
1

The Node.JS

Security Handbook

2ND EDITION

2

3

INTRODUCTION
Damn, but security is hard.

It’s not always obvious what needs doing, and the payoffs of good security are at best
obscure. Who is surprised when it falls off our priority lists? We’d like to offer a little help
if you don’t mind. And by “help” we don’t mean “pitch you our product”—we genuinely
mean it. Sqreen’s mission is to empower engineers to build secure, reliable web applica-
tions. We’ve put our security knowledge to work in compiling an actionable list of best
practices to help you get a grip on your security priorities for Node.js environments. It’s all
on the following pages. We hope you find it useful. If you do, share it with your network.
And if you don’t, please take to Twitter to complain loudly—it’s the best way to get our
attention.

The Sqreen Team
@SqreenIO
howdy@sqreen.com

WANT THIS HANDBOOK AS A PDF? GO TO:
https://www.sqreen.com/resources/nodejs-security-handbook

https://twitter.com/SqreenIO
mailto:howdy@sqreen.com
https://www.sqreen.com/resources/nodejs-security-handbook

4

CODE

 ☑ Use a prepublish/pre-commit script to protect yourself
Before committing your code or publishing your package to a repository, you
should ensure that no sensitive data will be shipped. Using a pre-commit hook or
a pre-publish script helps to prevent such leaks. You should particularly look for
database credentials, API keys, or configuration files.
A few npm packages can help placing pre-commit hooks: https://www.npmjs.
com/package/pre-commit

You can also use publish-please package: https://www.npmjs.com/package/pub-
lish-please, and add a pre-publish script in your package.json file:
https://docs.npmjs.com/misc/scripts

 ☑ When using a templating engine, do not use unsafe methods
When using a templating engine, you should know which syntax can introduce
XSS vulnerabilities. For instance, Pug (formerly, Jade) escapes all inputs by de-
fault unless you use the ‘!’ symbol.

Check Pug’s documentation: https://pug js.org/language/code.html
Mustache documentation: https://mustache.github.io/mustache.5.html

 ☑ Perform data validation on everything you don’t control
All user data that gets into your application should be validated and escaped to
avoid various kinds of injections.

Learn more about MongoDB injections:

https://www.npmjs.com/package/publish-please
https://www.npmjs.com/package/publish-please
https://docs.npmjs.com/misc/scripts
https://pugjs.org/language/code.html
https://mustache.github.io/mustache.5.html

5

https://blog.sqreen.com/mongodb-will-not-prevent-nosql-injections-in-your-
node-js-app/
Use Joi to perform data validation: https://www.npmjs.com/package/joi
Learn more about SQL injections: https://en.wikipedia.org/wiki/SQL_injection
Learn more about code injections in Node.js: https://ckarande.gitbooks.io/
owasp-nodegoat-tutorial/content/tutorial/a1_- _server_side_js_injection.html

 ☑ Avoid using fs, child_process and vm modules with user data
The fs module allows access to the file system. Using it with unsafe data can allow
a malicious user to tamper with the content of your server. The child_process
module is used to create new processes. Using it can allow a malicious user to run
their own commands on your server. The vm module provides APIs for compiling
and running code within V8 Virtual Machine contexts. If not used with a sandbox,
a malicious user could run arbitrary code within your web application.

Read more:
Node.js fs module documentation: https://nodejs.org/api/fs.html
Node.js child_process module documentation: https://nodejs.org/api/child_pro-
cess.html
Node.js vm module documentation: https://nodejs.org/api/vm.html

 ☑ Don’t implement your own crypto
The problem with cryptography is that you don’t know you are wrong until you are
hacked. So don’t do your own crypto. Use standards instead. For most crypto-re-
lated operations, the ‘crypto’ core module can help you.

