constants in the sinusoidal steady-state, thus 

we can have that 0f

d
I

dt

   and 0f

d
I

dt

  . In this case, model (4.3)-(4.4) and model 

(4.5)-(4.6) can both be rewritten into the following form, by selecting currents as the 

state variables. 

( ) ( ) ( ) ( )

( ) ( )

fx t Ax t Bu t B f t

y t Cx t

  



                   (4.7) 

The variables and parameter matrices for these two models are defined in the 

following table. 

 

Table 4.1. The variables and parameter matrices for the positive sequence and negative  

sequence models. 

 Positive Sequence Model  Negative Sequence Model 

State, input, and 

output variables 

( ) , , ,
T

sd sq rd rqx t i i i i         

( ) , , ,
T

sd sq rd rqu t v v v v       

( ) , , ,
T

sd sq rd rqy t i i i i         

( ) , , ,
T

sd sq rd rqx t i i i i         

( ) , , ,
T

sd sq rd rqu t v v v v         

( ) , , ,
T

sd sq rd rqy t i i i i         

Fault variables ( ) ,
T

fd fqf t i i        ( ) ,
T

fd fqf t i i        

Parameter  

matrices 

+

s rr s rA A A A      

1 2

2
[ , ]

3
fB A A     

s rr s rA A A A       

1 2

2
[ , ]

3
fB A A     

2 2

2 2

1
r m

m s

L L
B

L LD

 
   

I I

I I
, 4C  I  

 

In above table, the parameter or variable with superscript „+‟ belongs to the positive 

sequence model, while the one with superscript „-‟ belongs to the negative sequence 

model. 1A  and 2A  represent the first and second columns of A . Matrices rA , 
s

A  

and 
r

A  are given as 

2 2

2 2

1
r s m r

r
m s s r

L r L r
A

L r L rD

 
   

I I

I I
, 

s
A

 
    

J 0

0 J
, 

21
r

m r m

s m s r

L L L
A

L L L LD


 
    

J J

J J
   (4.8) 
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where 2

s r mD L L L  . J  is given in (3.28). s  is the synchronous speed, and r  is 

the electrical rotor speed. 

It can be observed that (4.7) is a linear MIMO system. Fault variables ( )f t  and 

( )f t  are used to represent the winding short circuit fault, which is also considered as 

the additive faults in model (4.7). When considering the rotor speed ( r ) is a known 

constant, model (4.7) is simply a linear time invariant (LTI) system. Nevertheless, in 

practice, the DFIGs are predominately operating under the varying speed. For such 

case, system (4.7) becomes a linear parameter varying (LPV) system with time-varying 

parameter r , which can be measured in real-time. Essentially, LPV systems can be 

considered as a special class of linear time varying (LTV) systems. The main 

difference with LTV system is that in LPV systems the time-dependence of the system 

matrix (i.e. A, B, C) is not known a priori but is given only implicitly by a time varying 

parameter ( )p t  which is assumed to be a priori unknown but available in real-time. 

4.4. Conventional Adaptive Observer 

The adaptive observers have made enormous achievement on diagnosing the constant 

or slow varying faults (some works have been reviewed in Section 2.3.1). In this 

section, assuming that rotor speed ( r ) is invariant and no model uncertainties exist in 

system (4.7), a conventional adaptive observer is designed to estimate fault variables 

( )f t  and ( )f t , in order to diagnose the short circuit. The observer is given as 

follows 

Algorithm 4.1 (conventional adaptive observer)[118]: 

1

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ( ) ( ))

f

T

f

x t Ax t Bu t B f t L y t y t

y t Cx t

f t B P x t x t

     






  

           (4.9) 
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where 4ˆ( )x t   is the state vector of the observer and 4ˆ( )y t   is the output vector 

of the observer. 2ˆ( )f t   is the estimation of the fault ( )f t . 4 4L  , 4 4P   

and 2 2 0   are the parameters to be designed. 

With knowing that the fault ( )f t  is constant in the sinusoidal steady-state, we can 

have ( ) 0f t  . By comparing observer (4.9) with the system (4.7) and denoting  

ˆ( ) ( ) ( )xe t x t x t  , ˆ( ) ( ) ( )fe t f t f t                 (4.10) 

Then the estimation error dynamic system can be obtained as 

1

( ) ( ) ( ) ( )

( ) ( )

x x f f

T

f f x

e t A LC e t B e t

e t B Pe t

  


 

                   (4.11) 

 

Theorem 4.1: For a parameter matrix 0  , if there exist two symmetric positive 

definite matrices P  and Q , such that the following condition holds 

( ) ( )TA LC P P A LC Q                       (4.12) 

the adaptive observer (4.9) with gain L  is asymptotically stable and can ensure 

lim ( ) 0t xe t   and lim ( ) 0t fe t  . 

 

Proof : Select the Lyapunov function as 

1( ) ( ) ( ) ( ) ( )T T

x x f fV t e t Pe t e t e t                      (4.13) 

Its first derivative with respect to time is 

1( ) ( )(( ) ( )) ( ) 2 ( ) ( ) 2 ( ) ( )T T T T T

x x f f x f fV t e t A LC P P A LC e t e t B Pe t e t e t         (4.14) 

From the second equation of (4.11), we can have  

1( ) ( ) ( ) ( ) 0T T T

f f x f fe t B Pe t e t e t                     (4.15) 

then (4.14) can be reduced as 

( ) ( )(( ) ( )) ( )T T

x xV t e t A LC P P A LC e t                  (4.16) 

According to condition (4.12), we can conclude that ( ) ( ) ( ) 0T

x xV t e t Qe t   , which 



 83 

means the estimation error system (4.11) is asymptotically stable and thus all the 

variables ( ( )xe t , ( )fe t ) are bounded ( ( )xe t L , ( )fe t L , this is according to the 

Lyapunov stability theory in Appendix B.1). Furthermore, we can show that  

0
( ) ( ) (0) ( )T

x xe t Qe t dt V V


                      (4.17) 

This implies that ( )xe t  is a bounded 2L  signal ( 2( )xe t L ). According to (4.11), 

we can have ( )xe t L . Now, we have established that 2( )xe t L L   and 

( )xe t L . According to Barbalat lemma (as in Appendix B.2 ), we can conclude 

lim ( ) 0x
t

e t


 . Since it can be shown that  

0
( ) lim ( ) (0) (0)x x x x

t
e t dt e t e e




                 (4.18) 

then from (4.11) it can be conclude that ( )xe t  is uniformly continuous. Again, using 

the Barbalat lemma we can have lim ( ) 0x
t

e t


 . This means lim ( ) 0f
t

e t


 .         

Remark 4.1: In the adaptive observer (4.9), the tuning gain   for the adaptive law 

are usually chosen by trial and error using simulations in order to achieve a good rate 

of convergence. Small   may result slow convergent rate whereas large   may 

make this observer algorithm difficult to solve numerically in the simulations. In the 

fault vector ( )f t , we have two elements to be estimated, therefore   should be 

chosen properly to balance the convergence speeds between these two elements. 

j1
e

2
st

ˆˆ fdqi

-j1
e

2
st

+ˆ ˆ ˆˆ ˆ,
T

fd fqf i i     

ˆ ˆ ˆˆ ˆ,
T

fd fqf i i      

A

B

C

 

Figure 4.2.  The synthesis of fdqi  

 

Two adaptive observers are required for the positive-sequence and 

negative-sequence models (as in Table 6) to estimate faults ( )f t
 and ( )f t , 
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respectively. Once these two faults are estimated, variable vector fdqi  can be 

obtained through the scheme given in Figure 4.2. According to the discussion in 

Section 3.5.2, the phase angle of fault current fdqi  is in accordance with the physical 

position of the faulted phase, and it thus can be used to indicate the fault position. 

Parameter   (i.e. fault level parameter) is a scalar. Therefore, fdqi  can be directly 

used to diagnose the fault position. The overall fault diagnosis scheme is given in 

Figure 4.3. The disadvantage of this scheme is that it is unable to diagnose the fault 

level, as the fault level parameter   is unknown and can not be identified using this 

observer. However, this problem can be solved by using model (i.e. state-space model 

as in (5.8)) and the fault diagnosis scheme proposed in Chapter 5, where the unknown 

fault level parameter   is formulated explicitly as a model parameter and can then be 

estimated, although more complicated model and observer are required.  

DFIG

Sequence 

Component 

Decomposition

Sequence 

Component

Decomposition

d/dt

Encoder

State Observer

Adaptive 

Law

Grid

DC 

link

j1
e

2
st

sabcv sabci rabcv rabci

sdqv
sdqi rdqv

rdqi

,r rV V 

,r rI I 

,s sV V 

,s sI I 

ˆˆ fdqi

r

s

-j1
e

2
st

d-q 

transformation

d-q 

transformation

+f̂

f̂ 

 
Figure 4.3. Schematic diagram of adaptive observer based fault diagnosis for 

single-phase short circuit fault. 
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4.5.  Robust Adaptive Observer 

In last section, a conventional adaptive observer is designed with the assumption that 

no model uncertainties exist in the DFIG (as in (4.7)). However, in practice, the model 

uncertainties can be caused by the magnetic saturation and parameter variations (e.g. 

resistance varies with the temperature), etc. As mentioned earlier in the introduction of 

this chapter, the conventional adaptive observer (as in last section) may give an 

unstable estimation of the fault in the presence of model uncertainties. To overcome 

this problem, several approaches have been applied to modify the observer (see [48]). 

An important approach is to add a leakage term (-modification) to the parameter 

adaptive law, which allows bounded estimations of the states and parameters. However, 

the estimation accuracy (i.e. enough small estimation errors) can not be guaranteed by 

this approach. In this section, the H∞ optimization technique is applied to optimally 

design observer gains so as to ensure the accuracy of the fault estimation. 

Taking account of the model uncertainties and assuming rotor speed ( r ) is 

invariant, the system (4.7) can be rewritten as 

( ) ( ) ( ) ( ) ( )

( ) ( )

fx t Ax t Bu t B f t w t

y t Cx t

   



                (4.19) 

where the model uncertainties are represented by an unknown input 4( )w t  . It is 

assumed that  

( )w t    , , ( )f t                      (4.20) 

For such a system, a modified adaptive observer is developed, which is given as 

follows. 

Algorithm 4.2 (modified adaptive observer)[48]: 

1 2

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ) ( ))

ˆ ˆ ˆ( ) ( ) ( ( ) ( ))

fx t Ax t Bu t B f t L y t Cx t

f t f t y t Cx t

     

    

            (4.21) 

where, 4 4L  , 2 2

1 0   , 2 4

2

   are the parameters to be determined 
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By subtracting the observer with system (4.7) and considering (4.10), the estimation 

error dynamic system is obtained 

1 2 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x f f

f f x

e t A LC e t B e t w t

e t e t Ce t f t

   


   

                  (4.22) 

Before presenting the main results, an important lemma the proof of theorem 4.2 is 

introduced 

Lemma 4.1: Let E  and F  be real matrices of appropriate dimensions. Then for any 

scalar 0   and the vectors , nx y , we have  

12 T T T T Tx EFy x EE x y FF y                     (4.23) 

Theorem 4.2: if there exist 1 0  , 2 , X  and a symmetric positive definite matrix 

P , such that the following inequality is satisfied. 

2

2 1

0
2

T T T T T

f

T

f

A P C X PA XC I B P C

B P C I

     
   

    

（ ）
        (4.24) 

then the adaptive observer (4.21) with gain 1L P X  is asymptotically stable and it 

can ensure ( )xe t  and ( )fe t  are uniformly ultimately bounded. 

 

Proof: Selecting the Lyapunov function as 

( ) ( ) ( ) ( ) ( )T T

x x f fV t e t Pe t e t e t                     (4.25) 

Its first derivative with respect to time is 

2 1

1

( ) ( ) ( ) ( ) ( )

( )(( ) ( )) ( ) 2 ( )( ) ( ) 2 ( ) ( )

2 ( ) ( ) 2 ( ) ( )

T T

x x f f

T T T T T

x x f f x f f

T T

x f

V t e t Pe t e t e t

e t A LC P P A LC e t e t B P C e t e t e t

w t Pe t e t f t

 

       

  

 

(4.26) 

By defining X PL , we have 

2

1 1

( ) ( )( ) ( ) 2 ( )( ) ( )

2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

T T T T T T

x x f f x

T T T

f f x f

V t e t A P C X PA XC e t e t B P C e t

e t e t w t Pe t e t f t

     

    
   (4.27) 

then applying lemma 4.1 to above inequality, we can obtain 
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2 1

1 1

( ) ( )( ) ( )

2 ( )( ) ( ) ( )( 2 ) ( )

( ) ( ) ( ) ( )

T T T T

x x

T T T

f f x f f

T T T

V t e t A P C X PA XC I e t

e t B P C e t e t I e t

w t PP w t f t f t

    

     

   

             (4.28) 

which can be organized into an extended form as  

( ) ( ) ( )TV t t t                               (4.29) 

where ( ) ( ) ( )
T

T T

x ft e t e t     , 2 2

max max 1 1( ) ( )TPP        , and 

2

2 12

T T T T T

f

T

f

A P C X PA XC I B P C

B P C I

     
   

    

（ ）
             (4.30) 

From (4.24), we can conclude that 

max( ) ( ) ( ) ( )TV t t t                            (4.31) 

Then (4.31) implies that ( )V t  is negative definite if  

max( ) ( ) / ( )Tt t                          (4.32) 

which indicates that the ( )t  is uniformly bounded. In other words, ( )xe t  and 

( )fe t  are also bounded.                

□ 

4.5.1. Optimal Adaptive Observer 

In last subsection, a modified adaptive observer is designed to enhance the robustness 

of the fault estimation. Although condition (4.24) ensures that the bounded estimation 

errors of the faults in the presence of model uncertainties, it does not guarantee that the 

estimation errors are small enough in the context of the accuracy for the fault diagnosis. 

In this section, we aim to minimize the estimation errors by using H∞ optimization 

approach. Before presenting the main results, an important performance index (i.e. 

disturbance attenuation level) is introduced. 

Estimation error dynamic system (4.22) can be organized into an augmented form as 

( ) ( ) ( )

( ) ( )

x t Ax t Bd t

z t Cx t

  



                        (4.33) 
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where ( )d t  represents the disturbance of this system, which is given as 

( ) [ ( ), ( )]T T Td t w t f t                       (4.34) 

and the augmented state and system matrices are given as 

( ) [ ( ), ( )]T T T

x fx t e t e t                        (4.35)                    

2 1

fA LC B
A

C

 
    

, 
1

0

0

I
B

 
   

, 
0

0

I
C

I
 

   
           (4.36) 

The effect of disturbance ( )d t  on the system output ( )z t  can be represented by a 

H∞ norm. 

( )
( ) sup

( )
zd

z t
T s

d t
                       (4.37) 

where ( )zdT s  is the transfer function between the disturbance ( )d t  and the output 

( )z t . „ sup ‟ represents supreme value. ( )zdT s


 represents H norm of transfer 

function ( )zdT s . ( )z t  represents the L2 norm of signal ( )z t . 

If ( )zdT s  is linear time invariant, then  

( ) sup ( ( ))zd zdT s T j


 

                      (4.38) 

where   represents maximum singular value. The objective is then to design the 

observer gains ( L , 1  and 2 ), such that the system (4.33) has a guaranteed 

disturbance attenuation level 0  , which can be expressed as  

( )
( ) sup

( )
zd

z t
T s

d t



                       (4.39) 

This condition is equivalent to  

2 22( ) ( )z t d t                         (4.40) 

It is also equivalent to    

22 2 22( ) ( ) ( ( ) ( ) )x fe t e t f t w t                 (4.41) 

If the estimation errors ( )xe t and ( )fe t  satisfy the above inequality, we can say 
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that system (4.33) has a guaranteed   level of disturbance attenuation. The following 

theorem provides an analytical method for the design of observer parameters in order 

to guarantee this disturbance attenuation level. 

Theorem 4.3: The estimation error dynamic system (4.33) is asymptotically stable and 

has a guaranteed   level of disturbance attenuation, if there exist a scalar 0  , 

matrices 1 0  , 2 , X  and a symmetric positive definite matrix P , such that the 

following inequality satisfied. 

