GENERALIZED JENSEN'S EQUATIONS IN BANACH MODULES OVER A C^{*}-ALGEBRA AND ITS UNITARY GROUP

Deok-Hoon Boo, Sei-Qwon Oh, Chun-Gil Park and Jae-Myung Park

Abstract

We prove the generalized Hyers-Ulam-Rassias stability of generalized Jensen's equations in Banach modules over a unital C^{*}-algebra associated with its unitary group. It is applied to show the stability of generalized Jensen's equations in a Hilbert module over a unital C^{*}-algebra associated with its unitary group.

1. Generalized Jensen's Equations

Let E_{1} and E_{2} be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: E_{1} \rightarrow E_{2}$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$. Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E_{1}$. Th.M. Rassias [5] showed that there exists a unique \mathbb{R}-linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E_{1}$.
Lemma A. Let V, W be vector spaces, and let r, s, t be positive integers. A mapping $f: V \rightarrow W$ with $f(0)=0$ is a solution of the equation

$$
\begin{equation*}
r f\left(\frac{s x+t y}{r}\right)=s f(x)+t f(y) \tag{A}
\end{equation*}
$$

Received June 11, 2002.
Communicated by S.-Y. Shaw.
2000 Mathematics Subject Classification: Primary 47J25, 46L05, 39B52.
Key words and phrases: Banach module over C^{*}-algebra, Hilbert module over C^{*}-algebra, Generalized Jensen's equation, Stability.
This work was supported by grant No. 1999-2-102-001-3 from the interdisciplinary Research program year of the KOSEF.
for all $x, y \in V$ if and only if the mapping $f: V \rightarrow W$ satisfies the additive Cauchy equation $f(x+y)=f(x)+f(y)$ for all $x, y \in V$.

Proof. Assume that $f: V \rightarrow W$ satisfies the equation (A). Then

$$
\begin{aligned}
& r f\left(\frac{s}{r} x\right)=r f\left(\frac{s x+t \cdot 0}{r}\right)=s f(x)+t f(0)=s f(x) \\
& r f\left(\frac{t}{r} x\right)=r f\left(\frac{s \cdot 0+t x}{r}\right)=s f(0)+t f(x)=t f(x)
\end{aligned}
$$

for all $x \in V$. So

$$
f\left(\frac{s}{r} x\right)=\frac{s}{r} f(x) \quad \& \quad f\left(\frac{t}{r} x\right)=\frac{t}{r} f(x)
$$

for all $x \in V$. And

$$
\begin{aligned}
& f(x)=f\left(\frac{s}{r} \cdot \frac{r}{s} x\right)=\frac{s}{r} f\left(\frac{r}{s} x\right) \\
& f(x)=f\left(\frac{t}{r} \cdot \frac{r}{t} x\right)=\frac{t}{r} f\left(\frac{r}{t} x\right)
\end{aligned}
$$

for all $x \in V$. So

$$
f\left(\frac{r}{s} x\right)=\frac{r}{s} f(x) \quad \& \quad f\left(\frac{r}{t} x\right)=\frac{r}{t} f(x)
$$

for all $x \in V$. Thus

$$
\begin{aligned}
f(x+y) & =\frac{1}{r} \cdot r f\left(\frac{s}{r} \cdot \frac{r}{s} x+\frac{t}{r} \cdot \frac{r}{t} y\right)=\frac{1}{r}\left(s f\left(\frac{r}{s} x\right)+t f\left(\frac{r}{t} y\right)\right) \\
& =\frac{1}{r}\left(s \cdot \frac{r}{s} f(x)+t \cdot \frac{r}{t} f(y)\right)=f(x)+f(y)
\end{aligned}
$$

for all $x, y \in V$.
The converse is obvious.
Throughout this paper, let A be a unital C^{*}-algebra with norm $|\cdot|$ and $\mathcal{U}(A)$ the unitary group of A. Let ${ }_{A} \mathcal{B}$ and ${ }_{A} \mathcal{C}$ be left Banach A-modules with norms $\|\cdot\|$ and $\|\cdot\|$, respectively, and ${ }_{A} \mathcal{H}$ a left Hilbert A-module with norm $\|\cdot\|$. Let s, t be different positive integers, r a positive integer, and d an integer greater than 1.

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the functional equation (A) in Banach modules over a unital C^{*}-algebra associated with its unitary group.

2. Stability of Generalized Jensen's Equations in Banach Modules Over a C^{*}-Algebra

We are going to prove the generalized Hyers-Ulam-Rassias stability of the functional equation (A) in Banach modules over a unital C^{*}-algebra for the case $s \neq t$.

Theorem 1. Let $f:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi:{ }_{A} \mathcal{B} \times{ }_{A} \mathcal{B} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}(x, y):=\sum_{k=0}^{\infty}\left(\frac{t}{s}\right)^{2 k} \varphi\left(\left(\frac{s}{t}\right)^{2 k} x,\left(\frac{s}{t}\right)^{2 k} y\right)<\infty \tag{i}\\
&\left\|r u f\left(\frac{s x+t y}{r}\right)-s f(u x)-t f(u y)\right\| \leq \varphi(x, y)
\end{align*}
$$

for all $u \in \mathcal{U}(A)$ and all $x, y \in{ }_{A} \mathcal{B}$. Then there exists a unique A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{s} \widetilde{\varphi}\left(x,-\frac{s}{t} x\right)+\frac{t}{s^{2}} \widetilde{\varphi}\left(-\frac{s}{t} x,\left(\frac{s}{t}\right)^{2} x\right) \tag{ii}
\end{equation*}
$$

for all $x \in{ }_{A} \mathcal{B}$.
Proof. Put $u=1 \in \mathcal{U}(A)$. For $y=-\frac{s}{t} x$,

$$
\begin{equation*}
\left\|s f(x)+t f\left(-\frac{s}{t} x\right)\right\| \leq \varphi\left(x,-\frac{s}{t} x\right) \tag{1}
\end{equation*}
$$