Read more:
https://nodejs.org/dist/latest-v8.x/docs/api/crypto.html
https://en.wikipedia.org/wiki/Bcrypt
http://crypto.stackexchange.com/questions/43272/why-is-writing-your-own-

https://blog.sqreen.com/mongodb-will-not-prevent-nosql-injections-in-your-node-js-app/
https://blog.sqreen.com/mongodb-will-not-prevent-nosql-injections-in-your-node-js-app/
https://www.npmjs.com/package/joi
https://en.wikipedia.org/wiki/SQL_injection
https://ckarande.gitbooks.io/owasp-nodegoat-tutorial/content/tutorial/a1_- _server_side_js_injection
https://ckarande.gitbooks.io/owasp-nodegoat-tutorial/content/tutorial/a1_- _server_side_js_injection
https://nodejs.org/api/fs.html
https://nodejs.org/api/child_process.html
https://nodejs.org/api/child_process.html
https://nodejs.org/api/vm.html
https://nodejs.org/dist/latest-v8.x/docs/api/crypto.html
https://en.wikipedia.org/wiki/Bcrypt
http://crypto.stackexchange.com/questions/43272/why-is-writing-your-own-encryption-discouraged

6

encryption-discouraged
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-
passwords/

 ☑ Ensure you are using security headers
Websites are exposed to many different classes of vulnerabilities, and some may
be prevented by appropriately configuring the server. Best practices include
adding headers such as HSTS, X-Frame-Options, X-Content-Type-Options, etc.
Add in a Content Security Policy if possible.

Read more:
https://www.npmjs.com/package/helmet
https://www.sqreen.com/scanner
https://securityheaders.com
https://www.ssllabs.com/

 ☑ Go hack yourself
Once in a while, the entire technical team should sit together and spend time
targeting all parts of the application, looking for vulnerabilities. This is a great time
to test for account isolation, token unicity, unauthenticated paths, etc… You will
heavily rely on your browser’s web console, curl, and 3rd party tools such as Zap
(https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project).

The benefit of doing these test sessions yourselves is that your team has the best
understanding of your application, and likely where the weak points are. Show-
ing that they can be exploited (or not) is valuable feedback for the team. These
sessions complement external pentests quite well.

Read more:
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents

http://crypto.stackexchange.com/questions/43272/why-is-writing-your-own-encryption-discouraged
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://www.npmjs.com/package/helmet
https://www.sqreen.com/scanner
https://securityheaders.com
https://www.ssllabs.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents

7

 ☑ Run security linters on your code
Pre-production analysis tools like static code analysis (SAST) can help identify
some of your low-hanging security fruits. They also improve the overall security
awareness of your team when the checks are automatically integrated into the
code review process. But keep in mind that these tools generate a lot of false pos-
itives that can quickly overwhelm you with meaningless alerts. The best practice is
to make them part of your process, but not too rely too heavily on them.

Some good tools:
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
http://eslint.org/ with https://github.com/nodesecurity/eslint-plugin-security
https://github.com/mre/awesome-static-analysis

 ☑ Integrate security scanners in your CI pipeline
Integrate a Dynamic Application Security Testing (DAST) tool in your CI, but
just like SAST be aware of the high number of false positives.

Read more:
http://www.arachni-scanner.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.acunetix.com/vulnerability-scanner/

 ☑ Keep your dependencies up to date
Applications are built using dozens of third party libraries. A single flaw in any of
these libraries may put your entire application at risk. According to OWASP, one
of the most common application security risks is using dependencies with known
vulnerabilities. Some tools allow you to check your dependencies for vulnerabili-
ties and ensure that they are up-to-date:

https://docs.npmjs.com/cli/audit

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
http://eslint.org/ with https://github.com/nodesecurity/eslint-plugin-security
https://github.com/mre/awesome-static-analysis
http://www.arachni-scanner.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.acunetix.com/vulnerability-scanner/
https://docs.npmjs.com/cli/audit

8

https://snyk.io/
https://www.sqreen.com/

 ☑ Enforce a secure code review checklist
Security should always be kept in mind while coding. Pull request reviews should
be performed with security in mind as well. Depending on where the code is, the
checks should be different. Dealing with user entry is one thing, dealing with busi-
ness structures is another – the concerns are related to the context.

In addition to common sense, keep in mind typical security flaws. For example,
many code snippets from places like StackOverflow have not been written with
security in mind. If your team pulls code snippets from the Internet, make sure
they double check them for security before deploying them.