  

2

1 1
2

2

( ) 0

2 0
0

* 0

T T T T T

fA P C X PA XC I B P C P

I

I

I





     
    
   

 
  

  (4.42) 

Proof: Firstly, the asymptotic stability of system (4.33) with ( ) 0d t   needs to be 

established. Select the Lyapunov equation as (4.25). Its first derivative with respect to 

time is calculated as 

2

1

( ) ( )( ) ( ) 2 ( )( ) ( )

( )( 2 ) ( )

T T T T T T

x x f f x

T

f f

V t e t A P C X PA XC e t e t B P C e t

e t e t

     

  
  (4.43) 

Defining 0( ) [ ( ), ( ), ( )]T T T

x ft e t e t f t  , (4.43) can be expressed as  

0 0 0( ) ( ) ( )V t t t                          (4.44) 

with  

2

0

2 1

( )
0

2

T T T T T

f

T

f

A P C X PA XC B P C

B P C

    
   

   

         (4.45) 

This inequality is satisfied by (4.42). Thus, it can be concluded that ( ) 0V t  .  

To establish the H∞ performance index for system (4.22), the following performance 

index is defined 

0
( )J t dt



                            (4.46) 

where 
2( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ))T T T T

x x f ft e t e t e t e t f t f t w t w t                  (4.47) 

As ( ) 0V t  , we can have  
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0
( ( ) ( ))J t V t dt



                        (4.48) 

Then by letting ( ) [ ( ), ( ), ( ), ( )]T T T

x ft e t e t f t w t  , we can have  

( ) ( ) ( ) ( )Tt V t t t                        (4.49) 

where   is given in (4.42).  

A sufficient condition for 0J   is that  

[0, ]t   , ( ) ( ) 0t V t                      (4.50) 

which is satisfied by (4.42). Therefore, it can be concluded that the system (4.33) has a 

guaranteed   level of disturbance attenuation.                               

With the result of Theorem 4.3, the robust adaptive observer with a guaranteed 

disturbance attenuation level for (4.19) can be solved by testing the feasibility of the 

LMI (4.42). Note that any feasible solution of (4.42) yields a suitable gain for the 

adaptive observer(4.21). The smallest disturbance attenuation level   can be obtained 

by solving following LMI optimization problem: 

1 2
, , ,

min
P X


 

                               (4.51) 

Subject to (4.42) with 2   

It should be noted that this is a LMI optimization problem which can be readily 

solved by using the MATLAB LMI toolbox. 

4.5.2. Self-Scheduled LPV Adaptive Observer 

In the above work, the DFIG rotor speed ( r ) is assumed as a known and invariant 

parameter. However, in practice, speed r  often varies in order to adapt to the wind 

speed and achieve a high efficiency of the wind power generation. In this situation, 

system (4.7) becomes a LPV system by viewing r  as an online measurable 

time-varying parameter instead of a priori. For such system, a gain-scheduled LPV 

adaptive observer with guaranteed H performance (as in (4.39)) is developed in this 
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section. 

Considering the time-varying parameter ( )r t , LTI system (4.19) can be 

re-expressed as a LPV system, which is given as  

( ) ( ( )) ( ) ( ) ( ( )) ( ) ( )

( ) ( )

r f rx t A t x t Bu t B t f t w t

y t Cx t

    



           (4.52) 

where matrices ( ( ))rA t  and ( ( ))f rB t  affinely depend on ( )r t  (as in Table 4.1). 

The rotor speed ( r ) predominately varies within 30%  around the synchronous 

speed ( s ). In other word,  min max( ) ,r r rt   with min 0.7r s   and 

max 1.3r s  .  

Algorithm 4.3 (LPV adaptive observer): 

For LPV system (4.52), a gain-scheduled adaptive observer is developed, which has 

the same structure as (4.9) but with a time-varying observer gain ( ( ))rL t . 

1 2

ˆˆ ˆ ˆ( ) ( ( )) ( ) ( ) ( ( )) ( ) ( ( ))( ( ) ( ))

ˆ ˆ ˆ( ) ( ) ( ( ) ( ))

r f r rx t A t x t Bu t B t f t L t y t Cx t

f t f t y t Cx t

       

    

  (4.53) 

The estimation error dynamic system is obtained by comparing (4.52) with (4.53) 

1 2 1

( ) ( ( ( )) ( ( )) ) ( ) ( ( )) ( ) ( )

( ) ( ) ( ) ( )

x r r x f r f

f f x

e t A t L t C e t B t e t w t

e t e t Ce t f t

     


   

        (4.54) 

The stability of this estimation error dynamic system can be proved and is given in 

Theorem 4.4. 

Theorem 4.4: The estimation error dynamic system (4.54) is asymptotically stable and 

satisfies H performance (4.39) for any ( )r t  within  min max,r r  , if there exist 

a scalar 0  , matrices 1 0  , 2 , 1X , 2X  and a symmetric positive definite 

matrix P , such that the following two inequalities satisfied. 
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max 1 max 1 max 2

1 1

2

2

( ) ( ) ( ( ) ) 0

2 0
0

* 0

T T T T
fA P C X PA X C I B P C P

I

I

I

  





      
 

    
   

 
  

(4.55) 

min 2 min 2 min 2

1 1
2

2

( ) ( ) ( ( ) ) 0

2 0
0

* 0

T T T T T

fA P C X PA X C I B P C P

I

I

I

  





     
    
   

 
  

(4.56) 

The time-varying observer gain is given as 

  1 2( ( )) 1 ( ) ( )rL t t L t L                           (4.57) 

 

where              min

max min

( )
( ) r r

r r

t
t

 


 





 ( 0 ( ) 1t  )                  (4.58) 

   Matrices 1L  and 2L  are given as 

1

1 1L P X  , 1

2 2L P X .                     (4.59) 

Proof: According to Theorem 4.3, estimation error system (4.54) is asymptotically 

stable and ensure H performance if there exist single matrix 0P   for any ( )r t  

within  min max,r r  , such that the following LMI is satisfied. 

    2

1 1
2

2

( ( )) ( ( )) ( ( )) ( ( )) ( ( ( )) ) 0

2 0
0

* 0

T T T

r r r r f rA t L t P P A t L t I B t P C P

I

I

I

    





     
 

      
 
  

           (4.60) 

Since matrices ( ( ))rA t  , ( ( ))rL t  and ( ( ))f rB t  affinely depend on parameter 

( )r t  and vary within in a polytope of matrices whose vertices are the images of the 

vertices minr  and maxr . In other words 

 
max min

max min

max min

( ( )) ( ) ( )

( ( )) 1 ( ) ( ) ( ) ( )

( ( )) ( ) ( )

r r r

r r r

f r f r f r

A t A A

L t t L t L

B t B B

  

    

  

     
     

       
     
     

            (4.61) 
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This implies for the synthesis of inequality (4.60) that we can replace the search 

over the whole polytope without loss of generality by the search over its extreme 

points. Consequently, condition (4.60) is replaced by two LMIs on vertices minr  

and maxr , which are given in (4.55) and (4.56).                           

4.6.  Simulation Studies  

In this section, the adaptive observer algorithms proposed in above sections (i.e. 

conventional adaptive observer, optimal adaptive observer, LPV adaptive observer) are 

applied for the diagnosis of the single-phase short circuit fault. Their performances 

under various conditions (i.e. no model uncertainties, in the presence of model 

uncertainties, speed variation) are evaluated through simulations. In these simulations, 

the DFIG operates under open-loop condition, supplied with the stator supply voltage 

( sv = 130 V, sf = 50 Hz) and the rotor control voltage ( ( )r phasev   8.2V, rf  4Hz). 

The nominal parameters of DFIG are provided in Appendix A. Based on these 

parameters, the parameter matrices of model (4.7) are calculated and given in 

Appendix C.1.  

4.6.1. Performance of Conventional Adaptive Observer in the 

Ideal Case 

In this subsection, the DFIG is simulated at a constant rotor speed ( 289 rad/sr  ), 

under a constant wind turbine torque ( 250NmwtT   ). An ideal case taking no account 

of model uncertainties is considered in this subsection. Two conventional adaptive 

observers (Algorithm 4.1) are designed as in (4.12) to estimate faults ( )f t  and 

( )f t , respectively, whose parameters are given in Appendix C.2. 
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Figure 4.4. f   estimation using conventional adaptive observer. 

 

Figure 4.5. f   estimation using conventional adaptive observer. 

 

The observer is activated at t=1sec after the DFIG reaching the steady state, and 

thereafter a 1% ( 0.01  ) short circuit fault is applied to stator phase „b‟ at t=2sec. 

Figure 4.4 and Figure 4.5 presents the real values of the faults ( ( )f t , ( )f t ) and 

their estimates. It can be observed that the conventional adaptive observer gives 

unbiased estimations of the faults in ideal case taking no account of the model 

uncertainties, while a delayed response (approximate 0.2 sec) of the estimation can be 

clearly observed at t=2sec, which is caused by the low filters in the sequence 

component decomposition (see in Figure 4.1). 
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Figure 4.6. fdqi in d-q plane. 

 

Based on the estimated ( )f t  and ( )f t ,  variable vector fdqi  is synthesized 

according to Figure 4.2 in order to diagnose the fault position. Figure 4.6 presents 

fdqi  in the d-q plane. As it is shown in this figure, the phase angle of the vector 

fdqi  is 120

. By comparing it with Figure 3.10, it can be concluded that the short 

circuit fault occurs at phase „b‟. 

4.6.2. Robustness of Optimal Adaptive Observer against 

Model Uncertainties 

In this subsection, the performance of the proposed optimal adaptive observer (see in 

Section 4.5.1) in the presence of model uncertainties is evaluated via simulations. The 

model uncertainties are introduced by a parameter variation (i.e. an abrupt change of 

stator resistance sr ) in this simulation example. The conventional adaptive observer 

given in last subsection is also simulated in this subsection for the purposes of 

comparison. By solving the optimization problem (4.51) using Matlab LMI toolbox, a 

minimum disturbance attenuation level is obtained, which is 1.42  . The associated 

parameter matrices of adaptive observer (4.21) are given in Appendix C.3.  

Figure 4.7 presents the maximum singular value for the transfer function ( )zdT j  

(as in (4.37)) versus frequency  . In this figure the horizontal dashed line 
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corresponds to 1.42  . It can be observed that the maximum singular value ( )zdT j  

is less then minimum value of  . We thus can conclude that the proposed optimal 

adaptive observer has a guaranteed   level of disturbance attenuation.  

 

 (a) Positive-sequence model. 

 
(b) Negative-sequence model. 

Figure 4.7. Maximum singular value of transfer function ( )zdT j . 

 

The optimal adaptive observer resulting from 1.42   is implemented to estimate 

faults ( )f t  and ( )f t . Firstly, a 1% ( 0.01  ) short circuit fault is applied to 

stator phase „b‟ at t=2sec, and then a 5% variation of the stator resistance sr  is applied 

at t=3sec. The conventional adaptive observer designed in last subsection is also 

applied here for the comparison purposes and the results are given in Figure 4.8. As it 

shown in this figure apparently, although the conventional adaptive is able to provide 

unbiased fault estimations in the absence of model uncertainties (before t=3sec), it 

becomes unstable when model uncertainties occurs (i.e. variation of the parameter sr  
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at t=3sec). Figure 4.9 demonstrates the fault estimation results of the optimal adaptive 

observer. As it is shown in this figure, when the model uncertainties occur, the 

estimated f   and f   are still able to track their true values in a desired accuracy. It 

can also be observed from this figure that the estimation errors always exist even in the 

absence of model uncertainties, and such biases are increased when model 

uncertainties are introduced. However, these small estimation biases do not affect the 

fault diagnosis results, which will be demonstrated in the following. In addition, when 

model uncertainty (i.e. variation of the parameter sr ) is applied at t=3s, it can be 

observed in Figure 4.9 that d component of the estimated fault variables (i.e. f   and 

f  ) has larger biase than q component, which domenstrates that the d component is 

more sensitive to the model uncertainty. 

 

(a) f  estimation.

 

(b) f   estimation. 

Figure 4.8. Performance of the conventional adaptive observer in the presence of model 

uncertainties. a 1% ( 0.01  ) short circuit fault is applied to stator phase „b‟ at t=2sec, 

and a 5% variation of sr  is introduced at t=3sec. 
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(a) f  estimation. 

 

(a) f  estimation. 

Figure 4.9. Performance of the optimal adaptive observer in the presence of model 

uncertainties. a 1% ( 0.01  ) short circuit fault is applied to stator phase „b‟ at t=2sec, 

and a 5% variation of sr  is applied at t=3sec. 

 

The estimation results in Figure 4.9 are utilized to synthesize variable vector fdqi  

based on the scheme as in Figure 4.2. Figure 4.10 presents the estimated fdqi  in the 

d-q plane. Due to the estimation biases, the estimated fdqi  dose not presents as a 

straight line that perfectly overlaps with the true fault position (i.e. green line), while it 

exhibits as an ellipse with the main axis indicating the fault position. The area of the 

ellipse indicates the size of the estimation errors. Obviously, for small estimation 

biases, it is still able to provide clear information indicating where the fault occurs, i.e. 
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phase „b‟ in this simulation. 

 

Figure 4.10. The synthesis of fdqi  by using the optimal adaptive observer 

4.6.3. Performance of LPV Adaptive Observer under 

Varying Speed  

In this subsection, the proposed LPV adaptive observer (i.e. Algorithm 4.3) is applied 

to diagnose the short circuit fault when DFIG operates under varying speed. A 

sinusoidal load torque ( 250 100sin(20 )NmwtT t   ) is applied to the DFIG to 

simulate the speed variation. The model uncertainties are considered in this subsection. 

A 1% ( 0.01  ) short circuit fault is applied to stator phase „b‟ at t=2sec, and then a 

5% variation of the stator resistance sr  is applied at t=3sec. The disturbance 

attenuation level   is chosen as 1.42 . The associated parameters of the LPV 

adaptive observer (4.53) are given in Appendix C.4. For comparison, the LTI optimal 

adaptive observer designed in last subsection is also applied here to estimate the faults. 
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Figure 4.11. Speed variation. 

 

 (a) f  estimation. 

 

(b) f  estimation. 

Figure 4.12. The comparison of the fault estimations by using LTI optimal adaptive 

observer and LPV adaptive observer.  
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The speed variation is depicted in Figure 4.11. The fault estimations by using LTI 

optimal adaptive observer (Algorithm 4.2) and LPV adaptive observer (Algorithm 4.3) 

are given in Figure 4.12. From this figure, it can be observed that under the varying 

speed, the asymptotic convergence of fault estimations can be both achieved using 

these two observer algorithms, but the LPV adaptive observer can achieve more 

accurate results with smaller steady state errors. This is because the LTI observer is 

designed based on an approximate rotor speed (e.g. 289 rad/sr  ), while the actual 

rotor speed can vary around r  as depicted in Figure 4.11. Nevertheless, LPV 

adaptive observer is based on the actual rotor speed measured in real-time, and thus it 

is not affected by the speed inaccuracy. 

4.7. Summary 

In this chapter, an adaptive observer based fault diagnosis scheme for the single-phase 

short circuit fault is proposed. To facilitate the observer design, a linear state-space 

representation of the faulty DFIG model is firstly derived by using the sequence 

component decomposition. As such, the single-phase short circuit fault is formulated 

into two additive faults f   and f  . To estimate these faults, several adaptive 

observer algorithms have been developed in this chapter. Initially, a conventional 

adaptive observer is designed for an ideal case assuming no model uncertainties. Next, 

a robust adaptive observer is proposed to consider the effects of model uncertainties. 

The H optimization technique is also applied to minimize the estimation errors for the 

sake of accuracy. Finally, the speed variation of the DFIG is considered. For such case 

a gain-scheduled LPV adaptive observer is proposed to ensure stability and 

performance of the fault estimation under the speed variation. The estimation results of 

faults f   and f   are utilized to synthesize variable vector fdqi  in order to 

diagnose the fault position. The effectiveness of these adaptive observer algorithms on 

diagnosing the short circuit fault has been demonstrated through the simulations. The 

limitation of this fault diagnosis scheme is that it is unable to diagnose the fault level, 
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as the fault level parameter   is unknown and can not be identified using the 

observers algorithm proposed in this chapter. This limitation is overcome by the fault 

diagnosis scheme in the following chapter.    
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5. Diagnosis of Multi-Phase Short Circuit 

Fault in DFIG 

Equation Chapter (Next) Section 1 

5.1. Introduction 

Similar to the previous chapter, the adaptive observer based approaches are also 

applied in this chapter to diagnose the multi-phase short circuit fault. As mentioned 

earlier, such approaches rely on a state-space representation of the fault model. 

