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GENERALIZED JENSEN�S EQUATIONS IN BANACH MODULES
OVER A C∗-ALGEBRA AND ITS UNITARY GROUP

Deok-Hoon Boo, Sei-Qwon Oh, Chun-Gil Park and Jae-Myung Park

Abstract. We prove the generalized Hyers-Ulam-Rassias stability of general-
ized Jensen�s equations in Banach modules over a unital C∗-algebra associ-
ated with its unitary group. It is applied to show the stability of generalized
Jensen�s equations in a Hilbert module over a unital C∗-algebra associated
with its unitary group.

1. GENERALIZED JENSEN�S EQUATIONS

Let E1 and E2 be Banach spaces with norms k·k and k·k, respectively. Consider
f : E1 → E2 to be a mapping such that f(tx) is continuous in t ∈ R for each fixed
x ∈ E1. Assume that there exist constants ² ≥ 0 and p ∈ [0, 1) such that

kf(x+ y)− f(x)− f(y)k ≤ ²(||x||p + ||y||p)
for all x, y ∈ E1. Th.M. Rassias [5] showed that there exists a unique R-linear
mapping T : E1 → E2 such that

kf(x)− T (x)k ≤ 2²

2− 2p ||x||
p

for all x ∈ E1.

Lemma A. Let V,W be vector spaces, and let r, s, t be positive integers. A
mapping f : V →W with f(0) = 0 is a solution of the equation

rf(
sx+ ty

r
) = sf(x) + tf(y)(A)
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for all x, y ∈ V if and only if the mapping f : V → W satisfies the additive
Cauchy equation f(x+ y) = f(x) + f(y) for all x, y ∈ V .

Proof. Assume that f : V →W satisfies the equation (A). Then

rf(
s

r
x) = rf(

sx+ t · 0
r

) = sf(x) + tf(0) = sf(x),

rf(
t

r
x) = rf(

s · 0 + tx
r

) = sf(0) + tf(x) = tf(x)

for all x ∈ V . So

f(
s

r
x) =

s

r
f(x) & f(

t

r
x) =

t

r
f(x)

for all x ∈ V . And
f(x) = f(

s

r
· r
s
x) =

s

r
f(
r

s
x),

f(x) = f(
t

r
· r
t
x) =

t

r
f(
r

t
x)

for all x ∈ V . So

f(
r

s
x) =

r

s
f(x) & f(

r

t
x) =

r

t
f(x)

for all x ∈ V . Thus

f(x+ y)=
1

r
· rf(s

r
· r
s
x+

t

r
· r
t
y) =

1

r
(sf(

r

s
x) + tf(

r

t
y))

=
1

r
(s · r

s
f(x) + t · r

t
f(y)) = f(x) + f(y)

for all x, y ∈ V .
The converse is obvious.

Throughout this paper, let A be a unital C∗-algebra with norm | · | and U(A)
the unitary group of A. Let AB and AC be left Banach A-modules with norms k · k
and k · k, respectively, and AH a left Hilbert A-module with norm k · k. Let s, t be
different positive integers, r a positive integer, and d an integer greater than 1.
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the

functional equation (A) in Banach modules over a unital C∗-algebra associated
with its unitary group.
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2. STABILITY OF GENERALIZED JENSEN�S EQUATIONS IN
BANACH MODULES OVER A C∗-ALGEBRA

We are going to prove the generalized Hyers-Ulam-Rassias stability of the func-
tional equation (A) in Banach modules over a unital C∗-algebra for the case s 6= t.

Theorem 1. Let f : AB → AC be a mapping with f(0) = 0 for which there
exists a function ϕ : AB × AB → [0,∞) such that

eϕ(x, y) := ∞X
k=0

(
t

s
)2kϕ((

s

t
)2kx, (

s

t

´2k
y)<∞

kruf(sx+ ty
r

)− sf(ux)− tf(uy)k≤ ϕ(x, y)
(i)

for all u ∈ U(A) and all x, y ∈ AB. Then there exists a unique A-linear mapping
T : AB → AC such that

kf(x)− T (x)k ≤ 1

s
eϕ(x,−s

t
x) +

t

s2
eϕ(−s

t
x, (

s

t

´2
x)(ii)

for all x ∈ AB.

