The Simple Linear Regression Model: Specification and Estimation

3.1 An Economic Model

• The simple regression function

$$E(y | x) = \mu_{y|x} = \beta_1 + \beta_2 x$$
 (3.1.1)

• Slope of regression line

$$\beta_2 = \frac{\Delta E(y \mid x)}{\Delta x} = \frac{dE(y \mid x)}{dx}$$
(3.1.2)

" Δ " denotes "change in"

3.2 An Econometric Model

Assumptions of the Simple Linear Regression Model-I

• The average value of y, for each value of x, is given by the *linear regression*

 $E(y) = \beta_1 + \beta_2 x$

• For each value of *x*, the values of *y* are distributed about their mean value, following probability distributions that all have the same variance,

 $\operatorname{var}(y) = \sigma^2$

• The values of *y* are all *uncorrelated*, and have zero *covariance*, implying that there is no linear association among them.

$$\operatorname{cov}(y_i, y_j) = 0$$

This assumption can be made stronger by assuming that the values of *y* are all *statistically independent*.

- The variable *x* is not random and must take at least two different values
- (*optional*) The values of *y* are *normally distributed* about their mean for each value of *x*,

$$y \sim N[(\beta_1 + \beta_2 x), \sigma^2]$$

3.2.1 Introducing the Error Term

The random error term is

$$e = y - E(y) = y - \beta_1 - \beta_2 x$$
 (3.2.1)

Rearranging gives

$$y = \beta_1 + \beta_2 x + e \tag{3.2.2}$$

y is dependent variable; x is independent or explanatory variable

Assumptions of the Simple Linear Regression Model-II

- **SR1** $y = \beta_1 + \beta_2 x + e$
- SR2. $E(e) = 0 \iff E(y) = \beta_1 + \beta_2 x$
- SR3. $\operatorname{var}(e) = \sigma^2 = \operatorname{var}(y)$
- SR4. $cov(e_i, e_j) = cov(y_i, y_j) = 0$
- SR5. The variable *x* is not random and must take at least two different values. SR6. (*optional*) The values of *e* are *normally distributed* about their mean $e \sim N(0, \sigma^2)$

3.3 Estimating the Parameters for the Expenditure Relationship

- 3.3.1 The Least Squares Principle
- The fitted regression line is

$$\hat{y}_t = b_1 + b_2 x_t \tag{3.3.1}$$

• The least squares residual

$$e = y_t - y_t = y_t - b_1 - b_2 x_t$$
(3.3.2)

• Any other fitted line

$$\hat{y}_t^* = b_1^* + b_2^* x_t \tag{3.3.3}$$

• Least squares line has smaller sum of squared residuals

$$\sum e^{*}_{t} = \sum (y_{t} - y_{t})^{2} \leq \sum e^{*}_{t} = \sum (y_{t} - y_{t}^{*})^{2}$$

• Least squares estimates are obtained by minimizing the sum of squares function

$$S(\beta_1, \beta_2) = \sum_{t=1}^{T} (y_t - \beta_1 - \beta_2 x_t)^2$$
(3.3.4)

• Math: Obtain partial derivatives

$$\frac{\partial S}{\partial \beta_1} = 2T \beta_1 - 2\sum y_t + 2\sum x_t \beta_2$$

(3.3.5)

$$\frac{\partial S}{\partial \beta_2} = 2\sum x_t^2 \beta_2 - 2\sum x_t y_t + 2\sum x_t \beta_1$$

• Set derivatives to zero

$$2(\sum y_{t} - Tb_{1} - \sum x_{t}b_{2}) = 0$$

$$(3.3.6)$$

$$2(\sum x_{t}y_{t} - \sum x_{t}b_{1} - \sum x_{t}^{2}b_{2}) = 0$$

Undergraduate Econometrics, 2nd Edition – Chapter 3

• Rearranging equation 3.3.6 leads to two equations usually known as the *normal* equations,

$$Tb_1 + \sum x_t b_2 = \sum y_t$$
 (3.3.7a)

$$\sum x_t b_1 + \sum x_t^2 b_2 = \sum x_t y_t$$
 (3.3.7b)

• Formulas for least squares estimates

$$b_{2} = \frac{T \sum x_{t} y_{t} - \sum x_{t} \sum y_{t}}{T \sum x_{t}^{2} - (\sum x_{t})^{2}}$$
(3.3.8a)

$$b_1 = \overline{y} - b_2 \overline{x} \tag{3.3.8b}$$

• Since these formulas work for any values of the sample data, they are the least squares **estimators**.