Therefore, the first objective of this chapter is to transform the proposed fault model 

(as in Section 3.3.2) into a state-space representation. Different from last chapter, 

instead of resorting to the sequence component decomposition, the fault model is 

directly transformed into the state-space form by using the block matrix inverse lemma. 

In this state-space form, the multi-phase short circuit fault is represented by a set of 

unknown parameters ( sa , sb , sc , ra , rb , and rc ) correlating to the input 

matrix, which can be considered as the multiplicative fault. To estimate those unknown 

parameters, a conventional adaptive observer is firstly designed. However, the SPR 

condition is required by this observer algorithm, which is difficult to be satisfied by 

only selecting the observer gains. To relax this condition, a modified adaptive observer 

is designed in this chapter, by which the SPR condition is replaced by a Lyapunov 

equation that it is easier to be satisfied. This observer is inspired by the work by Zhang 

[79], where an adaptive observer with similar structure was proposed for the parameter 

estimation of the MIMO linear time varying (LTV) system. In addition, the influence 

of model uncertainties is considered in this Chapter. In order to guarantee the 

convergence of the parameter estimations in the presence of model uncertainties, the 

high gain estimation technique is applied to redesign the observer gains of the 

modified adaptive observer. The DFIG speed variation is also considered in this 
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Chapter, for which a linear time-varying (LTV) adaptive observer is designed. This 

observer is suitable for the fault diagnosis under non-stationary (varying speed) 

condition.  

This chapter is organized as follows. Section 5.2 presents the derivation of the state 

space model representation. In Section 5.3, a conventional adaptive observer is 

designed to estimate the fault parameters (i.e. sa , sb , sc , ra , rb , and rc ). To 

relax the SPR condition required by the conventional adaptive observer, In Section 5.4 

a modified adaptive observer is developed. In Section 5.5, the high observer design 

technique is applied to design the gain of this modified adaptive observer to enhance 

its robustness in the presence of model uncertainties. In Section 5.6, a LTV adaptive 

observer is designed by taking account of the speed variation. In Section 5.7, the 

simulation results illustrate the effectiveness of the proposed fault diagnosis scheme. 

5.2. State Space Model Representation 

The model for the multi-phase short circuit fault as presented in Section 3.3.2 is given 

by two equations: the voltage and flux equations, which can be written in a compact 

form as 

d

dt
  

ψ
v Ri Ωψ                        (5.1) 

ψ Li                                  

There are usually two methods to transform this model into a state-space 

representation. One is to select the currents i  as the state variables, and the other is to 

select the fluxes ψ  as the state variables. In this work, the first method is utilized, 

and the state-space representation can be obtained as  

d
A B

dt
 

i
i v                          (5.2) 

where 1 1( )A    L R L ΩL , 1B L . 
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5.2.1. Inductance Matrix Inverse Calculation 

As it is shown in (5.2), the inverse of the inductance matrix (i.e. L ) needs to be 

computed firstly in order the obtain the model parameter matrices (i.e. A  and B ). 

From model (3.44), the inductance matrix L  is given as 

' ' ' '
2 2

' ' ' '
2 2

' ' ' '
2 2 2 2 2 22 2 2

' ' ' '
2 2 2 2 2 22 2 2

sdqss sr ss sr

rdqsr rr sr rr

sdq sdq sdqsss sr ss sr

rdq rdq rdqrsr rr sr rr

L

L









  

  

     
     

    


        
        
       

μ 0L L L L

0 μL L L L
L

μ 0 μ 0 μ 0I 0L L L L

0 μ 0 μ 0 μ0 IL L L L

2 2

2 2

sdq

rdq





 
 
 
 

   
       

μ 0

0 μ
 

               (5.3) 

Before computing 1
L , we need to discuss the singularity condition of L . Note 

that L  is singular whenever any of the fault level parameters ( sa , sb , sc , ra , 

rb , and rc ) equals to zero. Such singularity problem can be avoided by re-defining 

the state variables in model (3.44) as 

( ) [ , , ( ) ,( ) ]T T T T T

sdq rdq sdq sfdq rdq rfdqx t  i i μ i μ i                (5.4) 

Thereafter, the inductance matrix becomes  

' ' ' '

' ' ' '

' ' ' '
2 2 2 22 2 2

' ' ' '
2 2 2 22 2 2

ss sr ss sr

sr rr sr rr

sdq sdqsss sr ss sr

rdq rdqrsr rr sr rr

L

L





 

 

    
    

    
  

                         

L L L L

L L L L
L

μ 0 μ 0I 0L L L L

0 μ 0 μ0 IL L L L
  (5.5) 

This matrix is always nonsingular for any values of sa , sb , sc , ra , rb , and 

rc  . Therefore, its inverse can be computed by using the block matrix inverse lemma. 

Lemma 5.1 (block matrix inverse lemma): Let a m n  matrix M  be partitioned 

into a block form 
A B

M
C D
 

   
, where A  and D  are invertible. Then we have 

 
1 1 1 1 1

1

1 1 1 1 1

( ) ( )

( ) ( )

A BD C A B D CA B
M

D C A BD C D CA B

    


    

   
     

            (5.6) 
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By applying this lemma, 
1

L can be computed as 

1

1 2 2 2' '
2 2

2 2 21 2 2' '
1

2 2 2
2 22 2 2 2

2 2 2

1 1

2 2 2 2 2 2

1

2 2 2 2 2 2

( ) ( )

( ) (

s

ss sr
r

sr rr

s

r

sdq sdq sdq

rdq rdq rd

L

L

L

L











 


 



 



 

 



 

                             
   
 

    

I 0
0L L

0 I0
L L L

I 0
00 0

0 I

μ I μ 0 I μ 0

0 μ I μ 0 I μ
1

1 1

2 2 2 2 2 2

1 1

2 2 3 2 2 2

)

( ) ( )

( ) ( )

q

sdq sdq sdq

rdq rdq rdq



 

 

 

 

  
  

   
 
      
   
          

μ I μ 0 I μ 0

0 μ I μ 0 I μ

      (5.7) 

5.2.2. State-Space Model  

Now 1
L  is used to compute the state matrix A  and input matrix B  as in (5.2) 

and then the state space model is derived as 

( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

 



                       (5.8) 

where the state variables 8( )x t   is given in (5.4). The input and output variables are 

given as 

 
4( ) [ , ]T T T

sdq rdqu t  v v ,  
4( ) [ , ]T T T

sdq rdqy t  i i            (5.9) 

State, input, and output matrices are given as 

0 1 2s rA A A A                           (5.10) 

0 [ ]fB B B                               (5.11) 

4 4 4[ ]C  I 0                              (5.12) 

where parameter matrices 8 8

0A  , 8 8

1A  , 8 8

2A  , 8 4

0B  , 
8 4

fB  and 

4 8C   are given as 

' 1' ' ' ' ' ' ' '

2 2 2 2 2 2

' 1' ' ' ' ' ' ' '

2 2 2 2 2 2

0 ' 1

2 2 2 2 2 22 2 2 2 2 2 2 2

' 1

2 2 2 2 2 22 2 2 2 2 2 2 2

1

s ss rr r sr s rr r sr

r rs sr r ss s sr r rr

s s

r r

L

L
A

D L

L











  



  



     



     

   
 

    
 
 

    

0 0 R 0R L R L R L R L

0 0 0 RR L R L R L R L

0 0 R 00 0 0 0

0 0 0 R0 0 0 0







  (5.13) 
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2 2 2 2 2 2

2 2 2 2 2 2
1

2 2 2 2 2 2

2 2 2 2 2 2

A

  

  

  

  

 
 

   
 
  

J 0 0 0

0 J 0 0

0 0 J 0

0 0 0 J

, 

2 2

2

2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

1

m r m m r m

s m s r s m m

L L L L L L

L L L L L L L
A

D

D

   

  

  
 

  
 
 
  

J J J J

J J J J

0 0 0 0

0 0 0 J

     (5.14) 

' '

' '

0

2 2 2 2

2 2 2 2

1

rr sr

sr ssB
D

 

 

 
 
 
 
 
  

L L

L L

0 0

0 0

, 

1

2 2 2

1

2 2 2

1

2 2 2

1

2 2 2

s

r

f

s

r

L

L
B

L

L

























 
 
 
 
 
  

I 0

0 I

I 0

0 I

                    (5.15) 

The parameters in these matrices have been given in Chapter 3. 

The fault level parameters ( sa , sb , sc , ra , rb , rc ) are all organized into a 

matrix 4 4[ ]   

 

1

2 2 2

1

2 2 2

( )
[ ]

( )

sdq sdq

rdq rdq










 
  

  

μ I μ 0

0 μ I μ
               (5.16) 

where sdqμ  and rdqμ  have been given in (3.45). 

To facilitate the observer design, model (5.8) is modified into the following form 

( ) ( ) ( ) ( )

( ) ( )

fx t Ax t Bu t B t

y t Cx t

   



                    (5.17) 

where 
4 6( )t   is a signal matrix composed of the voltage measurements.  

32

32

0 0
| 0 0

0 0
( )

0 0
| 0 0

0 0

sa

sbs

sc

ra

rbs r

rc

v
v

v
t

v
v

v

 

  





 

  
  
      
 

 
    

T 0

0 T

                  (5.18) 

where 
32

|
s 

T  and
32

|
s r   

T are d-q transformation matrices as given in (3.42). 

6   is parameter vector composed of the fault level parameters ( sa , sb , sc , 

ra , rb , and rc ) with the following structure. 

, , , , ,
1 1 1 1 1 1

T

sa sb sc ra rb rc

sa sb sc ra rb rc

     


     

 
  

      
        (5.19) 

0B B  
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It is can be observed that model (5.8) is a linear MIMO system, whose states 

sdq sfdqμ i  and rdq rfdqμ i  are unknown.   is an unknown parameter vector representing 

the multi-phase short circuit fault. Its nonzero elements correspond to the phases where 

the faults occur, and the fault levels are described by the values of these nonzero 

elements. Therefore, the diagnosis of fault position and level can be simultaneously 

accomplished by estimating parameter vector  . In the following sections, several 

adaptive observer algorithms are proposed for joint estimation of the parameter vector 

  and the unknown states (i.e. sdq sfdqμ i , rdq rfdqμ i ). Although the state estimation is 

not really required for the purpose of fault diagnosis, but it will be used in the 

following chapter for the purpose of fault tolerant control. 

5.3.  Conventional Adaptive Observer 

In this section, a conventional adaptive observer is designed to estimate the unknown 

parameter vector  , with the assumption that no model uncertainties exist in model  

(5.17). 

Algorithm 5.1(conventional adaptive observer)[118]: 

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ) ( ( ) ( ))

f

T

x t Ax t Bu t B t L y t Cx t

t t y t Cx t

 

 

     

   

               (5.20) 

where 
8x̂  and 6̂   are the estimates of the state x  and unknown parameter 

vector  . 6 4L   is the observer gain to be designed. 0   is a pre-specified 

matrix used to tune the convergence rate of parameter estimations. 

As all the parameters in   are time-invariant, it can be assumed that 0  . 

Comparing observer (5.20) with (5.17) and denoting  

ˆ( ) ( ) ( )xe t x t x t  , ˆ( ) ( )e t t                      (5.21) 

the estimation error dynamic system yields 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x x f

T

x

e t A LC e t B t e t

e t t Ce t









  


 

                   (5.22) 
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The stability of this system can be proved and the stability condition of is given in 

Theorem 5.1. 

Assumption 5.1: Assume that there exists constants 0  , 0   and 0T   such 

that for all t , the following inequalities hold: 

( ) ( )
t T

T

t
t t d    



                         (5.23) 

This assumption is the well-known persistence of excitation condition, which is 

required for the parameter estimation. Also see further discussion in Remark 5.2. 

Theorem 5.1: For a scalar 0  , if there exist two symmetric positive definite 

matrices P  and Q  , which satisfy the following two conditions 

( ) ( )TA LC P P A LC Q                       (5.24) 

T

fB P C                            (5.25) 

then for any initial condition, the adaptive observer (5.20) for system (5.17) is 

asymptotically stable and can ensure lim ( ) 0t xe t  , and under assumption 5.1 it can 

also ensure lim ( ) 0t e t  . 

Proof: The Lyapunov function is selected as 

1( ) ( ) ( ) ( ) ( )T T

x xV t e t Pe t e t e t 

                   (5.26) 

The proof is similar to theorem 5.1, so the details are omitted here. 

 

Remark 5.1: Conditions (5.24) and (5.25) can be also interpreted as system 

 , ,fA LC B C  with transfer function 
1( ) ( ( )) fT s C sI A KC B    is SPR (see in 

Appendix B.3). Actually, the parameter estimation error dynamic is governed by 

( ) ( ) ( ) ( ) ( )Te t t T s t e t                     (5.27)                      

Therefore, under assumption 5.1, we can simply derive ( )e t  is exponentially 

asymptotically stable if ( )T s  is SPR, 

Remark 5.2: Assumption 5.1 is the persistence of excitation condition for the 

estimation of unknown parameter  , which is not required by the state estimation. In 
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other words, the convergence of the state estimation can be achieved without this 

condition. However, the main objective of this adaptive observer is to estimate the 

unknown parameter  , therefore the persistent excitation condition has to be always 

satisfied. Although the matrix ( ) ( )T t t   may be singular for each  , (5.23) requires 

that ( )t  varies in such a way with time that the integral of the matrix ( ) ( )T t t   is 

uniformly positive definite over any time interval [ , ]t t T . It is known that when 

DFIG is operating, the voltage signals in matrix ( )t  are always non-zero values, 

therefore, the assumption 5.1 can be satisfied. 

Once parameter vector   is estimated by the adaptive observer (5.20), the fault 

level parameters ( sa , sb , sc , ra , rb , and rc ) can be computed from (5.19), 

based on which the information of the fault position and fault level can be readily 

obtained. The overall fault diagnosis scheme is given in Figure 5.1. It worth 

mentioning that the single-phase short circuit fault can be regarded as a special case of 

the multi-phase fault, and thus it can be diagnosed by the scheme proposed in this 

chapter as well. Comparing it with the fault diagnosis scheme proposed in Chapter 4, 

this scheme is directly based on the d-q components of the current and voltage 

measurements without resorting to the sequence component decomposition, which 

makes it easier to be implemented. Additionally, the fault position and level can be 

simultaneously diagnosed online. However, the adaptive observer in this scheme is 

with higher dimension compared with the one in last chapter, which therefore would 

increase the computational cost. Besides, in practice the short circuit fault 

predominantly occurs at a single phase rather than several phases simultaneously. 

Hence, the fault diagnosis scheme proposed in last chapter is still practically 

significant and computationally attractive algorithm. 
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DFIG

d/dt
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i




 

 

Figure 5.1. Schematic diagram of the fault diagnosis scheme for the multi-phase short 

circuit fault. 

5.4.  Modified Adaptive Observer 

In last section, a conventional adaptive observer is designed, which can provide an 

unbiased estimation of parameter   under the assumption that no model uncertainties 

exist in system (5.17). However, there are two limitations of this observer. Firstly, it 

requires SPR condition ( as in (5.24) and (5.25)), which is quite conservative and it is 

difficult to find an observer gain L  satisfy such condition. Secondly, this observer is 

not able to guarantee the convergence of the parameter estimations in the presence of 

model uncertainties. In this section, a modified adaptive observer [79] is designed to 

overcome these two limitations of the conventional adaptive observer. The relex of 

SPR condition is discussed in this section, while the robustness issue is investigated in 

the following section. 
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For system (5.17), a modified adaptive observer can be designed as follows. 

Algorithm 5.2 (modified adaptive observer)[79]: 

  

 

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

f

T T

f

x t Ax t Bu t B t L t t C y t Cx t

t t C y t Cx t

t A LC t B t

 





        



  

    


      (5.28) 

where 8x̂  and 
6̂   is the estimates of the state x  and unknown parameter 

vector  . 8 6( )t    is a signal matrix generated from ( )t . 8 4L   is the 

observer gain to be designed. 6 6  is a positive matrix tuned to balance the 

convergence speeds of the state and parameter estimation. 

