

Vue.js Quick Start Guide

Learn how to build amazing and complex reactive web
applications easily using Vue.js

Ajdin Imsirovic

BIRMINGHAM - MUMBAI

Vue.js Quick Start Guide
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudari
Acquisition Editor: Siddharth Mandal
Content Development Editor: Kirk Dsouza
Technical Editor: Sushmeeta Jena
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Alishon Mendonsa
Production Coordinator: Nilesh Mohite

First published: October 2018

Production reference: 2091118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-410-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Ajdin Imsirovic has been working with frontend technologies, as well as web and print
design, for almost two decades. He is an accomplished video course creator and the author
of Bootstrap 4 Cookbook and Elm Web Development, both by Packt Publishing. In his third
book, Vue.js Quick Start Guide, he eases in the newcomers to the Vue ecosystem in a clear
and concise manner.

I would like to thank my parents for raising me to understand and appreciate the value of
hard work and the value of not giving up.

About the reviewers
Sufyan bin Uzayr is a writer, teacher, and developer with more than 10 years' experience in
the industry. He is an open source enthusiast and specializes in a wide variety of
technologies. He holds four masters' degrees and has authored multiple books.

Sufyan is an avid writer. He regularly writes about topics related to coding, tech, politics,
and sports. He is a regular columnist for various publications and magazines.

Sufyan is the CEO of Parakozm, a software development company catering to a global
clientele. He is also the CTO at Samurai Servers, a web server management company
focusing mainly on enterprise-scale audiences.

In his spare time, Sufyan teaches coding and English to young students.

There are many people that I wish to thank:
Faisal Fareed and Sadaf Fareed, my siblings, for helping with things back home. The team
at Packt, especially Hardik Bhinde, and others, for giving me the opportunity to review
this book. The authors, and the Vue.js community, for all their hardwork and effort.

Andrea Koutifaris has a passion for programming which he likes to say is in his DNA. At
the age of thirteen, he began using his father’s laptop to write his own programs. After
graduating high school he enrolled, without a second thought, at the University of
Florence, Faculty of Computer Engineering. After being a Java developer for some years,
Andrea gradually moved to front-end development which is his passion till date. Having
spent too much time fixing problems in messed up code, he is obsessed with good
programming and test-driven development which, in his opinion, is the only way to write
production quality code. Andrea has authored the book, Vuex Quick Start Guide,
published recently by Packt.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introducing Vue 6
What is Vue? 6

The quickest way to start using Vue2 7
Mustache template example 9
Using Vue's data option as a function 11

What problems does Vue solve? 12
Vue, a jQuery successor 13
A learning tool for beginners 14
A versatile and progressive framework 14
A tool for animations and transitions 14
Features similar to other modern frontend frameworks and libraries 15

Why use Vue? 15
Declarative code 15
Feels like a right fit for a variety of projects 18
Easy-to-understand syntax 18

Directives 18
Modifiers 19
Vue methods 20
Computed properties and watchers 21

Summary 23

Chapter 2: Basic Concepts of Vue 2 24
Data-driven views in Vue 25

What is reactivity? 25
How does Vue achieve this? 26

Computed properties and methods 26
What exactly are these dependencies? 27

Understanding components, templates, and props 29
Adding props and data for better components 31
Adding content to our components with the help of the data object 31
Other ways of building component templates in Vue 34
Building a simple web page out of components 35

Adding simple components to a Vue instance 36
Creating a more complex page out of components in Vue 37
Improving our Vue-based layouts with v-for 40

Watchers in Vue 44
Lifecycle hooks 45

What is a component's lifecycle? 45
How do we use lifecycle hooks? 46

Table of Contents

[ii]

Summary 48

Chapter 3: Working with Vue-CLI, Components, Props, and Slots 49
Vue component hierarchy, and global and local components 49
Using Vue-CLI 53

Installing Git bash 53
Installing nvm 53

Why use nvm? 54
Installing and updating Vue-cli 54
Initializing a new project with Vue-cli 56

Setting up code editors to use with Vue 57
Working with Vue.js in Sublime Text 3 58

Dowloading Sublime Text 3 58
Install Package Manager 58

Working with Vue.js in VS Code 60
Installing VS Code and extensions 60

The structure of our Vue-cli-based project 62
Adding basic functionality to a child component 67
Adding props to our HelloAgain.vue 70

Passing data from children to parent components 72
Introduction to slots 74
Summary 76

Chapter 4: Filters and Mixins 77
Using filters 77

An example of a filter that rounds up student grades 78
Using filters as a replacement for conditional directives 81
Chaining filters in Vue 82

Working with mixins 84
Building a simple app with repetitive functionality in different components 85
Staying DRY with mixins 87
Refactoring our viewportSize mixin 90

Summary 93

Chapter 5: Making Your Own Directives and Plugins 94
Making our own directives 94

Understanding custom directives 94
Building a simple custom directive 96
Using local directives 97
Passing values to custom directives 99

Working with Vue plugins 100
Creating the simplest possible Vue plugin 101
Creating a plugin with options defined 102
Publishing a Vue plugin 106
Adding a simple plugin 106
Installing our NPM plugin in a Vue project using Vue CLI 3 109

Table of Contents

[iii]

Additional plugins to learn from 109
Summary 110

Chapter 6: Transitions and Animations 111
Transitions and animations in CSS 111

How CSS transitions work 112
How CSS animations work 113
Differences between transitions and animations in CSS 114

Rules for CSS transitions 114
Rules for CSS animations 114

The transition element in Vue 115
Setting up the enter transition 117
Setting up the leave transition 118
Naming transition components 120
CSS animations with transition component 121

Custom transition classes 122
Combining transition modes, duration, keys, and v-if 124
Binding CSS styles in Vue 126

Animating a button on click with dynamic CSS classes 128
Working with transition groups 129
JavaScript animation hooks 131
Summary 134

Chapter 7: Using Vuex 135
What is state? 135
State management, data stores, and one-way data flows 136

The Vuex state management pattern 136
The store 138
Getters in the Vuex store 138
Vuex store mutations 139
Actions in Vuex store 139
Hot reloading 140

Building a fruit counter app with Vuex 140
Using the Vue DevTools plugin to track our Vuex state 142
Improving our fruit counter app 143
Summary 146

Chapter 8: Using Nuxt.js and Vue-Router 147
Single-page applications and server-side rendering 147
Installing Nuxt.js and previewing the default project 149

Installing Nuxt.js with the vue init command 149
Debugging an eslint error 150
Installing with create-nuxt-app 151
Editing the index.vue file 153

Nuxt pages as routes 154
Adding navigation to Nuxt apps via the components folder 155

Table of Contents

[iv]

Adding content to our Nuxt app's pages 157
Adding page transitions to our Nuxt.js app 160
Summary 162

Other Books You May Enjoy 163

Index 166

Preface
Up until a few years ago, direct DOM manipulation was the standard in frontend
development, with jQuery leading the way. All that started changing with the
popularization of modern JavaScript libraries and frameworks, mainly Angular and React.
And then, in February of 2014, Vue came out with its initial release.

With large IT companies backing both Angular and React, it was not clear how Vue would
carve out its position. Initially developed by a single developer, Evan You, in four short
years—and without corporate backing—Vue went from being the fun little project of a
single developer to an unlikely rival to the big boys, with over 300 contributors. It's not a
one-man show anymore.

Today, Vue is used by NASA, GitLab, Alibaba, Grammarly, WizzAir, EuroNews, Xiaomi,
Adobe, Behance, Nintendo, Chess.com, and many others.

Conclusion? Vue is here to stay. And while there might be an on-going discussion about
whether it's better to learn Elm, or React, or Angular, or Ember, or something entirely
different, this discussion is largely irrelevant. Each library and framework has something to
offer, and in the end, it's simply a matter of trying it out and seeing whether it works for
you.

We developers need to embrace the necessity to surf the technology wave and accept that
learning new frameworks and paradigms is simply a part of our careers. Therefore, the
question is not whether we should learn Vue, or any other battle-tested and proven tech out
there.

Vue has already achieved its ranking, and it's playing in the same league with the big boys.
The only question is, How do I learn it efficiently? and this book is an attempt to answer that
question.

Who this book is for
This book is aimed at beginner-to-intermediate frontend web developers with no prior
experience with Vue or other VDOM JavaScript libraries. It would be beneficial for readers
to have some JavaScript and CSS knowledge. It is aimed at quickly bringing the reader up
to speed regarding just how exactly Vue is set up and how its moving parts work together.
It is meant to give you an overview of almost the entire Vue landscape, succinctly, and with
lots of examples.

Preface

[2]

The goal of this book is simple – to quickly and efficiently introduce you to Vue and to ease
you into the framework without a major investment of time and energy. The intended
result is for you to have a huge return on investment – to gain enough practical knowledge
of the framework that by the time you've read the book, which should not take long, you
are confident to tackle some more advanced Vue projects and concepts.

What this book covers
Chapter 1, Introducing Vue, discusses what Vue is and gets started with mustache
templates. We look at problems that Vue solves and reasons to use Vue.

Chapter 2, Basic Concepts of Vue 2, discusses reactivity, computed properties, and methods.
We also introduce components, templates, props, watchers, and life cycle hooks.

Chapter 3, Working with Vue-CLI, Components, Props, and Slots, shows how to install vue-cli
and how to set up code editors to work with Vue more effectively. We inspect the structure
of a vue-cli-based project, look at how to add basic functionality to a child component, and
look at passing data from children to parent components.

Chapter 4, Filters and Mixins, describes how to use filters. We look at syntax, use cases, and
some examples. We also examine working with mixins.

Chapter 5, Making Your Own Directives and Plugins, looks at ways to extend Vue by making
our own, custom directives. We also build our own plugin from scratch and learn how to
publish it via npm.

Chapter 6, Transitions and Animations, takes the reader step by step from comparing CSS
transitions with CSS animation to understanding the differences between them and how to
start integrating them with Vue. We then discuss a myriad of ways to organize transitions
and animations in Vue—with transition and transition-group components, with transition
hooks as CSS classes, with named transition hooks, and with JavaScript transition hooks.

Chapter 7, Using Vuex, shows the reader, from the ground up, just exactly what state is and
why it's important. It also explains the reasons to have the store – the centralized state – and
how its internals work. We also tinker with some code examples of controlling our apps
from this centralized store.

Chapter 8, Using Nuxt.js and Vue-Router, describes how SPAs work, what issues they have,
and how these issues can be overcome with server-side rendering and code splitting. We
then see how to build a very simple Nuxt.js app with a few pages, and some added
transitions.

Preface

[3]

To get the most out of this book
This book will work for you best if you can do the following:

Code basic HTML, CSS, and JavaScript
Understand in general how the internet and browsers work
Have some experience working with code editors and console programs
Are willing to download examples (or fork them from CodePen)

The JavaScript code in this book is mostly written in ES5, but as the book progresses,
sometimes ES6 has sneaked in. The reason for using ES5 is because it is not assumed that
the reader understands ES6 syntax. Likewise, it is not assumed that readers have not used it
before—hence, a compromise was made: not to focus on the features of ES6, but not to
completely disregard them either. It is the author's humble opinion that this approach will
shift the focus to where it matters: understanding Vue.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Vue. js- Quick- Start- Guide. In case there's an update to the code, it will
be updated on the existing GitHub repository.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide
https://github.com/PacktPublishing/Vue.js-Quick-Start-Guide

Preface

[4]

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it
here: https://www.packtpub.com/sites/default/files/downloads/9781789344103_Color
Images.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

...
data: {
 // the model goes here
}
...

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

div,.thetemplate {
 font-size: 30px;
 padding: 20px;
 color: limegreen;
 font-family: Arial;

Any command-line input or output is written as follows:

cd quickstart-vue

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789344103_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789344103_ColorImages.pdf

Preface

[5]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introducing Vue

In this chapter, we will look into how to start learning Vue 2. This chapter will show you
the easiest way to get started quickly and how to keep track of your progress easily with
the help of the available SaaS platforms.

We will also look at why Vue is getting so popular, and why we should use it.

Furthermore, we'll discuss the basic building blocks of Vue: mustache templates, directives,
modifiers, methods, and computed properties.

Along the way, we will look at a number of practical examples. Let's begin by looking at
just what exactly Vue is.

In this chapter, we will take a look at the following topics:

What is Vue?
What problems does Vue solve?
Why use Vue?

What is Vue?
Vue is a simple and easy-to-use JS framework which appeared in 2013. It is the successful
result of taking some excellent ideas from Angular and React and combining them in an
easy-to-use package.

Compared with other popular frontend frameworks, Vue comes out on top for simplicity
and ease of use.

Let's see how we can start using it.

Introducing Vue Chapter 1

[7]

The quickest way to start using Vue2
In the last decade, a lot of the tools for web development have moved to the web, so let's go
with the flow and start a new pen on http:/ /codepen. io/ .

You don't have to be a member of https:/ /codepen. io/ to create pens
there—you can just save them with the blanket username Captain
Anonymous. However, it's better to open an account so you have all your
experiments in one place.

Once you navigate your browser to https:/ / codepen. io, you'll be greeted with the
following screen:

Click on the Create dropdown (in the main navigation, in the top-right area of the screen),
and then click New Pen. Once you do, you will see the default editor setup:

http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io
https://codepen.io
https://codepen.io
https://codepen.io
https://codepen.io
https://codepen.io
https://codepen.io

Introducing Vue Chapter 1

[8]

Next, click the Settings button in the top right of the screen, and in the popup that appears
choose JavaScript:

Introducing Vue Chapter 1

[9]

Next, in the Quick-add drop-down field, select the Vue option. Once you do, the first input
will be filled out with the current minified version of Vue which is served from the
Cloudflare CDN, or, more specifically, from this link: https:/ /cdnjs. cloudflare. com/
ajax/libs/vue/2. 5. 13/ vue. min. js.

That's it! We're ready to start using Vue2 in our Codepen project.

One thing to understand about Vue is that it makes our HTML dynamic. This is achieved
by adding mustache syntax. This syntax is very easy to understand. We simply insert it
inside an HTML element. For example, we can add mustache syntax to an h1 tag like this:

<h1>{{ heading1 }}</h1>

So, let's go over how this works in detail. Feel free to work on your own pen or see the
example here: https:/ /codepen. io/ AjdinImsirovic/ pen/ rKYyvE.

Mustache template example
Let's begin working with our first pen:

<div id="entryPoint">
 <h1>Just an h1 heading here</h1>
 <h2>Just an h2 heading here</h2>
 <p>Vue JS is fun</p>
</div>

We can now see our HTML being rendered in the CodePen preview pane, with the
following text printed on the screen:

Just an h1 heading here
Just an h2 heading here
Vue JS is fun

Note that the CodePen app will often update the preview pane even
without saving, which is a lot better than refreshing the browser—that
must be done when working on your projects locally. Still, it is good to
save your CodePen projects often, to not lose any changes (in the odd case
of your browser freezing or something else out of the ordinary
happening).

Next, let's add the following Vue code to the JS pane inside our pen:

new Vue({
 el: '#entryPoint',
 data: {

https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.13/vue.min.js
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE
https://codepen.io/AjdinImsirovic/pen/rKYyvE

Introducing Vue Chapter 1

[10]

 heading1: 'Just an h1 heading here',
 heading2: 'heading 2 here',
 paragraph1: 'Vue JS'
 }
})

Finally, let's update the HTML so that the Vue code can work its magic:

<div id="entryPoint">
 <h1>{{ heading1 }}</h1>
 <h2>Just an {{ heading2 }}</h2>
 <p>{{paragraph1}} is fun</p>
</div>

In the previous code example, we can see how we use mustache templates to dynamically
insert data into our HTML.

Mustache templating is achieved by simply passing the keys of our data
object into our HTML tags and surrounding the keys with the opening {{
and closing }} tags.

As mentioned before, CodePen will auto-update the preview pane, but this will not affect
the preview since we are effectively producing the same output as we did when we were
using just plain HTML.

Now we can play with it simply by changing the key-value pairs inside our data entry:

new Vue({
 el: '#entryPoint',
 data: {
 heading1: 'This is an h1',
 heading2: 'h2 heading',
 paragraph1: 'Vue2'
 }
})

This time, the output will auto-update to this:

This is an h1
Just an h2 heading
Vue2 is fun

Introducing Vue Chapter 1

[11]

We can also change our entry point. For example, we can have Vue access only the p tag:

new Vue({
 el: 'p',
 data: {
 heading1: 'This is an h1',
 //heading2: 'h2 heading',
 paragraph1: 'Vue2'
 }
})

After this change, our preview pane will show the following:

{{ heading1 }}
Just an {{ heading2 }}
Vue2 is fun

From this output, we can conclude that our mustache templates will be rendered in our
HTML output as regular text if either of the following things happen:

Our entry point does not reference the data
The entry in our data does not exist

We've also seen how our entry point can be any kind of selector. You can think of it as
being similar to how you can target different elements in jQuery.

For example, we could have a more complex selector as our app's entry point:

new Vue({
 el: 'div#entryPoint',
 data: {
 heading1: 'This is an h1',
 heading2: 'h2 heading',
 paragraph1: 'Vue2'
 }
})

Using Vue's data option as a function
Note that the data option of our Vue instance can be either an object or a function. An
example of data as an object can be seen in the previous code. Using data as a function is
easy as well.

Introducing Vue Chapter 1

[12]

Data as an object doesn't work well with reusable components. For this
reason, using data as a function is, generally speaking, a more useful way
to use the data option in Vue.

Let's see another pen. This time, we'll use the data option as a function, instead of as an
object. The pen is available here: https:/ / codepen. io/AjdinImsirovic/ pen/ aKVJgd. The
only change we'll make is in our Vue code:

new Vue({
 el: '#entryPoint',
 data() {
 return {
 heading1: 'Just an h1 heading here',
 heading2: 'heading 2 here',
 paragraph1: 'Vue JS data as a function'
 }
 }
})

Now that we're familiar with the very basics of Vue syntax, let's look at what it can be used
for.

What problems does Vue solve?
Without trying to make an extensive list, let's quickly highlight some of Vue's greatest
strengths:

Vue—a jQuery successor?
Vue is a great learning tool for beginners
Vue is a versatile and progressive framework
Vue is an awesome tool for animations and interactions
Vue's approach is similar to other modern frontend frameworks and libraries

Next, let's briefly go over each of these points.

https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd
https://codepen.io/AjdinImsirovic/pen/aKVJgd

Introducing Vue Chapter 1

[13]

Vue, a jQuery successor
The famous jQuery library appeared in 2006. When it came out, it did a few things
beautifully:

It made writing cross-browser JavaScript a lot easier, which was a big plus at the
time since it dramatically decreased the need for developers to mess with various
browsers' quirks and inconsistencies
It had a simple syntax that made it easier to target and manipulate specific DOM
nodes, which is beautifully phrased in their motto write less, do more
It was an excellent entry point to learning JavaScript in general
It had a great API that made working with Ajax simple and easy

However, a lot has changed since then—for the better.

Arguably, the biggest improvement that happened in JavaScript-land between 2006 and
today is the virtual DOM.

The virtual DOM was a paradigm shift: we no longer had to write
procedural, spaghetti JS to instruct the browser on how to traverse and
manipulate the DOM. Instead of telling the browser how to update the
DOM, we can now simply tell it what to update. Or, to be more specific,
we tell a framework what to update—a framework like View or React. The
actual implementation of the virtual DOM is framework-specific and not
really something to be concerned with at this point.

We can now work with the DOM indirectly, by using declarative code that deals with the
virtual DOM implementation of the underlying framework. This abstraction is the one
thing that more or less made jQuery redundant.

Of course, since so many apps are still powered by jQuery and since legacy code has a
tendency to stick around, jQuery will be alive and well in the years to come.

However, the paradigm shift in the way we think about DOM manipulation makes Vue a
strong contender to jQuery's throne as the most popular game in town.

Vue also has other advantages: it is an excellent starting point to learn present-day frontend
development. The barrier to entry is really low.

Introducing Vue Chapter 1

[14]

A learning tool for beginners
If a jQuery developer was faced with the option of learning either of the modern frontend
frameworks/libraries, React, Angular, Vue, Ember... which one would probably be the
easiest to get started with?

Vue, of course!

As we've seen already, getting started with Vue can be as simple as importing a CDN. And
since we humans are wired to thrive on small, frequent victories, Vue seems to be the
happy route to take. This is not to say that a developer should not try to learn other
frontend frameworks too. It just seems that Vue is the easiest way to get started and the
best way to get productive quickly.

A versatile and progressive framework
The official website for Vue JS says that Vue is the Progressive JavaScript Framework. This
means you can add Vue to an existing server-side project incrementally. Basically, you can
add Vue to just one simple section of your website. No wonder Laravel chose to bundle
with Vue on its frontend.

But you don't have to settle for only sprinkling Vue in here and there. You can also extend
it using Vuex and Vue-Router. This makes Vue very versatile and usable in a number of
different scenarios.

A tool for animations and transitions
If you need to make high-performance animations and transitions, look no further than
Vue! Vue's animations API is very easy to understand and it's a joy to use. It is so easy to do
animations in Vue that you will be amazed at how much you can accomplish in a very
short time.

Introducing Vue Chapter 1

[15]

Features similar to other modern frontend
frameworks and libraries
Just like other modern frontend frameworks, such as React and Angular, Vue has the
following:

Virtual DOM
A command-line interface (Vue-cli)
State management (Vuex)
Routing (Vue-Router)

However, it seems that Vue's core team is going out of their way to make Vue as
approachable as possible. This is evident in several examples:

The effort they've put in to avoid the hassle of setting up Vue-cli, which makes it
very easy to get started with
The lack of complicated toolchains
The simplicity of Vue's API

Like the official project's website states, Vue is approachable, versatile, and performant.

Why use Vue?
We have discussed the problems that Vue solves in the previous section. In this section, we
will look at practical examples of why it is a pleasure to work with:

Declarative code (we tell Vue what to do, not how to do it)
Easy to understand syntax (it's as minimal as it can get)
Feels like a right fit for a variety of projects

Declarative code
Let's compare vanilla JavaScript code with Vue JavaScript code.

For this example, we'll print out members of an array.

Introducing Vue Chapter 1

[16]

In vanilla JavaScript, this will be the code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Document</title>
 <style>
 .list-item {
 background: white;
 color: gray;
 padding: 20px;
 margin: 20px;
 }
 </style>
</head>
<body>
 <script>
 var arr1 = ['a','b','c'];
 var unorderedList = document.createElement('ul');
 unorderedList.style.cssText = "background:tomato; width:
 400px;height:400px";
 document.body.appendChild(unorderedList);
 for (var i=0; i<3; i++) {
 var listItem = document.createElement('li');
 listItem.className = "list-item";
 unorderedList.appendChild(listItem);
 listItem.innerHTML = arr1[i];
 }
 </script>
</body>
</html>

In this file, the focus should be on the code inside the script tags.

You can see this example in the form of a pen at this URL: https:/ / codepen. io/
AjdinImsirovic/pen/ xzPdxO.

There are several things that we are doing in this code:

We are setting array1, which will later populate the list items we will create1.
dynamically
We are creating a ul—an unordered list element that will wrap all our list items2.
(all our li elements)
We are setting the styles for our ul3.

https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO
https://codepen.io/AjdinImsirovic/pen/xzPdxO

Introducing Vue Chapter 1

[17]

We are appending unorderedList to the body of our document4.
Next, we use a for loop to create three li elements5.
Still inside the for loop, we add a class to each list item6.
We then append each of them to the unordered list element7.
Finally, we add innerHTML to each list item 8.

Many objections could be made to the way that this code is made. We could have used a
forEach; we could have avoided adding styles the way we did and instead called the CSS
from a separate file. But the biggest objection is how fragile this code is. Let's contrast this
code with the same thing written in Vue.

In Vue, our code will look like this:

<!-- HTML -->

 <li v-for="entry in entries">
 {{ entry.content }}

// JS
var listExample = new Vue ({
 el: "ul",
 data: {
 entries: [
 { content: 'a'},
 { content: 'b'},
 { content: 'c'}
]
 }
})

The code for this example can be found here: https:/ /codepen. io/AjdinImsirovic/ pen/
VdrbYW.

As we can see at just a simple glance, Vue's code is a lot easier to understand and reason
about in comparison to the same code implemented in vanilla JavaScript.

The el here is the entry point for our Vue app. The data option is the
actual data our Vue app will work with.

https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW
https://codepen.io/AjdinImsirovic/pen/VdrbYW

Introducing Vue Chapter 1

[18]

There's also another major benefit to this setup: once you understand how Vue works, any
other project that uses Vue will simply make sense to you, which will yield increased
productivity and efficiency.

The Vue way of doing things thus promotes being faster and doing more things in less
time.

Feels like a right fit for a variety of projects
One of the strengths of Vue is the possibility of incremental implementation. If you would
just like to make a quick, simple experiment in Vue, no problems. You can start with Vue in
under a minute, literally.

This makes it great for converting legacy projects, building projects from scratch, or for
simple experiments.

Vue is also maturing quickly. There is a vibrant Vue community and a lot of developers are
working on it continuously. For example, one of the arguments for people to choose React
over Vue was the lack of a framework to build native mobile apps in Vue. That's no longer
the case: Vue Native is available as of June 2018. You can check it out at https:/ /github.
com/GeekyAnts/vue- native- core, or find out more about it at https:/ / vue-native. io/.

With all of this in mind, there are plenty of reasons why learning Vue is a nice return on
investment for anyone, especially frontend developers.

Easy-to-understand syntax
One thing that can be noticed in this example of a very simple Vue app is the use of the v-
for HTML attribute.

Directives
All the v-* attributes in Vue are called directives, which is borrowed from Angular.

The concept of directives is very interesting. They make code easier to understand, easier to
think about, and easier to work with.