Proof. Put u = 1 ∈ U(A). For y = −s
tx,

ksf(x) + tf(−s
t
x)k ≤ ϕ

³
x,−s

t
x
´
.(1)

Replacing x by − s
tx and y by (

s
t )
2x, one can obtain

ksf(−s
t
x) + tf((

s

t
)2x
´
k ≤ ϕ(−s

t
x, (

s

t
)2x)(2)

for all x ∈ AB. From (1) and (2), we get

kf(x)− ( t
s
)2f((

s

t
)2x)k ≤ 1

s
ϕ(x,−s

t
x) +

t

s2
ϕ(−s

t
x, (

s

t
)2x)

for all x ∈ AB. So

kf(x)− ( t
s
)2nf((

s

t
)2nx)k ≤

n−1X
k=0

(
1

s
(
t

s
)2kϕ((

s

t
)2kx,−(s

t
)2k+1x)

+
1

s
(
t

s
)2k+1ϕ(−(s

t
)2k+1x, (

s

t
)2k+2x))

(3)

for all x ∈ AB.
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We claim that the sequence {( ts)2nf((st )2nx)} is a Cauchy sequence. Indeed,
for n > m, we have

k( t
s
)2nf((

s

t
)2nx)− ( t

s
)2mf((

s

t
)2mx)k

≤
n−1X
k=m

k( t
s
)2k+2f((

s

t
)2k+2x)− ( t

s
)2kf((

s

t
)2kx)k

≤
n−1X
k=m

¡1
s

¡ t
s
)2kϕ

¡¡s
t
)2kx,−¡s

t

¢2k+1
x
¢
+
1

s

¡ t
s

¢2k+1
ϕ
¡− ¡s

t

¢2k+1
x,
¡s
t

¢2k+2
x
¢¢

for all x ∈ AB. It follows from (i) that

lim
m→∞

n−1X
k=m

(
1

s
(
t

s
)2kϕ((

s

t
)2kx,−(s

t
)2k+1x)+

1

s
(
t

s
)2k+1ϕ(−(s

t
)2k+1x, (

s

t
)2k+2x)) = 0

for all x ∈ AB. Since AC is a Banach space, the sequence {( ts)2nf((st )2nx)}
converges. Define

T (x) = lim
n→∞(

t

s
)2nf((

s

t
)2nx)

for all x ∈ AB. Taking the limit in (3) as n→∞, we obtain

kf(x)− T (x)k ≤ 1

s
eϕ(x,−s

t
x) +

t

s2
eϕ(−s

t
x, (

s

t
)2x)

for all x ∈ AB, which is the inequality (ii). From the definition of T , we get

(
s

t
)2nT (x) = T ((

s

t
)2nx) and T (0) = 0.(4)

By (i) and the definition of T ,

krT (sx+ ty
r

)−sT (x)− tT (y)k

= lim
n→∞(

t

s
)2nkrf((s

t
)2n
sx+ ty

r
)− sf((s

t
)2nx)− tf((s

t
)2ny)k

≤ lim
n→∞(

t

s
)2nϕ((

s

t
)2nx, (

s

t
)2ny) = 0

for all x, y ∈ AB. So

rT (
sx+ ty

r
) = sT (x) + tT (y)

for all x, y ∈ AB. By Lemma A, T is additive.
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If F : AB → AC is another additive mapping satisfying (ii), then it follows from
(ii), (4) and the proof of Lemma A that

kT (x)− F (x)k = k( t
s
)2nT ((

s

t
)2nx)− ( t

s
)2nF ((

s

t
)2nx)k

≤ k( t
s
)2nT ((

s

t
)2nx)− ( t

s
)2nf((

s

t
)2nx)k+ k( t

s
)2nf((

s

t
)2nx)− ( t

s
)2nF ((

s

t
)2nx)k

≤ 2( t
s
)2n(

1

s
eϕ((s
t
)2nx, (

s

t
)2n(−s

t
)x) +

t

s2
eϕ((s
t
)2n(−s

t
)x), (

s

t
)2n(

s

t
)2x)),

which tends to zero as n→∞ by (i). Thus we conclude that

T (x) = F (x)