Replacing x by $-\frac{s}{t} x$ and y by $\left(\frac{s}{t}\right)^{2} x$, one can obtain

$$
\begin{equation*}
\left\|s f\left(-\frac{s}{t} x\right)+t f\left(\left(\frac{s}{t}\right)^{2} x\right)\right\| \leq \varphi\left(-\frac{s}{t} x,\left(\frac{s}{t}\right)^{2} x\right) \tag{2}
\end{equation*}
$$

for all $x \in{ }_{A} \mathcal{B}$. From (1) and (2), we get

$$
\left\|f(x)-\left(\frac{t}{s}\right)^{2} f\left(\left(\frac{s}{t}\right)^{2} x\right)\right\| \leq \frac{1}{s} \varphi\left(x,-\frac{s}{t} x\right)+\frac{t}{s^{2}} \varphi\left(-\frac{s}{t} x,\left(\frac{s}{t}\right)^{2} x\right)
$$

for all $x \in{ }_{A} \mathcal{B}$. So

$$
\begin{align*}
\left\|f(x)-\left(\frac{t}{s}\right)^{2 n} f\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\| \leq & \sum_{k=0}^{n-1}\left(\frac{1}{s}\left(\frac{t}{s}\right)^{2 k} \varphi\left(\left(\frac{s}{t}\right)^{2 k} x,-\left(\frac{s}{t}\right)^{2 k+1} x\right)\right. \tag{3}\\
& \left.+\frac{1}{s}\left(\frac{t}{s}\right)^{2 k+1} \varphi\left(-\left(\frac{s}{t}\right)^{2 k+1} x,\left(\frac{s}{t}\right)^{2 k+2} x\right)\right)
\end{align*}
$$

for all $x \in{ }_{A} \mathcal{B}$.

We claim that the sequence $\left\{\left(\frac{t}{s}\right)^{2 n} f\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\}$ is a Cauchy sequence. Indeed, for $n>m$, we have

$$
\begin{aligned}
& \left\|\left(\frac{t}{s}\right)^{2 n} f\left(\left(\frac{s}{t}\right)^{2 n} x\right)-\left(\frac{t}{s}\right)^{2 m} f\left(\left(\frac{s}{t}\right)^{2 m} x\right)\right\| \\
& \quad \leq \sum_{k=m}^{n-1}\left\|\left(\frac{t}{s}\right)^{2 k+2} f\left(\left(\frac{s}{t}\right)^{2 k+2} x\right)-\left(\frac{t}{s}\right)^{2 k} f\left(\left(\frac{s}{t}\right)^{2 k} x\right)\right\| \\
& \quad \leq \sum_{k=m}^{n-1}\left(\frac{1}{s}\left(\frac{t}{s}\right)^{2 k} \varphi\left(\left(\frac{s}{t}\right)^{2 k} x,-\left(\frac{s}{t}\right)^{2 k+1} x\right)+\frac{1}{s}\left(\frac{t}{s}\right)^{2 k+1} \varphi\left(-\left(\frac{s}{t}\right)^{2 k+1} x,\left(\frac{s}{t}\right)^{2 k+2} x\right)\right)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{B}$. It follows from (i) that
$\lim _{m \rightarrow \infty} \sum_{k=m}^{n-1}\left(\frac{1}{s}\left(\frac{t}{s}\right)^{2 k} \varphi\left(\left(\frac{s}{t}\right)^{2 k} x,-\left(\frac{s}{t}\right)^{2 k+1} x\right)+\frac{1}{s}\left(\frac{t}{s}\right)^{2 k+1} \varphi\left(-\left(\frac{s}{t}\right)^{2 k+1} x,\left(\frac{s}{t}\right)^{2 k+2} x\right)\right)=0$
for all $x \in{ }_{A} \mathcal{B}$. Since ${ }_{A} \mathcal{C}$ is a Banach space, the sequence $\left\{\left(\frac{t}{s}\right)^{2 n} f\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\}$ converges. Define

$$
T(x)=\lim _{n \rightarrow \infty}\left(\frac{t}{s}\right)^{2 n} f\left(\left(\frac{s}{t}\right)^{2 n} x\right)
$$

for all $x \in{ }_{A} \mathcal{B}$. Taking the limit in (3) as $n \rightarrow \infty$, we obtain

$$
\|f(x)-T(x)\| \leq \frac{1}{s} \widetilde{\varphi}\left(x,-\frac{s}{t} x\right)+\frac{t}{s^{2}} \widetilde{\varphi}\left(-\frac{s}{t} x,\left(\frac{s}{t}\right)^{2} x\right)
$$

for all $x \in{ }_{A} \mathcal{B}$, which is the inequality (ii). From the definition of T, we get

$$
\begin{equation*}
\left(\frac{s}{t}\right)^{2 n} T(x)=T\left(\left(\frac{s}{t}\right)^{2 n} x\right) \text { and } T(0)=0 \tag{4}
\end{equation*}
$$

By (i) and the definition of T,

$$
\begin{aligned}
\| r T\left(\frac{s x+t y}{r}\right) & -s T(x)-t T(y) \| \\
& =\lim _{n \rightarrow \infty}\left(\frac{t}{s}\right)^{2 n}\left\|r f\left(\left(\frac{s}{t}\right)^{2 n} \frac{s x+t y}{r}\right)-s f\left(\left(\frac{s}{t}\right)^{2 n} x\right)-t f\left(\left(\frac{s}{t}\right)^{2 n} y\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{t}{s}\right)^{2 n} \varphi\left(\left(\frac{s}{t}\right)^{2 n} x,\left(\frac{s}{t}\right)^{2 n} y\right)=0
\end{aligned}
$$

for all $x, y \in{ }_{A} \mathcal{B}$. So

$$
r T\left(\frac{s x+t y}{r}\right)=s T(x)+t T(y)
$$

for all $x, y \in{ }_{A} \mathcal{B}$. By Lemma A, T is additive.