There are other directives in Vue that we will use extensively throughout this book. For
now, let's just list some of them: v-bind, v-cloak, v-for, v-else, v-else-if, v-model,
v-on, v-once, v-text, and v-html.

https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://github.com/GeekyAnts/vue-native-core
https://vue-native.io/
https://vue-native.io/
https://vue-native.io/
https://vue-native.io/
https://vue-native.io/
https://vue-native.io/
https://vue-native.io/
https://vue-native.io/
https://vue-native.io/
https://vue-native.io/

Introducing Vue Chapter 1

[19]

An example of a useful directive is v-model. The v-model directive is used to make forms
reactive; it helps us update data on user input events. While this topic might sound a bit
advanced to a beginner in Vue, this complexity is dealt with so elegantly that even
beginners should find it easy to see what is happening in the code:

<!-- HTML -->
<div id="app">
 Enter the weight in kilograms:
 <input v-model="someNum" type="number">
 <div>The weight in pounds is: {{ someNum * 2.20 }}</div>
</div>

// js
new Vue({
 el: '#app',
 data() {
 return {
 someNum: "1"
 }
 }
})

As you can see, the {{ someNum }} value is bound to whatever a user types into the input
field. In other words, the underlying data model—the value of someNum—will change
based on user input.

To view the pen for the preceding example, visit https:/ / codepen. io/ AjdinImsirovic/
pen/pKdPgX.

Modifiers
The directives in Vue are further extended with the help of modifiers.

The link to official documentation on modifiers in directives can be found at this
link: https://vuejs. org/ v2/ guide/ forms. html#Modifiers.

To use a modifier, we simply append it to a directive. The simplest possible example might
look a bit like this:

<!-- HTML -->
<div>
 <input v-model.trim="userInput" placeholder="type here">
 <p>You have typed in: {{ userInput }}</p>
</div>

https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://codepen.io/AjdinImsirovic/pen/pKdPgX
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers
https://vuejs.org/v2/guide/forms.html#Modifiers

Introducing Vue Chapter 1

[20]

// js
new Vue({
 el: 'div',
 data() {
 return {
 userInput: ""
 }
 }
})

We have just appended the trim modifier to the v-model directive.

You can view the example for this code at this link: https:/ /codepen. io/AjdinImsirovic/
pen/eKeRXK.

This modifier will trim any whitespace (such as spaces or tabs) typed into the input field by
the user.

Before continuing with this 10,000-foot overview of Vue syntax, let's also mention the v-on
directive, which is used for event handling. Here is a quick example:

<!-- HTML -->
<div id="example-1">
 <button v-on:click="counter += 1">Add 1</button>
 <p>The button above has been clicked {{ counter }} times.</p>
</div>

// JS
var example1 = new Vue({
 el: '#example-1',
 data: {
 counter: 0
 }
})

Vue even provides shortcut syntax for v-on: the @ symbol. Thus, we can replace v-
on:click with just @click and our Vue counter will still work.

To view this example in http:/ / codepen. io/, visit the following URL: https:/ /codepen.
io/AjdinImsirovic/ pen/ PaOjvz.

Vue methods
The methods option in a Vue instance just lists all the functions that exist on that Vue
instance (or on a Vue component).

https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
https://codepen.io/AjdinImsirovic/pen/eKeRXK
http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
http://codepen.io/
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz
https://codepen.io/AjdinImsirovic/pen/PaOjvz

Introducing Vue Chapter 1

[21]

The methods option works with the data of the Vue instance. What follows is a simple
demonstration of this concept in practice:

// HTML
<div id="definitions">
 <!-- 'whatIsVue' and 'whyUseVue' are functions defined in the 'methods'
option in the Vue instance -->
 <button id="btn" v-on:click="whatIsVue">What is Vue?</button>
 <button id="btn" v-on:click="whyUseVue">Why use Vue?</button>
</div>

// JS
var definitions = new Vue({
 el: '#definitions',
 data: {
 name: 'Vue.js'
 },
 // define methods (functions) under the `methods` object
 methods: {
 whatIsVue: function () {
 console.info(this.name + ' is a Progressive Front-end Framework')
 },
 whyUseVue: function () {
 alert('Because ' + this.name + ' is nice.')
 }
 }
})

As we can see, the data option holds the Vue.js string, which can be accessed via the
name key.

Inside the methods option, we can see two functions: whatIsVue and whyUseVue. The
whatIsVue function takes the click event and logs out the value inside name to the console.
The whyUseVue function inside the methods option works similarly.

This code can be seen in a pen at this address: https:/ /codepen. io/AjdinImsirovic/ pen/
yEPXdK.

Computed properties and watchers
Computed properties are used to avoid complex logic adding bloat to your views. In other
words, computed properties are useful to hide the complexity from our HTML and thus
keep our HTML understandable, easy to use, and declarative. Put differently, when we
need to compute some values from the data option, we can do that with the help of
computed properties.

https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111
https://codepen.io/AjdinImsirovic/pen/yEPXdK?editors=1111

Introducing Vue Chapter 1

[22]

The full code for the following example can be seen at https:/ /codepen. io/
AjdinImsirovic/pen/ WyXEOz:

<!-- HTML -->
<div id="example">
 <p>User name: "{{ message }}"</p>
 <p>Message prefixed with a title: "{{ prefixedMessage }}"</p>
</div>

// JS
var example = new Vue({
 el: '#example',
 data: {
 userName: 'John Doe',
 title: ''
 },
 computed: {
 // a computed getter
 prefixedMessage: function () {
 // `this` points to the Vue instance's data option
 return this.title + " " + this.userName
 }
 }
})

Computed properties are cached. As long as a computed property's
dependencies do not change, Vue will return the cached value of the
computed property.

Watchers are not as frequently used as computed properties are. In other words, the watch
option is to be used less frequently than the computed properties option. Watchers are
commonly used for asynchronous or otherwise costly operations with changing data.

Watchers have to do with reactive programming; they allow us to observe a sequence of
events through time and react to changes as they happen on a certain data property.

We will cover the subject of computed properties and watchers in later chapters. For now, it
is sufficient to know that they exist in Vue and that they are widely used.

https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz
https://codepen.io/AjdinImsirovic/pen/WyXEOz

Introducing Vue Chapter 1

[23]

Summary
In this chapter, we looked at how to get started with Vue quickly, with the help of
codepen.io. We also discussed some of the most important ideas and concepts in Vue, such
as the quickest and most developer-friendly way to start learning Vue 2. We looked into
what problems Vue solves, what its strengths are, and why it is sometimes referred to as the
new jQuery. We learned about mustache templates, Vue's declarative code, and its easy-to-
understand syntax. Finally, we introduced directives, modifiers, methods, computed
properties, and watchers.

In the next chapter, we will see what reactive programming is and how it is applied in Vue.
We will also look at further expanding the concepts covered in this chapter, and we will
introduce some additional features of Vue.

http://codepen.io

2
Basic Concepts of Vue 2

In this chapter, we will discuss data-driven views in Vue. We will also examine how DOM
is manipulated with the help of directives. Next, we'll learn what components are and how
to create them, and we'll cover concepts related to templates, methods, data, computed
properties, and watchers.

All components have a life cycle, and we have special methods to access a component at
certain points of its life. These methods are called lifecycle hooks, and we'll examine them
in this chapter too.

In this chapter, we will learn about the following:

Data-driven views in Vue
Computed properties and methods and how to use them
Understanding components, templates, and props
Ways of building component templates in Vue
Quickly prototyping websites with the help of Vue components and v-*
directives
Utilizing watchers in Vue
The importance of lifecycle hooks and how to plug into this functionality in Vue

Basic Concepts of Vue 2 Chapter 2

[25]

Data-driven views in Vue
Data-driven views in Vue are achieved with the help of reactivity.

What is reactivity?
To grasp the concept better, let's look at an example code in which there is no reactivity. We
will use an example that is very similar to the one we had in the previous chapter, when we
were comparing Vue and vanilla JS. In the original example, using JavaScript, we created
an unordered list and three list items inside of it. The values of the three list items were
added from an array we declared, and the unordered list was populated with these list
items using a for loop.

This time, we will do something slightly different. To see the example as a pen,
visit https://codepen. io/ AjdinImsirovic/ pen/ JZOZdR.

In this non-reactive example, we are predefining the members of the array as variables.
Then we populate the array with those variables and print them to the screen as list items
of an unordered list that gets appended to the document:

var a = 1;
var b = a + 1;
var c = b + 2;
var arr1 = [a,b,c];
var unorderedList = document.createElement('ul');
document.body.appendChild(unorderedList);
for (var i=0; i<3; i++) {
 var listItem = document.createElement('li');
 listItem.className = "list-item";
 unorderedList.appendChild(listItem);
 listItem.innerHTML = arr1[i];
}
arr1[0] = 2;
for (var i=0; i<3; i++) {
 var listItem = document.createElement('li');
 listItem.className = "list-item";
 unorderedList.appendChild(listItem);
 listItem.innerHTML = arr1[i];
}

https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR
https://codepen.io/AjdinImsirovic/pen/JZOZdR

Basic Concepts of Vue 2 Chapter 2

[26]

However, what happens when we change a member of the array and repeat the for loop a
second time? As we can see in the pen, the first and the fourth list items are different. The
first value is 1, and the second value is 2. To make it more obvious, these items are in bold
red text and have a gray background. The first value is the initial value of var a. The
second value is the value of var a, updated with this line of code: arr1[0] = 2.

However, the values of variables b and c are not updated in the second for loop, even
though we defined variables b and c in terms of variable a increased by 1 and 2,
respectively.

So, we can see that there is no reactivity in JavaScript out of the box.

As far as Vue is concerned, reactivity is the term that is used to refer to the way in which
Vue tracks changes. In other words, reactivity is the way in which changes in state are
reflected in the DOM. Practically, this means that when a change is made to data, that
change will be propagated to the page so that the user can see it. Therefore, saying that Vue
is reactive is the same as saying Vue tracks changes. As a concept, it's as simple as that.

How does Vue achieve this?
Vue stores its data in the data option, which is either a function or an object:

...
data: {
 // the model goes here
}
...

Any change in the data model is reflected in the view (on the screen). Vue achieves this
reactivity with the help of getters and setters. When the data object is received by the Vue
instance, all the properties of the data object will be updated as getters and setters. This is
done with the help of the Object.defineProperty API.

Computed properties and methods
The usefulness of reactivity in Vue can be described in terms of the difference between
computed properties and methods.

As we mentioned earlier, a Vue instance can have either computed properties, methods, or
both computed properties and methods. So, what is the difference between the two?

Basic Concepts of Vue 2 Chapter 2

[27]

Methods are simply run every time they are called. On the other hand, computed
properties are cached, meaning they are only run when the underlying data model changes.
This is often described in terms of computed property dependencies. Also, methods can
have parameters, whereas computed properties cannot.

What exactly are these dependencies?
Consider this simple Vue app, available as a pen at this link: https:/ /codepen. io/
AjdinImsirovic/pen/ qKVyry.

This is the code of the simple app:

<!--HTML-->
<div id="example">
 <p>Enter owner name and the thing that is owned:
 <input v-model="ownerName" placeholder="enter owner">
 <input v-model="thing" placeholder="enter thing">
 </p>
 {{ ownerName }}
 has a
 {{ thing }}
</div>

// JS
var example = new Vue({
 el: '#example',
 data: {
 ownerName: 'e.g Old McDonald',
 thing: 'e.g cow'
 },
 computed: {
 // a computed getter
 ownerHasThing: function () {
 // `this` points to the Vue instance's data option
 return this.ownerName + " " + this.thing
 }
 }
})

This code will result in this output on the screen:

https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry

Basic Concepts of Vue 2 Chapter 2

[28]

First off, we can see that there is this weird has a line of text in the view. This problem here
is that we have not used our ownerHasThing computed property. In other words, these
three lines in HTML are completely redundant:

{{ ownerName }}
 has a
{{ thing }}

Also, what if we wanted to run a computed property only after both the input fields have
been filled out and the focus has been moved out of the inputs or the Enter key was
pressed?

This might seem like a relatively complex thing to achieve. Luckily, in Vue it is very easy.

Let's look at the updated code (also available as a pen here: https:/ /codepen. io/
AjdinImsirovic/pen/ aKVjqj):

<!--HTML-->
<div id="example">
 <p>Enter owner name:
 <input v-model.lazy="ownerName" placeholder="enter owner">
 </p>
 <p>Enter thing owned:
 <input v-model.lazy="thing" placeholder="enter thing">
 </p>
 <h1 v-if="ownerName && thing">{{ ownerHasThing }}</h1>
</div>

The JavaScript code is only slightly different:

var example = new Vue({
 el: '#example',
 data: {
 ownerName: '',
 thing: ''
 },
 computed: {
 // a computed getter
 ownerHasThing: function () {
 // `this` points to the Vue instance's data option
 return this.ownerName + " has a " + this.thing
 }
 }
})

https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj
https://codepen.io/AjdinImsirovic/pen/aKVjqj

Basic Concepts of Vue 2 Chapter 2

[29]

We can conclude from this that computed properties are simply data dependencies that
have some computations performed on them. In other words, ownerHasThing is a
computed property, and its dependencies are ownerName and thing.

Whenever ownerName or thing are changed, the ownerHasThing computed property will
update as well.

However, the ownerHasThing will not update always, since it is cached. Contrary to this, a
method will always update; that is, it will always be run, regardless of whether the data
model has changed or not.

This might not seem like a very important difference, but consider a situation in which your
method needs to fetch data from a third-party API or it has a lot of code to run. This might
slow things down, and that's why in such cases, using computed properties is the way to
go.

Before we conclude this section, let's quickly go over the code in the previous example.

In HTML, we are using v-model.lazy. The lazy modifier waits for the user to either click
outside of the input or press the Enter key on their keyboard, or otherwise leave the input
field (such as by pressing the Tab key).

Still in HTML, we are also using the v-if directive, and we give it ownerName && thing.
Then, we add mustache templates: {{ ownerHasThing }} . The v-if directive will wait
until both ownerName and thing are updated in the data object. So, once that both inputs
are filled out and no longer in focus, does the computed property update the underlying
data model, and only then is the {{ ownerHasThing }} message printed on the screen.

In the next section, we'll look at how we can work with templates and components.

Understanding components, templates, and
props
To begin, let's look at how to make a component in Vue. First, we specify the component,
like this:

Vue.component('custom-article', {
 template: `
 <article>
 Our own custom article component!
 </article>`
})

Basic Concepts of Vue 2 Chapter 2

[30]

new Vue({
 el: '#app'
})

A component is a block of code that we give a custom name. This custom name can be
anything we come up with, and it's a single label for that entire block of code in the form of a
custom HTML tag. In the previous example, we grouped the article and span tags and
gave that custom tag the name of custom-article.

Components are named using kebab-case.

The code for this component is available as a Codepen at https:/ /codepen. io/
AjdinImsirovic/pen/ xzpOaJ.

Now, to create an instance of our component, we simply use our <custom-
article> opening and closing tags in our HTML, like this:

<main id="app">
 <custom-article></custom-article>
</main>

Our custom-article component is referred to as the child component.

The parent is the actual Vue instance.

Note that you can use string templates even without a component. You simply add the
template option to your Vue instance, like this:

//HTML
<main id="app"></main>
//JS
new Vue({
 el: '#app',
 template: '<article>A string template without a
component!</article>'
})

The example code for the previous example is available here: https:/ /codepen. io/
AjdinImsirovic/pen/ RJxMae.

Next, we'll see how we can improve our component with the help
of the props and data options.

https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae
https://codepen.io/AjdinImsirovic/pen/RJxMae

Basic Concepts of Vue 2 Chapter 2

[31]

Adding props and data for better components
To make our custom-article component more useful, we'll add a props option to it, like
this:

Vue.component('custom-article', {
 props: ['content'],
 template: '<article>{{content}}</article>'
})
new Vue({
 el: '#app'
})

Props are a way to pass the data from the parent to the child. They are one-way flows of
data between the parent and the child. Props are always defined as an array.

The code for the previous example is available here: https:/ /codepen. io/
AjdinImsirovic/pen/ KeZNPr.

We have registered a prop in our component, and now we can use it in HTML as an
attribute named just like our prop:

<main id="app">
 <custom-article content="This component was made with the help of a
prop.">
 </custom-article>
</main>

Props are used when we need to make smaller changes to our components without having
to make a whole new component. They help us reuse what we already have.

In the next section, we'll use the Vue instance's data object to add content to our custom-
article component.

Adding content to our components with the help
of the data object
The code pen for this example can be found at https:/ /codepen. io/AjdinImsirovic/ pen/
QxadmE.

https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/KeZNPr
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE
https://codepen.io/AjdinImsirovic/pen/QxadmE

Basic Concepts of Vue 2 Chapter 2

[32]

In our HTML, we'll change the code to the following:

<main id="app">
 <custom-article v-bind:content="datacontent">
 </custom-article>
</main>

In our JS, we'll update our Vue code to this:

Vue.component('custom-article', {
 props: ['content'],
 template: '<article>{{content}}</article>'
})
new Vue({
 el: '#app',
 data: {
 datacontent: 'This component was made with the help of a data object
in the Vue instance'
 }
})

In the previous example, we are using the v-bind directive to bind the content prop in
our custom-article component to the datacontent property of our data object.

If you think through this code, you will see that props are almost like
named variables (with the prop's variable name being content in the
example). Props simply pass to the child component whatever data they
receive from the parent.

There is also another way we can do this. Instead of using data inside our Vue instance, we
can give it to our component; only this time it has to be a data function. Here is the full code
for this implementation:

// HTML
<main id="app">
 <custom-article></custom-article>
</main>

// JS
Vue.component('custom-article', {
 template: '<article>{{datacontent}}</article>',
 data: function() {
 return {
 datacontent: 'This component was made with the help of a data
function in the Vue component called custom-article'
 }
 }

Basic Concepts of Vue 2 Chapter 2

[33]

})
new Vue({
 el: '#app'
})

To view the pen for the previous example, visit https:/ /codepen. io/ AjdinImsirovic/
pen/VdyQzW.

If we used data as an object instead of as a function, then reactivity would
apply to all instances of our component. Since the main purpose of
components is to be reusable, it is important to remember that in this case
data must be a function.

Props can also be defined as objects, which allows us to give them a lot more information:
validate incoming data, set default values in case no data comes through, and so on.

In the following example, we are stating that our custom-article component is expecting
the parent to pass it a prop named message, or type string, which is required:

<!--HTML-->
<div id="app">
 <custom-article :message-being-passed="datacontent"></custom-article>
</div>

//JS
Vue.component('custom-article', {
 props: {
 messageBeingPassed: {
 type: String,
 required: true,
 default: 'Hello Vue'
 }
 },
 template: `<div class="thetemplate">{{ message }}</div>`
});

new Vue({
 el: "#app",
 data: function() {
 return {
 datacontent: 'This component was made with the help of a data
function in the Vue component called custom-article, and the data passed
was validated with the help of the props object inside the Vue component'
 }
 }
})

https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW
https://codepen.io/AjdinImsirovic/pen/VdyQzW

Basic Concepts of Vue 2 Chapter 2

[34]

//CSS
.thetemplate {
 font-size: 30px;
 padding: 20px;
 color: limegreen;
 font-family: Arial;
 border: 3px solid green;
 border-radius: 10px;
}

This example is available at https:/ /codepen. io/ AjdinImsirovic/ pen/ mKpxGZ.

Let's say we commented out the datacontent property of the Vue
instance's data function. Can you guess what would happen?

In other words, what would happen if datacontent is not providing the correct data? The
child component will simply revert to its default property in the props object.

To see this in action, visit this link: https:/ / codepen. io/ AjdinImsirovic/ pen/ BVJxKL.

Other ways of building component templates in
Vue
So far, we have looked at defining templates as strings (using single or double quotes) and
as template literals (using backticks). There are also many other ways to work with
component templates:

Inline templates
X-templates
Render functions
Single file components
JSX

Most of them have their pros and cons. For example, using JSX in Vue is possible but
generally frowned upon, as it in not the Vue way of doing things. Inline templates are
made using the inline-template attribute in your HTML.

https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/mKpxGZ
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL
https://codepen.io/AjdinImsirovic/pen/BVJxKL

Basic Concepts of Vue 2 Chapter 2

[35]

If you add type=''text/x-template'' to an HTML script tag, you will make a Vue x-
template. Here's an example:

// HTML
<div id="app">
 <script type="text/x-template" id="custom-article-template">
 <p>{{ name }}</p>
 </script>
</div>

// JS
Vue.component('custom-article', {
 template: '#custom-article-template',
 props: ['name']
})
new Vue({
 el: '#app'
})

The code pen for this example is available here: https:/ /codepen. io/ AjdinImsirovic/
pen/NzXyem.

Single-file templates are probably the most practical way of creating templates in Vue. You
keep all your HTML, JS, and styling in a single file (with a .vue file extension), and you
compile this file with a build process, such as Webpack. We will look into this in later
chapters when we cover the use of Webpack in Vue (with the help of Vue-cli).

Building a simple web page out of components
As we have seen in the previous section, there are many ways to build a component in Vue,
which might make things look more complex than they have to be. While it is important to
be aware of the versatility that Vue brings to the various ways we can build components, in
this section we will look at a simple way to use components to build a web page.

Before we begin building out our page, one thing should be clear to us: each component in
Vue is also just another Vue instance. This means that each component takes an options
object, which has the same key value pairs as any other Vue instance. The only difference to
this rule is that the root Vue instance has some additional options that can only be used in
it.

After these introductory clarifications, let's see how a component can be added to a Vue
instance.

https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem
https://codepen.io/AjdinImsirovic/pen/NzXyem

Basic Concepts of Vue 2 Chapter 2

[36]

Adding simple components to a Vue instance
To start off this example, we'll begin with a simple Vue instance.

In our JavaScript file, let's make the simplest possible Vue instance, with the #app element
as its entry point:

new Vue({
 el: '#app',
 data: {}
})

Next, let's add just one div in our HTML, so that our Vue instance has an element in our
page to get access to its DOM:

<div id="app"></div>

Now we will add another component to our JavaScript file. Let's extend our existing JS file
by adding the following code to the very top:

Vue.component('the-header', {
 template: '<h1 class="header css classes go here">Our example
header</h1>'
})

Now we can simply add the custom the-header component inside our HTML:

<div id="app">
 <the-header></the-header>
</div>

Doing this will render Our example header text on the screen.

Now that we have seen just how easy it is to add one simple component to our Vue apps,
let's add another one to drive the point home.

We'll start by extending our JS file with another component, the-footer:

Vue.component('the-header', {
 template: '<h1 class="header css classes go here">Our example
header</h1>'
});

Vue.component('the-footer', {
 template: '<h1 class="footer css classes go here">Our example
header</h1>'
});

Basic Concepts of Vue 2 Chapter 2

[37]

//Root Instance
new Vue({
 el: '#app',
 data: {}
})

Of course, we need to update our HTML in order to make this work:

<div id="app">
 <the-header></the-header>
 <the-footer></the-footer>
</div>

When naming custom components, we need to use hyphens. This is done to make sure
there are no naming collisions with regular HTML elements.

The example code for this section is available at https:/ / codepen. io/ AjdinImsirovic/
pen/qypBbz.

Now that we understand how to add a simple component to our Vue instance, let's practice
by adding a more complex example.

Creating a more complex page out of components in
Vue
To begin, let's add a single component to our new Vue instance. This time, we will employ
the data option inside our custom component's options object.

This is the code we start with:

Vue.component('the-header', {
 template: '<h1 class="h1 text-success">{{header}}</h1>',
 data: function() {
 return {
 header: 'Just another simple header'
 }
 }
});

//Root Instance
new Vue({
 el: '#app',
 data: {}
})

https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz
https://codepen.io/AjdinImsirovic/pen/qypBbz

Basic Concepts of Vue 2 Chapter 2

[38]

In this code, we have added mustache syntax to our template. Then we have utilized the
data option to return the text, which will be interpolated in the template. The mustache
syntax tells our component to look for the header inside our data option.

The code for this example is available here: https:/ /codepen. io/AjdinImsirovic/ pen/
wxpvxy.

Next, under our header, we'll add some Bootstrap cards.

For simplicity's sake, we'll use an existing example from the official Bootstrap
documentation, which is available at the following URL: https:/ /getbootstrap. com/ docs/
4.0/components/card/ #using- grid- markup.

The example provides the following code:

<div class="row">
 <div class="col-sm-6">
 <div class="card">
 <div class="card-body">
 <h5 class="card-title">Special title treatment</h5>
 <p class="card-text">
 With supporting text below as a natural lead-in to additional
 content.
 </p>
 Go somewhere
 </div>
 </div>
 </div>
 <div class="col-sm-6">
 <div class="card">
 <div class="card-body">
 <h5 class="card-title">Special title treatment</h5>
 <p class="card-text">
 With supporting text below as a natural lead-in to additional
 content.
 </p>
 Go somewhere
 </div>
 </div>
 </div>
</div>

https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://codepen.io/AjdinImsirovic/pen/wxpvxy
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup
https://getbootstrap.com/docs/4.0/components/card/#using-grid-markup

Basic Concepts of Vue 2 Chapter 2

[39]

Although the Bootstrap framework is not the subject of this book, it will
be useful for us to give a real-world example of using Vue components in
practice. Since Bootstrap has basically become the industry standard for
frontend frameworks, it is the perfect candidate for showing not only how
Vue components are used in general, but also how they can be
incorporated with other frontend technologies.

Now let's see how we can add a single card to our example Vue webpage. This is the code
to add to our JS:

Vue.component('the-card', {
 template: '<div class="card"><div class="card-body"><h5 class="card-
title">Special title treatment</h5><p class="card-text">With supporting
text below as a natural lead-in to additional content.</p><a href="#"
class="btn btn-primary">Go somewhere</div></div></div>',
});

The code for this stage of the development of our code is available here: https:/ /codepen.
io/AjdinImsirovic/ pen/ VByYeW.

Next, let's add our card component to our HTML. The full updated code will look like this:

<div id="app">
 <div class="container">
 <the-header></the-header>
 <div class="row">
 <div class="col-sm-6">
 <the-card></the-card>
 </div>
 <div class="col-sm-6">
 <the-card></the-card>
 </div>
 </div>
</div>

Adding the previous code to our HTML, with the JS updates already in place as described
earlier, we will get the following result:

https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW
https://codepen.io/AjdinImsirovic/pen/VByYeW

Basic Concepts of Vue 2 Chapter 2

[40]

We have added a single card component in our JS; however, as we can see in the previous
example, we can now reuse it in our HTML as many times as needed.