Substituting the third equation into the first one, we can have 

  ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )fx t Ax t Bu t B t L y t Cx t t t                 (5.29) 

Comparing it with system (5.17) and using the notation (5.21), the estimation error 

dynamic system can be obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x x f

T T

x

e t A LC e t B t e t t e t

e t t C Ce t

 



    


 

           (5.30) 

Define a new variable as  

( ) ( ) ( ) ( )xt e t t e t                           (5.31) 

then we can have, after some simple computation 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ft A LC t A LC t B t t e t                 (5.32) 

Then a new estimation error system in term of variables ( )t  and ( )e t  can be 

expressed as 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )T T

t A LC t

e t t C C t t e t 

 



 


   
               (5.33) 

The stability of this system and convergence of variables ( )t  and ( )e t  can be 

proved and given in the Theorem 5.2. This theorem is based on an assumption of 

signal ( )t  which is given in assumption 5.2. The proof of this theorem requires an 
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important lemma which is given lemma 5.1.  

Assumption 5.2: Assume that ( )t  is persistently exciting, so the matrix of signals 

( )t  generated by linearly ( )t  through the following equation 

( ) ( ) ( ) ( )ft A LC t B t                           (5.34) 

satifies, for constants 0  , 0  , 0T   and all 0t t , the following inequality 

holds: 

( ) ( )
t T

T T

t
I t C C t d I  



                         (5.35) 

Lemma 5.1[113]: Let ( ) m nt  be a bounded and continuous matrix and n n  

be any symmetric positive definite matrix. If there exist positive constants 0  , 

0  , 0T   such that for all 0t t  

( ) ( )
t T

T

t
I t t d I    



                       (5.36) 

Then the following system  

( ) ( ) ( ) ( )Tz t t t z t                        (5.37) 

is exponentially stable. 

Theorem 5.2: For a matrix 0  , if there exist two symmetric positive definite 

matrices P  and Q  such that the following condition holds 

( ) ( )TA LC P P A LC Q                     (5.38) 

then for any initial condition, the adaptive observer (5.20) for system (5.17) is 

asymptotically stable and can ensure lim ( ) 0t xe t  , and under assumption 5.2 it can 

also ensure lim ( ) 0t e t  . 

Proof: Since condition (5.38) holds, the first equation of (5.33) is stable and variable 

( )t  converges into zero as 0t  . This can be easily proved according to the 

Lyapunov stability theorem and Barbalats lemma (as in Appendix B.1 and B.2). The 

parameter estimation error is governed by the following equation as given in (5.33) 

( ) ( ) ( ) ( ) ( ) ( )T T T Te t t C C t e t t C C t                  (5.39) 

As signal matrix ( )t  is bounded, ( )t  generated from ( )t  is also bounded. 
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Under assumption 5.2 and by applying Lemma 5.1, it can be concluded that (5.39) is 

stable. As ( )t  converges into zero as 0t   and with the fact ( )t  is bounded, we 

can conclude that lim ( ) 0t e t  . From (5.31), we can have lim ( ) 0t xe t  .   

Comparing with the SPR condition (as in (5.24)-(5.25)) required by the 

conventional adaptive, condition (5.38) is easier to be satisfied and the observer gain 

L  can be simply obtained by solving (5.38) 

5.5. High Gain Adaptive Observer 

For completeness, a more realistic but complex situation is considered in this section 

when the system is corrupted with the model uncertainties. High gain observer is stated 

to be a very effective method to track the system states and attenuate the effects from 

unknown model uncertainties [41], [108]. In this section, we will combine this 

technique with the modified adaptive observer developed in last section in order to 

improve the robustness of this proposed adaptive observer in the presence of model 

uncertainties.  

Taking account of the model uncertainties, system (5.17) can be modified into 

( ) ( ) ( ) ( ) ( )

( ) ( )

fx t Ax t Bu t B t w t

y t Cx t

    



                   (5.40) 

where the model uncertainties are represented by an unknown input 8( )w t  . It is 

assumed that ( )w t  and   are bounded.  

( )w t    ,                          (5.41) 

To ensure bounded parameter estimation, a leakage term is added to the adaptive law, 

which is given as   

 1 2
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )T Tt t t C y t Cx t                     (5.42) 

where 1 0   and 2 0   are pre-specified parameter used to tune the convergence 

rate of the parameter   estimation. 

By using this modified adaptive law, the estimation error system corrupted with the 
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model uncertainties ( )w t can be obtained as 

 1 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )T T

t A LC t w t

e t e t t C C t t e t  

 

 

  


      
       (5.43) 

From this equation, it can be noted that due to the existence of terms 1  and 

( )w t , the variables ( )t  and ( )e t  no longer converge into zeros, while they can 

converge into a small bound by designing the observer gain L  properly. This is 

demonstrated in the following theorem.  

Theorem 5.5: for two matrices 1 0   and 
2 0  , the adaptive observer in form of 

(5.28) with adaptive law (5.42) for system (5.40) can make the estimation errors ( )xe t  

and ( )e t  as small as possible to any pre-specified accuracy. Specifically, the 

observer gain L  is selected as 

   ( ) ( )
T TI A LC P P I A LC C C                   (5.44) 

with 0   and P  is a positive definite symmetric matrix.  

Proof: The Lyapunov function is selected as in 

1

2( ) ( ) ( ) ( ) ( )T TV t t P t e t e t                         (5.45) 

Its time derivate is computed as 

 
1 1

( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )

T T T

T T

V t t A LC P P A LC t t Pw t

e t e t e t e t   

  

 

    

   
     (5.46) 

Substituting the second equation of (5.33) into above equation, we can obtain 

 

   

 

1 1

2 1 2 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( )+2 ( ) ( )+2 ( )

( ) ( ) ( ) ( )

( ( ) ( ) ( )) ( ( ) ( ) ( )

T T

TT T T T

T T T

T T T

T T

V t t A LC P P A LC t

e t t C C t t e t t t e t C C t e t

e t e t t Pw t e t

t A LC P P A LC C C t

t t e t C C t t e t

   

  

 

 

 

 

 

 

 

   

       

    

    

    

 

1 1

2 1 2 1

1 1

2 1 2 1

) ( ) ( ) ( ) ( )

2 ( ) ( )+2 ( ) ( )+2 ( )

( ) ( ) ( ) ( )

2 ( ) ( )+2 ( ) ( )+2 ( )

T T T

T T T

T T T

T T T

e t t C C t e t

e t e t t Pw t e t

t A LC P P A LC C C t

e t e t t Pw t e t

 

  

  

 

 

 

 

 

  

    

    

    

  (5.47) 
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As condition (5.44) holds, then we can have 

1 1

2 1 2 1

1 1 1

2 1

1 1

2 1

2

min

( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( )

1 1 1 1
2 ( ) ( ) ( ) ( ) 2 ( ) ( )

2 2 2 2

1 1
( ) ( )

2 2

1 1
2 ( ) ( )

2 4

T T T T

T T

T T

V t t P t e t e t t Pw t e t

t w t P t w t e t e t

w t Pw t

P t

  

 

   

      

  

  

 

  

 

        

       
               

       

   

  

   

2 2 22 1

min 2 1

1 1

2 1

2 21

min min 2 1

1 2 1 1 2

min max min 2 1 max 2 1

1 1
( ) 2 ( ) ( )

2 4

1 1
( ) ( )

2 2

( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( )

2 2

T T

w t e t

w t Pw t

P t e t

P P





 

  

  

      

 

 



  

   
      

   

   

    

       

(5.48) 

This implies ( ) 0V t   if 

   

2 21

min min 2 1

1 2 1 1 2

min max min 2 1 max 2 1

( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( )

2 2

P t e t

P P

  

      



  

  

       

     

(5.49) 

This means the pair ( ( ), ( ))t e t  converge to the following set D  according to 

Lyapunov stability theory 

 

   

2 21

min min 2 1

1 2 1 1 2

min max min 2 1 max 2 1

( ), ( ) | ( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( )

2 2

t e t P t e t

D
P P

    

      



  

   
 

  
        

 

 

(5.50) 

By analyzing (5.44), it is noticed that the eigenvalues of P  decrease as   

increases. Therefore, by increasing  , the convergence set D  can be made as small 

as desired. As ( )t  is the combination of ( )xe t  and ( )e t ,  ( )xe t  thus can also be 

reduced. This is end of the proof. 

Remark 5.5: The condition (5.44) can be replaced by a Lyapunov equation 

( ) ( )T TI A P P I A C C                      (5.51) 
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if the observer gain is designed as 

1 TL P C                            (5.52) 

In such case, L  can be obtained solving (5.51) and a big value of   should be 

selected in order to reduce the estimation errors. 

Remark 5.6:  It is worth mentioning that in this subsection we employ high gain 

method to attenuate the effect of the model uncertainty instead of using H method. 

This is due to the existence of time-varying signal matrix ( )t  in multi-phase fault 

model (5.40). As it is stated in Section 4.5.1, a H adaptive observer with a guaranteed 

performance index (4.39) can be obtained by solving a LMI which is in terms of the 

matrix (i.e. fB  in single-phase fault model (4.19)) correlated with the fault (i.e. f  in 

single-phase fault model (4.19)). In the multi-phase fault model (5.40), the matrix 

correlated with the fault (i.e.  ) is ( )fB t  which is a time-varying matrix. If we 

apply same method (H method) to diagnose multi-phase fault represented by model 

(5.40), the time-varying matrix ( )fB t  will result a time-varying matrix inequality 

which is difficult to be solved. For this reason, we use high gain method in this section 

to deal with the model uncertainty for multi-phase fault diagnosis problem. Even 

though the performance index (4.39) can not be guaranteed by using high gain method, 

the effect of model uncertainty can still be greatly reduced by selecting a big value of 

 .  

5.6. LTV Adaptive Observer 

In this section, the situation that DFIG operates under varying speed is discussed. To 

ensure the global convergence of the parameter and state estimations under varying 

speed condition, a time-varying adaptive observer is designed based on approach 

proposed by [43]. The model uncertainties are not considered in this section. 

System (5.17) in terms of the time-varying rotor speed ( )r t  can be expressed as a 
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linear time varying (LTV) system, which can be given as 

( ) ( ) ( ) ( ) ( )

( ) ( )

fx t A t x t Bu t B t

y t Cx t

   



                  (5.53) 

where 0 1 2( ) ( )s rA t A A A t     (matrices 0A , 1A  and 2A  is given in (5.13)

-(5.14), and s  is the synchronous speed, which is constant and known). In the 

following context, the dependence on t are omitted in order to lighten notations. 

Algorithm 5.3 (LTV adaptive observer) [43]: 

For such system, a LTV adaptive observer is developed as follows. 

  

 

1 1

1

1

ˆˆ ˆ ˆ

ˆ ˆ

( )

T T T

f x

T T

T

x f

T T

x x x x x

T T

x Ax Bu B S C S C y Cx

S C y Cx

A S C C B

S S A S S A C C

S S C C





  











 





        

   


    


    
     


         (5.54) 

where 8x̂ and 6̂  are the estimates of the state x  and unknown parameter 

vector  . 8 6  is a signal matrix generated from  . 8 8

xS   is a symmetric 

signal matrix generated from A . 6 6S
  is a symmetric signal matrix generated 

from  . 6 6  is a symmetric positive-definite matrix used to tune the 

convergence rate of the parameter estimation. 0x   and 0   are used to tune 

the convergence rate of the state and parameter estimations.  

Comparing observer (5.54) with system (5.17), the estimation error dynamic system 

can be obtained as 

1

1

( )T

x x x f

T T

x

e A S C C e B e e

e S C Ce

 

 





     


  

                 (5.55) 

Here a new variable   is introduced to remove term the derivate e , which is 

given as 

xe e                               (5.56) 
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then we can have, after some simple computation, 

 1 1( ) ( )T T

x x fA S C C A S C C B e                  (5.57) 

Substituting the third equation of (5.54) into above equation, a new estimation error 

dynamic system in term of variables   and e  can be obtained 

 

1

1

( )T

x

T T

A S C C

e S C C e  

 







  


   

                   (5.58) 

The stability of this estimation error dynamic system and the convergence of ( )e t  

and ( )t  can be proved and is given in Theorem 5.3.  

Theorem 5.3: For two scalars 0x   and 0  , the adaptive observer (5.54) for 

system (5.53) is exponentially stable and can the estimation errors  xe  and e  tend 

to zero exponentially fast when 0t   

Proof: Lyapunov function can be selected as 

T T

xV S e S e                           (5.59) 

Its first derivative with respect to time is  

 

   

1 1[ ] [ ]T T T T

x x x x

TT T T T

T T

V A S C C S S A S C C

e C C e e C C e

e S e S

   

  

 

 

 

    

       

 
            (5.60)

 

Substituting the last two equations of (5.54) into above equation, we can obtain 

( + ) ( + )

T T T T

x x

T T T T T T T T

T T T T

x x

T T

x x

V S e S e C C

e C C C C e e C C e

S e S e e C C e

S e S e V

   

   

     

   

     

 

     

    

   

      

     

    

         (5.61) 

where min( , )x    . From above equation, we can conclude that   and e  

exponentially go to zero. So does xe .                                     

Actually, this LTV adaptive is a time-varying version of the high gain adaptive 

observer developed in Section 5.5, where observer gain L  is replaced by 1 T

xS C  and 
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parameter   is replaced by S . In this LTV adaptive observer, only two parameters 

(i.e. x  and   ) need to be pre-specified, and the other parameters (i.e. 
xS , and 

S  ) are required to be computed online from time-varying matrices A  and   . 

These two matrices can be obtained from measured speed and voltages (as in (5.53) 

and (5.18)). Although this approach presents well exponential convergence in the 

estimation, it is based on a high dimensional model proposed in Section 5.2 (i.e. the 

model dimension is eight). Thus it is computationally costly which can limit its 

applications for practical problems. 

5.7. Simulation Studies 

In this section, three adaptive observer algorithms developed in sections 5.4, 5.5, and 

5.6 are applied for the diagnosis of multi-phase short circuit fault, respectively. They 

are tested under different situations: no model uncertainties, in presence of model 

uncertainties, and speed variation, and their abilities on estimating unknown 

parameters ( sa , sb , sc , ra , rb , or rc ) are demonstrated throughout the 

simulation studies in the following subsections. The parameters and operating 

condition of the DFIG in this simulation study are the same as in Section 4.6. 

5.7.1. Performance of Conventional Adaptive Observer in 

Ideal Case 

Firstly, an ideal case without considering model uncertainties in system (5.8) is 

discussed. For such a system, the modified adaptive observer (Algorithm 5.2) is 

implemented to estimate parameter   so as to diagnose the short circuit fault (i.e. 

determine the fault level and position). The observer is constructed as in (5.28). The 

observer parameter is set as 60.001  I  and gain L  is calculated from (5.38) by 

letting 4100Q  I , and the results are presented in Appendix D.2. 
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Two different the short circuit fault scenarios are simulated here in order to test the 

ability of this modified observer on diagnosing the faults on different levels and 

different positions..  

Fault scenario 1: a 1% ( =0.01sa ) short circuit fault is applied to stator phase „a‟ at 

t=10s, cleared at t=12s.  

Fault scenario 2: two short circuit faults occur simultaneously in stator phase „b‟ and 

rotor phase „c‟ at t=14s: Former fault level is 2% ( =0.02sb ), and the 

latter one is 3% ( =0.03rc ). They are both cleared at t=16s. 

As mentioned earlier, the short circuit faults are represented by the parameters ( sa , 

sb , sc , ra , rb , or rc ). For these two fault scenarios, the variations of these 

parameters are depicted in Figure 5.2 (red dotted lines). The fault diagnosis results of 

the conventional adaptive observer are also presented in this figure (blue solid lines). 

As it is shown in this figure, for each fault scenario, its corresponding fault parameters 

( sa , sb , sc , ra , rb , or rc ) can be estimated accurately. Based on these 

estimated parameters, the fault level and fault position can therefore be precisely 

determined. For instance, at t=10s, parameter sa  changes to 1%, while the other 

parameters still remain at zeros, which means that a 1% short circuit fault occurs in 

stator phase „a‟ and the other phases are fault-free. Some impulses can be observed in 

this figure (e.g. at t=10, 12, 14, and 16sec), which are caused by the parameter 

variations at those time instants. However, those impulses are small in magnitude and 

occur in very short time intervals, and thus they are not regarded as faults and do not 

affect the fault diagnosis results. 
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Figure 5.2. Fault diagnosis results using the modified adaptive observer. 