If $F:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ is another additive mapping satisfying (ii), then it follows from (ii), (4) and the proof of Lemma A that

$$
\begin{aligned}
& \|T(x)-F(x)\|=\left\|\left(\frac{t}{s}\right)^{2 n} T\left(\left(\frac{s}{t}\right)^{2 n} x\right)-\left(\frac{t}{s}\right)^{2 n} F\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\| \\
& \quad \leq\left\|\left(\frac{t}{s}\right)^{2 n} T\left(\left(\frac{s}{t}\right)^{2 n} x\right)-\left(\frac{t}{s}\right)^{2 n} f\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\|+\left\|\left(\frac{t}{s}\right)^{2 n} f\left(\left(\frac{s}{t}\right)^{2 n} x\right)-\left(\frac{t}{s}\right)^{2 n} F\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\| \\
& \left.\quad \leq 2\left(\frac{t}{s}\right)^{2 n}\left(\frac{1}{s} \widetilde{\varphi}\left(\left(\frac{s}{t}\right)^{2 n} x,\left(\frac{s}{t}\right)^{2 n}\left(-\frac{s}{t}\right) x\right)+\frac{t}{s^{2}} \widetilde{\varphi}\left(\left(\frac{s}{t}\right)^{2 n}\left(-\frac{s}{t}\right) x\right),\left(\frac{s}{t}\right)^{2 n}\left(\frac{s}{t}\right)^{2} x\right)\right),
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ by (i). Thus we conclude that

$$
T(x)=F(x)
$$

for all $x \in{ }_{A} \mathcal{B}$. This completes the uniqueness of T.
By the assumption, for each $u \in \mathcal{U}(A)$,

$$
\begin{aligned}
& \left\|r u f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} x\right)-(s+t) f\left(\left(\frac{s}{t}\right)^{2 n} u x\right)\right\| \leq \varphi\left(\left(\frac{s}{t}\right)^{2 n} x,\left(\frac{s}{t}\right)^{2 n} x\right), \\
& \left\|r f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} u x\right)-(s+t) f\left(\left(\frac{s}{t}\right)^{2 n} u x\right)\right\| \leq \varphi\left(\left(\frac{s}{t}\right)^{2 n} u x,\left(\frac{s}{t}\right)^{2 n} u x\right)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{B}$. So

$$
\begin{aligned}
& \| r f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} u x\right)-r u f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} x\right) \| \\
& \leq\left\|r f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} u x\right)-(s+t) f\left(\left(\frac{s}{t}\right)^{2 n} u x\right)\right\| \\
&+\left\|r u f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} x\right)-(s+t) f\left(\left(\frac{s}{t}\right)^{2 n} u x\right)\right\| \\
& \quad \leq \varphi\left(\left(\frac{s}{t}\right)^{2 n} u x,\left(\frac{s}{t}\right)^{2 n} u x\right)+\varphi\left(\left(\frac{s}{t}\right)^{2 n} x,\left(\frac{s}{t}\right)^{2 n} x\right)
\end{aligned}
$$

for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$. Thus

$$
\left(\frac{t}{s}\right)^{2 n}\left\|r f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} u x\right)-r u f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} x\right)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$. Hence

$$
\begin{aligned}
r T\left(\frac{s+t}{r} u x\right) & =\lim _{n \rightarrow \infty}\left(\frac{t}{s}\right)^{2 n} r f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} u x\right)=\lim _{n \rightarrow \infty} r u f\left(\frac{s+t}{r}\left(\frac{s}{t}\right)^{2 n} x\right) \\
& =r u T\left(\frac{s+t}{r} x\right)
\end{aligned}
$$

for all $u \in \mathcal{U}(A)$. So

$$
T(u x)=\frac{r}{s+t} T\left(\frac{s+t}{r} u x\right)=\frac{r}{s+t} u T\left(\frac{s+t}{r} x\right)=u T(x)
$$

for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$.
Now let $a \in A(a \neq 0)$ and M an integer greater than $4|a|$. Then

$$
\left|\frac{a}{M}\right|=\frac{1}{M}|a|<\frac{|a|}{4|a|}=\frac{1}{4}<1-\frac{2}{3}=\frac{1}{3} .
$$