This gives us an excellent opportunity to quickly prototype complete web pages with the
help of Vue.

We can take it even one step further, as we'll see in the next section.

Improving our Vue-based layouts with v-for
In this section, we will improve our existing web page with the help of Vue directives.

Our specific goal is to try to use the data option in our component instance and combine it
with the powers of Vue directives to further improve our Vue apps.

The code for this section is available at https:/ /codepen. io/AjdinImsirovic/ pen/ Epoamy.

Let's make our JS a bit easier to read with the help of the backtick ES6 JS syntax. This syntax
allows us to write JavaScript strings which span multiple lines:

Vue.component('the-header', {
 template: '<h1 class="h1 text-success">{{header}}</h1>',
 data: function() {
 return {
 header: 'Just another simple header'
 }
 }
});

Vue.component('the-card', {
 template: `
 <div class="card">
 <div class="card-body">
 <h5 class="card-title">Special title treatment</h5>
 <p class="card-text">
 With supporting text below as a natural lead-in to addtional
 content.
 </p>
 Go somewhere
 </div>
 </div>`,
});

//Root Instance
new Vue({
 el: '#app',

https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy
https://codepen.io/AjdinImsirovic/pen/Epoamy

Basic Concepts of Vue 2 Chapter 2

[41]

 data: {}
})

Now, let's add the data option to the the-card Vue component:

 data: function() {
 return {
 customCard: [{
 heading: 'John Doe',
 text: 'John.doe@acme.org'
 },
 {
 heading: 'John Doe',
 text: 'John.doe@acme.org'
 }
]}
 }

As we can see in the preceding code, we are returning a customCard array of objects, with
each object holding a specific heading and text.

Next, we can use the v-for directive in our template, like this:

Vue.component('the-card', {
 template: `
 <div class="card">
 <div class="card-body" v-for="customCard in customCards">
 <h5 class="card-title">{{customCard.heading}}</h5>
 <p class="card-text">
 {{customCard.text}}
 </p>
 Go somewhere
 </div>
 </div>`,

We introduce the v-for directive in the div that has the class of card-body. We loop
through each customCard in our collection of customCards, and we interpolate the h5
text's content with customCard.heading for each object of our customCard array.

Finally, let's add a Bootstrap class to our HTML so that the h1 tag of our web page is not
glued to the very top of the viewport. For that, we will use Bootstrap's spacing utilities. You
can read about them here: https:/ / getbootstrap. com/ docs/ 4.0/ utilities/ spacing/ .

The change in our HTML will be minimal, with just an addition of another CSS class: mt-5.

https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/
https://getbootstrap.com/docs/4.0/utilities/spacing/

Basic Concepts of Vue 2 Chapter 2

[42]

Finally, what follows is the complete JS code for the improved page. First, we register the
main title component:

//Register main title component
Vue.component("main-title-component", {
 template: '<h1 class="text-center mt-5 mb-4">{{title}}</h1>',
 data: function() {
 return {
 title: "Just another title"
 };
 }
});

Then we register the list group component:

//Register list group component
Vue.component("list-group-component", {
 template: `
 <ul class="list-group">
 <li class="list-group-item" v-for="item in
items">{{item.description}}
 `,
 data: function() {
 return {
 items: [
 {
 description: "Description one"
 },
 {
 description: "Description two"
 },
 {
 description: "Description three"
 }
]
 };
 }
});

After that, we register the card component:

// Register card component
Vue.component("card-component", {
 template: `
 <div class="card">
 <div class="card-body">
 <h5 class="card-title">{{title}}</h5>
 <p class="card-text">{{text}}</p>

Basic Concepts of Vue 2 Chapter 2

[43]

 Go somewhere
 </div>
 </div>`,
 data: function() {
 return {
 title: "This is the card title",
 text: "This is the card text"
 };
 }
});

We also add the root instance:

//root Instance
new Vue({
 el: "#app",
 data: {}
});

And here is the HTML:

<div id="app">
 <div class="container mt-5 mb-5">
 <main-title-component></main-title-component>
 <div class="row">
 <div class="col">
 <list-group-component></list-group-component>
 </div>
 <div class="col">
 <card-component></card-component>
 </div>
 </div>
 </div>
</div>

The result of adding the previous code can be seen in this screenshot:

Basic Concepts of Vue 2 Chapter 2

[44]

In this section, we have looked at components and how to get started with using them.
Next, we'll discuss watchers in Vue.

Watchers in Vue
Every component in Vue has a watcher.

To understand how this works, let's begin with an earlier example from this chapter. The
example is from the Computed properties section, at this link: https:/ /codepen. io/
AjdinImsirovic/pen/ qKVyry. That is our starting code. As we know from the previous
section, we have two input fields here and we are printing out the values entered into these
input fields in some span tags under the form.

Let's extend our example. The initial code is the same; we will only be adding a watcher to
it. The updated code can be found at this Codepen URL: https:/ /codepen. io/
AjdinImsirovic/pen/ jprwKe.

As can be observed, the only update we made to the original pen is the addition of the
watchers option, as follows:

 watch: {
 ownerName(previousValue,currentValue) {
 console.log(`The value in the first input has changed from:
 ${previousValue} to: ${currentValue}`);
 }
 },

How does the previous watcher work? It allows us to use a method that must have the
same name as the computed property we are watching in our HTML. The watcher has
optional parameters we can pass to it to be worked with in the body of the method; in this
case, we gave our optional parameters some nice and descriptive names: previousValue
and currentValue.

In the body of the watch method, we are logging out changes to input values to the
JavaScript console. An elegant way of testing how this works is to, for example, highlight
the for example section of the initial value of the first input field and simply erase it, leaving
only the value of Old McDonald in the input.

https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/qKVyry
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe
https://codepen.io/AjdinImsirovic/pen/jprwKe

Basic Concepts of Vue 2 Chapter 2

[45]

Doing this would result in the following sentence being logged to the console:

The value in the first input has changed from: e.g Old McDonald to: Old
McDonald.

In the next section, we will be looking at how to hook into various stages of a component's
life and alter its behavior at that specific point with custom code.

Lifecycle hooks
Life cycle hooks are methods that let us alter the behavior of components at various stages
of their life cycle.

What is a component's lifecycle?
It's just the natural progression of the life of a component.

Thus, we can say that lifecycle hooks are points along this journey that each component
needs to go through. At these specific points in a component's life, we can use these
methods to alter a component's behavior.

The Vue team has chosen very descriptive names for these lifecycle methods. What follows
is the list of lifecycle hooks organized in the order of the natural progression of a
component's life:

beforeCreate

created

beforeMount

mounted

beforeUpdate

updated

activated

deactivated

beforeDestroy

destroyed

Basic Concepts of Vue 2 Chapter 2

[46]

This visual representation of a component's lifecycle is available at this address: https:/ /
vuejs.org/images/ life cycle. png.

Note that it would be beneficial that you print this image out and keep it
with you until you fully understand the information it conveys. This will
be of great help for getting a deeper understanding of Vue in general, and
its component lifecycle in particular.

As we can see, there are five distinct stages of a component's life, and each stage has a
lifecycle hook before a specific stage begins, and another lifecycle hook for after it is
completed.

It is important to note that a component can be mounted several times, based on the
changes in the data model. This is verifiable in the lifecycle diagram referenced in the
previous tip box. However, it is also crucial to understand that the DOM re-rendering that
takes place when the underlying data is changed can result in a component being
effectively unmounted, even though this is not explicitly mentioned anywhere in the
lifecycle diagram.

How do we use lifecycle hooks?
Let's look at a simple example, available at this Codepen URL: https:/ /codepen. io/
AjdinImsirovic/pen/ jprmoa.

To begin with, let's add the HTML:

<div> Lorem ipsum dolor sit amet</div>
<div id="app">
 <custom-article :message="datacontent"></custom-article>
</div>

Next, let's add the CSS:

div,.thetemplate {
 font-size: 30px;
 padding: 20px;
 color: limegreen;
 font-family: Arial;
 border: 3px solid green;
 border-radius: 10px;
}

https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://vuejs.org/images/lifecycle.png
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa
https://codepen.io/AjdinImsirovic/pen/jprmoa

Basic Concepts of Vue 2 Chapter 2

[47]

And finally, the JS:

Vue.component('custom-article', {
 props: {
 message: {
 type: String,
 required: true,
 default: 'Hello Vue'
 }
 },
 template: `<div class="thetemplate">{{ message }}</div>`
});

new Vue({
 el: "#app",
 beforeCreate() {
 alert("Lifecycle hook beforeCreate has been run");
 },
 created() {
 setTimeout(function(){
 alert('This message is showing 5 seconds after the \'created\' life
cycle hook');
 },5000);
 },
 data: function() {
 return {
 datacontent: 'This component was made with the help of a data
function in the Vue component called custom-article, and the data passed
was validated with the help of the props object inside the Vue component'
 }
 }
});

As can be seen in the Codepen provided, it is really easy to hook into life cycle methods in
Vue. It's just a matter of providing the desired code (functionality) to the life cycle hook
method name in the Vue instance.

In the previous example, we are showing an alert for the beforeCreate() method, and we
are showing another alert 5 seconds after the created() method has been run.

There are many more useful things to do with life cycle hooks, which will be covered in the
chapters which follow.

Basic Concepts of Vue 2 Chapter 2

[48]

Summary
In this chapter, we looked at some basic concepts in Vue. We described why these concepts
are important and how they can be used. We also looked at several simple examples of
using these concepts in practice.

We learned about data-driven views in Vue and reactivity as a way to keep track of the
changes to the data model. We looked at using computed properties and methods,
directives, and their modifiers. We have seen some practical examples of components,
templates, and props, as well as different approaches to building component templates in
Vue.

We learned how to prototype websites using Vue components and directives, and we
wrapped up the chapter with a look at watchers and lifecycle hooks as a powerful way to
alter the behavior of components at any point of their lifecycle.

In the next chapter, we will further delve into reactive programming in Vue with a focus on
components, props, and slots.

3
Working with Vue-CLI,

Components, Props, and Slots
The previous chapter was an introduction to the basic concepts of Vue. We will start this
chapter with a more realistic approach: we'll introduce Vue-cli. We'll look at the component
hierarchy, global and local components, and communication between components. We will
introduce slots, and we will also examine the difference between slots and props.

In this chapter, we will cover the following topics:

Vue component hierarchy, and global and local components
Using Vue-cli
Setting up code editors to use with Vue
The structure of our Vue-cli-based project
Adding basic functionality to a child component
Adding props to our HelloAgain.vue
Introduction to slots

Vue component hierarchy, and global and
local components
As we learned in Chapter 2, Basic Concepts of Vue 2, to get a new Vue instance running, we
use new Vue:

new Vue(
 el: "#app",
 // the rest of the Vue instance code here
)

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[50]

Our app component resides inside this Vue instance.

The app component usually has a child component, like we saw in this example from
Chapter 2, Basic Concepts of Vue 2: https:/ /codepen. io/AjdinImsirovic/ pen/ xzpOaJ:

Vue.component('custom-article', {
 template: `
 <article>
 Our own custom article component!
 </article>`
})
new Vue({
 el: '#app'
})

What we did not mention in the previous chapter is this:

A child component can be reused as many times as needed
A child component can also have its own children

An example of this is available in the following pen: https:/ /codepen. io/
AjdinImsirovic/pen/ ZjdOdK.

Here is the code which demonstrates these two principles:

// JS
Vue.component('custom-article', {
 template: `
 <article>
 Our own custom article component!
 </article>`
})
Vue.component('another-custom-article', {
 template: `
 <article>
 Another custom article component!
 This one has it's own child component too!
 Here it is:
 <custom-article></custom-article>
 </article>`
})
new Vue({
 el: '#app'
})

/* CSS */
article {

https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/xzpOaJ
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK
https://codepen.io/AjdinImsirovic/pen/ZjdOdK

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[51]

 font-size: 40px;
 padding: 20px;
 color: limegreen;
 font-family: Arial;
 border: 3px solid green;
 border-radius: 10px;
}

<!-- HTML -->
<main id="app">
 <custom-article></custom-article>
 <custom-article></custom-article>
 <another-custom-article></another-custom-article>
</main>

As seen already, to add a component to our Vue instance, we are using the following
syntax:

Vue.component('another-custom-article', { // etc...

In Vue terminology, we use this code to register a component. As described before, it's
referred to as global registration. There is also local registration.

Local registration works similarly to the Vue.component syntax. The only difference in the
code is how we introduce the local component when compared to a global one. In the
previous code, we had the following global component:

Vue.component('custom-article', {
 template: `
 <article>
 Our own custom article component!
 </article>`
})

Converting this global component to a local component is as simple as removing this
snippet of code:

Vue.component('custom-article'

Instead of the previous code, we'll simply make a new variable and give it the exact same
options object that we used in the global component, like this:

var customArticle = {
 template: `
 <article>
 Our own custom article component!
 </article>`
}

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[52]

In order to use this local component in our Vue instance, we'll introduce the components
option, like this:

new Vue({
 el: '#app',
 components: {
 'custom-article': customArticle
 }
})

An example with a local component is available here: https:/ /codepen. io/
AjdinImsirovic/pen/ ZMzrpr.

However, the previous example is incomplete on purpose. As we can see,
the customArticle local component is only available in the main Vue instance, but it is
not available in the anotherCustomArticle component.

To make this work and complete the example, we need to tweak this bit of code:

Vue.component('another-custom-article', {
 template: `
 <article>
 Another custom article component!
 This one has it's own child component too!
 Here it is:
 <custom-article></custom-article>
 </article>`,
 //components: {
 // 'customArticle': customArticle
 //}
})

We will simply remove the comments on these three lines:

 components: {
 'customArticle': customArticle
 }

By doing that, we have registered the local component customArticle in the global
component anotherCustomArticle. Basically, we are following the same procedure of
registering a local component in our main Vue instance, and we are applying that same
approach of registering local component in our anotherCustomArticle global
component.

https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr
https://codepen.io/AjdinImsirovic/pen/ZMzrpr

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[53]

To get into the nuances of global and local registration, you can refer to
this section of the official Vue documentation:
https:/ /vuejs. org/ v2/ guide/ components- registration. html.

In the following section, we'll start using Vue-cli.

Using Vue-CLI
In order to start using Vue-cli, we need to have Node.js set up on our machine, and we also
need to have a command-line app on our operating system of choice.

For example, my preferred tools are Windows 10 and Git bash for Windows.

There are many different operating systems and command-line apps that
you could potentially be using.

If you run into problems during the installation of any of the tools
mentioned in this section, it might be worthwhile to have a look at this in-
depth guide on installing Node.js on your operating system:

https:/ /www. packtpub. com/mapt/ book/ web_ development/
9781788626859/ 2

Installing Git bash
You first need to visit https:/ / git- scm. com/downloads, which lets you choose
between macOS X, Windows, and Linux/Unix installations. After clicking on the Windows
download, you can proceed with the installation steps for Git bash. Just following the
default preset options during the installation should be fine.

Installing nvm
To download the Node version manager for Windows, visit this link:
https://github.com/ coreybutler/ nvm- windows/ releases

Once on the page, click the nvm-setup.zip file to download it, then run the downloaded
nvm-setup.exe and go through the regular installation steps.

https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://vuejs.org/v2/guide/components-registration.html
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://www.packtpub.com/mapt/book/web_development/9781788626859/2
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[54]

Next, start Git bash with administrator privileges and run the following command:

nvm install 8.11.4

The following message will be logged to the console:

Downloading node.js version 8.11.4 (64-bit)...

Why use nvm?
There are two major reasons:

Security-critical upgrades

Easier switching between Node versions in different projects

The first reason listed here has to do with future updates to Node.js. In case there is a major
security patch a few month after this book is published, it would be smart to update Node
on your system. Using nvm makes this easy, which brings us to the second point. Even if
there are no major releases of Node available for you to upgrade, you could still run
different versions of Node based on the needs of different projects you'll be working on.
Either way, using nvm pays off.

Once the download is complete, in our Git bash we can simply run this command:

nvm use 8.11.4

Now, we are ready to use Vue-cli.

Installing and updating Vue-cli
It might be interesting to note that Vue-cli is a wrapper around Webpack, which has been
tweaked and adjusted so it provides the best possible experience both during development
and when releasing our Vue apps into production. This is a major plus for developers, since
this setup lets us focus on coding without having to grapple with the toolchain for extended
periods of time.

Let's open up Git bash and run the following command:

npm install -g vue-cli

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[55]

Since Vue-cli is an npm package, you can read more about it here: https:/ /www. npmjs. com/
package/vue-cli.

To check the current version of Vue-cli installed on your system, run this command:

vue -V

Note that there has been a major upgrade between Vue-cli versions 2 and 3. To make sure
that you are using the most up-to-date version on your system, you can run this command:

npm install @vue/cli

This command will update your version of Vue-cli to the most recent one. The update is
local, meaning it will put it in the node_modules folder of the folder in which you run the
previous command. Note that this operation could take some time because of all the
dependencies that need to be installed.

Before initializing our project using Vue-cli, it would be beneficial to quickly list the
improvements that version 3 of Vue-cli brings. Hopefully, this will reinforce some of the
key points made in Chapter 1, Introducing Vue, regarding the ease of use of Vue.

The goals of version 3 of Vue-cli are as follows:

Simplify and streamline tooling to avoid toolchain fatigue for
frontend development
Follow best practices in the tooling and thus make it become the default for Vue
apps

There is also a whole slew of features and upgrades to the new version of Vue-cli:

Preset Webpack configuration for hot module replacement, tree-shaking, and so
on
ES2017 features
Babel 7 support
PostCSS support
Optional integration for Typescript, PWA, Jest, E2E testing, and so on

Put succinctly, Vue.js is keeping up with the times, and Vue-cli is just more proof of that.

https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli
https://www.npmjs.com/package/vue-cli

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[56]

Initializing a new project with Vue-cli
Once installed, we can initialize a new project with the following command:

vue create quickstart-vue

We are giving our Vue app the name of quickstart-vue. We might as well have named it
anything else.

Once we run the preceding command, we can choose to use a preset, or to manually pick
features we'd like to use:

$ vue create quickstart-vue
 ? Please pick a preset: (Use arrow keys)
 > default (babel, eslint)
 Manually select features

We could choose the default preset, but just as a little exercise, let's choose the Manually
select features option instead. Then we'll choose npm rather then yarn. That will result in
the following output on the screen:

$ vue create quickstart-vue
 ? Please pick a preset: (Use arrow keys)
 ? Please pick a preset: default (babel, eslint)
 ? Pick the package manager to use when installing dependencies: (Use arrow
keys)
 ? Pick the package manager to use when installing dependencies: NPM
Installing CLI plugins. This might take a while...

You will know that the plugins have been installed when you see this message:

...
Successfully created project quickstart-vue.
Get started with the following commands:
$ cd quickstart-vue
 $ npm run serve

Now we can simply follow the previous instructions and change into the quickstart-
vue directory:

cd quickstart-vue

Next, we will run the server (which is actually running a Webpack dev server in the
background):

npm run serve

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[57]

The message that our app is available at port 8080 will be logged out to the console. So,
let's open up our browser at http://localhost:8080 and look at the default site:

In the next section, we'll set up two editors to use with our new Vue project. These editors
are Sublime Text and Visual Studio Code.

Setting up code editors to use with Vue
There are a number of code editors and IDEs (integrated development environments) that
we can use to work with Vue. Some of the more popular ones include these:

Sublime Text https:/ /www. sublimetext. com/

Visual Studio Code (VS Code), https:/ /code. visualstudio. com/

https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[58]

Atom, https:/ /atom. io/

WebStorm, https:/ /www. jetbrains. com/ webstorm/

Visual Studio 2017, https:/ / visualstudio. microsoft. com/ downloads/

In this section, we'll look at using Vue.js in Sublime Text and VS Code.

Working with Vue.js in Sublime Text 3
Sublime Text is a mature and fun-to-use text editor, and so we will download it and set it
up to be used with our Vue.js projects.

Dowloading Sublime Text 3
We'll begin by downloading Sublime Text 3 from the download page:
https://www.sublimetext. com/ 3

Next, visit the website, https:/ / packagecontrol. io/ , which is the home of the package
manager for Sublime Text.

Install Package Manager
On the package manager website, click the Install Now button in the top right of the page
and follow these installation steps:

Select and copy all the text inside the Sublime Text 3 tab.1.
Open up the newly installed Sublime Text 3.2.
Inside Sublime Text 3, press the keyboard shortcut of Ctrl + ` (hold and press3.
control and then press the backtick key). On most keyboards, the backtick
character is available to the left of number 1 on the alphanumerical section of the
keyboard.
Paste the code copied from https:/ /packagecontrol. io into the bottom input4.
field that opened up in the previous step.

After completing these steps, restart Sublime Text and you'll have access to a quick-launch
installer via this keyboard shortcut: Ctrl + Shift + P.

https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://packagecontrol.io/
https://packagecontrol.io/
https://packagecontrol.io/
https://packagecontrol.io/
https://packagecontrol.io/
https://packagecontrol.io/
https://packagecontrol.io/
https://packagecontrol.io/
https://packagecontrol.io
https://packagecontrol.io
https://packagecontrol.io
https://packagecontrol.io
https://packagecontrol.io
https://packagecontrol.io
https://packagecontrol.io

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[59]

This keyboard combination will display a little input in the middle of the screen, and you
can type the word install inside it. This will show different options that you can either
click on with a mouse or use the arrow up and arrow down keys to highlight, then the
Enter key to run:

Next, select the option that reads Package control: Install package.

This is the list of packages that we will install:

Vue Syntax Highlight, at https:/ /packagecontrol. io/ packages/
Vue%20Syntax%20Highlight

Vuejs Snippets, at https:/ / packagecontrol. io/ packages/ Vuejs%20Snippets

JavaScript Beautify, at https:/ / packagecontrol. io/packages/
Javascript%20Beautify

Interestingly, the Chrome browser has recently* received a similar quick-
launch functionality, available via the same shortcut keys. To see it in
action, you can simply open the developer tools utility with the F12 key
and then run the Ctrl + Shift + P shortcut keys.
For example, in the launcher that opens, you can type the word node, then
click on the first command in the drop-down, Capture node screenshot.
This command will capture a screenshot of the element you are currently
on in the DOM tree of the DevTools.

* A few months ago

In the next section, we'll look at setting up our Vue-based project in VS Code.

https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vue%20Syntax%20Highlight
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Vuejs%20Snippets
https://packagecontrol.io/packages/Javascript%20Beautify
https://packagecontrol.io/packages/Javascript%20Beautify
https://packagecontrol.io/packages/Javascript%20Beautify
https://packagecontrol.io/packages/Javascript%20Beautify
https://packagecontrol.io/packages/Javascript%20Beautify
https://packagecontrol.io/packages/Javascript%20Beautify
https://packagecontrol.io/packages/Javascript%20Beautify
https://packagecontrol.io/packages/Javascript%20Beautify
https://packagecontrol.io/packages/Javascript%20Beautify
https://packagecontrol.io/packages/Javascript%20Beautify

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[60]

Working with Vue.js in VS Code
Although Sublime Text has the advantage of maturity and being light on the system, which
makes it easy to use on slower machines, VS Code is a viable alternative.

Installing VS Code and extensions
Let's navigate to https:/ /code. visualstudio. com/ download and download the
appropriate version of VS Code for our operating system.

If you are using Widows 10, you can easily see if your system is 32-bit or
64-bit. Simply use the shortcut keys Winkey + X, then click System in the
contextual menu. A new window will open and you'll see whether your
system is 32-bit or 64-bit in the Device Specifications | System type area.

Once you have downloaded and opened VS Code, it's easy to add extensions to it. Simply
click the bottom-most icon (the extensions icon) on the left side of the screen:

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[61]

Clicking the icon will open up the extensions pane, into which you can type Vue and get
back results similar to this:

Next, simply choose either of the Vue VS Code Extension Packs, then click on the green
Install button. Extensions that are part of this pack include syntax highlighting, snippets,
linting and error checking, formatting (such as js-beautify), auto completion, hover info,
auto-rename-tags, npm support for VS code, ES6 snippets, ESLint, and more.

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[62]

Alternatively, if you want to avoid bloat in your VS Code extensions, you
can reduce it somewhat by installing the Vetur extension by Pine Wu
instead of the previously mentioned Vue extension pack.

Once the installation is complete, we can simply click the button that reads Reload to
restart VS Code and activate the extension. Finally, to get back to the tree structure of our
project, simply click the top-most icon on the left side of the screen, just under VS Code's
main menu.

The structure of our Vue-cli-based project
In this section, we'll look at the file structure of our Vue project that we have set up using
Vue-cli. Our quickstart-vue folder structure is as follows:

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[63]

Let's first examine the contents of the main.js file:

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

new Vue({
 render: h => h(App)
}).$mount('#app')

We begin by importing Vue from the vue folder. This vue folder is located in your
node_modules folder.

Next, we import App from App.vue.

As we have already learned, new Vue creates a Vue instance, and we then pass it the
options object.

Inside the options object, we are only setting the render property. As we can see, the
render property's value is an arrow function:

h => h(App)

The arrow function accepts, as its parameter, the App component that we imported on line
two of the main.js file.

As you can probably tell, the previous function is written in ES6. Transpiled to ES5, it
would look like this:

function(h) {
 return h(App);
}

The preceding function receives a Vue template to be rendered. Where will it render? It will
render it in our index.html page, replacing whatever static piece of the DOM we pass to
the $mount() function.

Which location in the DOM that will be depends on what we pass on as the parameter to
the $mount() function. In the previous code, we passed the #app parameter.

Where does '#app' come from? It comes from the App component, or, more specifically,
from the App.vue file, located in our src folder.

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[64]

The src folder holds all the actual application code of our Vue project.

Note that main.js is the only actual JavaScript file in our project—all the
files in the src folder have the .vue extension. Every .vue file has three
parts: the template, the script, and the style tag. The template defines the
HTML of the component, the script defines the JS, and the style tag
defines the CSS. Also, Vue-cli (with Webpack under the hood) puts all of
this together because it understands how to work with .vue files.

