Chapter 3

The Simple Linear Regression Model: Specification and Estimation

3.1 An Economic Model

- The simple regression function

$$
\begin{equation*}
E(y \mid x)=\mu_{y \mid x}=\beta_{1}+\beta_{2} x \tag{3.1.1}
\end{equation*}
$$

- Slope of regression line

$$
\begin{equation*}
\beta_{2}=\frac{\Delta E(y \mid x)}{\Delta x}=\frac{d E(y \mid x)}{d x} \tag{3.1.2}
\end{equation*}
$$

" Δ " denotes "change in"

3.2 An Econometric Model

Assumptions of the Simple Linear Regression Model-I

- The average value of y, for each value of x, is given by the linear regression

$$
E(y)=\beta_{1}+\beta_{2} x
$$

- For each value of x, the values of y are distributed about their mean value, following probability distributions that all have the same variance,

$$
\operatorname{var}(y)=\sigma^{2}
$$

- The values of y are all uncorrelated, and have zero covariance, implying that there is no linear association among them.

$$
\operatorname{cov}\left(y_{i}, y_{j}\right)=0
$$

This assumption can be made stronger by assuming that the values of y are all statistically independent.

- The variable x is not random and must take at least two different values
- (optional) The values of y are normally distributed about their mean for each value of x,

$$
y \sim N\left[\left(\beta_{1}+\beta_{2} x\right), \sigma^{2}\right]
$$

3.2.1 Introducing the Error Term

The random error term is

$$
\begin{equation*}
e=y-E(y)=y-\beta_{1}-\beta_{2} x \tag{3.2.1}
\end{equation*}
$$

Rearranging gives

$$
\begin{equation*}
y=\beta_{1}+\beta_{2} x+e \tag{3.2.2}
\end{equation*}
$$

y is dependent variable; x is independent or explanatory variable

Assumptions of the Simple Linear Regression Model-II

SR1 $y=\beta_{1}+\beta_{2} x+e$
SR2. $\quad E(e)=0 \Leftrightarrow E(y)=\beta_{1}+\beta_{2} x$
SR3. $\operatorname{var}(e)=\sigma^{2}=\operatorname{var}(y)$
SR4. $\quad \operatorname{cov}\left(e_{i}, e_{j}\right)=\operatorname{cov}\left(y_{i}, y_{j}\right)=0$
SR5. The variable x is not random and must take at least two different values.
SR6. (optional) The values of e are normally distributed about their mean

$$
e \sim N\left(0, \sigma^{2}\right)
$$

3．3 Estimating the Parameters for the Expenditure Relationship

3．3．1 \quad The Least Squares Principle
－The fitted regression line is

$$
\begin{equation*}
\hat{y}_{t}=b_{1}+b_{2} x_{t} \tag{3.3.1}
\end{equation*}
$$

－The least squares residual

$$
\begin{equation*}
\text { 埌 }=y_{t}-y_{t}=y_{t}-b_{1}-b_{2} x_{t} \tag{3.3.2}
\end{equation*}
$$

－Any other fitted line

$$
\begin{equation*}
\hat{y}_{t}^{*}=b_{1}^{*}+b_{2}^{*} x_{t} \tag{3.3.3}
\end{equation*}
$$

－Least squares line has smaller sum of squared residuals

$$
\sum \text { 啓 }=\sum\left(y_{t}-y_{t}\right)^{2} \leq \sum \text { 姩 }=\sum\left(y_{t}-y_{t}^{*}\right)^{2}
$$

- Least squares estimates are obtained by minimizing the sum of squares function

$$
\begin{equation*}
S\left(\beta_{1}, \beta_{2}\right)=\sum_{t=1}^{T}\left(y_{t}-\beta_{1}-\beta_{2} x_{t}\right)^{2} \tag{3.3.4}
\end{equation*}
$$

- Math: Obtain partial derivatives

$$
\begin{align*}
& \frac{\partial S}{\partial \beta_{1}}=2 T \beta_{1}-2 \sum y_{t}+2 \sum x_{t} \beta_{2} \\
& \frac{\partial S}{\partial \beta_{2}}=2 \sum x_{t}^{2} \beta_{2}-2 \sum x_{t} y_{t}+2 \sum x_{t} \beta_{1} \tag{3.3.5}
\end{align*}
$$

- Set derivatives to zero

$$
\begin{align*}
& 2\left(\sum y_{t}-T b_{1}-\sum x_{t} b_{2}\right)=0 \\
& 2\left(\sum x_{t} y_{t}-\sum x_{t} b_{1}-\sum x_{t}^{2} b_{2}\right)=0 \tag{3.3.6}
\end{align*}
$$

- Rearranging equation 3.3.6 leads to two equations usually known as the normal equations,

$$
\begin{align*}
& T b_{1}+\sum x_{t} b_{2}=\sum y_{t} \tag{3.3.7a}\\
& \sum x_{t} b_{1}+\sum x_{t}^{2} b_{2}=\sum x_{t} y_{t} \tag{3.3.7b}
\end{align*}
$$