By [3, Theorem 1], there exist three elements $u_{1}, u_{2}, u_{3} \in \mathcal{U}(A)$ such that $3 \frac{a}{M}=$ $u_{1}+u_{2}+u_{3}$. And $T(x)=T\left(3 \cdot \frac{1}{3} x\right)=3 T\left(\frac{1}{3} x\right)$ for all $x \in{ }_{A} \mathcal{B}$. So $T\left(\frac{1}{3} x\right)=\frac{1}{3} T(x)$ for all $x \in{ }_{A} \mathcal{B}$. Thus

$$
\begin{aligned}
T(a x) & =T\left(\frac{M}{3} \cdot 3 \frac{a}{M} x\right)=M \cdot T\left(\frac{1}{3} \cdot 3 \frac{a}{M} x\right)=\frac{M}{3} T\left(3 \frac{a}{M} x\right) \\
& =\frac{M}{3} T\left(u_{1} x+u_{2} x+u_{3} x\right)=\frac{M}{3}\left(T\left(u_{1} x\right)+T\left(u_{2} x\right)+T\left(u_{3} x\right)\right) \\
& =\frac{M}{3}\left(u_{1}+u_{2}+u_{3}\right) T(x)=\frac{M}{3} \cdot 3 \frac{a}{M} T(x) \\
& =a T(x)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{B}$. Obviously, $T(0 x)=0 T(x)$ for all $x \in{ }_{A} \mathcal{B}$. Hence

$$
T(a x+b y)=T(a x)+T(b y)=a T(x)+b T(y)
$$

for all $a, b \in A$ and all $x, y \in{ }_{A} \mathcal{B}$. So the unique additive mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ is an A-linear mapping, as desired.

Corollary 2. Let $0<p<1$ and $t<s$. Let $f:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ be a mapping with $f(0)=0$ such that

$$
\left\|r u f\left(\frac{s x+t y}{r}\right)-s f(u x)-t f(u y)\right\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $u \in \mathcal{U}(A)$ and all $x, y \in{ }_{A} \mathcal{B}$. Then there exists a unique A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ such that

$$
\|f(x)-T(x)\| \leq \frac{s^{2(1-p)}}{s^{2(1-p)}-t^{2(1-p)}}\left(\frac{1}{s}+\frac{1}{t^{p} s^{1-p}}+\frac{t^{1-p}}{s^{2-p}}+\frac{t^{1-2 p}}{s^{2-2 p}}\right)\|x\|^{p}
$$

for all $x \in{ }_{A} \mathcal{B}$.
Proof. Define $\varphi:{ }_{A} \mathcal{B} \times{ }_{A} \mathcal{B} \rightarrow[\iota, \infty)$ by $\varphi(x, y)=\|x\|^{p}+\|y\|^{p}$, and apply Theorem 1.

Corollary 3. Let $p>1$ and $t>s$. Let $f:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ be a mapping with $f(0)=0$ such that

$$
\left\|r u f\left(\frac{s x+t y}{r}\right)-s f(u x)-t f(u y)\right\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $u \in \mathcal{U}(A)$ and all $x, y \in{ }_{A} \mathcal{B}$. Then there exists a unique A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ such that

$$
\|f(x)-T(x)\| \leq \frac{t^{2(p-1)}}{t^{2(p-1)}-s^{2(p-1)}}\left(\frac{1}{s}+\frac{s^{p-1}}{t^{p}}+\frac{s^{p-1}}{t^{p-1}}+\frac{s^{2-2 p}}{t^{2 p-1}}\right)\|x\|^{p}
$$

for all $x \in{ }_{A} \mathcal{B}$.
Proof. Define $\varphi:{ }_{A} \mathcal{B} \times{ }_{A} \mathcal{B} \rightarrow[0, \infty)$ by $\varphi(x, y)=\|x\|^{p}+\|y\|^{p}$, and apply Theorem 1.

Theorem 4. Let $f:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ be a continuous mapping with $f(0)=0$ for which there exists a function $\varphi:{ }_{A} \mathcal{B} \times{ }_{A} \mathcal{B} \rightarrow[0, \infty)$ satisfying (i) such that

$$
\left\|r u f\left(\frac{s x+t y}{r}\right)-s f(u x)-t f(u y)\right\| \leq \varphi(x, y)
$$

for all $u \in \mathcal{U}(A)$ and all $x, y \in{ }_{A} \mathcal{B}$. If the sequence $\left\{\left(\frac{t}{s}\right)^{2 n} f\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\}$ converges uniformly on ${ }_{A} \mathcal{B}$, then there exists a unique continuous A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow$ ${ }_{A} \mathcal{C}$ satisfying (ii).

Proof. By the same reasoning as the proof of Theorem 1, there exists a unique A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ satisfying (ii). By the continuity of f, the uniform convergence and the definition of T, the A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ is continuous, as desired.

Theorem 5. Let $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ be a continuous mapping with $h(0)=0$ for which there exists a function $\varphi:{ }_{A} \mathcal{H} \times{ }_{A} \mathcal{H} \rightarrow[0, \infty)$ satisfying (i) such that

$$
\left\|r u h\left(\frac{s x+t y}{r}\right)-s h(u x)-t h(u y)\right\| \leq \varphi(x, y)
$$

for all $u \in \mathcal{U}(A)$ and all $x, y \in{ }_{A} \mathcal{H}$. Assume that $h\left(\left(\frac{s}{t}\right)^{2 n} x\right)=\left(\frac{s}{t}\right)^{2 n} h(x)$ for all positive integers n and all $x \in{ }_{A} \mathcal{H}$. Then the mapping $h:{ }_{A} \mathcal{H} \rightarrow_{A} \mathcal{H}$ is a bounded A-linear operator. Furthermore,
(1) if the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfies the inequality

$$
\left\|h(x)-h^{*}(x)\right\| \leq \varphi(x, x)
$$

for all $x \in{ }_{A} \mathcal{H}$, then the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a self-adjoint operator,
(2) if the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfies the inequality

$$
\left\|h \circ h^{*}(x)-h^{*} \circ h(x)\right\| \leq \varphi(x, x)
$$

for all $x \in{ }_{A} \mathcal{H}$, then the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a normal operator,
(3) if the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfies the inequalities

$$
\begin{aligned}
\left\|h \circ h^{*}(x)-x\right\| & \leq \varphi(x, x), \\
\left\|h^{*} \circ h(x)-x\right\| & \leq \varphi(x, x)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{H}$, then the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a unitary operator, and
(4) if the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfies the inequalities

$$
\begin{array}{r}
\|h \circ h(x)-h(x)\| \leq \varphi(x, x), \\
\left\|h^{*}(x)-h(x)\right\| \leq \varphi(x, x)
\end{array}
$$

for all $x \in{ }_{A} \mathcal{H}$, then the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a projection.