Let's alter the App.vue file in our src folder, so that it looks like this:

<template>
 <div id="app">
 <HelloWorld msg="Welcome to Vue Quickstart!"/>
 <HelloAgain />
 </div>
</template>

<script>
import HelloWorld from './components/HelloWorld.vue';
import HelloAgain from './components/HelloAgain.vue'

export default {
 name: 'app',
 components: {
 HelloWorld, HelloAgain
 }
}
</script>

<style>
#app {
 font-family: sans-serif;
 text-align: center;
 color: #2c3e50;
 margin-top: 60px;
}
</style>

Let's also change the contents of HelloWorld.vue, so that it looks like this:

<template>
 <div class="hello">
 <h1>{{ msg }}</h1>
 <p>
 This is the beginning of something great.
 </p>

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[65]

 </div>
</template>

<script>
export default {
 name: 'HelloWorld',
 props: {
 msg: String
 }
}
</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>
p {
 font-size: 20px;
 font-weight: 600;
 text-align: center;
}
</style>

Finally, let's add another component inside the src/components/ folder. We'll call it
HelloAgain.vue, and we'll give it the following code:

<template>
 <p class="hello-again">
 This is another component.
 </p>
</template>

<script>
export default {
 name: 'HelloAgain'
}
</script>

<style scoped>
p {
 font-size: 16px;
 text-align: center;
 color: tomato;
}
</style>

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[66]

What we did in these three files is that we have mostly just removed some extra pieces of
code to more clearly demonstrate the following points:

Each vue file holds a single file component
The structure of every single file component follows the same pattern: template
at the top, script in the middle, and style at the bottom
Style can be scoped to each individual file
The App.vue file imports the components from the components folder and
exports itself so that it can be used by main.js
The HelloWorld and HelloAgain components simply export themselves to the
parent component, the App.vue file
In order to use the newly introduced component (the HelloAgain component),
the App.vue file needs to add it inside its <template> tag
The App.vue file also needs to both import and export the HelloAgain single
file template so that main.js can use it

App.vue, HelloWorld.vue, and HelloAgain.vue are examples of
single-file components. Single-file components are the preferred way of
working with components in our Vue projects.

If you have changed the files as described previously, you should have the following screen
in your browser at http://localhost:8080:

Now that we have seen how the vue/components/ folder is organized and how it
basically works, we will list other important files in our Vue project:

List of files that should not be tracked by Git source version1.
control: .gitignore
Config file for Babel: .babel.config.js2.
File that lists the dependencies and other information of our npm-based3.
projects: package.json
A manual for our app in markdown format: README.md4.

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[67]

Of course, there is also the public folder, which contains our compiled application,
referenced from the index.html file. This is the file that will ultimately be rendered and
re-rendered in the browser, as our Vue app keeps compiling. The content of the index file
is very simple:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,initial-scale=1.0">
 <link rel="icon" href="<%= BASE_URL %>favicon.ico">
 <title>quickstart-vue</title>
 </head>
 <body>
 <noscript>

 We're sorry but quickstart-vue doesn't work properly
 without JavaScript enabled. Please enable it to continue.

 </noscript>
 <div id="app"></div>
 <!-- built files will be auto injected -->
 </body>
</html>

As mentioned before, the div with the id attribute set to app is our Vue app's entry point.

Now that we have a better understanding of our project structure, we will move on to
building child components.

In the next section, we will add some basic functionality to our HelloAgain component.

Adding basic functionality to a child
component
In this section, we will add some very basic functionality to a child component. Before we
get into the specifics of how this is done, we will also need to install the official Vue
Chrome extension.

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[68]

The Vue developer tools extension for Chrome is available at this URL: http:/ /bit. ly/
2Pkpk2I.

Installing the official Vue Chrome extension is straightforward; you just install it like any
other Chrome extension.

Once you have completed the installation, you will have a Vue logo available in the top-
right area of Chrome, and clicking that logo will give you the following message:

Vue.js is detected on this page. Open DevTools and look for the Vue panel.

Opening DevTools is easy: just press the F12 key. Then you can find the Vue panel as one of
the tabs in the area which has the following tabs: Elements, Console, Sources, and so on.
You should get something similar to the following screen:

http://bit.ly/2Pkpk2I
http://bit.ly/2Pkpk2I
http://bit.ly/2Pkpk2I
http://bit.ly/2Pkpk2I
http://bit.ly/2Pkpk2I
http://bit.ly/2Pkpk2I
http://bit.ly/2Pkpk2I
http://bit.ly/2Pkpk2I

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[69]

Back in VS Code, let's open up the HelloAgain.vue component and update the template
section of the code so that it looks like this:

<template>
 <p class="hello-again">
 This is another component.
 <button v-on:click="incrementUp">Add One</button>

 Current value of the counter: {{ counter }}
 </p>
</template>

Let's also update the script tag, like so:

<script>
export default {
 name: 'HelloAgain',
 data() {
 return {
 counter: 0
 }
 },
 methods: {
 incrementUp: function() {
 this.counter++
 }
 }
}
</script>

Finally, we'll update the styles to make our button look nicer:

<style scoped>
p {
 font-size: 16px;
 text-align: center;
 color: tomato;
}
button {
 display: block;
 margin: 10px auto;
 background: tomato;
 color: white;
 border: none;
 padding: 5px 10px;
 font-size: 16px;
 border-radius: 4px;
 cursor: pointer;

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[70]

}
</style>

The end result of this update will be rendered in our browser as follows:

Now that we have looked at building templates and working with some basic functionality,
let's switch our focus to another important topic: communication between components.
We'll begin by revisiting props, which are a way to communicate between parent and child
components.

Adding props to our HelloAgain.vue
In this section, we will briefly revisit props to see a practical example of how to
communicate between a parent and a child component in Vue. In other words, we want to
take some data from the parent component and pass it to the child component. The data we
will be passing will simply be additional numbers to be included in the counter of our
quickstart-vue app.

In our App.vue file, we'll add a button:

<template>
 <div id="app">
 <HelloWorld msg="Welcome to Vue Quickstart!"/>
 <button v-on:click="addTen">Add 10</button>
 <HelloAgain v-bind:counterFromParent="countUp"/>
 </div>
</template>

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[71]

The button is placed between the two components we already had. We have added a v-on
directive, tracking a click event on the button. The click event will trigger the addTen
method, so we will specify it in between the <script> tags of our App.vue file:

 methods: {
 addTen() {
 this.countUp += 10
 }
 },

The addTen method is using the countUp piece of data, so let's add this new data to our
<script> too:

 data: function() {
 return {
 countUp: 0
 };
 },

So, initially, our data function in App.vue returns countUp of zero. Whenever a user clicks
the button in our App.vue component, the value of countUp increases by 10. This value is
the data that we want to pass to the child component, namely to the HelloAgain.vue
child component. Our goal is to add this data from the parent to the value stored in the
counter in the child component.

This is where the props syntax comes in. To specify to our HelloAgain.vue component
that it should expect the data from the parent, we will add the following code:

props: ['counterFromParent']

The value of the props key is an array, and we add strings of props that the child
component should be expecting from the parent.

Note that the props option can also be an object. An example of using an
object for our props option would be, for example, if we'd want to
validate the data being passed from the parent to the child component.
We will validate props in later chapters of this book.

Still in HelloAgain.vue, we will alter the tag inside its template, like this:

Current value of the counter: {{ counter + counterFromParent
}}

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[72]

Now that we have set up the code in both the parent and the child, it's just the matter of
passing the data from one to the other. We will do that inside the App.vue template by
adding the v-bind directive to the <HelloAgain /> tag. Here is the updated App.vue
template:

<template>
 <div id="app">
 <HelloWorld msg="Welcome to Vue Quickstart!"/>
 <button v-on:click="addTen">Add 10</button>
 <HelloAgain v-bind:counterFromParent="countUp"/>
 </div>
</template>

Note that we are binding the counterFromParent to the value of countUp. The value of
countUp starts from zero, and upon every button click on the parent's button, the addTen
method will be run, which we specify in the methods option of the parent <script> tag.

The addTen method adds 10 to the current value of countUp.

On the child side, in the HelloAgain.vue component, we simply add the current value of
counterFromParent to our counter variable. To get the value of counterFromParent,
we list it in the props array of the <script> tag of our HelloAgain.vue component.

Passing data from children to parent components
To pass data from a child component to a parent component, we use the following syntax:

this.$emit();

The $ sign is there to signify a built-in Vue function. This specific one, $emit, is used to
send a custom event to the parent. The first parameter that we pass to the $emit function is
the name of the custom event. For example, we could reset the counter to zero, so we might
name the custom event like this:

this.$emit('counterHasBeenReset')

The second argument is the data to be passed, so we will pass the current counter value,
like this:

this.$emit('counterHasBeenReset', this.countUp);

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[73]

Of course, this means that we need to update the value of countUp so that it goes back to
zero. In order to do that, we need to update the methods option in the script tag of our
HelloAgain child component so that it looks like this:

 methods: {
 incrementUp: function() {
 this.counter++
 },
 resetTheCounter() {
 this.countUp = 0;
 this.$emit('counterHasBeenReset', this.countUp);
 }
 }

Basically, we are saying in our methods option that whenever the resetTheCounter
method is run, the countUp value should be reset to 0. Next, we follow up by emitting this
updated value in the counterHasBeenReset custom event.

Now let's add a reset button to the child component template tag, also in
HelloAgain.vue. We will do that by simply adding another line to our template tag:

<button v-on:click="resetTheCounter">Reset parent-added values</button>

As we see here, the button click will run the resetTheCounter method.

Now that we are emitting the event, we will capture it in the parent component by using
the following syntax:

<HelloAgain v-bind:counterFromParent="countUp" v-
on:counterHasBeenReset="countUp = $event" />

As we can see here, we have added to the <HelloAgain> tag in our parent component.
Specifically, we have added a v-on directive as follows:

v-on:counterHasBeenReset="countUp = $event" />

The component is listening for the counterHasBeenReset custom event, which will be
emitted from the child component. When such an event is captured in the parent, the value
of countUp will be set to whatever its value is in the event itself. Since we have set it to
zero, that's what it will be.

There are alternative ways to communicate between components in Vue (both parent-to-
child and child-to-child), and we will discuss them in a later chapter, when we discuss
Vuex.

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[74]

The end result of this exercise is that we will reset the values in the counter that have been
added from the parent component, but the event will not affect the values added from the
child component.

Now that we have learned about custom events, we can continue our discussion of
components by looking at slots.

Introduction to slots
Slots are a way to reuse components. With props, we are passing data to a component. But
what if we wanted to pass entire components to other components? That's where slots
come in.

Slots are simply a way to pass on more complex code to our components. They can be just
some HTML, or even entire components.

To insert HTML elements from a parent to a child component, we use the slot element
inside a child component:

<slot></slot>

The actual content of the slot is specified in the parent component.

Here is an example of slots in use:

<!-- HTML -->
<div id="app"></div>

// JS
Vue.component("basicComponent", {
 template: `
 <div>
 <slot name="firstSlot"></slot>
 <slot name="secondSlot"></slot>
 <slot></slot>
 </div>
 `
});

new Vue({
 el: "#app",
 template: `
 <basicComponent>
 <p slot="firstSlot">
 This content will populate the slot named 'firstSlot'

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[75]

 in the 'basicComponent' template
 </p>
 <p slot="secondSlot">
 This content will populate the slot named 'secondSlot'
 in the 'basicComponent' template
 </p>
 </basicComponent>
 `
});

/* CSS */
div {
 font-size: 30px;
 padding: 20px;
 color: darkgoldenrod;
 font-family: Arial;
 border: 3px solid darkgoldenrod;
 border-radius: 0px;
}

This example can be viewed live here: https:/ /codepen. io/ AjdinImsirovic/ pen/ ERoLQM.

There are several key points when working with slots:

Slots are implemented based on the web component's spec draft
The slot styling is determined by the scoped style tag in the child component
Slots enable the use of composable components
You can use any template code in slots
If you have more than one slot, you can name them (using the name attribute)
If you have more than one slot, you can leave out the name attribute in one of
them, and that one will be the default slot
As of Vue 2.1.0, slots can be scoped
Slot scope can be destructured using ES2015 expression destructuring

To add default information to a slot, you can simply add content to the slot tag.

It's as simple as changing the code of the slot tag from this:

<slot></slot>

And changing it to this:

<slot>This is some default information</slot>

https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM
https://codepen.io/AjdinImsirovic/pen/ERoLQM

Working with Vue-CLI, Components, Props, and Slots Chapter 3

[76]

If you update the provided example pen by adding the default unnamed slot code
referenced just above this line, you will notice the slot gets populated even though we have
not referenced it in our Vue instance.

Summary
In this chapter, we looked at Vue's components. We discussed the Vue component
hierarchy and the differences between global and local components. We fired up Vue-cli v3
and learned how to use it. We worked with .vue files and we set up the development in a
couple of code editors. We learned about adding functionality to child components and the
use cases for both props and slots. Finally, we looked at component communication in Vue.

In the next chapter, we will discuss filters as a way of changing what gets rendered on the
screen without affecting the data behind it. We will also see how to adhere to the DRY rule
of programming with the help of mixins.

4
Filters and Mixins

In this chapter, we will show how we can use filters to change what gets rendered on the
screen without changing the underlying data. We'll also cover mixins, a practical way to
extend components and adhere to the DRY rule of programming.

More specifically, in this chapter, we will discuss the following:

Using filters:
Working with global and local filters
Replacing conditional directives with filters
Chaining filters together

Working with mixins:
Avoiding code duplication inside mixin methods
Using data option to add more functionality to our mixins
Employing life cycle hooks in mixins

Using filters
A filter is just a function. It takes some data (passed in as an argument to the filter function),
and performs some simple operations on that data. The result of the
operations performed is returned from the filter function and displayed in the appropriate
place in the app. It's important to note that filters do not affect the underlying data; they
only affect the way that data is displayed on the screen.

Filters and Mixins Chapter 4

[78]

Just like components, filters too can be registered as either global or local. The syntax for
registering a global filter is as follows:

Vue.filter('justAnotherFilter', function(someData1, someData2, someDataN) {
 // the filter function definition goes here (it takes N number of
arguments)
});

Besides global registration, we can also register a filter locally, like this:

filters: {
 justAnotherFilter(someData1, someData2, someDataN) {
 // the filter function is defined here...
 }
}

As we can see here, in case of local registration, filters are added as an option to a Vue
component.

An example of a filter that rounds up student
grades
Let's say that we have a friend who is a professor, and they need some help with their
students' tests. A test that students take is set up in such a way that it always produces a
score in the form of a decimal number. The range of points a student can get on that test is
between 0 and 100.

Being the good friend that we are, we will make a simple Vue app with a filter that rounds
up decimal scores to full numbers. We will also err on the side of the student, meaning we
will always round up the result.

The code for this example is available at https:/ /codepen. io/ AjdinImsirovic/ pen/
MqBNBR.

The function for our filter is going to be very simple: it will take in a float and return a
rounded up integer based on the received float. The filter function will be called
pointsRoundedUp, and it will look like this:

 filters: {
 pointsRoundedUp(points){
 return Math.ceil(parseFloat(points));
 }
 }

https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR
https://codepen.io/AjdinImsirovic/pen/MqBNBR

Filters and Mixins Chapter 4

[79]

Hence our pointsRoundedUp function takes in the points instance from our app's
data() function, and returns those points instance with JavaScript's built-in
parseFloat() and Math.ceil() functions called on the points value.

To use a filter in our HTML, we employ the following syntax:

{{ points| pointsRoundedUp }}

The points value is the actual data stored in the app. pointsRoundedUp is the filter that
we use to format the data we receive from our Vue component's data option.

Generally, we could say that the underlying logic of all filters is as follows:

{{ data | formattedData }}

This general principle could be read like this: to format the data that gets returned, we
follow it up with a pipe symbol (|) and then we call a specific filter on that data.

Let's examine the full code of our app. The HTML will be as follows:

<div id="app">
 <h1>A simple grade-rounding Vue app</h1>
 <p>Points from test: {{ points }}</p>
 <p>Rounded points are: {{ points | pointsRoundedUp }}</p>
</div>

The JS will be simple too:

new Vue({
 el: "#app",
 data() {
 return {
 points: 74.44
 }
 },
 filters: {
 pointsRoundedUp(points){
 return Math.ceil(parseFloat(points));
 }
 }
});

Filters and Mixins Chapter 4

[80]

The app will output the following on the screen:

A simple grade-rounding Vue app
Points from test: 74.44
Rounded points are: 75

The app is now complete.

However, after some time, our friend asks us for another favor: to calculate the student's
grade based on the points. Initially, we realize that it will be just a tiny calculation, which
we can simply fit into conditional directives.

The code for the updated example can be found here: https:/ /codepen. io/
AjdinImsirovic/pen/ XPPrEN.

Basically, what we did in this new example is we extended our HTML with several
conditional directives. Although this solves the problem, we have cluttered our HTML,
while our JS has remained unchanged. The updated HTML code is as follows:

<div id="app">
 <h1>A simple grade-rounding Vue app</h1>
 <p>Points from test: {{ points }}</p>
 <p>Rounded points are: {{ points | pointsRoundedUp }}</p>
 <p v-if="points > 90">Final grade: A</p>
 <p v-else-if="points > 80 && points <= 90">Final grade: B</p>
 <p v-else-if="points > 70 && points <= 80">Final grade: C</p>
 <p v-else-if="points > 60 && points <= 70">Final grade: D</p>
 <p v-else-if="points > 50 && points <= 86">Final grade: E</p>
 <p v-else="points <= 50">Final grade: F</p>
</div>

Our problem is solved. The points for this test are 94.44, and the app successfully prints out
the following information to the screen:

A simple grade-rounding Vue app
Points from test: 94.44
Rounded points are: 95
Final grade: A

However, we realize that our HTML is now cluttered. Luckily, we can utilize filters to make
things less messy.

https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN
https://codepen.io/AjdinImsirovic/pen/XPPrEN

Filters and Mixins Chapter 4

[81]

Using filters as a replacement for conditional
directives
In this section, we will employ a filter to return the proper grade for our student.

The code for the updated app is available here: https:/ /codepen. io/ AjdinImsirovic/ pen/
LJJPKm.

The changes we made to this version of the app's HTML are as follows:

<div id="app">
 <h1>A simple grade-rounding Vue app</h1>
 <p>Points from test: {{ points }}</p>
 <p>Rounded points are: {{ points | pointsRoundedUp }}</p>
 <p>Final grade: {{ points | pointsToGrade }}</p>
</div>

We moved the conditional functionality to our JavaScript, namely, to a new filter we named
pointsToGrade:

new Vue({
 el: "#app",
 data() {
 return {
 points: 84.44
 }
 },
 filters: {
 pointsRoundedUp(points){
 return Math.ceil(parseFloat(points));
 },
 pointsToGrade(points){
 if(points>90) {
 return "A"
 } else if(points>80 && points<=90) {
 return "B"
 } else if(points>70 && points<=80) {
 return "C"
 } else if(points>60 && points<=70) {
 return "D"
 } else if(points>50 && points<=60) {
 return "E"
 } else {
 return "F"
 }
 }

https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm
https://codepen.io/AjdinImsirovic/pen/LJJPKm

Filters and Mixins Chapter 4

[82]

 }
});

As a quick test that our updated code works, we have also changed the points to 84.44,
which successfully returns the B grade from the pointsToGrade filter.

However, not entirely unexpectedly, our friend returns again, and asks us for yet another
favor: to extend the app yet again. This time, we need to display a properly formatted name
of our student, in the following format:

Last name, First name, year of study, grade.

This means that we'll have to expand our app with additional functionality. Luckily, that
won't be hard because we can employ another nice feature of filters: chaining.

Chaining filters in Vue
The requirements for our app have been updated, and now we need to show some
additional, nicely formatted data on the screen.

Since the requirements have changed, we also need to update the data.

The code for this section is available at this pen: https:/ /codepen. io/AjdinImsirovic/
pen/BOOazy.

This is the updated JavaScript. To begin, we'll add the el and data options:

new Vue({
 el: "#app",
 data() {
 return {
 firstName: "JANE",
 lastName: "DOE",
 yearOfStudy: 1,
 points: 84.44,
 additionalPoints: 8
 }
 },

Still in JS, we'll add the filters:

 filters: {
 pointsRoundedUp(points){
 return Math.ceil(parseFloat(points));
 },
 pointsToGrade(points){

https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy
https://codepen.io/AjdinImsirovic/pen/BOOazy

Filters and Mixins Chapter 4

[83]

 if(points>90) {
 return "A"
 }
 else if(points>80 && points<=90) {
 return "B"
 }
 else if(points>70 && points<=80) {
 return "C"
 }
 else if(points>60 && points<=70) {
 return "D"
 }
 else if(points>50 && points<=60) {
 return "E"
 }
 else {
 return "F"
 }
 },
 yearNumberToWord(yearOfStudy){
 // freshman 1, sophomore 2, junior 3, senior 4
 if(yearOfStudy==1) {
 return "freshman"
 } else if(yearOfStudy==2){
 return "sophomore"
 } else if(yearOfStudy==3){
 return "junior"
 } else if(yearOfStudy==4){
 return "senior"
 } else {
 return "unknown"
 }
 },
 firstAndLastName(firstName, lastName){
 return lastName + ", " + firstName
 },
 toLowerCase(value){
 return value.toLowerCase()
 },
 capitalizeFirstLetter(string) {
 return string.charAt(0).toUpperCase() + string.slice(1);
 }
 }
});

Filters and Mixins Chapter 4

[84]

The updated HTML looks like this:

<div id="app">
 <h1>A simple grade-rounding Vue app</h1>
 <p>Points from test: {{ points }}</p>
 <p>Rounded points are: {{ points | pointsRoundedUp }}</p>
 <p>Student info:
 <!--
 <p>Name: {{ firstName, lastName | firstAndLastName | toLowerCase |
capitalizeFirstLetter}}</p>
 -->
 <p>
 Name:
 {{ lastName | toLowerCase | capitalizeFirstLetter }},
 {{ firstName | toLowerCase | capitalizeFirstLetter }}
 </p>
 <p>Year of study: {{ yearOfStudy | yearNumberToWord }}</p>
 <p>Final grade: {{ points | pointsToGrade }}</p>
</div>

With these chained filters, we achieved the correct formatting of the student's name by
virtue of taking the data (which appeared in all CAPS) and piping it through two filters:
toLowerCase and capitalizeFirstLetter.

We can also see a commented-out paragraph that shows an unsuccessful approach that
capitalizes only the first letter of the last name, but not the first letter of the first name. The
reason for this is the firstAndLastName filter which, when applied, combines the full
name into a single string.

Note that filters are not cached, which means that they will be always run, just like
methods.

For more information on filters, refer to the official documentation at https:/ /vuejs. org/
v2/guide/filters. html.

Working with mixins
Mixins are a way for us to abstract out reusable functionality in our Vue code. Made
popular in the frontend world by Sass, the concept of mixins is now present in a number of
modern JavaScript frameworks.

https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html
https://vuejs.org/v2/guide/filters.html

Filters and Mixins Chapter 4

[85]

Mixins are best used when we have some functionality that we would like to reuse across a
number of components. In the example that follows, we will create a very simple Vue app,
which will show two Bootstrap alerts on the page. When a user clicks on either of the alerts,
the browser's viewport dimensions will be logged out to the console.

For this example to work, we will need to get some plain HTML components from the
Bootstrap framework. Specifically, we will use the alert component.

The official documentation on this Bootstrap component can be found at this link: https:/ /
getbootstrap.com/ docs/ 4. 1/ components/ alerts/ .

It is important to note that Bootstrap components and Vue components are different things
and should not be confused.

The app, when run, will produce this result:

The code for this example can be found here: https:/ /codepen. io/AjdinImsirovic/ pen/
jvvybq.

Building a simple app with repetitive functionality
in different components
To begin, let's build our simple HTML:

<div id="app">
 <div class="container mt-4">
 <h1>{{heading}}</h1>

https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://getbootstrap.com/docs/4.1/components/alerts/
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq
https://codepen.io/AjdinImsirovic/pen/jvvybq

Filters and Mixins Chapter 4

[86]

 <primary-alert></primary-alert>
 <warning-alert></warning-alert>
 </div>
</div>

We are using Bootstrap's CSS classes of container and mt-4. The regular HTML h1 tag
also gets some Bootstrap-specific styling. We are also using two Vue components in the
previous code: primary-alert and warning-alert.

In our JavaScript code, we define these two components as primaryAlert and
warningAlert, and then we list them in the components option of their parent
component:

const primaryAlert = {
 template: `
 <div class="alert alert-primary" role="alert" v-
on:click="viewportSizeOnClick">
 A simple primary alert—check it out!
 </div>`,
 methods: {
 viewportSizeOnClick(){
 const width = window.innerWidth;
 const height = window.innerHeight;
 console.log("Viewport width:", width, "px, viewport height:", height,
"px");
 }
 }
}
const warningAlert = {
 template: `
 <div class="alert alert-warning" role="alert" v-
on:click="viewportSizeOnClick">
 A simple warning alert—check it out!
 </div>`,
 methods: {
 viewportSizeOnClick(){
 const width = window.innerWidth;
 const height = window.innerHeight;
 console.log("Viewport width:", width, "px, viewport height:", height,
"px");
 }
 }
}

Filters and Mixins Chapter 4

[87]

And now, still in JS, we can specify the constructor:

new Vue({
 el: '#app',
 data() {
 return {
 heading: 'Extracting reusable functionality into mixins in Vue'
 }
 },
 components: {
 primaryAlert: primaryAlert,
 warningAlert: warningAlert
 }
})

To see the result of this little app, open the console and click on either of the two alert
components. The console output will be similar to the following:

Viewport width: 930 px, viewport height: 969 px

As we can see in the JavaScript code, we are also defining a viewportSizeOnClick
method inside the methods option of both the primaryAlert and warningAlert
components. This unnecessary repetition in functionality is a perfect candidate for
abstracting into a mixin, which we will do next.