for all x ∈ AB. This completes the uniqueness of T .
By the assumption, for each u ∈ U(A),

kruf(s+ t
r
(
s

t
)2nx)− (s+ t)f((s

t
)2nux)k ≤ ϕ((s

t
)2nx, (

s

t
)2nx),

krf(s+ t
r
(
s

t
)2nux)− (s+ t)f((s

t
)2nux)k ≤ ϕ((s

t
)2nux, (

s

t
)2nux)

for all x ∈ AB. So

krf(s+ t
r
(
s

t
)2nux)− ruf(s+ t

r
(
s

t
)2nx)k

≤ krf(s+ t
r
(
s

t
)2nux)− (s+ t)f((s

t
)2nux)k

+kruf(s+ t
r
(
s

t
)2nx)− (s+ t)f((s

t
)2nux)k

≤ ϕ((s
t
)2nux, (

s

t
)2nux) + ϕ((

s

t
)2nx, (

s

t
)2nx)

for all u ∈ U(A) and all x ∈ AB. Thus

(
t

s
)2nkrf(s+ t

r
(
s

t
)2nux)− ruf(s+ t

r
(
s

t
)2nx)k→ 0

as n→∞ for all u ∈ U(A) and all x ∈ AB. Hence

rT (
s+ t

r
ux)= lim

n→∞(
t

s
)2nrf(

s+ t

r
(
s

t
)2nux) = lim

n→∞ ruf(
s+ t

r
(
s

t
)2nx)

= ruT (
s+ t

r
x)
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for all u ∈ U(A). So

T (ux) =
r

s+ t
T (
s+ t

r
ux) =

r

s+ t
uT (

s+ t

r
x) = uT (x)

for all u ∈ U(A) and all x ∈ AB.
Now let a ∈ A (a 6= 0) and M an integer greater than 4|a|. Then

| a
M
| = 1

M
|a| < |a|

4|a| =
1

4
< 1− 2

3
=
1

3
.

By [3, Theorem 1], there exist three elements u1, u2, u3 ∈ U(A) such that 3 aM =
u1+u2+u3. And T (x) = T (3· 13x) = 3T (13x) for all x ∈ AB. So T (13x) = 1

3T (x)
for all x ∈ AB. Thus

T (ax)= T (
M

3
· 3 a
M
x) =M · T (1

3
· 3 a
M
x) =

M

3
T (3

a

M
x)

=
M

3
T (u1x+ u2x+ u3x) =

M

3
(T (u1x) + T (u2x) + T (u3x))

=
M

3
(u1 + u2 + u3)T (x) =

M

3
· 3 a
M
T (x)

= aT (x)

for all x ∈ AB. Obviously, T (0x) = 0T (x) for all x ∈ AB. Hence
T (ax+ by) = T (ax) + T (by) = aT (x) + bT (y)

for all a, b ∈ A and all x, y ∈ AB. So the unique additive mapping T : AB → AC
is an A-linear mapping, as desired.

Corollary 2. Let 0 < p < 1 and t < s. Let f : AB → AC be a mapping with
f(0) = 0 such that

kruf(sx+ ty
r

)− sf(ux)− tf(uy)k ≤ kxkp + kykp

for all u ∈ U(A) and all x, y ∈ AB. Then there exists a unique A-linear mapping
T : AB → AC such that

kf(x)− T (x)k ≤ s2(1−p)

s2(1−p) − t2(1−p) (
1

s
+

1

tps1−p
+
t1−p

s2−p
+
t1−2p

s2−2p
)||x||p

for all x ∈ AB.