5.7.2. Robustness of High Gain Adaptive Observer against 

Model Uncertainties 

The robustness of the high gain adaptive observer (as in Section 5.4) against the model 

uncertainties is demonstrated in this subsection. In this simulation study, the model 
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uncertainties in system (5.40) is introduced by a parameter variation (i.e. an variation 

of stator resistance sr ) The observer is designed as in (5.28) with the adaptive law as 

in (5.42). The observer parameters used in the simulation are 1 60.0005  I , 

2 60.001  I . L  is calculated from (5.51) by setting 150   and the result is 

given in Appendix D.3. 

Firstly, the short circuit faults are simultaneously applied to each phase of the stator 

and rotor at t=4s, and fault level is given as follows. Thereafter, a 10% variation of 

resistance sr  is applied later at t=5s to test the robustness of the high gain adaptive 

observer. The modified adaptive observer designed in last subsection is also simulated 

here for the comparison purposes. 

Fault scenario:  

1% ( =0.01sa ) short circuit in stator phase „a‟;  

2% ( =0.02sb ) short circuit in stator phase „b‟;  

3% ( =0.03sc ) short circuit in stator phase „c‟;  

1% ( =0.01ra ) short circuit in rotor phase „a‟; 

2% ( =0.02rb ) short circuit in rotor phase „b‟; 

3% ( =0.03rc ) short circuit in rotor phase „c‟.  

 

(a) Fault level parameters of the stator (i.e. sa , sb , sc ). 
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(b) Fault level parameters of the rotor (i.e. ra , rb , rc ). 

Figure 5.3.Performance of modified adaptive observer in the presence of model 

uncertainties: the short circuit faults are applied at t=4sec, and a 10% variation of sr  is 

applied at t=5sec. 

 

 

(a) Fault level parameters of the stator (i.e. sa , sb , sc ). 

 

(b) Fault level parameters of the rotor (i.e. ra , rb , rc ). 

Figure 5.4. Performance of high adaptive observer in the presence of model 

uncertainties: the short circuit faults are applied at t=4sec, and a 10% variation of sr  is 

applied at t=5sec. 
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The fault diagnosis results using the modified adaptive and high gain adaptive 

observers are provided in Figure 5.3 and Figure 5.4, respectively. As it is shown in 

Figure 5.3, when the model uncertainties (i.e. 10% variation of resistance sr ) occur at 

t=5s, the modified adaptive observer fails to provide acceptable estimations. The 

estimations start to oscillate and can not converge to their true values. It is unable to 

obtain accurate fault diagnosis using these estimation results. Nevertheless, as it is 

shown in Figure 5.4, the high gain adaptive observer can estimate the fault level 

parameter accurately and the estimates are almost without being affected by the model 

uncertainties. 

 

 

Figure 5.5. Comparison of the performances of the high gain adaptive observer with 

different values of  : fault is applied at t=4s; resistance sr  variation occurs at t=4.5s. 

 

As in (5.51) parameter   is an important parameter in the design of the parameter 

matrices of the high gain adaptive observer. Different selections of   correspond to 

different observer gains, and lead to different performances of the observer. A 

Comparison of the performances of the high gain adaptive observer with different 

values of   is illustrated in Figure 5.5. As it shown, a large value of   (e.g. 
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200  ) present better robustness against model uncertainties, but it results a slow 

convergence speed. A small value of   (e.g. 70  ) provides a faster response 

when fault occurs, while has weaker robustness against model uncertainties and leads 

larger estimation errors at the steady-state. Obviously, there is a trade-off between the 

convergence speed and accuracy of the estimations. Therefore   should be chosen 

properly in order to achieve a desired performance, and this are usually achieved based 

on the simulation errors and multiple tests. 

5.7.3. Performance of LTV Adaptive Observer under Varying 

Speed  

In this subsection, the LTV adaptive observer (Algorithm 5.3) is applied to diagnose 

the short circuit fault when DFIG operates at varying speed. The speed variation is 

depicted in Figure 5.6 (a). The observer is designed as in (5.54), whose parameters are 

10x    . The model uncertainties are not considered in this section. The 

simulations results is given in Figure 5.6 (b) and (c). 

 
(a) Rotor Speed Variation 

 

(b) Fault level parameters of the stator (i.e. sa , sb , sc ). 
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(c) Fault level parameters of the rotor (i.e. ra , rb , rc ). 

Figure 5.6. Fault diagnosis results using the LTV adaptive observer. 

 

From Figure 5.6 (b) and (c), it can be observed that the LTV adaptive is able to 

provide a fast and unbiased estimation of the fault level parameters ( sa , sb , sc , 

ra , rb , and rc ), and estimation results are not affected by the speed variation. 

Based on these estimation results, an accurate fault diagnosis (i.e. level and position) 

can be obtained 

5.8. Summary 

In this chapter, the adaptive observers are applied for the diagnosis of the multi-phase 

short circuit fault. Similar to the work in Chapter 4, a state-space representation of the 

DFIG model with respect to the multi-phase fault is firstly derived, where a group of 

parameters ( sa , sb , sc , ra , rb , and rc ) are used to represent the faults. 

Several different adaptive observers are implemented to estimate these parameters 

online so as to diagnose the fault. Firstly, a conventional adaptive observer is designed 

under the SPR condition. In order to relax this condition, a modified adaptive observer 

is developed and the convergence of the parameter and state estimations is guaranteed 

by a Lyapunov equation (as in (5.38)), which can be easier be satisfied. In addition, in 

order to reduce the effects of model uncertainties, the high gain estimation technique is 

applied to redesign the modified adaptive observer. The situation that the DFIG 

operates under varying speed is also considered in this work, for which a LTV adaptive 

observer is designed.  
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The fault diagnosis method proposed in this chapter has many advantages over the 

method in last chapter. First of all, it is directly based on the voltage and current 

measurements without resorting to the sequence component decomposition. In addition, 

it can provide a precise estimation of the percentage of shorted turns ( sa , sb , sc , 

ra , rb , and rc ), which can be not realized in the method of last chapter. Moreover, 

it can estimate unknown states (i.e. sdq sfdqμ i  and rdq rfdqμ i ) of system (5.8), which will 

be used in the following chapter to compensate the influences of winding short circuit 

faults.
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6. Fault Compensation for Short Circuit 

Fault in DFIG Wind Turbine System 

Equation Chapter (Next) Section 1 

6.1. Introduction 

As discussed in Chapter 3, for an open-loop operated DFIG wind turbine, the winding 

short circuit faults result asymmetries in the stator and rotor currents, while without 

affecting the electromagnetic torque which is a constant at steady-state. Nevertheless, 

for a closed-loop controlled DFIG wind turbine under the conventional control strategy, 

since the measured outputs (i.e. currents) are fed to the controller to adjust the system 

target outputs (i.e. electromagnetic torque and output power), any asymmetries in the 

currents can ultimately lead to the oscillations in the electromagnetic torque, and the 

increase in the magnitude of oscillations in the output power. This will greatly 

increases the mechanical stress and degrades the output power quality. In order to 

reduce the above mentioned effects on a closed-loop controlled DFIG wind turbine 

system, a fault compensator is proposed in this chapter and it is combined with a 

conventional controller, such that the oscillations in the torque can be removed and the 

oscillation amplitude in output power can be reduced. This compensator is constructed 

based on the estimated unknown states ( sdq sfdqμ i  and rdq rfdqμ i ) provided by the 

adaptive observers given in the last chapter, while when to implement the compensator 

depends on the whether the fault occurs that can be diagnosed using the scheme in the 

previous chapter. This control strategy that relies on the fault diagnosis scheme is also 

known as the active fault tolerant control.  

This chapter is organized as follows. In Section 6.2, a conventional control strategy 

is implemented for the closed-loop control of the DFIG wind turbine. The control 
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scheme includes two parts. One is the stator flux oriented control (SFOC) algorithm 

for the decoupled control of the electromagnetic torque and reactive power. The other 

is a maximum power point tracking (MPPT) algorithm, which is implemented in order 

to capture the maximum wind power. In Section 6.3, a fault compensator is developed 

based on the adaptive observers proposed in the last chapter, and incorporated with the 

controller in order to eliminate the influence of short circuit faults on the closed-loop 

controlled system. Finally, the improvements of using the fault compensator on the 

output performance are demonstrated via simulations in Section 6.4.  

6.2. Conventional Closed-Loop Control 

The control of the DFIG wind turbine has two objectives: the decoupled output (i.e. 

electromagnetic and reactive power) control and maximum wind capture. The 

conventional approach for the first objective is stator flux oriented control, which can 

be realized by the two independent rotor current regulations on the stator flux oriented 

coordinate. For the second objective, a recently proposed method, maximum power 

point tracking (MPPT), has been extensively used in the wind power generation 

context. These two control strategies are always applied simultaneously to DFIG wind 

turbine systems. In this section, the principles of these two control algorithms are also 

briefly reviewed [2], [3].  

6.2.1. MPPT  

In the MPPT control, the maximum wind power capture can be obtained by setting the 

reference value of the torque according to the MPPT curve. This curve is determined 

by the output power characteristic of the wind turbine. In this subsection, such 

characteristic is introduced, based on which the MPPT curve is then provided.  

At low wind speed, the amount of wind energy captured by the wind turbine is given 

as  

2 31
( , )

2
wt wt p wP R C                      (6.1) 
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where,   is the air density. 
wtR  is the wind turbine radius. w  is the wind speed. 

( , )pC    is the power efficiency coefficient, which is a function of the tip-speed ratio 

(  ) and blade pitch angle (  ). The tip-speed ratio   is defined as  

/wt wt wR                          (6.2) 

From (6.1), it is can be observed that the power produced by the wind turbine (
wtP ) 

is a function of the wind speed ( w ), blade pitch angle (  ), and rotor speed of wind 

turbine ( wt ). At low wind speed, the pitch angle (  ) is fixed at zero. In this case, the 

output power (
wtP ) versus the rotor speed ( wt ) at different wind speed ( w ) is given 

in Figure 6.1 (curve 1). As it is shown in this figure, at a specific wind speed ( w ), 

there is a unique rotor peed ( wt ) to achieve the maximum output power.  

1w
2w

3w
3w

wtP
Curve 1

Curve 2

wt
 

Figure 6.1. Maximum output power versus the rotor speed of wind turbine. 

 

An important relationship between the maximum output power ( _wt optP ) and its 

corresponding the turbine rotor speed ( wt ) is given in [3] as follows and depicted in 

Figure 6.1 (curve 2) 

3

_wt opt opt wtP K                          (6.3) 
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where optK  is the optimal power coefficient, which is unique determined by the 

structure of the wind turbine and independent of the wind speed. Therefore, as long as 

DFIG operates following the relationship (6.3) (i.e. curve 1 in Figure 6.1), the 

maximum power can always be obtained, and there is no need to take account of the 

wind speed in the computation.  

In practice, the maximum wind power capture is realized by controlling the 

electromagnetic torque of the DFIG. For this purpose, the maximum DFIG torque 

( _g optT ) and its corresponding the mechanical rotor speed of the DFIG ( g ) can be 

obtained from (6.3), which is given as 

2

_g opt opt gT K                          (6.4) 

Based on such relationship, the MPPT curve is obtained in Figure 6.2. For each 

measured rotor speed of the DFIG, an optimal torque can be determined according to 

this curve, and this optimal value is set at the reference for the torque control. 

 

_g optT

g
Cut-in speed Cut-out speedRated Speed

Rated Torque

 
Figure 6.2. MPPT curve. 

6.2.2. Stator Flux Oriented Control 

Since the control outputs of the DFIG (i.e. the electromagnetic torque and reactive 

power as in (6.9)) are nonlinear in terms of the state variables (i.e. currents), an 

challenging task of the controller design is to deal with these output nonlinearities. The 
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stator flux oriented vector control is a commonly used approach to solve this problem. 

Another important advantage of this approach is that it allows the decoupled control of 

the electromagnetic torque and reactive power. In this subsection, this conventional 

control algorithm is briefly introduced, which is based on the following two 

assumptions: 1) stator resistance is negligible; 2) the amplitude of stator flux is 

invariant. 

The stator flux oriented control is established in the stator flux oriented coordinate. 

In this coordinate, the dynamics of the DFIG is expressed by the following equations: 

sd
sd s sd s sq

sq

sq s sq s sd

d
v r i

dt

d
v r i

dt






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  


   


,   

( )

( )

rd
rd r rd s r rq

rq

rq r rq s r rd

d
v r i

dt

d
v r i
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
  


  


   
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   (6.5) 
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L i L i
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 


  
 ,  

rd r rd m sd

rq r rq m sq

L i L i

L i L i





 


 
                 (6.6) 

where s  is the synchronous speed. r  is the electrical rotor speed of DFIG and its 

relationship with mechanical rotor speed g  is given as (other parameters and 

variables have been defined in Chapter 3) 

r gp                                (6.7) 

It is known that in the stator flux oriented coordinate, d-axis is aligned with the 

stator flux vector s , namely, sd s   and 0sq  . Under above two assumptions, 

it can be obtained from (6.5) that sq sv v  and 0sdv  . Based on these results, the 

stator variables ( i.e. sd , sdi , sqi ) can be expressed in terms of the rotor current 

variables (i.e. rdi , rqi ), which is given as 

, ,s s m m
sd sd rd sq rq

s s s s s

v v L L
i i i i

L L L


 
                   (6.8) 

By using these equations, the outputs (i.e. the electromagnetic torque and reactive 

power) can be formulated into linear functions in terms of the rotor currents variables, 

which are explained in the following. 
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The general expression of the electromagnetic torque and the reactive power are 

given as follows according to their definitions. 

3
( )

2
g m sq rd sd rqT pL i i i i  , 

3
( )

2
s qs ds ds qsQ v i v i             (6.9) 

By substituting (6.8) in above equations, a linear and decoupled expression of the 

torque and reactive power can be obtained as 

3

2

m s
g rq

s s

L v
T p i

L 
  , 

2
3

( )
2

s m s
s rd

s s s

v L v
Q i

L L
               (6.10) 

It can be noted that the electromagnetic torque ( gT ) and reactive power ( sQ ) are 

linear functions in terms of rdi  and rqi , and can be independently controlled via rqi  

and rdi , respectively. Furthermore, currents  rqi  and rdi  can be regulated by the 

rotor voltages rdv  and rqv  , which is given as follows, which is obtained by 

substituting (6.8) into (6.5) and (6.6) 

_
rd

rd r rd rd c

s

diD
v R i v

L dt
                        (6.11) 

with 
2

_ ( ) r m
rd c s r rq

s

L L
v i

L
 

 
   

 
 

_

rq

rq r rq rq c

s

diD
v R i v

L dt
                       (6.12) 

with 
2

_ ( ) r m m s
rq c s r rd

s s s

L L L v
v i

L L
 



 
   

 
 

From these equations, it can be noted that the rotor currents rdi  and rqi  are 

dominated by two first order systems, which can be independently controlled by the 

rotor voltages rdv  and rqv , respectively.  

Based above analysis, the linear and decoupled control of the electromagnetic torque 

and reactive power can be realized by a two-stage PI controller with the first stage for 

the torque/power control and the second stage for the rotor current control. This 

control algorithm (i.e. stator flux oriented control) is incorporated with the MPPT 
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algorithm (as in above subsection) in order to achieve the two control objectives 

mentioned at the beginning of this section. The overall schematic diagram of this 

control algorithm is presented in Figure 6.3. 
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Figure 6.3. Stator flux oriented control with MPPT. 

In the next, a fault compensator is developed and incorporated with this 

conventional control algorithm in order to eliminate the influence of short circuit faults 

on the closed-loop controlled system. 