Staying DRY with mixins
The code for the improved app is available here: https:/ /codepen. io/ AjdinImsirovic/
pen/NLLgWP.

In this example, while our HTML stays completely the same, the updated JavaScript code
will look as follows:

const viewportSize = {
 methods: {
 viewportSizeOnClick(){
 const width = window.innerWidth;
 const height = window.innerHeight;
 console.log("Viewport width:", width, "px, viewport height:",
height, "px");
 }
 }
}
const primaryAlert = {
 template: `

https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP
https://codepen.io/AjdinImsirovic/pen/NLLgWP

Filters and Mixins Chapter 4

[88]

 <div class="alert alert-primary" role="alert" v-
on:click="viewportSizeOnClick">
 A simple primary alert—check it out!
 </div>`,
 mixins: [viewportSize]
}
const warningAlert = {
 template: `
 <div class="alert alert-warning" role="alert" v-
on:mouseenter="viewportSizeOnClick">
 A simple warning alert—check it out!
 </div>`,
 mixins: [viewportSize]
}
new Vue({
 el: '#app',
 data() {
 return {
 heading: 'Extracting reusable functionality into mixins in Vue'
 }
 },
 components: {
 primaryAlert: primaryAlert,
 warningAlert: warningAlert
 }
})

As can be seen here, we have erased the methods option from both components and added
a new object named viewportSize. Inside this object, we have moved the shared methods
option:

const viewportSize = {
 methods: {
 viewportSizeOnClick(){
 const width = window.innerWidth;
 const height = window.innerHeight;
 console.log("Viewport width:", width, "px, viewport height:",
height, "px");
 }
 }
}

The methods option holds only the viewportSizeOnClick function.

Filters and Mixins Chapter 4

[89]

As a side note, the vieportSizeOnClick method's name is slightly misleading. If you look
at the code for the second component (the warningAlert component) a bit closer, you'll
notice that we updated the directive so it is using v-on:mouseenter, rather than v-
on:click. This means that the name of the method will need to be changed to something
more suitable. Therefore, we will rename the method to logOutViewportSize.

Also, let's imagine that we want another way to display the viewport information. For
example, we might show it in an alert box rather than logging it to the console. That's why
we'll introduce another method, alertViewportSize.

With all of these little changes accumulating, it is a good time to see another, updated
version of our little app. The new pen can be found at this URL: https:/ /codepen. io/
AjdinImsirovic/pen/ aaawJY.

Similar to the previous updates, again the updated example only has changes made to the
JS, as follows. We begin with viewportSize:

const viewportSize = {
 methods: {
 logOutViewportSize(){
 const width = window.innerWidth;
 const height = window.innerHeight;
 console.log("Viewport width:", width, "px, viewport height:",
height, "px");
 },
 alertViewPortSize() {
 const width = window.innerWidth;
 const height = window.innerHeight;
 alert("Viewport width: " + width + " px, viewport height: " +
height + " px");
 }
 }
}

Next, we'll set up the alerts:

const primaryAlert = {
 template: `
 <div class="alert alert-primary" role="alert" v-
on:click="alertViewPortSize">
 A simple primary alert—check it out!
 </div>`,
 mixins: [viewportSize]
}
const warningAlert = {
 template: `

https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY
https://codepen.io/AjdinImsirovic/pen/aaawJY

Filters and Mixins Chapter 4

[90]

 <div class="alert alert-warning" role="alert" v-
on:mouseenter="logOutViewportSize">
 A simple warning alert—check it out!
 </div>`,
 mixins: [viewportSize]
}

Finally, let's wrap it up with specifying the Vue constructor:

new Vue({
 el: '#app',
 data() {
 return {
 heading: 'Extracting reusable functionality into mixins in Vue'
 }
 },
 components: {
 primaryAlert: primaryAlert,
 warningAlert: warningAlert
 }
})

In the next section, we will look at how we can further improve our mixins by refactoring
them.

Refactoring our viewportSize mixin
In this section, we will look at ways to further improve our mixins. While our code is both
readable and easy to grasp, we have some code duplication in const declarations. Also, we
will use this opportunity to look at ways of approaching mixin refactoring. The updated
code will include some basic event handling.

For the list of available events, refer to this link: https:/ / developer. mozilla. org/ en- US/
docs/Web/Events.

Since we will also use JavaScript's built-in addEventListener() method, it would also be
good to get more information about it on MDN, at the following URL: https:/ / developer.
mozilla.org/en-US/ docs/ Web/ API/ EventTarget/ addEventListener.

Before we begin refactoring, we will utilize the ability of mixings to plug into the life cycle
functionality of Vue (just like components do). Additionally, in this iteration of our
mixin, we introduce another option besides methods in the mixin itself. The option we use
is data. Effectively, to avoid having to duplicate const declarations inside the methods
option of our mixin, we will store the values to work with inside the data option.

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

Filters and Mixins Chapter 4

[91]

While the HTML still remains unchanged, our JavaScript file will look quite different. Let's
begin by setting up the data:

const viewportSize = {
 data(){
 return {
 viewport: {
 width: 0,
 height: 0
 }
 }
 },

Next, we'll add methods, namely getViewportSize, logOutViewportSize, and
alertViewportSize:

 methods: {
 measureViewportSize(){
 this.viewport.width = window.innerWidth;
 this.viewport.height = window.innerHeight;
 },
 logOutViewportSize(){
 console.log("Viewport width:", this.viewport.width, "px, viewport
height:", this.viewport.height, "px");
 },
 alertViewPortSize() {
 alert("Viewport width: " + this.viewport.width + " px, viewport
height: " + this.viewport.height + " px");
 }
 },

Next, let's add created:

created() {
 this.listener =
 window.addEventListener('mousemove',this.measureViewportSize);
 this.measureViewportSize();
 }
}

Now, we can set up primaryAlert:

const primaryAlert = {
 template: `
 <div class="alert alert-primary" role="alert" v-
on:click="alertViewPortSize">
 A simple primary alert—check it out!
 </div>`,

Filters and Mixins Chapter 4

[92]

 mixins: [viewportSize]
}

We'll continue by adding warningAlert:

const warningAlert = {
 template: `
 <div class="alert alert-warning" role="alert" v-
on:mouseenter="logOutViewportSize">
 A simple warning alert—check it out!
 </div>`,
 mixins: [viewportSize]
}

Finally, let's add the Vue constructor:

new Vue({
 el: '#app',
 data() {
 return {
 heading: 'Extracting reusable functionality into mixins in Vue'
 }
 },
 components: {
 primaryAlert: primaryAlert,
 warningAlert: warningAlert
 }
})

The code for this section is available in the following code pen: https:/ / codepen. io/
AjdinImsirovic/pen/ oPPGLW.

The options we have in our refactored mixin are data, methods, and created. The
created function is a life cycle hook, and we use this hook to listen for mousemove events.
When such an event occurs, we run the this.getViewportSize method of our mixin,
which updates the viewport dimensions that get either logged out or shown in an alert box.

Never use global mixins! Global mixins affect all of the components of
your apps. There are not that many use cases for such a scenario, so
usually it is best to avoid using global mixins.

With this, we conclude our brief discussion of mixins in Vue. For more information on the
subject, visit this official link:

https://vuejs.org/ v2/ guide/ mixins. html

https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://codepen.io/AjdinImsirovic/pen/oPPGLW
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html
https://vuejs.org/v2/guide/mixins.html

Filters and Mixins Chapter 4

[93]

Summary
In this chapter, we looked at filters and mixins in Vue. We discussed the situations in which
using filters would make sense, and we looked at using global and local filters. We also
discussed how filters can be used to replace conditional directives, and we examined how
to pipe filters together.

We also explored how to abstract reusable functionality by moving it from components to
mixins, and we looked at ways to avoid code duplication inside mixins themselves. We
wrapped it up with an example of using life cycle hooks inside our mixins.

In the next chapter, we will look at building our own custom directives.

5
Making Your Own Directives

and Plugins
In this chapter, we will look at ways of extending Vue. First, we will code our own
directives and see how we can use them. Next, we will make a custom Vue plugin.

More specifically, in this chapter, we will examine the following:

The structure of custom directives and how to make them
Using global and local custom directives
Passing values to custom directives
Authoring Vue plugins
Publishing Vue plugins

Making our own directives
In Vue 2, components are the go-to strategy to use, be it keeping things DRY or abstracting
away some functionality. However, another approach that you can take is to utilize custom
directives.

Understanding custom directives
As we discussed earlier in this book, directives help us explain to Vue what kind of
behavior we would like to attach to a piece of markup. As we have previously seen, there
are a number of directives that come built-in with Vue. Some examples are v-on, v-if, v-
model, and so on. As a quick refresher, a directive is an HTML attribute that starts with v-.

Making Your Own Directives and Plugins Chapter 5

[95]

When we need to build a custom directive, we simply provide a custom word after the
hyphen. For example, we could create a custom directive, which we'll call v-custom-
directive, and we can then use this name in our markup, for example, like this:

<div id="app">
 <div v-custom-directive>{{ something }}</div>
<!-- etc -->

Note that it is perfectly normal to have a directive without a value, just like it is to provide
it a value, like so:

<div id="app">
 <div v-custom-directive="aValue">{{ something }}</div>
<!-- etc -->

Next, in our JS code, we would need to register this directive, as follows:

Vue.directive('customDirective', {
 // details for the directive go here
}

So, as we can see, the first argument provided to Vue.directive is the name of our
custom directive. Note that the Vue convention of using kebab-case in HTML and
lowerCamelCase in JS is also applied to custom directives.

The second argument provided to our custom directive is an object that holds all of the
directive's functionality.

As you might infer by now, the previous code gives an example of registering a directive
globally. If you would like to register a directive locally, you would need to specify a
directives option to a specific component.

For example, we could register a local component as follows:

directives: {
 directiveName: {
 // some code to describe functionality
 }
}

Just like components, directives use hooks too, which allows us to control when their
functionality will be called. There are five directive hooks: bind, inserted, update,
componentUpdated, and unbind.

For a full list of arguments that some of these hooks can take, you can refer to https:/ /
vuejs.org/v2/guide/ custom- directive. html#Directive- Hook- Arguments.

https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments

Making Your Own Directives and Plugins Chapter 5

[96]

Building a simple custom directive
The full code for this example is available here: https:/ /codepen. io/AjdinImsirovic/ pen/
yxWObV.

In our HTML, we will add the following simple code:

<div id="app" class="container mt-5">
 <h1 class="h2">{{ heading }}</h1>
 <div v-custom-directive>
 Just some text here
 </div>
</div>

In our JS, we will add our customDirective globally:

Vue.directive('customDirective', {
 inserted: function(el) {
 el.style.cssText = `
 color: blue;
 border: 1px solid black;
 background: gray;
 padding: 20px;
 width: 50%;
 `
 }
});

new Vue({
 el: '#app',
 data() {
 return {
 heading: 'A custom global directive'
 }
 }
});

In the previous code, we are using the inserted directive hook. With this hook, the
directive's code will be run when the element that the directive is bound to is inserted into
its parent node.

When this occurs, the element will be styled according to the values we assigned to
el.style.cssText.

https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV
https://codepen.io/AjdinImsirovic/pen/yxWObV

Making Your Own Directives and Plugins Chapter 5

[97]

Of course, there is nothing preventing us from using more than one custom directive on an
element. For example, we could specify several custom directives, and then mix and match
them as suitable.

In the next section, we are going to rewrite the global custom directive as a local one.

Using local directives
Let's now look at how we could rewrite the previous code so that our directive uses local
directives instead of a global one.

In this section, we will build a very simple custom directive. We will use an example from
Chapter 4, Filters and Mixins, and we will build on it, so that we can easily compare the
differences to the previous example, only this time with a simple local custom directive.

The code for this example is available here: https:/ /codepen. io/AjdinImsirovic/ pen/
yxWJNp.

In our HTML, we will specify the following code:

<main id="app">
 <custom-article v-custom-directive></custom-article>
 <custom-article></custom-article>
 <another-custom-article v-another-custom></another-custom-article>
</main>

In our JS, we will specify the following code:

const anotherCustom = {
 inserted: function(el) {
 el.style.cssText = `
 color: green;
 border: 1px solid black;
 background: yellow;
 padding: 20px;
 width: 50%;
 `
 }
}

const customArticle = {
 template: `
 <article>
 Our own custom article component!
 </article>`

https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp
https://codepen.io/AjdinImsirovic/pen/yxWJNp

Making Your Own Directives and Plugins Chapter 5

[98]

}

Vue.component('another-custom-article', {
 template: `
 <article>
 Another custom article component!
 This one has it's own child component too!
 Here it is:
 <custom-article v-custom-directive></custom-article>
 </article>`,
 components: {
 'customArticle': customArticle
 },
 directives: {
 customDirective: {
 inserted: function(el) {
 el.style.cssText = `
 color: blue;
 border: 1px solid black;
 background: gray;
 padding: 20px;
 width: 50%;
 `
 }
 }
 }
})

new Vue({
 el: '#app',
 components: {
 'customArticle': customArticle,
 },
 directives: {
 customDirective: {
 inserted: function(el) {
 el.style.cssText = `
 color: blue;
 border: 1px solid black;
 background: gray;
 padding: 20px;
 width: 50%;
 `
 }
 },
 'anotherCustom': anotherCustom
 }
})

Making Your Own Directives and Plugins Chapter 5

[99]

In the next section, we will see how to pass values to custom directives.

Passing values to custom directives
We will improve on this chapter's initial example by allowing our custom directives to
receive arguments. The code for this example is available in this pen: https:/ /codepen. io/
AjdinImsirovic/pen/ xaNgPN.

This is the HTML for our example of passing values to custom directives:

<div id="app" class="container mt-5">
 <h1 class="h2">{{ heading }}</h1>
 <button v-buttonize="tomato">
 Just some text here
 </button>
 <button v-buttonize="lightgoldenrod">
 Just some text here
 </button>
 <button v-buttonize="potato">
 Just some text here
 </button>
</div>

And here is the JavaScript:

Vue.directive('buttonize', {
 bind(el, binding) {
 var exp = binding.expression;
 el.style.cssText += `
 padding: 10px 20px;
 border: none;
 border-radius: 3px;
 cursor: pointer
 `;
 switch(exp) {
 case 'tomato':
 el.style.cssText += `
 background: tomato;
 color: white;
 `;
 break;
 case 'lightgoldenrod':
 el.style.cssText += `
 background: darkgoldenrod;
 color: lightgoldenrod;
 `;

https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN
https://codepen.io/AjdinImsirovic/pen/xaNgPN

Making Your Own Directives and Plugins Chapter 5

[100]

 break;
 default:
 el.style.cssText += `
 background: gray;
 color: white;
 `
 }
 }
});

Finally, still in JS, we add the Vue constructor with the options object:

new Vue({
 el: '#app',
 data() {
 return {
 heading: 'A custom global directive'
 }
 }
});

Note that the specific settings for directive hook arguments can be found at https:/ /
vuejs.org/v2/guide/ custom- directive. html#Directive- Hook- Arguments. The one
argument that is of most interest to us is binding, which is an object with these properties:
name, value, oldValue, expression, arg, and modifiers.

In the previous code, we see an example of passing two different values that give us
different results based on the values passed. We also see an example of what happens when
we pass a nonsensical value (one that utilizes the switch statement's default branch).

In the next section, we will discuss ways in which we can further extend Vue functionality
by building Vue plugins.

Working with Vue plugins
Some popular Vue plugins are Vuex and Vue-router. A Vue plugin is used when we need
to give additional functionality to Vue globally. There are a few very common scenarios
where Vue plugins might be useful: adding global methods, adding global assets, adding
instance methods on Vue.prototype, or adding global mixins.

Where Vue plugins shine is the ability to share them with the community. To get an idea of
the vastness of Vue's plugin system, navigate to the following URLs: https:/ / github. com/
vuejs/awesome-vue#components- -libraries and https:/ / vuejsexamples. com/ .

https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://vuejs.org/v2/guide/custom-directive.html#Directive-Hook-Arguments
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://github.com/vuejs/awesome-vue#components--libraries
https://vuejsexamples.com/
https://vuejsexamples.com/
https://vuejsexamples.com/
https://vuejsexamples.com/
https://vuejsexamples.com/
https://vuejsexamples.com/
https://vuejsexamples.com/
https://vuejsexamples.com/

Making Your Own Directives and Plugins Chapter 5

[101]

Next, we'll create a simple Vue plugin.

Creating the simplest possible Vue plugin
We'll begin by creating the simplest possible Vue plugin. In order to do that, we'll again use
Vue CLI, version 3. The instructions for setting up Vue CLI are available in Chapter 3,
Working with Vue-CLI, Components, Props, and Slots.

First, we will need to initialize a new project. Navigate your console to the parent folder in
which you want to create a new Vue project, and run the following commands:

vue create simple-plugin
cd simple-plugin
npm run-serve

When we run the first of these three commands, we will be asked a few questions, and after
that, a large number of packages will be run. This can take some time—a nice opportunity
for a short break. Once done, and we have run the other two commands listed before, our
boilerplate Vue app will be available at localhost:8080.

To start off, let's create a new folder inside the src folder and call it plugins. Next, inside
the plugins folder, let's make another folder, which we'll call SimplePlugin. Inside the
SimplePlugin folder, let's make a new file and call it index.js.

A Vue plugin is an object. For our plugin object to be accessible to our Vue app, we need to
make it available by exporting it. Therefore, let's add this export code to our index.js file:

export default {

}

A Vue's plugin object has an install method. The install method takes in two
arguments. The first argument is the Vue object, and the second argument is
the options object. Therefore, we'll add the install method inside the plugin object:

export default {
 install(Vue, options) {
 alert('This is a simple plugin and currently the options argument
is ' + options);
 }
}

Making Your Own Directives and Plugins Chapter 5

[102]

Currently, inside our install method, we are only alerting a message to the browser. This
is the absolute minimum of functionality our plugin can have. With this functionality in
place, it's time to use our plugin inside our app.

Note that we are also concatenating the options argument to our alert
message. If we didn't do it, our Vue-cli would throw an error, stating that
options is defined but never used. Apparently, it favors the (no-unused-vars)
scenarios.

To use the plugin, we need to open our main.js file and import the plugin by adding these
two lines of code on line three of the main.js file:

import SimplePlugin from './plugins/SimplePlugin'
Vue.use(SimplePlugin)

First, we import the plugin and we specify the import path. Next, we add our plugin as an
argument to the Vue.use method.

With this, we have successfully authored the simplest possible plugin. Open your local
project at localhost:8080 and you'll be greeted with the alert message, stating this:

This is the simplest possible Vue plugin and currently the options argument
is undefined

Next, we'll see how to add the options object to our plugins.

Creating a plugin with options defined
Due to the way we have set up our project, we will leave SimplePlugin as is and, in this
section of our exploration of plugins in Vue, we'll add another folder inside our plugins
folder in our project. We'll call this folder OptionsPlugin and inside of it, we'll again
create an index.js file.

Next, let's update the main.js file, so that now it looks like this:

import Vue from 'vue'
import App from './App.vue'

//import SimplePlugin from './plugins/SimplePlugin'
import OptionsPlugin from './plugins/OptionsPlugin'

//Vue.use(SimplestPlugin)
Vue.use(OptionsPlugin)

Making Your Own Directives and Plugins Chapter 5

[103]

Vue.config.productionTip = false

new Vue({
 render: h => h(App)
}).$mount('#app')

Now, back in OptionsPlugin/index.js, we will add the following code:

export default {
 install(Vue) {
 Vue.directive('text-length', {
 bind(el, binding, vnode) {
 const textLength = el.innerText.length;
 console.log("This element, " + el.nodeName + ", has text with "
+ textLength + " characters");
 el.style.cssText = "border: 2px solid tomato";
 }
 })
 }
}

Notice that we have completely omitted the options object in the
install method. The reason is simple: the options object is optional,
and not providing it will not break our code.

In the previous plugin definition, we are getting the length of the el.innerText string,
and then we are logging it out to the console. Additionally, the el that has our plugin's
custom v-text-length directive applied will also be made more noticeable with a red
border.

Next, let's use the functionality from our plugin in a component's template. Specifically,
we'll use it at the beginning of the HelloWorld.vue file inside the src/components
folder:

<template>
 <div class="hello">
 <h1 v-text-length>{{ msg }}</h1>

Running our app in the browser at this point will produce the following message in the
console:

This element, H1, has text with 26 characters

Making Your Own Directives and Plugins Chapter 5

[104]

Now, we can introduce our options object. The purpose of the options object will be to
allow us to customize the way in which the HTML element that is affected by the v-text-
length directive is displayed. In other words, we can decide to give the users of our plugin
the option to choose between different kinds of styles based on options that we pass in.

So, let's update our plugin with the following code:

const OptionsPlugin = {
 install(Vue, options) {
 Vue.directive('text-length', {
 bind(el, binding, vnode) {
 const textLength = el.innerText.length;
 console.log("This element, " + el.nodeName + ", has text with "
+ textLength + " characters");
 if (textLength < 40) {
 el.style.cssText += "border:" + options.selectedOption.plum;
 } else if (textLength >= 40) {
 el.style.cssText += "border:" + options.selectedOption.orange;
 }
 }
 })
 }
};

export default OptionsPlugin;

There are a few things happening in the previous code. First, we are creating an object on
the fly and we are assigning it to const OptionsPlugin. At the bottom of the file, we are
exporting the OptionsPlugin we have just defined.

Inside the optionsPlugin object, we are using a couple of if statements to serve different
styles based on the length of text found in the text node of the el element. If the length of
text is less than 40 characters, then we will assign the value options.selectedOption
.plum to the border CSS property.

Otherwise, if the length of text is equal to or greater than 40 characters, we will assign the
value of options.selectedOption.orange to the border CSS property inside the inline
style attribute of the element in question.

Making Your Own Directives and Plugins Chapter 5

[105]

Next, let's set these option values. We'll do that in our main.js file. We'll update the
section where we use the plugin to the following code:

Vue.use(OptionsPlugin, {
 selectedOption: {
 plum: "5px dashed purple",
 orange: "10px double orange"
 }
})

Finally, in the HelloWorld.vue file, we made only a slight update. We add the plugin-
defined directive to the p tag that follows right after the h1 tag:

<template>
 <div class="hello">
 <h1 v-text-length>{{ msg }}</h1>
 <p v-text-length>

Now, when we run our app, we'll get the following text logged to the console:

This element, H1, has text with 26 characters
This element, P, has text with 121 characters

In our viewport, this plugin will add a dashed purple border around the h1 tag and a
double orange border around the p tag.

Now that we understand the basic way in which plugins can be created and used, we can
think of creative ways to make our plugin do something more useful. For example, we
could improve the existing plugin by adding a tooltip that would display the number of
words that are present in different elements on the page. We could also add color intensity:
the more words there are, the more color we could give to this "character count" badge.

Alternatively, we could list the values present in the style attribute, or the class attribute, or
both. This plugin would be useful for the quick inspection of styles without opening the
dev tools, which could prove useful on smaller screens or workstations that have only one
screen available.

Next, we'll discuss how we can publish a Vue plugin. Specifically, we will publish the
OptionsPlugin we just made.

Making Your Own Directives and Plugins Chapter 5

[106]

Publishing a Vue plugin
A prerequisite to authoring an npm plugin is registering on the website and verifying your
email address. Hence, the first step in authoring your Vue plugin on npm is to visit https:/
/www.npmjs.com and register an account.

We will publish our Vue plugin on npm. First, let's check whether we already have a user.
Run the following command in your console:

npm whoami

If that throws an error, you will need to create a new user by running this command:

npm adduser

Then, just follow the instructions to add yourself as the user.

Adding a simple plugin
To add a simple, one-file plugin, simply run npm init in the folder of your choice. This
command will help you create a package.json file.

This is the list of questions and answers provided:

package name: "vue-options-plugin"
version: (1.0.0)
description: A simple Vue plugin that shows how to use the options object
entry point: "OptionsPlugin.vue"
test command:
git repository:
keywords:
license: (ISC)
About to write to ...
Is this ok? (yes)

The default answers that the npm init utility provides are listed in round brackets. To
accept the defaults, simply press the Enter key. Otherwise, simply type the desired answer.

https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com

Making Your Own Directives and Plugins Chapter 5

[107]

There is also the concept of scope for npm authors. Scope is simply your username. The best
approach to not having to worry about scope is to have it set in your .npmrc file, via the
command line, by running the following command:

npm init --scope=username

Of course, you need to replace the word username with your actual username.

Once done, run the dir command to list the contents of the folder. It should list only one
file: package.json. Now, we can create another file, named OptionsPlugin.vue:

touch OptionsPlugin.vue

Let's quickly verify that our package.json file looks like this:

{
 "name": "vue-options-plugin",
 "version": "1.0.0",
 "description": "A simple Vue plugin that shows how to use options
object",
 "main": "OptionsPlugin.vue",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "<your-username-here>",
 "license": "ISC"
}

Next, let's update the OptionsPlugin.vue file with this code:

const OptionsPlugin = {
 install(Vue, options) {
 Vue.directive('text-length', {
 bind(el, binding, vnode) {
 const textLength = el.innerText.length;
 console.log("This element, " + el.nodeName + ", has text with "
+ textLength + " characters");
 if (textLength < 40) {
 el.style.cssText += "border:" + options.selectedOption.plum;
 } else if (textLength >= 40) {
 el.style.cssText += "border:" + options.selectedOption.orange;
 }
 }
 })
 }
};

export default OptionsPlugin;

Making Your Own Directives and Plugins Chapter 5

[108]

Finally, let's add a README.md file. The md file extension stands for Markdown, which is a
format that makes it very easy to author content online. We will add the following contents
to the README:

optionsplugin
<p> A demo of making a simple Vue 2 plugin and using it with values stored
in the options object. This plugin logs out to the console the number of
characters in an element. It also adds different CSS styles based on the
length of characters in the element.</p>

Installation
```bash
 npm install --save optionsplugin
```
Configuration
```javascript
import Vue from 'vue';
import OptionsPlugin from 'optionsplugin'
Vue.use(OptionsPlugin, {
  selectedOption: {
    plum: "5px dashed purple",
    orange: "10px double orange"
  }
})
```
Usage
<p>To use it, simply add the plugin's custom directive of v-text-length to
an element in your template's code.</p>

This should be a good starting point for our plugin's description. We can always improve
the README later. Now that we have package.json, README.md, and
OptionsPlugin.vue ready, we can publish our plugin simply by running this:

npm publish --access=public

We need to provide the --access=public flag to our npm publish command, because
scope packages default to private access and we need to explicitly override this setting.