Proof. The sequence $\left\{\left(\frac{t}{s}\right)^{2 n} h\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\}$ converges uniformly on ${ }_{A} \mathcal{H}$. By Theorem 4, there exists a unique continuous A-linear operator $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ satisfying (ii). By the assumption,

$$
T(x)=\lim _{n \rightarrow \infty}\left(\frac{t}{s}\right)^{2 n} h\left(\left(\frac{s}{t}\right)^{2 n} x\right)=\lim _{n \rightarrow \infty}\left(\frac{t}{s}\right)^{2 n}\left(\frac{s}{t}\right)^{2 n} h(x)=h(x)
$$

for all $x \in{ }_{A} \mathcal{H}$, where the mapping $T:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is given in the proof of Theorem 1. Hence the A-linear operator T is the mapping h. So the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a continuous A-linear operator. Thus the A-linear operator $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is bounded (see [1, Proposition II.1.1).
(1) By the assumption,

$$
\left\|h\left(\left(\frac{s}{t}\right)^{2 n} x\right)-h^{*}\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\| \leq \varphi\left(\left(\frac{s}{t}\right)^{2 n} x,\left(\frac{s}{t}\right)^{2 n} x\right)
$$

for all positive integers n and all $x \in{ }_{A} \mathcal{H}$. Thus

$$
\left(\frac{t}{s}\right)^{2 n}\left\|h\left(\left(\frac{s}{t}\right)^{2 n} x\right)-h^{*}\left(\left(\frac{s}{t}\right)^{2 n} x\right)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for all $x \in{ }_{A} \mathcal{H}$. Hence

$$
h(x)=\lim _{n \rightarrow \infty}\left(\frac{t}{s}\right)^{2 n} h\left(\left(\frac{s}{t}\right)^{2 n} x\right)=\lim _{n \rightarrow \infty}\left(\frac{t}{s}\right)^{2 n} h^{*}\left(\left(\frac{s}{t}\right)^{2 n} x\right)=h^{*}(x)
$$

for all $x \in{ }_{A} \mathcal{H}$. So the mapping $h:{ }_{A} \mathcal{H} \rightarrow{ }_{A} \mathcal{H}$ is a self-adjoint operator.
The proofs of the others are similar to the proof of (1).
Now we are going to prove the generalized Hyers-Ulam-Rassias stability of the functional equation (A) in Banach modules over a unital C^{*}-algebra for the case $s=t=1$ and $r=d$.

Theorem 6. Let $f:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi:{ }_{A} \mathcal{B} \times{ }_{A} \mathcal{B} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\widetilde{\varphi}(x, y):=\sum_{k=0}^{\infty} & \frac{1}{(d-1)^{k}} \varphi\left((d-1)^{k} x,(d-1)^{k} y\right)<\infty \tag{iii}\\
& \left\|d u f\left(\frac{x+y}{d}\right)-f(u x)-f(u y)\right\| \leq \varphi(x, y)
\end{align*}
$$

for all $u \in \mathcal{U}(A)$ and all $x, y \in{ }_{A} \mathcal{B}$. Then there exists a unique A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{d-1} \widetilde{\varphi}(x,(d-1) x) \tag{iv}
\end{equation*}
$$

for all $x \in{ }_{A} \mathcal{B}$.
Proof. Put $u=1 \in \mathcal{U}(A)$. Replacing y by $(d-1) x$, one can obtain

$$
\|(d-1) f(x)-f((d-1) x)\| \leq \varphi(x,(d-1) x)
$$

for all $x \in{ }_{A} \mathcal{B}$. So

$$
\left\|f(x)-\frac{f((d-1) x)}{d-1}\right\| \leq \frac{1}{d-1} \varphi(x,(d-1) x)
$$

and hence

$$
\begin{equation*}
\left\|f(x)-\frac{f\left((d-1)^{n} x\right)}{(d-1)^{n}}\right\| \leq \sum_{k=0}^{n-1} \frac{1}{(d-1)^{k+1}} \varphi\left((d-1)^{k} x,(d-1) \cdot(d-1)^{k} x\right) \tag{5}
\end{equation*}
$$

for all $x \in{ }_{A} \mathcal{B}$.
We claim that the sequence $\left\{\frac{f\left((d-1)^{n} x\right)}{(d-1)^{n}}\right\}$ is a Cauchy sequence. Indeed, for $n>m$, we have

$$
\begin{aligned}
\left\|\frac{f\left((d-1)^{n} x\right)}{(d-1)^{n}}-\frac{f\left((d-1)^{m} x\right)}{(d-1)^{m}}\right\| & \leq \sum_{k=m}^{n-1}\left\|\frac{f\left((d-1)^{k+1} x\right)}{(d-1)^{k+1}}-\frac{f\left((d-1)^{k} x\right)}{(d-1)^{k}}\right\| \\
& \leq \sum_{k=m}^{n-1} \frac{1}{(d-1)^{k+1}} \varphi\left((d-1)^{k} x,(d-1) \cdot(d-1)^{k} x\right)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{B}$. It follows from (iii) that