Proof. Define ϕ : AB × AB → [0,∞) by ϕ(x, y) = kxkp + kykp, and apply
Theorem 1.
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Corollary 3. Let p > 1 and t > s. Let f : AB → AC be a mapping with
f(0) = 0 such that

kruf(sx+ ty
r

)− sf(ux)− tf(uy)k ≤ kxkp + kykp

for all u ∈ U(A) and all x, y ∈ AB. Then there exists a unique A-linear mapping
T : AB → AC such that

kf(x)− T (x)k ≤ t2(p−1)

t2(p−1) − s2(p−1) (
1

s
+
sp−1

tp
+
sp−1

tp−1
+
s2−2p

t2p−1
)||x||p

for all x ∈ AB.

Proof. Define ϕ : AB × AB → [0,∞) by ϕ(x, y) = kxkp + kykp, and apply
Theorem 1.

Theorem 4. Let f : AB → AC be a continuous mapping with f(0) = 0 for
which there exists a function ϕ : AB × AB → [0,∞) satisfying (i) such that

kruf(sx+ ty
r

)− sf(ux)− tf(uy)k ≤ ϕ(x, y)

for all u ∈ U(A) and all x, y ∈ AB. If the sequence {( ts)2nf((st )2nx)} converges
uniformly on AB, then there exists a unique continuous A-linear mapping T : AB →
AC satisfying (ii).

Proof. By the same reasoning as the proof of Theorem 1, there exists a unique
A-linear mapping T : AB → AC satisfying (ii). By the continuity of f , the uni-
form convergence and the definition of T , the A-linear mapping T : AB → AC is
continuous, as desired.

Theorem 5. Let h : AH → AH be a continuous mapping with h(0) = 0 for
which there exists a function ϕ : AH× AH→ [0,∞) satisfying (i) such that

kruh(sx+ ty
r

)− sh(ux)− th(uy)k ≤ ϕ(x, y)

for all u ∈ U(A) and all x, y ∈ AH. Assume that h((st )2nx) = ( st )2nh(x) for all
positive integers n and all x ∈ AH. Then the mapping h : AH→ AH is a bounded
A-linear operator. Furthermore,

(1) if the mapping h : AH→ AH satisfies the inequality

kh(x)− h∗(x)k ≤ ϕ(x, x)
for all x ∈ AH, then the mapping h : AH→ AH is a self-adjoint operator ,
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(2) if the mapping h : AH→ AH satisfies the inequality

kh ◦ h∗(x)− h∗ ◦ h(x)k ≤ ϕ(x, x)

for all x ∈ AH, then the mapping h : AH→ AH is a normal operator ,

(3) if the mapping h : AH→ AH satisfies the inequalities

kh ◦ h∗(x)− xk≤ ϕ(x, x),
kh∗ ◦ h(x)− xk≤ ϕ(x, x)

for all x ∈ AH, then the mapping h : AH→ AH is a unitary operator, and

(4) if the mapping h : AH→ AH satisfies the inequalities

kh ◦ h(x)− h(x)k≤ ϕ(x, x),
kh∗(x)− h(x)k≤ ϕ(x, x)

for all x ∈ AH, then the mapping h : AH→ AH is a projection.

Proof. The sequence {( ts)2nh(( st )2nx)} converges uniformly on AH. By Theo-
rem 4, there exists a unique continuous A-linear operator T : AH→ AH satisfying
(ii). By the assumption,

T (x) = lim
n→∞(

t

s
)2nh((

s

t
)2nx) = lim

n→∞(
t

s
)2n(

s

t
)2nh(x) = h(x)

for all x ∈ AH, where the mapping T : AH→ AH is given in the proof of Theorem
1. Hence the A-linear operator T is the mapping h. So the mapping h : AH→ AH
is a continuous A-linear operator. Thus the A-linear operator h : AH → AH is
bounded (see [1, Proposition II.1.1).
(1) By the assumption,

kh((s
t
)2nx)− h∗((s

t
)2nx)k ≤ ϕ((s

t
)2nx, (

s

t
)2nx)

for all positive integers n and all x ∈ AH. Thus

(
t

s
)2nkh((s

t
)2nx)− h∗((s

t
)2nx)k→ 0

as n→∞ for all x ∈ AH. Hence

h(x) = lim
n→∞(

t

s
)2nh((

s

t
)2nx) = lim

n→∞(
t

s
)2nh∗((

s

t
)2nx) = h∗(x)
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for all x ∈ AH. So the mapping h : AH→ AH is a self-adjoint operator.