Once published, our console will log out the following information:

+ vue-options-plugin@1.0.0

Making Your Own Directives and Plugins Chapter 5

[109]

This is the sign that we have successfully published our plugin. Our new plugin now has its
very own home, at the following URL:

https://www.npmjs. com/ package/ vue- options- plugin.

Finally, let's look how to install our newly added plugin to another project.

Installing our NPM plugin in a Vue project using
Vue CLI 3
To install our Vue plugin from npm, we need to first create a new project. Let's run these
commands:

vue create just-another-project
cd just-another-project
npm run-serve

Now, we can add our npm plugin by running this:

npm install --save vue-options-plugin

That's all there is to it; now, our plugin is available in our project and we can use it as
described earlier, by importing it like this:

import VueOptionsPlugin from 'vue-options-plugin'

And now, we can use our plugin's functionality as needed.

Additional plugins to learn from
It is always good to look at well-coded examples of other people's code, so that we can
learn from them. Some useful plugins that we can learn from and possibly contribute to are
these:

A guided tour plugin, vue-tour: https:/ /github. com/pulsardev/ vue- tour

Multi-select plugin, vue-multiselect: https:/ /vue- multiselect. js. org/

A tooltip plugin, v-tooltip: https:/ /akryum. github. io/v- tooltip

https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://www.npmjs.com/package/vue-options-plugin
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://github.com/pulsardev/vue-tour
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://vue-multiselect.js.org/
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip
https://akryum.github.io/v-tooltip

Making Your Own Directives and Plugins Chapter 5

[110]

Summary
In this chapter, we looked at creating custom directives and custom plugins in Vue. We
covered how to structure custom directives, and how to make global and local custom
directives. We also looked at passing values to custom directives and working with Vue
plugins. We looked at how to create a couple of custom Vue plugins. Finally, we have seen
how to publish our plugin to npm and how to install it in our projects from NPM.

In the chapter that follows, we will examine how to make our apps feel more interactive
with the help of transitions and animations.

6
Transitions and Animations

In this chapter, we'll look at how to use transitions and animations in Vue. This is a large
topic that would take a lot more than a chapter to cover. Hence, we will deal with some
fundamental concepts that we can build upon in the future.

We will focus on the following topics:

Understanding CSS transitions and animations
Implementing transitions with the transition component
Working with CSS transitions and animations in Vue
Integrating with third-party CSS and JS libraries
Binding CSS styles
Working with transition groups
JavaScript animation hooks

After reading this chapter, you should have a solid understanding of how transitions and
animations are used in Vue.

Transitions and animations in CSS
To understand how Vue.js deals with transitions and animations, we will first need to have
a quick refresher on how they work in CSS. We will focus on the bare basics, with the goal
of revisiting the principles that govern transitions and animations. We will also look at their
differences. The goal is to be able to understand better how Vue helps, rather than dive
deep into the nuances of transitions and animations.

Transitions and Animations Chapter 6

[112]

How CSS transitions work
When we hover over an element, we put that element in a hover state. When the user
triggers a hover state through their interaction with our web page, we might want to
emphasize that this change of state has occurred.

To emphasize that change of state, we could, for example, change the CSS background-
color property on that element when the user hovers over it.

This is where CSS transitions come in. When we write code for CSS transitions, we instruct
the browser on how it will display changes made to that specific CSS property—in our
example, the background-color property.

Let's say we have an HTML button element. This element has its CSS property
of background-color set to red:

button {
 background-color: red;
}

When a user hovers over the button, we want to change the value of the background-
color property from red to blue. We'll do that like this:

button:hover {
 background-color: blue;
}

The sample code is available here: https:/ /codepen. io/AjdinImsirovic/ pen/ LJKJYY.

However, this change of color is sudden. To smoothly transition a CSS property of an HTML
element from one value to the other, we use the CSS transition property. The
transition property is a shorthand CSS property. It is just another CSS property we
specify on the targeted element—the one to which we want to apply this smooth transition.

In our case, we want to smoothly transition our button from the red background to the blue
background. We will simply add the shorthand transition property on the button
element, and set two values on this transition property:

button {
 background-color: red;
 transition: background-color 4s;
}
button:hover {
 background-color: blue;
}

https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY
https://codepen.io/AjdinImsirovic/pen/LJKJYY

Transitions and Animations Chapter 6

[113]

This is the formula:

transition: property-to-transition transition-duration, property-to-
transition transition-duration

In our example, we're specifying the duration for only one property, but we can add more,
as needed. The previous example can be found at https:/ /codepen. io/ AjdinImsirovic/
pen/rqBqYN.

How CSS animations work
In the previous example, we saw a simple transition. In this example, we will convert the
transition into an animation. The updated CSS code will look like this:

button {
 background-color: red;
}
button:hover {
 animation: change-color 4s;
}
@keyframes change-color {
 0% {
 background: red;
 }
 100% {
 background: blue;
 }
}

In the previous code, we have converted our simple CSS transition into a CSS animation.

This example can be found at this link: https:/ /codepen. io/ AjdinImsirovic/ pen/WaNePm.

However, it does not work 100% the same. When we hover over the button, we don't get
the exact same behavior we had in the transition example. The reason is that we have
specified the initial state (as 0%) and the final state (as 100%) of our animation. So, we are
effectively mapping over the behavior we had in the transition example, to behavior in the
animation example.

However, when we remove the mouse pointer from the button, the animation does not
rewind to the initial state, but rather abruptly cuts back to the original background color of
red. In CSS, there is no mouseout property.

https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/rqBqYN
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm
https://codepen.io/AjdinImsirovic/pen/WaNePm

Transitions and Animations Chapter 6

[114]

We could, however, add additional steps in between. For example, we could set the
background color to green at 50% of our change animation. The result can be seen at this
URL: https://codepen. io/ AjdinImsirovic/ pen/ QZWWje.

Before we dive into how Vue implements transitions and animations, let's look at the
differences between them in CSS.

Differences between transitions and animations
in CSS
Here are two quick, incomplete lists of the differences between transitions and animations
in CSS.

Rules for CSS transitions
Here are some important rules of CSS transitions:

Transitions only have implied start and end states
The way that a transition will be performed is decided by the browser; in other
words, the browser decides how it will perform the in-between steps of the
transition
We can only point the browser to the exact CSS property we want transitioned,
and the duration, easing, and so on
Transitions are triggered; the trigger can be a hover or an element appearing on
the page (via JavaScript)
Transitions can't be looped
Transitions are played in reverse when the trigger state (the hover state) is
reverted, that is, when the mouse is unhovered
Transition syntax is simpler than the syntax for animations

Next, let's list the important concepts of CSS animations.

Rules for CSS animations
What follows is an incomplete list of rules for CSS animations:

Animations allow us to specify initial state, in-between state(s), and end state of
our CSS properties

https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje
https://codepen.io/AjdinImsirovic/pen/QZWWje

Transitions and Animations Chapter 6

[115]

There can be as many steps as we need in our CSS animations
We can delay animations, play them x number of times (to infinity), or play them
in the opposite direction
Animations don't have to be triggered, but they can be

With these basic distinctions out of the way, let's next look at how to deal with transitions
and animations in Vue.

The transition element in Vue
Let's look at the previous example of CSS-only transitions, ported into Vue. In the following
example, the first button is wrapped inside a custom component, while the second button is
just the regular HTML button element. They still both share the same styles, as specified in
the app's CSS:

<!-- HTML -->
<div id="app">
 <button>Hover me!</button>
 <custom-component></custom-component>
</div>

// JS
Vue.component('customComponent', {
 template: `
 <button>Hover me too!</button>
 `
});
new Vue({
 el: '#app'
});

/* CSS */
button {
 background-color: red;
 transition: background-color 4s;
}
button:hover {
 background-color: blue;
}
/* some additional styling */
* {
 border: none;
 color: white;
 padding: 10px;

Transitions and Animations Chapter 6

[116]

 font-size: 18px;
 font-weight: 600;
}

The previous code can be found here: https:/ / codepen. io/ AjdinImsirovic/ pen/
vVYERO. As can be seen in the example, in this case, Vue does not diverge from the way that
transitions and animations work in plain HTML and CSS.

Vue is not designed to override the normal use case for CSS transitions and animations, but
rather to work alongside them with one specific goal: to transition the appearance and
removal of its components on the screen. This addition and removal of components is done
with the help of Vue's transition element.

For example, when you want to have an event in one component to affect the addition and
removal of another component, you simply wrap that other component in a transition
element. To build from the previous examples with plain CSS, here is a simple
implementation in Vue:

<!-- HTML -->
<div id="app">
 <button v-on:click="show = !show">
 Show? {{ show }}
 </button>
 <transition>

 <custom-component></custom-component>

 </transition>
</div>

// JS
Vue.component('customComponent', {
 template: `
 <button>Hover me!</button>
 `
});
new Vue({
 el: '#app',
 data: {
 show: true
 }
});

/* CSS is the same as in the previous example */

https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO
https://codepen.io/AjdinImsirovic/pen/vVYERO

Transitions and Animations Chapter 6

[117]

The example code is available here: https:/ /codepen. io/ AjdinImsirovic/ pen/ZqExJO.

If you need the element to appear smoothly on the initial page load,
without conditions, then you can use the appear attribute on your
transition wrapper, like this: <transition appear>.

What is happening in the previous code is that we are conditionally toggling the mounting
of the custom-component element based on whether the user has clicked the first button
or not. Note that the original CSS transition is still behaving the exact same way in both
buttons. When we hover over either of them, we still get the four-second transition of
background color from red to blue. The browser still takes care of the inverted transition of a
button's background when we hover away from either of the buttons.

However, the mounting of the second button on the screen comes without any transitions.
The second button simply appears and disappears upon clicking the first, without any
easing in or out.

To achieve this gradual appearance and removal, the transition element comes with
built-in CSS class names. These built-in transition class names are also called animation
hooks. These animation hooks describe the beginning state, the end state, and the in-
between state for component(s) wrapped inside that transition element; that is, they
describe in what way the affected components will toggle on and off the screen.

We can add animation hooks to either enter transitions or to leave transitions. Enter
transition classes are v-enter, v-enter-active, and v-enter-to. Leave transition
classes are v-leave, v-leave-active, and v-leave-to.

Setting up the enter transition
To build on the previous example, we will employ these animation hooks to make the
second button's appearance and disappearance smoother. The only difference between the
previous example and this one is the addition of animation hooks in our CSS:

.v-enter {
 opacity: 0;
}
.v-enter-active {
 transition: opacity 3s;
}

The code for this example can be found at the following link: https:/ /codepen. io/
AjdinImsirovic/pen/ MPWVNm.

https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/ZqExJO
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm
https://codepen.io/AjdinImsirovic/pen/MPWVNm

Transitions and Animations Chapter 6

[118]

If we imagine the appearance of the second button as a regular CSS transition, then the .v-
enter animation hook would be the initial transition state, .v-enter-active would be
the in-between steps, and .v-enter-to would be the final transition state, that is, what the
element will transition to.

Because we have not used the .v-enter-to animation hook in our example, the behavior
we get is as follows: when the first button is clicked, the second button takes three seconds
to change (transition) its opacity from the initial value of zero to the implied value of one.
This takes care of our enter transition.

Setting up the leave transition
There is a slight issue with our previous example: when we click the first button again, the
second button will disappear instantly, because its opacity value will be reset to zero
without any transition. The reason for this is simple: we have not specified any leave
transition hooks, so the button just disappears. We'll fix that in the next example, by simply
specifying the leave transitions, like this:

.v-leave {
 opacity: 1;
}
.v-leave-active {
 transition: opacity 3s;
}
.v-leave-to {
 opacity: 0;
}

The full code can be found here: https:/ /codepen. io/AjdinImsirovic/ pen/ XxWqOy. What
we are doing in this code is this: when the component needs to be animated out, our
transition's initial state is .v-leave. The CSS declaration in the .v-leave animation hook
is opacity: 1. Next, we specify the in-between steps: the CSS property to be transitioned,
namely opacity, and the duration of the transition: 3s. Finally, we specify the finished
state for our transition, where opacity gets set to the value of zero.

What we can conclude from these examples is that the leave transitions' animation hooks
(v-leave, v-leave-active, and v-leave-to) should be a mirror image—figuratively
speaking—in comparison to the enter transitions' animation hooks (v-enter, v-enter-
active, and v-enter-to).

https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy
https://codepen.io/AjdinImsirovic/pen/XxWqOy

Transitions and Animations Chapter 6

[119]

We can also conclude that the transition component and the animation hooks that come
along with it are to be used for mounting and unmounting the components on the screen.
When transitioning a component on and off the screen, the animation hooks' natural
progression is this:

.v-enter --> .v-enter-active --> .v-enter-to --> .v-leave --> v-leave-
active --> .v-leave-to

We can also group certain CSS selectors that share the same values, as follows:

.v-enter, .v-leave-to {
 opacity: 0;
}
.v-enter-active, .v-leave-active {
 transition: opacity 3s;
}
.v-enter-to, .v-leave {
 opacity: 1;
}

This example can be found at the following web address: https:/ /codepen. io/
AjdinImsirovic/pen/ dgyKMG.

As can be seen here, .v-enter (the initial enter animation hook) gets combined with .v-
leave-to (the last leave animation hook) precisely because the transition must be played
in reverse to get the most expected behavior. Similarly, we are grouping the in-between
steps, the -active hooks, to have the same transition CSS property. Finally, the enter
animation's final hook needs to share the CSS declaration with the initial leave animation
hook. Also, since the .v-enter-to and the .v-leave values are implied by default, we
can even omit them and still have a working component transition, similar to the one
described in the official documentation: https:/ /vuejs. org/v2/ guide/ transitions.
html#Transitioning- Single- Elements- Components.

To make things simpler to reason about, in our most recent example we have also changed
the data option's show key to the value of false. That way, initially the component is not
mounted to the DOM. Only when the user clicks on the first button will the second button's
enter animation hooks kick in and smoothly transition the component in. On another click,
the second button's leave animation hook will kick in and transition the component out in
reverse. This is important, since initially we had the enter animation transition the
unmounting of the component and the leave animation transition the mounting of it back
into the page, which possibly makes things slightly more difficult to reason about.

https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://codepen.io/AjdinImsirovic/pen/dgyKMG
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components
https://vuejs.org/v2/guide/transitions.html#Transitioning-Single-Elements-Components

Transitions and Animations Chapter 6

[120]

Naming transition components
We can give our transition elements the name attribute. Doing this changes the naming
convention for animation hooks. For example, if we give our transition the name of named,
then the animation hooks will need to be renamed as follows. For every transition class,
we'll replace the beginning v- with the value of the name attribute. Hence, v-enter will
become named-enter, v-leave will become named-leave, and so on.

Let's rewrite the previous example with a named transition:

<!-- HTML -->
<div id="app">
 <button v-on:click="show = !show">
 Show? {{ show }}
 </button>
 <transition name="named">

 <custom-component></custom-component>

 </transition>
</div>

/* CSS */
/* 'named' transition */
.named-enter, .named-leave-to {
 opacity: 0;
}
.named-enter-active, .named-leave-active {
 transition: opacity 3s;
}
.named-enter-to, .named-leave {
 opacity: 1;
}

// JS is unchanged

The code for this example is available in this CodePen: https:/ /codepen. io/
AjdinImsirovic/pen/ MPWqgm.

https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm
https://codepen.io/AjdinImsirovic/pen/MPWqgm

Transitions and Animations Chapter 6

[121]

CSS animations with transition component
CSS animations are also employed with the help of the transition component. Here is an
example of the previous example with CSS transition, converted into using a CSS
animation. We'll begin with HTML:

<div id="app">
 <button v-on:click="show = !show">
 Show? {{ show }}
 </button>
 <transition name="converted">

 <custom-component></custom-component>

 </transition>
</div>

Next, we'll add the following JavaScript code:

Vue.component('customComponent', {
 template: `
 <button>Lorem ipsum</button>
 `
});
new Vue({
 el: '#app',
 data: {
 show: false
 }
});

We'll add a few simple styles too:

/* 'named' transition is replaced with 'converted' animation */
.converted-enter-active {
 animation: converted .5s;
}
.converted-leave-active {
 animation: converted .5s reverse;
}
@keyframes converted {
 0% { opacity: 0; }
 35% { background-color: purple; }
 65% { background-color: green; }
 100% { opacity: 1; }
}
/* other styles */
button {

Transitions and Animations Chapter 6

[122]

 background-color: red;
 transition: background-color 4s;
}
button:hover {
 background-color: blue;
}
/* some additional styling */
* {
 border: none;
 color: white;
 padding: 10px;
 font-size: 18px;
 font-weight: 600;
}
span {
 display: inline-block;
}

The code for this example is available here: https:/ /codepen. io/AjdinImsirovic/ pen/
vVEXEv. The converted animation is exactly the same as the previous example with CSS
transitions, save for the change in animation behavior at 35% and 65% of animation
completion. The effect that we get is sort of like a border color effect, even though we are
changing the background-color property of this element. This confirms a few
conclusions we already discussed, namely the following:

The transition element in Vue affects the appearance and disappearance of the
entire <transition> component, rather than its contents
The actual animation can have as many steps as needed; in other words, to get
the exact same effect as we had in the CSS transition example, it would be
enough to simply remove the steps we specified at 35% and 65% of animation
completion

In the next section, we'll discuss custom transition classes.

Custom transition classes
Custom transition classes are great when we want to add functionality from a third-party
CSS animation library. In this example, we'll be using the Animate.CSS animation library,
available here: https:/ / daneden. github. io/animate. css/.

https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://codepen.io/AjdinImsirovic/pen/vVEXEv
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/
https://daneden.github.io/animate.css/

Transitions and Animations Chapter 6

[123]

The official documentation covers the use of custom transition classes sufficiently at this
URL: https://vuejs. org/ v2/ guide/ transitions. html#Custom- Transition- Classes.

The only thing to add is the example we have been building on, available here: https:/ /
codepen.io/AjdinImsirovic/ pen/ rqazXZ.

The code for the example is as follows. First, we'll start with the HTML:

<div id="app">
 <button v-on:click="show = !show">
 Show? {{ show }}
 </button>
 <transition :duration="4000"
 name="converted"
 enter-active-class="rubberBand animated"
 leave-active-class="bounceOut animated">
 <div v-if="show">
 <custom-component>
 </custom-component>
 </div>
 </transition>
</div>

Next, let's see the JavaScript:

Vue.component('customComponent', {
 template: `
 <button>Lorem ipsum</button>
 `
});
new Vue({
 el: '#app',
 data: {
 show: false
 }
});

Finally, inside our styles, we'll set up some basic CSS declarations:

button {
 background-color: red;
 transition: background-color 4s;
}
button:hover {
 background-color: blue;
}

* {

https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://vuejs.org/v2/guide/transitions.html#Custom-Transition-Classes
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ
https://codepen.io/AjdinImsirovic/pen/rqazXZ

Transitions and Animations Chapter 6

[124]

 border: none;
 color: white;
 padding: 10px;
 font-size: 18px;
 font-weight: 600;
}
* { overflow: hidden }

Basically, we specify attributes that have the same names as animation hooks, plus the
additional -class at the end of the attribute name. Hence, the default v-enter-active
CSS class becomes the custom enter-active-class HTML attribute. We then give this
custom HTML attribute a value we choose. The value we give it is the class name of the
effect we want to use from our CSS animation library we previously picked—in this case,
the Animate.CSS library. In the previous code, we have also set the :duration prop,
specifying the duration of the transition to be exactly 4000 miliseconds. Practically, in our
example, this will only have an effect if the :duration prop we set is shorter than the
duration of animations we provided from the third-party library. For example, try setting
the :duration prop to 100 milliseconds and see the animation chopped off. This can create
some interesting effects.

Combining transition modes, duration, keys,
and v-if
Transition modes are used when we want to smoothly remove one element from the screen
and seamlessly replace it with another one. The default transition mode that the
<transition> component comes with, without any tweaks needed, is the simultaneous
transition: one element is removed at the same time that another is added.

However, there are some transitions is which it would be better to have the new element
appear, and only when this transition is complete does the old element get removed. This
transition mode is referred to as the in-out transition mode. To add it, we simply use the
custom mode HTML attribute, and give it the value of in-out, like this:

<transition mode="in-out">

Alternatively, we might want to use the out-in transition mode, where we first have the
old element transition out, and only then, when the transition is complete, the new element
transitions in.

Let's see this in practice. The example is available at this pen: https:/ /codepen. io/
AjdinImsirovic/pen/ yRyPed.

https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed
https://codepen.io/AjdinImsirovic/pen/yRyPed

Transitions and Animations Chapter 6

[125]

Here is the HTML:

<div id="app">
 <transition name="smooth" mode="out-in" :duration="500">
 <button v-if="show"
 key="first"
 v-on:click="show = !show">
 Show? {{ show }}
 </button>
 <button v-else
 key="second"
 v-on:click="show = !show">
 Show? {{ show }}
 </button>
 </transition>
 <transition :duration="1000"
 enter-active-class="slideInDown animated"
 leave-active-class="slideOutDown animated">
 <div v-if="show">
 <custom-component>
 </custom-component>
 </div>
 </transition>
</div>

We are still using the same JS:

Vue.component('customComponent', {
 template: `
 <button>Lorem ipsum</button>
 `
});
new Vue({
 el: '#app',
 data: {
 show: false
 }
});

There are some changes in our CSS:

/* CSS classes used are imported from the Animate CSS library
and can be found in Settings of this pen */
/* other styles */
.smooth-enter, .smooth-leave-to {
 opacity: 0;
}
.smooth-enter-active, .smooth-leave-active {

Transitions and Animations Chapter 6

[126]

 transition: opacity .5s;
}
.smooth-enter-to, .smooth-leave {
 opacity: 1;
}

button {
 background-color: red;
 transition: background-color 4s;
}
button:hover {
 background-color: blue;
}

* {
 border: none;
 color: white;
 padding: 10px;
 font-size: 18px;
 font-weight: 600;
}
* { overflow: hidden }

We are switching on and off between two button elements inside our transition. Since
these two have the same tag name, we need to give them different key attributes so Vue
can distinguish them.

Also, we are rendering our buttons conditionally. While we are keeping the check of v-
if="show" in the first button, in the second button we are simply using the v-
else directive, without giving it a value to check against.

Binding CSS styles in Vue
In this section, we'll discuss how to animate other parts of the page when a component is
mounted or removed. For that, we will use the v-bind directive, and as we have seen in
the previous chapters, we can use this directive to bind to HTML attributes. Once bound,
these attributes can then be manipulated from our Vue instance.

The example for which we will demonstrate CSS style binding is a simple onboarding
demo. Onboarding, in terms of web page usability, is the practice of showing new users of
a web app the overall functionality that a web page has, which is achieved by highlighting
a certain section of a page and showing a popover with some information that further
describes the functionality at that specific step of the onboarding process.

Transitions and Animations Chapter 6

[127]

To begin with, we need to understand that we can statically bind CSS classes by passing the
value of the v-bind:class directive as an object, as in the following example:

<p v-bind:class="{}">Some text...</p>

Inside the object, we can simply add CSS classes as keys, and Boolean true and false as
values. CSS values that are set to true will be used, otherwise, they won't, as in the
following example:

<button v-bind:class="{'btn': true, 'btn-lg': true, 'btn-primary': true,
'btn-secondary': false}">A button</button>

In this example, we are using the Bootstrap framework's CSS classes. We are setting the
button to the class of btn-primary, as it is set to true, rather than the btn-secondary,
which is set to false.

Because the v-bind directive allows us to programatically control HTML attributes, we
might make our app switch CSS classes on a click. For example, in a basic Vue app, we
might do this in our HTML:

<button v-bind:class="'btn':true','btn-lg':true, 'btn-primary':true, 'btn-
secondary':btnClicked">
A button
</button>

In the previous code, we are setting the classes of btn, btn-lg, and btn-primary to true,
and we are setting the value of btn-secondary to btnClicked. Next, we're going to set
the value of btnClicked to false in our JavaScript:

data: {
 btnClicked: false,
}

Finally, we'll add the click event to our button, so when it's clicked, the value of
btnClicked will be toggled from true to false, and vice versa. Here is the code:

<button
 v-on:click="btnClicked = !btnClicked"
 v-bind:class="'btn':true','btn-lg':true, 'btn-primary':true, 'btn-
secondary':btnClicked">
 A button
</button>

This example is available at this URL: https:/ /codepen. io/AjdinImsirovic/ pen/ KGVvML.

https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML
https://codepen.io/AjdinImsirovic/pen/KGVvML

Transitions and Animations Chapter 6

[128]

We can further expand on this example by using the data property to store groups of CSS
classes, and a JavaScript ternary expression to check whether the btnClicked value is
currently set to true or false:

<!-- HTML -->
<div id="app" class="p-4">
 <h1>Improving dynamic CSS classes example</h1>
 <p class="lead">Click the button below a few times</p>
 <button
 v-on:click="btnClicked = !btnClicked"
 v-bind:class="btnClicked ? btnPrimary : btnSecondary">
 btnClicked {{ btnClicked }}
 </button>
</div>

// JS
new Vue({
 el: '#app',
 data() {
 return {
 btnClicked: false,
 btnPrimary: 'btn btn-lg btn-primary',
 btnSecondary: 'btn btn-lg btn-secondary'
 }
 }
})

The code for the previous example is available at https:/ /codepen. io/AjdinImsirovic/
pen/wYMEJQ.