Security competency is also a good topic to ask about when interviewing a candi-
date.

Read more:
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project

 ☑ Keep secrets away from code
Never commit secrets in your code. They should be handled and stored separately
in order to prevent them from accidentally being shared or exposed. This keeps
a clear layer of separation between your environments (typically development,
staging, and production).

Pass secrets to the application through environment variables or through a con-
figuration file.
You can use a configuration management module for this:
https://www.npmjs.com/package/config

https://snyk.io/
https://www.sqreen.com/
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.npmjs.com/package/config

9

Read more:
https://www.infosecurity-magazine.com/opinions/comment-tips-for-private-
key-management/
https://www.digitalocean.com/community/tutorials/an-introduction-to-manag-
ing-secrets-safely-with-version-control-systems
https://www.vaultproject.io/

 ☑ Use a secure development life cycle
The secure development lifecycle is a process that helps tackle security issues
at the beginning of a project. While rarely used as is, it provides good insights at
all stages of the project, from the specification to the release. It will allow you to
enforce good practices at every stage of the project life.

Read more:
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://www.owasp.org/images/7/76/Jim_Manico_(Hamburg)_-_Securiing_the_
SDLC.pdf

 ☑ Avoid merging methods with un-sanitized with user data
Using user data, such as HTTP body, with a merging method can lead to proto-
type pollution. Before doing anything with user data, one must ensure there was
no value injected in `__proto__`.

Read more:
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/
JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://hackerone.com/reports/310443

Scan your project for dangerous regular expressions

https://www.infosecurity-magazine.com/opinions/comment-tips-for-private-key-management/
https://www.infosecurity-magazine.com/opinions/comment-tips-for-private-key-management/
https://www.digitalocean.com/community/tutorials/an-introduction-to-managing-secrets-safely-with-ver
https://www.digitalocean.com/community/tutorials/an-introduction-to-managing-secrets-safely-with-ver
https://www.vaultproject.io/
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://www.owasp.org/images/7/76/Jim_Manico_(Hamburg)_-_Securiing_the_SDLC.pdf
https://www.owasp.org/images/7/76/Jim_Manico_(Hamburg)_-_Securiing_the_SDLC.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollut
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollut
https://hackerone.com/reports/310443

10

Some regular expressions can be prone to catastrophic backtracking. In a Node.
js context, this usually can lead to a Denial of Service. Ideally, one should avoid
writing complex regular expressions themselves.

Read more:
https://www.regular-expressions.info/catastrophic.html
https://github.com/davisjam/vuln-regex-detector

 ☑ Evaluate the impact of introducing a new dependency
When adding a dependency to a project, you also add all the modules upon which
this dependency relies. If you’re not conscientious, doing so could introduce out-
dated or malicious packages.

Read more:
A tool to view the real impact of adding a new dependency: https://npm.anvaka.
com/#/

https://www.regular-expressions.info/catastrophic.html
https://github.com/davisjam/vuln-regex-detector
https://npm.anvaka.com/#/
https://npm.anvaka.com/#/

11

INFRASTRUCTURE

 ☑ Automatically configure & update your servers
An automated configuration management tool helps you ensure that your servers
are updated and secured.

Read more:
Chef: https://learn.chef.io/tutorials/
Puppet: https://www.linode.com/docs/applications/configuration-management/
getting-started-with-puppet-6-1-basic-installation-and-setup/
Ansible: http://docs.ansible.com/ansible/intro_getting_started.html
Salt: https://docs.saltstack.com/en/latest/topics/tutorials/walkthrough.html

 ☑ Backup regularly, test your backups, then backup again
Backup all your critical assets. Ensure that you attempt to restore your backups
frequently so you can guarantee that they’re working as intended. S3 is a very
cheap and effective way to backup your assets.

