
Recipes for building and monitoring event-driven applications using
Azure Functions

Azure
Serverless
Computing

Praveen Kumar Sreeram
www.packt.com

Second EditionCookbook

Azure Serverless Computing
Cookbook
Second Edition

Recipes for building and monitoring event-driven
applications using Azure Functions

Praveen Kumar Sreeram

BIRMINGHAM – MUMBAI

Azure Serverless Computing Cookbook
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

Packt Publishing has endeavoured to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Content Development Editors: Nithin George Varghese
Technical Editor: Komal Karne
Copy Editor: Safis Editing
Project Coordinator: Drashti Panchal
Proofreader: Safis Editing
Indexers: Mariammal Chettiyar
Graphics: Tom Scaria
Production Coordinator: Aparna Bhagat

First published: August 2017
Second edition: November 2018

Production reference: 1301118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78961-526-5

www.packtpub.com

It would have not been possible to complete the book without the support of
my best half, my wife, Haritha, and my cute little angel, Rithwika Sreeram

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals
•	 Learn better with Skill Plans built especially for you
•	 Get a free eBook or video every month
•	 Mapt is fully searchable
•	 Copy and paste, print and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

https://mapt.io/
http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the author
Praveen Kumar Sreeram works as an Azure architect, trainer in a leading MNC.
He has over 14 years of experience in the field of development, analysis, design
and delivery of applications, including custom web development using ASP.NET
and MVC to building mobile apps using Xamarin for domains such as insurance,
telecom and wireless expense management. He has been recognised twice as the
MVP by one of the leading social community websites, CSharpCorner. He is an
avid blogger who writes about his learning at his personal blog, called Praveen
Kumar Sreeram. His current focus is on analysing business problems and providing
technical solutions for various projects related to Microsoft Azure and .NET Core.
His twitter ID is @PrawinSreeram.

First of all, my thanks go to the Packt Publishing team, including Shrilekha
Inani, Nithin George Varghese and Komal Karne.

I would like to thank my grandma, Neelavatamma, dad, Kamalakar and
mom, Seetha; for being in my life and giving me courage all the time.

I would like to express my deepest gratitude to Bhagyamma (my
grandmother), Kamala Kumar (my maternal uncle), his brothers
and rest of the family, who have been supporting me all the time.

About the reviewers
Kasam Shaikh, Microsoft Azure enthusiast, is a seasoned professional with a
‘Could be’ attitude, with 10 years of industry experience working as a cloud architect
with one of the leading IT companies in Mumbai, India. He is a certified Azure
architect, and has been recognised as an MVP by a leading online community and
is also a global AI speaker. He has authored books on Azure Cognitive, Azure Bots
and Microsoft Bot Frameworks. He leads the Azure India (AZINDIA) community,
the fastest growing online community for learning Azure. He is also a founder of
the Dear Azure website.

First and foremost, I would like to thank the Almighty Allah, my family and
especially my better half, for motivating me throughout this process. I am
highly grateful to Packt Publishing for believing in me and for considering
me for this opportunity.

Michael Sync (Soe Htike) is a senior engineer working at Readify in Australia.
He was an MVP (Microsoft Valuable Professional) for seven years. He participated as
a speaker, mentor, and helper at several community events. He is also an author and
a tech book reviewer. He has published two books with Manning and has reviewed
several books for a number of publishers. He has been working in the software
industry for more than 16 years.

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com/

[i]

Table of Contents
Preface	 xiii
Chapter 1: Developing Cloud Applications Using Function
Triggers and Bindings	 1

Introduction	 1
Building a backend Web API using HTTP triggers	 2

Getting ready	 3
How to do it…	 3
How it works…	 8
See also	 8

Persisting employee details using Azure Storage table output bindings	 8
Getting ready	 9
How to do it...	 9
How it works...	 13

Understanding storage connection	 14
What is the Azure Table storage service?	 15
Partition key and row key	 15

There’s more...	 15
Saving the profile images to Queues using Queue output bindings	 15

Getting ready	 16
How to do it…	 16
How it works…	 18

Storing the image in Azure Blob Storage	 18
Getting ready	 18
How to do it...	 18
How it works...	 20
There’s more...	 21

Table of Contents

[ii]

Chapter 2: Working with Notifications Using the SendGrid
and Twilio Services	 23

Introduction	 23
Sending an email notification to the administrator of a website
using the SendGrid service	 24

Getting ready	 24
Creating a SendGrid account	 24
Generating an API key from the SendGrid portal	 27
Configuring the SendGrid API key with the Azure Function app	 28

How to do it...	 28
Create Storage Queue binding to the HTTP Trigger	 29
Create Queue Trigger to process the message of the HTTP Trigger	 30
Create SendGrid output binding to the Queue Trigger	 31

How it works...	 33
There’s more	 34

Sending an email notification dynamically to the end user	 34
Getting ready	 34
How to do it...	 35

Accept the new email Parameter in the RegisterUser function	 35
Retrieve the UserProfile information in the SendNotifications trigger	 36

How it works...	 37
There’s more...	 38

Implementing email logging in Azure Blob Storage	 39
How to do it...	 39
How it works...	 41

Modifying the email content to include an attachment	 41
Getting ready	 42
How to do it...	 42

Customizing the log file name using IBinder interface	 42
Adding an attachment to the email	 43

Sending an SMS notification to the end user using the Twilio service	 44
Getting ready	 45
How to do it...	 47
How it works...	 49

Chapter 3: Seamless Integration of Azure Functions with
Azure Services	 51

Introduction	 51
Using Cognitive Services to locate faces in images	 52

Getting ready	 52
Creating a new Computer Vision API account	 52
Configuring application settings	 53

Table of Contents

[iii]

How to do it...	 53
How it works...	 60
There’s more...	 60

Azure SQL Database interactions using Azure Functions	 61
Getting ready	 61
How to do it...	 63
How it works...	 66

Monitoring tweets using Logic Apps and notifying users
when a popular user tweets	 66

Getting ready	 67
How to do it...	 67

Creating a new Logic App	 67
Designing the Logic App with Twitter and Gmail connectors	 69
Testing the Logic App functionality	 73

How it works...	 74
Integrating Logic Apps with serverless functions	 74

How to do it...	 75
There’s more...	 79
See also	 80

Auditing Cosmos DB data using change feed triggers	 80
Getting ready	 80

Creating a new Cosmos DB account	 81
Creating a new Cosmos DB collection	 81

How to do it...	 82
How it works...	 86
There’s more...	 86

Chapter 4: Understanding the Integrated Developer
Experience of Visual Studio Tools	 87

Introduction	 87
Creating a function app using Visual Studio 2017	 88

Getting ready	 88
How to do it...	 90
How it works...	 92
There’s more...	 92

Debugging C# Azure Functions on a local staged environment
using Visual Studio 2017	 92

Getting ready	 93
How to do it...	 93
How it works...	 97
There’s more...	 97

Table of Contents

[iv]

Connecting to the Azure Storage cloud from the local
Visual Studio environment	 98

Getting ready	 98
How to do it...	 98
How it works...	 102
There’s more...	 102

Deploying the Azure Function app to Azure Cloud using
Visual Studio	 103

How to do it...	 103
There’s more...	 107

Debugging a live C# Azure Function, hosted on the Microsoft
Azure Cloud environment, using Visual Studio	 107

Getting ready	 108
How to do it...	 108

Deploying Azure Functions in a container	 111
Getting ready	 112

Creating an ACR	 113
How to do it...	 114
Creating a Docker image for the function app	 115
Pushing the Docker image to the ACR	 116
Creating a new function app with Docker	 118
How it works...	 119

Chapter 5: Exploring Tests Tools for the Validation of
Azure Functions	 121

Introduction	 121
Testing Azure Functions	 122

Getting ready	 122
How to do it...	 123

Testing HTTP triggers using Postman	 123
Testing a Blob trigger using Microsoft Storage Explorer	 125
Testing the Queue trigger using the Azure Management portal	 128

There’s more...	 131
Testing an Azure Function on a staged environment
using deployment slots	 131

How to do it...	 132
There’s more...	 139

Load testing Azure Functions using Azure DevOps 	 139
Getting ready	 140
How to do it...	 140
There’s more...	 143
See also	 144

Table of Contents

[v]

Creating and testing Azure Functions locally using Azure CLI tools	 144
Getting ready	 144
How to do it...	 144

Testing and validating Azure Function responsiveness using
Application Insights	 147

Getting ready	 148
How to do it...	 149
How it works...	 152
There’s more...	 152

Developing unit tests for Azure Functions with HTTP triggers	 152
Getting ready	 153
How to do it...	 154

Chapter 6: Monitoring and Troubleshooting Azure Serverless
Services	 157

Introduction	 157
Troubleshooting your Azure Functions	 158

How to do it...	 158
Viewing real-time application logs	 158
Diagnosing the entire function app	 160

There’s more...	 161
Integrating Azure Functions with Application Insights	 163

Getting ready	 163
How to do it...	 164
How it works...	 166
There’s more...	 166

Monitoring your Azure Functions	 166
How to do it...	 166
How it works...	 168

Pushing custom telemetry details to Application Insights Analytics	 168
Getting ready	 170
How to do it...	 170

Creating an Application Insights function	 171
Configuring access keys	 172
Integrating and testing an Application Insights query	 174
Configuring the custom derived metric report	 176

How it works...	 178
Sending application telemetry details via email	 179

Getting ready	 179
How to do it...	 180
How it works...	 182

Table of Contents

[vi]

There’s more...	 182
See also	 182

Integrating real-time Application Insights monitoring data
with Power BI using Azure Functions	 182

Getting ready	 183
How to do it...	 184

Configuring Power BI with a dashboard, a dataset and the push URI	 184
Creating an Azure Application Insights real-time Power BI – C# function	 190

How it works...	 193
There’s more...	 193

Chapter 7: Developing Reliable Serverless Applications Using
Durable Functions	 195

Introduction	 195
Configuring Durable Functions in the Azure Management portal	 196

Getting ready	 196
How to do it...	 197
There’s more...	 198

Creating a Durable Function hello world app	 199
Getting ready	 199
How to do it...	 199

Creating an HttpStart function in the Orchestrator client	 200
Creating the Orchestrator function	 202
Creating an activity function	 204

How it works...	 205
There’s more...	 205

Testing and troubleshooting Durable Functions	 205
Getting ready	 206
How to do it...	 206

Implementing multithreaded reliable applications using
Durable Functions	 208

Getting ready	 208
How to do it...	 209

Creating the Orchestrator function	 209
Creating a GetAllCustomers activity function 	 210
Creating a CreateBARCodeImagesPerCustomer activity function	 211

How it works...	 213
There’s more...	 213

Chapter 8: Bulk Import of Data Using Azure Durable Functions
and Cosmos DB	 215

Introduction	 215
Business problem	 216

Table of Contents

[vii]

Durable serverless way of implementing an Excel import	 217
Uploading employee data into Blob Storage	 217

How to do it...	 218
How it works...	 221
There’s more...	 222

Creating a Blob trigger	 222
Getting ready	 222
How to do it...	 226
There’s more...	 226

Creating the Durable Orchestrator and triggering it for each
Excel import	 227

How to do it...	 227
How it works...	 230
There’s more...	 230

Reading Excel data using activity functions	 231
Getting ready	 231
How to do it...	 232

Read data from Blob Storage	 232
Read Excel data from the stream	 233
Create the activity function	 234

There’s more...	 236
Auto-scaling Cosmos DB throughput	 237

Getting ready	 237
How to do it...	 239
There’s more...	 241

Bulk inserting data into Cosmos DB	 241
How to do it...	 241
There’s more...	 242

Chapter 9: Implementing Best Practices for Azure Functions	 243
Adding multiple messages to a queue using the IAsyncCollector
function	 244

Getting ready	 244
How to do it...	 245
How it works...	 247
There’s more...	 247

Implementing defensive applications using Azure Functions
and queue triggers	 247

Getting ready	 248
How to do it...	 248

CreateQueueMessage – C# console application	 248
Developing the Azure Function – queue trigger	 249
Running tests using the console application	 250

Table of Contents

[viii]

How it works...	 251
There’s more...	 251

Handling massive ingress using Event Hubs for IoT and other
similar scenarios	 252

Getting ready	 252
How to do it...	 252

Creating an Azure Function event hub trigger 	 252
Developing a console application that simulates IoT data 	 253

Avoiding cold starts by warming the app at regular intervals	 256
Getting ready	 256
How to do it...	 257

Creating an HTTP trigger	 257
Creating a timer trigger	 257

There’s more...	 258
See also	 258

Enabling authorisation for function apps	 258
Getting ready	 258
How to do it...	 259
How it works...	 260
There’s more...	 260

Controlling access to Azure Functions using function keys	 260
How to do it...	 261

Configuring the function key for each application	 261
Configuring one host key for all the functions in a single function app	 262

There’s more...	 264
Securing Azure Functions using Azure Active Directory	 264

Getting ready	 265
How to do it...	 265

Configuring Azure AD to the function app	 265
Registering the client app in Azure AD	 266
Granting the client app access to the backend app 	 269
Testing the authentication functionality using a JWT token	 269

Configuring throttling of Azure Functions using API Management	 271
Getting ready	 272
How to do it...	 273

Integrating Azure Functions with API Management	 273
Configuring request throttling using inbound policies	 276
Testing the rate limit inbound policy configuration	 278

How it works...	 279
Securely accessing SQL Database from Azure Functions using
Managed Service Identity	 280

Getting ready	 280

Table of Contents

[ix]

How to do it...	 281
Creating a function app using Visual Studio 2017 with V1 runtime	 281
Creating a Logical SQL Server and a SQL Database	 284
Enabling the managed service identity	 284

There’s more...	 287
See also	 287

Shared code across Azure Functions using class libraries	 287
How to do it...	 288
How it works...	 290
There’s more...	 291

Using strongly typed classes in Azure Functions	 291
Getting ready	 291
How to do it...	 292
How it works...	 294
There’s more...	 294

Chapter 10: Configuring of Serverless Applications in the
Production Environment	 295

Introduction	 295
Deploying Azure Functions using the Run From Package	 296

Getting ready	 297
How to do it...	 298
How it works...	 299
There’s more...	 299

Deploying Azure Function using ARM templates	 299
Getting ready	 299
How to do it...	 300
There’s more...	 303

Configuring custom domain to Azure Functions	 303
Getting ready	 304
How to do it...	 304

Configuring function app with an existing domain	 306
Techniques to access Application Settings	 308

Getting ready	 308
How to do it...	 308

Accessing Application Settings and connection strings in the Azure Function code	 308
Application setting – binding expressions 	 311

Creating and generating open API specifications using Swagger	 311
Getting ready	 312
How to do it...	 312

Table of Contents

[x]

Breaking down large APIs into small subsets of APIs using proxies	 316
Getting ready	 316
How to do it...	 317

Creating microservices	 318
Creating the gateway proxies	 318
Testing the proxy URLs	 321

There’s more...	 321
See also	 322

Moving configuration items from one environment to another
using resources	 322

Getting ready	 323
How to do it...	 324

Chapter 11: Implementing and Deploying Continuous
Integration Using Azure DevOps	 329

Introduction	 329
Prerequisites	 330

Continuous integration – creating a build definition	 331
Getting ready	 332
How to do it...	 333
How it works...	 337
There’s more...	 338

Continuous integration – queuing a build and triggering it manually	 338
Getting ready	 338
How to do it...	 339

Configuring and triggering an automated build	 341
How to do it...	 342
How it works...	 344
There’s more...	 344

Continuous integration – executing unit test cases in the pipeline	 345
How to do it...	 346
There’s more...	 348

Creating a release definition	 348
Getting ready	 349
How to do it...	 350
How it works...	 358
There’s more...	 358
See also	 359

Table of Contents

[xi]

Triggering the release automatically	 360
Getting ready	 360
How to do it...	 360
How it works...	 362
There’s more...	 362

Other Books You May Enjoy	 363

Preface

[xiii]

Preface
Serverless computing is the abstraction of infrastructure management and it allows
developers to increase their focus on the business logic so they can deliver more features
and innovation per cycle. When building serverless applications, you don’t have
to invest time on infrastructure provisioning or management (for example, creating
servers, installing updates, patching OS, managing how the application will scale).
Instead, you use a set of fully managed, highly scalable, cloud services that take care
of that part of the job.

The benefits of serverless computing span throughout the whole organisation
and development cycle:

•	 For the developer, it represents total focus on value. Building serverless
applications increases the individual capacity to contribute more effectively
to the core of the business.

•	 For the development team, it means faster time to market. A serverless
approach boosts their velocity to deliver more value per development cycle.

•	 For the organisation, it’s an enabler of innovation from a solid foundation.
Thanks to the combination of freed capacity and disruptive services, the
whole organisation can act on early signals to develop or diversify its
business model and deliver on its innovation agenda.

When talking about serverless applications, we can identify a few application
patterns worth mentioning here. While each of them shares the benefits stated
above, they have also specific characteristics and additional benefits that make
them unique and a better fit for certain scenarios. Here are the serverless
applications patterns we can observe:

•	 Web applications, hosting both backend and client side on a fully
managed services that handles automatic scaling, security and
compliance requirements, with App Service.

Preface

[xiv]

•	 Event-driven applications using serverless functions, taking advantage of
the unique programming model (based on triggers to respond to events and
bindings to integrate other services) and a pay-per-execution billing model,
with Azure Functions.

•	 Low-code workflows for an easy and fast orchestration of combined tasks
that solve a business problem (usually integrating different services, both
cloud or on-premises, to work together) without actually coding those
integrations, nor learning any new APIs or specifications, with Logic Apps.

•	 Serverless containers, bringing your own containers to a fully managed
Kubernetes orchestration with Azure Kubernetes Service that can do
burst scaling with virtual nodes and Azure Container Instances when the
workload volume scales suddenly or spikily.

Microsoft provides a solution to easily run small segments of code in the cloud with
Azure Functions. Azure Functions provides solutions for processing data, integrating
systems and building simple APIs and microservices.

The book starts with intermediate-level recipes on serverless computing, along with
some use cases on the benefits and key features of Azure Functions. Then, we’ll deep
dive into the core aspects of Azure Functions, such as the services it provides, how
you can develop and write Azure Functions and how to monitor and troubleshoot
Azure Functions.

Moving on, you’ll get practical recipes on integrating DevOps with Azure Functions,
and providing continuous deployment with Azure DevOps (formerly Visual Studio
Team Services). The book also provides hands-on steps and tutorials based on
real-world serverless use cases to guide you through configuring and setting up
your serverless environments with ease. Finally, you’ll see how to manage Azure
Functions, providing enterprise-level security and compliance to your serverless
code architecture.

You will also learn how to quickly build applications that are reliable and durable
using Durable Functions, with an example of a very common real-time use case.

By the end of this book, you will have all the skills required to work with
serverless code architectures, providing continuous delivery to your users.

Who this book is for
If you are a cloud administrator, architect or developer who wants to build
scalable systems and deploy serverless applications with Azure Functions,
then the Azure Serverless Computing Cookbook is for you.

Preface

[xv]

What this book covers
Chapter 1, Developing Cloud Applications Using Function Triggers and Bindings, goes
through how the Azure Functions runtime provides templates that can be used to
quickly integrate different Azure services for your application needs. It reduces
all of the plumbing code so that you can focus on just your application logic. In this
chapter, you will learn how to build web APIs and bindings related to Azure Storage
Services.

Chapter 2, Working with Notifications Using the SendGrid and Twilio Services, deals with
how communication is one of the most critical aspects of any business requirement.
In this chapter, you will learn how easy it is to connect your business requirements
written in Azure Functions with the most popular communication services, such
as SendGrid (for email) and Twilio (for SMS).

Chapter 3, Seamless Integration of Azure Functions with Azure Services, discusses how
Azure provides many connectors that you could leverage to integrate your business
applications with other systems pretty easily. In this chapter, you will learn how
to integrate Azure Functions with cognitive services and Logic Apps.

Chapter 4, Understanding the Integrated Developer Experience of Visual Studio Tools for
Azure Functions, teaches you how to develop Azure Functions using Visual Studio,
which provides you with many features such as Intellisense, local and remote
debugging and most of the regular development features.

Chapter 5, Exploring Testing Tools for the Validation of Azure Functions, helps you to
understand different tools and processes that help you streamline your development
and quality control processes. You will also learn how to create loads using Azure
DevOps (formerly VSTS) load testing, and you’ll look at how to monitor the
performance of Azure Functions using the reports provided by Application Insights.
Finally, you will also learn how to configure alerts that notify you when your apps
are not responsive.

Chapter 6, Monitoring and Troubleshooting Azure Serverless Services, teaches you how
to continuously monitor applications, analyse the performance and review the logs
to understand whether there are any issues that end users are facing. Azure provides
us with multiple tools to achieve all the monitoring requirements, right from the
development and maintenance stages of the application.

Chapter 7, Developing Reliable Serverless Applications Using Durable Functions, shows
you how to develop long-running, stateful solutions in serverless environments
using Durable Functions, which has advanced features that have been released
as an extension to Azure Functions.

Preface

[xvi]

Chapter 8, Bulk Import of Data Using Azure Durable Functions and Cosmos DB, teaches
you how to leverage Azure Durable Functions to read and import the data from the
Blob storage and dump the data into Cosmos DB.

Chapter 9, Implementing Best Practices for Azure Functions, teaches a few of the best
practices that you should follow in order to improve performance and security while
working in Azure Functions.

Chapter 10, Configuring of Serverless Applications in the Production Environment,
demonstrates how to deploy a function app in an efficient way and copy/move the
configurations in a smarter way so as to avoid human error. You will also learn how
to configure a custom domain that you could share with your customers or end users
instead of the default domain that is created as part of provisioning the function app.

Chapter 11, Implementing and Deploying Continuous Integration Using Azure DevOps,
helps you learn how to implement continuous integration and delivery of your
Azure Functions code with the help of Visual Studio and Azure DevOps.

To get the most out of this book
Prior knowledge and hands-on experience with the core services of Microsoft Azure
is required.

Download the example code files
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register at http://www.packtpub.com.
2.	 Select the SUPPORT tab.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box and follow

the on-screen instructions.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com

Preface

[xvii]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR/7-Zip for Windows
•	 Zipeg/iZip/UnRarX for Mac
•	 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Azure-Serverless-Computing-Cookbook-Second-Edition.
We also have other code bundles from our rich catalogue of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Download the EPUB/mobi and example
code files
An EPUB and mobi version of this book is available free of charge on GitHub.

Download the colour images
We also provide a PDF file that has colour images of the screenshots/diagrams
used in this book. You can download it here: https://www.packtpub.com/sites/
default/files/downloads/9781789615265_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input and Twitter
handles. Here is an example: “Mount the downloaded WebStorm-10*.dmg
disk image file as another disk in your system.”

A block of code is set as follows:

using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

https://github.com/PacktPublishing/Azure-Serverless-Computing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-Serverless-Computing-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789615265_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615265_ColorImages.pdf

Preface

[xviii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

Any command-line input or output is written as follows:

docker tag functionsindocker cookbookregistry.azurecr.io/
functionsindocker:v1

Bold: Indicates a new term, an important word or words that you see on the screen,
for example, in menus or dialogue boxes, also appear in the text like this. Here
is an example: “During the installation, choose Azure development in the
Workloads section.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready,
How to do it..., How it works..., There’s more... and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set
up any software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

Preface

[xix]

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There’s more...
This section consists of additional information about the recipe in order to make
you more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com

Preface

[xx]

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

packtpub.com

[1]

Developing Cloud
Applications Using Function

Triggers and Bindings
In this chapter, we will cover the following recipes:

•	 Building a backend Web API using HTTP triggers
•	 Persisting employee details using Azure Storage table output bindings
•	 Saving the profile images to Queues using Queue output bindings
•	 Storing the image in Azure Blob Storage

Introduction
Every software application needs backend components that are responsible for
taking care of the business logic and storing the data in some kind of storage, such
as databases and filesystems. Each of these backend components could be developed
using different technologies. Azure serverless technology also allows us to develop
these backend APIs using Azure Functions.

Developing Cloud Applications Using Function Triggers and Bindings

[2]

Azure Functions provide many out-of-the-box templates that solve most common
problems, such as connecting to storage, building Web APIs and cropping images.
In this chapter, we will learn how to use these built-in templates. Along with
learning the concepts related to Azure serverless computing, we will also try to
implement a solution to a basic domain problem of creating components required
for any organisation to manage the internal employee information.

The following is a simple diagram that helps you understand what we will achieve
in this chapter:

Building a backend Web API using HTTP
triggers
We will use Azure serverless architecture to build a Web API using HTTP triggers.
These HTTP triggers could be consumed by any frontend application that is capable
of making HTTP calls.

Chapter 1

[3]

Getting ready
Let’s start our journey of understanding Azure serverless computing using Azure
Functions by creating a basic backend Web API that responds to HTTP requests:

•	 Refer to https://azure.microsoft.com/free/?&wt.mc_id=AID607363_
SEM_8y6Q27AS for creating a free Azure Account.

•	 Visit https://docs.microsoft.com/azure/azure-functions/
functions-create-function-app-portal to understand the step-by-step
process of creating a function app and https://docs.microsoft.com/
azure/azure-functions/functions-create-first-azure-function to
create a function. While creating a function, a Storage Account is also created
for storing all the files. Remember the name of the Storage Account, as it will
be used later in the other chapters.

•	 Once you create the Function App, please go through the basic concepts
of Triggers and Bindings which are the core concepts of how Azure
Functions work. I highly recommend you to go through the https://docs.
microsoft.com/azure/azure-functions/functions-triggers-bindings
article before you proceed.

We will be using C# as the programming language throughout the
book. Most of the functions are developed using Azure Functions
V2 run-time. However, there are a few recipes which are not yet
supported in V2 run-time which is mentioned in the respective
recipe. Hopefully, by the time you are read this book, Microsoft
will have made those features available for V2 run-time as well.

How to do it…
Perform the following steps:

1.	 Navigate to the Function App listing page by clicking on the Function
Apps menu, which is available on the left hand side.

2.	 Create a new function by clicking on the + icon:

https://azure.microsoft.com/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://docs.microsoft.com/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings

Developing Cloud Applications Using Function Triggers and Bindings

[4]

3.	 You will see the Azure Functions for .NET – getting started page where
you will prompted to choose the type of tools you would like to use. You
can choose the one you are interested in. For the initial few chapters, we will
use the In-portal option where you can quickly create Azure Functions right
from the portal without any tools. Later, in the other chapters, we will use
Visual Studio and Azure Functions Core Tools to create the Functions.:

4.	 In the next step, select More templates and click on Finish and view
templates as shown in the following screenshot:

Chapter 1

[5]

5.	 In the Choose a template below or go to the quick-start section, choose
HTTP trigger to create a new HTTP trigger function:

Developing Cloud Applications Using Function Triggers and Bindings

[6]

6.	 Provide a meaningful name. For this example, I have used RegisterUser
as the name of the Azure Function.

7.	 In the Authorisation level drop-down, choose the Anonymous option.
We will learn more about the all the authorisation levels in Chapter 9,
Implementing Best Practices for Azure Functions:

8.	 Click on the Create button to create the HTTP trigger function.
9.	 As soon as you create the function, all the required code and configuration

files will be created automatically and the run.csx file will be opened
for you to edit the code. Remove the default code and replace it with the
following code. I have added two parameters (firstname and the lastname)
that would be displayed in the output when the HTTP Trigger is triggered:
#r "Newtonsoft.Json"

using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

public static async Task<IActionResult> Run(
 HttpRequest req,
 ILogger log)
{
 log.LogInformation("C# HTTP trigger function processed
a request.");
 string firstname=null,lastname = null;
 string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();

 dynamic inputJson = JsonConvert.DeserializeObject(requestBody);
 firstname = firstname ?? inputJson?.firstname;
 lastname = inputJson?.lastname;

 return (lastname + firstname) != null
 ? (ActionResult)new OkObjectResult($"Hello, {firstname + " " +
lastname}")
 : new BadRequestObjectResult("Please pass a name on the query" +
"string or in the request body");
}

Chapter 1

[7]

10.	 Save the changes by clicking on the Save button available just above the code
editor.

11.	 Let’s try to test the RegisterUser function using the Test console. Click on
the Test tab to open the Test console:

12.	 Enter the values for firstname and lastname in the Request body section:

Make sure you select POST in the HTTP method drop-down.

13.	 Once you have reviewed the input parameters, click on the Run button
available at the bottom of the Test console:

Developing Cloud Applications Using Function Triggers and Bindings

[8]

14.	 If the input request workload is passed correctly with all the required
parameters, you will see a Status 200 OK, and the output in the Output
window will be as shown in the preceding screenshot.

How it works…
We have created the first basic Azure Function using HTTP triggers and made a few
modifications to the default code. The code just accepts the firstname and lastname
parameters and prints the name of the end user with a Hello {firstname}
{lastname} message as a response. We also learned how to test the HTTP trigger
function right from the Azure Management portal.

For the sake of simplicity, I didn’t perform validations of
the input parameter. Make sure that you validate all the
input parameters in your applications running on your
production environment.

See also
The Enabling authorisation for function apps recipe in Chapter 9, Implementing Best
Practices for Azure Functions

Persisting employee details using Azure
Storage table output bindings
In the previous recipe, you learned how to create an HTTP trigger and accept the
input parameters. Let’s now work on something interesting, that is, where you store
the input data into a persistent medium. Azure Functions supports us to store data in
many ways. For this example, we will store the data in Azure Table storage.

Chapter 1

[9]

Getting ready
In this recipe, you will learn how easy it is to integrate an HTTP trigger and the
Azure Table storage service using output bindings. The Azure HTTP trigger
function receives the data from multiple sources and stores the user profile data in a
storage table named tblUserProfile. We will follow the pre-requisites listed below:

•	 For this recipe, we will use the same HTTP trigger that we created in our
previous recipe.

•	 We will be using Azure Storage Explorer, which is a tool that helps us to
work with the data stored in the Azure Storage account. You can download
it from http://storageexplorer.com/.

•	 You can learn more about how to connect to the Storage Account using
Azure Storage Explorer at https://docs.microsoft.com/azure/
vs-azure-tools-storage-manage-with-storage-explorer.

How to do it...
Perform the following steps:

1.	 Navigate to the Integrate tab of the RegisterUser HTTP trigger function.
2.	 Click on the New Output button, select Azure Table Storage, then click

on the Select button:

http://storageexplorer.com/
https://docs.microsoft.com/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/azure/vs-azure-tools-storage-manage-with-storage-explorer

Developing Cloud Applications Using Function Triggers and Bindings

[10]

3.	 You will be prompted to install the bindings, click on Install which would
take a few minutes. Once the bindings are installed, choose the following
settings of the Azure Table storage output bindings:

°° Table parameter name: This is the name of the parameter that you
will be using in the Run method of the Azure Function. For this
example, provide objUserProfileTable as the value.

°° Table name: A new table in Azure Table storage will be created
to persist the data. If the table doesn’t exist already, Azure will
automatically create one for you! For this example, provide
tblUserProfile as the table name.

°° Storage account connection: If you don’t see the Storage
account connection string, click on new (as shown in the
following screenshot) to create a new one or to choose an existing
storage account.

°° The Azure Table storage output bindings should be as shown
in the following screenshot:

4.	 Click on Save to save the changes.
5.	 Navigate to the code editor by clicking on the function name and paste in the

following code. The following code accepts the input passed by the end user
and saves it in the Table Storage:
#r "Newtonsoft.Json"
#r "Microsoft.WindowsAzure.Storage"

using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;
using Microsoft.WindowsAzure.Storage.Table;

Chapter 1

[11]

public static async Task<IActionResult> Run(
 HttpRequest req,
 CloudTable objUserProfileTable,
 ILogger log)
{
 log.LogInformation("C# HTTP trigger function processed a
request.");
 string firstname=null,lastname = null;
 string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
 dynamic inputJson = JsonConvert.DeserializeObject(requestBody);
 firstname = firstname ?? inputJson?.firstname;
 lastname = inputJson?.lastname;
 UserProfile objUserProfile = new UserProfile(firstname,
lastname);
 TableOperation objTblOperationInsert = TableOperation.
Insert(objUserProfile);
 await objUserProfileTable.ExecuteAsync(objTblOperationInsert);
 return (lastname + firstname) != null
 ? (ActionResult)new OkObjectResult($"Hello, {firstname + " " +
lastname}")
 : new BadRequestObjectResult("Please pass a name on the query" +
"string or in the request body");
}

class UserProfile : TableEntity
 {
 public UserProfile(string firstName,string lastName)
 {
 this.PartitionKey = "p1";
 this.RowKey = Guid.NewGuid().ToString();
 this.FirstName = firstName;
 this.LastName = lastName;
 }
 UserProfile() { }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

Developing Cloud Applications Using Function Triggers and Bindings

[12]

6.	 Let’s execute the function by clicking on the Run button of the Test tab by
passing the firstname and lastname parameters in the Request body:

7.	 If everything went well, you should get a Status 200 OK message in the
Output box as shown in the preceding screenshot. Let’s navigate to Azure
Storage Explorer and view the table storage to see whether the table named
tblUserProfile was created successfully:

Chapter 1

[13]

How it works...
Azure Functions allows us to easily integrate with other Azure services just by
adding an output binding to the trigger. For this example, we have integrated the
HTTP trigger with the Azure Storage table binding and also configured the Azure
Storage account by providing the storage connection string and the Azure Storage
table name in which we would like to create a record for each of the HTTP requests
received by the HTTP trigger.

We have also added an additional parameter for handling the table storage, named
objUserProfileTable, of the CloudTable type, to the Run method. We can perform
all the operations on the Azure Table storage using objUserProfileTable.

The input parameters are not validated in the code sample.
However, in your production environment, it’s important
that you should validate them before storing them in any
kind of persisting medium.

We have also created an UserProfile object and filled it with the values received in
the request object, and then passed it to a table operation.

You can learn more about handling operations on the Azure Table
storage service at https://docs.microsoft.com/en-us/
azure/storage/storage-dotnet-how-to-use-tables.

https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables

Developing Cloud Applications Using Function Triggers and Bindings

[14]

Understanding storage connection
When you create a new storage connection (refer to the step 3 of the How to do it...
section of this recipe), a new App settings will be created:

You can navigate to the App settings by clicking on the Application settings menu
available in the GENERAL SETTINGS section of the Platform features tab:

Chapter 1

[15]

What is the Azure Table storage service?
The Azure Table storage service is a NoSQL key-value persistent medium for storing
semi-structured data.