Animating a button on click with dynamic CSS
classes
Now, we are ready to add animations by virtue of simply adding additional CSS classes
from the aforementioned Animate.CSS animation library. The updates to the previous
example's code are minimal. We are only adding two CSS classes here:

 btnPrimary: 'btn btn-lg btn-primary bounce animated',

https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ
https://codepen.io/AjdinImsirovic/pen/wYMEJQ

Transitions and Animations Chapter 6

[129]

Of course, we also had to include the Animate.CSS library, as can be seen here: https:/ /
codepen.io/AjdinImsirovic/ pen/ RerEyy. To add the animation on both clicks, we simply
alter the entry for btnSecondary to this:

btnSecondary: 'btn btn-lg btn-secondary tada animated'

Now, the button will be animated on every click.

Working with transition groups
While a single transition component is used to wrap around a single element, transition
groups are used for animating multiple elements. They come with an additional animation
hook: v-move.

In the example that follows, we'll build simple functionality where users can award a piece
of content online with an applause, a concept similar to the clap feature of https:/ /
medium.com/, which works as follows: if a visitor to the website likes a piece of content,
they can award it with claps, by clicking the clap button up to 50 times. hence, the claps
feature works like a kind of a counter of how much a piece of content is appreciated by the
website visitors.

In our implementation, we will combine the features we have already covered. The
difference is, instead of a transition, we will use the transition-group component. This
is the HTML code:

<!-- HTML -->
<div id="app">
 <div class="tale">
 <transition-group>
 <button
 class="bare"
 key="howManyClaps"
 v-if="clapCount">
 {{ clapCount }}
 </button>
 <button
 class="fa fa-thumbs-o-up animated orange"
 key="theClapButton"
 v-on:click="aClap()">
 </button>
 </transition-group>
 </div>
</div>

https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://codepen.io/AjdinImsirovic/pen/RerEyy
https://medium.com/
https://medium.com/
https://medium.com/
https://medium.com/
https://medium.com/
https://medium.com/
https://medium.com/

Transitions and Animations Chapter 6

[130]

Here is the JS code:

new Vue({
 el: "#app",
 data: {
 clapCount: false
 },
 methods: {
 aClap() {
 var target = document.querySelector('.fa-thumbs-o-up');
 if (!target.classList.contains('wobble')) {
 target.classList.add('wobble');
 }
 setTimeout(function() {
 target.classList.remove('wobble')}, 300
)
 if (this.clapCount < 10) {
 this.clapCount++
 } else {
 target.classList.remove('orange','wobble')
 }
 }
 }
});

And here is the CSS code:

button.bare {
 font-size: 30px;
 background: white;
 border: none;
 margin: 0 20px;
}
button:focus.bare, button:focus.fa {
 outline: 0;
}
button.fa {
 cursor: pointer;
 color: white;
 padding: 20px;
 border-radius: 50%;
 font-size: 30px;
 border: none;
}
.orange {
 background: orange;
}

Transitions and Animations Chapter 6

[131]

/* animation hooks */
.v-enter,
.v-leave-to{
 opacity: 0;
 transform: translate(1000px, 500px);
}
.v-enter-active,
.v-leave-active {
 transition: opacity 5s, transform 1s
}

The previous code is available as a pen at this URL: https:/ /codepen. io/AjdinImsirovic/
pen/JmXJgd.

There are several things happening in this code. In HTML, we are using the transition-
group component to work with two buttons. In JS, we set up the logic for the behavior of
our claps. We begin the clapCount set to false, which coerces to zero. In CSS, we style
the buttons and we employ the animation hooks. The transform and transition values
have been set to extreme values, to be able to understand better how they work by playing
around with the values (for instance, 1000 px for the translate on the X axis, and 500 px
for the translate on the Y axis).

JavaScript animation hooks
We can use Vue's transition classes as JavaScript methods. Just like lifecycle hooks, we
don't have to access any of them. Or we can cherry-pick those that we want to use. To
begin, inside our Vue constructor's methods option, we could specify what to do with all of
them:

 methods: {
 // ENTER transitions...
 beforeEnter: function(el) {},
 enter: function(el, done) {},
 afterEnter: function(el) {},
 enterCancelled: function(el) {},
 // LEAVE transitions...
 beforeLeave: function(el) {},
 leave: function(el,done) {},
 afterLeave: function(el) {},
 leaveCancelled: function(el) {},
 }

https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd
https://codepen.io/AjdinImsirovic/pen/JmXJgd

Transitions and Animations Chapter 6

[132]

As we can see, we have four methods for enter transitions and another four methods for
leave transitions. All of the methods take in the el argument and the enter and leave
methods also take in the done argument to signify the completion of an animation. If the
done argument was not used, the hooks would be called without waiting for the done
callback to complete, and the transition would be completed at once.

Let's rewrite the previous example using these JavaScript animation hooks. To keep things
easy to understand, we will integrate the official documentation's example into our
example, so that we can see how this example works when the animation hooks are called
via JavaScript only.

This is the code we will use in our HTML:

<transition
 v-on:before-enter="beforeEnter"
 v-on:enter="enter"
 v-on:leave="leave"
 v-bind:css="false">
<p v-if="show" style="font-size:25px">Animation example with velocity</p>
</transition>

This is the code we will use in our JS:

new Vue({
 el: "#app",
 data: {
 clapCount: false
 },
 methods: {
 beforeEnter: function(el) {
 el.style.opacity = 0
 },
 enter: function (el, done) {
 Velocity(el, { opacity: 1, fontSize: '1.4em' }, { duration: 300 })
 Velocity(el, { fontSize: '1em' }, { complete: done })
 },
 leave: function (el, done) {
 Velocity(el, { translateX: '15px', rotateZ: '50deg' }, {
 duration: 600 })
 Velocity(el, { rotateZ: '100deg' }, { loop: 2 })
 Velocity(el, {
 rotateZ: '45deg',
 translateY: '30px',
 translateX: '30px',
 opacity: 0
 }, { complete: done })},
 aClap() {

Transitions and Animations Chapter 6

[133]

 var target = document.querySelector('.fa-thumbs-o-up');
 if (!target.classList.contains('wobble')) {
 target.classList.add('wobble');
 }
 setTimeout(function() {
 target.classList.remove('wobble')}, 300
)
 if (this.clapCount < 10) {
 this.clapCount++
 } else {
 target.classList.remove('orange','wobble')
 }
 }
 }
});

Here is the CSS:

button.bare {
 font-size: 30px;
 background: white;
 border: none;
 margin: 0 20px;
}
button:focus.bare, button:focus.fa {
 outline: 0;
}
button.fa {
 cursor: pointer;
 color: white;
 padding: 20px;
 border-radius: 50%;
 font-size: 30px;
 border: none;
}
.orange {
 background: orange;
}

The example is available here: https:/ /codepen. io/AjdinImsirovic/ pen/ PyzqxM.

With this understanding, it is easy to change parameters in the specific methods inside our
Vue constructor to achieve the desired effect for our JavaScript-powered animations.

https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM
https://codepen.io/AjdinImsirovic/pen/PyzqxM

Transitions and Animations Chapter 6

[134]

Summary
In this chapter, we looked at working with transitions and animations in Vue.js.
Specifically, we examined how transitions and animations work in CSS. We examined the
differences between transitions and animations in CSS and established the rules for both.
We worked with the transition and transition-group elements in Vue, and we discussed
animation hooks and their grouping into enter and leave transitions. We saw how
transition components can be named and, given key values and how we can assign custom
transition classes for easier integration with third-party animation libraries.

We explained when to use transition modes and how to further tweak our animations with
:duration and conditional directives. We mentioned the importance of binding CSS
styles in Vue and how this approach can be used for adding animations to our web apps.
Finally, we saw how to convert CSS class-based transitions into JavaScript-based animation
hooks.

In the next chapter, we will discuss how to use Vuex.

7
Using Vuex

In this chapter, we'll learn how to manage complex state in Vue by using Vuex. Vuex helps
deal with the issue of managing state and deeply nested components in Vue apps.

At the end of this chapter, you will understand what problems Vuex solves and how it
solves them, and you should understand where all the moving parts fit in. You will also
know how to build a simple Vuex app and the approach to take when thinking about
extending it.

Specifically, we will go over these topics:

Understanding state
State management, data stores, and one-way data flows
Hot reloading
Building a very simple Vuex app
How to update state from Vue DevTools' Vuex tab
Building a more complex Vuex app

Let's begin by understanding exactly what state is.

What is state?
An application's state is all its data at a point in time. Since we are usually concerned with
the current app's state, we could rephrase this to the following: the state is an app's data as
it is right now, resulting from the previous steps that our app took and based on functions
inside the app responding to the user interacting with it.

Using Vuex Chapter 7

[136]

So, what is it in our app that changes its state? Functions, of course. The user interacts with
our app, which triggers functions to change the current state to some other state.

However, as our apps grow, it is not uncommon to have components nesting several levels
deep. If we say that state is the source of truth for how our app should display on the
screen at any given time, then it would be beneficial to us to make that source of truth as
easy to reason about and as simple to work with as possible.

Unfortunately, in complex apps, this is not so easy. Any part of our app, any component
inside our app might affect any other part of our app. Managing state in our apps becomes
a bit like playing a game of whack-a-mole: an interaction in one section of our app will
result in something else popping out of place in some other part of our app.

Reasoning about best practice for how to manage complex state in frontend apps has led to
concepts such as the data store and one-way data flows.

State management, data stores, and one-
way data flows
A common solution to the problem of managing complex state is the idea of a store: a single
source of truth that keeps all of the data of our app's state. Once we have that central
location—the store—we can reason about state a lot easier, because now it is only a matter
of sending the state data to those components that need to have it at any time in the app's
life cycle.

To make the state updates simpler, we need to limit the ways in which these updates can be
made. This is where one-way data flows come in. With one-way data flows, we specify
rules on exactly how data can flow inside our app, which means that there are now only so
many expected ways in which data (state) can flow through our apps, making it easier to
reason about state and debug state when needed. This approach is also a great time saver,
since now we as developers know what to expect; that is, to look for spots where we know
state is mutable.

The Vuex state management pattern
Vuex is a plugin of Vue, developed by Vue's core team. The setup is quite easy. If you need
a quick prototype, you can simply add the Vuex library from the settings inside CodePen
online editor, as explained in Chapter 1, Introducing Vue.

Using Vuex Chapter 7

[137]

You can also install it via npm, with this command:

npm install --save vuex

When trying to understand how Vuex works, you'll usually find references online that
describe Vuex as a state management pattern that is heavily influenced by Flux. This is true
in part, but it is interesting to note that Flux itself was inspired by the Elm architecture. Be
that as it may, in Vuex, the data flows as follows:

Vue components to actions
Actions to mutations
Mutations to state
State to Vue components

The data always flows in one way, ending up where it began, with updates made to
components, which then dispatch actions, which then commit mutations, which then mutate
state, which then renders components, and the cycle repeats. So, looking at the one-way data
flow from a slightly different angle, we could rephrase it, focusing on the verbs to describe
what happens to the data in the store:

Actions are dispatched
Mutations are committed
State is mutated
Components are rendered

Looking at the one-way data flow again, we can now describe the data flow using these
nouns: components, actions, mutations, and state. Describing the data flow using verbs, we
can view this progression as follows: dispatch, commit, mutate and render.

Both of these ways of viewing the flow of data in Vuex are two sides of the same coin, the
same cycle of state updates, and so thus it would not hurt to commit both of these short
lists to memory, as it will help speed up the understanding of basic Vuex concepts.

To visually reinforce these explanations, a diagram of this one-way data flow is available in
the official Vuex docs, at this URL: https:/ / vuex. vuejs. org/ vuex. png.

https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png
https://vuex.vuejs.org/vuex.png

Using Vuex Chapter 7

[138]

You might ask, why this indirect approach? Why can't components directly mutate state?
There are two main reasons for this: first, since asynchronous code is simply a matter of fact
in the JavaScript world, a choice was made to separate asynchronous and synchronous
operations in Vuex. Hence, actions were set to be asynchronous, so they can, for example,
fetch some data from the server, and only when this asynchronous data fetching is
complete can they then commit mutations; since mutations are strictly synchronous, it
wouldn't make sense to call them before the call to server has been completed. Second, this
way of separating concerns enables easier tracking of state changes, which even includes
time travel debugging: rerunning mutations chronologically to track changes to state and
hunt down bugs.

In the Vuex state management pattern, components can never directly
mutate global state. Mutations do that.

In the next section, we'll look at each of these building blocks.

The store
The store needs to be added to the Vue instance root, so that all components can share this
centralized, global state. Usually, we declare the store as const, and then later on in the
code, we add it inside the object literal that we pass as the argument to the Vue constructor,
like this:

const store = new Vuex.Store({
 // store details go here
})
new Vue({
 el: '#app',
 store: store,
 // etc
})

Next, we'll learn about getters.

Getters in the Vuex store
Our store can also have getters. Getters allow us to return values from the state in
templates. They are a bit like computed values. They are read-only, meaning they cannot
change the state. Their responsibility is only to read it and make some non-destructive
manipulations of it. However, the underlying data is not mutated.

Using Vuex Chapter 7

[139]

So, we use getters in the store to perform some non-destructive work on the global state.
What do we then do with them? How do we use them? We use them on the other side of
our app – inside a component—where we use computed and return the value of getters
from the store.

Vuex store mutations
Mutations, as the name implies, mutate the state, and are synchronous. Functions that
mutate state receive arguments: the existing state and the payload. The payload argument
is optional. They are responsible for directly updating the state in Vuex. You can execute a
mutation from an action with this syntax: state.commit.

Actions in Vuex store
Actions update the state asynchronously and indirectly, by calling one or more mutations
we defined in the store. So, actions call as many mutations as needed. On the other side,
inside components, to execute an action we use the store's dispatch values, using this
syntax: store.dispatch.

Let's now extend our boilerplate code to include what we just discussed:

const store = new Vuex.Store({
 // store details go here; they usually have:
 state: {
 // state specified here
 },
 getters: {
 // getters are like computed values - they don't mutate state
 },
 mutations: {
 // they mutate the state and are synchronous,
 // functions that mutate state can have arguments; these arguments are
called 'payload'
 },
 actions: {
 // asynchronous functions that commit mutations
 }
})
new Vue({
 el: '#app',
 store,
 // etc
})

Using Vuex Chapter 7

[140]

As we can see in the Vue constructor, with ES6 syntax, it is possible to simplify the store:
store key-value pair inside the constructor's object literal argument and just use store.

Hot reloading
Another popular concept that was brought about by the rise of Webpack is hot reloading.
When your app is running, upon updating a file—for example, adding some changes to
scoped styles in one of your components—Webpack will hot-reload the updated file
without using state in your app. In other words, it will not reload the entire page, but rather
only the part of your app that was affected by the change. The reason why this is useful is
because, with hot module replacement the state will be kept, which would not be possible if
the page was refreshed. This comes with the added benefit of faster development time and
seamless experience of updates in the browser.

Building a fruit counter app with Vuex
The app that we will build is just a simple fruit counter app. The goal is to help the user
make sure to eat five pieces of fruit daily, and we will set up a simple app that will start
with five pieces of fruit to eat and, each time we click the button, it will decrement the
number by 1. That way, we can keep track of our healthy eating goals.

We will begin our app by setting the initial state, with only one key-value pair in it:

const store = new Vuex.Store({
 state: {
 count: 5
 },

Next, we will set up getters. As we learned already, getters only return state:

 getters: {
 counter(state) {
 return state.count;
 }
 },

Next, we will add two mutations: the first mutation, decrementCounter, will operate on
the counter by decrementing it by the value stored in the payload argument. We will
decrement the value of state.count until it reaches 0. To make sure the value of
state.count cannot be less then 0, we'll check it with the ternary statement and set its
value accordingly.

Using Vuex Chapter 7

[141]

The second mutation, resetCounter, will reset the value of the counter to the initial state:

 mutations: {
 decrementCounter(state, payload) {
 state.count = state.count - payload;
 state.count<0 ? state.count=0 : state.count
 },
 resetCounter(state) {
 state.count = 5;
 }
 },

Next, we are setting up two actions, decrement and reset:

 actions: {
 decrement(state, payload) {
 state.commit("decrementCounter", payload);
 },
 reset(state) {
 state.commit("resetCounter");
 }
 }

Finally, we're setting up our app, and specifying the el, store, computed, and methods
options inside its Vue constructor:

const app = new Vue({
 el: "#app",
 store: store,
 computed: {
 count() {
 return store.getters.counter;
 }
 },
 methods: {
 eatFruit(amount) {
 store.dispatch("decrement", amount);
 },
 counterReset() {
 store.dispatch("reset");
 }
 }
});

Using Vuex Chapter 7

[142]

Next, in our HTML, we set up the structure of our simple app:

<div id="app">
 <h1>Fruit to eat: {{count}}</h1>
 <button v-on:click="eatFruit(1)">Eat fruit!</button>
 <button v-on:click="counterReset()">Reset the counter</button>
</div>

The working example can be found at the following URL: https:/ /codepen. io/
AjdinImsirovic/pen/ aRmENx.

Using the Vue DevTools plugin to track our
Vuex state
If you type vuejs devtools into the search field of the Chrome extensions web store,
you'll get a few results. The first result is the stable version of the official plugin. The second
result is the Vue DevTools extension's beta version. To see all of the options that are being
developed and see where this plugin is going, it's good to install the beta version.
Interestingly, both versions display the same information once open in Chrome DevTools.
Currently, the message reads Ready. Detected Vue 2.5.17-beta.0.

When compared with the regular version, the experimental version comes with a few more
tabs, namely routing and performance. However, even the existing tabs have some very
useful improvements. For example, the Vuex tab comes with the ability to directly update
the state from inside DevTools. To access that functionality, simply open Chrome DevTools
by pressing the F12 key. The best way to position the DevTools to use the Vue extension is
by setting it to the Dock to bottom option. This option is accessible by pressing the three
vertical dots icon (the Customize and control DevTools icon), which can be found right next to
the DevTools close icon in the very top-right corner of the DevTools pane.

Once you have Dock to bottom enabled, the Vue tab open, and inside it, the Vuex tab
active, you will see two panes. Initially, the left pane lists Base State. This is the pane that
lists all of the mutations and allows us to run time travel debugging. The right pane lists the
actual payload, state, and mutations, so it gives us a more fine-grained view of what is
happening in any given mutation. To time travel to any specific mutation, just hover over it
and click the Time Travel icon. You also have the option of running Commit or Revert on
any of the mutations listed. As you might guess, while the Commit command will perform
a commit on the currently hovered mutation, the Revert command will undo the specific
mutation's commit.

https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx
https://codepen.io/AjdinImsirovic/pen/aRmENx

Using Vuex Chapter 7

[143]

Another useful and interesting feature is the ability to update the state right from the Vuex
tab. For example, let's say that we click the Eat fruit! button a few times. Now, we can
click on any given decrementCounter mutation in the mutations pane, and we'll get the
following information in the right pane:

▼ mutation
 payload: 1
 type: ''decrementCounter''
▼ state
 count: 1
▼ getters
 counter: 1

It is very simple to use this pane. If we need to updated our state, hovering over count:
1 inside the state entry will trigger four icons to appear: the Edit value icon, the minus
icon, the plus icon, and the Copy value icon, shown as three vertical dots. Here, we can also
see the proof of getters being read-only. Hovering over the getters entry will not show
any editing icons. Contrary to that, the state and mutation entries can both be edited
from this pane.

Improving our fruit counter app
In this section, we will make some improvements to our fruit counter app. The goal is to see
how we can go about extending our apps using Vuex.

We will update our app by adding additional functionality. Namely, we'll add buttons for
different fruits: apples and pears. The number of fruits to eat and the number and kind of
fruits eaten will appear in our app too.

Here is the updated JS code. We begin with defining the state in the store:

const store = new Vuex.Store({
 state: {
 count: 5,
 apples: 0,
 pears: 0
 },

Next, we set up the getters:

 getters: {
 counter(state) {
 return state.count;
 },

Using Vuex Chapter 7

[144]

 appleCount(state) {
 return state.apples;
 },
 pearCount(state) {
 return state.pears;
 }
 },

When defining mutations, we
need decrementWithApplesCounter and decrementWithPearsCounter, and the
resetCounter functionality:

 mutations: {
 decrementWithApplesCounter(state, payload) {
 state.count = state.count - 1;
 state.count < 0 ? (state.count = 0) : (state.count, state.apples
 += 1);
 },
 decrementWithPearsCounter(state, payload) {
 state.count = state.count - 1;
 state.count < 0 ? (state.count = 0) : (state.count, state.pears
 += 1);
 },
 resetCounter(state) {
 state.count = 5;
 state.apples = 0;
 state.pears = 0;
 }
 },

Next, we'll list our actions, decrementWithApples, decrementWithPears, and reset:

 actions: {
 decrementWithApples(state, payload) {
 setTimeout(() => {
 state.commit("decrementWithApplesCounter", payload);
 }, 1000)
 },
 decrementWithPears(state, payload) {
 state.commit("decrementWithPearsCounter", payload);
 },
 reset(state) {
 state.commit("resetCounter");
 }
 }
});

Using Vuex Chapter 7

[145]

We'll wrap it up by adding the Vue constructor:

const app = new Vue({
 el: "#app",
 store: store,
 computed: {
 count() {
 return store.getters.counter;
 },
 apples() {
 return store.getters.appleCount;
 },
 pears() {
 return store.getters.pearCount;
 }
 },
 methods: {
 eatApples(payload) {
 store.dispatch("decrementWithApples", payload);
 },
 eatPears(payload) {
 store.dispatch("decrementWithPears", payload);
 },
 counterReset() {
 store.dispatch("reset");
 }
 }
});

As we see in this code, we can update more than one variable value in a JS ternary. We are
also ''imitating'' a call to the server with the setTimeout() function call; this is
unnecessary, but used as an example of a more complex asynchronous operation.

The updated HTML code will look like this:

<div id="app" class="p-3">
 <h1>Fruit to eat: {{ count }}</h1>
 <p>Eaten: {{ apples }} apples, {{ pears }} pears</p>
 <button v-on:click="eatApples(1)" class="btn btn-success">
 An apple!
 </button>
 <button v-on:click="eatPears(1)" class="btn btn-warning">
 A pear!
 </button>
 <button v-on:click="counterReset()" class="btn btn-danger">
 Reset the counter
 </button>
</div>

Using Vuex Chapter 7

[146]

The updated example app can be found here: https:/ /codepen. io/ AjdinImsirovic/ pen/
EdNaaO.

Summary
In this chapter, we got acquainted with Vuex, a powerful Vue plugin that helps us manage
state from a centralized, global store. We learned about what state is and why we need to
centralize data stores in more complex apps. We discussed unidirectional data flow and its
implementation in Vuex, through the use of getters, store mutations, and store actions. We
moved from theory to practice by first building a simple app, then learning how to make
our development process easier with the help of the Vue Devtools extension.

In the next section, we will work with routing using Vue-router and we'll look at server-
side rendering with Nuxt.

https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO
https://codepen.io/AjdinImsirovic/pen/EdNaaO

8
Using Nuxt.js and Vue-Router

With the rise of Single-Page Applications (SPAs), a number of specific issues have
occurred. There have been various attempts at solving these issues, and some common
solutions arose from these attempts. In this section, we will look at issues surrounding
SPAs and ways of addressing and solving these issues in Vue.

In this chapter, we will work with Nuxt.js and Vue-Router to understand a number of
concepts:

Single-page applications
Initial page load
Server-side rendering and universal web apps
Installing Nuxt.js
Nuxt pages as routes
Linking pages with the nuxt-link tag

We'll begin by understanding just what SPAs are and how they work.

Single-page applications and server-side
rendering
Traditionally, web servers only serve static content. When a user makes a request to a link
within an app, usually the server processes that request and sends the result of that
processing to the client as an entire page, with HTML, CSS, and JS served by the browser.
This happens when requesting each route in a web app. If a developer wants to see what
was sent by the browser, it is as simple as running the view source command in your
browser of choice.

Using Nuxt.js and Vue-Router Chapter 8

[148]

The shortcut key for the view source command is traditionally Ctrl + U in
some browsers, such as Chrome and Firefox.

With the push for the experience on the web to be more like what we have on desktops, we
have seen the rise of SPAs in recent years. Examples of popular SPAs include Gmail,
Twitter, and Google Maps.

The way that an SPA works is this: when a user navigates through different pages (routes)
on a site, the browser does not download a whole new page with a whole new request to
the server. Rather than downloading full pages from a server each time a user visits a route,
SPAs render everything on the client. Requests to the server are made only to get new data.

A good test for deciding whether a web app can qualify as an SPA is this: does visiting a
different route in the app cause the entire app to refresh? If it doesn't, then it's an SPA.

An SPA requests new data from the server while traditional web apps
download entire pages from the server.

This usually means that all of the SPA code will be downloaded in one page load—the
initial page load. This includes HTML, CSS, and JS—all the code without which an SPA
would not run. The downside of this approach is that the download time can be substantial
when running on slower networks or due to the sheer size of an app, especially given the
fact that a lot of these SPAs are full of JavaScript code.

However, as mentioned before, the goal of SPAs is to provide an excellent user experience,
to behave like desktop apps, with instant execution and without latency.

A solution to this problem was the introduction of server-side rendering. Server-side
rendering is simply the ability of a frontend framework to prepare the HTML, CSS, and JS
on the server so that, when a user visits our SPA, instead of their browser having to
download the full app in one go, it only downloads a portion of this code—a fragment of
the full SPA—which, regardless, still allows the user to interact with the page. Through
concepts such as code splitting and rehydration, an SPA seamlessly downloads only that
part of the application that is needed to start using it, and only then downloads the rest of
the SPA, while the user is already interacting with it. This approach reduces the latency of
the initial load.

Using Nuxt.js and Vue-Router Chapter 8

[149]

Another major issue of SPAs in the past was the problem of not being readable by search
engine crawlers. Since these crawlers cannot run JavaScript when crawling an SPA website,
the visiting search engine bot would not see that SPA's content. Hence, server-side
rendering is an elegant approach to both speed up a web app for the user and make it more
accessible for indexing by search engine bots.