- Formulas for least squares estimates

$$
\begin{gather*}
b_{2}=\frac{T \sum x_{t} y_{t}-\sum x_{t} \sum y_{t}}{T \sum x_{t}^{2}-\left(\sum x_{t}\right)^{2}} \tag{3.3.8a}\\
b_{1}=\bar{y}-b_{2} \bar{x} \tag{3.3.8b}
\end{gather*}
$$

- Since these formulas work for any values of the sample data, they are the least squares estimators.
3.3.2 Estimates for the Food Expenditure Function

$$
\begin{align*}
b_{2}= & \frac{T \sum x_{t} y_{t}-\sum x_{t} \sum y_{t}}{T \sum x_{t}^{2}-\left(\sum x_{t}\right)^{2}}=\frac{(40)(3834936.497)-(27920)(5212.520)}{(40)(21020623.02)-(27920)^{2}} \\
= & 0.1283 \tag{3.3.9a}\\
& \quad b_{1}=\bar{y}-b_{2} \bar{x}=130.313-(0.1282886)(698.0)=40.7676 \tag{3.3.9b}
\end{align*}
$$

A convenient way to report the values for b_{1} and b_{2} is to write out the estimated or fitted regression line:

$$
\begin{equation*}
\hat{y}_{t}=40.7676+0.1283 x_{t} \tag{3.3.10}
\end{equation*}
$$

3.3.3 Interpreting the Estimates

- The value $b_{2}=0.1283$ is an estimate of β_{2}, the amount by which weekly expenditure on food increases when weekly income increases by $\$ 1$. Thus, we estimate that if income goes up by $\$ 100$, weekly expenditure on food will increase by approximately \$12.83.
- Strictly speaking, the intercept estimate $b_{1}=40.7676$ is an estimate of the weekly amount spent on food for a family with zero income

3.3.3a Elasticities

- The income elasticity of demand is a useful way to characterize the responsiveness of consumer expenditure to changes in income. From microeconomic principles the elasticity of any variable y with respect to another variable x is

$$
\begin{equation*}
\eta=\frac{\text { percentage change in } y}{\text { percentage change in } x}=\frac{\Delta y / y}{\Delta x / x}=\frac{\Delta y}{\Delta x} \cdot \frac{x}{y} \tag{3.3.11}
\end{equation*}
$$

- In the linear economic model given by equation 3.1.1 we have shown that

$$
\begin{equation*}
\beta_{2}=\frac{\Delta E(y)}{\Delta x} \tag{3.3.12}
\end{equation*}
$$

- The elasticity of "average" expenditure with respect to income is

$$
\begin{equation*}
\eta=\frac{\Delta E(y) / E(y)}{\Delta x / x}=\frac{\Delta E(y)}{\Delta x} \cdot \frac{x}{E(y)}=\beta_{2} \cdot \frac{x}{E(y)} \tag{3.3.13}
\end{equation*}
$$

- A frequently used alternative is to report the elasticity at the "point of the means" $(\bar{x}, \bar{y})=(698.00,130.31)$ since that is a representative point on the regression line.

$$
\begin{equation*}
\hat{\eta}=b_{2} \cdot \frac{\bar{x}}{\bar{y}}=0.1283 \times \frac{698.00}{130.31}=0.687 \tag{3.3.14}
\end{equation*}
$$

3.3.3b Prediction

Suppose that we wanted to predict weekly food expenditure for a household with a weekly income of $\$ 750$. This prediction is carried out by substituting $x=750$ into our estimated equation to obtain

$$
\begin{equation*}
\hat{y}_{t}=40.7676+0.1283 x_{t}=40.7676+0.1283(750)=\$ 130.98 \tag{3.3.15}
\end{equation*}
$$

We predict that a household with a weekly income of $\$ 750$ will spend $\$ 130.98$ per week on food.

3.3.3c Examining Computer Output

Dependent Variable: FOODEXP				
Method: Least Squares				
Sample: 140				
Included observations: 40				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	40.76756	22.13865	1.841465	0.0734
INCOME	0.128289	0.030539	4.200777	0.0002
R-squared	0.317118	Mean dependent var		130.3130
Adjusted R-squared	0.299148	S.D. dependent var		45.15857
S.E. of regression	37.80536	Akaike info criterion		10.15149
Sum squared resid	54311.33	Schwarz criterion		10.23593
Log likelihood	-201.0297	F-statistic		17.64653
Durbin-Watson stat	2.370373	$\operatorname{Prob}(\mathrm{F}-$ statistic $)$		0.000155

Figure 3.10 EViews Regression Output

Figure 3.11 SAS Regression Output

3.3.4 Other Economic Models

- The "log-log" model $\ln (y)=\beta_{1}+\beta_{2} \ln (x)$
- The derivative of $\ln (y)$ with respect to x is

$$
\frac{d[\ln (y)]}{d x}=\frac{1}{y} \cdot \frac{d y}{d x}
$$

- The derivative of $\beta_{1}+\beta_{2} \ln (x)$ with respect to x is

$$
\frac{d\left[\beta_{1}+\beta_{2} \ln (x)\right]}{d x}=\frac{1}{x} \cdot \beta_{2}
$$

- Setting these two pieces equal to one another, and solving for β_{2} gives

$$
\begin{equation*}
\beta_{2}=\frac{d y}{d x} \cdot \frac{x}{y}=\eta \tag{3.3.16}
\end{equation*}
$$