You can learn more about it at https://azure.microsoft.com/
services/storage/tables/.

Partition key and row key
The primary key of the Azure Table storage table has two parts:

•	 Partition key: Azure Table storage records are classified and organised
into partitions. Each record located in a partition will have the same
partition key (p1 in our example).

•	 Row key: A unique value should be assigned to each of the rows.

There’s more...
The following is the very first lines of the code in this recipe:

#r "Newtonsoft.json"
#r "Microsoft.WindowsAzure.Storage"

The preceding lines of code instructs the runtime function to include a reference
to the specified library to the current context.

Saving the profile images to Queues
using Queue output bindings
In the previous recipe, you learned how to receive two string parameters,
firstname and lastname, in the Request body, and store them in Azure Table
storage. In this recipe, let’s add a new parameter named ProfilePicUrl for the
profile picture of the user that is publicly accessible via the internet. In this recipe,
you will learn how to receive a URL of an image and save the URL in the Blob
container of an Azure Storage account.

https://azure.microsoft.com/services/storage/tables/
https://azure.microsoft.com/services/storage/tables/

Developing Cloud Applications Using Function Triggers and Bindings

[16]

You might be thinking that the ProfilePicUrl input parameter could have been
used to download the picture from the internet in the previous recipe, Persisting
employee details using Azure Storage table output bindings. We didn’t do it because the
size of the profile pictures might be huge with the modern technology and so the
processing of images on the fly in the HTTP requests might hinder the performance of
the overall application. For that reason, we will just grab the URL of the profile picture
and store it in Queue, and later we can process the image and store it in the Blob.

Getting ready
We will be updating the code of the RegisterUser function that we used in the
previous recipes.

How to do it…
Perform the following steps:

1.	 Navigate to the Integrate tab of the RegisterUser HTTP trigger function.
2.	 Click on the New Output button, select Azure Queue Storage and then click

on the Select button.
3.	 Provide the following parameters in the Azure Queue Storage output

settings:
°° Message parameter name: Set the name of the parameter to

objUserProfileQueueItem, which will be used in the Run method
°° Queue name: Set the value of the Queue name as

userprofileimagesqueue

°° Storage account connection: Make sure that you select the right
storage account in the Storage account connection field

4.	 Click on Save to the create the new output binding.
5.	 Navigate back to the code editor by clicking on the function name

(RegisterUser in this example) or the run.csx file and make the changes
marked bold in the below code:
public static async Task<IActionResult> Run(
 HttpRequest req,
 CloudTable objUserProfileTable,
 IAsyncCollector<string> objUserProfileQueueItem,
 ILogger log)
 {

Chapter 1

[17]

 string firstname= inputJson.firstname;
 string profilePicUrl = inputJson.ProfilePicUrl;
 await objUserProfileQueueItem.AddAsync(profilePicUrl);

 objUserProfileTable.Execute(objTblOperationInsert);
 }

6.	 In the preceding code, we have added Queue Output Bindings, by adding
the IAsyncCollecter parameter to the Run method and just passing the
required message to the AddAsync method, the output bindings will take care
of saving the ProfilePicUrl into the Queue. Now, Click on Save to save the
code changes in the code editor of the run.csx file.

7.	 Let’s test the code by adding another parameter, ProfilePicUrl, to the
Request body and then click on the Run button in the Test tab of the Azure
Function code editor window. The image used in the following JSON might
not exist when you are reading this book. So, make sure that you provide a
valid URL of the image:
{
 "firstname": "Bill",
 "lastname": "Gates",
 "ProfilePicUrl":"https://upload.wikimedia.org/wikipedia/
commons/1/19/Bill_Gates_June_2015.jpg"
}

8.	 If everything goes fine you will see the Status: 200 OK message, then the
image URL that you have passed as an input parameter in the Request body
will be created as a Queue message in the Azure Storage Queue service.
Let’s navigate to Azure Storage Explorer and view the Queue named
userprofileimagesqueue, which is the Queue name that we provided in
step 3. The following is a screenshot of the Queue message that was created:

Developing Cloud Applications Using Function Triggers and Bindings

[18]

How it works…
In this recipe, we added Queue message output binding and made the following
changes to the code:

•	 Added a new parameter named out string objUserProfileQueueItem,
which is used to bind the URL of the profile picture as a Queue message
content

•	 Used the AddAsync method of the IAsyncCollector to the Run method
which saves the profile URL to the Queue as a Queue message.

Storing the image in Azure Blob Storage
In the previous recipe, we stored the image URL in the queue message. Let’s learn
how to trigger an Azure Function (Queue Trigger) when a new queue item is added
to the Azure Storage Queue service. Each message in the Queue is the URL of the
profile picture of a user, which will be processed by the Azure Functions and will be
stored as a Blob in the Azure Storage Blob service.

Getting ready
In the previous recipe, we learned how to create Queue output bindings. In this
recipe, you will grab the URL from the Queue, create a byte array and then write it
to a Blob.

This recipe is a continuation of the previous recipes. Make sure that you have
implemented them.

How to do it...
Perform the following steps:

1.	 Create a new Azure Function by choosing Azure Queue Storage Trigger
from the templates.

2.	 Provide the following details after choosing the template:
°° Name your function: Provide a meaningful name, such as

CreateProfilePictures.

Chapter 1

[19]

°° Queue name: Name of the Queue userprofileimagesqueue. This
will be monitored by the Azure Function. Our previous recipe
created a new item for each of the valid requests coming to the HTTP
trigger (named RegisterUser) into the userprofileimagesqueue
Queue. For each new entry of a queue message to this Queue storage,
the CreateProfilePictures trigger will be executed automatically.

°° Storage account connection: Connection of the storage account
where the Queues are located.

3.	 Review all the details and click on Create to create the new function.
4.	 Navigate to the Integrate tab, click on New Output, choose Azure Blob

Storage and then click on the Select button.
5.	 In the Azure Blob Storage output section, provide the following:

°° Blob parameter name: Set it to outputBlob
°° Path: Set it to userprofileimagecontainer/{rand-guid}
°° Storage account connection: Choose the storage account where you

would like to save the Blobs and click on the Save button:

6.	 Click on the Save button to save all the changes.
7.	 Replace the default code of the run.csx file of the CreateProfilePictures

function with the following code. The following code grabs the URL from the
Queue, creates a byte array and then writes it to a Blob:
 using System;
 public static void Run(Stream outputBlob,string
myQueueItem,
 TraceWriter log)
 {
 byte[] imageData = null;
 using (var wc = new System.Net.WebClient())

Developing Cloud Applications Using Function Triggers and Bindings

[20]

 {
 imageData = wc.DownloadData(myQueueItem);
 }
 outputBlob.WriteAsync(imageData,0,imageData.Length);
 }

8.	 Click on the Save button to save the changes. Make sure that there are no
compilation errors in the Logs window:

9.	 Let’s go back to the RegisterUser function and test it by providing the
firstname, lastname and ProfilePicUrl fields as we did in the Saving the
profile images to Queues using Queue output bindings recipe.

10.	 Navigate to the Azure Storage Explorer and look at the
userprofileimagecontainer Blob container. You will find a new Blob:

11.	 You can view the image in any tool (such as MS Paint or Internet Explorer).

How it works...
We have created a Queue trigger that gets executed as and when a new message
arrives in the Queue. Once it finds a new Queue message, it reads the message, and
as we know the message is a URL of a profile picture. The function makes a web
client request, downloads the image data in the form of a byte array and then writes
the data into the Blob which is configured as an output Blob.

Chapter 1

[21]

There’s more...
The rand-guid parameter will generate a new GUID and is assigned to the Blob that
gets created each time the trigger is fired.

It is mandatory to specify the Blob container name in the Path parameter
of the Blob storage output binding while configuring the Blob storage
output. Azure Functions creates one automatically if it doesn’t exist.
You can use Queue messages only when you would like to store messages
that are up to 64 KB. If you would like to store messages greater than
64 KB, you need to use the Azure Service Bus.

[23]

Working with Notifications
Using the SendGrid and

Twilio Services
In this chapter, we will look at the following:

•	 Sending an email notification to the administrator of a website using the
SendGrid service

•	 Sending an email notification dynamically to the end user
•	 Implementing email logging in Azure Blob Storage
•	 Modifying the email content to include an attachment
•	 Sending an SMS notification to the end user using the Twilio service

Introduction
For every business application to run its business operations smoothly, one of the
key features is to have a reliable communication system between the business and
its customers. The communication channel might be two-way, either by sending
a message to the administrators managing the application or sending alerts to the
customers via emails or SMS to their mobile phones.

Azure can integrate with two popular communication services: SendGrid for emails
and Twilio for working with SMS. In this chapter, we will be using both of these
communication services to learn how to leverage their basic services to send
messages between business administrators and end users.

Working with Notifications Using the SendGrid and Twilio Services

[24]

Below is the architecture that we will be using for utilising Send Grid and Twilio
output bindings with HTTP Trigger and Queue Trigger.

Sending an email notification to the
administrator of a website using the
SendGrid service
In this recipe, you will learn how to create a SendGrid output binding and send an
email notification, containing static content, to the website administrator. Our use
case only involves one administrator, so we will be hardcoding the email address of
the administrator in the To address field of the SendGrid output (message) binding.

Getting ready
We will perform the following steps before moving on to the next section:

1.	 Creating a SendGrid account API key from the Azure Management portal
2.	 Generating an API key from the SendGrid portal
3.	 Configuring the SendGrid API key with the Azure Function app

Creating a SendGrid account
Perform the following steps:

1.	 Navigate to Azure Management portal and create a SendGrid Email
Delivery account by searching for it in the Marketplace, as shown in the
following screenshot:

Chapter 2

[25]

2.	 In the SendGrid Email Delivery blade, click on the Create button to navigate
to Create a New SendGrid Account. Select free in the Pricing tier options,
provide all the other details and then click on the Create button, as shown
in the following screenshot:

Working with Notifications Using the SendGrid and Twilio Services

[26]

At the time of writing, the Send Grid free account allows us to
send 25,000 free emails per month. If you would like to send
more emails, then you can get a Silver S2-level account, where
you would have 100,000 emails per month.

3.	 Once the account is created successfully, navigate to SendGrid Accounts.
You can use the search box available on the top, as shown in the following
screenshot:

4.	 Navigate to Settings, choose Configurations and grab USERNAME and
SMTP SERVER from the Configurations blade, as shown in the following
screenshot:

Chapter 2

[27]

Generating an API key from the SendGrid portal
Perform the following steps:

1.	 In order to utilise the SendGrid account in the Azure Functions runtime, we
need to provide the SendGrid API key as an input for the Azure Functions.
You can generate an API key from the SendGrid portal. Let’s navigate to the
SendGrid portal by clicking on the Manage button in the Essentials blade of
SendGrid Account, as shown in the following screenshot:

2.	 In the SendGrid portal, click on API Keys under the Settings section of the
left-hand side menu, as shown in the following screenshot:

3.	 In the API Keys page, click on Create API Key, as shown in the following
screenshot:

Working with Notifications Using the SendGrid and Twilio Services

[28]

4.	 In the Create API Key pop-up, provide a name and choose API Key
Permissions and then click on the Create & View button.

5.	 After a moment, you will be able to see the API key. Click on the
key to copy it to the clipboard, as shown in the following screenshot:

Configuring the SendGrid API key with the Azure
Function app
Perform the following steps:

1.	 Create a new App settings configuration in the Azure Function app by
navigating to the Application settings blade, under the Platform features
section of the function app, as shown in the following screenshot:

2.	 Click on the Save button after adding the App settings from the preceding
step.

How to do it...
In this section, we will perform the following.

1.	 Create Storage Queue binding to the HTTP Trigger
2.	 Create Queue Trigger to process the message of the HTTP Trigger
3.	 Create SendGrid output binding to the Queue Trigger
4.	 Create Twilio output binding to the Queue Trigger

Chapter 2

[29]

Create Storage Queue binding to the HTTP Trigger
Perform the following steps:

1.	 Navigate to the Integrate tab of the RegisterUser function and click on the
New Output button to add a new output binding.

2.	 Choose Azure Queue Storage and click on Select button to add the binding
and provide the values shown below, and then click on Save button. Please
make of the Queue name (in this case notificationqueue) which will be
used in a moment.

3.	 Navigate to the Run method of the RegisterUser function and make the
following highlighted changes. We added another Queue output binding
and add an empty message to trigger the Queue Trigger function. For now,
we didn’t add any message to the queue. We will make changes to the
NotificationQueueItem.AddAsync(""); method in the upcoming recipe
of the chapter.

public static async Task<IActionResult> Run(
 HttpRequest req,
 CloudTable objUserProfileTable,
 IAsyncCollector<string> objUserProfileQueueItem,
 IAsyncCollector<string> NotificationQueueItem,
 ILogger log)
{
 log.LogInformation("C# HTTP trigger function processed
a request.");
 string firstname=null,lastname = null;
 ...
 ...
 await NotificationQueueItem.AddAsync("");
return (lastname + firstname) != null
 ? (ActionResult)new OkObjectResult($"Hello, {firstname + "
" + lastname}")
 : new BadRequestObjectResult("Please pass a name on the

Working with Notifications Using the SendGrid and Twilio Services

[30]

query" +
 "string or in the request body");
}

Create Queue Trigger to process the message of
the HTTP Trigger

1.	 Create a Azure Queue Storage Trigger by choosing the template
shown below.

2.	 In the next step, provide all the name of the Queue Trigger and provide the
name of the queue which needs to be monitored for sending the notifications.
Once you provide all the details, click on Create button to create the
Function.

Chapter 2

[31]

3.	 After creating the Queue Trigger function, let’s run the RegisterUser
function to see if the Queue trigger is getting invoked. Open the
RegisterUser function in a new tab and test it by clicking on the Run
button. In the Logs window of the SendNotifications tab, you should
see something as shown as follows:

Once we ensure that the Queue Trigger is working as expected, let’s create the
SendGrid bindings to send the email.

Create SendGrid output binding to the Queue
Trigger

1.	 Navigate to the Integrate tab of the SendNotifications function and click
on the New Output button to add a new output binding.

2.	 Choose the SendGrid binding and click on the Select button to add the
binding.

3.	 The next step is to install the SendGrid extensions. Click on the Install
button to install the extensions. It might take a few minutes to install the
extensions.

4.	 Provide the following parameters in the SendGrid output (message)
binding:

°° Message parameter name: Leave the default value, which is message.
We will be using this parameter in the Run method in a moment.

°° SendGrid API Key: Choose the App settings key that you created
in Application settings for storing the Send Grid API Key.

°° To address: Provide the email address of the administrator.
°° From address: Provide the email address from where you would like to

send the email. It might be something like donotreply@example.com.

Working with Notifications Using the SendGrid and Twilio Services

[32]

°° Message subject: Provide the subject that you would like to have
displayed in the email subject.

°° Message Text: Provide the email body text that you would like to
have in the email body.

5.	 This is how the SendGrid output (message) binding should look like after
providing all the fields:

6.	 Once you review the values, click on Save to save the changes.
7.	 Navigate to the Run method of the SendNotifications functions and make

the following changes:
°° Add a new reference for SendGrid, along with the SendGrid.

Helpers.Mail namespace.
°° Add a new out parameter message of the SendGridMessage type.
°° Create an object of the SendGridMessage type. We will look at how

to use this object in the next recipe.

8.	 The following is the complete code of the Run method:
#r "SendGrid"
using System;
using SendGrid.Helpers.Mail;

public static void Run(string myQueueItem,out SendGridMessage
message, ILogger log)
{
 log.LogInformation($"C# Queue trigger function processed:

Chapter 2

[33]

{myQueueItem}");
 message = new SendGridMessage();

}

9.	 Now, let’s test the functionality of sending the email by navigating to the
RegisterUser function and submitting a request with the some test values,
as follows:
 {
 "firstname": "Bill",
 "lastname": "Gates",
 "ProfilePicUrl":"https://upload.wikimedia.org/
 wikipedia/commons/thumb/1/19/
 Bill_Gates_June_2015.jpg/220px-
 Bill_Gates_June_2015.jpg"
 }

How it works...
The aim of this recipe is to send a notification via email to the administrator,
updating them that a new registration was created successfully.

We have used one of the Azure Function output bindings, named SendGrid,
as a Simple Mail Transfer Protocol (SMTP) server for sending our emails, by
hardcoding the following properties in the SendGrid output (message) bindings:

•	 The ‘from’ email address	
•	 The ‘to’ email address
•	 The subject of the email
•	 The body of the email

The SendGrid output (message) bindings will use the API key provided
in App settings to invoke the required APIs of the SendGrid library in order
to send the emails.

Working with Notifications Using the SendGrid and Twilio Services

[34]

There’s more
While, adding the SendGrid bindings, you will be prompted to install the Extensions
as shown below.

In case, if you don’t see them, please delete the output binding and re-create
the same. You could also manually install the extensions by going through the
instructions mentioned in the https://docs.microsoft.com/azure/azure-
functions/install-update-binding-extensions-manual article.

Sending an email notification
dynamically to the end user
In the previous recipe, we hardcoded most of the attributes related to sending an
email to an administrator, as there was just one administrator. In this recipe, we will
modify the previous recipe to send a Thank you for registration email to the
users themselves.

Getting ready
Make sure that the following are configured properly:

•	 The SendGrid account has been created and an API key is generated in the
SendGrid portal.

•	 An App settings configuration is created in the Application settings of the
function app.

•	 The App settings key is configured in the SendGrid output (message)
bindings.

https://docs.microsoft.com/azure/azure-functions/install-update-binding-extensions-manual
https://docs.microsoft.com/azure/azure-functions/install-update-binding-extensions-manual

Chapter 2

[35]

How to do it...
In this recipe, we will update the code in the run.csx file of the following
Azure Functions

•	 RegisterUser

•	 SendNotifications

Accept the new email Parameter in the RegisterUser
function
Perform the following steps:

1.	 Navigate to the RegisterUser function, in the run.csx file, add a new string
variable that accepts a new input parameter, named email, from the request
object, as follows. Also, note that we are serialising the UserProfile object
and storing the JSON content to the Queue message:
 string firstname=null,lastname = null, email = null;
 ...
 ...
 string email = inputJson.email;
 ...
 ...
 UserProfile objUserProfile = new UserProfile(firstname,
lastname,email);
 ...
 ...
 await
NotificationQueueItem.AddAsync(JsonConvert.SerializeObject(objUser
Profile));

2.	 Update the following highlighted code to the UserProfile class and click
on the Save button to save the changes:
 public class UserProfile : TableEntity
 {
 public UserProfile(string firstname,string lastname,
string profilePicUrl,string email)
 {

 this.ProfilePicUrl = profilePicUrl;
 this.Email = email;
 }

 public string ProfilePicUrl {get; set;}

Working with Notifications Using the SendGrid and Twilio Services

[36]

 public string Email { get; set; }
 }

Retrieve the UserProfile information in the
SendNotifications trigger
Perform the following steps

1.	 Navigate to the SendNotifications function, in the run.csx file, add
NewtonSoft.Json reference and also the namespace.

2.	 The Queue Trigger will receive the input in the form of JSON string. We will
use JsonConvert.Deserialiseobject method to convert the string into a
dynamic object so that we can retrieve the individual properties. Replace the
existing code with the following code where we are dynamically populating
the properties of the SendGridMessage from the code.
#r "SendGrid"
#r "Newtonsoft.Json"
using System;
using SendGrid.Helpers.Mail;
using Newtonsoft.Json;

public static void Run(string myQueueItem,
 out SendGridMessage message,
 ILogger log)
{
 log.LogInformation($"C# Queue trigger function processed:
 {myQueueItem}");
 dynamic inputJson = JsonConvert.DeserializeObject(myQueueItem);
 string FirstName=null, LastName=null, Email = null;
 FirstName=inputJson.FirstName;
 LastName=inputJson.LastName;
 Email=inputJson.Email;
 log.LogInformation($"Email{inputJson.Email}, {inputJson.FirstName
+ " " + inputJson.LastName}");
 message = new SendGridMessage();
 message.SetSubject("New User got registered successfully.");
 message.SetFrom("donotreply@example.com");
 message.AddTo(Email,FirstName + " " + LastName);
 message.AddContent("text/html", "Thank you " + FirstName + " " +
LastName +" so much for getting registered to our site.");
}

Chapter 2

[37]

3.	 Let’s run a test by adding a new input field email to the test request payload,
shown as follows:
 {
 "firstname": "Praveen",
 "lastname": "Sreeram",
 "email":"example@gmail.com",
 "ProfilePicUrl":"A Valid url here"
}

4.	 This is the screenshot of the email that I have received:

How it works...
We have updated the code of the RegisterUser function to accept another new
parameter, named email.

The function accepts the email parameter and sends the email to the end user using
the SendGrid API. We have also configured all the other parameters, such as the
From address, Subject and body (content) in the code, so that it is customised
dynamically based on the requirements.

Working with Notifications Using the SendGrid and Twilio Services

[38]

We can also clear the fields in the SendGrid output bindings, as shown in the
following screenshot:

The values specified in the code will take precedence over
the values specified in the preceding step.

There’s more...
You can also send HTML content in the body to make your email look more
attractive. The following is a simple example, where I have just applied a bold ()
tag to the name of the end user:

message.AddContent("text/html", "Thank you " + FirstName + "
" + LastName +" so much for getting registered to our site.");

The following is the screenshot of the email, with my name in bold:

Chapter 2

[39]

Implementing email logging in Azure
Blob Storage
Most of the business applications of automated emails are likely to involve sending
emails containing notifications, alerts and so on, to the end user. At times, users
might complain that they haven’t received any email, even though we don’t see any
error in the application while sending such notification alerts.

There might be multiple reasons why users might not have received the email. Each
of the email service providers has different spam filters that might block the emails
from the end user’s inbox. But these emails might have some important information
that the users might need. It makes sense to store the email content of all the emails
that are sent to the end users, so that we can retrieve the data at a later stage, for
troubleshooting any unforeseen issues.

In this recipe, you will learn how to create a new email log file with the .log
extension for each new registration. This log file can be used as a redundancy for
the data stored in the Table storage. You will also learn how to store the email log
files as a Blob in a storage container, alongside the data entered by the end user
during registration.

How to do it...
Perform the following steps:

1.	 Navigate to the Integrate tab of the SendNotifications function, click on
New Output and choose Azure Blob Storage. It would prompt you to install
the Storage Extensions, please install the extensions to continue forward.

2.	 Provide the required parameters in the Azure Blob Storage output
section, as shown in the following screenshot. Note the .log extension
in the Path field:

Working with Notifications Using the SendGrid and Twilio Services

[40]

3.	 Navigate to the code editor of the run.csx file of the SendNotifications
function and make the following changes:

1.	 Add a new parameter outputBlob of the TextWriter type to the Run
method.

2.	 Add a new string variable named emailContent. This variable is
used to frame the content of the email. We will also use the same
variable to create the log file content that is finally stored in the blob.

3.	 Frame the email content by appending the required static text and the
input parameters received in Request body, as follows:

public static void Run(string myQueueItem,
 out SendGridMessage message,
 TextWriter outputBlob,
 ILogger log)
....
....
string FirstName=null, LastName=null, Email = null;
string emailContent;
....
....
emailContent = "Thank you " + FirstName + " " +
 LastName +" for your registration.

" +
 "Below are the details that you have provided
 us

"+ "First name: " +
 FirstName + "
" + "Last name: " +
 LastName + "
" + "Email Address: " +
 inputJson.Email + "

" + "Best Regards," +
"
" + "Website Team";
message.AddContent(new
 Content("text/html",emailContent));
outputBlob.WriteLine(emailContent);

4.	 Run a test using the same request payload that we used in the previous
recipe.

5.	 After running the test, the log file will be created in the container named
userregistrationemaillogs:

Chapter 2

[41]

How it works...
We have created new Azure Blob output bindings. As soon as a new request is
received, the email content is created and written to a new .log file (note that you
can use any other extension as well) that is stored as a Blob in the container specified
in the Path field of the output bindings.

Modifying the email content to include an
attachment
In this recipe, you will learn how to send a file as an attachment to the registered
user. In our previous recipe, we created a log file of the email content. We will send
the same file as an attachment to the email. However, in real-world applications, you
might not intend to send log files to the end user. For the sake of simplicity, we will
send the log file as an attachment.

At the time of writing, SendGrid recommends that the size of
the attachment shouldn’t exceed 10 MB, though technically,
your email can be as large as 20 MB.

Working with Notifications Using the SendGrid and Twilio Services

[42]

Getting ready
This is a continuation of the previous recipe. If you are reading this first, make sure
to go through the previous recipes of this chapter beforehand.

How to do it...
We will need to perform the following steps before moving to the next section:

1.	 Make the changes to the code to create a log file with the RowKey of the
table. We will achieve this using the IBinder interface.

2.	 Send this file as an attachment to the email.

Customizing the log file name using IBinder
interface
Perform the following steps:

1.	 Navigate to the run.csx file of the SendNotifications function.
2.	 Remove the TextWriter object and replace it with the variable binder of the

IBinder type. The following is the new signature of the Run method with the
changes highlighted:
#r "SendGrid"
#r "Newtonsoft.Json"
#r "Microsoft.Azure.WebJobs.Extensions.Storage"
using System;
using SendGrid.Helpers.Mail;
using Newtonsoft.Json;
using Microsoft.Azure.WebJobs.Extensions.Storage;
public static void Run(string myQueueItem,
 out SendGridMessage message,
 IBinder binder,
 ILogger log)

3.	 We have removed the TextWriter object, the outputBlob.
WriteLine(emailContent); function will no longer work. Let’s replace
it with the following piece of code:
 using (var emailLogBloboutput = binder.
Bind<TextWriter>(new
 BlobAttribute($"userregistrationemaillogs/
 {objInsertedUser.RowKey}.log")))
 {
 emailLogBloboutput.WriteLine(emailContent);
 }

Chapter 2

[43]

4.	 Let’s run a test using the same request payload that we used in the previous
recipes.

5.	 You can see the email log file that is created using the RowKey of the
new record stored in the Azure Table storage, as shown in the following
screenshot:

Adding an attachment to the email
Perform the following steps:

1.	 Add the following code to the Run method of the SendNotifications
function and save the changes by clicking on the Save button:
 message.AddAttachment(FirstName +"_"+LastName+".log",
 System.Convert.
ToBase64String(System.Text.Encoding.UTF8.GetBytes(emailContent)),
 "text/plain",
 "attachment",
 "Logs"
);

2.	 Run a test using the same request payload that we have used in the
previous recipes.

Working with Notifications Using the SendGrid and Twilio Services

[44]

3.	 This is the screenshot of the email, along with the attachment:

You can learn more about the Send Grid API at
https://sendgrid.com/docs/API_Reference/api_v3.html

Sending an SMS notification to the end
user using the Twilio service
In most of the previous recipes of this chapter, we have worked with SendGrid
triggers to send emails in different scenarios. In this recipe, you will learn how to
send notifications via SMS, using one of the leading cloud communication platforms,
named Twilio.

You can also learn more about Twilio at
https://www.twilio.com/.

https://sendgrid.com/docs/API_Reference/api_v3.html
https://www.twilio.com/

Chapter 2

[45]

Getting ready
In order to use the Twilio SMS output (objsmsmessage) binding, we need to do the
following:

1.	 Create a trial Twilio account at https://www.twilio.com/try-twilio.
2.	 After successful creation of the account, grab the ACCOUNT SID and

AUTH TOKEN from the Twilio Dashboard, as shown in the following
screenshot. We will create two App settings in the Application settings
blade of the function app for both of these settings:

3.	 In order to start sending messages, you need to create an active number
within Twilio, which will be used as the From number that you will use
for sending the SMS. You can create and manage numbers in the Phone
Numbers Dashboard. Navigate to https://www.twilio.com/console/
phone-numbers/incoming and click on the Get Started button, as shown in
the following screenshot:

https://www.twilio.com/try-twilio
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming

Working with Notifications Using the SendGrid and Twilio Services

[46]

4.	 On the Get Started with Phone Numbers page, click on Get your first
Twilio phone number, as shown in the following screenshot:

5.	 Once you get your number, it will be listed as follows:

6.	 The final step is to verify a number to which you would like to send an
SMS. You can have only one number in your trial account. You can verify a
number on Twilio’s Verified page, available at https://www.twilio.com/
console/phone-numbers/verified. The following is a screenshot of the list
of verified numbers:

https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified

Chapter 2

[47]

How to do it...
Perform the following steps:

1.	 Navigate to the Application settings blade of the function app and add two
keys to store TwilioAccountSID and TwilioAuthToken, shown as follows:

2.	 Go the Integrate tab of the SendNotifications function, click on New Output
and choose Twilio SMS.

3.	 Click on Select and provide the following values to the Twilio SMS output
bindings. Please install the extensions of Twilio. The From number is the one
that is generated in the Twilio portal, which we discussed in the Getting ready
section of this recipe:

4.	 Navigate to the code editor and add the following lines of code, highlighted
in bold. In the below code, I have hardcoded the To number. However, in
real-world scenarios, you would dynamically receive the end user’s mobile
number and send the SMS via code:
 ...
 ...
 #r "Twilio"
 #r "Microsoft.Azure.WebJobs.Extensions.Twilio"
 ...
 ...
 using Microsoft.Azure.WebJobs.Extensions.Twilio;
 using Twilio.Rest.Api.V2010.Account;
 using Twilio.Types;

Working with Notifications Using the SendGrid and Twilio Services

[48]

 public static void Run(string myQueueItem,
 out SendGridMessage message,
 IBinder binder,
 out CreateMessageOptions objsmsmessage,
 ILogger log)
 ...
 ...
 ...
 message.AddAttachment(FirstName +"_"+LastName+".log",
 System.Convert.ToBase64String(System.Text.Encoding.UTF8.
GetBytes(emailContent)),
 "text/plain",
 "attachment",
 "Logs"
);

 objsmsmessage = new CreateMessageOptions(new
PhoneNumber("+91 98492*****"));
 objsmsmessage.Body = "Hello.. Thank you for getting
registered.";
 }

5.	 Now, do a test run of the RegisterUser function using the same request
payload.

6.	 The following is the screenshot of the SMS that I have received:

Chapter 2

[49]

How it works...
We have created a new Twilio account and copied the account ID and app key into
the App settings of the Azure Function app. These two settings will be used by the
function app runtime in order to connect to the Twilio API to send the SMS.

For the sake of simplicity, I have hardcoded the phone number in the output
bindings. However, in real-world applications, you would send the SMS to the
phone number provided by the end users.

You can go through the video https://www.youtube.com/watch?v=ndxQXnoDIj8
to view a working implementation.

https://www.youtube.com/watch?v=ndxQXnoDIj8

[51]

Seamless Integration
of Azure Functions with

Azure Services
In this chapter, we will cover the following recipes:

•	 Using Cognitive Services to locate faces in images
•	 Azure SQL Database interactions using Azure Functions
•	 Monitoring tweets using Logic Apps and notifying users when a popular

user tweets
•	 Integrating Logic Apps with serverless functions
•	 Auditing Cosmos DB data using change feed triggers

Introduction
One of the major goals of Azure Functions is to enable developers to just focus
on developing application requirements and logic and abstract everything else.

As a developer or business user, you cannot afford to invent and develop your own
applications from scratch for each of your business needs. You would first need to
research the existing systems and see whether they fit your business requirements.
Often, it would not be easy to understand the APIs of the other systems and integrate
them, as they will have been developed by someone else.

Seamless Integration of Azure Functions with Azure Services

[52]

Azure provides many connectors that you can leverage to integrate your business
applications with other systems pretty easily.

In this chapter, we will learn how easy it is to integrate the different services that
are available in the Azure ecosystem.

Using Cognitive Services to locate faces
in images
In this recipe, you will learn how to use the Computer Vision API to detect faces
within an image. We will be locating faces, and capturing their coordinates, and
saving them in different areas of Azure Table Storage based on gender.

Getting ready
To get started, we need to create a Computer Vision API and configure its API keys
so that Azure Functions (or any other program) can access it programmatically.

Make sure that you have Azure Storage Explorer installed and have also configured
to access the storage area where you are uploading the blobs.

Creating a new Computer Vision API account
Perform the following steps:

1.	 Search for computer vision and click on Create.
2.	 The next step is to provide all the details to create a Computer Vision

API account. At the time of writing this, the Computer Vision API has
just two pricing tiers. I went for the free one, F0, which allows 20 API
calls per minute and is limited to 5,000 calls each month.

Chapter 3

[53]

Configuring application settings
Perform the following steps:

1.	 Once the Computer Vision API account is generated, you can navigate
to the Keys blade and grab any of the following keys:

2.	 Navigate to your Azure functions app, configure Application settings with
the name Vision_API_Subscription_Key and use any of the preceding
keys as the value. This key will be used by the Azure Functions Runtime
to connect to and consume the Computer Vision Cognitive Services API.

3.	 Make a note of the location where you are creating the computer vision
service. In my case, I have chosen West Europe. It is important when you are
passing the images to the Cognitive Services API to ensure that the endpoint
of the API starts with the location name. It would be something like this:
https://westeurope.api.cognitive.microsoft.com/vision/v1.0/anal
yze?visualFeatures=Faces&language=en.

How to do it...
Perform the following steps:

1.	 Create a new function using one of the default templates named Azure Blob
Storage Trigger.

Seamless Integration of Azure Functions with Azure Services

[54]

2.	 Next, you need to provide the name of the Azure Function along with the
Path and Storage account connection. We will upload a picture to the Azure
Blob Storage trigger (image) container (mentioned in the Path parameter in
the following screenshot) at the end of this section:

Note that while creating the function, the template creates one Blob Storage
Table output binding and allows us to provide the name of the Table name
parameter. However, we cannot assign the name of the parameter while
creating the function. We will be able to change it after it is created. Once
you have reviewed all the details, click on the Create button to create the
Azure Function.

