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ABSTRACT

The number of road incidents have increased tremendously over past decade. The current

methods to detect any incident are good but not efficient enough to detect the incidents on time

which leads to higher travel times and inefficient use of transportation network. The aim of this

project is to develop a robust and fast incident detection on a road.

In the method explored, live images and videos are captured from the traffic cameras situated on

various roads and highways. The images are used to detect congestion on the road and the videos

are used to detect any stalled vehicle at the side of the road. The software also captures the time

the incident started as well as the time it ended. A copy of the images and videos of detected

incidents is stored separately for further analysis.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

No roadways are immune from human error, and particularly on high-speed facilities, every

additional second of instability leads to an increasingly negative impact on all motorists in terms

of mobility and safety. A incident on road can mean a congestion ( which might be because of an

accident, heavy traffic volume or any other reason) or it can be a stalled vehicle at the side of the

road (which might also lead to congestion). The impact of traffic congestion is wide range. In most

cases it leads to delays, mental and physical fatigue, higher fuel consumtion and in some cases it

can even lead to loss of life. The cost of congestion in 2014 was calculated to be $160 billion for

the top 471 urban areas of United States. This included 6.9 billion hours of wasted time and 3.1

billion gallons of wasted fuel[3].

There can be several reasons for the incident. For stalled vehicle, most of the times it

is a damage to the car, running out of fuel or a medical emergency for one or more passengers. As

all of these reasons are very particular to the car or the people in the car, it is difficult to predict it

beforehand. But in case of congestion, there are some recurring congestions like in morning when

people go to office or any other time of the day when the traffic volume is very high. Using the

data of past months, it is possible to predict a congestion on a particular road in advance and then

appropriate steps can be taken to deal with it. Some of the steps can be re-routing traffic using

Dynamic Message Board or (in long-term) by sending a mobile notification to subscribed users, so

that they can avoid the route if possible.

The aim of this project is to provide a camera module that will use the images and live

video feeds from the cameras on the side of the roads to identify congestion and stalled vehicles in

real time. This will help the DOT operators to know about any congestion going on and thus take

appropriate measures to clear it out.
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1.2 Report Organization

The rest of this report is organized as follows. Chapter 2 gives an overview of the TIMELI

project developed at Institute of Transportation(InTrans) that provides a way to monitor traffic

conditions in real time. Chapter 3 provides the methodologies and software description for the

camera module. Chapter 4 shows the results of tests conducted. Chapter 5 then explains future

scope and how this project can be used with other projects.Chapter 6 provides the conclusion.
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CHAPTER 2. OVERVIEW

Camera Module is a part of TIMELI Project which is being developed by INTRANS. In this

chapter, we provide a brief overview of TIMELI so as to have an idea of how the camera module

will be used.

2.1 TIMELI

TIMELI (Traffic Incident Management Enabled by Large-data Innovations) is a software which

integrates innovative data analytics techniques in order to monitor traffic conditions in real time,

proactively control risk, quickly detect traffic incidents, identify the location and potential cause

of these incidents and suggest traffic control alternatives. This software will be provided to DOTs

where the operators will be alerted about any potential incident going in the area. The operators

can then manually verify whether it is an incident or not by checking the live video feeds in that

area.

In order to identify a potential incident, TIMELI uses various data sources which provides the

different types of information related to the traffic on road. Some of the data sources provide CSV

and XML feeds. In camera module, we are trying to leverage the live feeds from the cameras inorder

to identify any potential incident. Once an incident is detected, an alert is shown to the operator

on the screen along with the nearest cameras available to that incident. The operator then confirms

whether its an incident or not and take steps accordingly. Fig 2.1 shows the high-level architecture

of TIMELI Project.
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Figure 2.1 High level TIMELI Archtictecture
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CHAPTER 3. Camera Module Design and Implementation

The camera module is divided into two parts:

1. Congestion Detection: To detect congestion on roads.

2. Stalled Vehicle Detection: To detect stalled vehicle on roadsides.

3.1 Architecture Design

3.1.1 Congestion Detection

Fig 3.1 shows the architeture for Congestion Detection part:

Figure 3.1 Congestion Detection Module Architecture
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We start with a list of cameras in the region. This list will be obtained separately from the

DOT server. In the application, the YOLOV2 model is already loaded. The application starts

downloading the images for each camera simultaneuosly and uses the model that was loaded to

predict congestion in each image. Then the images are moved to a separate location and the

corresponding data is stored in MongoDB.