The proofs of the others are similar to the proof of (1).

Now we are going to prove the generalized Hyers-Ulam-Rassias stability of the
functional equation (A) in Banach modules over a unital C∗-algebra for the case
s = t = 1 and r = d.

Theorem 6. Let f : AB → AC be a mapping with f(0) = 0 for which there
exists a function ϕ : AB × AB → [0,∞) such that

eϕ(x, y) := ∞X
k=0

1

(d− 1)kϕ((d− 1)
kx, (d− 1)ky)<∞

kduf(x+ y
d

)− f(ux)− f(uy)k≤ ϕ(x, y)
(iii)

for all u ∈ U(A) and all x, y ∈ AB. Then there exists a unique A-linear mapping
T : AB → AC such that

kf(x)− T (x)k ≤ 1

d− 1 eϕ(x, (d− 1)x)(iv)

for all x ∈ AB.

Proof. Put u = 1 ∈ U(A). Replacing y by (d− 1)x, one can obtain
k(d− 1)f(x)− f((d− 1)x)k ≤ ϕ(x, (d− 1)x)

for all x ∈ AB. So

kf(x)− f((d− 1)x)
d− 1 k ≤ 1

d− 1ϕ(x, (d− 1)x),

and hence

kf(x)− f((d− 1)
nx)

(d− 1)n k ≤
n−1X
k=0

1

(d− 1)k+1ϕ((d− 1)
kx, (d− 1) · (d− 1)kx)(5)

for all x ∈ AB.
We claim that the sequence {f((d−1)nx)(d−1)n } is a Cauchy sequence. Indeed, for

n > m, we have

kf((d− 1)
nx)

(d− 1)n − f((d− 1)
mx)

(d− 1)m k≤
n−1X
k=m

kf((d− 1)
k+1x)

(d− 1)k+1 − f((d− 1)
kx)

(d− 1)k k

≤
n−1X
k=m

1

(d− 1)k+1ϕ((d− 1)
kx, (d− 1) · (d− 1)kx)
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for all x ∈ AB. It follows from (iii) that

lim
m→∞

n−1X
k=m

1

(d− 1)k+1ϕ((d− 1)
kx, (d− 1) · (d− 1)kx) = 0

for all x ∈ AB. Since AC is a Banach space, the sequence {f((d−1)
nx)

(d−1)n } converges.
Define

T (x) = lim
n→∞

f((d− 1)nx)
(d− 1)n

for all x ∈ AB. Taking the limit in (5) as n→∞, we obtain

kf(x)− T (x)k ≤ 1

d− 1 eϕ(x, (d− 1)x)
for all x ∈ AB, which is the inequality (iv). From the definition of T, we get

(d− 1)nT (x) = T ((d− 1)nx) and T (0) = 0.(6)

By (iii) and the definition of T ,

kdT (x+ y
d

)− T (x)− T (y)k

= lim
n→∞

1

(d− 1)nkdf(
(d− 1)n(x+ y)

d
)− f((d− 1)nx)− f((d− 1)ny)k

≤ lim
n→∞

1

(d− 1)nϕ((d− 1)
nx, (d− 1)ny) = 0

for all x, y ∈ AB. So
dT (

x+ y

d
) = T (x) + T (y)

for all x, y ∈ AB. By Lemma A, T is additive.
If F : AB → AC is another additive mapping satisfying (iv), then it follows

from (iv), (6) and the proof of Lemma A that

kT (x)− F (x)k= kT ((d− 1)
nx)

(d− 1)n − F ((d− 1)
nx)

(d− 1)n k

≤ kT ((d− 1)
nx)

(d− 1)n − f((d− 1)
nx)

(d− 1)n k

+kf((d− 1)
nx)

(d− 1)n − F ((d− 1)
nx)

(d− 1)n k

≤ 2 1

(d− 1)n+1 eϕ((d− 1)nx, (d− 1) · (d− 1)nx),
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which tends to zero as n→∞ by (iii). Thus we conclude that