3.	 Once the function is created, navigate to the Integrate tab, click on New
Output and choose Azure Table Storage, then click on the Select button.
Provide the parameter values, and then click on the Save button, as shown
in the following screenshot:

Chapter 3

[55]

4.	 Let’s create another Azure Table Storage output binding to store all
the information for women by clicking on the New Output button
in the Integrate tab, selecting Azure Table Storage and clicking on
the Select button. This is how it looks after providing the input values:

5.	 Once you have reviewed all the details, click on the Save button to create
the Azure Table Storage output binding and store the details about women.

Seamless Integration of Azure Functions with Azure Services

[56]

6.	 Navigate to the code editor of the Run method of the
LocateMaleFemaleFaces function, then add the outMaleTable and
outFemaleTable parameters. The following code grabs the image stream
uploaded to the blob, which is then passed as an input to Cognitive
Services, which returns a JSON with all the face information. Once the face
information, including coordinates and gender details, is received, we store
the face coordinates into the respective Table Storage using the table output
bindings:
#r "Newtonsoft.Json"
#r "Microsoft.WindowsAzure.Storage"

using Newtonsoft.Json;
using Microsoft.WindowsAzure.Storage.Table;
using System.IO;
using System.Net;
using System.Net.Http;
using System.Net.Http.Headers;
public static async Task Run(Stream myBlob,
 string name,
 IAsyncCollector<FaceRectangle>
outMaleTable,
 IAsyncCollector<FaceRectangle>
outFemaleTable,
 ILogger log)
{
 log.LogInformation($"C# Blob trigger function Processed blob\n
Name:{name} \n Size: {myBlob.Length} Bytes");
 string result = await CallVisionAPI(myBlob);
 log.LogInformation(result);
 if (String.IsNullOrEmpty(result))
 {
 return;
 }
 ImageData imageData = JsonConvert.DeserializeObject<ImageData>
(result);
 foreach (Face face in imageData.Faces)
 {
 var faceRectangle = face.FaceRectangle;
 faceRectangle.RowKey = Guid.NewGuid().ToString();
 faceRectangle.PartitionKey = "Functions";
 faceRectangle.ImageFile = name + ".jpg";
 if(face.Gender=="Female")
 {
 await outFemaleTable.AddAsync(faceRectangle);

Chapter 3

[57]

 }
 Else
 {
 await outMaleTable.AddAsync(faceRectangle);
 }
 }
}
static async Task<string> CallVisionAPI(Stream image)
{
 using (var client = new HttpClient())
 {
 var content = new StreamContent(image);
 var url = "https://westeurope.api.cognitive.microsoft.com/
vision/v1.0/analyze?visualFeatures=Faces&language=en";
 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-
Key", Environment.GetEnvironmentVariable("Vision_API_Subscription_
Key"));
 content.Headers.ContentType = new MediaTypeHeaderValue("ap
plication/octet-stream");
 var httpResponse = await client.PostAsync(url, content);

 if (httpResponse.StatusCode == HttpStatusCode.OK)
 {
 return await httpResponse.Content.ReadAsStringAsync();
 }
 }
 return null;
}
public class ImageData
{
 public List<Face> Faces { get; set; }
}
public class Face
{
 public int Age { get; set; }
 public string Gender { get; set; }
 public FaceRectangle FaceRectangle { get; set; }
}
public class FaceRectangle : TableEntity
{
 public string ImageFile { get; set; }
 public int Left { get; set; }
 public int Top { get; set; }
 public int Width { get; set; }
 public int Height { get; set; }}

Seamless Integration of Azure Functions with Azure Services

[58]

7.	 Let’s add a condition (highlighted in bold in the code mentioned in Step 10)
to check the gender and, based on the gender, store the information in the
respective Table Storage.

8.	 Create a new blob container named images using Azure Storage Explorer,
as shown in the following screenshot:

9.	 Let’s upload a picture with male and female faces to the container named
images using Azure Storage Explorer, as shown here:

Chapter 3

[59]

10.	 The function gets triggered as soon as you upload an image. This is the JSON
that was logged in the Logs console of the function:
 {
 "requestId":"483566bc-7d4d-45c1-87e2-6f894aaa4c29",
 "metadata":{ },
 "faces":[
 {
 "age":31,
 "gender":"Female",
 "faceRectangle":{
 "left":535,
 "top":182,
 "width":165,
 "height":165
 }
 },
 {
 "age":33,
 "gender":"Male",
 "faceRectangle":{
 "left":373,
 "top":182,
 "width":161,
 "height":161
 }
 }
]
 }

If you are a frontend developer with expertise in HTML5 and canvas-
related technologies, you can even draw squares that locate the faces
in image using the information provided by Cognitive Services.

Seamless Integration of Azure Functions with Azure Services

[60]

11.	 The function has also created two different Azure Table Storage tables,
as shown here:

How it works...
We first created a Table Storage output binding for storing details about all the men
in the photos. Then, we created another Table Storage output binding to store the
details about all the women.

While we do use all the default code that the Azure Functions template provides to
store all the face coordinates in a single table, we just made a small change to check
whether the person in the photo is male or female and store the data based on the
result.

Note that the APIs aren’t 100% accurate in identifying the correct gender.
So, in your production environments, you should have a fallback
mechanism to handle such situations.

There’s more...
The default codethat the template provides invokes the Computer Vision API by
passing the image that we have uploaded to the blob storage. The face locator
templates invoke the API call by passing the visualFeatures=Faces parameter,
which returns information about the following:

•	 Age
•	 Gender
•	 Coordinates of the faces in the picture

Chapter 3

[61]

You can learn more about the Computer Vision API at https://
docs.microsoft.com/azure/cognitive-services/computer-
vision/home.

Use the Environment.GetEnvironmentVariable("KeyName") function to retrieve
the information stored in application settings. In this case, the CallVisionAPI
method uses the function to retrieve the key, which is essential for making a request
to Microsoft Cognitive Services.

It’s a best practice to store all keys and other sensitive information in
application settings.

ICollector and IAsyncCollector are used for bulk insertion of data.

Azure SQL Database interactions using
Azure Functions
So far, you have learned how to store data in Azure Storage services, such as blobs,
queues and tables. All these storage services are great for storing non-structured or
semi-structured data. However, we might need to store data in relational database
management systems, such as an Azure SQL Database.

In this recipe, you will learn how to utilise the ADO.NET API to connect to
a SQL Database and insert JSON data into a table named EmployeeInfo.

Getting ready
Navigate to the Azure portal and do the following:

1.	 Create a logical SQL Server with the name of your choice. It is recommended
that you create it in the same resource group where you have your Azure
Functions.

2.	 Create an Azure SQL Database named Cookbookdatabase by choosing
Blank database in the Select source drop-down of the SQL Database
blade while creating the database.

https://docs.microsoft.com/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/azure/cognitive-services/computer-vision/home

Seamless Integration of Azure Functions with Azure Services

[62]

3.	 Create a firewall rule for your IP address by clicking on the Set Firewall
rule button in the Overview blade so that you can connect to the Azure SQL
Databases using SQL Server Management Studio (SSMS). If you don’t have
SSMS, install the latest version of SSMS. You can download it from
https://docs.microsoft.com/sql/ssms/download-sql-server-
management-studio-ssms.

4.	 Click on the Show database connection strings link in the Essentials blade
of SQL Database, as shown in the following screenshot:

5.	 Copy the connection string from the following blade. Make sure that you
replace the your_username and your_password templates with your actual
username and password:

https://docs.microsoft.com/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/sql/ssms/download-sql-server-management-studio-ssms

Chapter 3

[63]

6.	 Open your SSMS and connect to the Azure logical SQL Server that you
created in the previous steps.

7.	 Once you’re connected, create a new table named EmployeeInfo using
the following schema:

CREATE TABLE [dbo].[EmployeeInfo](
[PKEmployeeId] [bigint] IDENTITY(1,1) NOT NULL,
[firstname] [varchar](50) NOT NULL,
[lastname] [varchar](50) NULL,
[email] [varchar](50) NOT NULL,
[devicelist] [varchar](max) NULL,
CONSTRAINT [PK_EmployeeInfo] PRIMARY KEY CLUSTERED
(
[PKEmployeeId] ASC
)
)

How to do it...
Perform the following steps:

1.	 Navigate to your function app, create a new HTTP trigger using the
HttpTrigger-CSharp template, choose Authorisation level as Anonymous.

2.	 Navigate to the code editor of run.csx in the SaveJSONToAzureSQLDatabase
function and replace the default code with the following. The following
code grabs the data that is passed to the HTTP trigger and inserts it into the
database using the ADO.Net API:
#r "Newtonsoft.Json"
#r "System.Data"

using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;
using System.Data.SqlClient;
using System.Data;

public static async Task<IActionResult> Run(HttpRequest
req, ILogger log)
{

Seamless Integration of Azure Functions with Azure Services

[64]

 log.LogInformation("C# HTTP trigger function processed a
request.");

 string firstname,lastname, email, devicelist;

 string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
 dynamic data = JsonConvert.DeserializeObject(requestBody);
 firstname = data.firstname;
 lastname = data.lastname;
 email = data.email;
 devicelist = data.devicelist;

 SqlConnection con =null;
 Try
 {
 string query = "INSERT INTO EmployeeInfo
(firstname,lastname, email, devicelist) " + "VALUES (@firstname,@
lastname, @email, @devicelist) ";

 con = new
 SqlConnection("Server=tcp:azurecookbooks.database.
windows.net,1433;Initial Catalog=Cookbookdatabase;Persist Security
Info=False;User ID=username;Password=password;MultipleActiveResu
ltSets=False;Encrypt=True;TrustServerCertificate=False;Connection
Timeout=30;");
 SqlCommand cmd = new SqlCommand(query, con);
 cmd.Parameters.Add("@firstname", SqlDbType.VarChar,
 50).Value = firstname;
 cmd.Parameters.Add("@lastname", SqlDbType.VarChar,
50)
 .Value = lastname;
 cmd.Parameters.Add("@email", SqlDbType.VarChar, 50)
 .Value = email;
 cmd.Parameters.Add("@devicelist", SqlDbType.VarChar)
 .Value = devicelist;
 con.Open();
 cmd.ExecuteNonQuery();
 }
 catch(Exception ex)
 {
 log.LogInformation(ex.Message);
 }
 Finally
 {

Chapter 3

[65]

 if(con!=null)
 {
 con.Close();
 }
 }

 return (ActionResult)new OkObjectResult($"Successfully
inserted the data.");

}

Note that you need to validate each and every input parameter. For the sake of simplicity,
the code that validates the input parameters is not included. Make sure that you validate
each and every parameter before you save it into your database. It also a good practice to
store the connection string in Application settings.

3.	 Let’s run the HTTP trigger using the following test data right from the Test
console of Azure Functions:
 {
 "firstname": "Praveen",
 "lastname": "Kumar",
 "email": "praveen@example.com",
 "devicelist":
 "[
 {
 'Type' : 'Mobile Phone',
 'Company':'Microsoft'
 },
 {
 'Type' : 'Laptop',
 'Company':'Lenovo'
 }
]"
 }

Note that you need to validate each and every input parameter. For the sake of simplicity,
the code that validates the input parameters is not included. Make sure that you validate
each and every parameter before you save it into your database.

Seamless Integration of Azure Functions with Azure Services

[66]

4.	 A record was inserted successfully, as shown in the following screenshot:

How it works...
The goal of this recipe was to accept input values from the user and save them
to a relational database where the data could be retrieved later for operational
purposes. For this, we used Azure SQL Database, a relational database offering also
known as database as a service (DBaaS). We have created a new SQL Database and
created firewall rules that allow us to connect remotely from the local development
workstation using SSMS. We have also created a table named EmployeeInfo, which
can be used to save data.

We have developed a simple program using the ADO.NET API that connects to the
Azure SQL Database and inserts data into the EmployeeInfo table.

Monitoring tweets using Logic Apps
and notifying users when a popular user
tweets
One of my colleagues, who works for a social grievance management project, is
responsible for monitoring the problems that users post on social media platforms,
such as Facebook, Twitter and so on. He was facing the problem of continuously
monitoring the tweets posted on his customer’s Twitter handle with specific
hashtags. His main job was to respond quickly to the tweets by users with a huge
follower count, say, users with more than 50,000 followers. So, he was looking for a
solution that kept monitoring a particular hashtag and alerted him whenever an user
with more than 50,000 followers tweets so that he can quickly have his team respond
to that user.

Chapter 3

[67]

Note that for the sake of simplicity, we will have the condition to check
for 200 followers instead of 50,000 followers.

Before I knew about Azure Logic Apps, I thought it would take a few weeks to learn
about, develop, test and deploy such a solution. Obviously, it would take a good
amount of time to learn, understand and consume the Twitter (or any other social
channel) API to get the required information and build an end-to-end solution that
solves the problem.

Fortunately, after learning about Logic Apps and its out-of-the-box connectors, it
hardly takes 10 minutes to design a solution for the problem that my friend had.

In this recipe, you will learn how to design a Logic App that integrates with Twitter
(for monitoring tweets) and Gmail (for sending emails).

Getting ready
We need to have the following to work with this recipe:

•	 A valid Twitter account
•	 A valid Gmail account

When working with the recipe, we will need to authorise Azure Logic Apps to access
your accounts.

How to do it...
We will go through the following steps:

1.	 Create a new Logic App
2.	 Design the Logic app with Twitter and Gmail connectors
3.	 Test the Logic App by tweeting the tweets with the specific hashtag

Creating a new Logic App
Perform the following steps:

1.	 Log in to the Azure Management portal, search for logic apps and select
Logic App.

Seamless Integration of Azure Functions with Azure Services

[68]

2.	 In the Create logic app blade, once you have provided the Name, Resource
group, Subscription and Location, click on the Create button to create the
Logic App:

Chapter 3

[69]

Designing the Logic App with Twitter and Gmail
connectors
Perform the following steps:

1.	 After the Logic App is created, navigate to the Logic app designer and
choose Blank logic app.

2.	 Next, you will be prompted to choose Connectors. In the Connectors list,
click on Twitter. Then, you will be prompted to connect to Twitter by
providing your Twitter account credentials. If you have already connected,
it will directly show you the list of Triggers associated with the Twitter
connector, as shown in the following screenshot:

3.	 Once you have clicked on the Twitter trigger, you will be prompted
to provide Search text (for example, hashtags and keywords) and the
Frequency at which you would like the Logic App to poll the tweets.
This is how it looks after you provide the details:

Seamless Integration of Azure Functions with Azure Services

[70]

4.	 Let’s add a new condition by clicking on Next Step, searching for condition
and selecting Condition action, as shown in the following screenshot:

5.	 From the previous instruction, the following screen will be displayed, where
you can choose the values for the condition and choose what you would like
to add when the condition evaluates to true or false:

Chapter 3

[71]

6.	 When you click on the Choose a value input field, you will get all the
parameters on which you could add a condition; in this case, we need
to choose Followers count, as shown in the following screenshot:

7.	 Once you choose the Followers Count parameter, you create a condition
(Followers count is greater than or equal to 200), as shown in the following
screenshot:

Seamless Integration of Azure Functions with Azure Services

[72]

8.	 In the If true section of the preceding Condition, search for Gmail connection
and select Gmail | Send email, as shown in the following screenshot:

9.	 It will ask you to log in if you haven’t already. Provide your credentials
and authorise Azure Logic Apps to access your Gmail account.

10.	 Once you have authorised, you can frame your email with Add dynamic
content with the Twitter parameters, as shown in the following screenshot:

Chapter 3

[73]

11.	 Once you are done, click on the Save button.

Testing the Logic App functionality
Perform the following steps:

1.	 Let’s post a tweet on Twitter with the hashtag #AzureFunctions, as shown
in the following screenshot:

If the Followers count option doesn't show up on the
screen, click the See more link.

Seamless Integration of Azure Functions with Azure Services

[74]

2.	 After a minute or so, the Logic App should have been triggered. Let’s
navigate to the Overview blade of the Logic App and view Runs history:

3.	 Yay! It has triggered twice and I have received the emails. One of them
is shown in the following screenshot:

How it works...
You have created a new Logic App and have chosen the Twitter connector to
monitor the tweets posted with the hashtag #AzureFunctions once a minute. If there
are any tweets with that hashtag, it checks whether the follower count is greater than
or equal to 200. If the follower count meets the condition, then a new action is created
with a new Gmail connector that is capable of sending an email with the dynamic
content being framed using the Twitter connector parameters.

Integrating Logic Apps with serverless
functions
In the previous recipe, you learned how to integrate different connectors using Logic
Apps. In this recipe, we will implement the same solution that we implemented
in the previous recipe by just moving the conditional logic that checks the followers
count to Azure Functions.

Chapter 3

[75]

Getting ready
Before moving further, we will perform the following steps:

1.	 Create a SendGrid account (if not created already), grab the SendGrid API
key and create a new key in the Application settings of the function app.

2.	 Install Postman to test the HTTP trigger. You can download the tool from
https://www.getpostman.com/.

How to do it...
Perform the following steps:

1.	 Create a new function by choosing the HTTP trigger and name it
ValidateTwitterFollowerCount.

2.	 Navigate to the Integrate tab and add a new output binding, SendGrid,
by clicking on the New Output button:

3.	 Replace the default code with the following and click on Save. The following
code just checks the followers count and if it is greater than 200, then it sends
out an email:
#r "Newtonsoft.Json"
#r "SendGrid"
using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

https://www.getpostman.com/

Seamless Integration of Azure Functions with Azure Services

[76]

using SendGrid.Helpers.Mail;
public static async Task<IActionResult> Run(HttpRequest req, IAsyn
cCollector<SendGridMessage> messages, ILogger log)
{
 log.LogInformation("C# HTTP trigger function processed a
request.");

 string name = req.Query["name"];

 string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
 dynamic data = JsonConvert.DeserializeObject(requestBody);

 string strTweet = "";
 SendGridMessage message = new SendGridMessage();
 if(data.followersCount >= 200)
 {
 strTweet = "Tweet Content" + data.tweettext;

 message.SetSubject($"{data.Name} with {data.
followersCount} followers has posted a tweet");
 message.SetFrom("donotreply@example.com");
 message.AddTo("prawin2k@gmail.com");
 message.AddContent("text/html", strTweet);

 }
 Else
 {
 message = null;
 }
 await messages.AddAsync(message);
 return (ActionResult)new OkObjectResult($"Hello");
}

4.	 Test the function using Postman by choosing the parameters highlighted
in the following screenshot. In the next steps, after we integrate the
ValidateTwitterFollowerCount Azure Function, all the following input
parameters, such as followersCount, tweettext and Name, will be posted
by the Twitter connector of the Logic App:

Chapter 3

[77]

5.	 Create a new Logic App, named
NotifywhenTweetedbyPopularUserUsingFunctions.

6.	 Start designing the app with the Blank logic app template, choose the
Twitter connector and configure Search text, Frequency and Interval.

7.	 Click on New step to add an action. In the Choose an action section, choose
Azure Functions as a connector, as shown in the following screenshot:

Seamless Integration of Azure Functions with Azure Services

[78]

8.	 Clicking on Azure Functions will list all the available Azure function apps,
as shown in the following screenshot:

9.	 Click on the function app in which you have created the
ValidateTwitterFollowerCount function. Now select the
ValidateTwitterFollowerCount function, as shown in the following
screenshot:

Chapter 3

[79]

10.	 In the next step, you need to prepare the JSON input that needs to be passed
from the Logic App to the ValidateTwitterFollowerCount HTTP trigger
function that we developed. Let’s frame input JSON in the same way that
we did when testing the HTTP trigger function using Postman, as shown
in the following screenshot (the only difference is that the values, such as
followersCount, Name and tweettext, are dynamic now):

11.	 Once you have reviewed all the parameters that the
ValidateTwitterFollowerCount function expects, click on the Save button
to save the changes.

12.	 You can wait for a few minutes or post a tweet with the hashtag that you
have configured in the Search text input field.

There’s more...
If you don’t see the intended dynamic parameter, click on the See more button,
as shown in the following screenshot:

Seamless Integration of Azure Functions with Azure Services

[80]

In the ValidateTwitterFollowerCount Azure Function, we have
hardcoded the follower count threshold as 200. It’s good practice to
store these values as configurable items by storing them in Application
settings.

See also
•	 See the Sending an email notification to the end user dynamically recipe in

Chapter 2, Working with Notifications Using the SendGrid and Twilio Services

Auditing Cosmos DB data using change
feed triggers
Many of you might have already heard about Cosmos DB, as it has become very
popular and many organisations are using it because of the features it provides.

In this recipe, we will learn about integrating serverless Azure Functions with a
serverless NoSQL database in Cosmos DB. You can read more about Cosmos DB
at https://docs.microsoft.com/azure/cosmos-db/introduction.

It might often be necessary to keep change logs of fields, attributes, documents
and more for auditing purposes. In the world of relational databases, you might
have seen developers using triggers or stored procedures to implement this kind of
auditing functionality, where you write code to store data into a separate audit table.

In this recipe, we will learn how easy it is to achieve the preceding use case and audit
Cosmos DB collections by writing a simple function that gets triggered whenever
there is a change in a document of a Cosmos DB collection.

In the world of relational databases, a collection is the same as a table and
a document is the same as a record.

Getting ready
In order to get started, we need to first do the following:

•	 Create a Cosmos DB account
•	 Create a new Cosmos DB collection where you can store data in the form

of documents

https://docs.microsoft.com/azure/cosmos-db/introduction

Chapter 3

[81]

Creating a new Cosmos DB account
Navigate to the Azure portal and create a new Cosmos DB account. You would need
to provide the following:

•	 A valid subscription and a resource group.
•	 A valid account name. This will create an endpoint at <<accountname>>.

document.azure.com.
•	 An API – set this as SQL. This will ensure that you can write queries in SQL.

Feel free to try out other APIs.

Creating a new Cosmos DB collection
Perform the following steps:

1.	 Once the account is created, you need to create a new database and a
collection. We can create both of them in a single step right from the portal.

2.	 Navigate to the Overview tab and click on the Add Collection button to
create a new collection:

3.	 You will now be navigated to the Data Explorer tab automatically, where
you will be prompted to provide the following details:

Field Name Value Comment

Database id cookbookdatabase
This is a container of multiple Cosmos
DB collections.

Collection id cookbookdatacollection
This is the name of the collection
where you will be storing the data.

Seamless Integration of Azure Functions with Azure Services

[82]

Field Name Value Comment

Storage
capacity

Fixed (10 GB)

Depending on your production
workloads, you might have to go with
Unlimited, as you may get partitions
otherwise.

Throughput
(400 – 10,000
RU/s)

400

This is the capacity of your Cosmos
DB Collection. The performance of
the reads and writes on the collection
depends on the throughput that you
configure when provisioning the
collection.

4.	 Next, click on the OK button to create the collection. If everything went well,
you will see something like the following in the Data Explorer tab of the
Cosmos DB account:

We have successfully created a Cosmos DB account and a collection. Let’s now learn
how to integrate the collection with a new Azure Function and see how to trigger it
whenever there is a change in the Cosmos DB collection.

How to do it...
Perform the following steps:

1.	 Navigate to the Cosmos DB Account and click on the Add Azure Function
menu in the All settings blade of the Cosmos DB account.

Chapter 3

[83]

2.	 You will now be taken to the Add Azure Function blade, where you will
choose the Azure function app in which you would like to create a new
function (Cosmos DB trigger) to be triggered whenever a change in the
collection happens. Here is how it looks:

Seamless Integration of Azure Functions with Azure Services

[84]

3.	 Once you have reviewed the details, click on the Save button (shown in the
previous screenshot) to create the new function, which will be triggered
for every change that is made in the collection. Let’s quickly navigate to the
Azure function app (in my case, it is AzureFunctionCookBookV2) and see
whether the new function with the name cookbookdatacollectionTrigger
has been created. Here is a view of my function app:

4.	 Replace the default code with the following code of the Azure Functions
Cosmos DB trigger, which gets a list of all the documents that were updated.
The following code just prints the count of documents that were updated and
the id of the first document in the Logs console:
#r "Microsoft.Azure.DocumentDB.Core"
using System;
using System.Collections.Generic;
using Microsoft.Azure.Documents;

public static void Run(IReadOnlyList<Document> input, ILogger log)
{

Chapter 3

[85]

 if (input != null && input.Count > 0)
 {
 log.LogInformation("Documents modified " + input.Count);
 log.LogInformation("First document Id " + input[0].Id);
 }
}

5.	 Now the integration of the Cosmos DB collection and the Azure
Function is complete. Let’s now add a new document to the collection
and see how the trigger gets fired in action. Open a new tab (leaving the
cookbookdatacollectionTrigger tab open in the browser), navigate to
the collection and create a new document by clicking on the New Document
button, as shown in the following screenshot:

6.	 Once you have replaced the default JSON (which just has an id attribute)
with the JSON that has the required attributes, click on the Save button to
save the changes and quickly navigate to the other browser tab, where you
have the Azure Function open and view the logs to see the output of the
function. The following is how my logs look, as I just added a value to
the id attribute of the document. It might look different for you, depending
on your JSON structure:

Seamless Integration of Azure Functions with Azure Services

[86]

How it works...
In order to integrate Azure Functions with Cosmos DB, we first created a Cosmos
DB account and created a database and a new collection within it. Once the collection
was created, we integrated it from within the Azure portal by clicking on the Add
Azure Function button, which is available at the Cosmos DB account level. We have
chose the required function app in which we wanted to create a Cosmos DB trigger.
Once the integration was complete, we created a sample document in the Cosmos
DB collection, and then verified that the function was triggered automatically for
all the changes (all reads and writes, but not deletes) that we make on the collection.

There’s more...
When you integrate Azure Functions to track Cosmos DB changes, it will
automatically create a new collection named leases, as shown here. Be aware
that this is an additional cost as the cost in Cosmos DB is based on the request
units (RUs) that are allocated for each collection:

It’s important to note that the Cosmos DB trigger wouldn’t be triggered (at the time
of writing) for any deletes in the collection. It is only triggered for create and updates
to documents in a collection. If it is important for you to track deletes, then you need
to do soft deletes, which means setting an attribute such as isDeleted to true for
records that are deleted by the application and based on the value of the isDeleted
attribute, implementing your custom logic in the Cosmos DB trigger.

The integration that we have done between Azure Functions and Cosmos DB sees
Cosmos DB change feeds. You can learn more about change feeds here: https://
docs.microsoft.com/azure/cosmos-db/change-feed.

Don’t forget to delete the Cosmos DB account and its associated collections
if you think you won’t use them anymore, because the collections are charged
based on the RUs allocated even if you are not actively using them.

If you are not able to run this Azure Function or you get error saying that Cosmos
DB extensions are not installed, then try creating a new Azure Cosmos DB trigger,
which should then prompt installation.

https://docs.microsoft.com/azure/cosmos-db/change-feed
https://docs.microsoft.com/azure/cosmos-db/change-feed

[87]

Understanding the Integrated
Developer Experience of

Visual Studio Tools
In this chapter, we will cover the following:

•	 Creating a function app using Visual Studio 2017
•	 Debugging C# Azure Functions on a local staged environment using Visual

Studio 2017
•	 Connecting to the Azure Storage cloud from the local Visual Studio

environment
•	 Deploying the Azure Function app to Azure Cloud using Visual Studio
•	 Debugging live C# Azure Function, hosted on the Microsoft Azure Cloud

environment, using Visual Studio
•	 Deploying Azure Functions in a container

Introduction
In all of our previous chapters, we looked at how to create Azure Functions right
from the Azure Management Portal. Here are a few of the features:

•	 You can quickly create a function just by selecting one of the built-in
templates provided by the Azure Function Runtime

•	 Developers need not worry about writing the plumbing code and
understanding how the frameworks work

•	 Configuration changes can be made right within the UI using
the standard editor

Understanding the Integrated Developer Experience of Visual Studio Tools

[88]

In spite of all the advantages mentioned, developers might not find it comfortable
if they became used to working with their favourite Integrated Development
Environments (IDEs) a long time ago. So, the Microsoft team has come up with
some tools that help developers integrate them into Visual Studio so that they can
leverage some of the critical IDE features that accelerate their development efforts.
Here are few of them:

•	 Developers benefit from IntelliSense support
•	 You can debug code line by line
•	 Quickly view the values of the variables while you are debugging

the application
•	 Integration with version control systems such as Azure DevOps

(earlier, this was called Visual Studio Team Services (VSTS))

Currently, at the time of writing, the Visual Studio tools for the function supports
debugging only for C#. In the future, Microsoft is likely to come up with all these
cool features for other languages.

You will learn some of these aforementioned features in this chapter, and see how
to integrate code with Azure DevOps in Chapter 11, Implementing and Deploying
Continuous Integration Using Azure DevOps.

Creating a function app using Visual
Studio 2017
In this recipe, you will learn how to create an Azure Function for your favourite
IDE in Visual Studio 2017.

Getting ready
You need to download and install the following tools and software:

1.	 Download the latest version of Visual Studio 2017. You can download
it from https://visualstudio.microsoft.com/downloads/.

2.	 During the installation, choose Azure development in the Workloads
section, as shown in the following screenshot, and then click on the
Install button:

https://visualstudio.microsoft.com/downloads/

Chapter 4

[89]

3.	 Navigate to Tools | Extensions and Updates and see if there are any updates
to Visual Studio tools for Azure Functions, as shown in the following
screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools

[90]

How to do it...
Perform the following steps:

1.	 Open Visual Studio, choose File and then click on New Project. In the New
Project dialogue box, in the Installed templates, under Visual C#, select
Cloud and then select the Azure Functions template:

2.	 Provide the name of the function app. Click on the OK button to go to the
next step. As shown in the following screenshot, choose Azure Functions v2
(.NET Core) from the drop-down menu, then select HTTP trigger and click
on the OK button:

Chapter 4

[91]

3.	 We have successfully created the Azure Function App, along with an HTTP
Trigger (which accepts web requests and sends a response to the client), with
the name Function1. Feel free to change the default name of the function
app and also make sure to build the application to download the required
NuGet packages, if any.

4.	 After you create a new function, a new class will also be created, as shown
in the following screenshot:

We have now successfully created a new HTTP-triggered function app using
Visual Studio 2017.

Understanding the Integrated Developer Experience of Visual Studio Tools

[92]

How it works...
Visual Studio tools for Azure Functions allow developers to use their favourite IDE,
which they may have been using for ages. Using the Azure Function tools, you can
use the same set of templates that the Azure Management Portal provides in order to
quickly create and integrate with the cloud services without writing any (or minimal)
plumbing code.

The other advantage of using Visual Studio tools for functions is that you don’t need
to have a live Azure subscription. You can debug and test Azure Functions right
in your local development environment. Azure CLI and related utilities provide
us with all the required assistance to execute Azure Functions.

There’s more...
One of the most common problems that developers face while developing any
application on their local environment is that everything works fine on my local machine,
but not on the production environment. Developers need not worry about this in the
case of Azure Functions. The Azure Functions runtime provided by the Azure CLI
tools is exactly the same as the runtime available on Azure Cloud.

Note that you can always use and trigger an Azure service running on
the cloud, even when you are developing Azure Functions locally.

Debugging C# Azure Functions on a
local staged environment using Visual
Studio 2017
Once the basic set-up of our function creation is complete, the next step is to start
working on developing the application as per your needs. Developing code on a
daily basis is not at all a cake walk; developers end up facing all kinds of technical
issues. They need tools to help them identify the root cause of the problem and fix
it to make sure they are delivering the solution. These tools include debugging tools
that help developers step into each line of the code to view the values of the variable
and objects and get a detailed view of the exceptions.

In this recipe, you will learn how to configure and debug an Azure Function
in a local development environment within Visual Studio.

Chapter 4

[93]

Getting ready
Download and install Azure CLI (if you don’t have these tools installed, note that
Visual Studio will automatically download them when you run your functions from
Visual Studio).

How to do it...
Perform the following steps:

1.	 In our previous recipe, we created the HTTPTrigger function using Visual
Studio. Let’s build the application by clicking on Build, and then clicking
on Build Solution.

2.	 Open the HTTPTriggerCSharpFromVS.cs file and create a breakpoint
by pressing the F9 key, as shown in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools

[94]

3.	 Press the F5 key to start debugging the function. When you press F5 for the
first time, Visual Studio prompts you to download Visual Studio CLI tools
if they aren’t already installed. These tools are essential for executing an
Azure Function in Visual Studio:

The Azure Function CLI has now been renamed to Azure Function
Core Tools. You can learn more about them at https://www.npmjs.
com/package/azure-functions-core-tools.

4.	 Clicking on Yes in the preceding screenshot will start downloading the CLI
tools. The download and installation of the CLI tools will take a few minutes.

5.	 After the Azure Function CLI tools are installed successfully, a job host will
be created and started. It starts monitoring requests on a specific port for all
the functions of our function app. The following is the screenshot that shows
that the job host has started monitoring the requests to the function app:

https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools

Chapter 4

[95]

6.	 Let’s try to access the function app by making a request to http://
localhost:7071 in your favourite browser:

Understanding the Integrated Developer Experience of Visual Studio Tools

[96]

7.	 Now key in the complete URL of our HTTP trigger in the browser. It should
look like this: http://localhost:7071/api/HttpTriggerCsharpFromVS?n
ame=Praveen Sreeram.

8.	 After typing the correct URL of the Azure Function, as soon as we hit the
Enter key in the address bar of the browser, the Visual Studio debugger hits
the debugging point (if you have one), as shown in the following screenshot:

9.	 You can also view the data of your variables, as shown in the following
screenshot:

10.	 Once you complete the debugging, you can click on the F5 key to complete
the execution process, after which you will see the output response in the
browser, as shown in the following screenshot:

11.	 The function execution log will be seen in the job host console, as shown in
the following screenshot:

http://localhost:7071/api/HttpTriggerCsharpFromVS?name=Praveen%20Sreeram
http://localhost:7071/api/HttpTriggerCsharpFromVS?name=Praveen%20Sreeram

Chapter 4

[97]

12.	 You can add more Azure Functions to the function app, if required. In the
next recipe, we will look at how to connect to the Azure Storage cloud from
the local environment.

How it works...
The job host works as a server that listens to a specific port. If there are any requests
to that particular port, it automatically takes care of executing the requests and sends
a response.