$$
\lim _{m \rightarrow \infty} \sum_{k=m}^{n-1} \frac{1}{(d-1)^{k+1}} \varphi\left((d-1)^{k} x,(d-1) \cdot(d-1)^{k} x\right)=0
$$

for all $x \in{ }_{A} \mathcal{B}$. Since ${ }_{A} \mathcal{C}$ is a Banach space, the sequence $\left\{\frac{f\left((d-1)^{n} x\right)}{(d-1)^{n}}\right\}$ converges. Define

$$
T(x)=\lim _{n \rightarrow \infty} \frac{f\left((d-1)^{n} x\right)}{(d-1)^{n}}
$$

for all $x \in{ }_{A} \mathcal{B}$. Taking the limit in (5) as $n \rightarrow \infty$, we obtain

$$
\|f(x)-T(x)\| \leq \frac{1}{d-1} \widetilde{\varphi}(x,(d-1) x)
$$

for all $x \in{ }_{A} \mathcal{B}$, which is the inequality (iv). From the definition of T , we get

$$
\begin{equation*}
(d-1)^{n} T(x)=T\left((d-1)^{n} x\right) \text { and } T(0)=0 \tag{6}
\end{equation*}
$$

By (iii) and the definition of T,

$$
\begin{aligned}
& \left\|d T\left(\frac{x+y}{d}\right)-T(x)-T(y)\right\| \\
& \quad=\lim _{n \rightarrow \infty} \frac{1}{(d-1)^{n}}\left\|d f\left(\frac{(d-1)^{n}(x+y)}{d}\right)-f\left((d-1)^{n} x\right)-f\left((d-1)^{n} y\right)\right\| \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{1}{(d-1)^{n}} \varphi\left((d-1)^{n} x,(d-1)^{n} y\right)=0
\end{aligned}
$$

for all $x, y \in{ }_{A} \mathcal{B}$. So

$$
d T\left(\frac{x+y}{d}\right)=T(x)+T(y)
$$

for all $x, y \in{ }_{A} \mathcal{B}$. By Lemma A, T is additive.
If $F:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ is another additive mapping satisfying (iv), then it follows from (iv), (6) and the proof of Lemma A that

$$
\begin{aligned}
\|T(x)-F(x)\|= & \left\|\frac{T\left((d-1)^{n} x\right)}{(d-1)^{n}}-\frac{F\left((d-1)^{n} x\right)}{(d-1)^{n}}\right\| \\
\leq & \left\|\frac{T\left((d-1)^{n} x\right)}{(d-1)^{n}}-\frac{f\left((d-1)^{n} x\right)}{(d-1)^{n}}\right\| \\
& +\left\|\frac{f\left((d-1)^{n} x\right)}{(d-1)^{n}}-\frac{F\left((d-1)^{n} x\right)}{(d-1)^{n}}\right\| \\
\leq & 2 \frac{1}{(d-1)^{n+1}} \widetilde{\varphi}\left((d-1)^{n} x,(d-1) \cdot(d-1)^{n} x\right)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ by (iii). Thus we conclude that

$$
T(x)=F(x)
$$

for all $x \in{ }_{A} \mathcal{B}$. This completes the uniqueness of T.
By the assumption, for each $u \in \mathcal{U}(A)$,

$$
\begin{aligned}
& \left\|d u f\left(\frac{2(d-1)^{n}}{d} x\right)-2 f\left((d-1)^{n} u x\right)\right\| \leq \varphi\left((d-1)^{n} x,(d-1)^{n} x\right) \\
& \left\|d f\left(\frac{2(d-1)^{n}}{d} u x\right)-2 f\left((d-1)^{n} u x\right)\right\| \leq \varphi\left((d-1)^{n} u x,(d-1)^{n} u x\right)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{B}$. So

$$
\begin{aligned}
\| d f & \left(\frac{2(d-1)^{n}}{d} u x\right)-\operatorname{duf}\left(\frac{2(d-1)^{n}}{d} x\right) \| \\
\leq & \left\|d f\left(\frac{2(d-1)^{n}}{d} u x\right)-2 f\left((d-1)^{n} u x\right)\right\| \\
& +\left\|d u f\left(\frac{2(d-1)^{n}}{d} x\right)-2 f\left((d-1)^{n} u x\right)\right\| \\
& \leq \varphi\left((d-1)^{n} u x,(d-1)^{n} u x\right)+\varphi\left((d-1)^{n} x,(d-1)^{n} x\right)
\end{aligned}
$$

for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$. Thus

$$
\frac{1}{(d-1)^{n}}\left\|d f\left(\frac{2(d-1)^{n}}{d} u x\right)-d u f\left(\frac{2(d-1)^{n}}{d} x\right)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$. Hence

$$
d T\left(\frac{2}{d} u x\right)=\lim _{n \rightarrow \infty} \frac{d f\left(\frac{2(d-1)^{n}}{d} u x\right)}{(d-1)^{n}}=\lim _{n \rightarrow \infty} \frac{d u f\left(\frac{2(d-1)^{n}}{d} x\right)}{(d-1)^{n}}=d u T\left(\frac{2}{d} x\right)
$$

for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$. So

$$
T(u x)=\frac{d}{2} T\left(\frac{2}{d} u x\right)=\frac{d}{2} u T\left(\frac{2}{d} x\right)=u T(x)
$$

for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$.
The rest of the proof is the same as the proof of Theorem 1.
Corollary 7. Let d be an integer greater than 2 and $0<p<1$. Let $f:{ }_{A} \mathcal{B} \rightarrow$ ${ }_{A} \mathcal{C}$ be a mapping with $f(0)=0$ such that

$$
\left\|d u f\left(\frac{x+y}{d}\right)-f(u x)-f(u y)\right\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $u \in \mathcal{U}(A)$ and all $x, y \in{ }_{A} \mathcal{B}$. Then there exists a unique A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ such that

$$
\|f(x)-T(x)\| \leq \frac{1+(d-1)^{p}}{d-1-(d-1)^{p}}\|x\|^{p}
$$

for all $x \in{ }_{A} \mathcal{B}$.
Proof. Define $\varphi:{ }_{A} \mathcal{B} \times{ }_{A} \mathcal{B} \rightarrow[0, \infty)$ by $\varphi(x, y)=\|x\|^{p}+\|y\|^{p}$, and apply Theorem 6.