When a web app can render web pages both on the server and on the client, it is referred to
as a universal web app. A universal web app is basically an SPA that has SSR ability.

Many modern frontend frameworks have their own SSR implementations. In Vue, this is
what we call Nuxt.js.

Installing Nuxt.js and previewing the default
project
To serve different routes, in the background Nuxt.js uses Vue-router. To keep things
simple, we'll focus on using Nuxt.js.

There are a few ways to get started with Nuxt.js. One option is via the vue init command.
Another one is with a practice that is common, which is the create-nuxt-app command,
similar to create-elm-app or create-react-app.

Installing Nuxt.js with the vue init command
Let's begin by finding a location on our drive to save our new Nuxt app, and then use
the vue init command to create it:

vue init nuxt-community/stater-template chapter8

Running this command without vue init being installed might return the following
message in the console:

Command vue init requires a global addon to be installed.
Please run yarn global add @vue/cli-init and try again.

Hence, to rectify the issue, simply run this:

yarn global add @vue/cli-init

Using Nuxt.js and Vue-Router Chapter 8

[150]

This will take some time, but ultimately we'll end up being able to run the vue init
command:

vue init nuxt-community/starter-template chapter8

This time, running the preceding command will result in a few questions that we need to
answer, so that the project can be configured to our liking. Similar to what we've seen with
Vue-cli, to accept the defaults, we can simply press the Enter key.

This is the output to the console with all of the questions and answers:

? Project name (chapter8)
? Project name chapter8
? Project description (Nuxt.js project)
? Project description Nuxt.js project
? Author (AuthorName <author@email.com>)
? Author AuthorName <author@email.com>)
 vue-cli Generated "chapter 8"
 To get started:
 cd chapter8
 npm install # Or yarn
 npm run dev

Let's run these commands as described. We'll cd into the chapter8 folder, then run npm
install. This will produce an output that includes some nice ASCII art of the Nuxt logo, a
list of contributors and backers, and other project information. Now, we can run the npm
run dev command, which will result in the following output:

[11:12:14] Building project
[11:12:14] Builder initialized
...
[11:12:33] Listening on http://localhost:3000

If we visit the page at localhost:3000, we'll be greeted with the standard welcome
screen, with the Nuxt.js logo, under which there will be our project's name (chapter8), and
two buttons: links to the documentation and to the project's GitHub repository.

Debugging an eslint error
At the time of writing of this book, even though all of the software was up to date, eslint
was throwing an error. If, after running npm run dev, you would open localhost:3000,
you might have seen the following error in the upper-left corner of the page that reads that
the eslint module is undefined.

Using Nuxt.js and Vue-Router Chapter 8

[151]

If this happens, you can fix it by opening the nuxt.config.js file inside your code editor
and replacing all of the code after line 23 with this:

 build: {
 /*
 ** Run ESLint on save
 */
 /*
 extend (config, { isDev, isClient }) {
 if (isDev && isClient) {
 config.module.rules.push({
 enforce: 'pre',
 test: /\.(js|vue)$/,
 loader: 'eslint-loader',
 exclude: /(node_modules)/
 })
 }
 }
 */
 extend(config) {
 if (process.server && process.browser) {
 config.module.rules.push({
 enforce: 'pre',
 test: /\.(js|vue)$/,
 loader: 'eslint-loader',
 exclude: /(node_modules)/
 })
 }
 }
 }
}

In the preceding code, we've commented out the offending code and replaced it with the
correct code, to be able to compare the differences and understand what needs fixing.

We can now rerun the npm run dev command and we should see the app without any
errors, at localhost:3000.

Installing with create-nuxt-app
Alternatively, we can use the create-nuxt-app command. First, we'll need to install it
globally, so that we can use it anywhere on our computer:

npm install -g create-nuxt-app

Using Nuxt.js and Vue-Router Chapter 8

[152]

This command is the global install, and it might take some time. A successful installation
will result in a few lines logged to console, namely the location on the local drive where
create-nuxt-app has been installed, and some other information, similar to this:

+ create-nuxt-app@2.1.1
added 401 packages in 20.234s

Next, let's point our console to the desired folder, and then run this command:

create-nuxt-app chapter8b

Similar to the first installation approach, this one will also produce a number of questions
with preset answers that we can accept by simply pressing the Enter key. This is the list of
questions with the default answers accepted:

$ create-nuxt-app chapter8b
> Generating Nuxt.js project in C:\Users\PC\Desktop\chapter8b
? Project name (chapter8b)
? Project name chapter8b
? Project description (My smashing Nuxt.js project)
? Project description My smashing Nuxt.js project
? Use a custom server framework (Use arrow keys)
? Use a custom server framework none
? Use a custom UI framework (Use arrow keys)
? Use a custom UI framework none
? Choose rendering mode (Use arrow keys)
? Choose rendering mode Universal
? Use axios module (Use arrow keys)
? Use axios module no
? Use eslint (Use arrow keys)
? Use eslint no
? Use prettier (Use arrow keys)
? Use prettier no
? Author name (AuthorName)
? Author name AuthorName
? Choose a package manager (Use arrow keys)
? Choose a package manager npm
Initialized empty Git repository in C:/Users/PC/Desktop/chapter8b/.git/

Similar to the previous installation, we can see the instructions for running the boilerplate
project, as follows:

 To get started:

 cd chapter8b
 npm run dev

 To build & start for production:

Using Nuxt.js and Vue-Router Chapter 8

[153]

 cd chapter8b
 npm run build
 npm start

So, let's run cd chapter8b and follow it up with npm run dev. The output will be almost
identical to the previous installation method.

Editing the index.vue file
Let's also edit our index.vue file, inside the pages folder. This is the root route of our app.
The change we'll make is minimal: we'll delete all of the code inside the <div
class="links"> tag. After the update, that snippet of code should look like this:

 <div class="links">
 <p>Vue Quickstart is a simple introduction to Vue</p>
 </div>

Since webpack in the background is refreshing our page, we should see the result of this
change in our browser, after we save our changes:

So far, we have seen how to initialize a new Vue Nuxt project in two different ways. In the
next section, we'll look at the Nuxt-flavored implementation of the convention-over-
configuration approach: pages as routes.

Using Nuxt.js and Vue-Router Chapter 8

[154]

Nuxt pages as routes
The convention-over-configuration approach was popularized by Ruby on Rails. It is an
opinionated approach to web development that sets up some things in a framework in a
set-and-forget manner. When we say that it is opinionated, it simply means that out of
several possibilities to approach an issue, the developers of the framework chose one
specific way of doing things, and that approach is the only way that something is done.

We can say that Nuxt.js is opinionated because it follows the convention of pages as routes.
Thus, instead of us having to manually set up routes in our apps—that is, rather than
having to configure them—the framework follows a simple convention. Inside the pages
folder, the index.vue file acts as the root route: /. This means that if we run our app,
visiting the root route at localhost:3000 is equal to visiting
localhost:3000/index.vue.

Similarly, if we create a file called about.vue and place it inside the pages folder, to view
this file we'd need to visit the localhost:3000/about route.

So, let's do just that. In our pages folder, we'll make a new file and call it contact.vue.
Inside that file, we'll add the following code:

<template>
 <h1>Contact</h1>
</template>

This is all that is needed for the /contact route to become available, which you can see for
yourself by navigating to localhost:3000/contact. We can even make this file the
default root route of the contact folder. In that case, we'd have to create a subfolder inside
the pages folder, and give it the name of contact. Now, we could create an index.vue
file inside the newly created contact folder, and the route will remain the same. Only our
file and folder structure inside the pages folder has been slightly altered, but the end result
is the same.

However, separating files like this into subfolders will make it easier to stay organized as
you add more files.

Using Nuxt.js and Vue-Router Chapter 8

[155]

Adding navigation to Nuxt apps via the
components folder
At this point in our app development, it would be great to have the navigation in place.
Navigation itself is not a page; it is a component that should exist in each page of our app.
Therefore, let's create it by opening the components folder and adding a new file, which
we'll call Navigation.vue. Let's add this code to it:

<template>
 <div class="navigation">

 <nuxt-link to="/">Home</nuxt-link>
 <nuxt-link to="/contact">Contact</nuxt-link>
 <nuxt-link to="/news">News</nuxt-link>

 </div>
</template>

<style scoped>
.navigation {
 width: 100%;
 margin: 0;
 padding: 20px;
 background: orange;
 color: #444;
 font-family: Arial, sans-serif;
 font-size: 20px;
}
ul {
 list-style: none;
}
ul li {
 display: inline-block;
}
</style>

Note the <nuxt-link> tag. It is just a wrapper over the Vue-router implementation, and
the to="..." attribute's value is where we specify the actual URL, which is just the name
of our specific file inside the pages folder.

Next, let's locate the layouts folder, and inside of it, in the default.vue file, let's add the
Navigation component inside the template, so that it looks like this:

<template>
 <div>

Using Nuxt.js and Vue-Router Chapter 8

[156]

 <Navigation></Navigation>
 <nuxt />
 </div>
</template>

Note that we can self-close components, so that instead of
<Navigation></Navigation>, we could write the shorthand version,
which is simply <Navigation />.

We need to make sure to import the Navigation component by adding the script tag just
under the template tag:

<script>
import Navigation from '@/components/Navigation'
export default {
 components: {
 Navigation
 }
}
</script>

At this point, our homepage, with the navigation update, will look like this:

Using Nuxt.js and Vue-Router Chapter 8

[157]

Now that we have our navigation in place, we'll add another page, which we'll call
News.vue, with the following code:

<template>
 <h1>News</h1>
</template>

At this point, we have three links in our navigation, so now we can focus on adding some
more content to each page.

Adding content to our Nuxt app's pages
Let's update the News.vue component:

<template>
 <section class="news">
 <h1>News</h1>
 <hr>
 <article>
 <h2>We are taking orders for our new product</h2>
 <div>
 Lorem ipsum dolor sit amet, consectetur adipisicing elit.
Laudantium perspiciatis dolorem blanditiis maxime doloremque quibusdam
obcaecati autem enim ipsum deserunt. Aliquid dolor consequatur repellendus
odit, dolores possimus ab cum et voluptatem placeat sunt perferendis porro,
eligendi perspiciatis harum pariatur veniam quo sed, reprehenderit
voluptates maiores hic! Sint, facilis voluptatibus animi!
 </div>
 </article>
 <article>
 <h2>Our website is live</h2>
 <div>
 Lorem ipsum dolor sit amet, consectetur adipisicing elit.
Delectus unde fugit quod, tempore enim obcaecati quam eius explicabo
voluptates quo consequatur! Ad iste consequuntur dolorem minima at
cupiditate veniam saepe voluptatum, qui hic corporis modi repellendus illum
natus optio aut! Omnis praesentium placeat pariatur neque dolorum eaque,
labore at et dignissimos impedit nobis, commodi rerum. Debitis est
exercitationem ipsa, commodi nihil! Inventore minus ex, quam, facilis ut
fuga unde harum possimus dolore ea voluptatum non debitis nihil ipsum
repellendus aut dolorum nam nostrum assumenda eveniet corrupti consequatur
obcaecati provident alias! Ad est minus repudiandae aliquid maxime
provident labore. Asperiores, qui!
 </div>
 </article>
 </section>

Using Nuxt.js and Vue-Router Chapter 8

[158]

</template>

<script>

</script>

<style scoped>
 .news {
 max-width: 500px;
 margin: 0 auto;
 padding-top: 30px;
 font-size: 20px;
 }
 .news article div {
 line-height: 30px;
 }
 h1, h2 {
 padding-top: 20px;
 padding-bottom: 20px;
 }
</style>

The news link will now look like this:

Using Nuxt.js and Vue-Router Chapter 8

[159]

Next, let's update the Contact.vue component:

<template>
 <section class="contact">
 <h1>Contact</h1>
 <hr>
 <article>
 <h2>Feel free to get in touch!</h2>
 <div>
 <p>Our managers:</p>

 John Doe, +01 123 4567
 Jane Doe, +01 124 4567
 Another Person, +01 125 4567

 </div>
 </article>
 </section>
</template>

<script>

</script>

<style scoped>
 .contact {
 max-width: 500px;
 margin: 0 auto;
 padding-top: 30px;
 font-size: 20px;
 }
 .contact article div {
 line-height: 30px;
 }
 h1, h2 {
 padding-top: 20px;
 padding-bottom: 20px;
 }
</style>

We will not be altering the original homepage of our Nuxt.js project. The reason for limited
changes is we only need to have a few pages with some dummy content, so that we can
continue to the next section, where we'll see how to add page transitions to our Nuxt.js app.

Using Nuxt.js and Vue-Router Chapter 8

[160]

Adding page transitions to our Nuxt.js app
As we learned in Chapter 6, Transitions and Animations, Vue comes with a wide array of
ways to add interactivity, transitions, and animations to our apps. To make this process
faster, we will use animations from Animate.css, with some slight modifications.

In Nuxt, we can use page transition hooks just like we already learned. We'll simply replace
the v letter inside the .v-* transition hooks with .page-*. All the functionality, and the
way everything works, will stay the same.

Let's begin by opening the pages/index.vue file and adding this code at the top of its
style tag:

.page-enter-active, .page-leave-active {
 transition: opacity 1s;
}
.page-enter, .page-leave-active {
 opacity: 0;
}

Next, we'll open the contact.vue file and add this code at the top of its style tag:

.page-enter-active {
 animation: zoomIn .5s;
}
@keyframes zoomIn {
from {
 opacity: 0;
 transform: scale3d(0.4, 0.4, 0.4);
}

50% {
 opacity: 1;
}
}

.zoomIn {
animation-name: zoomIn;
}

Using Nuxt.js and Vue-Router Chapter 8

[161]

Finally, we'll update the top of the style tag of news.vue with this code:

.page-enter-active {
 animation: bounce .5s;
}
.page-leave-active {
 animation: bounce .5s;
}
@keyframes bounce {
 from,
 20%,
 55%,
 85%,
 to {
 animation-timing-function: cubic-bezier(0.320, 0.70, 0.355, 1);
 transform: translate3d(0, 0, 0);
 }

 40%,
 43% {
 animation-timing-function: cubic-bezier(0.700, 0.05, 0.855,
 0.06);
 transform: translate3d(0, -30px, 0);
 }

 70% {
 animation-timing-function: cubic-bezier(0.700, 0.05, 0.855,
 0.06);
 transform: translate3d(0, -15px, 0);
 }

 90% {
 transform: translate3d(0, -4px, 0);
 }
}

Feel free to test out your app at this point and see how you achieved a significant visual
improvement with only a few changes to the style tags in your route files.

In this chapter, we got acquainted with the basics of building a
rudimentary Nuxt.js app. There are many ways in which this can be
improved and built upon. To continue building better apps and learning
more about running Vue apps on Node, feel free to refer to other titles in
the Packt library, such as Full Stack Web Development with Vue.js and Node.

Using Nuxt.js and Vue-Router Chapter 8

[162]

Summary
In this chapter, we learned about single-page applications, the ideas that led to their
appearance, and the challenges that their implementation brings, such as issues with the
initial page load. We also learned about solutions to SPA-related problems, such as server-
side rendering, as well as how Nuxt.js helps us build universal web apps. We learned about
installing Nuxt.js and setting up Nuxt.js pages as routes. We linked our Vue app's routing
using the nuxt-link tag, and we added some content to each of the pages. Finally, to build
up from what we learned in the previous chapters, we added some page transitions for a
smoother user experience.

This brings us to the end of Vue JS Quick Start. We have gone through a whole array of basic
Vue JS concepts. As a quick overview, we can reiterate some of the things we've
covered: mustache templates, directives, modifiers, methods, computed properties,
watchers, components (global and local), props, lifecycle hooks, vue-cli, slots, parent-child
component communication, filters, mixins, custom directives and plugins, transitions,
animations, transition components, integrating third-party animations, binding styles,
working with transition groups and JavaScript animation hooks, SPAs, the concepts of state
and store, one-way data flows, using Vuex, working with initial page load, Nuxt, SSR, and
universal web apps.

In this short book, we have covered a lot of ground. We had to keep things basic in order to
see the big picture of all the moving parts that comprise Vue JS. Where to go from here?

There are several ways in which you can build your Vue-related skills further. You could
focus on understanding how to work with server-side technologies, such as Node, Laravel,
or .NET Core. You could also work with VuePress—a way to built static JS-powered sites
with Vue. Or you might want to check out Vuex Quick Start Guide.

To make it easier to continue improving your Vue.js skills, there are over two dozen titles in
the Packt library at your disposal, including titles that deal with the topics listed in this
summary.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Full-Stack Vue.js 2 and Laravel 5
Anthony Gore

ISBN: 978-1-78829-958-9

Core features of Vue.js to create sophisticated user interfaces
Build a secure backend API with Laravel
Learn a state-of-the-art web development workflow with Webpack
Full-stack app design principles and best practices
Learn to deploy a full-stack app to a cloud server and CDN
Managing complex application state with Vuex
Securing a web service with Laravel Passport

https://www.packtpub.com/application-development/full-stack-vuejs-2-and-laravel-5

Other Books You May Enjoy

[164]

Vue.js 2 Design Patterns and Best Practices
Paul Halliday

ISBN: 978-1-78883-979-2

Understand the theory and patterns of Vue.js
Build scalable and modular Vue.js applications
Take advantage of Vuex for reactive state management.
Create Single Page Applications with vue-router.
Use Nuxt for FAST server side rendered Vue applications.
Convert your application to a Progressive Web App (PWA) and add
ServiceWorkers, offline support, and more
Build your app with Vue.js by following up with best practices and explore the
common anti-patterns to avoid

https://www.packtpub.com/web-development/vuejs-design-patterns-and-best-practices

Other Books You May Enjoy

[165]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Atom
 reference 58

B
Bootstrap component
 reference 85

C
child component
 functionality, adding 67, 70
CodePen
 reference 7
component hierarchy 49
component
 about 29
 life cycle 45
computed properties 26, 27, 29
create-nuxt-app
 used, for installing Nuxt.js 151, 153
CSS animations
 about 111
 rules 114
 versus CSS transitions 114
 with transition component 121, 122
 working 112, 113
CSS styles
 binding, in Vue 126, 128
CSS transitions
 about 111
 rules 114
 versus CSS animations 114
custom directives
 about 94
 building 96
 values, passing to 99

custom transition classes 122, 124
custom-article component
 contents, adding with data object 31
 props option, adding 31

D
data store 136
data-driven views
 achieving 26
 reactivity 25
directives
 creating 94
 custom directives 94
 local directives, using 97
dynamic CSS classes
 used, for animating button on click 128

E
enter transition
 setting up 117
eslint error
 debugging 150, 151

F
filters
 chaining, in Vue 82
 example 78, 80
 using 77
 using, as replacement for conditional directives

81

fruit counter app
 building, with Vuex 140, 142
 enhancing 143, 145

[167]

G
global component 50
global registration 51

H
HelloAgain.vue
 data, passing from children to parent

components 72
 props, adding 70

I
IDEs (integrated development environments) 57
index.vue file
 editing 153
initial page load 148

J
JavaScript
 animation hooks 131, 133

L
leave transition
 setting up 118, 119
life cycle hooks
 about 45
 using 46
local component 50, 52
local registration 51

M
methods 26
mixins
 DRY 87
 reference 92
 simple app with repetitive functionality, building

86

 viewportSize mixin, refactoring 90, 92
 working with 84
mutable 136

N
Nuxt app
 content, adding to pages 157, 159

 navigation, adding via components folder 155,
156, 157

 page transitions, adding 160, 161
Nuxt pages
 using, as routes 154
Nuxt.js
 default project, previewing 149
 eslint error, debugging 150, 151
 index.vue file, editing 153
 installing 149
 installing, with create-nuxt-app 151, 153
 installing, with vue init command 149, 150

O
one-way data flow 136, 137, 138

P
props 29

S
server-side rendering 147, 148
single-page applications (SPAs) 147
slots 74, 76
state 135
store 138
Sublime Text 3
 downloading 58
 Package Manager, installing 58
 Vue.js, working witj 58
Sublime Text
 reference 58

T
templates 29
transition components
 CSS animations 121, 122
 naming 120
transition duration
 combining 124, 126
transition element
 in Vue 115, 117
transition groups
 working with 129, 131
transition keys

[168]

 combining 124, 126
transition modes
 combining 124, 126
transition v-if
 combining 124, 126

U
universal web app 149

V
viewportSize mixin
 refactoring 90, 92
Visual Studio Code (VS Code)
 download link 60
 extensions 60
 installing 60
 reference 57
 Vue.js, working with 60
Vue Cli 3
 used, for NPM plugin installation 109
Vue DevTools plugin
 used, for tracking Vuex state 142, 143
Vue instance
 components, adding 36
Vue Native
 reference 18
Vue plugins
 creating 101
 creating, with options defined 102, 105
 publishing 106
 reference 100
 simple plugin, adding 106
 v-tooltip, reference 109
 vue-multiselect, reference 109
 vue-tour, reference 109
 working with 100
Vue-based layouts
 improving, with v-for 40, 44
Vue-cli installation
 Git bash, installing 53
 nvm, adding 54
 nvm, installing 54
Vue-cli-based project
 structure 62, 67
Vue-cli

 installing 54
 new project, initializing 56
 npm package, reference 55
 updating 54
 using 53
Vue.js, Sublime Text 3
 working with 58
Vue.js
 working with, in VS Code 60
Vue2
 using 7
Vue
 about 6
 as jQuery successor 13
 as learning tool for beginners 14
 complex page, creating with components 37, 40
 component templates, building 34
 computed properties and watchers 21
 CSS styles, binding 126, 128
 data option, using as function 11
 data-driven views 25
 declarative code 15
 directives 18
 features 14, 15
 issues, solving 12
 methods 20
 modifiers 19
 Mustache template example 9
 reference 9, 52
 transition element 115, 117
 used, for setting up code editors 57
 using 9, 15
 watchers 44
Vuex state management pattern
 about 136, 138
 actions, in Vuex store 139
 getters, in Vuex store 138
 hot reloading 140
 store 138
 store mutations 139
Vuex
 fruit counter app, building 140, 142

W
watchers 44
web page

 building, with components 35
WebStorm
 reference 58

	Title Page
	Cover
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introducing Vue
	What is Vue?
	The quickest way to start using Vue2
	Mustache template example
	Using Vue's data option as a function

	What problems does Vue solve?
	Vue, a jQuery successor
	A learning tool for beginners
	A versatile and progressive framework
	A tool for animations and transitions
	Features similar to other modern frontend frameworks and libraries

	Why use Vue?
	Declarative code
	Feels like a right fit for a variety of projects
	Easy-to-understand syntax
	Directives
	Modifiers
	Vue methods
	Computed properties and watchers

	Summary

	Chapter 2: Basic Concepts of Vue 2
	Data-driven views in Vue
	What is reactivity?
	How does Vue achieve this?

	Computed properties and methods
	What exactly are these dependencies?

	Understanding components, templates, and props
	Adding props and data for better components
	Adding content to our components with the help of the data object
	Other ways of building component templates in Vue
	Building a simple web page out of components
	Adding simple components to a Vue instance
	Creating a more complex page out of components in Vue
	Improving our Vue-based layouts with v-for

	Watchers in Vue
	Lifecycle hooks
	What is a component's lifecycle?
	How do we use lifecycle hooks?

	Summary

	Chapter 3: Working with Vue-CLI, Components, Props, and Slots
	Vue component hierarchy, and global and local components
	Using Vue-CLI
	Installing Git bash
	Installing nvm
	Why use nvm?

	Installing and updating Vue-cli
	Initializing a new project with Vue-cli

	Setting up code editors to use with Vue
	Working with Vue.js in Sublime Text 3
	Dowloading Sublime Text 3
	Install Package Manager

	Working with Vue.js in VS Code
	Installing VS Code and extensions

	The structure of our Vue-cli-based project
	Adding basic functionality to a child component
	Adding props to our HelloAgain.vue
	Passing data from children to parent components

	Introduction to slots
	Summary

	Chapter 4: Filters and Mixins
	Using filters
	An example of a filter that rounds up student grades
	Using filters as a replacement for conditional directives
	Chaining filters in Vue

	Working with mixins
	Building a simple app with repetitive functionality in different components
	Staying DRY with mixins
	Refactoring our viewportSize mixin

	Summary

	Chapter 5: Making Your Own Directives and Plugins
	Making our own directives
	Understanding custom directives
	Building a simple custom directive
	Using local directives
	Passing values to custom directives

	Working with Vue plugins
	Creating the simplest possible Vue plugin
	Creating a plugin with options defined
	Publishing a Vue plugin
	Adding a simple plugin
	Installing our NPM plugin in a Vue project using Vue CLI 3
	Additional plugins to learn from

	Summary

	Chapter 6: Transitions and Animations
	Transitions and animations in CSS
	How CSS transitions work
	How CSS animations work
	Differences between transitions and animations in CSS
	Rules for CSS transitions
	Rules for CSS animations

	The transition element in Vue
	Setting up the enter transition
	Setting up the leave transition
	Naming transition components
	CSS animations with transition component

	Custom transition classes
	Combining transition modes, duration, keys, and v-if
	Binding CSS styles in Vue
	Animating a button on click with dynamic CSS classes

	Working with transition groups
	JavaScript animation hooks
	Summary

	Chapter 7: Using Vuex
	What is state?
	State management, data stores, and one-way data flows
	The Vuex state management pattern
	The store
	Getters in the Vuex store
	Vuex store mutations
	Actions in Vuex store
	Hot reloading

	Building a fruit counter app with Vuex
	Using the Vue DevTools plugin to track our Vuex state
	Improving our fruit counter app
	Summary

	Chapter 8: Using Nuxt.js and Vue-Router
	Single-page applications and server-side rendering
	Installing Nuxt.js and previewing the default project
	Installing Nuxt.js with the vue init command
	Debugging an eslint error
	Installing with create-nuxt-app
	Editing the index.vue file

	Nuxt pages as routes
	Adding navigation to Nuxt apps via the components folder
	Adding content to our Nuxt app's pages
	Adding page transitions to our Nuxt.js app
	Summary

	Other Books You May Enjoy
	Index