The job host console provides you with the following details:

•	 The status of the execution, along with the request and response data
•	 The details about all the functions available in the function app

There’s more...
Using Visual Studio, you can directly create precompiled functions, which
means that when you build your functions, Visual Studio creates a .dll file that
can be referenced in other applications, just as you do for your regular classes.
The following are two of the advantages of using precompiled functions:

•	 Precompiled functions have better performance, as they aren’t required
to be compiled on the fly

•	 You can convert your traditional classes into Azure Functions easily
and refer them in other applications seamlessly

Understanding the Integrated Developer Experience of Visual Studio Tools

[98]

Connecting to the Azure Storage cloud
from the local Visual Studio environment
In both of the previous recipes, you learned how to create and execute Azure
Functions in a local environment. We triggered the function from a local browser.
However, in this recipe, you will learn how to trigger an Azure Function in your
local environment when an event occurs in Azure. For example, when a new Blob
is created in a Azure Storage account, you can have your function triggered on your
local machine. This helps developers test their applications upfront, before deploying
them to the production environment.

Getting ready
Perform the following prerequisites:

1.	 Create a storage account, and then a Blob container named cookbookfiles,
in Azure.

2.	 Install Microsoft Azure Storage Explorer from http://storageexplorer.
com/.

How to do it...
Perform the following steps:

1.	 Open the FunctionAppInVisualStudio Azure Function app in
Visual Studio, and then add a new function by right-clicking on the
FunctionAppInVisualStudio project. Click on Add | New Azure Function,
which opens a pop-up. Here, for the name field, enter BlobTriggerCSharp,
and then click on the Add button.

2.	 This opens another pop-up, where you can provide other parameters,
as shown in the following screenshot:

http://storageexplorer.com/
http://storageexplorer.com/

Chapter 4

[99]

3.	 In the storage account connection settings, provide AzureWebJobsStorage
as the name of the connection string and also provide the name of the Blob
container (in my case, it is cookbookfiles) in the Path input field, then click
on the OK button to create the new Blob trigger function. A new Blob trigger
function gets created, as shown in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools

[100]

4.	 If you remember the Building a backend Web API using HTTP triggers
recipe from Chapter 1, Developing Cloud Applications Using Function Triggers
and Bindings, the Azure Management Portal allowed us to choose between
a new or existing storage account. However, the preceding dialogue box is
not connected to your Azure subscription. So, you need to navigate to the
storage account and copy the connection string, which can be found in the
Access Keys blade of the storage account in the Azure Management Portal,
as shown in the following screenshot:

5.	 Paste the connection string in the local.settings.json file, which
is in the root folder of the project. This file is created when you create
the function app. After you add the connection string to the key named
AzureWebJobsStorage, the local.settings.json file should look like
that shown in the following screenshot:

6.	 Open the BlobTriggerCSharp.cs file and create a breakpoint, as shown in
the following screenshot:

Chapter 4

[101]

7.	 Now press the F5 key to start the job host, as shown in the following
screenshot:

8.	 I have added a new Blob file using Azure Storage Explorer, as shown in the
following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools

[102]

9.	 As soon as the Blob has been added to the specified container (in this case, it
is cookbookfiles), which is sitting in the cloud in a remote location, the job
host running in my local machine detects that a new Blob has been added
and the debugger hits the function, as shown in the following screenshot:

How it works...
In this BlobTriggerCSharp class, the Run method has the WebJobs attributes with a
connection string (in this case, it is AzureWebJobsStorage). This instructs the runtime
to refer to the Azure Storage connection string in the local settings configuration file
with the key named after the AzureWebJobsStorage connection string. When the
job host starts running, it uses the connection string and keeps an eye on the storage
accounts containers that we have specified. Whenever a new Blob is added or updated,
it automatically triggers the Blob trigger in the current environment.

There’s more...
When you create Azure Functions in the Azure Management Portal, you need to
create triggers and output bindings in the Integrate tab of each Azure Function.
However, when you create a function from the Visual Studio 2017 IDE, you can just
configure WebJobs attributes to achieve this.

You can learn more about WebJobs attributes at https://docs.
microsoft.com/azure/app-service/webjobs-sdk-get-
started.

https://docs.microsoft.com/azure/app-service/webjobs-sdk-get-started
https://docs.microsoft.com/azure/app-service/webjobs-sdk-get-started
https://docs.microsoft.com/azure/app-service/webjobs-sdk-get-started

Chapter 4

[103]

Deploying the Azure Function app to
Azure Cloud using Visual Studio
So far, our function app is just a regular application within Visual Studio. To deploy
the function app along with its functions, we need to either create the following new
resources or select existing ones to host the new function app:

•	 The resource group
•	 The App Service plan
•	 The Azure Function app

You can provide all these details directly from Visual Studio without opening the
Azure Management Portal. You will learn how to do that in this recipe.

How to do it...
Perform the following steps:

1.	 Right-click on the project, and then click on the Publish button to open the
publish window.

2.	 In the Publish window, choose the Create New option and click on the
Publish button, as shown in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools

[104]

3.	 In the Create App Service window, you can choose from existing resources
or click on the New button to choose the new Resource Group, the App
Service plan and the Storage Account, as shown in the following screenshot:

4.	 In most of the cases, you are best off going with the Consumption plan for
hosting the Azure Functions, unless you have a strong reason not to, and
would prefer to utilise one of your existing App Services. To choose the
Consumption plan, you need to click on the New button that is available
for the App Service plan, as shown in the preceding screenshot. Select
Consumption in the Size drop-down menu, then click on the OK button,
as shown in the following screenshot:

Chapter 4

[105]

5.	 After reviewing all the information, click on the Create button of the Create
App Service window. This should start deploying the services to Azure,
as shown in the following screenshot:

6.	 If everything goes fine, you can view the newly created function app
in the Azure Management Portal, as shown in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools

[106]

7.	 Hold on! Our job in Visual Studio is not yet done. We have just created the
required services in Azure right from the Visual Studio IDE. Our next job is
to publish the code from the local workstation to the Azure cloud. As soon
as the deployment is complete, you will be taken to the web deploy step,
as shown in the screenshot. Click on the Publish button to start the process
of publishing the code:

8.	 After a few seconds, you should see something similar to the following
screenshot in the Output window of your Visual Studio instance:

9.	 That’s it. We have completed the deployment of your function app and
its functions to Azure right from your favourite development IDE, Visual
Studio. You can review the function deployment in the Azure Management
Portal. Both Azure Functions were created successfully, as shown in the
following screenshot:

Chapter 4

[107]

There’s more...
Azure Functions that are created from Visual Studio 2017 are precompiled, which
means that you deploy the .dll files from Visual Studio 2017 to Azure. Therefore,
you cannot edit the functions’ code in Azure after you deploy them. However,
you can make changes to the configurations, such as changing the Azure Storage
connection string, the container path and so on. We will look at how to do this in
the next recipe.

Debugging a live C# Azure Function,
hosted on the Microsoft Azure Cloud
environment, using Visual Studio
In one of the previous recipes, Connecting to the Azure Storage cloud from the local
Visual Studio environment, you learned how to connect the cloud storage account
from the local code. In this recipe, you will learn how to debug the live code running
in the Azure Cloud environment. We will be performing the following steps in the
BlobTriggerCSharp function of the FunctionAppinVisualStudio function app:

•	 Changing the path of the container in the Azure Management Portal to that
of the new container

•	 Opening the function app in Visual Studio 2017
•	 Attaching the debugger from within Visual Studio 2017 to the required

Azure Function
•	 Creating a Blob in the new storage container
•	 Debugging the application after the breakpoints are hit

Understanding the Integrated Developer Experience of Visual Studio Tools

[108]

Getting ready
Create a container named cookbookfiles-live in the storage account. We will be
uploading a Blob to this container.

How to do it...
Perform the following steps:

1.	 Navigate to the BlobTriggerCSharp function in the Azure Management
Portal and change the path of the path variable to point to the new container
cookbookfiles-live. Then, re-publish it. It should look something like that
shown in the following screenshot:

2.	 Open the function app in Visual Studio 2017. Open Server
Explorer and navigate to your Azure Function; in this case,
FunctionAppinVisualStudio2017, as shown in the following screenshot:

Chapter 4

[109]

3.	 Right-click on the function and click on Attach Debugger, as shown in the
following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools

[110]

4.	 Visual Studio will take some time to enable remote debugging, as shown
in the following screenshot:

5.	 The function app URL will be opened in the browser, as shown in the
following screenshot, indicating that our function app is running:

6.	 Navigate to Storage Explorer and upload a new file (in this case, I uploaded
EmployeeInfo.json) to the cookbookfiles-live container, as shown in the
following screenshot:

Chapter 4

[111]

7.	 After a few moments, the debug breakpoint will be hit, shown as follows,
where you can view the filename that has been uploaded:

Deploying Azure Functions in a container
By now, you might have understood the major use case of why one might use Azure
Functions. Yes – when developing a piece of code and deploying it in a serverless
environment, where a developer or administrator doesn’t need to worry about the
provisioning and scaling of instances for hosting your server-side applications.

Making all of the features of serverless could only be achieved
when you create your Function App, by choosing the
Consumption plan in the Hosting Plan drop-down menu.

Understanding the Integrated Developer Experience of Visual Studio Tools

[112]

By looking at the title of this recipe, you might already be wondering why and
how deploying an Azure Function to a Docker container would help. Yes, the
combination of Azure Functions and Docker Container might not make sense,
as you would lose all the serverless benefits of Azure Functions when you deploy
to Docker. However, there might be some customers whose existing workloads
might be in some cloud (be it public or private), but now they want to leverage
some of the Azure Function triggers and related Azure Services, and so would
want to deploy the Azure Functions as a Docker image. This recipe deals with
how to implement this.

Getting ready
The following are the prerequisites for getting started with this recipe:

•	 Please install Azure CLI from https://docs.microsoft.com/cli/azure/
install-azure-cli?view=azure-cli-latest

•	 You can download Docker from https://store.docker.com/editions/
community/docker-ce-desktop-windows. Ensure that you install the
version of Docker that is compatible with the operating system of your
development environment.

•	 Also required is basic knowledge of Docker and its commands, in order
to build and run Docker images. You can go through the official Docker
documentation to learn this, if you don’t already have this knowledge.

•	 Create an Azure Container Registry (ACR) with the following steps.
This can be used as a repository for all of the Docker images.

https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows

Chapter 4

[113]

Creating an ACR
Perform the following steps:

1.	 Create a new ACR by providing the following details, as shown in the
following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools

[114]

2.	 Once the ACR is successfully created, navigate to the Access Keys blade
and make a note of the Login server, Username and password, which are
highlighted in the following screenshot. You will be using them later in this
recipe:

How to do it...
In the first three chapters, we created both the function app and the functions right
within the portal. And, so far in this chapter, we have created the function app and
the functions in the Visual Studio itself.

Before we start, let’s make a small change to the HTTPTrigger, so that we understand
that the code is running from Docker, as highlighted in the following image.
To do this, I have just added a From Docker message to the output, as follows:

Chapter 4

[115]

Creating a Docker image for the function app
Perform the following steps:

1.	 The first step in creating a Docker image is to create a Dockerfile in our
Visual Studio project. Create a .Dockerfile with the following contents:
FROM microsoft/azure-functions-dotnet-core2.0:2.0
COPY ./bin/Release/netstandard2.0 /home/site/wwwroot

2.	 Then, navigate to Command Prompt and run the following Docker
command, docker build -t functionsindocker, taking care not to miss
the period at the end of the command, to create a Docker image. Once you
execute the docker build command, you should see something similar
to that shown in the following screenshot:

3.	 Once the image is successfully created, the next step is to run the Docker
image on a specific port. Run the command to execute it. You should see
something like the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools

[116]

4.	 Verify that everything is working fine in the local environment by navigating
to the local host with the right port, as shown in the following screenshot.

Pushing the Docker image to the ACR
Perform the following steps:

1.	 The first step is to ensure that we provide a valid tag to the image using
the docker tag functionsindocker cookbookregistry.azurecr.io/
functionsindocker:v1 command. Running this command won’t provide
any output. However, to view our changes, let’s run the docker images
command, as shown in the following screenshot:

2.	 In order to push the image to ACR, you need to authenticate yourself to
Azure. For this, you can use Azure CLI commands. Let’s log in to Azure
using the az login command. Running this command will open a browser
and authenticate your credentials, as shown in the following screenshot:

Chapter 4

[117]

3.	 The next step is to authenticate yourself to the ACR using the az acr login
--name cookbookregistry command. Replace the ACR name (in my case,
it is cookbookregistry) with the one you have created:

4.	 Once you authenticate yourself, you can push the image to ACR
by running the docker push cookbookregistry.azurecr.io/
functionsindocker:v1 command, as shown in the following screenshot:

5.	 Let’s navigate to ACR in the Azure portal and review if our image was
pushed to it properly in the Repositories blade, as shown in the following
screenshot:

We have successfully created an image and pushed it to ACR. Now, it’s time to
create the Azure Function, and refer the Docker image that was pushed to the ACR.

Understanding the Integrated Developer Experience of Visual Studio Tools

[118]

Creating a new function app with Docker
Perform the following steps:

1.	 Navigate to the New | Function App blade and provide the following
information:

2.	 Now, choose Linux (Preview) in the OS field and choose Docker Image
in the Publish field, and then click on the App Service Plan/Location,
as shown in the preceding screenshot. Here, choose to create a new
Basic App Service plan.

Chapter 4

[119]

3.	 The next and most important step is to refer the image that we have pushed
to the ACR. This can be done by clicking on the Configure container
button and choosing the Azure Container Registry, then choosing
the correct image, as shown in the following screenshot:

4.	 Once you review all the details, click on the Create button to create the
function app.

5.	 That’s it. We have created a Function App that could let us deploy the
Docker images by linking it to the image hosted in the Azure Container
Registry. Let’s quickly test the HttpTrigger by navigating to the HTTP
endpoint in the browser. The following is the output of the Azure Function.

How it works...
In the first three chapters, we created both the function app and the functions right
within the portal. By contrast, so far in this chapter, we have created the function
app and the functions in Visual Studio itself.

Understanding the Integrated Developer Experience of Visual Studio Tools

[120]

In this recipe, we have done the following:

The numbered points in this diagram refer to the following steps:

1.	 Create a Docker image of the function app that we created in this chapter
using Visual Studio.

2.	 Push the Docker image to the ACR
3.	 From the portal, create a new function app, choosing to publish the

executable package as a Docker image
4.	 Attach the Docker image from the ACR (from step 2 in the preceding guide)

to the Azure Function (from step 3 in the preceding guide)

[121]

Exploring Tests Tools for the
Validation of Azure Functions

In this chapter, we will explore different ways of testing the Azure Functions in more
detail with the following recipes:

•	 Testing Azure Functions:
°° Testing HTTP triggers using Postman
°° Testing the Blob trigger using Microsoft Storage Explorer
°° Testing the Queue trigger using the Azure Management Portal

•	 Testing an Azure Function on a staged environment using deployment slots
•	 Load testing Azure Functions using Azure DevOps
•	 Creating and testing Azure Function locally using Azure CLI tools
•	 Testing and validating Azure Function responsiveness using

Application Insights
•	 Developing unit tests for Azure Functions with HTTP triggers

Introduction
In the previous chapters, you learned how to develop Azure Functions and
where they are useful, and looked at validating the functionality of those functions.

Exploring Tests Tools for the Validation of Azure Functions

[122]

In this chapter, we will start looking at ways of testing different Azure Functions.
This includes, for example, running tests of HTTP trigger functions using Postman
and using Microsoft Storage Explorer to test Azure Blob triggers, Queue triggers and
other storage-service-related triggers. You will also learn how to perform a simple
load test on an HTTP trigger, to help you understand how the serverless architecture
works by provisioning the instances in the backend, without developers needing
to worry about the scaling settings on different factors. The Azure Function runtime
will automatically take care of scaling the instances.

You will also learn how to set up a test that checks the availability of our functions
by continuously pinging the application endpoints on a predefined frequency from
multiple locations.

Testing Azure Functions
The Azure Function runtime allows us to create and integrate many Azure services.
At the time of writing, there are more than 20 types of Azure Functions you can
create. In this recipe, you will learn how to test the most common Azure Functions,
listed as follows:

•	 Testing HTTP triggers using Postman
•	 Testing the Blob trigger using Microsoft Storage Explorer
•	 Testing the Queue trigger using the Azure Management portal

Getting ready
Install the following tools, if you haven’t already done so:

•	 Postman: You can download this from https://www.getpostman.com/
•	 Microsoft Azure Storage Explorer: You can download this from http://

storageexplorer.com/

You can use Storage Explorer to connect to your storage accounts and view all the
data available from different storage services, such as Blobs, Queues, Tables and
Files. You can also create, update and delete them right from the Storage Explorer.

https://www.getpostman.com/%20
http://storageexplorer.com/%20
http://storageexplorer.com/%20

Chapter 5

[123]

How to do it...
In this section, we will create three Azure Functions, using the default templates
available in the Azure Management portal, and then test them with different tools.

Testing HTTP triggers using Postman
Perform the following steps:

1.	 Create an HTTP trigger function that accepts the Firstname and Lastname
parameters and sends them in the response. Once it is created, make sure
you set Authorisation Level as Anonymous.

2.	 Replace the default code with the following. Note that for the sake
of simplicity, I have removed the validations. In real-time applications,
you need to validate each and every input parameter:
#r "Newtonsoft.Json"

using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req,
ILogger log)
{
 log.LogInformation("C# HTTP trigger function processed
a request.");

 string firstname=req.Query["firstname"];
 string lastname=req.Query["lastname"];

 string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
 dynamic data = JsonConvert.DeserializeObject(requestBody);
 firstname = firstname ?? data?.firstname;
 lastname = lastname ?? data?.lastname;

 return (ActionResult)new OkObjectResult($"Hello,
{firstname + " " + lastname}");

}

Exploring Tests Tools for the Validation of Azure Functions

[124]

3.	 Open the Postman tool and complete the following:
1.	 The first step is to choose the type of HTTP method with which you

would like to make the HTTP request. As our function accepts most
of the methods by default, choose the GET method, shown as follows:

2.	 The next step is to provide the URL of the HTTP trigger. Note that
you would need to replace <HttpTriggerTestUsingPostman>
with your actual HttpTrigger function name, shown as follows:

4.	 Click on the Send button to make the request. If you have provided all the
details expected by the API, then you would see a Status: 200 OK, along with
the response, as shown here:

Chapter 5

[125]

Testing a Blob trigger using Microsoft Storage
Explorer
Perform the following steps:

1.	 Create a new Blob trigger by choosing the Azure Blob Storage trigger
template, as shown here:

2.	 Once you click on the template in the previous screenshot, it will prompt you
to provide a storage account and a container where you will store the Blob,
shown as follows:

Exploring Tests Tools for the Validation of Azure Functions

[126]

3.	 Let’s connect to the storage account that we will be using in this recipe. Open
Microsoft Azure Storage Explorer and click on the button that is highlighted
in the following screenshot to connect to Azure Storage:

4.	 You will be prompted to enter various details, including storage connection
string, shared access signature (SAS) and your account key. For this
recipe, let’s use the storage connection string. Navigate to Storage Account,
copy the connection string in the Access Keys blade and paste it in the
Microsoft Azure Storage Explorer – Connect pop-up, shown as follows:

Chapter 5

[127]

5.	 Clicking on the Next button in the preceding screenshot will take you to
the Connection Summary window, displaying the account name and other
related details for confirmation. Click on the Connect button to connect to the
chosen Azure Storage account.

6.	 As shown in the following screenshot, you are now connected to the Azure
Storage account, where you can manage all your Azure Storage services:

7.	 Now, let’s create a storage container named samples-workitems. Right-click
on the Blob Containers folder and click on Create Blob Container to create
a new Blob container named samples-workitems. Then click on the Upload
files button, as shown in the following screenshot:

8.	 In the Upload Files window, choose a file that you would like to upload,
and then click on the Upload button.

Exploring Tests Tools for the Validation of Azure Functions

[128]

9.	 Immediately navigate to the Azure Function code editor and look at the Logs
window, as shown in the following screenshot. The log shows the Azure
Function getting triggered successfully:

Testing the Queue trigger using the Azure
Management portal
Perform the following steps:

1.	 Create a new Azure Storage Queue trigger named
QueueTriggerTestusingPortal, as shown in the following screenshot.
Take note of the Queue name, myqueue-items, as we need to create a Queue
service with the same name later using the Azure Management portal:

Chapter 5

[129]

2.	 Navigate to the storage account’s Overview blade and click on Queues,
as shown in the following screenshot:

3.	 In the Queue service blade, click on Queue to add a new Queue:

4.	 Provide myqueue-items as the Queue name in the Add queue pop-up,
as shown in the following screenshot. This was the same name we used
while creating the Queue trigger. Click on OK to create the Queue service:

Exploring Tests Tools for the Validation of Azure Functions

[130]

5.	 Now we need to create a Queue message. In the Azure Management
portal, click on the myqueue-items Queue service to navigate to the
Messages blade. Click on the Add message button, as shown in the
following screenshot, and then provide a Queue message text. Lastly,
click on OK to create the Queue message:

6.	 Immediately navigate to the QueueTriggerTestusingPortal Queue trigger
and view the Logs blade. Here, you can find out how the Queue function
was triggered, as shown in the following screenshot:

Chapter 5

[131]

There’s more...
For all your HTTP triggers, if you would like to allow your API consumers to only
use the POST method, then you can restrict it as such by choosing Selected methods
and choosing only POST in Selected HTTP methods, as shown in the following
screenshot:

Testing an Azure Function on a staged
environment using deployment slots
In general, every application needs pre-production environments, such as staging,
beta and so on, in order to review functionalities before publishing them for the
end users.

Though the pre-production environments are great and help multiple stakeholders
validate the application’s functionality against business requirements, there are some
pain points in managing and maintaining them. The following are a few of them:

•	 We would need to create and use a separate environment for our
pre-production environments

•	 Once everything is reviewed in pre-production and the IT Ops team
gets the go-ahead, there would be a bit of downtime in the production
environment while deploying the code base of new functionalities

Exploring Tests Tools for the Validation of Azure Functions

[132]

All the preceding limitations can be covered in Azure Functions, using a feature
called slots (these are called deployment slots in App Service environments). Using
slots, you can set up a pre-production environment where you can review all the
new functionalities and promote them (by swapping, which we will discuss in
a moment) to the production environment seamlessly and whenever you need.

How to do it...
Perform the following steps:

1.	 Create a new function app named MyProductionApp.
2.	 Create a new HTTP trigger and name it MyProd-HttpTrigger1. Replace

the last line with the following:
 return name != null
 ? (ActionResult)new OkObjectResult("Welcome to MyProd-
HttpTrigger1 of Production App")
 : new BadRequestObjectResult("Please pass a name on the
query string or in the request body");

3.	 Create another new HTTP trigger and name it MyProd-HttpTrigger2. Use
the same code that you used for MyProd-HttpTrigger1 – just replace the
last line with the following:
return name != null
 ? (ActionResult)new OkObjectResult("Welcome to MyProd-
HttpTrigger2 of Production App")
 : new BadRequestObjectResult("Please pass a name on the
query string or in the request body");

4.	 Assume that both the functions of the function app are live on your
production environment with the URL https://<<functionappname.
azurewebsites.net>>.

5.	 Now, the customer has requested us to make some changes to both functions.
Instead of directly making the changes to the functions of your production
function app, you might need to create a slot.

6.	 Hold on! Before you can create a slot, you first need to enable the feature by
navigating to the Function app settings under the General Settings of the
Platform features tab of the function app. Once you click on the Function
app settings, a new tab will be opened where you can enable the Slots
(preview), as shown in the following screenshot:

Chapter 5

[133]

The slots feature is currently in preview. By the time you read this, it
might be Generally Available (GA). It is not recommended to use this
feature in production workloads until it goes GA

7.	 Click the On button in the Slots (preview) section highlighted in the
preceding screenshot. As soon as you turn it on, the slots section will be
hidden, as it is a one-time setting. Once it’s enabled, you cannot disable it.

8.	 Okay, let’s create a new slot with all the functions that we have in our
function app, named MyProductionApp.

9.	 Click on the + icon, available near the Slots (preview) section, as shown
in the following screenshot:

10.	 It prompts you to enter a name for the new slot. Provide a meaningful name,
something such as Staging, as shown in the following screenshot:

Exploring Tests Tools for the Validation of Azure Functions

[134]

11.	 Once you click on Create, a new slot will be created, as shown in the
following screenshot. In case, if you see the Functions as read only,
you can make them read-write in the Function App Settings.

The URL for the slot will be https://<<functionappname>>-
<<Slotname>>.azurewebsites.net>>. Each slot within a function
app will have a different URL.

12.	 To make a staged environment complete, you need to copy all the
Azure Functions from the production environment (in this case, the
MyProductionApp app) to the new staged slot named Staging. Create two
HTTP triggers and copy both the functions’ code (MyProd-HttpTrigger1
and MyProd-HttpTrigger2) from MyProductionApp to the new Staging
slot. Basically, you need to copy all the functions to the new slot manually.

13.	 Change the production string to staging in the last line of both the
functions in the Staging slot. This is useful for testing the output of
the swap operation:

Chapter 5

[135]

Note that, in all the slots that you create as a pre-production app, you
need to make sure that you use the same function names as you have
in your production environment.

14.	 Click on the Swap button, available in the Deployment slots blade,
as shown in the following screenshot:

15.	 In the Swap blade, you need to choose the following:
°° Swap Type: Choose the Swap option.
°° Source: Choose the slot that you would like to move to production.

In this case, we’re swapping Staging in general, but you can even
swap across non-production slots.

Exploring Tests Tools for the Validation of Azure Functions

[136]

°° Destination: Choose the production option, as shown in the
following screenshot:

16.	 Once you review the settings, click on the OK button of the preceding step.
It will take a few moments to swap the functions. A progress bar will appear,
as shown in the following screenshot:

Chapter 5

[137]

17.	 After a minute or two, the staging and production slots get swapped.
Let’s review the run.csx cript files of the production:

18.	 If you don’t see any changes, click on the refresh button of the function app,
as shown in the following screenshot:

Exploring Tests Tools for the Validation of Azure Functions

[138]

19.	 Make sure that the Application settings and Database Connection Strings
are marked as Slot Setting (slot-specific). Otherwise, Application settings
and Database Connection Strings will also get swapped, which could cause
unexpected behaviour. You can mark any of these settings as such from
Platform features, as shown in the following screenshot:

20.	 Clicking on the Application settings will take you to the following blade,
where you can mark any setting as a SLOT SETTING:

9

All the functions taken in the recipe are HTTP triggers; note that you can
have any kind of triggers in the function app. The deployment slots are
not limited to HTTP triggers.
You can have multiple slots for each of your function apps. The following
are a few of the examples:
Alpha
Beta
Staging

Chapter 5

[139]

There’s more...
If you try to create a slot without enabling the feature of Deployment Slots,
you will see something similar to what is shown in the following screenshot:

You need to have all the Azure Functions in each of the slots that you would like
to swap with your production function app:

•	 Slots are specific to the function app, but not to the individual function.
•	 Once you enable the slots features, all the keys will be regenerated, including

the master. Be cautious if you have already shared the keys of the functions
with third parties. If you had already shared them and enabled the slots,
all the existing integrations with the old keys will not work.

In general, if you are using App Services and would like to create deployment
slots, you need to have your App Service plan in either one of the Standard
or Premium tiers. However, you can create slots for the function app even
if it is under Consumption (or dynamic) plans.

Load testing Azure Functions using
Azure DevOps
Every application needs to perform well in terms of performance. It’s everyone’s
responsibility within the team that the application is performing well. In this recipe,
you will learn how to create a load on the Azure Functions using the Load Test
tool provided by Azure DevOps (formerly known as VSTS). This recipe will also
help you understand how the auto-scaling of instances works in the serverless
environment, without the developers or architect needing to worry about the
instances that are responsible for serving the requests.

Exploring Tests Tools for the Validation of Azure Functions

[140]

Getting ready
Create an Azure DevOps account at https://visualstudio.microsoft.com/. We
will be using the Load Test tool of Azure DevOps to create URL-based load testing.

How to do it...
Perform the following steps:

1.	 Create a new HTTP trigger, named LoadTestHttpTrigger, with
Authorisation Level set to Anonymous.

2.	 Replace the default code in run.csx with the following:
using System.Net;
using Microsoft.AspNetCore.Mvc;
public static async Task<IActionResult> Run(HttpRequest req,
ILogger log)
{
 System.Threading.Thread.Sleep(2000);
 return (ActionResult)new OkObjectResult($"Hello");
}

3.	 The preceding code is self-explanatory. In order to make the load test
interesting, let’s simulate some processing load by adding a wait time
of two seconds, using System.Threading.Thread.Sleep(2000);.

4.	 Copy the function URL by clicking on the </> Get function URL
link on the right-hand side of the run.csx code editor.

5.	 Navigate to the Load test tab of the Azure DevOps account. You
can find it under the Test menu after you log in to Azure DevOps:

https://visualstudio.microsoft.com/

Chapter 5

[141]

6.	 Click on the New link and select URL based test, as shown in the following
screenshot:

7.	 In the Web Scenarios tab, provide a meaningful name for the load test,
as shown in the following screenshot:

8.	 Paste the HTTP trigger URL that you copied in step 4 into the URL input
field, as shown in the following screenshot:

9.	 Now, click on the Save button to save the load test:

Exploring Tests Tools for the Validation of Azure Functions

[142]

10.	 The next step is to provide details about the load that we would like to
create on the Azure Function. As shown in the following screenshot, click
on Settings and provide the details about the load test that you would like,
depending on your requirements:

11.	 Once you provide all your details for the load test, click on Save. Once
you save the test, the Run test button will be enabled, as shown in the
following screenshot:

12.	 Click on Run test to start the load test. As the run duration of our load test is
20 minutes, it would take 20 minutes to complete the load test. Once the load
is complete, Azure DevOps provides us with the performance reports, shown
as follows:

Chapter 5

[143]

°° Summary report: This provides us the average response time of the
HTTP trigger for the load of 1 K users.

There’s more...
We can also look at how Azure scales out the instances automatically behind the
scenes in the Live Metrics Stream tab of Application Insights. The following
screenshot shows the instance IDs and the health of the virtual machines that are
allocated automatically, based on the load on the Azure serverless architecture. You
will learn how to integrate Application Insights with Azure Functions in Chapter 6,
Monitoring and Troubleshooting Azure Serverless Services

Exploring Tests Tools for the Validation of Azure Functions

[144]

See also
The Monitoring Azure Functions using Application Insights recipe in Chapter 6,
Monitoring and Troubleshooting Azure Serverless Services, contains more information
on this topic.

Creating and testing Azure Functions
locally using Azure CLI tools
Most of the recipes that you have learned so far have been created using either
the browser or Visual Studio Integrated Development Environment (IDE).

Azure also provides us with tools for developers that love working with the
command line. These tools allow us to create Azure resources with simple
commands right from the command line. In this recipe, you will learn how
to create a new function app and also understand how to create a function
and deploy it to the Azure Cloud right from the command line.

Getting ready
Perform the following steps:

•	 Download and install Node.js from https://nodejs.org/en/download/.
•	 Download and install Azure CLI tools from https://docs.microsoft.com/

cli/azure/install-azure-cli?view=azure-cli-latest.

How to do it...
Perform the following steps:

1.	 Once the Azure Functions Core Tools are ready, run the following command
to create a new function app:
 func init

You will get the following output after executing the preceding command:

https://nodejs.org/en/download/
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest

Chapter 5

[145]

In the preceding screenshot, dotnet is selected by default. Pressing Enter
will create the required files, as shown in the following screenshot:

2.	 Run the following command to create a new HTTP trigger function within
the new function app that we have created:
 func new

You will get the following output after executing the preceding command:

3.	 As shown in the preceding screenshot, you will be prompted to choose
the function template. For this recipe, I have chosen HttpTrigger. Choose
HttpTrigger by using the down arrow. You can choose the Azure Function
type based on your requirements. You can navigate between the options
using the up/down arrows on your keyboard.

Exploring Tests Tools for the Validation of Azure Functions

[146]

4.	 The next step is to provide a name for the Azure Function that you are
creating. Provide a meaningful name and press Enter, as shown in the
following screenshot:

5.	 You can use your favourite IDE to edit the Azure Function code. In this
recipe, I am using Visual Studio Code to open the HttpTrigger function,
as shown in the following screenshot:

6.	 Let’s test the Azure Function right from your local machine. For this, we
need to start the Azure Function host by running the following command:
 Func host start --build

Chapter 5

[147]

7.	 Once the host is started, you can copy the URL and test it in your
browser, along with a query string parameter name, as shown in
the following screenshot:

Testing and validating Azure Function
responsiveness using Application
Insights
Any application is only useful for any business if it is up and running. Applications
might go down for multiple reasons; the following are a few of them:

•	 Any hardware failures, such as a server crash, bad hard disk or any other
hardware issue – even an entire datacentre might go down, although this
would be very rare

•	 There might be software errors because of bad code or a deployment error
•	 The site might receive unexpected traffic and the servers may not be capable

of handling this traffic
•	 There might be cases where your application is accessible from one country,

but not from others

It would be really helpful to get a notification when our site is not available or not
responding to user requests. Azure provides a few tools to help by alerting us if the
website is not responding or is down. One of them is Application Insights. You will
learn how to configure Application Insights to ping our Azure Function app every
minute and set it to alert us if the function is not responding.

Exploring Tests Tools for the Validation of Azure Functions

[148]

Getting ready
Perform the following steps:

1.	 Navigate to the Azure Management portal, search for Application Insights,
then click on the Create button, and provide all the required details, as
shown in the following screenshot:

Chapter 5

[149]

2.	 Navigate to your function app’s Overview blade and grab the function app
URL, as shown in the following screenshot:

How to do it...
Perform the following steps:

1.	 Navigate to the Availability blade and click on the Add test button,
as shown in the following screenshot:

Exploring Tests Tools for the Validation of Azure Functions

[150]

2.	 In the Create test blade, enter a meaningful name for your requirement
and paste the function app URL, which you noted down in step 2 of the
preceding Getting ready section, in the URL field of the Create test blade.
In the Alerts blade, provide a valid email address in the Send alert emails
to these email addresses: field, to which an alert should be sent if the
function is not available or not responding:

Chapter 5

[151]

3.	 Click on OK in the Alerts blade, and then click on the Create button of the
Create test blade to create the test, as shown in the following screenshot, in
the All availability tests section:

4.	 In order to test the functionality of this alert, let’s stop the function app by
clicking on the Stop button, found in the Overview tab of the function app.