T (x) = F (x)

for all x ∈ AB. This completes the uniqueness of T .
By the assumption, for each u ∈ U(A),

kduf(2(d− 1)
n

d
x)− 2f((d− 1)nux)k≤ ϕ((d− 1)nx, (d− 1)nx),

kdf(2(d− 1)
n

d
ux)− 2f((d− 1)nux)k ≤ ϕ((d− 1)nux, (d− 1)nux)

for all x ∈ AB. So

kdf(2(d− 1)
n

d
ux)− duf(2(d− 1)

n

d
x)k

≤ kdf(2(d− 1)
n

d
ux)− 2f((d− 1)nux)k

+kduf(2(d− 1)
n

d
x)− 2f((d− 1)nux)k

≤ ϕ((d− 1)nux, (d− 1)nux) + ϕ((d− 1)nx, (d− 1)nx)
for all u ∈ U(A) and all x ∈ AB. Thus

1

(d− 1)n kdf(
2(d− 1)n

d
ux)− duf(2(d− 1)

n

d
x)k→ 0

as n→∞ for all u ∈ U(A) and all x ∈ AB. Hence

dT (
2

d
ux) = lim

n→∞
df(2(d−1)

n

d ux)

(d− 1)n = lim
n→∞

duf(2(d−1)
n

d x)

(d− 1)n = duT (
2

d
x)

for all u ∈ U(A) and all x ∈ AB. So

T (ux) =
d

2
T (
2

d
ux) =

d

2
uT (

2

d
x) = uT (x)

for all u ∈ U(A) and all x ∈ AB.
The rest of the proof is the same as the proof of Theorem 1.

Corollary 7. Let d be an integer greater than 2 and 0 < p < 1. Let f : AB →
AC be a mapping with f(0) = 0 such that

kduf(x+ y
d

)− f(ux)− f(uy)k ≤ ||x||p + ||y||p
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for all u ∈ U(A) and all x, y ∈ AB. Then there exists a unique A-linear mapping
T : AB → AC such that

kf(x)− T (x)k ≤ 1 + (d− 1)p
d− 1− (d− 1)p kxk

p

for all x ∈ AB.
Proof. Define ϕ : AB × AB → [0,∞) by ϕ(x, y) = kxkp + kykp, and apply

Theorem 6.

Theorem 8. Let f : AB → AC be a mapping with f(0) = 0 for which there
exists a function ϕ : AB × AB → [0,∞) such that

eϕ(x, y) := ∞X
k=0

(d− 1)kϕ( 1

(d− 1)k x,
1

(d− 1)k y)<∞

kduf(x+ y
d

)− f(ux)− f(uy)k≤ ϕ(x, y)
(v)

for all u ∈ U(A) and all x, y ∈ AB. Then there exists a unique A-linear mapping
T : AB → AC such that

kf(x)− T (x)k ≤ eϕ( 1

d− 1x, x)(vi)

for all x ∈ AB.
Proof. Put u = 1 ∈ U(A). Replacing x by x

d−1 and y by x, one can obtain

k(d− 1)f( x

d− 1)− f(x)k ≤ ϕ(
x

d− 1 , x)

for all x ∈ AB. So

k(d− 1)nf( x

(d− 1)n )− f(x)k ≤
n−1X
k=0

(d− 1)kϕ( x

(d− 1)k+1 ,
x

(d− 1)k )(7)

for all x ∈ AB.
We claim that the sequence {(d−1)nf( x

(d−1)n )} is a Cauchy sequence. Indeed,
for n > m, we have

k(d− 1)nf( x

(d− 1)n )−(d− 1)
mf(

x

(d− 1)m )k

≤
n−1X
k=m

k(d− 1)k+1f( x

(d− 1)k+1 )− (d− 1)
kf(

x

(d− 1)k )k

≤
n−1X
k=m

(d− 1)kϕ( x

(d− 1)k+1 ,
x

(d− 1)k )
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for all x ∈ AB. It follows from (v) that

lim
m→∞

n−1X
k=m

(d− 1)kϕ( x

(d− 1)k+1 ,
x

(d− 1)k ) = 0

for all x ∈ AB. Since AC is a Banach space, the sequence {(d − 1)nf( x
(d−1)n )}

converges. Define
T (x) = lim

n→∞(d− 1)
nf(

x

(d− 1)n )

for all x ∈ AB. Taking the limit in (7) as n→∞, we obtain

kT (x)− f(x)k ≤ eϕ( x

d− 1 , x)

for all x ∈ AB, which is the inequality (vi). From the definition of T , we get
1