Read more:
MongoDB Backup: https://docs.mongodb.com/manual/core/backups/
Postgresql: https://www.postgresql.org/docs/current/static/backup.html
Linux: http://www.tecmint.com/linux-system-backup-tools/
https://www.dataone.org/best-practices/ensure-integrity-and-accessibili-
ty-when-making-backups-data
https://aws.amazon.com/getting-started/backup-files-to-amazon-s3/

https://learn.chef.io/tutorials/
https://www.linode.com/docs/applications/configuration-management/getting-started-with-puppet-6-1-ba
https://www.linode.com/docs/applications/configuration-management/getting-started-with-puppet-6-1-ba
http://docs.ansible.com/ansible/intro_getting_started.html
https://docs.saltstack.com/en/latest/topics/tutorials/walkthrough.html
https://docs.mongodb.com/manual/core/backups/
https://www.postgresql.org/docs/current/static/backup.html
http://www.tecmint.com/linux-system-backup-tools/
https://www.dataone.org/best-practices/ensure-integrity-and-accessibility-when-making-backups-data
https://www.dataone.org/best-practices/ensure-integrity-and-accessibility-when-making-backups-data
https://aws.amazon.com/getting-started/backup-files-to-amazon-s3/

12

 ☑ Check your SSL / TLS configurations
Use free tools to scan your infrastructure regularly and make sure the SSL con-
figurations are correct.

Read more:
https://observatory.mozilla.org/
https://www.ssllabs.com/

 ☑ Control access on your cloud providers
The best way to protect your services (database, file storage) is to not use pass-
words at all. Use the built-in Identity and Access Management (IAM) functions
to securely control access to your resources.

Read more:
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://cloud.google.com/compute/docs/access/create-enable-service-ac-
counts-for-instances

 ☑ Run it unprivileged
In the case that an attacker does successfully attack your application, having it
running as a user with restricted privileges will make it harder for the attacker to
take over the host and/or to bounce to other services. Privileged users are root on
Unix systems, and Administrator or System on Windows systems.

 ☑ Log all the things, and centralize them
Infrastructure logs and application logs are some of your most precious allies for
investigating a data breach. Make sure your logs are stored somewhere safe and
central. Also make sure you whitelist or blacklist specific incoming data to avoid

https://observatory.mozilla.org/
https://www.ssllabs.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances

13

storing personally identifiable information (PII) data.

Don’t forget, you need to take care that the system time configured on each of
your machines is in sync so that you can easily cross-correlate logs. You’ll have a
much harder time if they’re not.

Read more:
https://qbox.io/blog/welcome-to-the-elk-stack-elasticsearch-logstash-kibana
https://www.loggly.com/
https://en.wikipedia.org/wiki/Network_Time_Protocol

 ☑ Manage secrets with dedicated tools and vaults
When you need to store cryptographic secrets (other than database password,
TLS certificate, etc.) and perform encryption with them, you should use dedi-
cated tools. This way the cryptographic secret never leaves the tool and you get
auditing features.

Read more:
https://www.vaultproject.io/
https://github.com/square/keywhiz
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/kms/

 ☑ Store encrypted passwords in your configuration management
Storing passwords (like for your database) can be done on a dedicated database
with restricted access. The other solution is to store them encrypted in your
Source Code Management (SCM) system. That way, you just need the master
key to decrypt them.

Read more:

https://qbox.io/blog/welcome-to-the-elk-stack-elasticsearch-logstash-kibana
https://www.loggly.com/
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://www.vaultproject.io/
https://github.com/square/keywhiz
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/kms/

14

Chef: https://github.com/chef/chef-vault
Puppet: https://puppet.com/blog/encrypt-your-data-using-hiera-eyaml
Salt: https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
Ansible: http://docs.ansible.com/ansible/playbooks_vault.html

 ☑ Upgrade your servers regularly
Server packages and libraries are often updated when security vulnerabilities are
found. You should update them as soon as a security vulnerability is found.

Read more:
https://www.ubuntu.com/usn/
https://help.ubuntu.com/community/AutomaticSecurityUpdates
https://access.redhat.com/security/vulnerabilities

 ☑ Encrypt all the things
SSL performance problems are a myth and you have no good reason not to use
SSL on all your public services. Encrypting communications is not only about
privacy, but also about your users’ safety, since it will prevent most attempts at
tampering with what they receive.