Exploring Tests Tools for the Validation of Azure Functions

[152]

5.	 When the function app was stopped, Application Insights will try to access
the function URL using the ping test. The response code will not be 200, as
the app was stopped, which means the test failed and a notification should
have been sent to the configured email, as shown in the following screenshot:

How it works...
We have created an Availability test, where our function app will be pinged once
every five minutes from a maximum of five different locations across the world. You
can configure them in the Test Location tab of the Create test blade while creating
the test. The default criterion of the ping is to check if the response code of the URL
is 200. If the response code is not 200, then the test has failed and an alert is sent
to the configurable email address.

There’s more...
You can use a multi-step web test (using the Test Type option in the Create test
blade) if you would like to test a page or functionality that requires navigating
to multiple pages.

Developing unit tests for Azure Functions
with HTTP triggers
So far, we have created multiple Azure Functions and validated their functionality
using different tools. The functionalities of the functions that we have developed so
far is pretty simple and straightforward; however, in your real-world applications, it
won’t be that simple – there will likely be many changes to the code that we initially
created. It’s good practice to write automated unit tests that can help us in testing the
functionality of our Azure Functions. Every time we run these automated unit tests,
we can test all the various paths within the code.

Chapter 5

[153]

In this recipe, we will learn how to use the basic HTTP trigger and see how easy it is
to write automated unit test cases for this using Visual Studio Test Explorer and Moq
(an open source framework available as a NuGet package).

Getting ready
We will be using the Moq mocking framework to unit test our Azure Function.
Having a basic working knowledge of Moq is a requirement for this recipe. If you
need to, you can learn more about Moq at https://github.com/moq/moq4/wiki.

In order to make the Unit Test Case simple, I have commented out the lines
of code that reads the data from the Post parameters to the Run method of
HTTPTriggerCSharpFromVS HTTPTrigger as shown below with bold highlighted.

[FunctionName("HTTPTriggerCSharpFromVS")]
 public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",
Route = null)] HttpRequest req,
 ILogger log)
 {
 log.LogInformation("C# HTTP trigger function processed a
request.");

 string name = req.Query["name"];

 //string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
 //dynamic data = JsonConvert.
DeserializeObject(requestBody);
 //name = name ?? data?.name;

 return name != null
 ? (ActionResult)new OkObjectResult($"Hello, {name}")
 : new BadRequestObjectResult("Please pass a name on
the query string or in the request body");
 }

https://github.com/moq/moq4/wiki

Exploring Tests Tools for the Validation of Azure Functions

[154]

How to do it...
Perform the following steps:

1.	 Create a new unit testing project by right-clicking on the solution, and then
clicking on Add New Project. In the Add New Project window, choose Test
in the list of Project Type and choose xUnit Test Project(.NET Core) in the
list of projects, as shown here:

2.	 Ensure that you have chosen the xUnit Test Project(.NET Core) in the
Package Manager console and run the following commands:

°° Install the Moq NuGet package using the Install-Package Moq
command

°° Install the ASP.NET Core package using the Install-Package
Microsoft.AspNetCore command

3.	 In the unit test project, we also need the reference to the Azure
Function that we want to run the unit tests. Add a reference to the
FunctionAppInVisualStudio application so that we can call the
HTTP trigger’s Run method from our unit tests.

Chapter 5

[155]

4.	 Add all the required namespaces to the Unit Test class, as follows: and
replace the default code with the following code. The following code mocks
the requests, creates a Query string collection with a key named name, assigns
a value of Praveen Sreeram, executes the function, gets the response and
then compares the response value with an expected value:
using FunctionAppInVisualStudio;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http.Internal;
using Microsoft.Extensions.Primitives;
using Moq;
using System;
using System.Collections.Generic;
using Xunit;
using Microsoft.Extensions.Logging;
using System.Threading.Tasks;

namespace AzureFunctions.Tests
{
 public class ShouldExecuteAzureFunctions
 {
 [Fact]
 public async Task WithAQueryString()
 {
 var httpRequestMock = new Mock<HttpRequest>();
 var LogMock = new Mock<ILogger>();
 var queryStringParams = new Dictionary<String,
StringValues>();
 httpRequestMock.Setup(req => req.Query).Returns(new Qu
eryCollection(queryStringParams));
 queryStringParams.Add("name", "Praveen Sreeram");

 var result = await HTTPTriggerCSharpFromVS.
Run(httpRequestMock.Object,LogMock.Object);
 var resultObject = (OkObjectResult)result;
 Assert.Equal("Hello, Praveen Sreeram", resultObject.
Value);
 }
 }
}

Exploring Tests Tools for the Validation of Azure Functions

[156]

5.	 Now, right-click on the unit test and click on Run test(s), as shown in the
following screenshot:

If everything is set up correctly, your tests should pass, as shown in the following
screenshot:

That’s it. We have learnt how to write a basic unit test case for a HTTP Trigger.

[157]

Monitoring and
Troubleshooting Azure

Serverless Services
In this chapter, you will learn about the following:

•	 Troubleshooting your Azure Functions
•	 Integrating Azure Functions with Application Insights
•	 Monitoring your Azure Functions
•	 Pushing custom telemetry details to Application Insights Analytics
•	 Sending application telemetry details via email
•	 Integrating real-time Application Insights monitoring data with

Power BI using Azure Functions

Introduction
Completing the development of a project and making an application live is not the
end of the deployment story. We need to continuously monitor our applications,
analyse their performance and review their logs to understand whether there
are any issues that end users are facing.

Azure provides us with multiple tools to meet all of our monitoring requirements,
right from the development and maintenance stages.

In this chapter, you will learn how to utilise these tools and take any action
necessary based on the information available.

Monitoring and Troubleshooting Azure Serverless Services

[158]

Troubleshooting your Azure Functions
In this recipe, you will learn how to view the application logs of your function apps’
using the log streaming feature of functions.

How to do it...
Once you are done with development and have tested your apps thoroughly in
your local environment, you might want to deploy them to Azure. There might
be cases where you face issues after deploying an application to Azure, as the
environment is different. For example, a developer might have missed creating
App Settings in the app. With a missing configuration key, your application might
not work as expected and it’s not easy to troubleshoot the error. Fortunately, the
Azure environment makes it easy with the Log Streaming feature. In this recipe,
we will learn how to view real-time logs and also gain an understanding of how
to use the Diagnose and solve problems feature.

Viewing real-time application logs
Perform the following steps:

1.	 Navigate to Platform features of the function app and click on the Log
Streaming button, where you can view the Application logs , as shown
in the following screenshot:

At the time of writing, web server logs provide no information
relating to Azure Functions.

Chapter 6

[159]

2.	 Let’s open any of the Azure Functions that you added earlier in a new
browser tab and add a line of code that causes an exception. To make it simple
(and to just illustrate how application logs in log streaming work), I have
added the following line to the simple HTTP trigger that I created earlier:

3.	 Subsequently, click on the Save button, and then on the Run button.
As expected, you will receive an exception, along with the message
in the Application logs section shown in the following screenshot:

The log window shows errors only for that particular function and not
for the other functions associated with the function app. That is where log
streaming application logs come in handy, which can be used across the
functions of any given function app.

Monitoring and Troubleshooting Azure Serverless Services

[160]

Diagnosing the entire function app
In the preceding section, we learned how to monitor application errors in real time,
which will be helpful to quickly identify and fix any we come across. However, it is
not always possible to monitor application logs and understand the errors that end
users might be facing. Azure Functions provides another great tool, called Diagnose
and solve problems:

1.	 Navigate to Platform features and click on Diagnose and solve problems,
as shown in the following screenshot:

2.	 Soon after, you will be taken to another blade, where you can choose the
right category for the problems that you are currently troubleshooting.
Click on 5xx Errors to view details about the exceptions that end users
are facing, as shown in the following screenshot:

Chapter 6

[161]

3.	 This will show you Function Availability and Performance and Application
Crashes. Click on the Function Availability and Performance option to view
the actual links, as shown in the following screenshot:

4.	 Click on Function Executions and Errors to view the detailed exceptions,
as shown in the following screenshot:

There’s more...
Each function event is logged in an Azure Table Storage service. Every month,
a table is created with the name AzureWebJobsHostLogs<Year><Month>.

Monitoring and Troubleshooting Azure Serverless Services

[162]

As part of troubleshooting, if you would like to get more details on any error, you
first find the Id field in the Invocation details section, as shown in the following
screenshot:

Look for that data in the RowKey column of the AzureWebJobsHostLogs<year><mo
nth> table, as shown in the following screenshot:

As shown in the preceding screenshot, you will get the log entry stored in the Table
storage. Clicking on the row will open up the complete details of the error, as shown
in the following screenshot:

Chapter 6

[163]

Integrating Azure Functions with
Application Insights
Application Insights is an application performance management service. Once you
integrate Application Insights into your application, it will start sending telemetry
data to your Application Insights account, hosted on the cloud. In this recipe, you
will learn how simple it is to integrate Azure Functions with Application Insights.

Getting ready
We created an Application Insights account in the Testing and validating Azure
Functions responsiveness using Application Insights recipe of Chapter 5, Exploring Testing
Tools for the Validation of Azure Functions. Create an account, if you haven’t already
done so, by taking the following steps:

1.	 Navigate to Azure Management portal, click on Create a resource and then
select Management Tools.

2.	 Choose Application Insights and provide all the required details. If you
already created an Application Insights account in the previous recipe,
you can ignore this step.

Monitoring and Troubleshooting Azure Serverless Services

[164]

How to do it...
Perform the following steps:

1.	 Once the Application Insights account is created, navigate to the Overview
tab and go to Instrumentation Key, as shown in the following screenshot:

2.	 Navigate to Function apps, for which you would like to enable monitoring
and go to Application settings.

3.	 Add a new key with the name APPINSIGHTS_INSTRUMENTATIONKEY and
provide the instrumentation key that you copied from the Application
Insights account, shown as follows, then click on Save to save the changes:

4.	 That’s it; you can start utilising all the features of Application Insights
to monitor the performance of your Azure functions. Open Application
Insights and the RegisterUser function in two different tabs to test how
Live Metrics Stream works:

°° Open Application Insights and click on Live Metrics Stream in
the first tab of your browser, as shown in the following screenshot:

Chapter 6

[165]

°° Open any of your Azure functions (in my case, I have opened HTTP
trigger) in another tab and run a few tests to ensure that it emits
some logs to Application Insights.

5.	 After you have completed those tests, go to the tab that has Application
Insights. You should see the live traffic going to your function app,
as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services

[166]

How it works...
We have created an Application Insights account. Once you integrate Application
Insights’ Instrumentation Key with Azure Functions, the runtime will take care of
sending the telemetry data asynchronously to your Application Insights account.

There’s more...
In Live Metrics Stream, you can also view all the instances, along with some other
data, such as the number of requests per second handled by your instances.

Monitoring your Azure Functions
We now understand how to integrate Azure Functions with Application Insights.
Let’s now gain an understanding of how to view the logs that are written to
Application Insights by Azure Functions code so that, as a developer, you can
troubleshoot any exceptions that occur.

Let’s make a small change to the HTTP trigger function, and then run it a few times.

How to do it...
Perform the following steps:

1.	 Navigate to the HTTP trigger that you created and replace the following
code. I just moved the line of code that logs the information to the Logs
console and added the name parameter at the end of the method:
public static async Task<IActionResult> Run(HttpRequest req,
ILogger log)
 {
 string name = req.Query["name"];
 string requestBody = await new
StreamReader(req.Body).ReadToEndAsync();
 dynamic data = JsonConvert.
DeserializeObject(requestBody);
 name = name ?? data?.name;
 log.LogInformation($"C# HTTP trigger function processed
a request with the input value {name}");
 return name != null
 ? (ActionResult)new OkObjectResult($"Hello, {name}")
 : new BadRequestObjectResult("Please pass a name on
the query string or in the request body");
}

Chapter 6

[167]

2.	 Now, run the function by providing the value for the name parameter with
different values such as Azure Test Run 1, Azure Test Run 2 and Azure
Test Run 3. This is just for demo purposes. You can use any input you like.
The Logs console will show the following output:

3.	 The logs in the preceding Logs console are only available when you
are connected to the Logs console. You will not get them when you go
offline. That’s where Application Insights comes in handy. Navigate to
the Application Insights instance that you have integrated with the Azure
function app.

4.	 Click on the Analytics button that is available in the Overview tab
of Application Insights, as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services

[168]

5.	 In the analytics query window, type the traces | sort by timestamp
desc command, which returns all the traces sorted by date descending,
as shown in the following screenshot:

How it works...
In HTTP trigger, we have added a log statement that displays the value of the name
parameter that the user provides. We ran HTTP trigger a few times. After some time,
click on the Analytics button in the Application Insights button, which opens the
analytics window, where you can write queries to view the telemetry data that is
being emitted by Azure Functions. All of this can be achieved without writing any
custom code.

Pushing custom telemetry details to
Application Insights Analytics
You have been asked by our customers to provide analytic reports for a derived
metric within Application Insights. So, what is a derived metric? Well, by default,
Application Insights provides you with many insights into metrics such as requests,
errors, exceptions and so on.

You can run queries on the information that Application Insights provides using
its Analytics query language.

Chapter 6

[169]

In this context, requests per hour is a derived metric and if you would like
to build a new report within Application Insights, then you will need to feed
Application Insights about the new derived metric on a regular basis. Once you
feed the required data regularly, Application Insights will take care of providing
reports for your analysis.

We will be using Azure Functions that feed Application Insights with a derived
metric named requests per hour:

For this example, we will develop a query using the Analytics query language for the
request per hour derived metric. You can make changes to the query to generate
other derived metrics for your requirements, say, requests per hour for my campaign or
something similar to that.

You can learn more about the Analytics query language at
https://docs.microsoft.com/en-us/azure/application-
insights/app-insights-analytics-reference.

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference

Monitoring and Troubleshooting Azure Serverless Services

[170]

Getting ready
Perform the following prerequisite steps:

1.	 Create a new Application Insights account, if you don’t have one already.
2.	 Make sure you have a running application that integrates with Application

Insights. You can learn how to integrate your application with Application
Insights at https://docs.microsoft.com/en-us/azure/application-
insights/app-insights-asp-net.

It is recommended to create this recipe and the following two
in a separate Azure function app that is based on runtime v1,
as these templates are not available in v2 yet. By the time, if
you don’t see the Application Insights Scheduled Analytics
template, then change the Azure Functions runtime version to
v1 by setting the value of FUNCTIONS_EXTENSIONS_VERSION
to ~1, as shown in the following screenshot, in the Application
settings of Azure Functions:

How to do it...
We will perform the following steps to push custom telemetry details to Application
Insights Analytics.

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net

Chapter 6

[171]

Creating an Application Insights function
Perform the following steps:

1.	 Create a new function template by choosing Monitoring in the Scenario
drop-down, as shown in the following screenshot: You can also search for
scheduled analytics to easily find the template:

2.	 Now, click on C# (shown in the preceding screenshot) and provide the name
along with the schedule frequency at which the function needs to run:

3.	 As shown in the preceding screenshot, click on the Create button to create
the function.

Monitoring and Troubleshooting Azure Serverless Services

[172]

Configuring access keys
Perform the following steps:

1.	 Navigate to Application Insights’ Overview blade, as shown, and copy the
Instrumentation Key. We will be using the Instrumentation Key to create
an application setting named AI_IKEY in the function app:

2.	 Navigate to the API Access blade and copy the Application ID. We will
be using this Application ID to create a new app setting with the name
AI_APP_ID in the function app:

3.	 We also need to create a new API key. As shown in the preceding step, click
on the Create API key button to generate the new API key, as shown in the
following screenshot: Provide a meaningful name, check the Read telemetry
data and click on Generate key:

Chapter 6

[173]

4.	 Soon after, you can view and copy the key, as shown in the following
screenshot: We will be using this to create a new app setting with the
name AI_APP_KEY in our function app:

Monitoring and Troubleshooting Azure Serverless Services

[174]

5.	 Create all three app setting keys in the function app, as shown in the
following screenshot: These three keys will be used in our Azure Function
named FeedAIwithCustomDerivedMetric.

Integrating and testing an Application
Insights query
Perform the following steps:

1.	 Now, it’s time to develop a query that provides us with the requests
per hour derived metric value. Navigate to the Application Insights
Overview blade and click on the Analytics button.

2.	 You will be taken to the Analytics blade. Write the following query in
the query tab. You can write your own query as per your requirements.
Make sure that the query returns a scalar value:
 requests
 | where timestamp > now(-1h)
 | summarize count()

3.	 Once you are done with your query, run it by clicking on the Run button
to see the count of records, as shown in the following screenshot:

Chapter 6

[175]

4.	 We are now ready with the required Application Insights query. Let’s
integrate the query with our FeedAIwithCustomDerivedMetrics function.
Navigate to the Azure Functions code editor and make the following
changes:

1.	 Provide a meaningful name for your derived metric, in this case,
Requests per hour.

2.	 Replace the default query with the one that we have developed.
3.	 Save the changes by clicking on the Save button:

5.	 Let’s do a quick test to see whether you have configured all three app
settings and the query correctly. Navigate to the Integrate tab and change
the run frequency to one minute, as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services

[176]

6.	 Now, let’s navigate to the Monitor tab and see whether everything is
working fine. If there are any problems, you will see an X mark in the
Status column. View the error in the Logs section of the Monitor tab
by clicking on the Invocation log entry:

7.	 Once you have made sure that the function is running smoothly, revert
the Schedule frequency to one hour.

Configuring the custom derived metric report
Perform the following steps:

1.	 Navigate to the Application Insights’ Overview tab and click on the
Metrics menu, as shown in the following screenshot:

2.	 Metrics Explorer is where you will find all of your analytics regarding
different metrics. In Metrics Explorer, click on the Edit button of any report
to configure your custom metric, as shown in the following screenshot
(or you can click on the Add chart button in the top-left of the following
screenshot):

Chapter 6

[177]

3.	 Thereafter, you will be taken to the Chart details blade, where you can
configure your custom metric and all other details related to the chart. In
the METRIC NAMESPACE drop-down, choose azure.applicationinsghts,
as shown in the following screenshot, and then choose the Request per hour
custom metric that you created:

Monitoring and Troubleshooting Azure Serverless Services

[178]

4.	 Subsequently, your chart will be created as shown in the following screenshot:

How it works...
This is how the entire process works:

•	 We created the Azure Function using the default Application Insights
Scheduled Analytics template.

•	 We configured the following keys in the Application settings of the Azure
function app:

°° Application Insights’ Instrumentation Key
°° The application ID
°° The API access key

•	 The Azure function runtime automatically consumed the Application
Insights API, ran the custom query to retrieve the required metrics and
performed the required operations to feed the derived telemetry data to
Application Insights.

Chapter 6

[179]

•	 Once everything in the Azure function was configured, we developed a
simple query that pulled the request count of the last hour and fed it to
Application Insights as a custom derived metric. This process repeated
every hour.

•	 Later, we configured a new report using Application Insights Metrics
with our custom derived metric.

Sending application telemetry details
via email
One of the activities of your application, once live, will be to receive a notification
email with details about health, errors, response time and so on, at least once a day.

Azure Functions provides us with the ability to get all the basic details using a
function template with code that is responsible for retrieving all the required values
from Application Insights and the plumbing code of framing the email body and
sending the email using SendGrid. We will look at how to do that in this recipe.

Getting ready
Perform the following prerequisite steps:

1.	 Create a new SendGrid account, if you have not yet created one, and get
the SendGrid API key

2.	 Create a new Application Insights account, if you don’t have one already
3.	 Make sure you have a running application that integrates with Application

Insights

You can learn how to integrate your application with Application Insights
at https://docs.microsoft.com/en-us/azure/application-
insights/app-insights-asp-net.

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net

Monitoring and Troubleshooting Azure Serverless Services

[180]

How to do it...
Perform the following steps:

1.	 Create a new function by choosing Monitoring in the Scenario drop-down
and select the Application Insights scheduled digest—C# template, as
shown in the following screenshot:

2.	 Soon after, you will be prompted to provide the name of the function, the
scheduled frequency and the SendGrid API Key for the SendGrid output
binding, as shown in the following screenshot:

Chapter 6

[181]

3.	 Next, click on the Create button shown in the previous step to create the new
Azure Function. The template creates all the code that’s required to query the
data from Application Insights and sends an email to the person mentioned
in the To address of the preceding screenshot.

Make sure that you follow the steps in the Configuring access keys
section of the Pushing custom telemetry details to analytics of Application
Insights recipe to configure these access keys: Application Insights
Instrumentation Key, the application ID and the API access key.

4.	 Navigate to the run.csx function and change the app name to your
application name, as shown in the following screenshot:

5.	 If you’ve configured all the settings properly, you will start receiving emails
based on the timer settings.

6.	 Let’s do a quick test run by clicking on the Run button above the code editor,
as shown in the following screenshot:

7.	 This is a screenshot of the email that I received after clicking on the Run
button in the preceding screenshot:

Monitoring and Troubleshooting Azure Serverless Services

[182]

How it works...
The Azure Function uses the Application Insights API to run all the Application
Insights Analytics queries, retrieves all the results, frames the email body with
all the details and invokes the SendGrid API to send an email to the configured
email account.

There’s more...
Azure templates provide default code that has a few queries that are generally
useful for monitoring application health. If you have any specific requirements
for getting notification alerts, go ahead and add new queries to the GetQueryString
method. In order to incorporate the new values, you will also need to change the
DigestResult class and the GetHtmlContentValue function.

See also
The Sending an email notification to the administrator of the website using the SendGrid
service recipe of Chapter 2, Working with Notifications Using the SendGrid and Twilio
Services.

Integrating real-time Application Insights
monitoring data with Power BI using
Azure Functions
Sometimes, you will need to view real-time data about your application’s availability
or information relating to your application’s health on a custom website. Retrieving
information for Application Insights and displaying it in a custom report would be
a tedious job, as you’d need to develop a separate website and build, test and host
it somewhere.

In this recipe, you will learn how easy is to view real-time health information for the
application by integrating Application Insights and Power BI. We will be leveraging
Power BI capabilities for the live streaming of data and Azure timer functions to
continuously feed health information to Power BI. This is a high-level diagram of
what we will be doing in the rest of the recipe:

Chapter 6

[183]

In this recipe, we will use the Application Insights Power BI template
of a function app that’s created using Azure Functions v1 runtime.
The Azure Functions v2 runtime doesn’t have it. If you are using the
v2 runtime, you can simply create a Timer Trigger and follow the
instructions in this recipe.

Getting ready
Perform the following prerequisites steps:

1.	 Create a Power BI account at https://powerbi.microsoft.com.
2.	 Create a new Application Insights account, if you don’t have one already.
3.	 Make sure that you have a running application that integrates with

Application Insights. You can learn how to integrate your application with
Application Insights at https://docs.microsoft.com/en-us/azure/
application-insights/app-insights-asp-net.

https://powerbi.microsoft.com
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net

Monitoring and Troubleshooting Azure Serverless Services

[184]

You need to use your work account to create a Power BI account. At the
time of writing, it’s not possible to create a Power BI account using a
personal email address such as Gmail, Yahoo and so on.
Make sure that you follow the steps in the Configuring access keys
section of the Pushing custom telemetry details to analytics of Application
Insights recipe to configure these access keys: Application Insights
Instrumentation Key, the application ID and the API access key.

How to do it...
We will perform the following steps to integrate Application Insights and Power BI.

Configuring Power BI with a dashboard, a dataset
and the push URI
Perform the following steps:

1.	 If you are using the Power BI portal for the first time, you might have to click
on Skip on the welcome page, as shown in the following screenshot:

Chapter 6

[185]

2.	 The next step is to create a streaming dataset by clicking on Create, and then
choosing Streaming dataset, as shown in the following screenshot:

3.	 In the New streaming dataset step, select API and click on the Next button,
as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services

[186]

4.	 In the next step, you need to create the fields for the streaming dataset.
Provide a meaningful name for the dataset and provide the values that you
would like to push to Power BI. For this recipe, I have created a dataset with
just one field, named RequestsPerSecond, of type Number and clicked on
Create, as shown in the following screenshot:

5.	 Once you create the dataset, you will be prompted with a Push URL, as
shown in the following screenshot: You will use this Push URL in Azure
Functions to push the RequestsPerSecond data every second (or according
to your requirements) with the actual value of requests per second. Click
on Done:

Chapter 6

[187]

6.	 The next step is to create a dashboard with a tile in it. Let’s create a new
dashboard by clicking on Create and choosing Dashboard, as shown
in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services

[188]

7.	 In the Create dashboard pop-up, provide a meaningful name and click on
Create, as shown in the following screenshot, to create an empty dashboard:

8.	 In the empty dashboard, click on the Add tile button to create a new tile.
Clicking on Add tile will open a new pop-up, where you can select the
data source from which the tile should be populated:

Chapter 6

[189]

9.	 Select Custom Streaming Data and click on Next, as shown in the preceding
screenshot. In the following step, select the Requests dataset and click on the
Next button:

10.	 The next step is to choose Visualisation Type (it is Card in this case) and
select the fields from the data source, as shown in the following screenshot:

11.	 The final step is to provide a name for your tile. I have provided
RequestsPerSecond. The name might not make sense in this case.
But you are free to provide any name as per your requirements.

Monitoring and Troubleshooting Azure Serverless Services

[190]

Creating an Azure Application Insights real-time
Power BI – C# function
To create an Azure Application Insights real-time Power BI using the C# function,
complete the following steps:

1.	 Navigate to Azure Functions and create a new function using the following
template:

2.	 Click on C# in the preceding screenshot, provide the Name and click
on the Create button, as shown in the following screenshot:

Chapter 6

[191]

3.	 Replace the default code with the following code. Make sure that you
configure the right value for which the analytics query should pull the data.
In my case, I have provided five minutes (5m) in the following code:
 #r "Newtonsoft.Json"
 using System.Configuration;
 using System.Text;
 using Newtonsoft.Json.Linq;
 private const string AppInsightsApi =
 "https://api.applicationinsights.io/beta/apps";
 private const string RealTimePushURL =
"PastethePushURLhere";
 private static readonly string AiAppId =
 ConfigurationManager.AppSettings["AI_APP_ID"];
 private static readonly string AiAppKey =
 ConfigurationManager.AppSettings["AI_APP_KEY"];

 public static async Task Run(TimerInfo myTimer,
TraceWriter
 log)
 {
 if (myTimer.IsPastDue)
 {
 log.Warning($"[Warning]: Timer is running late! Last
ran
 at: {myTimer.ScheduleStatus.Last}");
 }
 await RealTimeFeedRun(
 query: @"
 requests
 | where timestamp > ago(5m)
 | summarize passed = countif(success == true),
 total = count()
 | project passed
 ",
 log: log
);
 log.Info($"Executing real-time Power BI run at:
 {DateTime.Now}");
 }

 private static async Task RealTimeFeedRun(string query,
 TraceWriter log)
 {
 log.Info($"Feeding Data to Power BI has started at:
 {DateTime.Now}");
 string requestId = Guid.NewGuid().ToString();
 using (var httpClient = new HttpClient())
 {
 httpClient.DefaultRequestHeaders.Add("x-api-key",

Monitoring and Troubleshooting Azure Serverless Services

[192]

 AiAppKey);
 httpClient.DefaultRequestHeaders.Add("x-ms-app",
 "FunctionTemplate");
 httpClient.DefaultRequestHeaders.Add("x-ms-client-
 request-id", requestId);
 string apiPath = $"{AppInsightsApi}/{AiAppId}/query?
 clientId={requestId}×pan=P1D&query={query}";
 using (var httpResponse = await
 httpClient.GetAsync(apiPath))
 {
 httpResponse.EnsureSuccessStatusCode();
 var resultJson = await
 httpResponse.Content.ReadAsAsync<JToken>();
 double result;
 if (!double.TryParse(resultJson.SelectToken
 ("Tables[0].Rows[0][0]")?.ToString(), out
result))
 {
 throw new FormatException("Query must result
in a
 single metric number. Try it on Analytics
before
 scheduling.");
 }
 string postData = $"[{{ "requests": "{result}"
 }}]";
 log.Verbose($"[Verbose]: Sending data:
{postData}");
 using (var response = await
 httpClient.PostAsync(RealTimePushURL, new
 ByteArrayContent(Encoding.UTF8.
GetBytes(postData))))
 {
 log.Verbose($"[Verbose]: Data sent with
response:
 {response.StatusCode}");
 }
 }
 }
 }

The preceding code runs an Application Insights analytics query that pulls
data for the last five minutes (requests) and pushes the data to the Power BI
push URL. This process repeats continuously based on the timer frequency
that you have configured.

Chapter 6

[193]

4.	 This is a screenshot that has a sequence of pictures showing the
real-time data:

How it works...
We have created the following in this specific order:

1.	 A streaming dataset in the Power BI application
2.	 A dashboard and new tile that can display the values available in the

streaming dataset
3.	 A new Azure Function that runs an Application Insights Analytics query

and feeds data to Power BI using the push URL of the dataset
4.	 Once everything is done, we can view the real-time data in the Power BI’s

tile of the dashboard

There’s more...
•	 Power BI allows us to create real-time data in reports in multiple ways. In

this recipe, you learned how to create real-time reports using the streaming
dataset. The other ways are with the push dataset and the PubNub streaming
dataset. You can learn more about all three approaches at https://
powerbi.microsoft.com/documentation/powerbi-service-real-time-
streaming/.

•	 Be very careful when you would like real-time application health data.
The Application Insights API has a rate limit. Take a look at https://dev.
applicationinsights.io/documentation/Authorization/Rate-limits
to understand more about API limits.

https://powerbi.microsoft.com/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/documentation/powerbi-service-real-time-streaming/
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits

[195]

Developing Reliable
Serverless Applications

Using Durable Functions
In this chapter, you will learn the following:

•	 Configuring Durable Functions in the Azure Management portal
•	 Creating a Durable Functions hello world app
•	 Testing and troubleshooting Durable Functions
•	 Implementing multithreaded reliable applications using Durable Functions

Introduction
When working on developing modern applications that need to be hosted on the
cloud, you need to make sure that the applications are stateless. Statelessness is an
essential factor for developing cloud-aware applications. For example, you should
avoid persisting any data in the resource that is specific to any virtual machine (VM)
instance provisioned to any Azure Service (for example, app service, the API and
so on). If you do so, you cannot leverage some of the services, such as auto-scaling
functionality, as the provisioning of instances is dynamic. If you depend on any
VM-specific resources, you will end up facing troubles with unexpected behaviours.

Having said that, the downside of the previously mentioned approach is that
you end up working on identifying ways of persisting data in different mediums,
depending on your application architecture.

Developing Reliable Serverless Applications Using Durable Functions

[196]

For more information about Durable Functions, check the official
documentation, available at https://docs.microsoft.com/en-us/
azure/azure-functions/durable-functions-overview.

Configuring Durable Functions in the
Azure Management portal
Azure has come up with a new way of handling statefulness in serverless
architecture, along with other features, such as durability and reliability, in the
form of Durable Functions. This is available as an extension to Azure Functions.
In this chapter, we will start learning about Durable Functions.

Getting ready
Create a new function app if not already created. Ensure that the runtime version
is ~2 in the Application settings, as shown in the following screenshot:

https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview

Chapter 7

[197]

How to do it...
Perform the following steps:

1.	 Click on the + button to create a new function:

2.	 Create a new Durable Functions HTTP starter function by choosing
Durable Functions in the Scenario drop-down menu, as shown in the
following screenshot:

3.	 Subsequently, a new tab will open:

Developing Reliable Serverless Applications Using Durable Functions

[198]

4.	 Click on the Install button, shown in the preceding step, to start installing
the DurableTask extensions. It should take around two minutes to install
the dependencies:

5.	 Once the process is complete, the following should appear:

There’s more...
Currently, C# is the only language supported for developing Durable Functions.
Support for other languages is in the preview phase.

Chapter 7

[199]

Creating a Durable Function hello
world app
Though the overall intention of this book is to have each recipe of every chapter
solve at least one business problem, this recipe doesn’t solve any real-time domain
problems. Instead, it provides some quick-start guidance to help you understand
more about Durable Functions and its components, along with the approach
of developing Durable Functions. In the next chapter, we will learn how easy
it is to develop a workflow-based application using Durable Functions.

Getting ready
We will perform the following steps before moving ahead:

1.	 Download and install Postman from https://www.getpostman.com/,
if you haven’t already installed it

2.	 Read more about Orchestrator and activity trigger bindings at https://
docs.microsoft.com/en-us/azure/azure-functions/durable-
functions-bindings

How to do it...
In order to develop Durable Functions, we need to create the following three
functions:

•	 Orchestrator client: An Azure Function that can manage Orchestrator
instances.

•	 Orchestrator function: The actual Orchestrator function allows
the development of stateful workflows via code. This function can
asynchronously call other Azure Functions (named Activity functions),
and can even save the return values of those functions into local variables.

•	 Activity functions: These are the functions that will be called by the
orchestrator functions.

https://www.getpostman.com/
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings%20
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings%20
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings%20

Developing Reliable Serverless Applications Using Durable Functions

[200]

Creating an HttpStart function in the
Orchestrator client
Perform the following steps:

1.	 Create a new Durable Functions HTTP starter function by choosing
Durable Functions in the Scenario drop-down menu and click on the
Durable Functions HTTP starter, which opens a new tab, shown as follows.
Let’s create a new HTTP function named HttpStart:

2.	 Soon after, you will be taken to the code editor. The following function
is a HTTP trigger which accepts the name of the Function that needs to
be executed along with the input. It uses the StartNewAsync method
of the DurableOrchestrationClient object to start the Orchestration:
 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 #r "Newtonsoft.Json"

 using System.Net;

 public static async Task<HttpResponseMessage> Run(
 HttpRequestMessage req,
 DurableOrchestrationClient starter,
 string functionName,
 ILogger log)
 {
 // Function input comes from the request content.
 dynamic eventData = await req.Content.
ReadAsAsync<object>();
 string instanceId = await starter.
StartNewAsync(functionName,

Chapter 7

[201]

 eventData);

 log.LogInformation($"Started orchestration with ID =
'{instanceId}'.");

 return starter.CreateCheckStatusResponse(req,
instanceId);
 }

3.	 Navigate to the Integrate tab and click on Advanced editor, as shown in the
following screenshot:

4.	 In the Advanced editor, the bindings should be similar to the following. If
not, replace the default code with the following code:

 {
 "bindings":
 [
 {
 "authLevel": "anonymous",
 "name": "req",
 "type": "httpTrigger",
 "direction": "in",
 "route": "orchestrators/{functionName}",
 "methods": [
 "post",
 "get"
]
 },
 {
 "name": "$return",
 "type": "http",
 "direction": "out"
 },
 {
 "name": "starter",

Developing Reliable Serverless Applications Using Durable Functions

[202]

 "type": "orchestrationClient",
 "direction": "in"
 }
]
 }

The HttpStart function works like a gateway for invoking all
the functions in the function app. Any request you make using the
https://<durablefunctionname>>.azurewebsites.net/api/
orchestrators/{functionName} URL format will be received
by this HttpStart function. This function will take care of executing
the Orchestrator function, based on the parameter available in the
{functionName} route parameter. All of this is possible with the route
attribute, defined in function.json of the HttpStart function.