(d− 1)nT (x) = T (
x

(d− 1)n ) and T (0) = 0.(8)

By (v) and the definition of T ,

kdT (x+ y
d

)− T (x)− T (y)k
= lim
n→∞(d− 1)

nkdf( x+ y

d(d− 1)n )− f(
x

(d− 1)n )− f(
y

(d− 1)n )k

≤ lim
n→∞(d− 1)

nϕ(
x

(d− 1)n ,
y

(d− 1)n ) = 0

for all x, y ∈ AB. So
dT (

x+ y

d
) = T (x) + T (y)

for all x, y ∈ AB. By Lemma A, T is additive.
If F : AB → AC is another additive mapping satisfying (vi), then it follows

from (vi), (8) and the proof of Lemma A that

kT (x)− F (x)k= k(d− 1)nT ( x

(d− 1)n )− (d− 1)
nF (

x

(d− 1)n )k

≤ k(d− 1)nT ( x

(d− 1)n )− (d− 1)
nf(

x

(d− 1)n )k

+k(d− 1)nf( x

(d− 1)n )− (d− 1)
nF (

x

(d− 1)n )k

≤ 2(d− 1)n eϕ( x

(d− 1)n+1 ,
x

(d− 1)n ),
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which tends to zero as n→∞ by (v). Thus we conclude that

T (x) = F (x)

for all x ∈ AB. This completes the uniqueness of T .
By the assumption, for each u ∈ U(A),

kduf( 2x

d(d− 1)n )− 2f(
ux

(d− 1)n )k≤ ϕ(
x

(d− 1)n ,
x

(d− 1)n ),

kdf( 2ux

d(d− 1)n )− 2f(
ux

(d− 1)n )k≤ ϕ(
ux

(d− 1)n ,
ux

(d− 1)n )

for all x ∈ AB. So

kdf( 2ux

d(d− 1)n )− duf(
2x

d(d− 1)n )k

≤ kdf( 2ux

d(d− 1)n )− 2f(
ux

(d− 1)n )k+ kduf(
2x

(d− 1)n )− 2f(
ux

(d− 1)n )k

≤ ϕ( ux

(d− 1)n ,
ux

(d− 1)n ) + ϕ(
x

(d− 1)n ,
x

(d− 1)n )

for all u ∈ U(A) and all x ∈ AB. Thus

(d− 1)nkdf( 2ux

d(d− 1)n )− duf(
2x

d(d− 1)n )k→ 0

as n→∞ for all u ∈ U(A) and all x ∈ AB. Hence

dT (
2

d
ux)= lim

n→∞(d− 1)
ndf(

2ux

d(d− 1)n )

= lim
n→∞(d− 1)

nduf( 2x
d(d−1)n )

= duT (
2

d
x)

for all u ∈ U(A) and all x ∈ AB. So

T (ux) =
d

2
T (
2

d
ux) =

d

2
uT (

2

d
x) = uT (x)

for all u ∈ U(A) and all x ∈ AB.
The rest of the proof is the same as the proof of Theorem 1.

Corollary 9. Let d be an integer greater than 2 and p > 1. Let f : AB → AC
be a mapping with f(0) = 0 such that

kduf(x+ y
d

)− f(ux)− f(uy)k ≤ ||x||p + ||y||p
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for all u ∈ U(A) and x, y ∈ AB. Then there exists a unique A-linear mapping
T : AB → AC such that

kf(x)− T (x)k ≤ (d− 1)p + 1
(d− 1)p + 1− dkxk

p

for all x ∈ AB.

Proof. Define ϕ : AB × AB → [0,∞) by ϕ(x, y) = kxkp + ||y||p, and apply
Theorem 8.
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