3.1.2 Stalled Vehicle Detection

Fig 3.2 shows the architeture for Stalled Vehicle Detection part:

Figure 3.2 Stalled Vehicle Detection Module Architecture

We start with a list of cameras in the region. This list will be obtained separately from the

DOT server. In the application, the YOLOV3 model is already loaded. The application starts

downloading the videos for each camera one 6 at a time and uses the model that was loaded to

detect vehicles in each video. Then we use SORT library to give a tracking id to each of the vehicles

detected earlier. A semi supervised classification is done to detect anomalous trajectories in the
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vide which is used to detect any stalled vehicles on the road. Then the videos are moved to a

separate location and the corresponding data is stored in MongoDB.

3.2 Technology Description

This section will discuss the technologies that have been used for the two modules.

1. ffmpeg[4]

ffmpeg is a very fast video and audio converter that can also grab from a live audio/video source.

It can also convert between arbitrary sample rates and resize video on the fly with a high qual-

ity polyphase filter. Each input or output url can, in principle, contain any number of streams

of different types (video/audio/subtitle/attachment/data). The allowed number and/or types of

streams may be limited by the container format. Selecting which streams from which inputs will

go into which output is either done automatically or with the -map option.

2. YOLO[5]

You only look once (YOLO) is a state-of-the-art, real-time object detection system. This is orig-

inally C based library that is used to detect different objects in an image in real time. Given its

usefuness and accuracy, various versions of these library have been produced in other languages

such as python. In recent years, a lot of improvements have been added to the original libraray

producing YOLOV2 and YOLOV3 libraries. We are using YOLOV2 for congestion detection and

YOLOV3 for stalled behicle detection.

3. MongoDB[6]

MongoDB is a document database with a lot of scalability and flexibility with the querying and

indexing. MongoDB is an open-source, document database designed for ease of development and

scaling. It provides high performance data persistence.
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4. OpenCV[7]

OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine

learning software library. The library has more than 2500 optimized algorithms, which includes

a comprehensive set of both classic and state-of-the-art computer vision and machine learning

algorithms.

3.3 Implementation

This section explains the actual implementation of the project.

3.3.1 Congestion Detection

We have used the algorithm proposed by Chakraborty et al.[1]

For understanding purpose, congestion detection module can be divided into three different parts:

1. Data Collection - Image downlaoder

As the name suggests, this part downloads the images from the cameras continuously at a fixed

intervals of time. The system is provided with a list of cameras that are available in the area. For

each camera a url to get the live feed is available. The system then uses the ’ffmpeg’ command

to capture the images. Once the command is run it keeps on downloading images at a particular

frequency until stopped manually or any sytem error occurs. This frequency is set to 20 sec for

each camera which can be changed, if required, using a config file. The downloaded images are

stored in different folders specific for each camera. The folders, if they don’t exist, are generated

automatically in the code. All these folders are present in a same location so as to ease the process

of reading these images for prediction. While saving the images on the disk, we also capture the

time the image was taken. This information is required in the prediction step.

2. Congestion Predictor

This is the part that uses the images downloaded in previous step and actually predicts whether

there is a congestion or not. This modules starts by taking the location of images as input. It then
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recusively explores all the folders inside that location to grab all the images. This module reads all

the images simultaneously but processes one at a time.

The YOLOV2 library uses a convoluted Neural network internally. This models is stored in project

in 4 files: dpm.data, dpm.names, yolodpm.cfg and yolodpm final.weights. At the start of the pre-

dictor module this model is loaded in the application which is then used to process the images.

For each image, the module uses openCV library to convert it into a numpy array in ’RGB’ format.

The image is then resized to half along horizontal as well as vertical axis. The model generated

above then uses this resized image to predict various objects with certain probabilities. We discard

any such detection with a probability lower than a certain threshold. This threshold is currently

set to 0.3. Based on the probability and the number of objects detected (in our case, number of

vehicles detected), it categorizes the image as congested or non-congested. After categorization,

we store camera name, date, time, class (congested or non-congested) and a unique id (that will

be given to this image) in Mongo Database.

Once an image has been processed, it is moved from the original input source to another location

depending on whether it was classified as congested or non-congested. This is done to ensure that

the same image is not accidentally read by the module again. This also helps us to ensure saving

the images for verification purposes later.