Creating the Orchestrator function
Perform the following steps:

1.	 Let’s create an Orchestrator function by clicking on the Durable Functions
orchestrator template, shown as follows:

2.	 Once you click on the Durable Functions orchestrator tile, you will be taken
to the following tab where you provide the name of the function. Once you
provide the name, click on the Create button to create the Orchestrator
function:

Chapter 7

[203]

3.	 In the DurableFuncManager, replace the default code with the following
and click on the Save button to save the changes: The following Orchestrator
will call the Activity functions using the CallActivityAsync method of the
DurableOrchestraionContext object:
 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 public static async Task<List<string>>
 Run(DurableOrchestrationContext context)
 {
 var outputs = new List<string>();
 outputs.Add(await context.CallActivityAsync<string>
 ("ConveyGreeting", "Welcome Cookbook Readers"));
 return outputs;
 }

4.	 In the Advanced editor of the Integrate tab, replace the default code with
the following code:

 {
 "bindings": [
 {
 "name": "context",
 "type": "orchestrationTrigger",
 "direction": "in"
 }
]
 }

Developing Reliable Serverless Applications Using Durable Functions

[204]

Creating an activity function
Perform the following steps:

1.	 Create a new function named ConveyGreeting using the Durable Functions
activity template:

2.	 Replace the default code with the following code that just displays the name
which is provided as input, and then click on the Save button to save the
changes:
 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 public static string Run(string name)
 {
 return $"Hello Welcome Cookbook Readers!";
 }

3.	 In the Advanced editor of the Integrate tab, replace the default code with
the following code:
 {
 "bindings": [
 {
 "name": "name",
 "type": "activityTrigger",
 "direction": "in"
 }
]
 }

In this recipe, we have created an Orchestration client, an Orchestrator function
and an activity function. We will learn how to test these in our next recipe.

Chapter 7

[205]

How it works...
Let us take a look at the working of the recipe:

•	 We first developed the Orchestrator client (in our case, HttpStart), which
is capable of creating Orchestrators using the StartNewAsync function
of the DurableOrchestrationClient class. This method creates a new
Orchestrator instance.

•	 Next, we developed the Orchestrator function – the most crucial part of
Durable Functions. The following are a few of the most important core
features of the Orchestrator context:

°° It can invoke multiple activity functions
°° It can save the output returned by an activity function and pass

it to another activity function.
°° These Orchestrator functions are also capable of creating checkpoints

that save execution points, so that if there is any problem with the
VMs, then it can replace or resume service automatically

•	 And lastly, we developed the activity function, where we write most
of the business logic. In our case, it’s just returning a simple message.

There’s more...
Durable Functions are dependent on the Durable Task framework. You can
learn more about the Durable Task Framework at https://github.com/Azure/
durabletask.

Testing and troubleshooting Durable
Functions
In previous chapters, we have discussed various ways of testing the Azure
Functions. We can test Durable Functions with the same set of tools. However, the
approach to testing is entirely different, because of its features and the way it works.

In this recipe, we will learn a few of the essential things that one should be aware
of while working with Durable Functions.

https://github.com/Azure/durabletask
https://github.com/Azure/durabletask

Developing Reliable Serverless Applications Using Durable Functions

[206]

Getting ready
Download and install the following if you haven’t installed them yet:

•	 The Postman tool, available from https://www.getpostman.com.
•	 Microsoft Azure Storage Explorer, available from

http://storageexplorer.com.

How to do it...
Perform the following steps:

1.	 Navigate to the code editor of the HttpStart function and grab the URL
by clicking on </>Get function URL. Replace the {functionName} template
value with DurableFuncManager.

2.	 Let’s make a POST request using Postman:

3.	 Once you click on the Send button, you will get a response with the
following:

°° The instance ID
°° The URL for retrieving the status of the function
°° The URL to send an event to the function
°° The URL to terminate the request

4.	 Click on statusQueryGetUri in the preceding step to view the status of
the function. Clicking on the link in the preceding step will open the query
in a new tab within the Postman tool. Once the new tab is opened, click
on the Send button to get the actual output:

https://www.getpostman.com
http://storageexplorer.com

Chapter 7

[207]

5.	 If everything goes well, we can see the runtimeStatus as Completed in
Postman, as shown in the preceding screenshot. You will also get eight
records in the table storage, where the execution history is stored, shown
as follows:

6.	 If something has gone wrong, you can see the error message in the results
column, which tells you in which function the error has occurred. Then,
navigate to the Monitor tab of that function to see a detailed explanation
of the error.

Developing Reliable Serverless Applications Using Durable Functions

[208]

Implementing multithreaded reliable
applications using Durable Functions
I have worked in a few of the applications where parallel execution is required to
perform some computing tasks. The main advantage of this approach is that you
get the desired output pretty quickly, depending on the sub-threads that you create.
It could be achieved in multiple ways using different technologies. However, the
challenge in these approaches is that, if something goes wrong in the middle of any
of the sub-thread, it’s not easy to self-heal and resume from where it was stopped.
I’m sure many of you might have faced similar problems in your application, as
it is a very common business case.

In this recipe, we will implement a simple way of executing a function in parallel
with multiple instances using the Durable Functions for the following scenario.

Assume that we have five customers (whose IDs are 1, 2, 3, 4 and 5 respectively)
who approached us to generate a huge number of barcodes (say around 50,000).
It would take a lot of time to generate the barcodes as it would involve some
image processing tasks. So, one simple way to quickly process the request is
to use asynchronous programming by creating a thread for each of the customers,
and then executing the logic in parallel for each of them.

We will also simulate a simple use case to understand how the Durable Functions
auto-heals when the VM on which they are hosted goes down or is restarted.

Getting ready
Install the following if you haven’t installed them yet:

•	 The Postman tool, available from https://www.getpostman.com/
•	 Microsoft Azure Storage Explorer, available from http://

storageexplorer.com/

https://www.getpostman.com/%20
http://storageexplorer.com/%20
http://storageexplorer.com/%20

Chapter 7

[209]

How to do it...
In this recipe, we will create the following Azure Function triggers:

•	 One Orchestrator function, named GenerateBARCode
•	 Two activity trigger functions, as follows:

°° GetAllCustomers: To make it simple, this function just returns the
array of customer IDs. In your real-world applications, you would
have business logic that decides which customers are eligible and
based that logic, you would return the eligible customer Ids.

°° CreateBARCodeImagesPerCustomer: This function doesn’t actually
create the barcode; rather, it just logs a message to the console, as
our goal is to understand the features of Durable Functions. For each
customer, we will randomly generate a number less than 50,000 and
simply iterate through it.

Creating the Orchestrator function
Perform the following steps:

1.	 Create a new function named GenerateBARCode using the Durable
Functions Orchestrator template. Replace the default code with the
following and click on the Save button to save the changes. The following
code initially classes the GetAllCustomers activity function, stores all the
customer IDs in an array, and then for each customer, it again calls another
activity function that returns the number of Bar Codes that are generated.
Finally, it waits till the Activity functions for all the customers gets completed
and then returns the sum of all the Bar Codes that are generated for all the
customers.
#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
public static async Task<int> Run(
 DurableOrchestrationContext context)
{
 int[] customers = await
 context.CallActivityAsync<int[]>("GetAllCustomers",null);

 var tasks = new Task<int>[customers.Length];
 for (int nCustomerIndex = 0; nCustomerIndex < customers.
Length; nCustomerIndex++)
 {
 tasks[nCustomerIndex] = context.CallActivityAsync<int>
 ("CreateBARCodeImagesPerCustomer",
customers[nCustomerIndex]);

Developing Reliable Serverless Applications Using Durable Functions

[210]

 }

 await Task.WhenAll(tasks);
 int nTotalItems = tasks.Sum(item => item.Result);

 return nTotalItems;
}

2.	 In the Advanced editor of the Integrate tab, replace the default code with the
following code:

 {
 "bindings": [
 {
 "name": "context",
 "type": "orchestrationTrigger",
 "direction": "in"
 }
]
 }

Creating a GetAllCustomers activity function
Perform the following steps:

1.	 Create a new function named GetAllCustomers using the Durable
Functions Activity template, replace the default code with the following
code, and then click on the Save button to save the changes:
 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 public static int[] Run(string name)
 {
 int[] customers = new int[]{1,2,3,4,5};
 return customers;
 }

2.	 In the Advanced editor of the Integrate tab, replace the default code with the
following code:

 {
 "bindings": [
 {
 "name": "name",
 "type": "activityTrigger",

Chapter 7

[211]

 "direction": "in"
 }
]
 }

Creating a CreateBARCodeImagesPerCustomer
activity function
Perform the following steps:

1.	 Create a new function named CreateBARCodeImagesPerCustomer using
the Durable Functions Activity template. Replace the default code with the
following, and then click on the Save button to save the changes:
 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 #r "Microsoft.WindowsAzure.Storage"
 using Microsoft.WindowsAzure.Storage.Blob;

 public static async Task<int> Run(DurableActivityContext
 customerContext,ILogger log)
 {
 int ncustomerId = Convert.ToInt32
 (customerContext.GetInput<string>());
 Random objRandom = new Random(Guid.NewGuid().
GetHashCode());
 int nRandomValue = objRandom.Next(50000);
 for(int nProcessIndex = 0;nProcessIndex<=nRandomValue;
 nProcessIndex++)
 {
 log.LogInformation($" running for {nProcessIndex}");
 }
 return nRandomValue;
 }

2.	 In the Advanced editor of the Integrate tab, replace the default code with the
following code:
 {
 "bindings": [
 {
 "name": "customerContext",
 "type": "activityTrigger",
 "direction": "in"
 }
]
 }

Developing Reliable Serverless Applications Using Durable Functions

[212]

3.	 Let’s run the function using Postman. We will be stopping the App Service to
simulate a restart of the VM where the function would be running and to see
how the Durable Function resumes from where it was paused.

4.	 Make a POST request using Postman, as shown as follows:

5.	 Once you click on the Send button, you will get a response with the status
URL. Click on statusQueryGetURi to view the status of the function.
Clicking on the statusQueryGetURi link will open it in a new tab within the
Postman tool. Once the new tab is opened, click on the Send button to get the
progress of the function.

6.	 While the function is running, let’s navigate to the function app’s Overview
blade and stop the service by clicking on the Stop button:

7.	 The execution of the function will be stopped in the middle. Let’s
navigate to our storage account in Storage Explorer and open the
DurableFunctionsHubHistory table to see how much progress
has been made:

8.	 After some time – in my case, after just five minutes – go back to the
Overview blade and start the function app service. You will notice that
the Durable Function will resume from where it had stopped. We didn’t
write any code for this; it’s an out-of-the-box feature. The following is
the screenshot of the completed function:

Chapter 7

[213]

How it works...
Durable Functions allow us to develop reliable execution of our functions, which
means that even if the VMs crashed or are restarted while the function is running,
it automatically resumes back to its previous state automatically. It does so with
the help of something called checkpointing and replaying, where the history
of the execution is stored in the storage table.

You can learn more about this feature at https://docs.microsoft.
com/en-us/azure/azure-functions/durable-functions-
checkpointing-and-replay.

There’s more...
•	 In case you get a 404 Not Found response when you run the

statusQueryGetURi URL, don’t worry. It will take some time, but it will
eventually work when you make a request later on.

•	 In order to view the execution history of your Durable Functions, navigate
to the DurableFunctionsHubHistory table, which is located in the storage
account that was created while creating the function app:

You can find the storage account name in the Application settings, as shown
in the preceding screenshot.

https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-checkpointing-and-replay
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-checkpointing-and-replay
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-checkpointing-and-replay

[215]

Bulk Import of Data Using
Azure Durable Functions

and Cosmos DB
In this chapter, we will learn the following recipes:

•	 Uploading employee data into Blob Storage
•	 Creating a Blob trigger
•	 Creating the Durable Orchestrator and triggering it for each Excel import
•	 Reading Excel data using activity functions
•	 Auto-scaling Cosmos DB throughput
•	 Bulk inserting data into Cosmos DB

Introduction
In this chapter, we will develop a mini-project by taking a very common use case
that solves the business problem of sharing data across different applications using
Excel. We will use Durable Functions, which is an extension to Azure Functions that
lets you write workflows by writing the minimum lines of code.

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[216]

Here are the two core features of Durable Functions that we will be using in the
recipes of this chapter:

•	 Orchestrator: Orchestrator is a function that is responsible for managing all
activity triggers. It can be treated as a workflow manager that has multiple
steps. Orchestrator is responsible for initiating the activity trigger, passing
inputs to the activity trigger, getting the output, maintaining the state and
then passing the output of one activity trigger to another if required.

•	 Activity trigger: Each activity trigger can be treated as a workflow step
that performs a function.

You can learn more about Durable Functions at https://docs.
microsoft.com/en-us/azure/azure-functions/durable-
functions-overview.

Business problem
In general, every organisation will definitely be using various applications hosted
in multiple platforms across different datacentres (either cloud or on-premises).
Often, there will be requirements where the data from one application needs to be
fed to another system. Usually, Excel spreadsheets (or in some cases, JSON or XML
files) are used for exporting data from one application and importing it into another
application.

You might think that exporting an Excel file from one application to another would
be an easy job, but if there are many applications that need to feed data to other
applications, and on a weekly/monthly basis, then it would become very tedious
and there is lot of scope for manual error. So, obviously the solution is to automate
the process to the highest possible extent.

In this chapter, we will learn how to develop a durable solution based on serverless
architecture using Durable Functions. If you have already read Chapter 7, Developing
Reliable Serverless Applications Using Durable Functions, then you might have some
basic knowledge of what Durable Functions are and how they work. In Chapter 7,
Developing Reliable Serverless Applications Using Durable Functions, we implemented
the solution from the portal. However, in this chapter, we will implement a mini-
project using Visual Studio 2017 (preferably 15.5 or higher).

Before we start developing the project, let’s try to understand the new serverless
way of implementing the solution.

https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview

Chapter 8

[217]

Durable serverless way of implementing
an Excel import
This diagram shows all the steps required for building the solution using
the serverless architecture:

1.	 External clients or applications upload an Excel file to Blob Storage
2.	 Blob Trigger gets triggered after the Excel file is uploaded successfully
3.	 Durable Orchestrator is started from Blob Trigger
4.	 Orchestrator invokes Read Excel – Activity Trigger to read the Excel content

from Blob Storage
5.	 Orchestrator invokes Scale RUs – Activity Trigger to scale up the Cosmos

DB collection’s throughput so that it can accommodate the load
6.	 Orchestrator invokes Import Data – Activity Trigger to prepare the

collection to bulk import data
7.	 Finally, Import Data – Activity Trigger loads the collection data into

Cosmos DB collection using Cosmos DB output bindings

Uploading employee data into Blob
Storage
In this recipe, we will develop a console application that is responsible for uploading
the Excel sheet to Blob Storage.

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[218]

Getting ready
Perform the following prerequisites:

1.	 Install Visual Studio 2017 Version 15.5 or higher.
2.	 Create a storage account and create a blob container with the name

Excelimports.
3.	 Create an Excel file with some employee data as shown in the following

screenshot:

How to do it...
Perform the following steps:

1.	 Create a new console app named ExcelImport.Client using Visual Studio,
as shown in the following screenshot:

Chapter 8

[219]

2.	 Once the project is created, execute the following commands in the NuGet
package manager:

Install-Package Microsoft.Azure.Storage.Blob

Install-Package Microsoft.Extensions.Configuration

Install-Package Microsoft.Extensions.Configuration.FileExtensions

Install-Package Microsoft.Extensions.Configuration.Json

3.	 Add the following namespaces at the top of the Program.cs file:

using Microsoft.Extensions.Configuration;
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System;
using System.IO;
using System.Threading.Tasks;

4.	 The next step is to develop the code in a function named UploadBlob that
uploads the Excel file into the blob container that we have created. For the
sake of simplicity, the following code uploads the Excel file from a hardcoded
location. However, in a typical real-time application, this file would be
uploaded by the end user via a web interface. Copy the following code and
paste it in the Program.cs file of the ExcelImport.Client application:

private static async Task UploadBlob()
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile(“appsettings.json”, optional: true, reloadOnChange:
true);
 IConfigurationRoot configuration = builder.Build();
CloudStorageAccount cloudStorageAccount = CloudStorageAccount.
Parse(configuration.GetConnectionString(“StorageConnection”));
CloudBlobClient cloudBlobClient = cloudStorageAccount.
CreateCloudBlobClient();
CloudBlobContainer ExcelBlobContainer = cloudBlobClient.GetContain
erReference(“Excelimports”);
 await ExcelBlobContainer.CreateIfNotExistsAsync();
CloudBlockBlob cloudBlockBlob = ExcelBlobContainer.GetBlockBlobRef
erence(“EmployeeInformation” + Guid.NewGuid().ToString());
await cloudBlockBlob.UploadFromFileAsync(@”C:\Users\
vmadmin\source\repos\POC\ImportExcelPOC\ImportExcelPOC\
EmployeeInformation.xlsx”);
}

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[220]

5.	 Now, copy the following code to the Main function. This piece of code
just invokes the UploadBlob function, which internally is responsible
for uploading the blob:

 {
 UploadBlob().Wait();
 }
 catch (Exception ex)
 {
 Console.WriteLine(“An Error has occurred with the message” +
ex.Message);
 }

6.	 The next step is to create a configuration file named appsettings.json,
which contains the storage account’s connection string, as shown in the
following screenshot:

7.	 Go to the properties of the appsettings.json file and change Copy to
Output Directory to the Copy if newer option, so that the properties
can by read by the program as shown in the following screenshot:

Chapter 8

[221]

8.	 Now, build the application and execute it. If you have configured everything,
then you should see something as shown in the following screenshot:

9.	 Let’s navigate to the storage account and go to the blob container named
Excelimports, where you should see the Excel file that we have uploaded,
as shown in the following screenshot:

That’s it. We have developed an application that is responsible for uploading
the blob.

How it works...
In this recipe, we have created a console application that uses storage assemblies
to upload a blob (in our case, it is just an Excel file) to the designated blob container.
Note that every time the application runs, a new file will get created in the blob
container. In order to upload the Excel files with unique names, we are appending
a GUID.

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[222]

There’s more...
Make a note of the naming conventions that should be followed while creating
the blob container:

At the time of writing, this is the error message that the portal throws
if you don’t adhere the naming rules: This name may only contain
lowercase letters, numbers and hyphens, and must begin with a letter
or a number. Each hyphen must be preceded and followed by a non-
hyphen character. The name must also be between 3 and 63 characters
long.

Creating a Blob trigger
In this recipe, we will create a function app with the Azure Functions V2 runtime
and learn how to create a Blob trigger using Visual Studio, and we will also see
how the Blob trigger gets triggered when the Excel file is uploaded successfully
to the blob container.

Getting ready
Perform the following prerequisites:

1.	 Add a new project named ExcelImport.DurableFunctions to the existing
solution by choosing the Azure Functions template, as shown in the
following screenshot:

Chapter 8

[223]

2.	 The next step is to choose the Azure Functions runtime as well as the trigger.
Choose Azure Functions v2 (.NET Core), choose Blob trigger and provide
the following:

°° Storage Account (AzureWebJobsStorage): This is the name
of the storage account in which our blob container resides

°° Connection string setting: This is the connection string key name
that refers to the storage account

°° Path: This is the name of the blob container where the Excel files
are being uploaded

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[224]

3.	 When you create the project, the structure should look something like the
following screenshot:

4.	 Let’s add a connection string with the name StorageConnection (remember,
we have used this in the connection string setting file in one of our earlier
steps) to local.settings.json, as shown in the following screenshot:

5.	 Now, open the Function1.cs file and rename it to
ExcelImportBlobTrigger and also replace Function1 (the name of the
function) with ExcelImportBlobTrigger (line 10), as shown in the following
screenshot:

Chapter 8

[225]

6.	 Configure ExcelImport.DurableFunctions as the default project, as shown
in the following screenshot:

7.	 Create a breakpoint in ExcelImportBlobTrigger and run the application by
pressing the F5 key. If everything is configured properly, you should see the
console as follows:

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[226]

8.	 Let’s now upload a new file by running the ExcelImport.Client
application. Immediately after the file is uploaded, the Blob trigger will
be fired, as shown in the following screenshot. Your breakpoints should
also be hit along with this:

We are done with creating the Blob trigger that gets fired whenever a new blob
is added to the blob container.

How to do it...
In this recipe, we have created a new function app based on the Azure Functions V2
runtime, which is based on the .NET Core framework and can run on all platforms
that support .NET Core (such as Windows and Linux OSes). We have also created
a Blob trigger and configured it to run when a new Blob is added by configuring the
connection string setting. We have also created a local.setting.json configuration
file to store the config values that are used in local development. After we created the
Blob trigger, we ran the ExcelImport.Client application to upload a file to validate
that the Blob trigger is getting executed.

There’s more...
All the configurations will be taken from the local.settings.json file while you
are running the functions in your local environment. However, when you deploy
the functions to Azure, all the configurations items (such as connection string and
app settings) will be referenced from the Application Settings of your function app.
Make sure that you create all the configuration items in the function app after you
deploy the functions.

Chapter 8

[227]

Creating the Durable Orchestrator and
triggering it for each Excel import
This recipe is one of the most important and interesting ones. We will learn
how to create the Durable Orchestrator responsible for managing all the activity
functions that we create for the different individual tasks required to complete the
ExcelImport project.

How to do it...
Perform the following steps:

1.	 Create a new function by right-clicking on ExcelImport.
DurableFunctions, click on Add and then choose New Azure Function,
as shown in the following screenshot:

2.	 In the Add new Item pop-up, choose Azure Function, provide the name
ExcelImport_Orchestrator and click on Add, as shown in the following
screenshot:

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[228]

3.	 In the New Azure Function pop-up, select the Durable Function
Orchestration template and click on the OK button, which creates
the following:

°° HttpStart: This is the Durable Function’s starter function
(an HTTP trigger), which works as a client that can invoke the
Durable Orchestrator. However, in our project, we will not be
using this HTTP Trigger; we will be using the logic inside it in
our ExcelImportBlobTrigger Blob trigger to invoke the Durable
Orchestrator.

°° RunOrchestrator: This is the actual durable Orchestrator that
is capable of invoking and managing the activity functions.

°° SayHello: A simple activity function. We will create a few
activity functions. Let’s go ahead and remove this method:

Chapter 8

[229]

4.	 In the ExcelImportBlobTrigger Blob trigger, let’s make the following code
changes to invoke the Orchestrator:

°° Decorate the function to be async
°° Add the Orchestration client output bindings
°° Call StartNewAsync using the DurableOrchestrationClient

5.	 The code in the ExcelImportBlobTrigger function should look like the
following after making these changes:

using System.IO;
 using Microsoft.Azure.WebJobs;
 using Microsoft.Azure.WebJobs.Host;
 using Microsoft.Extensions.Logging;
namespace ExcelImport.DurableFunctions
 {
 public static class ExcelImportBlobTrigger
 {
 [FunctionName(“ExcelImportBlobTrigger”)]
 public static async void Run(
 [BlobTrigger(“Excelimports/{name}”, Connection =
“StorageConnection”)]Stream myBlob,
 string name,
 [OrchestrationClient]DurableOrchestrationClient starter,
 ILogger log)
 {
 string instanceId = await starter.StartNewAsync(“ExcelImport_
Orchestrator”, name);
log.LogInformation($”C# Blob trigger function Processed blob\n
Name:{name} \n Size: {myBlob.Length} Bytes”);
}
 }
 }

6.	 Create a breakpoint in the ExcelImport_Orchestrator Orchestrator
function and run the application by pressing F5.

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[230]

7.	 Let’s now upload a new file (while ExcelImport.DurableFunctions
is running) by running the ExcelImport.Client function. (You can
also directly upload the Excel file from the Azure portal.) After the file
is uploaded, in just a few moments the breakpoint in the ExcelImport_
Orchestrator function should be hit, as shown in the following screenshot:

We have learned how to invoke the Durable Orchestration function from the Blob
trigger.

How it works...
We started the recipe by creating the Orchestration function and then we
made changes to the ExcelImportBlobTrigger Blob trigger by adding the
OrchestratonClient output bindings to invoke the Durable Orchestrator function.

When you create a new Orchestration function, it creates a few activity functions.
In the next recipes, we will remove them and create new activity functions for our
requirements.

There’s more...
In this recipe, we have used DurableOrchestrationClient, which understands
how to start and terminate Durable Orchestrations.

Chapter 8

[231]

Here are a few of the important operations that are supported:

•	 Start an instance using the StartNewAsync method
•	 Terminate an instance using the TerminateAsync method
•	 Query the status of the currently running instance using the GetStatusAsync

method
•	 It can also raise an event to the instance to update about any external event

using the RaiseEventAsync method

You can learn more about these at https://docs.microsoft.
com/en-us/azure/azure-functions/durable-functions-
instance-management#sending-events-to-instances.

Reading Excel data using activity
functions
In this recipe, we will retrieve all data from specific Excel sheets by writing
an activity function.

Let’s now make some code changes to the Orchestration function by writing
a new activity function that can read data from an Excel sheet that is uploaded
to the blob container.

Getting ready
In this recipe, we will create the activity trigger named ReadExcel_AT function
that reads the data from the blob stored in the storage account. This activity trigger
performs the following jobs:

Connects to the blob using a function, ReadBlob, of a class named StorageManager.

1.	 Reads the data from the Excel using a component called EPPlus. You can
read more about it at https://github.com/JanKallman/EPPlus.

2.	 Returns the data from the Excel file as a collection of employee objects.

Next, install the following NuGet packages in the ExcelImport.DurableFunctions
project:

Install-Package WindowsAzure.Storage

Install-Package EPPlus

https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-instance-management#sending-events-to-instances
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-instance-management#sending-events-to-instances
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-instance-management#sending-events-to-instances
https://github.com/JanKallman/EPPlus

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[232]

How to do it...
If you think of Durable Functions as a workflow, then the activity trigger function
can be treated a workflow step that takes some kind of optional input, performs
some functionality and returns an optional output. It’s one of the core concepts
of Azure Durable Functions.

You can learn more about the Activity Trigger at https://docs.
microsoft.com/en-us/azure/azure-functions/durable-
functions-types-features-overview.

Before we start creating the activity trigger function, let’s first build the dependency
functions.

Read data from Blob Storage
Perform the following steps:

1.	 Create a class named StorageManager and paste in the following code.
This code connects to the specified storage account, reads the data from
the blobs and returns a Stream object to the caller function:
class StorageManager
 {
 public async Task<Stream> ReadBlob(string BlobName)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile(“local.settings.json”, optional: true,
reloadOnChange: true);
 IConfigurationRoot configuration = builder.Build();
CloudStorageAccount cloudStorageAccount = CloudStorageAccount.
Parse(configuration.GetConnectionString(“StorageConnection”));
CloudBlobClient cloudBlobClient = cloudStorageAccount.
CreateCloudBlobClient();
CloudBlobContainer ExcelBlobContainer = cloudBlobClient.
GetContainerReference(“Excel”);
 CloudBlockBlob cloudBlockBlob = ExcelBlobContainer.GetBlockBlobRe
ference(BlobName);
return await cloudBlockBlob.OpenReadAsync();
}
 }

https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-types-features-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-types-features-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-types-features-overview

Chapter 8

[233]

2.	 Paste the following namespace references into the StorageManager class:

using Microsoft.Extensions.Configuration;
 using Microsoft.WindowsAzure.Storage;
 using Microsoft.WindowsAzure.Storage.Blob;
 using System.IO;
 using System.Threading.Tasks;

3.	 Finally, add a connection string (if it’s not been done already) of the storage
account to the local.settings.json file, as shown here:

Read Excel data from the stream
Perform the following steps:

1.	 Create a class named EPPLusExcelManager and paste the following code.
This class has a method named ReadExcelData, which uses a library named
EPPlus to read the data from the Excel file (.xlsx extension). It reads each
row, creates an Employee object for each row and then returns an employee
collection. We will create the Employee class in a moment:
class EPPLusExcelManager
 {
 public List<Employee> ReadExcelData(Stream stream)
 {
 List<Employee> employees = new List<Employee>();
 //FileInfo existingFile = new FileInfo(“EmployeeInformation.
xlsx”);
 using (ExcelPackage package = new ExcelPackage(stream))
 {
 ExcelWorksheet ExcelWorksheet = package.Workbook.Worksheets[0];
 for (int EmployeeIndex = 2; EmployeeIndex < ExcelWorksheet.
Dimension.Rows + 1; EmployeeIndex++)
 {

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[234]

 employees.Add(new Employee()
 {
 EmpId = Convert.ToString(ExcelWorksheet.Cells[EmployeeIndex,
1].Value),
 Name = Convert.ToString(ExcelWorksheet.Cells[EmployeeIndex,
2].Value),
 Email = Convert.ToString(ExcelWorksheet.Cells[EmployeeIndex,
3].Value),
 PhoneNumber = Convert.ToString(ExcelWorksheet.
Cells[EmployeeIndex, 4].Value)
 });
 }
 }
 return employees;
 }
 }

2.	 Now, let’s create another class named Employee and copy the following
code:

public class Employee
 {
 public string EmpId { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
 public string PhoneNumber { get; set; }
 }

If you build the application now, you should not see any errors. We are done with
developing the dependencies for our first activity trigger function. Let’s now start
building the actual activity trigger.

Create the activity function
Perform the following steps:

1.	 Create a new activity function named ReadExcel_AT that connects to the
blob using the StorageManager class that we developed in the previous
section, and then reads the data using the EPPLusExcelManager class. Copy
the following code to the ExcelImport_Orchestrator class:
[FunctionName(“ReadExcel_AT”)]
 public static async Task<List<Employee>> ReadExcel_AT(
 [ActivityTrigger] string name,
 ILogger log)
 {

Chapter 8

[235]

 log.LogInformation(“Orchestration started”);
StorageManager storageManager = new StorageManager();
 Stream stream = null; ;
 log.LogInformation(“Reading the Blob Started”);
 stream = await storageManager.ReadBlob(name);
 log.LogInformation(“Reading the Blob has Completed”);
 EPPLusExcelManager ePPLusExcelManager = new EPPLusExcelManager();
 log.LogInformation(“Reading the Excel Data Started”);
 List<Employee> employees = ePPLusExcelManager.
ReadExcelData(stream);
 log.LogInformation(“Reading the Blob has Completed”);
 return employees;
 }

2.	 Add System.IO to the namespace list if it’s not there already and build the
application.

3.	 Let’s now invoke this activity function from the Orchestrator. Go to the
ExcelImport_Orchestrator Orchestrator function and replace it with the
following code. The Orchestration function invokes the activity function by
passing the name of the Excel that is uploaded so that the activity function
reads the data from the Excel file:

[FunctionName(“ExcelImport_Orchestrator”)]
 public static async Task<List<string>> RunOrchestrator(
 [OrchestrationTrigger] DurableOrchestrationContext context)
 {
 var outputs = new List<string>();
 string ExcelFileName = context.GetInput<string>();
 List<Employee> employees = await context.CallActivityAsync<List<E
mployee>>(“ReadExcel_AT”, ExcelFileName);
return outputs;
 }

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[236]

4.	 Let’s run the application and then upload an Excel file. If everything is
configured properly, then you should see something shown as follows
in the ReadExcel_AT activity trigger function, where you can see the
number of employee records being read from the Excel sheet:

There’s more...
The Orchestrator function receives the input using the GetInput() method of the
DurableOrchestratorContext class. This input is passed by the Blob trigger using
the function StartNewAsync method of the DurableOrchestrationClient class.

Chapter 8

[237]

Auto-scaling Cosmos DB throughput
In the previous recipe, we read data from the Excel and put it into an employee
collection. The next step is to insert the collection into a Cosmos DB collection.
However, before inserting the data into the Cosmos DB collection, we need to
understand that in real-world scenarios, the number of records that we would
need to import would be huge and so you might face performance issues if the
capacity of the Cosmos DB collection is not sufficient.

Cosmos DB collection throughput is measured by the number of Request
Units (RU) allocated to the collection. You can read more about it at
https://docs.microsoft.com/en-us/azure/cosmos-db/
request-units.

Also, in order to lower costs, for every service, it is recommended to have the
capacity at a lower level and increase it whenever needed. The Cosmos DB API
allows us to control the number of RUs based on our needs. As we need to do a
bulk import, we will increase the RUs before we start importing the data. Once
the importing process is complete, we can decrease the RUs to the minimum level.

Getting ready
Perform the following prerequisites:

1.	 Create a Cosmos DB account by following the instructions mentioned in
the article at https://docs.microsoft.com/en-us/azure/cosmos-db/
create-sql-api-dotnet.

https://docs.microsoft.com/en-us/azure/cosmos-db/request-units
https://docs.microsoft.com/en-us/azure/cosmos-db/request-units
https://docs.microsoft.com/en-us/azure/cosmos-db/create-sql-api-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-sql-api-dotnet

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[238]

2.	 Create a Cosmos database and a collection with fixed storage and set the
request units to 400 per second, as shown in the following screenshot:

For the sake of simplicity, I have taken Fixed (10 GB) as the Storage capacity.
However, in production loads, depending on your data models, you might
have to go with Unlimited storage capacity.