Read more:
https://letsencrypt.org/
https://certbot.eff.org/
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-
let-s-encrypt-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-
let-s-encrypt-on-ubuntu-14-04

https://github.com/chef/chef-vault
https://puppet.com/blog/encrypt-your-data-using-hiera-eyaml
https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
http://docs.ansible.com/ansible/playbooks_vault.html
https://www.ubuntu.com/usn/
https://help.ubuntu.com/community/AutomaticSecurityUpdates
https://access.redhat.com/security/vulnerabilities
https://letsencrypt.org/
https://certbot.eff.org/
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-let-s-encrypt-on-ubuntu-14
https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-let-s-encrypt-on-ubuntu-14
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-1
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-1

15

 ☑ Use an immutable infrastructure
Use immutable infrastructure to avoid having to manage and update your servers.

Read more:
https://martinfowler.com/bliki/ImmutableServer.html
https://hackernoon.com/configuration-management-is-an-antipattern-e677e-
34be64c#.n68b1i3eo
https://www.digitalocean.com/community/tutorials/what-is-immutable-infra-
structure

 ☑ Renew your certificates on time
You should be using TLS certificates. It can be a hassle to configure and monitor,
but don’t forget to renew them!

Read more:
https://www.ssllabs.com/
https://serverlesscode.com/post/ssl-expiration-alerts-with-lambda/

 ☑ Monitor your authorizations
Be proactive and get alerted when authorizations or keys binary are changed in
production.

Read more:
http://techblog.netflix.com/2017/03/netflix-security-monkey-on-google- cloud.
html
https://cloudsploit.com/events
https://www.ossec.net/
https://security.stackexchange.com/a/19386

https://martinfowler.com/bliki/ImmutableServer.html
https://hackernoon.com/configuration-management-is-an-antipattern-e677e34be64c#.n68b1i3eo
https://hackernoon.com/configuration-management-is-an-antipattern-e677e34be64c#.n68b1i3eo
https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure
https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure
https://www.ssllabs.com/
https://serverlesscode.com/post/ssl-expiration-alerts-with-lambda/
http://techblog.netflix.com/2017/03/netflix-security-monkey-on-google- cloud.html
http://techblog.netflix.com/2017/03/netflix-security-monkey-on-google- cloud.html
https://cloudsploit.com/events
https://www.ossec.net/
https://security.stackexchange.com/a/19386

16

 ☑ Monitor your DNS expiration date
Just like TLS certificates, DNS can expire. Make sure you monitor your DNS
expiration automatically.

Read more:
https://github.com/glensc/monitoring-plugin-check_domain

 ☑ Keep Node.js up to date and only use LTS versions in produc-
tion
Node.js has a public support planning. Non-LTS versions (those with odd major
version numbers) are supported only for a few months. LTS versions are support-
ed for three and a half years.

Read more:
https://github.com/nodejs/Release

https://github.com/glensc/monitoring-plugin-check_domain
https://github.com/nodejs/Release

17

PROTECTION

 ☑ Protect your applications against breaches
Detect and block attacks in real time using an application security management
solution, or a suite of protection layers. At least all the OWASP Top 10 vulner-
abilities (SQL injections, NoSQL injections, cross-site scripting attacks, code/
command injections, etc.) should be covered.

Read more:
https://www.sqreen.com/
https://www.sqreen.com/web-application-security/what-is-rasp
https://en.wikipedia.org/wiki/Web_application_firewall

 ☑ Enforce Two-factor authentication (2FA)
Enforce 2FA on all the services you use (whenever possible). Internally, your
company should all use two-factor authentication. By adding 2FA, you add an
extra layer of security. Should someone’s password get stolen, the attacker would
still be locked out unless they have access to the second factor (e.g. phone app or
text) as well. Phones are the most commonly used device for second factors, and
thus have to be secured accordingly (e.g. with codes or biometry). Another option
is to use purpose-built hardware-based 2FA, like Yubikeys.

As you get higher profile customers, you will be required to implement stronger
security practices. This includes offering them 2FA, role-based account manage-
ment, SSO, etc. as well. Often times, these features are entry level requirements
for more enterprise deals.