6.3.  Fault Compensator 

Although the aforementioned control algorithm is effective for a healthy DFIG wind 

turbine system, its control performance can degrade in the presence of short circuit 

faults. In order to maintain a normal and continued operation, a fault compensator is 

designed to compensate the impacts of short circuit faults on the closed-loop controlled 

DFIG wind turbine system. Before designing the compensator, we need to understand 

how the stator and rotor currents are contaminated by the short circuit faults. For this 

purpose, we review the model for the multi-phase short circuit fault as in (3.47)-(3.48) 

and the equivalent circuits Figure 3.5. It has been observed that the short circuit fault 

can be interpreted as an independent current source injecting into the stator or rotor 

output currents. Therefore, an additive relationship of the healthy and faulty system 

output currents can be proposed, which is given as 
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,h h

sdq sdq sdq sfdq rdq rdq rdq rfdq   i i μ i i i μ i                 (6.13) 

where 
h

sdqi  and 
h

rdqi  denote the healthy currents components, and sdq sfdqμ i  and 

rdq rfdqμ i  denote the faulty current components. More importantly, the healthy current 

components are totally independent from the fault. Such independency can be verified 

by comparing the structures of faulty and healthy models. That is, by replacing the 

measured and faulty current components (i.e. sdqi / rdqi  and sdq sfdqμ i / rdq rfdqμ i ) in the 

faulty model (3.47)-(3.48) with the proposed relationship (6.13), we can obtain the 

following equations 

( )
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dt

d
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dt
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h h
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h h

rdq r rdq m sdq

L L

L L

  

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ψ i i

ψ i i
                            (6.15) 

Comparing these equations with the healthy DFIG model equations (6.5) and (6.6), 

it can be noted that these two models are identical except that (6.14) and (6.15) are 

expressed in a matrix form. Hence, it can be concluded that the healthy currents 

components 
h

sdqi  and 
h

rdqi  are independent from the fault. 

As mentioned earlier, oscillations in the electromagnetic torque and output power 

can be introduced in the closed-loop control when the current measurements contain 

faulty components. Practically, it is therefore ideal to remove such faulty current 

components before implementing a close-loop control strategy. Fortunately, the faulty 

current components sdq sfdqμ i  and rdq rfdqμ i  can be estimated using the adaptive 

observers proposed in Chapter 5, and the healthy current components 
h

sdqi  and 
h

rdqi  

can thus be obtained by subtracting these estimated faulty current components from 

the current measurements, and used for the closed-loop control. The complete control 

algorithm including the fault compensator is given in Figure 6.4. This fault 

compensator is a sort of plug-and-play device. It is able to provide online fault 
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compensation and remove the effects of any possible faults, regardless their level and 

position, while when to implement the compensator depends on the whether the fault 

occurs that can be diagnosed using the scheme in Chapter 5. This compensation 

strategy can be generalized and incorporated into any other closed-loop controller 

with current measurements as control inputs, including the control algorithm given in 

the next Chapter. 
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Figure 6.4. Conventional closed-loop control with the fault compensator. 
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6.4. Simulation Studies 

The proposed fault compensation scheme is implemented on a closed-loop controlled 

DFIG wind turbine system, whose parameters are given in Appendix A. The adaptive 

observer based fault diagnosis scheme is firstly employed to provide online diagnosis 

of the short circuit faults, and meanwhile estimate faulty current components (i.e. 

sdq sfdqμ i  and rdq rfdqμ i ). These components are then utilized in the fault compensator 

to remove the influences of the fault. The whole DFIG wind turbine system is 

simulated by Matlab/Simulink software. It is assumed that the wind turbine operates 

under the wind speed at 7m/s. DFIG is controlled by the conventional control 

algorithm as presented in Section 6.2. In this simulation example, we set the 

controller parameters as follows 

1
st
 stage PI controller parameters: 

1pK  , 20iK  .                     (6.16) 

2
nd

 stage PI controller parameters: 

0.03pK  , 10iK                     (6.17) 

To compare the performance of the DFIG wind turbine system before and after the 

fault compensation, a single 2% short circuit fault is introduced stator phase „a‟ and 

the fault compensator is activated at t=10sec. The simulation results are given in 

Figure 6.5. 
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(a) Torque and reactive power reference tracking. 

 

(b) DFIG output power and the maximum wind power captured at wind speed=7m/s. 

  

(c) Stator and rotor active power. 
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(d) Stator and rotor currents. 

 

(e) Rotor control voltages. 

Figure 6.5. The simulation results of fault compensation. 2% short circuit fault is 

applied to stator phase „a‟, and the fault compensator is activated at t=10sec. 

 

In Figure 6.5(a), (b) and (c), the positive power denotes the power flowing from 

DFIG to grid, while the negative power denotes the power flowing from gird to DFIG. 

As it is shown in Figure 6.5 (a), when the fault occurs, the torque and reactive power 

are still able to track their reference values but with strong oscillations. These 

oscillations are significantly reduced when the fault compensator is applied. The 
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actual DFIG output power (presented in Figure 6.5 (b)) is the sum of the stator and 

rotor active power (presented in Figure 6.5 (c)), and it is can be noted from Figure 6.5 

(b) that the output power is very close to the maximum wind power captured by the 

wind turbine, while the difference is due to losses on the resistances. The oscillation 

in the output power is also reduced by the fault compensator, which is obvious as in   

(b). By observing Figure 6.5 (c), (d) and (e), it can be observed that when the fault 

compensator is applied, the oscillations in the stator quantities (i.e. stator currents 

sdi / sqi  and active power sP ) are decreased, while the oscillations in the rotor 

quantities (i.e. rotor currents /rd rqi i , active power rP  and control voltages /rd rqv v ) 

are completely removed. This is due to the fault only occurs at stator in this 

simulation example. It is known that the oscillations in the currents and voltages are 

harmful for the converters. Therefore this improvement is also important in terms of 

the converter protection. Based on these simulation results, it can be concluded that 

the effects of the short circuit fault on a closed-loop controlled DFIG wind turbine 

system are highly reduced and the system performance is recovered by using the 

proposed fault compensation scheme. 

6.5. Summary 

In this chapter, a fault compensator is proposed to reduce the effects of the winding 

short circuit fault on a closed-loop controlled DFIG wind turbine system. The fault 

compensator is based on the adaptive observer proposed in last chapter. A brief 

introduction of a conventional control algorithm is firstly given. Thereafter, based on 

the estimated unknown states ( sdq sfdqμ i , rdq rfdqμ i ) provided by the adaptive observer, a 

fault compensator is constructed and added to the controller. The simulation studies 

show that this fault compensator can highly reduce the oscillations in the torque, 

output power and some other electrical quantities in the presence of short circuit faults. 
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7. Adaptive Nonlinear Control of DFIG 

Wind Turbine with Drive Train Fault 

Equation Chapter (Next) Section 1 

7.1. Introduction 

The drive train is another important component of the DFIG wind turbine system. It 

connects the wind turbine with the DFIG and transfers the aerodynamic mechanical 

power to the rotor of DFIG. Due to the mechanical stress, environmental influence, etc., 

some mechanical faults (e.g. rotor blade broken) may occur. Such faults may result the 

deviation of some mechanical parameters (e.g. moment of inertia) of drive train system 

from their nominal values [115], [114]. Since most control strategies are designed 

based on the nominal system parameters, the control performance can be deteriorated 

(e.g. unstable or large steady state errors) under the faulty condition. The aim of this 

chapter is to develop an advanced control strategy, i.e. the fault tolerant control (FTC), 

which can provide not only the desired performance under nominal conditions, but 

also robust stability and acceptable performance in the presence of faults. A one-mass 

model is used to represent the drive train system as the control performance is 

dominated by the low frequency response, and the faults are presented as the 

unexpected change of the parameter (i.e. moment of inertia) in this model. A nonlinear 

control algorithm, i.e. adaptive input-output linearizing control [63], is employed here 

to achieve the FTC for the drive train faults. This approach has many advantages over 

the conventional control algorithms, e.g. the stator flux oriented control as presented in 

the previous chapter. Firstly, the two aforementioned assumptions, i.e. 1) the stator 

resistance is negligible and 2) the amplitude of the stator flux is invariant, are no 

longer required. This allows exact decoupled control of the torque and reactive power 

under both the steady state and the transient state (i.e. stator flux variations) conditions. 
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Moreover, this control algorithm is able to accommodate the drive train faults, by 

tracking the parameter variations via the parameter adaptive law. Additionally, the 

control performance in the presence of model uncertainties in DFIG is also discussed. 

A robust adaptive control algorithm (i.e. adaptive input-output linearizing control) is 

developed in order to achieve a desirable tracking of the torque and reactive power in 

the presence of faults as well as model uncertainties. 

This chapter is organized as follows. In Section 7.2, the one-mass model of the drive 

train is presented and the faults are considered as unexpected change of moment of 

inertia. In Section 7.3, an adaptive input-output linearizing control algorithm is 

developed for the adaption of the parameter variation and the decoupled control of the 

torque and reactive power. In Section 7.4, a robust control algorithm is developed to 

ensure the desirable tracking of the torque and reactive power in the presence of model 

uncertainties in the DFIG. Finally, in Section 7.5, some simulation results are presented 

to illustrate the effectiveness of the control algorithms developed in above sections. 

7.2. Drive Train Model and Fault Description 

The drive train system comprises the low speed and high speed shafts, gearbox, 

bearings and other mechanical components. An explicit model of this system has been 

presented in Section 2.1.3. In this section, a simpler model, one-mass model, is used to 

describe the dynamics of this system, which is depicted in Figure 7.1 

wtT

gTJ
 

Figure 7.1. One-mass model of the drive train system. 

The one-mass model of the driven train is given as
  

( ) ( ) ( )g wt gJ t T t T t                         (7.1) 

where ( )gT t  is the output torque of the DFIG. ( )wtT t  is the transferred wind turbine 
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torque on the generator side. J  is the equivalent moment of the inertia, which is 

composed of three mechanical parameters (i.e. moment of inertia of the low speed 

shaft wtJ , moment of inertia of the high speed shaft gJ , and gearbox ratio gN ) as 

given below. 

2

wt
g

g

J
J J

N
                              (7.2) 

In practice, these mechanical parameters are not perfectly known and may vary 

when fault occurs [115], [116]. Therefore, the equivalent moment of inertia J  is 

uncertain. In this work, since we focus on the control robustness and performance in 

the presence of faults, one mass model is employed to represent the dynamics of the 

drive train as the control performance is dominated by the low frequency response, and 

the fault effects are only considered as the parametric uncertainties (i.e. J ) of this 

model. Nevertheless, the actual behaviours of the drive train under the fault condition 

can be fairly complicated, it is often accompanied with the vibration and resonance 

which can only be modeled by some higher order, nonlinear and/or time-dependent 

components as investigated in some existing literatures [111], [112]. For such cases, 

more sophisticated methods are required for the fault diagnosis as reviewed in Chapter 

2. However, this is beyond the scope of this thesis, and only the simplified model (i.e. 

(7.1)) is employed here to present the methodology of fault tolerance control. The 

extension of this work to more sophisticated models will become the future work. 

7.3.  Adaptive Input-Output Linearizing Control 

In this section, an adaptive input-output linearizing control is developed to ensure the 

desirable performance of the DFIG wind turbine system under the faulty condition. 

This control algorithm contains an identification scheme (i.e. parameter adaptive law) 

which can asymptotically tracks the true value of parameter J . Once this parameter is 

identified, two control objectives, i.e. 1) decoupled control of the torque and reactive 

power, 2) desired reference tracking, are achieved by using this control algorithm. This 

section is organized as follows. Firstly, a third-order model of the DFIG for the 

purpose of control is developed, which is obtained in the stator flux oriented 
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coordinate. Based on this model, a non-adaptive input-output linearizing control is 

developed for the nominal condition under the assumption that parameter J  is 

perfectly known and invariant. Thereafter, an adaptive version of this control algorithm 

for the faulty condition is developed by considering parameter J  is an unknown 

constant. The MPPT control strategy presented in Section 6.2.1 is then applied to 

generate the reference signals for the torque control in order to achieve the maximum 

wind power capture. The schematic diagram of the FTC is depicted in Figure 7.2. 

 Adaptive 

Input-Output 

Linearzing 

Control

DFIG Driven 

Train

Wind 

Turbin

_g optT

g

*

gT

rqv

rdv

*

sQ

gT wtT

   Fault

g

 

 

Figure 7.2. Schematic diagram of the FTC for the drive train faults. 

7.3.1. DFIG Model for Control Purpose 

In the stator flux oriented coordinate, d-axis is aligned with the stator flux vector s , 

(namely, sd s   and 0sq  ). Therefore, the mathematical model of the DFIG can 

be reduced into the following third-order model with neglecting the dynamics of sq . 

1
( )

1
( )

s
s m rd sd

rd
rd s r rq s sd rd

rq

rq s r rd r s sq rq

d
L i v

dt

di
i i v v

dt

di
i i v v

dt


 

    


    



   




      



      


         (7.3) 

The key parameters of this model are defined as bellow, and the other parameters 

and variables have been defined in Chapter 3. In the following, the dependence on t is 

omitted in order to lighten notations. 

s

s

R

L
  , 

2

(1 )m
r

s r

L
L

L L
   , m

s

L

L



 , r

m

R
L 


  , 

3

2

m

s

L
p

L
         (7.4) 
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The electromagnetic torque in the stator flux oriented coordinate is given as 

 g s rqT i                             (7.5) 

For the convenience of the controller design, model (7.3) is rewritten into a compact 

form as follows 

                      
( )

( )

x f x gu

y h x

 


                           
(7.6) 

where the state and input vectors are given as 

[ ]T

s rd rqx i i  , 
T

rd rqu v v                     (7.7) 

( )f x  and g are the smooth field vectors, which are given as 

( ) ( )

( )

s m rd sd

rd s r rq s sd

rq s r rd r s sq

L i v
f x i i v

i i v

 
    
    

   
      
      

                 (7.8) 

d qg g g    , 

0
1/

0
dg 

 
  
  

, 
0
0

1/
qg



 
  
  

                  (7.9) 

The control outputs of the DFIG wind turbine system are the electromagnetic torque 

( gT ) and the reactive power ( sQ ). Therefore, the output vector is denoted as  

T

g sy T Q                            (7.10) 

According to the definition of the reactive power, sQ  is given as 

s sd sq sq sdQ v i v i                         (7.11) 

In the stator flux oriented coordinate,  sQ  can be expressed in terms of the state 

variables (i.e. [ ]T

s rd rqx i i ), which is given as 

1
s sq s sd rq sq rd

s

Q v v i v i
L

                   (7.12) 

Based on equations (7.5) and (7.12), output equation ( )h x  is obtained as follows  

 1 2( ) ( )
T

h h x h x                       (7.13) 
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where       1( ) s rqh x i ,  2

1
( ) sq s sd rq sq rd

s

h x v v i v i
L

             (7.14) 

It is can be noted that model (7.6) is a linear MIMO system with nonlinear outputs. 

For such system, a classical nonlinear control theory (i.e. input-output linearization) is 

applied in the following section to synthesize the nonlinear controller.  

7.3.2. Input-Output Linearizing Control 

Based on model (7.6), a nonlinear controller (i.e. input-output linearizing control) is 

developed for the DFIG wind turbine system to achieve the decoupled control of the 

torque and reactive power. This control algorithm is based on the nonlinear change of 

the coordinate and nonlinear redefinition of inputs to transform the nonlinear output 

system into an equivalent linear system in the new coordinate, and then design 

controller for this linear system. 

Define a new coordinate as 

1 1

2 2

( )

( )

z h x

z h x




                           (7.15) 

In this new coordinate, model (7.6) is given as 

1 1 1

2 2 2 2

q

d q

f g rq

f g rd g rq

z L h L h v

z L h L h v L h v

 

  
                (7.16) 

where 1fL h  and 1qgL h  are the Lie derivatives of 
1h with respect to ( )f x  and qg , 

respectively. 2fL h , 2dgL h  and 2qgL h  are the Lie derivatives of 2h  with respect to 

( )f x , dg  and qg , respectively. These Lie derivatives are given as 

2

1 ( ) ( )f s rq m rd rq e r s rd r s sd rq s sqL h i L i i i v i v                    

2 2

2 ( ) +( )

1 1
( ) ( ) + +

m
f sq s r sd s sq rd sd rq

s s

g r sd rd g r sq rq sq sd sq s sd rq sq rd

s s

L
L h v v v i v i

L L

v i v i v v v v i v i
L L


       

        

     

     

 

1qg sL h






 
2dg sqL h v  , 2qg sdL h v                               (7.17) 
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Define new control inputs as 

1 1 1

2 2 2 2

q

d q

f g rq

f g rd g rq

u L h L h v

u L h L h v L h v

 

  
                 (7.18) 

The original control inputs (i.e. rotor control voltages rdv  and rqv ) can be 

expressed as  

1

1 1 1

2 2 2 2

0
q

d q

g frd

rq g g f

L h u L hv
v L h L h u L h



    
          

                 (7.19) 

In this way system (7.16) becomes a linear system, which is given as 

 
1 1

2 2

z u

z u




                             (7.20) 

The control objectives is to track the desired smooth reference signals 
*

gT  and *

sQ  

for the electromagnetic torque gT
 
and reactive power sQ . To achieve this objective, 

the new-defined control inputs are designed as  

* *

1 1 1( )g gu k y T T                           (7.21) 

* *

2 2 2( )s su k y Q Q                          (7.22) 

where 
1k  and 

2k  are two design parameters to be determined in order to make the 

following linear system (7.24) asymptotically stable. 