3.	 Run the following command in the NuGet package manager to install the
dependencies of Cosmos DB:

Install-Package Microsoft.Azure.WebJobs.Extensions.CosmosDB

Chapter 8

[239]

How to do it...
Perform the following steps:

1.	 Create a new activity trigger named ScaleRU_AT in the ExcelImport_
Orchestrator.cs file. The function should look something like this
and accepts the number of RUs to be scaled up to, along with the
Cosmos DB binding using which we replaced the throughput:
[FunctionName(“ScaleRU_AT”)]
 public static async Task<string> ScaleRU_AT(
 [ActivityTrigger] int RequestUnits,
 [CosmosDB(ConnectionStringSetting = “CosmosDBConnectionString”)]
DocumentClient client
)
 {
 DocumentCollection EmployeeCollection = await client.ReadDocumen
tCollectionAsync(UriFactory.CreateDocumentCollectionUri(“cookbook
db”, “EmployeeCollection”));
 Offer offer = client.CreateOfferQuery().Where(o => o.ResourceLink
== EmployeeCollection.SelfLink).AsEnumerable().Single();
 Offer replaced = await client.ReplaceOfferAsync(new
OfferV2(offer, RequestUnits));
 return $”The RUs are scaled to 500 RUs!”;
 }

2.	 Add the following namespaces to the ExcelImport_Orchestrator.cs file:

using System.Linq;
using Microsoft.Azure.Documents;
using Microsoft.Azure.Documents.Client;

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[240]

3.	 Create a new connection string for Cosmos DB, as shown in the following
screenshot: You can copy the connection from the Keys blade of the Cosmos
DB account:

4.	 Now, in the ExcelImport_Orchestrator function, add the following line
to invoke ScaleRU_AT. In this example, I’m passing 500 as the RU value.
Depending on your requirements, you may choose a different value:
await context.CallActivityAsync<string>(“ScaleRU_AT”, 500);

5.	 Now, upload an Excel file to trigger the Orchestration, which internally
invokes the new activity trigger, ScaleRU_AT and if everything went well,
the new capacity of the Cosmos DB collection should be 500. Let’s navigate
to Cosmos DB’s Data Explorer tab and navigate to the Scale & Settings
section, where you can view 500 as the new throughput of the collection,
as shown here:

Chapter 8

[241]

There’s more...
The Cosmos DB collection’s capacity is represented as a resource called offer. In this
recipe, we have retrieved the existing offer and replaced it with a new offer. You can
learn more about this at https://docs.microsoft.com/en-us/rest/api/cosmos-
db/offers.

Bulk inserting data into Cosmos DB
Now that we have scaled up the collection, it’s time to insert the data into the
Cosmos DB collection. In this recipe, we will learn about one of the simplest ways
of inserting data into Cosmos DB, to make the recipe simple and straightforward.

How to do it...
Perform the following steps:

1.	 Create a new activity trigger named ImportData_AT, which takes employee
collection as input and saves the data in the collection. Paste the following
code into the new activity trigger:
[FunctionName(“ImportData_AT”)]
 public static async Task<string> ImportData_AT(
 [ActivityTrigger] List<Employee> employees,
 [CosmosDB(ConnectionStringSetting = “CosmosDBConnectionString”)]
DocumentClient client,
 ILogger log)
 {
 foreach (Employee employee in employees)
 {
 await client.CreateDocumentAsync(UriFactory.CreateDocumentCollect
ionUri(“cookbookdb”, “EmployeeCollection”), employee);
 log.LogInformation($”Successfully inserted {employee.Name}.”);
 }
 return $”Data has been imported to Cosmos DB Collection
Successfully!”;
 }

2.	 Let’s add the following line to the Orchestration function that invokes
the ImportData_AT activity trigger:

await context.CallActivityAsync<string>(“ImportData_AT”,
employees);

https://docs.microsoft.com/en-us/rest/api/cosmos-db/offers
https://docs.microsoft.com/en-us/rest/api/cosmos-db/offers

Bulk Import of Data Using Azure Durable Functions and Cosmos DB

[242]

Let’s run the application and upload an Excel file to test the functionality.
If everything went well, you should see all the records created in the
Cosmos DB collection, as shown here:

There’s more...
The Cosmos DB team has released a library called Cosmos DB bulk executor. You
can learn more about this at https://docs.microsoft.com/en-us/azure/cosmos-
db/bulk-executor-overview.

In this recipe, I have hardcoded the name of the collection and the database
to make it simple. You will have to configure them in the app settings file.

https://docs.microsoft.com/en-us/azure/cosmos-db/bulk-executor-overview
https://docs.microsoft.com/en-us/azure/cosmos-db/bulk-executor-overview

[243]

Implementing Best Practices
for Azure Functions

In this chapter, you will learn a few of the best practices that can be followed while
working with Azure Functions, such as the following:

•	 Adding multiple messages to a queue using the IAsyncCollector function
•	 Implementing defensive applications using Azure Functions and

queue triggers
•	 Handling massive ingress using Event Hubs for IoT and other

similar scenarios
•	 Avoiding cold starts by warming the app at regular intervals
•	 Enabling authorisation for function apps
•	 Controlling access to Azure Functions using function keys
•	 Securing Azure Functions using Azure Active Directory
•	 Configuring throttling of Azure Functions using API Management
•	 Securely accessing SQL Database from Azure Functions using Managed

Service Identity
•	 Shared code across Azure Functions using class libraries
•	 Using strongly typed classes in Azure Functions

Implementing Best Practices for Azure Functions

[244]

Adding multiple messages to a queue
using the IAsyncCollector function
In the first chapter, you learned how to create a queue message for each request
coming from the HTTP request. Now let’s assume that each user is registering
their devices using client applications (such as desktop apps, mobile apps or any
client websites) that can send multiple records in a single request. In these cases,
the backend application should be smart enough to handle the load coming to
it; there should be a mechanism to create multiple queue messages at once and
asynchronously. You will learn how to create multiple queue messages using the
IAsyncCollector interface.

Here is a diagram that depicts the data flow from different client applications
to the backend web API:

In this recipe, we will simulate the requests using Postman, which will send the
request to the Backend Web API (HTTPTrigger), which can create all the queue
messages in a single go.

Getting ready
These are the required steps:

1.	 Create a storage account using the Azure portal if you have not created
one yet

2.	 Install Microsoft Storage Explorer from http://storageexplorer.com/ if
you have not installed it yet

http://storageexplorer.com/

Chapter 9

[245]

How to do it...
Perform the following steps:

1.	 Create a new HTTP trigger named BulkDeviceRegistrations by setting
the Authorisation Level to Anonymous.

2.	 Replace the default code with the following code and click on the Save
button to save the changes. The following code expects a JSON array as
an input parameter with an attribute named devices. If found, it will iterate
through the array items and then display them in the logs. Later, we will
modify the program to bulk insert the array elements into the queue
message:
#r "Newtonsoft.Json"
using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;
public static async Task<IActionResult> Run(HttpRequest req,
ILogger log)
{
log.LogInformation("C# HTTP trigger function processed a
request.");
string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
dynamic data = JsonConvert.DeserializeObject(requestBody);
string Device = string.Empty;
for(int nIndex=0;nIndex<data.devices.Count;nIndex++)
{
Device = Convert.ToString(data.devices[nIndex]);
log.LogInformation("devices data" + Device);
}
return (ActionResult)new OkObjectResult("Program has been executed
Successfully.");
}

3.	 The next step is to create an Azure Queue storage output binding. Click on
the Save button, navigate to the Integrate tab and add a new Azure Queue
Storage output binding. Then click on the Select button and provide the
name of the queue and other parameters.

Implementing Best Practices for Azure Functions

[246]

4.	 Click on the Save button and navigate to the code editor of the Azure
Function. Add the additional code required for the output binding with
the queue to save the messages, as shown in the following code. Make the
highlighted changes in the code editor and click on the Save button to save
the changes:
public static async Task<IActionResult> Run(HttpRequest req,
ILogger log,
IAsyncCollector<string> DeviceQueue)
{
....
....
for(int nIndex=0;nIndex<data.devices.Count;nIndex++)
{
 Device = Convert.ToString(data.devices[nIndex]);
 DeviceQueue.AddAsync(Device); }
....
....

5.	 Let’s run the function from the Test tab of the portal with the following input
request JSON:
 {
 "devices":
 [
 {
 "type": "laptop",
 "brand":"lenovo",
 "model":"T440"
 },
 {
 "type": "mobile",
 "brand":"Mi",
 "model":"Red Mi 4"
 }
]
 }

6.	 Click on the Run button to test the functionality. Now open Azure Storage
Explorer and navigate to the queue named devicequeue. As shown in the
following screenshot, you should see two records:

Chapter 9

[247]

How it works...
We created a new HTTP function that has a parameter of the
IAsyncCollector<string> type, which can be used to store multiple messages in
a queue service at once and asynchronously. This approach of storing multiple items
asynchronously will reduce the load on the instances.

Finally, we tested the invocation of the HTTP trigger from the Azure portal and
also saw the queue messages get added using Azure Storage Explorer.

There’s more...
You can also use the ICollector interface in place of IAsyncCollector if you
would like to store multiple messages synchronously.

Note that you might have to install Azure Storage Extensions for
the adding of output bindings if you’ve not done so already. In
Azure Functions V2 runtime, adding extensions to each of the
services (storage, in this case) is mandatory.

Implementing defensive applications
using Azure Functions and queue
triggers
For many applications, even after performing multiple tests of different
environments, there might still be unforeseen reasons that the application might
fail. Developers and architects cannot predict all unexpected inputs throughout
the lifespan of an application being used by business users or general end users.
So, it’s good practice to make sure that your application alerts you if there are
any errors or unexpected issues with the applications.

Implementing Best Practices for Azure Functions

[248]

In this recipe, you will learn how Azure Functions help us handle these kinds of
issues with minimal code.

Getting ready
These are the required steps:

1.	 Create a storage account using the Azure portal if you have not created
one yet

2.	 Install Azure Storage Explorer from http://storageexplorer.com/
if you have not installed it yet

How to do it...
In this recipe, we will do the following:

•	 Develop a console application using C# that connects to the storage account
and creates queue messages in the queue named myqueuemessages

•	 Create an Azure Function queue trigger named ProcessData that is fired
whenever a new message is added to the queue named myqueuemessages

CreateQueueMessage – C# console application
Perform the following steps:

1.	 Create a new console application using the .NET Core C# language and
create an app setting key named StorageConnectionString with your
storage account connection string. You can get the connection string from
the Access Keys blade of the storage account as shown:

2.	 Install the Configuration and Queue Storage NuGet packages using the
following commands:
 Install-Package Microsoft.Azure.Storage.Queue
 Install-Package System.Configuration.ConfigurationManager

3.	 Add the following namespaces:
 using Microsoft.WindowsAzure.Storage;
 using Microsoft.WindowsAzure.Storage.Queue;
 using System.Configuration;

http://storageexplorer.com/

Chapter 9

[249]

4.	 Add the following function to your console application and call it from the
Main method. The CreateQueueMessages function creates 100 messages
with the index as the content of each message:
 static void CreateQueueMessages()
 {
 CloudStorageAccount storageAccount =
 CloudStorageAccount.Parse(ConfigurationManager.
AppSettings
 ["StorageConnectionString"]);
 CloudQueueClient queueclient =
 storageAccount.CreateCloudQueueClient();

 CloudQueue queue = queueclient.GetQueueReference
 ("myqueuemessages");
 queue.CreateIfNotExists();

 CloudQueueMessage message = null;
 for(int nQueueMessageIndex = 0; nQueueMessageIndex <=
100;
 nQueueMessageIndex++)
 {
 message = new CloudQueueMessage(Convert.ToString
 (nQueueMessageIndex));
 queue.AddMessage(message);
 Console.WriteLine(nQueueMessageIndex);
 }
 }

Developing the Azure Function – queue trigger
Perform the following steps:

1.	 Create a new Azure Function named ProcessData using the queue trigger
and configure the myqueuemessages queue. This is how the Integrate tab
should look after you create the function:

Implementing Best Practices for Azure Functions

[250]

2.	 Replace the default code with the following code:
 using System;
 public static void Run(string myQueueItem,
 ILogger log)
 {
 if(Convert.ToInt32(myQueueItem)>50)
 {
 throw new Exception(myQueueItem);
 }
 else
 {
 log.LogInformation($"C# Queue trigger function
 processed: {myQueueItem}");
 }
 }

The preceding queue trigger logs a message with the content of the queue (it’s just
a numerical index) for the first 50 messages and then throws an exception for the all
the messages whose content is greater than 50.

Running tests using the console application
Perform the following steps:

1.	 Let’s execute the console application by pressing Ctrl + F5, navigate to Azure
Storage Explorer, and view the queue contents.

2.	 In just a few moments, you should start viewing messages in the
myqueuemessages queue. Currently, both the Azure portal and Storage
Explorer display the first 32 messages. You need to use the C# Storage SDK
to view all the messages in the queue.

Don’t be surprised if you notice that your messages in
myqueuemessage are vanishing. It’s expected that as soon as a message
is read successfully, the message gets deleted from the queue.

3.	 As shown here, you should also see a new queue named myqueuemessages-
poison (<OriginalQueuename>-Poison) with the 50 other queue messages
in it. The Azure Function runtime will automatically take care of creating
a new queue and adding the messages that are not read properly by Azure
Functions:

Chapter 9

[251]

How it works...
We have created a console application that creates messages in the Azure Queue
storage and we have also developed a queue trigger that is capable of reading the
messages in the queue. As part of simulating an unexpected error, we are throwing
an error if the value in the queue message content is greater than 50.

Azure Functions will take care of creating a new queue with the name
<OriginalQueueName>-Poison and will insert all the unprocessed messages in the
new queue. Using this new poison queue, developers can review the content of the
messages and take necessary actions to fix errors in the applications.

The Azure Function runtime will take care of deleting the queue message after Azure
Function execution has completed successfully. If there are any problems in the
execution of the Azure Function, it automatically creates a new poison queue and
adds the processed messages to the new queue.

There’s more...
Before pushing a queue message to the poison queue, the Azure Function runtime
tries to pick the message and process five times. You can learn about how this
process works by adding a new dequecount parameter of the int type to the Run
method and logging its value.

Implementing Best Practices for Azure Functions

[252]

Handling massive ingress using Event
Hubs for IoT and other similar scenarios
In many scenarios, you might have to handle massive amounts of incoming data;
the incoming data might be coming from sensors and telemetry data, and it could
be as simple as the data sent from Fitbit devices. In these scenarios, we need to have
a reliable solution that is capable of handling massive amounts of data. Azure Event
Hubs is one such solution that Azure provides. In this recipe, you will learn how to
integrate Event Hubs and Azure Functions.

Getting ready
Perform the following steps:

1.	 Create an Event Hubs namespace by navigating to Internet of Things and
choosing Event Hubs

2.	 Once the Event Hubs namespace is created, navigate to the Overview tab
and click on the Event Hub icon to create a new Event Hub

3.	 By default, a Consumer Group named $Default is created, which we will
be using in this recipe

How to do it...
We will be doing the following in this recipe:

•	 Creating an Azure Function event hub trigger
•	 Developing a console application that simulates Internet of Things (IoT) data

Creating an Azure Function event hub trigger
Perform the following steps:

1.	 Create a new Azure Function by choosing Event Hub Trigger in the
template list.

2.	 Once you have selected the template, you might have to install the
extensions. Then, you will need to provide the name of the event hub,
capturemessage. If you don’t have any connections configured yet, you
need to click on the New button.

3.	 Clicking on the New button will open a Connection pop-up, where you
can choose your Event Hub and other details. Choose the required details
and click on the Select button, as shown in the following screenshot:

Chapter 9

[253]

4.	 The previous step will populate the Event Hub Connection drop-down.
Finally, click on Create to create the function.

Developing a console application that
simulates IoT data
Perform the following steps:

1.	 Create a new console application that will send events to the Event Hub.
I have named it EventHubApp.

2.	 Run the following commands in the NuGet package manager to install the
required libraries and interact with Azure Event Hubs:
 Install-Package Microsoft.Azure.EventHubs
 Install-Package Newtonsoft.Json

3.	 Add the following namespaces and a reference to System.Configuration.
dll:
 using Microsoft.Azure.EventHubs;
 using System.Configuration;

4.	 Add the connection string to App.config, which is used to connect the event
hub. This is the code for App.config. You can get the connection string by
clicking on the ConnectionStrings link in the Overview tab of the event
hub namespace:
 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <startup>
 <supportedRuntime version="v4.0"
 sku=".NETFramework,Version=v4.6.1" />
 </startup>
 <appSettings>
 <add key="EventHubConnection"

Implementing Best Practices for Azure Functions

[254]

 value="Endpoint=sb://<event hub namespace
 here>.servicebus.windows.net/;Entitypath=<Event
Hubname>;
 SharedAccessKeyName= RootManageSharedAccessKey;
 SharedAccessKey=<Key here>"/>
 </appSettings>
 </configuration>

5.	 Create a new C# class file and place the following code in the new class file:
 using System;
 using System.Text;
 using Microsoft.Azure.EventHubs;
 using System.Configuration;
 using System.Threading.Tasks;

 namespace EventHubApp
 {
 class EventHubHelper
 {
 static EventHubClient eventHubClient = null;
 public static async Task GenerateEventHubMessages()
 {

 EventHubsConnectionStringBuilder conBuilder = new
 EventHubsConnectionStringBuilder
 (ConfigurationManager.AppSettings
 ["EventHubConnection"].ToString());

 eventHubClient =
 EventHubClient.CreateFromConnectionString
 (conBuilder.ToString());
 string strMessage = string.Empty;
 for (int nEventIndex = 0; nEventIndex <= 100;
 nEventIndex++)
 {
 strMessage = Convert.ToString(nEventIndex);
 await eventHubClient.SendAsync(new EventData
 (Encoding.UTF8.GetBytes(strMessage)));
 Console.WriteLine(strMessage);
 }
 await eventHubClient.CloseAsync();
 }
 }
 }

6.	 In your main function, place the following code, which invokes the method
for sending the message:
 namespace EventHubApp
 {

Chapter 9

[255]

 class Program
 {
 static void Main(string[] args)
 {
 EventHubHelper.GenerateEventHubMessages().Wait();
 }
 }
 }

7.	 Now execute the application by pressing Ctrl + F5. You should see something
similar to what is shown here:

8.	 When the console is printing the numbers, you can navigate to the Azure
Function to see that the event hub gets triggered automatically and logs the
numbers that are being sent to the Event Hub.

Implementing Best Practices for Azure Functions

[256]

Avoiding cold starts by warming the app
at regular intervals
By now, you might be aware of the fact that you can create Azure functions in the
following two hosting plans:

•	 App Service plan
•	 Consumption plan

You will get all the benefits of serverless architecture only when you create the
function app using the consumption plan. However, one of the concerns that
developers report about using the consumption plan is something called cold
starting, which refers to spinning up an Azure function to serve the requests when
there have been no requests for quite some time. You can learn more about this
topic at https://blogs.msdn.microsoft.com/appserviceteam/2018/02/07/
understanding-serverless-cold-start/.

In this recipe, we will learn a technique that could be used to always keep the
instance live and warm so that all requests are served properly.

The App Service plan is a dedicated hosting plan where your
instances are reserved for you and they can always be warm
even if there are no requests for quite a bit of time.

Getting ready
In order to complete this recipe, we need to have a function app with the following:

•	 An HTTP trigger named HttpALive
•	 A timer trigger named KeepFunctionAppWarm that runs every five

minutes and makes an HTTP request to the HttpALive HTTP trigger

If you have clearly understood what a cold start is, then it will be clear to you that
there would be no concerns if your application had traffic regularly during the day.
So, if we can ensure that the application has traffic all day, then the Azure Function
instance will not be deprovisioned and so there wouldn’t be any concerns about the
Consumption plan.

https://blogs.msdn.microsoft.com/appserviceteam/2018/02/07/understanding-serverless-cold-start/
https://blogs.msdn.microsoft.com/appserviceteam/2018/02/07/understanding-serverless-cold-start/

Chapter 9

[257]

How to do it...
In this recipe, we will create a timer trigger that simulates traffic to the HTTP trigger,
causing the function app to be alive all the time and the serverless instances to be
always in the provisioned state.

Creating an HTTP trigger
Create a new HTTP trigger and replace the following code that just prints a message
when it is executed:

using System.Net;
using Microsoft.AspNetCore.Mvc;
public static async Task<IActionResult> Run(HttpRequest req, ILogger
log)
{
return (ActionResult)new OkObjectResult($"Hello User! Thanks for
keeping me Warm");
}

Creating a timer trigger
Perform the following steps:

1.	 Click on the + icon, search for timer and click on the Timer trigger button.
2.	 In the New Function pop-up, provide the details. The Schedule here

is a CRON expression that ensures that the timer trigger gets triggered
automatically every five minutes:

Implementing Best Practices for Azure Functions

[258]

3.	 Paste the following code in the code editor and save the changes. The
following code simulates traffic by making HTTP requests programmatically.
Be sure to replace <<FunctionAppName>> with the actual name of your
function app:
using System;
public async static void Run(TimerInfo myTimer, ILogger log)
{
using (var httpClient = new HttpClient())
{
var response = await httpClient.GetAsync("https://<FunctionAppNa
me>>.azurewebsites.net/api/HttpALive");
}
}

There’s more...
If you play around with Azure Functions, you might notice that the cold start times
for Azure Functions that have C# as the language are just a few seconds. However,
if you are working with Azure Functions that have JavaScript (such as Node.js) as
the language, then the cold start time would be greater as the runtime would need to
download all the npm packages that are dependencies for your application. In those
scenarios, a feature named Run-From-Package comes in very handy. We will learn
how to implement this in the upcoming chapter.

See also
See the Deploying Azure Functions using Run From Package recipe of Chapter 10,
Configuring of Serverless Applications in the Production Environment.

Enabling authorisation for function apps
If your web API (HTTP trigger) is being used by multiple client applications and
you would like to provide access only to the intended and authorised applications,
then you need to implement authorisation in order to restrict access to your Azure
Function.

Getting ready
I assume that you already know how to create an HTTP trigger function. Download
the Postman tool from https://www.getpostman.com/. The Postman tool is used
for sending HTTP requests. You can also use any tool or application that can send
HTTP requests and headers.

https://www.getpostman.com/

Chapter 9

[259]

How to do it...
Perform the following steps:

1.	 Create a new HTTP trigger function (or open an existing HTTP function).
Make sure that when creating the function, you select Function as the option
in the Authorisation level drop-down.

If you would like to go with an existing HTTP trigger function
that we have created in one of our previous recipes, click on the
Integrate tab, change the Authorisation level to Function and
click on the Save button to save the changes.

2.	 In the Code Editor tab, grab the function URL by clicking on the Get
Function URL link available in the right-hand corner of the code editor
in the run.csx file.

3.	 Navigate to Postman and paste the function URL:

4.	 Observe that the URL has the following query strings:
°° code: This is the default query string that is expected by the function

runtime and validates the access rights of the function. The validation
functionality is automatically enabled without the need for writing
the code by the developer. All of this is taken care of just by setting
the Authorisation level to Function.

°° name: This is a query string that is required by the HTTP trigger
function.

5.	 Let’s remove the code query string from the URL in Postman and try
to make a request. You will get a 401 Unauthorised error.

Implementing Best Practices for Azure Functions

[260]

How it works...
When you make a request via Postman or any other tool or application that can
send HTTP requests, the request will be received by the underlying Azure App
Service web app (note that Azure Functions are built on top of App Services) that
first checks the presence of the header name code either in the query string collection
or in the Request Body. If it finds it, then it validates the value of the code query
string with the function keys. If it’s a valid one, then it authorises the request and
allows the runtime to process the request. Otherwise, it throws an error with a 401
Unauthorized message.

There’s more...
Note that the security key (in the form of the query string parameter named
code) in the preceding example is used for demonstration purposes only. In
production scenarios, instead of passing the key as a query string parameter
(the code parameter), you need to add the x-functions-key as an HTTP header,
as shown in the following screenshot:

Controlling access to Azure Functions
using function keys
You have now learned how to enable the authorisation of an individual HTTP trigger
by setting the Anonymous Level field with the value function in the Integrate tab
of the HTTP trigger function. It works well if you have only one Azure Function
as a backend web API for one of your applications and you don’t want to restrict
access to the public.

Chapter 9

[261]

However, in enterprise-level applications, you will end up developing multiple
Azure Functions across multiple function apps. In those cases, you need to have
fine-grained granular access to your Azure Function for your own applications or
for some other third-party applications that integrate your APIs in their applications.

In this recipe, you will learn how to work with function keys within Azure
Functions.

How to do it...
Azure supports the following keys, which can be used to control access to the Azure
functions:

•	 Function keys: These can be used to grant authorisation permissions to a
given function. These keys are specific to the function with which they are
associated.

•	 Host keys: We can use these to control the authorisation of all the functions
within an Azure function app.

Configuring the function key for each application
If you are developing an API using Azure Functions that can be used by multiple
applications, then it’s good practice to have a different function key for each client
application that is going to use your functions.

Navigate to the Manage tab of Azure Functions to view and manage all the keys
related to the function.

By default, a key with the name default is generated for us. If you would like to
generate a new key, then click on the Add new function key button.

As per the preceding instruction, I have created the keys for the following
applications:

•	 WebApplication: The key name WebApplication is configured to be used
in the website that uses the Azure Function

•	 MobileApplication: The key name MobileApplication is configured
to be used in the mobile app that uses the Azure Function

In a similar way, you can create different keys for any other app (such as an IoT
application) depending on your requirements.

Implementing Best Practices for Azure Functions

[262]

The idea behind having different keys for the same function is to have control over
the access permissions to the usage of the functions by different applications. For
example, if you would like to revoke the permissions only to one application, but not
for all applications, then you would just delete (or revoke) that key. In that way, you
are not impacting other applications that are using the same function.

Here is the downside of the function keys; if you are developing an application
where you need to have multiple functions and each function is being used by
multiple applications, then you will end up having many keys. Managing these keys
and documenting them would be a nightmare. In that case, you can go with host
keys, which are discussed next.

Configuring one host key for all the functions
in a single function app
Having different keys for different functions is a good practice when you have a
handful of functions used by a few applications. However, things might get worse
if you have many functions and many client applications leveraging your APIs.
Managing the function keys in these large enterprise applications with huge client
bases would be painful. To make things simple, you can segregate all related
functions into a single function app and configure the authorisation for each function
app instead of for each individual function. You can configure authorisation for
a function app using host keys.

Here are the two different types of host keys available:

•	 Regular host keys
•	 Master key

Create two HTTP trigger apps, as shown in the following screenshot:

Chapter 9

[263]

Navigate to the Manage tab of both the apps, as shown in the following screenshots.
You will notice that both the master key and the host keys are the same in both the
apps:

•	 This is the management tab of MyApp1:

•	 This is the management tab of MyApp2:

As with the case of function keys, you can also create multiple host keys
if your function apps are being used by multiple applications. You can
control the access of each of the function apps by different applications
using different keys.
You can create multiple host keys by following the same steps that you
followed when creating the regular function keys.

Implementing Best Practices for Azure Functions

[264]

There’s more...
If you think that the key has been compromised, then you can regenerate it at any
time by clicking on the Renew button. Note that when you renew a key, all the
applications that access the function would no longer work and would give a 401
Unauthorized status code error.

You can delete or revoke the key if it is no longer used in any of the applications.

Here’s a table with some more guidance on keys:

Key type When should
I use it?

Is it
revocable
(can it be
deleted)?

Renewable? Comments

Master
key

When the
Authorisation
level is Admin

No Yes You can use a master
key for any function
within the function
app irrespective of the
authorisation level
configured.

Host key When the
Authorisation
level is
Function

Yes Yes You can use the host
key for all the functions
within the function app.

Function
key

When the
Authorisation
level is
Function

Yes Yes You can use the function
key only for a given
function.

Microsoft doesn’t recommend sharing the master key as it is also
used by runtime APIs. Be extra cautious with master keys.

Securing Azure Functions using Azure
Active Directory
In the previous recipe, we learned how to enable security based on client applications
accessing Azure Functions. However, if your requirement is to authenticate the end
users accessing the functions against the Azure Active Directory (AD), then Azure
Functions provides an easy way to configure this called EasyAuth.

Chapter 9

[265]

Thanks to Azure App Service, from which the EasyAuth feature is inherited,
we can do what we need to do without writing a single line of code.

Getting ready
In this recipe, to make things simple, we will use the default AD that is created when
you create an Azure account. However, in your real-time production scenarios, you
would already have an existing AD that needs to be integrated. I would recommend
going over this article: https://docs.microsoft.com/azure/active-directory-
b2c/active-directory-b2c-tutorials-web-app.

How to do it...
This recipe will involve the following:

•	 Configuring Azure AD to the function app
•	 Registering the client app in Azure AD
•	 Granting the client app access to the backend app
•	 Testing the authentication functionality using a JWT token

Configuring Azure AD to the function app
Perform the following steps:

1.	 Navigate to the Platform features section of Azure Functions.
2.	 In the Authentication/Authorisation blade, perform the following

steps to enable the AD authentication:
1.	 Click on the On button to enable the authentication.
2.	 Choose the Login using Azure Active Directory menu option.
3.	 Click on the Not Configured button to start configuring the options.

3.	 The next step is to choose an existing or create a new registration for the
client application that we want to provide access to. This can be done by
pressing the Express button in the Management Mode field. Also, I opted
to create a new one and provided AzureFunctionCookbookV2 as the name
for my app registration. Click OK to save the configurations, which will take
you to the following screen.

https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-tutorials-web-app
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-tutorials-web-app

Implementing Best Practices for Azure Functions

[266]

4.	 Grab the Application ID as shown. We will be using it while testing
in a few moments:

That’s it. Without writing a single line of code, we are done with configuring
an Azure AD instance that sits as a security layer and allows access only to
authenticated users. In other words, we have enabled OAuth for our backend
function app using Azure AD. Let’s quickly test it by accessing any of the
HTTP triggers that you have in the function app. I have used Postman
to do this. As expected, you will get an error asking you to log in.

With the current configurations, none of the external client applications will
be able to access our backend API. In order to provide access, we need to perform
the following steps:

Register all the client apps in Azure AD (for our example, we will do a registration
for the Postman app).

Grant access to the backend app.

Registering the client app in Azure AD
Perform the following steps:

1.	 Navigate to Azure AD by clicking on the Azure Active Directory button,
as shown. If you don’t see it in the favourites list, you can search in the
All Services blade, which is also highlighted in the following screenshot:

Chapter 9

[267]

2.	 In the AD menu, click on App Registrations and then click on the New
application registration button.

3.	 Fill in the fields as follows and click on the Create button to complete the
registration for our Postman app. As our client app is Postman, the Sign-on
URL doesn’t hold any importance, so just http://localhost should be
good for our example:

Implementing Best Practices for Azure Functions

[268]

4.	 In just a moment, the app will be created and you will be taken to the
following screen. Grab the Application ID and save it on your notepad.
We will be using it in the upcoming steps. Click on the Settings button:

5.	 In the Settings blade, click on the Keys menu item to generate a key, which
we will be passing from Postman. In order to generate the key, we first
need to provide a Description and the Duration after which the key should
expire. Provide the details as shown in the following screenshot and click on
the Save button. The actual key is displayed to us in the value field only once
immediately after you click on Save button, so be sure to copy it and store
it in a secure place. We will be using this in a few moments:

Chapter 9

[269]

Granting the client app access to the backend app
Once the client application is registered, we need to provide it the access to our
backend app. In this section, we will learn how to configure it:

1.	 Click on the Required Permissions tab and click on the Add button, which
shows the Add API Access blade, where you choose the required API
(in our case, it is our backend Azure Functions API).

2.	 In the Add API Access blade, click on the Select an API button;
initially, default APIs will be displayed. You need to search for your
backend app with the name that you have provided (in my case, it was
AzureFunctionCookBookV2). Select the backend app and click on the
Select button.

3.	 The next step is to provide the actual permissions. Click on the Select
Permissions tab and check the Access <Backend App name>, then click
on Select and then on the Done button.

4.	 Ensure that you get the following screen. You can also click on the
Grant Permission button to apply the changes:

Testing the authentication functionality using
a JWT token
You should have the following ready to test the functionality using Postman:

1.	 OAuth 2.0 token endpoint, you can get this in the Endpoints tab
of Azure AD and grab the URL:

°° Grant type: A hardcoded client_credentials value.
°° Client ID of the client application: You noted it in the fourth

step of the Registering the client app in Azure AD section.

Implementing Best Practices for Azure Functions

[270]

°° Key that you generated for your client application: You noted it in
the fifth step of the Registering the client app in Azure AD section.

°° Resource: Resource to which we need to access. It’s the client ID
of the backend application; you noted it in the fourth step of the
Configuring Azure AD to the function app section.

2.	 Once you have all that information, you need to pass all the parameters and
make a call to an Azure AD tenant, which returns the bearer token as follows:

3.	 The next and final step is to make a call to the actual backend (the Azure
Function HTTP trigger) by passing the bearer JWT token (access_token)
that we copied from the preceding screen:

Chapter 9

[271]

4.	 As shown in this screenshot, add an Authorisation header and paste the JWT
token. Don’t forget to provide the text bearer word.

Configuring throttling of Azure Functions
using API Management
We have already learned in previous chapters that we can use Azure Functions
HTTP triggers as backend web API. If you want to restrict the number of requests
by your client applications to, let’s say, 10 requests per second, then you might have
to develop a lot of logic. Thanks to Azure API Management, you don’t need to write
any custom logic if you integrate Azure Functions with API Management.

In this recipe, we will learn how to restrict clients to API access only once per minute
for a given IP address. The following are the high-level steps that we will follow:

1.	 Creating an Azure API Management service
2.	 Integrating Azure Functions with API Management
3.	 Configuring request throttling using inbound policies
4.	 Testing the rate limit inbound policy configuration

Implementing Best Practices for Azure Functions

[272]

Getting ready
To get started, we need to create an Azure API Management service by performing
the following steps:

1.	 Search for API Management and provide all the following details. In the
following example, I have chosen the Developer pricing tier. But for your
production applications, you need to choose non-developer tiers (Basic/
Standard/Premium) as the Developer (No SLA) tier doesn’t provide any
SLAs. Once you have reviewed all the details, click on the Create button:

Chapter 9

[273]

2.	 At the time of writing, it takes around 30 minutes to create an API
Management instance. Once it has been created, you can view
it in the API Management services blade:

How to do it...
In order to leverage the API Management capabilities, we need to integrate the
service endpoints (in our case, the HTTP triggers that we have created) with the
API Management service. This section talks about the steps required for integration.
Let’s start integrating both.