Read more:
https://duo.com/

https://www.sqreen.com/
https://www.sqreen.com/web-application-security/what-is-rasp
https://en.wikipedia.org/wiki/Web_application_firewall
https://duo.com/

18

https://auth0.com/
https://www.yubico.com/
https://nakedsecurity.sophos.com/2016/08/18/nists-new-password-rules-what-
you-need-to-know/

 ☑ Have a public bug bounty program
A bug bounty program will allow external hackers to report vulnerabilities. Most
of the bug bounty programs set rewards in place. You need security-aware people
inside your development teams to evaluate any reports you receive, so make sure
that you have the right internal resources before you set up such a program.

Read more:
https://www.tripwire.com/state-of-security/vulnerability-management/launch-
ing-an-efficient-and-cost-effective-bug-bounty-program/
https://www.hackerone.com/
https://www.bugcrowd.com/
https://cobalt.io

 ☑ Have a public security policy
This is a page on your corporate website describing how you secure your users and
their data, and how you plan to respond to external bug reports. You should advise
that you support responsible disclosure. Keep in mind that you will likely receive
reports of varying impact, so having a process for prioritizing them is important.

Read more:
https://www.sqreen.com/resources/security-page
https://www.airbnb.com/security
https://www.apple.com/support/security/

https://auth0.com/
https://www.yubico.com/
https://nakedsecurity.sophos.com/2016/08/18/nists-new-password-rules-what-you-need-to-know/
https://nakedsecurity.sophos.com/2016/08/18/nists-new-password-rules-what-you-need-to-know/
https://www.tripwire.com/state-of-security/vulnerability-management/launching-an-efficient-and-cost-
https://www.tripwire.com/state-of-security/vulnerability-management/launching-an-efficient-and-cost-
https://www.hackerone.com/
https://www.bugcrowd.com/
https://cobalt.io
https://www.sqreen.com/resources/security-page
https://www.airbnb.com/security
https://www.apple.com/support/security/

19

 ☑ Protect against Distributed Denial Of Service (DDoS)
DDoS attacks are meant to break your application and make it unavailable to your
customers. Basic DDoS protections can easily be integrated with a CDN, but
there are purpose-built DDoS protection tools available as well.

Read more:
https://www.akamai.com/
https://www.cloudflare.com/ddos/
https://www.techradar.com/news/best-ddos-protection

 ☑ Protect your servers and infrastructure from scanners
Your servers will be scanned in order to fingerprint your application and locate
open services, misconfiguration, etc. You can set up tools to keep these scanners
away from your servers.

Read more:
https://www.sqreen.com/
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-
fail2ban-on-ubuntu-14-04
https://docs.microsoft.com/en-us/azure/information-protection/de-
ploy-aip-scanner

 ☑ Protect your users against account takeovers
Account takeovers or brute-force attacks are easy to set up. You should make
sure your users are protected against account takeovers.

Read more:
https://www.sqreen.com/
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
https://security.stackexchange.com/questions/94432/should-i-implement- in-

https://www.akamai.com/
https://www.cloudflare.com/ddos/
https://www.techradar.com/news/best-ddos-protection
https://www.sqreen.com/
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-ubuntu-14-04
https://docs.microsoft.com/en-us/azure/information-protection/deploy-aip-scanner
https://docs.microsoft.com/en-us/azure/information-protection/deploy-aip-scanner
https://www.sqreen.com/
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
https://security.stackexchange.com/questions/94432/should-i-implement- incorrect-password-delay-in-a

20

correct-password-delay-in-a-website-or-a-webservice
https://blog.sqreen.com/most-common-types-of-ato-attacks/

 ☑ Keep your containers secure
If you use Docker (or Kubernetes), ensure that they are patched and secure. Use
tools to automatically update and scan your containers for security vulnerabilities.
If you use a PAAS provider (Heroku, AWS Beanstalk, etc…), they will take care of
this for you. If not, you will need to do it yourself. Ideally, automate this process if
possible.

Read more:
https://blog.sqreen.com/docker-security/
https://blog.sqreen.com/kubernetes-security-best-practices/
https://docs.docker.com/docker-cloud/builds/image-scan/

 ☑ Don’t store credit card information (if you don’t need to)
Use third-party services to store credit card information to avoid having to man-
age and protect them.