Using these new control inputs and denoting the tracking errors as  

*

1 1 ge y T  , *

2 2 se y Q                        (7.23) 

the tracking error dynamic systems are obtained as 

1 1 1

2 2 2

e k e

e k e

 

 
                            (7.24) 

For the purpose of the maximum wind power capture, the reference signal 
*

gT  is set 

to 
* 2

g opt gT K   according to the MPPT control strategy as presented in Section 6.2.1. 
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The time derivative of 
*

gT  can be obtained based on the drive train dynamic equation 

(7.1). 

* 1
2 ( )g opt g wt gT K T T

J


 
   

 
                (7.25) 

By substituting it into (7.21), the final representation of the control input 1u  is 

obtained as follows 

1 1 1

2
( )

opt

g g wt

K
u k e T T

J
                    (7.26) 

According to (7.20), it can be noted that the electromagnetic torque and reactive 

power can be independently controlled by 1u  and 2u . Their transient responses are 

also decoupled when the stator flux s  varies. This is an important improvement over 

the stator flux oriented control (as in Section 6.2.2). Under the assumption that the 

parameters of the DFIG wind turbine including parameter J  remain at their nominal 

values and perfectly known, the control inputs 1u  and 2u  are able to ensure the 

perfect reference tracking of the outputs. Based on 1u  and 2u , the actual control 

inputs of the DFIG (i.e. rotor control voltages rdv  and rqv ) are obtained according to 

(7.19). This control algorithm is essentially a full state feedback control. It requires the 

measurements of all the state variables. Although the stator flux s  (one state 

variable in (7.7)) can not be measured directly, it can be easily computed from the 

measured the stator and rotor currents. 

7.3.3. Adaptive Control for Fault Condition 

For the control algorithm given in the previous subsection, it requires the parameters of 

the DFIG wind turbine including parameter J  are perfectly known. However, as 

mentioned earlier, there would be unexpected change of parameter J , when the fault 

occurs. For this reason, the uncertainty of this parameter has to be considered in the 
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control algorithm to achieve a perfect reference tracking of the outputs. 

In the section, we define a new parameter =1/J  to represent J , and regard it as 

constant but unknown. The input control 1u  is redesigned based the estimates of these 

two parameters, which is given as 

1 1 1
ˆ+u k e   

  
                      (7.27) 

where ̂  is the estimate of  .   is given as 

         2 ( )opt g g wtK T T                        (7.28) 

Variable   is a function of the wind turbine torque ( wtT ), electromagnetic torque 

( gT ) and the rotor speed ( g ). These variables can be directly measured or computed 

from the measurements, i.e. wtT  can be calculated at certain wind speed from (6.1), 

gT  can be calculated from the measured currents according to (7.5), and g  can be 

directly measured. Therefore   is obtainable online and also continuous and bounded. 

This conclusion is important for the following proof. 

By substituting (7.27) into (7.20), the torque tracking error dynamic system can be 

obtained as 

1 1 1e k e                           (7.29) 

where ˆ    . 

Based on this system, a parameter adaptive law is designed to estimate   so as to 

ensure the convergence of the torque tracking error 1e , which are given in the 

following theorem. 

Theorem 7.1: The adaptive input-output linearizing controller given by (7.18) and 

(7.27) together with the adaptive law  

1
ˆ e                            (7.30) 

guarantees an unbiased tracking of the electromagnetic torque, and the adaptive law 

can track the true value of J .  
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Proof: Select the Lyapunov function as 

2 1 2

1

1 1

2 2
V e                          (7.31) 

Its first derivative with respect to time is  

2 1

1 1 1V k e e                        (7.32) 

According to (7.30), it can be reduced as 

2

1 1 0V k e                           (7.33) 

Therefore, it can be concluded that system (7.29) is asymptotically stable and thus 

all the variables ( 1e , ) are bounded ( 1e L , L  , this conclusion is based on the 

Lyapunov stability theory in Appendix B.1). Furthermore, we can show that  

2
1

0
1

(0) ( )V V
e dt

k

  
                     (7.34) 

This implies that 1e  is a bounded 2L  signal ( 1 2e L ). Since signal   is 

continuous and bounded, we can have 1e L  according to (7.29). Now, we have 

established that 1 2e L L   and 1e L . According to Barbalat lemma (as in 

Appendix B.2 ), we can have 1lim 0
t

e


 . Since it can be shown that  

1 1 1 1
0

lim ( ) (0) (0)
t

e dt e t e e



                     (7.35) 

then from (7.29) it can be conclude that 1e  is uniformly continuous. Again, using the 

Barbalat lemma we can have 1lim 0
t

e


 . This means lim 0
t




  under the condition 

that   is persistence of excitation.                                         

Remark 7.1: variable   is required to be persistent of excitation in order to ensure 

the convergence of  . This condition is satisfied when DFIG operates under varying 

speed according to (7.1). 

Remark 7.2: This adaptive control algorithm is only developed for the torque control. 

Actually, there is no need to design an adaptive control for the reactive power, as the 

uncertainties of parameter J  only affect the torque control loop. 
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7.4.  Robust Adaptive Input-Output Linearizing 

Control 

In last section, the drive train faults are considered as the parametric uncertainties of 

drive train system, and an adaptive input-output linearizing controller is developed to 

ensure the desired control performances under the faulty condition by online 

estimating the uncertain parameters. Nevertheless, it is known that this controller is 

designed based on the DFIG model (as in Section 7.3.1), and thus any uncertainties in 

this model would also affect the control performances. In this section, this problem is 

considered and the control algorithm proposed in last section is modified to enhance its 

robustness against these model uncertainties.   

By taking account of the model uncertainties, DFIG model (7.6) can be rewritten as 

( )

( )

x f x gu w

y h x

  



                      (7.36) 

where 1 2 3[ , , ]Tw w w w  represents model uncertainties and it satisfies 

1 1w    , 2 2w    , 3 3w              (7.37) 

Parameter   is required to be bounded. 

                            (7.38) 

Projecting model (7.36) to coordinate (7.15), an input-output linearizing model can be 

obtained as 

1 1 1 1 1 2 3

2 2 2 2 1 1 2 2 3 3

q

d q

f g rq T T

f g rd g rq Q Q Q

z L h L h v W w W w

z L h L h v L h v W w W w W w

   

     
    (7.39) 

where 

1T rqW i , 2T sW                          (7.40) 

1

sq

Q

s

v
W

L
 , 2Q sdW v  , 3=Q sqW v          (7.41) 

The Lie derivatives in this model has been given in (7.17) 
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Defining new control inputs as (7.18), model (7.39) can be reduced in a linear model 

as 

1 1 1 1 2 3+ T Tz u W w W w                           (7.42) 

2 2 1 1 2 2 3 3Q Q Qz u W w W w W w                     (7.43) 

Designing the control inputs as follows 

2 2

1 1 1 1 1 1 2 1 2

1 1ˆ
4 4

T T T Tu k e eW eW                       (7.44) 

* 2 2 2

2 2 2 1 2 1 1 2 1 3 2 3

1 1 1

4 4 4
s Q Q Q Q Q Qu k e Q e W e W e W            (7.45) 

where 1 0T  , 2 0T  , 1 0Q  , 2 0Q  , and 3 0Q  , which are the tuning 

parameters of the controller. Then the tracking error dynamic system can be obtained 

as 

2 2

1 1 1 1 1 1 2 1 2 1 1 2 3

1 1

4 4
T T T T T Te k e eW eW W w W w                            (7.46) 

2 2 2

2 2 2 1 2 1 2 2 2 3 2 3 1 1 3 3 3 3

1 1 1

4 4 4
Q Q Q Q Q Q Q Q Qe k e e W e W e W W w W w W w              (7.47) 

Based on this system, two modified adaptive laws are designed to estimate   so as 

to ensure the convergence of tracking errors 1e  and 2e , which are given in the 

following theorem. 

Theorem 7.2: The robust adaptive control (7.44) and (7.45) with adaptive law 

1
ˆ ˆ   e      

    

                 (7.48) 

where 0   and 0   

guarantees that within finite time period, the torque tracking error ( 1e ), the reactive 

tracking error ( 2e ), and the parameter estimation error ( ) converge to following 

bounds. 

  2 1 2 1 2 2 2 1 2 1 2

1 1 1 2 1 1 1 1 1 2 2 2 1 3 1 1 1 2 2 2

1 2

1 1 1 1 1 1
= , , |

2 2 2 2T T

D e k e               
 

    
      

 

   (7.49) 
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2 2 2 2

2 2 2 2 1 2 3

1 2 3

1 1 1
= |

Q Q Q

D e k e   
  

  
   

  

                             (7.50) 

Proof: Select the two Lyapunov functions as 

2 1 2

1 1

1 1

2 2
V e                        (7.51) 

2

2 2

1

2
V e                           (7.52) 

Their first derivatives with respect to time are 

2 2 2 2 2 1

1 1 1 1 1 1 2 1 2 1 1 1 2 1 3 1

2 2 2

1 1 1 1 1 1 2 1 2 3

1 2

2 2 1

1 3

1 2

2 2 2 1

1 1 1 3

1 2

2 1 2

1 1

1

1 1

4 4
1 1 1 1

( ) ( )
2 2

1 1 ˆ

1 1
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1 1

2

T T T T T T

T T T T

T T

T T

T T

T

V k e e W e W W e w W e w e

k e eW w eW w

w w

k e w w

k e

    

 
 

 
 

   
 

  










       

     
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By analyzing (7.53) and (7.54), it can be concluded that 1 0V   and 2 0V 
 
if 

 1 1,e D   and 2 2e D . which means that the tracking errors (i.e. 1e  and 2e ) and 

the parameter estimation error (i.e.  ) ultimately converge into bounds 1D  and 2D   

 

7.5. Simulation Studies 

In this section, the control algorithms proposed in Section 7.3.3 and Section 7.4 are 

applied to control the DFIG wind turbine in the presence of drive train fault. Their 
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performances are evaluated through the simulations in the following subsections. 

Firstly, the adaptive input-output linearizing control (proposed in Section 7.3.3 ) is 

applied assuming no model uncertainties in the DFIG (presented in Section 7.3.1). In 

the next, these model uncertainties are taken into account and the robust adaptive 

control (proposed in Section7.4) is applied to control the DFIG wind turbine. The 

nominal value of J  is set as 2 kg.m
2 

(an unrealistically low value) in order to reduce 

the simulation time required to reach a steady-state operation condtion. A drive train 

fault is implemented by considering an abrupt change of J . 

2; 5sec

2.5; 5sec

t
J

t


 



                         (7.55) 

In this simulation, a varying wind speed (i.e. _ 7 0.5rand[m/s]w rat   ) is applied to 

the wind turbine to ensure the DFIG operates under varying speed so as to estimate 

parameter J .                      

7.5.1. Performance of Adaptive Input-Output Linearizing 

Control 

In this subsection, under the assumption of no uncertainties in the DFIG model, 

adaptive input-output linearizing control is applied for the reference tracking of the 

torque and reactive power in the presence of fault. The controller parameters are set as 

follows and the control performance is given in Figure 7.3 

1 20k  , 2 50k  , 0.2                     (7.56) 

 

(a)Torque reference tracking error. 
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(b) Reactive power reference tracking error. 

 

(c) Estimation of the moment of shaft inertia J . 

Figure 7.3. Performance of adaptive input-output linearizing control. 

 

It can be observed from Figure 7.3(a), when the fault occurs at t=5sec, due to 

variation of parameter J , a small torque tracking error occurs. Nevertheless, as it is 

shown in Figure 7.3(c), this error quickly disappears when parameter J  is accurately 

estimated. In addition, as it is shown in Figure 7.3(c), no reactive power tracking error 

occurs during the fault. This verifies that the torque control and reactive power control 

are completely decoupled, and the fault only influences the torque control. Also the 

true value of parameter J  can be accurately estimated. 

7.5.2. Performance of Robust Adaptive Input-Output 

Linearizing Control 

In this subsection, the presence of model uncertainties in the DFIG is considered, and 

the robust adaptive control algorithm (proposed in Section 7.4) is applied to deal with 

the effects of these model uncertainties. To test this control algorithm, the model 
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uncertainties is set as follows  

1 2 3 ( )w w w n t                           (7.57) 

where ( )n t  is a white noise with zero mean and variance 0.1. Here, we use this model 

uncertainties as an example to verify the proposed control algorithm. Actually, the 

white noise model uncertainties rarely exist in the pratical system.  

The controller is designed as (7.44)-(7.45), whose parameters are set as  

1 10k  , 2 10k  , 0.05  , 0.2  . 

1 2 0.01T T   , 1 2 3 0.02Q Q Q                  (7.58) 

 

(a) Torque reference tracking error. 

 

(b) Reactive power reference tracking error. 

 

(c) J  estimation  

Figure 7.4. Performance of robust adaptive input-output linearizing control. 
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For the purpose of comparison, the non-robust control designed in last subsection is 

also implemented in this subsection. The simulation results of these two control 

algorithms (i.e. robust control and non-robust control) are presented in Figure 7.4. As it 

is shown in Figure 7.4(a) and Figure 7.4(b), the tracking errors of the torque and 

reactive power are highly reduced by using the robust control algorithm, specially the 

reactive power tracking error. As illustrated in last subsection, the torque tracking 

relies on the estimation of parameter J , and any inaccurate estimation would increase 

the torque tracking error, while the reactive power tracking is totally independent of 

this estimation. Also, it can be observed from Figure 7.4(c) that the estimation error of 

parameter J  always exists even by using the robust control. This explains why the 

torque presents larger tracking error than the reactive power. Again from Figure 7.4(c), 

it can be observed that robust control is able to track the true value of J  in a desired 

accuracy, while the non-robust control almost loses the tracking.  

7.6. Summary 

This chapter is concerned with the FTC of the DFIG wind turbine against the drive 

train fault. The fault is considered as the parametric uncertainty (i.e. equivalent 

moment of inertia J ) of the drive train system (i.e. represented by one-mass model). 

With this consideration, an adaptive nonlinear control algorithm (i.e. adaptive 

input-output linearizing control) is developed. With its adaptive law, it can online 

estimates the uncertain parameter (i.e. J ) and adjusts the control input so as to ensure 

the system performance in the presence of fault. This control algorithm is based on a 

third-order DFIG model. Under the assumption of no uncertainties in this model, the 

decoupled and unbiased tracking of the torque and reactive power are achieved, and 

parameter J  can be accurately estimated. Furthermore, a robust adaptive input-output 

linearizing control algorithm is proposed to take account of these model uncertainties. 

The simulation results show that it provides smaller tracking errors and more accurate 

estimation of parameter J  than the non-robust control algorithm. 
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8.  Conclusion 

This chapter provides some general overall comments and discusses possible 

directions for future work.  

8.1. Summary and Conclusions 

In this thesis, a model-based fault diagnosis and fault tolerant control scheme was 

developed for improving the reliability of DFIG based wind turbine systems. A 

literature survey indicated that little study on this problem has been done on the 

model-based approaches. An electrical and a mechanical fault scenarios, the DFIG 

winding short circuit and drive train fault, are considered due to their high occurrence 

rates. For the DFIG winding short circuit fault, an online fault diagnosis scheme was 

proposed by using adaptive observer based approaches. Then, an active fault tolerant 

scheme was synthesized based the fault information provided by the fault diagnosis 

scheme. For the drive train fault, the work focused on fault tolerance rather than 

diagnosis. The fault is represented by the unexpected change of moment of inertia, and 

is accommodated by adapting parameter variations using parameter adaptive control 

algorithms. This control scheme is also a kind of active FTC. 