3. Congestion Continuity Validator

Since, images are processed one by one, it is very much possible that a single incident is going on in

a particular area for quite some time. But since we have different images at different times during

that incident, they might come up as different incidents even though it is the same incident. This

can lead to a lot of false positives. Hence, in Mongo Database, we have a stored javascript that

keeps a check on the data and determines the actual incidents. This was initially implemented

by Revanth[8] for SQL Database. We have implemented the MongoDB equivalent for it in this

project. The algorithm is as follows:

1. Get all the images for a particular camera for last one hour.
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2. Sort the images according to timestamp.

3. Initialise a variable total =0.

4. Store the class of the previous image record in a variable ’x’ and check if current record has the

same class as ’x’

5. If the values are different, increment the value of ’total’.

6. After all records that we got in step 2 are processed, store the value of ’total’ in each of these

records.

7. Group all records with same value of ’total’ and ’x’ into one single record. While doing so, store

the time of first record as minTime and time of last record as maxTime.

8. Filter the records with the x value as 1 and ’total’ greater than 3.

9. Assign a new incident id to each record and store them in separate collection in database.

Data Storage Description

1. The quality of images recieved is from a camera is roughly around 480 pixels.

2. In terms of bytes, one image on an average corresponds to 20KB.

3. There are around 300 cameras in the area selected for this project.

4. Each camera captures one image in 20 seconds, that is, 3 images per minute.

5. Total images captured by all 300 cameras in a day corresponds to around 25GB per day.

This images are stored on the disk in the GPU machine.

Storage Implementation

Given the size of data that is received everyday, it is difficult to store all the images captured in a

day permanently. Hence, currently, we only store the images that are classified as congested. Since,

we have already moved all the ’congested’ images to a separate location, it makes it easier to write

a separate batch job that runs once a day and moves all these images to a separate disk. While

moving the images, a unique id is given to the image which is also stored in MongoDB as explained
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earlier. This is done to ensure smooth retrieval of image using the id that is stored in MongoDB.

3.3.2 Stalled Vehicle Detection

We have used the algorithm proposed by Chakraborty et al.[2]

Stalled vehicle detection Module can be divided into following two parts:

1. Data Collection - Video Downloader

As the name suggests, this part downloads the videos from the cameras continuously at a fixed

intervals of time. The system is provided with a list of cameras that are available in the area. For

each camera, a url to get the live feed is available. The system then uses the ’ffmpeg’ command to

capture the videos for a particular duration of time. Once the command is run it keeps on down-

loading videos at a particular frequency until stopped manually or any sytem error occurs. This

frequency is set to 4.5 min for each camera which can be changed, if required, using a config file.

The downloaded videos are stored in different folders specific for each camera. The folders, if they

don’t exist, are generated automatically in the code. All these folders are present in a same location

so as to ease the process of reading these videos for prediction. While saving the videos on the

disk, we also capture the time the video was recorded. This information is required in the next step.

Explanation of Frequency calculation

Number of GPU machines available for the project: 4

Total number of cameras available ≈ 300

Rate of capture (per camera) = 5 frames
sec = 300 per minute

Number of cameras 1 GPU can process simultaneously = 6

Interval to capture at a time = 20 sec

Number of Cameras that can be processed by 1 GPU in a minute = 60sec
Interval to capture at a time∗

Number of cameras 1 GPU can process simultaneously = 18

Number of Cameras that can be processed by 4 GPU in a minute = 72
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Total time taken for all cameras covered = Total number of cameras available
Number of Cameras that can be processed by 4 GPU in a minute

≈ 4.5 min

2. Stalled Vehicle Detector This is the part that uses the videos downloaded in previous

step and actually predicts whether there is a stalled vehicle on the road or not. This modules

starts by taking the location of videos as input. It then recusively explores all the folders inside

that location to grab all the images. This module takes as input all the videos simultaneously but

processes one at a time.

Once a video is loaded, there are 3 major steps:

Step1: Vehicle Detection - This step is very similar to detection of vehicles in congestion module.

The only difference being use of YOLOV3 instead of YOLOV2 and the input being videos instead

of images. We use YOLOV3 because of better accuracy of this library on videos as compared to

YOLOV2.

Step2: Vehicle Tracking - Once a vehicle is detected, we need to assign a unique id to each vehicle.

This is done using Simple Online Realtime Tracking(SORT). This is required to track each vehicle

separately, independent of any other vehicles present on the road.

Step3: Anomalous Trajectory Detection - Once all the vehicles are marked, we follow the trajec-

tory of a vehicle to see if it is changing lane to right and reducing the speed until it stops. If this is

detected in the video, we classify the video as positive else negative. After categorization, we store

camera name, date, time, class (congested or non-congested) and a unique id (that will be given to

this video) in Mongo Database.