Theorem 8. Let $f:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ be a mapping with $f(0)=0$ for which there exists a function $\varphi:{ }_{A} \mathcal{B} \times{ }_{A} \mathcal{B} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}(x, y):=\sum_{k=0}^{\infty}(d-1)^{k} \varphi\left(\frac{1}{(d-1)^{k}} x, \frac{1}{(d-1)^{k}} y\right)<\infty \tag{v}\\
&\left\|d u f\left(\frac{x+y}{d}\right)-f(u x)-f(u y)\right\| \leq \varphi(x, y)
\end{align*}
$$

for all $u \in \mathcal{U}(A)$ and all $x, y \in{ }_{A} \mathcal{B}$. Then there exists a unique A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \widetilde{\varphi}\left(\frac{1}{d-1} x, x\right) \tag{vi}
\end{equation*}
$$

for all $x \in{ }_{A} \mathcal{B}$.
Proof. Put $u=1 \in \mathcal{U}(A)$. Replacing x by $\frac{x}{d-1}$ and y by x, one can obtain

$$
\left\|(d-1) f\left(\frac{x}{d-1}\right)-f(x)\right\| \leq \varphi\left(\frac{x}{d-1}, x\right)
$$

for all $x \in{ }_{A} \mathcal{B}$. So

$$
\begin{equation*}
\left\|(d-1)^{n} f\left(\frac{x}{(d-1)^{n}}\right)-f(x)\right\| \leq \sum_{k=0}^{n-1}(d-1)^{k} \varphi\left(\frac{x}{(d-1)^{k+1}}, \frac{x}{(d-1)^{k}}\right) \tag{7}
\end{equation*}
$$

for all $x \in{ }_{A} \mathcal{B}$.
We claim that the sequence $\left\{(d-1)^{n} f\left(\frac{x}{(d-1)^{n}}\right)\right\}$ is a Cauchy sequence. Indeed, for $n>m$, we have

$$
\begin{aligned}
\|(d-1)^{n} f\left(\frac{x}{(d-1)^{n}}\right) & -(d-1)^{m} f\left(\frac{x}{(d-1)^{m}}\right) \| \\
& \leq \sum_{k=m}^{n-1}\left\|(d-1)^{k+1} f\left(\frac{x}{(d-1)^{k+1}}\right)-(d-1)^{k} f\left(\frac{x}{(d-1)^{k}}\right)\right\| \\
& \leq \sum_{k=m}^{n-1}(d-1)^{k} \varphi\left(\frac{x}{(d-1)^{k+1}}, \frac{x}{(d-1)^{k}}\right)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{B}$. It follows from (v) that

$$
\lim _{m \rightarrow \infty} \sum_{k=m}^{n-1}(d-1)^{k} \varphi\left(\frac{x}{(d-1)^{k+1}}, \frac{x}{(d-1)^{k}}\right)=0
$$

for all $x \in{ }_{A} \mathcal{B}$. Since ${ }_{A} \mathcal{C}$ is a Banach space, the sequence $\left\{(d-1)^{n} f\left(\frac{x}{(d-1)^{n}}\right)\right\}$ converges. Define

$$
T(x)=\lim _{n \rightarrow \infty}(d-1)^{n} f\left(\frac{x}{(d-1)^{n}}\right)
$$

for all $x \in{ }_{A} \mathcal{B}$. Taking the limit in (7) as $n \rightarrow \infty$, we obtain

$$
\|T(x)-f(x)\| \leq \widetilde{\varphi}\left(\frac{x}{d-1}, x\right)
$$

for all $x \in{ }_{A} \mathcal{B}$, which is the inequality (vi). From the definition of T, we get

$$
\begin{equation*}
\frac{1}{(d-1)^{n}} T(x)=T\left(\frac{x}{(d-1)^{n}}\right) \text { and } T(0)=0 . \tag{8}
\end{equation*}
$$

By (v) and the definition of T,

$$
\begin{aligned}
& \left\|d T\left(\frac{x+y}{d}\right)-T(x)-T(y)\right\| \\
& \quad=\lim _{n \rightarrow \infty}(d-1)^{n}\left\|d f\left(\frac{x+y}{d(d-1)^{n}}\right)-f\left(\frac{x}{(d-1)^{n}}\right)-f\left(\frac{y}{(d-1)^{n}}\right)\right\| \\
& \quad \leq \lim _{n \rightarrow \infty}(d-1)^{n} \varphi\left(\frac{x}{(d-1)^{n}}, \frac{y}{(d-1)^{n}}\right)=0
\end{aligned}
$$

for all $x, y \in{ }_{A} \mathcal{B}$. So

$$
d T\left(\frac{x+y}{d}\right)=T(x)+T(y)
$$

for all $x, y \in{ }_{A} \mathcal{B}$. By Lemma A, T is additive.
If $F:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ is another additive mapping satisfying (vi), then it follows from (vi), (8) and the proof of Lemma A that