A realistic simulation model of DFIG based wind turbine systems was designed to 

test the proposed algorithms, which consists of three sub-models, a static 

aerodynamics model of the wind turbine, a one-mass model of the drive train, and an 

electrical model of the DFIG. Among these sub-models, the DFIG model is explicitly 

designed, which allow the simulation of both nominal and faulty conditions. The 

results achieved for these two faults are summarized below.  

DFIG winding short circuit fault:  

Two mathematical models of the DFIG with respect to two types of faults, 

single-phase and multi-phase faults, were proposed which can represent the short 

circuit fault at any levels in any phases. These models were initially developed in the 
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a-b-c coordinate, and then transformed into the d-q coordinate, based on which the 

equivalent circuits of DFIG with faults were also provided. A model simulation study 

was conducted to demonstrate the influences of short circuit faults on an open-loop 

operated DFIG wind turbine system. Three main conclusions one can draw from the 

simulation results are: 

1. The effects of short circuit faults can be considered as additive new currents to the 

existing output currents. The amplitudes of the new currents are decided by the 

fault level. 

2. The electromagnetic torque is independent of short circuit faults. 

3. The faults in one side, e.g. the stator, do not affect the current performance in the 

other side, e.g. the rotor, and vice verse. 

To facilitate the synthesis of model-based fault diagnosis and FTC schemes, these 

proposed fault models were reorganized into linear state-space representations. As such 

the single-phase and multi-phase faults were formulated into two general system faults, 

i.e. additive and multiplicative faults, respectively. The adaptive observers were then 

implemented to diagnose these two faults. Several important issues in adaptive 

observer design were considered. The first issue considered is the robustness against 

model uncertainties. In this thesis, -modification was applied to guarantee bounded 

fault estimations. However, by using this method, large estimation errors may still 

exist, which can not meet the accuracy requirement of the fault diagnosis. To solve this 

problem, two robust adaptive observers were proposed by using H∞ optimization and 

high-gain observer techniques, respectively, in order to reduce estimation errors. The 

simulation study showed that these observers are robust against model uncertainties 

and they can provide more accurate fault estimations than the conventional adaptive 

observer algorithms. Another important issue considered is the effects of rotor speed 

variations, for which a self-scheduled LPV adaptive observer was developed. The 

simulation study showed it can ensure desired fault estimations in presence of speed 

variations. Generally speaking, the proposed fault diagnosis scheme for multi-phase 

fault is superior to the one for single-phase fault, because the former can be applied to 

deal with more general fault cases including single-phase fault as well as multi-phase 
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fault. In addition, it provided state estimations, which are required to synthesize FTC 

schemes. 

In the context of FTC, a fault compensator was designed, which was used to correct 

the current measurements and reference signals based on the information provided by 

fault diagnosis schemes. This enabled the FTC scheme to be designed independent of 

the nominal controller and without affecting the nominal performance of the system. 

For this reason, this fault compensator can cooperate with many control algorithms, 

not only confined to the classical algorithm (i.e. stator flux oriented control) presented 

in Chapter 6. This fault compensator was validated on a closed-loop controlled DFIG 

wind turbine system, and the simulation results showed that it can highly reduce the 

oscillations in the electromagnetic torque, output power and other output electrical 

quantities aroused by winding short circuit faults. 

Drive Train Fault:  

This work more focused on fault tolerant control rather than diagnosis, and the faults 

are considered as unexpected change of moment of inertia. An adaptive input-output 

linearizing control was designed to adapt the parameter variatons so as to 

accommodate the fault. This control algorithm was designed directly based a nonlinear 

model of DFIGs, and it was able to achieve complete decoupled control of the torque 

and reactive power, and the parameter variation was adapted by the adaptive law. In 

addition, a robust version of this control algorithm was developed to cope with the 

effects of model uncertainties. Its robustness against model uncertainties and fault has 

been demonstrated via simulations.  

8.2. Future Work 

The following is proposed to be future work: 

 For the mechanical fault, we only considered a simplified model of the drive train 

system to facilitate our illustration of the fault tolerance control scheme, and 

consider the fault simply as unexpected change of moment of inertia. In the future 

work, more realistic and complicated models would be investigated and modified 
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fault tolerant control sheme need to be developed.   

 In this thesis, we only discussed two types of faults, DFIG winding short circuit and 

drive train faults. A further study for other fault scenarios of wind turbine systems 

need be conducted, such as grid fault and pitch control failure. 

  

 The methods presented in this thesis are only applicable to the fault diagnosis and 

FTC of subsystems. However, if several faults in different subsystems occur 

simultaneously, the cooperation between these methods is not discussed in this 

work, which can be selected as a possible research direction in the future. An 

alternative way is to develop a supervisory FDD and FTC system for the whole 

system, which also forms another important work in the future. 

 

 Of course, the most important future work is to test the developed fault diagnosis 

and FTC schemes on a real wind turbine system. All the presented work in this 

thesis is based on Matlab simulation, which begs the question how good will it be 

applied to real systems. For this reason, some further experimental investigations 

need to be conducted in the future.  
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Appendix A. DFIG Wind Turbine 

Parameters 

Wind Turbine Parameters 

Rated power: 2MW; 

moment of the inertia: J = 2 kg.m
2
 

Wind turbine radius: wtR = 35m 

Gear box ratio: gN = 120 

Air density:  = 1.25 kg/m
3
 

Cut-in wind speed: _w cin = 3.8 m/s 

Cut-out wind speed: _w cout = 25 m/s 

Rated wind speed: _w rat = 12 m/s 

the power coefficient ( , )pC    is given as  

21

116
( , ) 0.5176( 0.4 5) 0.0068i

p
i

C e
   





     

with                       
3

1 1 0.035

0.08 1i   
 

 
                    

 

DFIG Parameters 

Rated power: 2MW 

Rated stator frequency: sf = 50 Hz 

Rated stator phase voltage: sv = 130 V 

Mutual inductance: mL = 44.2 mH 
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Stator leakage inductance: sL  = 673.97 μH 

Rotor leakage inductance: rL  = 490.60 μH 

Stator resistance: sr = 45 mΩ 

Rotor resistance: rr = 66.5 mΩ 

Number of pole pairs: p = 2 

Appendix B. Theorem and Lemma 

B.1 Lyapunov Stability Theory: 

Lyapunov stability theroy or called Lyapunov sencond method is the most powerful 

approach for analyzing the stability of the dyanmic system. This approach is a 

generalization of the engery concepts associated with a mechanical system. Before 

presenting the central theorem, some important definitions are introduced firstly. 

Definition 1: The equilibrim point 0x  of system ( )x f x  is said to be stable if, 

for each 0  , there is ( )    such that 

(0) ( ) , 0x x t t       

Definition 2: An equilibrium point 0x  of system ( )x f x  is asymptotically stable 

if it is stable and   can be chosen such that  

(0) lim ( ) 0tx x t     

Theorem: Let 0x   be an equilibrium point for ( )x f x  and nD R  be a 

domain containing 0x  . Let :V D R  be a continously differentiable function 

such that  

(0) 0V   and ( ) 0V x   in  0D  

( ) 0V x   in D  
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Then, (0) 0x   is stable. Moreover, if  

( ) 0V x   in  0D  

Then (0) 0x   is asymptotically stable. 

 

B.2. Barbalat’s Lemma:  

If a function ( )f t  is uniformly continous for [0, ]t  , and 
0

( )f t dt


  exists, then 

lim ( ) 0t f t  .  

 

B.3. SPR Condition and Kalman -Yakubovic Lemma: 

Definination 3: Positive Real Systems: 

Consider a dynamic system  

T

x Ax bu

y c x

 


 

with its transfer function matrix is given by  

1( ) ( )TG s c sI A b   

Such system is said to be positve real if  

 ( ) 0G s   for all   0s   

It is strictly positive real if ( )G s   is positive real for some 0   

Kalman -Yakubovic Lemma:  

This system given above is strictly positve real if and only if there exist positive 

defiinte P  and Q  such that 

TA P PA Q    

Pb C  
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Appendix C. Simulation Parameters of 

Chapter 4  

C.1 Model Parameter Matrices: 

Positive-Sequence Model 

21 9044.3 53.9 8928.4

9044.3 21 8928.4 53.9

20.5 8818.9 54.4 8705.0

8818.9 20.5 8705.0 54.4

A

 
   

    
 

 

, 

14 6029.5

6029.5 14

13.7 5879.3

5879.3 13.7

fB 

 
 

  
 
  

 

Negative-Sequence Model 

21 8416.0 53.9 8928.4

8416.0 21 8928.4 53.9

20.5 8818.9 54.4 9333.3

8818.9 20.5 9333.3 54.4

A

 
   

    
 

 

, 

14 5610.7

5610.7 14

13.7 5879.3

5879.3 13.7

fB 

 
 

  
 
  

 

The input and output matrices for both of these models are the same 

( )

465.9 0 455.6 0

0 465.9 0 455.6

455.6 0 460.3 0

0 455.6 0 460.3

B 

 
 

  
 

 

, ( )

4C   I  

C.2. Parameters of Conventional Adaptive Observer 

The observer parameters for the positive-sequence model  

29.0 9044.3 53.9 8928.4

9044.3 29.0 8928.4 53.9

20.5 8818.9 4.4 8705.0

8818.9 20.5 8705.0 4.4

L

 
  

    
 

 

, 20.001  I  

The observer parameters for the negative-sequence model  

29.0 8416.0 53.9 8928.4

8416.0 29.0 8928.4 53.9

20.5 8818.9 4.4 9333.3

8818.9 20.5 9333.3 4.4

L

 
  

    
 

 

, 20.005  I  

C.3. Parameters of Optimal Adaptive Observer 

The observer parameters for the positive-sequence model  
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0.4730 0.000 0.4636 0.000

0.000 0.4730 0.000 0.4636

0.4636 0.000 0.4744 0.000

0.000 0.4636 0.000 0.4744

P

  
  

   
 
  

,

47.7437 0.0088 6.0847 125.7217

0.0088 47.7437 125.6516 7.2768

8.4132 125.7859 46.9856 0.0260

125.7157 7.2212 0.0260 46.9856

X

  
  

   
 

  

 

3

2.8000 6.1494 2.6016 6.2888

6.1460 2.7417 6.2853 2.6613
10

2.7540 6.2744 2.6414 6.1454

6.2709 2.6945 6.1420 2.6997

L

 
   

    
 

 

 

1

2.0041 0.000

0.000 2.0041
 

    
, 2

0.3019 137.7699 0.0909 31.3197

137.7699 0.3019 31.3197 0.0909

  
     

 

The observer parameters for the negative-sequence model  

0.4730 0.000 0.4636 0.000

0.000 0.4730 0.000 0.4636

0.4636 0.000 0.4744 0.000

0.000 0.4636 0.000 0.4744

P

  
  

   
 
  

, 

47.7437 0.0776 14.1395 126.0484

0.0776 47.7437 125.9417 2.0898

0.3584 125.4958 46.9856 0.1047

125.3891 12.4082 0.1047 46.9856

X

 
   

   
 

  

 

3

2.4062 6.1396 3.0046 6.3013

6.1343 2.9953 6.2959 2.4017
10

2.3521 6.2642 3.0352 6.1575

6.2589 2.9532 6.1523 2.4461

L

 
   

    
 

 

 

1

2.0041 0.000

0.000 2.0041
 

    
, 2

0.3019 60.3658 0.0909 225.5079

60.3658 0.3019 225.5079 0.0909

 
      

 

C.4. Parameters of LPV Adaptive Observer: 

The observer parameters for the positive-sequence model are 

0.8543 0.000 0.8455 0.000

0.000 0.8543 0.000 0.8455

0.8455 0.000 0.8372 0.000

0.000 0.8455 0.000 0.8372

P

 
 

  
 
 

,

1

394.7737 0.0019 29.1506 2.2511

0.0019 394.7737 2.2502 28.5731

28.0659 2.2522 394.7700 0.0033

2.2513 28.6434 0.0033 394.7700

X

 
  

  
 

 
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2

394.7737 0.005 28.4748 4.1837

0.005 394.7737 4.1726 28.7648

28.7417 4.1890 394.7700 0.0033

4.1778 28.4517 0.0017 394.7700

X

 
  

  
 

 

 

5

1

7.6390 0.0475 7.7033 0.0469

0.0474 7.6269 0.0468 7.7154
10

7.7141 0.0479 7.7840 0.0473

0.0479 7.7018 0.0473 7.7962

L

 
   

    
 

 

 

5

2

7.6248 0.0882 7.7174 0.0872

0.0880 7.6309 0.0870 7.7114
10

7.6997 0.0891 7.7983 0.0880

0.0889 7.7059 0.0878 7.7922

L

 
   

    
 

 

 

1

2.0246 0.000

0.000 2.0246

 
    

, 2

0.3870 180.9491 0.3739 174.8402

180.9491 0.3870 174.8402 0.3739

    
     

 

The observer parameters for the negative-sequence model are 

0.8543 0.000 0.8455 0.000

0.000 0.8543 0.000 0.8455

0.8455 0.000 0.8372 0.000

0.000 0.8455 0.000 0.8372

P

 
 

  
 
 

,

1

394.7737 0.0061 29.19097 2.2647

0.0061 394.7737 2.2504 28.3519

28.1068 2.2520 394.7700 0.0005

2.2377 28.8646 0.0005 394.7700

X

 
  

   
 

 

 

2

394.7737 0.0005 28.3735 4.1832

0.0005 394.7737 4.1772 28.0037

28.8431 4.1843 394.7700 0.0029

4.1783 28.2128 0.0029 394.7700

X

 
  

   
 
 

 

5

1

7.6382 0.0475 7.7042 0.0472

0.0474 7.6269 0.0469 7.7200
10

7.7132 0.0480 7.7849 0.0477

0.0477 7.6971 0.0474 7.8008

L

 
   

    
 

 

 

5

2 10L

    
    

     
 
    

 

1

2.0246 0.000

0.000 2.0246

 
    

, 2

0.3870 176.9057 0.3739 179.3195

176.9057 0.3870 179.3195 0.3739

   
       
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Appendix D. Simulation Parameters of 

Chapter 5 

D.1 Model Parameter Matrices 

0.0210 9.0443 0.0539 8.9284 0.0458 8.7302 0.0539 8.9284

9.0443 0.0210 8.9284 0.0539 8.7302 0.0458 8.9284 0.0539

0.0205 8.8189 0.0544 8.7050 0.0205 8.8189 0.0241 8.7302

8.8189 0.0205 8.7050 0.0544 8.8189 0.0205
A

    

    

    

  
 3

8.7302 0.0241
10

0 0 0 0 0.0668 0.3142 0 0

0 0 0 0 0.3142 0.0668 0 0

0 0 0 0 0 0 0.0785 0.0252

0 0 0 0 0 0 0.0252 0.0785

 
 
 
 
 

  
 
 

  
 
 

   

 

465.9745 0 455.6284 0

0 465.9745 0 455.6284

455.6284 0 460.2600 0

0 455.6284 0 460.2600

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

B

 
 


 
 
 

 
 
 
 
 
 
  

 

3

1.4838 0 0 0

0 1.4838 0 0

0 0 0.6642 0

0 0 0 0.6642
10

1.4838 0 0 0

0 1.4838 0 0

0 0 0.6642 0

0 0 0 0.6642

fB

 
 
 
 
 
  
 
 
 
 
 
  

, 4 4 4[ ]C  I 0
 

D.2. Parameters of Modified Adaptive Observer 
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255.3225 0.0000 258.8691 1.7369

0.0000 255.3225 1.7369 258.8691

258.8691 1.7369 262.5263 0.0000

1.7369 258.8691 0.0000 262.5263

127.5714 62.2275 130.9402 64.7242

62.2275 127.5714 64.7242 130.9402

25.1876 25.47

L

 





 


 

   

  48 24.0889 25.1501

25.4748 25.1876 25.1501 24.0889

 
 
 
 
 
 
 
 
 
  
 

   

 

D.3. Parameters of High Gain Adaptive Observer 

 

L

  

   

   

    


    

 
 
 
 
 
 
 
 
 
    
 
    
 
     

 