Read more:
https://stripe.com/
https://www.braintreepayments.com
https://www.pcisecuritystandards.org/pdfs/pciscc_ten_common_myths.pdf

 ☑ Ensure compliance with relevant industry standards
Comply with standards to ensure that you follow industry best practices and
answer your customer needs. But simple compliance alone will not be enough to
protect your apps.

https://security.stackexchange.com/questions/94432/should-i-implement- incorrect-password-delay-in-a
https://blog.sqreen.com/most-common-types-of-ato-attacks/
https://blog.sqreen.com/docker-security/
https://blog.sqreen.com/kubernetes-security-best-practices/
https://docs.docker.com/docker-cloud/builds/image-scan/
https://stripe.com/
https://www.braintreepayments.com
https://www.pcisecuritystandards.org/pdfs/pciscc_ten_common_myths.pdf

21

Read more:
https://cloudsecurityalliance.org/
https://en.wikipedia.org/wiki/ISO/IEC_27001:2013
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

https://cloudsecurityalliance.org/
https://en.wikipedia.org/wiki/ISO/IEC_27001:2013
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

22

MONITORING

 ☑ Get notified when your app is under attack
Attacks happen, and a percentage of those will actually hit a vulnerability. Make
sure you have a monitoring system in place that will detect security events target-
ing your application before it’s too late. Knowing when your application is starting
to get massively scanned is key to stop more advanced attacks.

Read more:
https://www.sqreen.com/
https://www.linode.com/docs/security/using-fail2ban-for-security#email-alerts
http://alerta.io/

 ☑ Audit your infrastructure on a regular basis
With cloud providers, it’s easy to start instances and forget about them. You
will need to create and maintain a list of your assets (servers, network devices,
services exposed, etc.), and review it regularly to determine if you still need them,
keep them up to date, and ensure that they benefit from your latest deployments.

Read more:
http://docs.aws.amazon.com/general/latest/gr/aws-security-audit-guide.html
https://searchsecurity.techtarget.com/IT-security-auditing-Best-practic-
es-for-conducting-audits
https://cloud.google.com/asset-inventory/docs/overview

 ☑ Detect attackers early
The most impactful attacks will come from attackers that have acquired larger

https://www.sqreen.com/
https://www.linode.com/docs/security/using-fail2ban-for-security#email-alerts
http://alerta.io/
http://docs.aws.amazon.com/general/latest/gr/aws-security-audit-guide.html
https://searchsecurity.techtarget.com/IT-security-auditing-Best-practices-for-conducting-audits
https://searchsecurity.techtarget.com/IT-security-auditing-Best-practices-for-conducting-audits
https://cloud.google.com/asset-inventory/docs/overview

23

attack surfaces. Those can be attackers with regular user accounts or users that
have gained access to privileged user accounts. Make sure you monitor your users
for suspicious behavior to detect attackers early.

Read more:
https://www.sqreen.com/

 ☑ Monitor your third-party vendors
You’re likely to use third-party products to manage your servers / payrolls / logs
or even just social media. Third-party vendors are susceptible to breaches just
like everyone else. Make sure you follow the news and react immediately after a
breach.

Read more:
https://haveibeenpwned.com/
https://twitter.com/SecurityNewsbot

https://www.sqreen.com/
https://haveibeenpwned.com/
https://twitter.com/SecurityNewsbot

24

NOTES

25

26

27
www.sqreen.comStart your free trial at

Trusted by security teams,

loved by developers.

Unmatched security insights

Get access to more detailed security analytics than ever

before, including app-level incidents you can act on

immediately.

Instant protection

Out-of-the-box modules protect apps against a broad

array of threats, with multiple layers of protection. Setup

takes minutes, no confg reeuired.

Remediate as a team

Developers, DevOps, and Security can see for

themselves what8s gone wrong, and prioriti4e together to

get it right.

28

Want this handbook as a PDF?
Scan the QR-code, or go to:
https://www.sqreen.com/checklists/nodejs-security-handbook

https://www.sqreen.com/checklists/nodejs-security-handbook