3.3.2 Estimates for the Food Expenditure Function

$$b_{2} = \frac{T\sum_{x_{t}} x_{t} y_{t} - \sum_{x_{t}} x_{t} \sum_{y_{t}} y_{t}}{T\sum_{x_{t}} x_{t}^{2} - \left(\sum_{x_{t}} x_{t}\right)^{2}} = \frac{(40)(3834936.497) - (27920)(5212.520)}{(40)(21020623.02) - (27920)^{2}}$$

$$= 0.1283$$
(3.3.9a)

$$b_1 = \overline{y} - b_2 \overline{x} = 130.313 - (0.1282886)(698.0) = 40.7676$$
 (3.3.9b)

A convenient way to report the values for b_1 and b_2 is to write out the *estimated* or *fitted* regression line:

$$\hat{y}_t = 40.7676 + 0.1283x_t \tag{3.3.10}$$

Undergraduate Econometrics, 2nd Edition – Chapter 3

3.3.3 Interpreting the Estimates

- The value $b_2 = 0.1283$ is an estimate of β_2 , the amount by which weekly expenditure on food increases when weekly income increases by \$1. Thus, we estimate that if income goes up by \$100, weekly expenditure on food will increase by approximately \$12.83.
- Strictly speaking, the intercept estimate $b_1 = 40.7676$ is an estimate of the weekly amount spent on food for a family with zero income

3.3.3a Elasticities

• The income elasticity of demand is a useful way to characterize the responsiveness of consumer expenditure to changes in income. From microeconomic principles the elasticity of any variable *y* with respect to another variable *x* is

$$\eta = \frac{\text{percentage change in } y}{\text{percentage change in } x} = \frac{\Delta y / y}{\Delta x / x} = \frac{\Delta y}{\Delta x} \cdot \frac{x}{y}$$
(3.3.11)

• In the linear economic model given by equation 3.1.1 we have shown that

$$\beta_2 = \frac{\Delta E(y)}{\Delta x} \tag{3.3.12}$$

• The elasticity of "average" expenditure with respect to income is

$$\eta = \frac{\Delta E(y) / E(y)}{\Delta x / x} = \frac{\Delta E(y)}{\Delta x} \cdot \frac{x}{E(y)} = \beta_2 \cdot \frac{x}{E(y)}$$
(3.3.13)

• A frequently used alternative is to report the elasticity at the "point of the means" $(\overline{x}, \overline{y}) = (698.00, 130.31)$ since that is a representative point on the regression line.

$$\hat{\eta} = b_2 \cdot \frac{\overline{x}}{\overline{y}} = 0.1283 \times \frac{698.00}{130.31} = 0.687$$
 (3.3.14)

3.3.3b Prediction

Suppose that we wanted to predict weekly food expenditure for a household with a weekly income of \$750. This prediction is carried out by substituting x = 750 into our estimated equation to obtain

$$\hat{y}_t = 40.7676 + 0.1283x_t = 40.7676 + 0.1283(750) = \$130.98$$
 (3.3.15)

We *predict* that a household with a weekly income of \$750 will spend \$130.98 per week on food.

3.3.3c Examining Computer Output

Dependent Variable: FOODEXP

Method: Least Squares

Sample: 1 40

Included observations: 40

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	40.76756	22.13865	1.841465	0.0734
INCOME	0.128289	0.030539	4.200777	0.0002
R-squared	0.317118	Mean dependent var		130.3130
Adjusted R-squared	0.299148	S.D. dependent var		45.15857
S.E. of regression	37.80536	Akaike info criterion		10.15149
Sum squared resid	54311.33	Schwarz criterion		10.23593
Log likelihood	-201.0297	F-statistic		17.64653
Durbin-Watson stat	2.370373	Prob(F-statistic)		0.000155

Figure 3.10 EViews Regression Output

Dependent Variable: FOODEXP

Analysis of Variance

Source	DF	Sum o: Square:		F Value	Prob>F
Model Error C Total	1 38 39	25221.22299 54311.33149 79532.55444	5 1429.24556	17.647	0.0002
Root MSE Dep Mean C.V.	13	7.80536 0.31300 9.01120	R-square Adj R-sq	0.3171 0.2991	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP	1	40.767556	22.13865442	1.841	0.0734
INCOME	1	0.128289	0.03053925	4.201	0.0002

Figure 3.11 SAS Regression Output

3.3.4 Other Economic Models

- The "log-log" model $\ln(y) = \beta_1 + \beta_2 \ln(x)$
- The derivative of ln(*y*) with respect to *x* is

$$\frac{d[\ln(y)]}{dx} = \frac{1}{y} \cdot \frac{dy}{dx}$$

• The derivative of $\beta_1 + \beta_2 \ln(x)$ with respect to x is

$$\frac{d[\beta_1 + \beta_2 \ln(x)]}{dx} = \frac{1}{x} \cdot \beta_2$$

• Setting these two pieces equal to one another, and solving for β_2 gives

$$\beta_2 = \frac{dy}{dx} \cdot \frac{x}{y} = \eta \tag{3.3.16}$$

Undergraduate Econometrics, 2nd Edition – Chapter 3