Once a video has been processed, it is moved from the original input source to another location

depending on whether it was classified as positive or negative. This is done to ensure that the same

video is not accidentally read by the module again. This also helps us to ensure saving the videos

for verification purposes later.
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Storage Implementation

The videos are very big in size and it is difficult to store all the videos captured in a day perma-

nently. Hence, currently, we only store the videos that are classified as positive. Since, we have

already moved all the ’positive’ videos to a separate location, it makes it easier to write a separate

batch job that runs once a day and moves all these videos to a separate disk. While moving the

videos, a unique id is given to the image which is also stored in MongoDB as explained earlier.

This is done to ensure smooth retrieval of image using the id that is stored in MongoDB.
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CHAPTER 4. RESULTS

4.0.1 Congestion Detection Module

The performance of the algorithm was evaluated using the standard performance metrics of

precision, recall, and accuracy. It was trained on 1400 images and tested on 1018 images (518

congested and 500 non-congested). When a congested image was correctly labeled, it was classified

as true positive (TP). Similarly, if a non-congested image was correctly labeled as non-congested”,

then it was classified as true negative (TN). However, if the actual label was congested and the

predicted label was non-congested, it was classified as false negative (FN). And finally, if the actual

label was non-congested and the predicted label was congested, it was classified as false positive

(FP).

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + FP + TN + FN

The data corresponding to this experiment can be seen in the Table 4.1 below. We see that the

algorithm performs better as compared to using deep convoluted neural networks[1] for the same

purpose.

Table 4.1 Precision, recall and accuracy values for the algorithm

Precision (%) Recall (%) Accuracy (%)

88.6 94.3 91.4



15

4.0.2 Stalled Vehicle Detection Module

Our labeled trajectory dataset consists of 15 incident trajectories and 15 normal trajectories. To

find out the sensitivity of the algorithm on the number of labeled examples, we ran each algorithm

for label sample sizes varying from 5-15 trajectories for each class (normal and incident). We label

a video as an incident video if at least 1 trajectory in the video is classified as incident trajectory

by the algorithm. The accuracy of the algorithm (ACC) is given by the accuracy of correctly

classifying incident videos (TPR) and baseline videos (TNR). TP and TN refer to the number of

correctly identified incident and baseline videos while P and N refer to total number of incident

and baseline videos (25 each).

TPR =
TP

P

TNR =
TN

N

ACC =
TP + TN

P + N

The data corresponding to this experiment can be seen in the Table 4.2 below.

Table 4.2 TPR, TNR and ACC values for the algorithm

TPR TNR ACC

0.83 0.92 0.88



16

CHAPTER 5. FUTURE SCOPE

5.1 Improvements

With the advancements in technology (especially in Machine learning), there is a huge scope of

improvement in this project. From the results, it can be seen that this application can be further

improved to provide more accuracy.

5.1.1 Congestion Module

To improve the accuracy, we can probably approach this problem using a totally different

algorithm. In the current algorithm itself, we can try to use better quality of images. Instead of

just depending on number of vehicles in images, we can probably look into the time to take care of

recurrent congestions.

5.1.2 Stalled Vehicle Module

One of the problems in the current implementation is that if a vehicle is already stopped before

the video recording starts, it won’t be detected by the current algorithm. Further research can be

done definitely to approach this problem. Again, we can try some other library for vehicle detection

with better accuracy.

5.2 Integration with Other applications

This is a completely independent backend application. This is developed currently to be used

with TIMELI but it can be integrated with any application. Since, the actual data is stored in

MongoDB and it can be used to retrieve the images and videos, there is no barrier for the other

application in terms of programming language or achitecture as long as it supports MongoDB.
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CHAPTER 6. CONCLUSION

Incident detection is required to detect congestion and stalled vehicles on the roads. The impact

of a incident is severe and it is reuired to leverage as many sources as possible to detect them with

accuracy, speed and efficieny.

In this work, we have developed a software that can utilise images and videos from camera feeds

to detect congestion and stalled vehicles respectively in real time. Even though this was a part of

a much bigger project TIMELI, we were able to make it as a separate independent project which

gives us flexibility to integrate it with any project. Since, we are storing time and id of images and

videos, different APIs can be written in any programming language in case we want to just see the

image/video based on date, time or incident id.

As discussed in last chapter, there is a lot of scope for improvement. Some of them might even lead

to new research algorithms in this area.
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