$$
\begin{aligned}
\|T(x)-F(x)\|= & \left\|(d-1)^{n} T\left(\frac{x}{(d-1)^{n}}\right)-(d-1)^{n} F\left(\frac{x}{(d-1)^{n}}\right)\right\| \\
\leq & \left\|(d-1)^{n} T\left(\frac{x}{(d-1)^{n}}\right)-(d-1)^{n} f\left(\frac{x}{(d-1)^{n}}\right)\right\| \\
& +\left\|(d-1)^{n} f\left(\frac{x}{(d-1)^{n}}\right)-(d-1)^{n} F\left(\frac{x}{(d-1)^{n}}\right)\right\| \\
\leq & 2(d-1)^{n} \widetilde{\varphi}\left(\frac{x}{(d-1)^{n+1}}, \frac{x}{(d-1)^{n}}\right),
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ by (v). Thus we conclude that

$$
T(x)=F(x)
$$

for all $x \in{ }_{A} \mathcal{B}$. This completes the uniqueness of T.
By the assumption, for each $u \in \mathcal{U}(A)$,

$$
\begin{aligned}
\left\|d u f\left(\frac{2 x}{d(d-1)^{n}}\right)-2 f\left(\frac{u x}{(d-1)^{n}}\right)\right\| & \leq \varphi\left(\frac{x}{(d-1)^{n}}, \frac{x}{(d-1)^{n}}\right) \\
\left\|d f\left(\frac{2 u x}{d(d-1)^{n}}\right)-2 f\left(\frac{u x}{(d-1)^{n}}\right)\right\| & \leq \varphi\left(\frac{u x}{(d-1)^{n}}, \frac{u x}{(d-1)^{n}}\right)
\end{aligned}
$$

for all $x \in{ }_{A} \mathcal{B}$. So

$$
\begin{aligned}
& \left\|d f\left(\frac{2 u x}{d(d-1)^{n}}\right)-d u f\left(\frac{2 x}{d(d-1)^{n}}\right)\right\| \\
& \quad \leq\left\|d f\left(\frac{2 u x}{d(d-1)^{n}}\right)-2 f\left(\frac{u x}{(d-1)^{n}}\right)\right\|+\left\|d u f\left(\frac{2 x}{(d-1)^{n}}\right)-2 f\left(\frac{u x}{(d-1)^{n}}\right)\right\| \\
& \quad \leq \varphi\left(\frac{u x}{(d-1)^{n}}, \frac{u x}{(d-1)^{n}}\right)+\varphi\left(\frac{x}{(d-1)^{n}}, \frac{x}{(d-1)^{n}}\right)
\end{aligned}
$$

for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$. Thus

$$
(d-1)^{n}\left\|d f\left(\frac{2 u x}{d(d-1)^{n}}\right)-d u f\left(\frac{2 x}{d(d-1)^{n}}\right)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$. Hence

$$
\begin{aligned}
d T\left(\frac{2}{d} u x\right) & =\lim _{n \rightarrow \infty}(d-1)^{n} d f\left(\frac{2 u x}{d(d-1)^{n}}\right) \\
& =\lim _{n \rightarrow \infty}(d-1)^{n} d u f\left(\frac{2 x}{d(d-1)^{n}}\right) \\
& =d u T\left(\frac{2}{d} x\right)
\end{aligned}
$$

for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$. So

$$
T(u x)=\frac{d}{2} T\left(\frac{2}{d} u x\right)=\frac{d}{2} u T\left(\frac{2}{d} x\right)=u T(x)
$$

for all $u \in \mathcal{U}(A)$ and all $x \in{ }_{A} \mathcal{B}$.
The rest of the proof is the same as the proof of Theorem 1.
Corollary 9. Let d be an integer greater than 2 and $p>1$. Let $f:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ be a mapping with $f(0)=0$ such that

$$
\left\|d u f\left(\frac{x+y}{d}\right)-f(u x)-f(u y)\right\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $u \in \mathcal{U}(A)$ and $x, y \in{ }_{A} \mathcal{B}$. Then there exists a unique A-linear mapping $T:{ }_{A} \mathcal{B} \rightarrow{ }_{A} \mathcal{C}$ such that

$$
\|f(x)-T(x)\| \leq \frac{(d-1)^{p}+1}{(d-1)^{p}+1-d}\|x\|^{p}
$$

for all $x \in{ }_{A} \mathcal{B}$.
Proof. Define $\varphi:{ }_{A} \mathcal{B} \times{ }_{A} \mathcal{B} \rightarrow[0, \infty)$ by $\varphi(x, y)=\|x\|^{p}+\|y\|^{p}$, and apply Theorem 8.

References

1. J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1985.
2. D. H. Hyers, G. Isac, and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Berlin, Basel and Boston, 1998.
3. R. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
4. P. S. Muhly and B. Solel, Hilbert modules over operator algebras, Memoirs Amer. Math. Soc. 117 No. 559 (1995), 1-53.
5. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
6. H. Schröder, K-Theory for Real C^{*}-Algebras and Applications, Pitman Research Notes in Mathematics, vol. 290, Longman, Essex, 1993.

Deok-Hoon Boo ${ }^{1}$, Sei-Qwon Oh^{2}, Chun-Gil Park ${ }^{3}$ and Jae-Myung Park ${ }^{4}$
Department of Mathematics,
Chungnam National University,
Daejeon 305-764,
South Korea
E-mail: ${ }^{1}$ dhboo@math.cnu.ac.kr ${ }^{2}$ sqoh@math.cnu.ac.kr ${ }^{3}$ cgpark@math.cnu.ac.kr ${ }^{4}$ jmpark@math.cnu.ac.kr