Integrating Azure Functions with API Management
Perform the following steps:

1.	 Navigate to the APIs blade of the API Management Instance that you
have created and click on the Function App tile.

2.	 You will see a Create from Function App pop-up where you can click
on the Browse button, which will open a side bar with the title Import
Azure Functions, where you can configure the function apps. Click on the
Configure Required Setting button to view all the function apps that have
HTTP triggers in them. Once you have select the function app, click on the
Select button.

Implementing Best Practices for Azure Functions

[274]

3.	 The next step is to choose the HTTP trigger that you would like to integrate
with Azure API Management. After clicking on the Select button, as
mentioned in the previous step, all the HTTP triggers associated with the
selected function app will appear, as shown in the following screenshot. I
have chosen only one HTTP trigger to make things simple:

Chapter 9

[275]

4.	 After performing all the preceding steps, the Create from Function App
pop-up will appear, looking something like the following. Once you have
reviewed the details, click on the Create button:

5.	 If everything goes fine, you should get a screenshot as follows. Now we are
done with integrating Azure Functions with API Management:

Implementing Best Practices for Azure Functions

[276]

Configuring request throttling using inbound
policies
Perform the following steps:

1.	 As shown in the preceding screenshot, choose the required operation (GET)
and click on the inbound policy editor link (labelled 3), which will open
the policy editor.

API Management allows us to control the behaviour of the backend
APIs (in our case, HTTP triggers) using API Management policies. You
can control both the inbound and outbound request responses. You can
read more about it at https://docs.microsoft.com/azure/api-
management/api-management-howto-policies.

2.	 As we need to restrict the request rate within API Management before
sending the request to the backend function app, we need to configure the
rate limit in the inbound policy. Create a new policy as shown with a value
of 1 for the calls attribute and a value of 60 (in seconds) for the renewal-
period attribute, and finally set the counter-key to the IP address of the
client application:

https://docs.microsoft.com/azure/api-management/api-management-howto-policies
https://docs.microsoft.com/azure/api-management/api-management-howto-policies

Chapter 9

[277]

With this inbound policy, we are instructing API Management
to restrict one request per minute for a given IP address.

3.	 One final step before we test the throttling is publishing the API by
navigating to the Settings tab in the preceding step and associating the
API with a published product (in my case, I have a default starter product
that is already published). As shown in the following screenshot, choose
the required product and click on the Save button:

Products in API Management are a group of APIs to which the developers
of different client applications can subscribe. For more information about
API Management products, refer to https://docs.microsoft.com/azure/
api-management/api-management-howto-add-products.

https://docs.microsoft.com/azure/api-management/api-management-howto-add-products
https://docs.microsoft.com/azure/api-management/api-management-howto-add-products

Implementing Best Practices for Azure Functions

[278]

Testing the rate limit inbound policy configuration
Perform the following steps:

1.	 Navigate to the Test tab and add any required parameters or headers that
are expected by the HTTP trigger. In my case, my HTTP trigger requires
a parameter named name.

2.	 Now, click on the Send button that appears when you complete the
preceding step to make your first request. You should see something
like the following after getting a response from the backend:

3.	 Now immediately click the Send button again. As shown here, you
should see an error, as our inbound policy rule is to allow only one
request per minute for a given IP address:

Chapter 9

[279]

How it works...
In this recipe, we have created an Azure API Management instance and integrated
an Azure Function App to leverage the API Management features. Once they
were integrated, we created an inbound policy that restricts clients to just one
call per minute from a given IP address. Here is a high-level diagram that depicts
the whole process:

Implementing Best Practices for Azure Functions

[280]

Securely accessing SQL Database from
Azure Functions using Managed Service
Identity
In one of our recipes, Azure SQL Database interactions using Azure Functions, from
Chapter 3, Seamless Integration of Azure Functions with Azure Services, we learned how
to access a SQL Database and its objects from Azure Functions by providing the
connection string (username and password).

Let’s say that, for some reason, you change the password to an account, meaning that
any applications using that account wouldn’t be able to gain access. As a developer,
wouldn’t it be good if there was a facility where you didn’t need to worry about
the credentials and, instead, the framework took care of authentication? In this
recipe, we will learn how to access a SQL Database from an Azure Function without
providing a user ID or password by using a feature called Managed Service Identity.

At the time of writing this recipe, the code related to retrieving the access
token was available only with Azure Functions V1 (.NET framework), but
not with V2 (.NET Core). By the time you are reading this book, it might
be available in the latest version of the .NET Core framework, and so this
recipe should work with Azure Functions v2 runtime as well.

Getting ready
This recipe requires us to create the Azure Functions (with the V1 runtime) and
the SQL Database in the same resource group. If you haven’t created these, create
them and come back to this recipe to continue. Here are the steps that we will be
performing in this recipe:

1.	 Creating a function app using Visual Studio 2017 with V1 runtime
2.	 Creating a Logical SQL Server and a SQL database
3.	 Enabling Managed Service Identity from the portal
4.	 Retrieving Managed Service Identity information using the Azure CLI
5.	 Allowing SQL Server access to the new Managed Service Identity
6.	 Executing the HTTP trigger and testing

Chapter 9

[281]

How to do it...
We will perform this recipe using the following steps:

1.	 Create a function app using Visual Studio 2017 with the V1 runtime
2.	 Create a Logical SQL Server and a SQL Database
3.	 Enabling the Managed Service Identity

Creating a function app using Visual Studio 2017
with V1 runtime
Perform the following steps:

1.	 Create a new function app by choosing the Azure Functions v1 runtime.
2.	 Once the HTTP trigger is created, replace the function with the following

code:
public static class HttpTriggerWithMSI
 {
 [FunctionName("HttpTriggerWithMSI")]
 public static async Task<HttpResponseMessage> Run([HttpTr
igger(AuthorizationLevel.Anonymous, "get", "post", Route = null)]
HttpRequestMessage req, TraceWriter log)
 {
 log.Info("C# HTTP trigger function processed a
request.");

 string firstname = string.Empty, lastname = string.
Empty, email = string.Empty, devicelist = string.Empty;

 dynamic data = await req.Content.
ReadAsAsync<object>();
 firstname = data?.firstname;
 lastname = data?.lastname;
 email = data?.email;
 devicelist = data?.devicelist;

 SqlConnection con = null;
 try
 {
 string query = "INSERT INTO EmployeeInfo
(firstname,lastname, email, devicelist) " + "VALUES (@firstname,@
lastname, @email, @devicelist) ";

 con = new
 SqlConnection("Server=tcp:dbserver.database.
windows.net,1433;Initial Catalog=database;Persist Security Info=Fa

Implementing Best Practices for Azure Functions

[282]

lse;MultipleActiveResultSets=False;Encrypt=True;TrustServerCertifi
cate=False;Connection Timeout=30;");
 SqlCommand cmd = new SqlCommand(query, con);

 con.AccessToken = (new
AzureServiceTokenProvider()).GetAccessTokenAsync("https://
database.windows.net/").Result;

 cmd.Parameters.Add("@firstname", SqlDbType.
VarChar,
 50).Value = firstname;
 cmd.Parameters.Add("@lastname", SqlDbType.VarChar,
50)
 .Value = lastname;
 cmd.Parameters.Add("@email", SqlDbType.VarChar,
50)
 .Value = email;
 cmd.Parameters.Add("@devicelist", SqlDbType.
VarChar)
 .Value = devicelist;
 con.Open();
 cmd.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 throw ex;
 }
 finally
 {
 if (con != null)
 {
 con.Close();
 }
 }
 return req.CreateResponse(HttpStatusCode.OK, "Hello,
Successfully inserted the data");
 }

The preceding code is the code that I copied from Chapter 3, Seamless Integration of
Azure Functions with Azure Services, with the following changes, but the connection
string doesn’t have user ID and password details.

1.	 Add a new line of code to retrieve the access token:
con.AccessToken = (new AzureServiceTokenProvider()).
GetAccessTokenAsync("https://database.windows.net/").Result;

2.	 Add the following NuGet packages to the function app:
Install-Package Microsoft.IdentityModel.Clients.ActiveDirectory
Install-Package Microsoft.Azure.Services.AppAuthentication

Chapter 9

[283]

3.	 Once you have ensured that there are no build errors, publish the function
app to Azure. This step ensures that we create the function app with V1
runtime. Click on the Publish button, which opens the pop-up as shown:

4.	 Next, provide the Resource Group and other details, as shown in the
following screenshot, and click on the Create button:

Implementing Best Practices for Azure Functions

[284]

Creating a Logical SQL Server and a SQL Database
Create a SQL Server and a SQL database in the same resource group where you
have created the Azure function app. In my case, my resource group name is
AzureServerlessCookbookv1.

Enabling the managed service identity
Perform the following steps:

1.	 Navigate to the Platform features of the function app and click on Managed
service identity

2.	 In the Managed service identity tab, click on On and Save, as shown:

Retrieving Managed Service Identity information
Perform the following steps:

1.	 Authenticate your Azure Account’s identity using Azure CLI by running the
az login command in the Command Prompt, as shown in the following
screenshot:

2.	 You will be prompted to provide your Azure account credentials to log into
the Azure portal. Once you have provided your credentials, it will show you
the available subscriptions in the command console.

Chapter 9

[285]

3.	 Now we need to retrieve the service principle details by running the
following command:
az resource show --name <<Function App Name>> --resource-group
<<Resource Group>> --resource-type Microsoft.Web/sites --query
identity

4.	 If you have configured the managed identity properly, you will see
something similar to the following as the output to the preceding command:

5.	 Make a note of principalId, which is retrieved in the preceding step. We
will be using it in the next section.

Allowing SQL Server access to the new Managed Identity
Service
In this section, we will create an admin user that has access to the SQL Server
that we created earlier:

1.	 Run the following command in the Command Prompt by passing
the principalId that you noted in the previous section:
az sql server ad-admin create --resource-group
AzureServerlessCookbookv1 --server-name azuresqlmsidbserver
--display-name sqladminuser --object-id <Principe Id>

2.	 Running the preceding command creates a new admin user in the master
database of the SQL Server.

3.	 Create a table named EmployeeInfo using the following script:
CREATE TABLE [dbo].[EmployeeInfo]([PKEmployeeId] [bigint]
IDENTITY(1,1) NOT NULL, [firstname] [varchar](50) NOT NULL,
[lastname] [varchar](50) NULL, [email] [varchar](50) NOT NULL,
[devicelist] [varchar](max) NULL, CONSTRAINT [PK_EmployeeInfo]
PRIMARY KEY CLUSTERED ([PKEmployeeId] ASC))

Implementing Best Practices for Azure Functions

[286]

Executing the HTTP trigger and testing
Perform the following steps:

1.	 Open Postman and submit a request as shown:

2.	 Let’s review the SQL Database to see whether the record is inserted:

Chapter 9

[287]

There’s more...
Ensure that you have all the following namespaces in the class:

using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Azure.WebJobs.Host;
using System.Data.SqlClient;
using System.Data;
using System;
using Microsoft.Azure.Services.AppAuthentication;

See also
See the Azure SQL Database interactions using Azure Functions recipe of Chapter 3,
Seamless Integration of Azure Functions with Azure Services.

Shared code across Azure Functions
using class libraries
You have learned how to reuse a Helper method within an Azure function app.
However, you cannot reuse it across other function apps or any other type of
application, such as a web app or a WPF application. In this recipe, we will develop
and create a new .dll file and you will learn how to use the classes and their methods
in Azure Functions.

Implementing Best Practices for Azure Functions

[288]

How to do it...
Perform the following steps:

1.	 Create a new Class Library application using Visual Studio. I have used
Visual Studio 2017:

2.	 Create a new class named Helper and paste the following code in the new
class file:
namespace Utilities
{
 public class Helper
 {
 public static string GetReusableFunctionOutput()
 {
 return "This is an output from a Resuable Library
across functions";
 }
 }
}

3.	 Change Build Configuration to Release and build the application to create
the .dll file, which will be used in our Azure Functions.

4.	 Navigate to the App Service Editor of the function app by clicking on
the App Service Editor button, which is available under Platform Features.

Chapter 9

[289]

5.	 Now create a new bin folder by right-clicking in the empty area below the
files located in WWWROOT.

6.	 After clicking on the New Folder item in the obtained screen, a new textbox
will appear, wherein you will need to provide the name as bin.

7.	 Next, right-click on the bin folder and select the Upload Files option
to upload the .dll file that we created in Visual Studio

8.	 This is how it looks after we upload the .dll file to the bin folder:

9.	 Navigate to the Azure Function where you would like to use the shared
method. To demonstrate, I have created two Azure Functions (one HTTP
trigger and one timer trigger):

Implementing Best Practices for Azure Functions

[290]

10.	 Let’s navigate to the ReusableMethodCaller1 function and make the
following changes:

°° Add a new #r directive, as follows, to the run.csx method of the
ReusableMethodCaller1 Azure Function. Note that .dll is required
in this case:
#r "../bin/Utilities.dll"

°° Add a new namespace, as follows:
using Utilities;

11.	 We are now ready to use the GetReusableFunctionOutput shared method
in our Azure Function. Now replace the code of the HTTP trigger with the
following:
log.LogInformation(Helper.GetReusableFunctionOutput());

12.	 When you run the application, you should see the following message
in the logs:

13.	 Repeat the same steps of adding the reference and the namespace of the
utilities library even in the second Azure Function, ReusableMethodCaller2.
If you have made the changes successfully, you should see something like
what follows:

How it works...
We have created a .dll file that contains the reusable code that can be used in any
of the Azure Functions that require the functionality made available by the .dll file.

Once the .dll file was ready, we created a bin folder in the function app and added
the .dll file to the bin folder.

Chapter 9

[291]

Note that we have added the bin folder to the WWWROOT so that it
is available to all the Azure Functions available in the function app.

There’s more...
If you would like to use the shared code only in one function, then you would need
to add the bin folder along with the .ddl file in the required Azure Function folder.

Another major advantage of using class libraries it that it improves performance,
as they are already compiled and ready for execution.

Using strongly typed classes in Azure
Functions
In our initial chapters, we developed an HTTP trigger named RegisterUser that
acts as a web API and can be consumed by any application that’s capable of making
HTTP requests. However, there might be some other requirements, where you might
have different applications that create messages in a queue with the details required
for creating a user. For the sake of simplicity, we will be using Azure Storage
Explorer to create a queue message.

In this recipe, we will look at how to get the details of the user from the queue using
strongly typed objects.

Getting ready
Before moving further, perform the following steps:

1.	 Create a storage account (I have created azurefunctionscookbook) in your
Azure subscription

2.	 Install Microsoft Azure Storage Explorer if you haven’t installed it already
3.	 Once Storage Explorer has been created, connect to your Azure storage

account

Implementing Best Practices for Azure Functions

[292]

How to do it...
Perform the following steps:

1.	 Using the Azure Storage Explorer, create a queue named
registeruserqueue in the storage account named
azurefunctionscookbook. We assume that all the other applications would
be creating messages in the registeruserqueue queue.

2.	 Navigate to Azure Functions and create a new Azure Function using Azure
Queue Storage trigger, then choose the queue that we have created.

3.	 You might be prompted to install storage extensions if not installed already.
Once you install the extensions, provide the details of the queue and click
on the Create button, as shown in the following screenshot:

4.	 Once the function is created, replace the default code with the following
code. Whenever a queue message is created, the JSON message will be
deserialised automatically and populated in an object named myQueueItem.
In the following code, we are just printing the values of the objects in the
Logs window:
using System;
public static void Run(User myQueueItem, ILogger log)
{

Chapter 9

[293]

 log.LogInformation($"A Message has been created for a new
User");
 log.LogInformation($"First name: {myQueueItem.firstname}");
 log.LogInformation($"Last name: {myQueueItem.lastname}");
 log.LogInformation($"email: {myQueueItem.email}");
 log.LogInformation($"Profile Url: {myQueueItem.ProfilePicUrl}"
);
}
public class User
{
 public string firstname { get;set;}
 public string lastname { get;set;}
 public string email { get;set;}
 public string ProfilePicUrl { get;set;}
}

5.	 Navigate to Azure Storage Explorer and create a new message
in registeruserqueue, as shown in the following screenshot:

Implementing Best Practices for Azure Functions

[294]

6.	 Click on OK to create the queue message and navigate back to the Azure
Function and look at the logs, as shown in the following screenshot:

How it works...
We have developed a new queue function that gets triggered when a new message
gets added to the queue. We have created a new queue message with all the details
required to create the user. You can further reuse the Azure Function code to pass
the user object (in this case, myQueueItem) to the database layer class, which is
capable of inserting the data into a database or any other persistent medium.

There’s more...
In this recipe, the type of the queue message parameter that was accepted by the
Run method was User. The Azure Functions runtime will take care of deserialising
the JSON message available in the queue to the custom type; user, in our case.

[295]

Configuring of Serverless
Applications in the

Production Environment
In this chapter, we will learn the following recipes:

•	 Deploying Azure Functions using Run From Package
•	 Deploying Azure Function using ARM templates
•	 Configuring custom domain to Azure Functions
•	 Techniques to access Application Settings
•	 Creating and generating open API specifications using Swagger
•	 Breaking down large APIs into small subsets of APIs using proxies
•	 Moving configuration items from one environment to another using

resources

Introduction
We have been discussing all the different features of Azure Functions that help
developers quickly build backend applications. This chapter’s focus is on the
configurations that one needs to make in a non-development environment
(such as Staging, UAT and production).

Configuring of Serverless Applications in the Production Environment

[296]

Deploying Azure Functions using the
Run From Package
We have been learning about different techniques for developing Azure Functions
and deploying it to the cloud.

As you might already be aware, each function app can have multiple functions
hosted in it. All the code related to those functions will be located in the D:\home\
site\wwwroot folder:

D:\home\site\wwwroot is the location where the runtime would look for the
binaries and all the configuration files that are required for executing the application.

In this recipe, we will learn another new technique, called Run From Package
(earlier called Run From Zip) to deploy the Azure Function as a package.

Chapter 10

[297]

Using Run From Package, we can change the default location to an external storage
account.

Getting ready
We need the following to complete this recipe:

1.	 Visual Studio 2017 installed in your local developer machine; create one
or more Azure Functions using Visual Studio. For this example, I have
created one HTTP trigger and one timer trigger:

2.	 Create an empty function app using the Azure Management portal:

3.	 A storage account – we will upload the package file to the storage account.

Configuring of Serverless Applications in the Production Environment

[298]

How to do it...
Perform the following steps:

1.	 Create a package file for the application. I’m using the same application that
we created in Chapter 4, Understanding the Integrated Developer Experience of
Visual Studio Tools.

2.	 Navigate to the location where you see the bin folder along with other
files related to your functions. Create a .zip file out of the files, which
is highlighted in the following screenshot:

3.	 Create a Blob container (with private access) and upload the package
file either from the portal or by using Azure Storage Explorer.

4.	 The next step is to generate a shared access signature (SAS) token for the
Blob Container so that Azure Function runtime has the required permissions
to access the files located in the container. You can learn more about SAS
at https://docs.microsoft.com/azure/storage/common/storage-
dotnet-shared-access-signature-part-1:

5.	 Navigate to the Application settings of the function app that we created,
and create a new app setting with the WEBSITE_RUN_FROM_PACKAGE key and
the value to be the Blob SAS URL that you created in the previous step,
as shown here. Click on Save to save the changes:

https://docs.microsoft.com/azure/storage/common/storage-dotnet-shared-access-signature-part-1
https://docs.microsoft.com/azure/storage/common/storage-dotnet-shared-access-signature-part-1

Chapter 10

[299]

6.	 That’s it. After the preceding configuration, you can test the function:

How it works...
When the Azure Function runtime finds an app setting with the name WEBSITE_
RUN_FROM_PACKAGE, it understands that it should look up the packages in the
storage account. So, on the fly, the runtime downloads the files and uses them
to launch the application.

There’s more...
You can learn more about this technique and its advantages at https://github.
com/Azure/app-service-announcements/issues/84.

Deploying Azure Function using ARM
templates
So far, we have been manually provisioning Azure Functions using the
Azure Management portal.

In this recipe, we will learn how to automate the process of provisioning
the Azure Function using Azure Resource Manager (ARM) templates.

Getting ready
Before, we start authoring the ARM templates, we need to understand the other
Azure services on which the Azure Function depends. The following services
are automatically created when you create a function app:

https://github.com/Azure/app-service-announcements/issues/84
https://github.com/Azure/app-service-announcements/issues/84

Configuring of Serverless Applications in the Production Environment

[300]

As shown in the preceding screenshot, the function app (in this case
azurefunctioncookbook-gateway) is dependent on an App Service Plan
and a Storage Account:

•	 App Service plan: This could be either a regular App Service plan
or a Consumption plan.

•	 Storage account: Azure Function runtime uses the Storage account
to log diagnostic information that we can use for troubleshooting.

•	 Application Insights: An optional Application Insights account. If we are
not using Application Insights, we need to create an application setting with
the name AzureWebJobsDashboard in the application settings of the function
that uses Azure Storage Table Service to log diagnostic information.

Along with these services, we would obviously need to have a resource group.
In this recipe, we will assume that the resource group already exists.

How to do it...
By now, you know that while authoring Azure Functions, we need to ensure
that we also accommodate an App Service plan and a storage account. Let’s
start authoring the ARM template using Visual Studio:

1.	 Create a new project by choosing Visual C# | Cloud and then choose
Azure Resource Group:

Chapter 10

[301]

2.	 Clicking on the OK button in the previous step will open up the Select Azure
Template where you choose the Azure Quick-Start (github.com/Azure/
azure-quickstart-templates) templates:

3.	 Search for the word function and click on the 101-function-app-create-
dynamic template to create the Azure function app with the Consumption
plan:

Configuring of Serverless Applications in the Production Environment

[302]

4.	 The required JSON template will be created in Visual Studio. You can learn
more about the JSON content at https://docs.microsoft.com/azure/
azure-functions/functions-infrastructure-as-code.

5.	 Deploy the ARM for provisioning the function app and its dependent
resources. You can deploy it by right-clicking on the project name (in my
case ARMTemplateforFunctionApp), clicking on Deploy and then clicking
on the New button:

6.	 Choose the Subscription, Resource group and other parameters for
provisioning the function app. Choose all the mandatory fields and click
on the Deploy button:

https://docs.microsoft.com/azure/azure-functions/functions-infrastructure-as-code
https://docs.microsoft.com/azure/azure-functions/functions-infrastructure-as-code

Chapter 10

[303]

7.	 That’s it! In a few minutes, the deployment will start and each of the
resources mentioned in the ARM JSON templates will be provisioned:

There’s more...
Here are some of the advantages of provisioning Azure Resources using ARM
templates:

•	 By having the configurations in the JSON files, it's helpful for developers to
push the files into some kind of version-control system, such as Git or TFS,
so that we can maintain the versions of the files to track all the changes.

•	 It’s also possible to create the services in different environments in no time.
•	 With the ARM templates, we can also push them in CI/CD pipelines

to automate the provisioning for additional environments.

Configuring custom domain to Azure
Functions
By now, looking at the default URL in the functionappname.azurewebsites.net
format of the Azure function app, you might be wondering whether it’s possible to
have a separate domain instead of the default domain, as your customers might have
their own domains. Yes, it’s possible to configure a custom domain for the function
apps. In this recipe, we will learn how to configure it.

Configuring of Serverless Applications in the Production Environment

[304]

Getting ready
Create a domain with any of the domain registrars. You can also purchase a domain
right from the portal using the Buy Domain button, which is available in the Custom
Domains blade:

Once your domain is ready, create the following DNS records using the domain
registrar:

•	 A record
•	 CName record

How to do it...
Perform the following steps:

1.	 Navigate to the Custom domains blade of the Azure function app
for which you would like to configure a domain:

Chapter 10

[305]

2.	 If you have created a custom domain from the Azure portal, it will prompt
you to choose the hostnames, as shown in the App Service Domain blade:

Configuring of Serverless Applications in the Production Environment

[306]

3.	 If you have chosen both of them, then that’s it. All the work in integrating
the function app and the custom domain is pretty much done for you
by the Azure Management portal. You can view the integration of
the hostnames here:

Configuring function app with an existing domain
If you already have a custom domain and you would like to integrate it with the
function app, you need to create the following two records in the DNS:

1.	 Create a A record and CNAME record in the domain registrar.
You can get the IP address from the Custom Domains blade:

Chapter 10

[307]

2.	 Navigate to the Custom Domains blade of the function app and create
the following hostnames:

That’s it. You have integrated a custom domain with the Azure function app.
You can now browse your function app using the new domain instead of the
default one that Azure provides you:

Configuring of Serverless Applications in the Production Environment

[308]

Techniques to access Application
Settings
In every application, you will have at least a few configuration items that you might
not want to hardcode. Instead, you would want them to change in the future, after
the application goes live, without touching the code.

In general, I would classify the configuration items into two categories:

•	 Some of the configuration items might be different across environments,
for example, the connection strings of the database and SMTP server

•	 Some of them might be the same across environments, such as some
constant numbers that are used in some calculations in the code

Whatever might be the use of the configuration value, you need to have a place
to store them that is accessible to your application.

In this recipe, we will learn how and where to store these configuration items
and different techniques to access them from your application code.

Getting ready
Create an Azure Function with the V2 Function runtime if not created already.
I will use the function app that we created in Chapter 4, Understanding the
Integrated Developer Experience of Visual Studio Tools.

How to do it...
In this recipe, we will look at a few ways of accessing the configuration values.

Accessing Application Settings and connection
strings in the Azure Function code
Perform the following steps:

1.	 Create a configuration items with the MyAppSetting key and a
ConnectionStrings with the sqldb_connection key in the local.
settings.json file. local.settings.json should look something
like the following screenshot:

Chapter 10

[309]

2.	 Replace the existing code with the following code. We have added a few lines
that read the configuration values and the connection strings:
public class HttpTriggerCSharpFromVS
 {
 [FunctionName("HttpTriggerCSharpFromVS")]
 public static IActionResult Run([HttpTrigger(AuthorizationLevel.
Anonymous, "get", "post", Route = null)]HttpRequest req,ILogger
logger)
 {
 var configuration = new ConfigurationBuilder()
 .AddEnvironmentVariables()
 .AddJsonFile("appsettings.json", true)
 .Build();
var ValueFromGetConnectionStringOrSetting = configuration.GetConne
ctionStringOrSetting("MyAppSetting");
 logger.LogInformation("GetConnectionStringOrSetting" +
ValueFromGetConnectionStringOrSetting);
var ValueFromConfigurationIndex= configuration["MyAppSetting"];
 logger.LogInformation("ValueFromConfigurationIndex" +
ValueFromConfigurationIndex);
var ValueFromConnectionString = configuration.GetConnectionStringO
rSetting("ConnectionStrings:sqldb_connection");
 logger.LogInformation("ConnectionStrings:sqldb_connection" +
ValueFromConnectionString);
string name = req.Query["name"];
 return name != null ? (ActionResult)new OkObjectResult($"Hello,
{name}")
 : new BadRequestObjectResult("Please pass a name on the query
string or in the request body");
 }
}

Configuring of Serverless Applications in the Production Environment

[310]

3.	 Publish the project to Azure by right-clicking on the project and then clicking
on Publish in the menu.

4.	 Add the configuration key and the connection string in the Application
Settings blade:

5.	 Run the function by clicking on the Run button, which logs the output in the
Output window:

Chapter 10

[311]

Application setting – binding expressions
In the previous section, we learned how to access the configuration settings from
the code. Sometimes, you might want to configure some of the declarative items too.
You could achieve that using binding expression. You will understand what I mean
in a moment when we look at the code:

1.	 Open the Visual Studio and make changes to the Run method to add a new
parameter for configuring the QueueTrigger:

2.	 The hardcodedqueuename parameter is the name of the queue to which
messages will be created. It’s obvious that hardcoding the name of the
queue is not a good practice. In order to make it configurable, you need
to make use of application setting binding expression:

3.	 The application setting key must be enclosed in %...% and a key with
the name queuename should be created in the Application Settings.

Creating and generating open API
specifications using Swagger
For a backend web API developer, one of their responsibilities is to provide a proper
documentation to the frontend application developers so that they can consume the
APIs without any problems. In order to consume any API, the following are the two
minimum things that one needs to understand:

•	 The input parameters and their data types
•	 The output parameters and their data types

Configuring of Serverless Applications in the Production Environment

[312]

So, it’s the responsibility of the backend developers to provide proper
documentation for the APIs and it’s not easy to provide proper documentation as
there are many tools and standards/specifications that are available for providing
proper documentation for the REST APIs. One such standard is known as the open
API specification (it’s popularly known as Swagger).

Azure Functions provide us with the required tooling support for generating
the open API definitions for our HTTP triggers. In this recipe, we will learn how
to generate them.

Getting ready
Create a function and create one or more HTTP triggers. In order to make it simple, I
have created a function app and one HTTP trigger, which accepts Get methods only.

Ensure that the Azure function app is configured to point to runtime version 1,
as shown in the Application Settings:

How to do it...
Perform the following steps:

1.	 Navigate to the Platform features and click on the API definition tab:

Note that at the time of writing, the API definition feature is
supported only by the Azure Function runtime V1.0 and it's
still in preview. It doesn›t work with V2.o yet.

Chapter 10

[313]

2.	 In the API definition tab, click on the Function (preview) option to enable
the source of the API definition:

3.	 As soon as you click on the Function (preview) button, the feature will be
enabled. However, you might see an error in the new tab that is opened.
Don’t worry, as the feature is still in preview, Microsoft might fix it before
it goes generally available (GA). Then, click on Generate API definition
template:

Configuring of Serverless Applications in the Production Environment

[314]

4.	 This will just create a template of the open API definition. It’s the cloud
developer’s responsibility to fill in the template, based on the APIs that
they have developed. It should look something like this. We will change
the template in a moment:

5.	 In the preceding screenshot, the code tab contains all the default templates
required for generating the Swagger definition based on the open API
specification. The right section shows how the Swagger UI looks. The
Swagger UI is something that will be shared with the other client application
development teams who consume the backend APIs.

6.	 Let’s replace the default template by adding the required parameters of the
API operations, and click on the Save button to save the changes. To make
it simple, I just made a few changes that describe the API and its operations.
It should be straightforward to understand.

7.	 The Swagger UI will look as follows with proper messages along with
request and response formats:

Chapter 10

[315]

8.	 It also allows us to run some tests. Click on the Try this operation button that
is shown in the preceding screenshot. It opens up a window where you can
provide input:

Configuring of Serverless Applications in the Production Environment

[316]

9.	 I have provided Praveen Kumar as the value for the name, clicked
on the Send Request button and got the following output:

Breaking down large APIs into small
subsets of APIs using proxies
In recent times, one of the buzzwords in the industry is microservices, where
you develop your web components as microservices that can be managed
(scaling, deployment and so on) individually without impacting the other related
components. Though the subject of microservices is itself a huge one, we will try
to achieve building a very few microservices that could be managed individually
as independent function apps. But, we will expose them to the external world
as a single API with different operations with the help of Azure Function Proxies.

Getting ready
In this recipe, we will be implementing the following architecture:

Chapter 10

[317]

Let’s assume that we are working for an e-commerce portal where we just have
three modules (men, women and kids) and our goal is to build the backend APIs
in a microservice architecture where each microservice is independent of the others.

In this recipe, we will achieve this by creating the following function apps:

•	 A gateway component (function app) that is responsible for controlling the
traffic to the right microservice based on the route (/men, /women and /kids).
In this function app, we would be creating Azure Function Proxies that will
redirect the traffic using route configurations.

•	 Three new function apps where each of them is treated as a separate
microservice.

How to do it...
In this recipe, we will be performing the following steps:

1.	 Create all three microservices with one HTTP trigger in each of them
2.	 Create, proxy and configure the respective microservice
3.	 Test the proxy URL

Configuring of Serverless Applications in the Production Environment

[318]

Creating microservices
Perform the following steps:

1.	 Create three function apps for each of the microservices
that we have planned:

2.	 Create the following anonymous HTTP triggers in each of the function
apps that display a message something shown as follows:

Http Trigger name Output message

Men-HttpTrigger
Hello <<Name>> – Welcome to the Men
Microservice

Women-HttpTrigger
Hello <<Name>> – Welcome to the
Women Microservice

Kids-HttpTrigger
Hello <<Name>> – Welcome to the
Kids Microservice

Creating the gateway proxies
Perform the following steps:

1.	 Navigate to the gateway function app and create a new proxy:

Chapter 10

[319]

2.	 You will be taken to the details blade:

Configuring of Serverless Applications in the Production Environment

[320]

3.	 Create the proxies for women and kids. Here are the details of all three
proxies. Note that the backend URLs (of the function apps) might be
different in your case:

Proxy name Route
template

Backend URL (the URLs of the HTTP triggers created
in the previous step)

Men /Men https://azurefunctioncookbook-men.
azurewebsites.net/api/Men-HttpTrigger

Women /Women https://azurefunctioncookbook-women.
azurewebsites.netapi/Women-HttpTrigger

Kids /Kids https://azurefunctioncookbook-kids.
azurewebsites.netapi/Kids-HttpTrigger

4.	 Once you create the three proxies, the list will look something like this:

5.	 In the preceding screenshot, you can view three different domains. However,
if you would like to share these with the client applications, you don’t need
to share these URLs. All you need to do is share the URL of the proxies that
you can view in the proxy tab. Here are the proxy URLs of the three proxies
we have created:

•	 https://azurefunctioncookbook-gateway.azurewebsites.net/Men

•	 https://azurefunctioncookbook-gateway.azurewebsites.net/Women

•	 https://azurefunctioncookbook-gateway.azurewebsites.net/Kids

https://azurefunctioncookbook-men.azurewebsites.net/api/Men-HttpTrigger
https://azurefunctioncookbook-men.azurewebsites.net/api/Men-HttpTrigger
https://azurefunctioncookbook-women.azurewebsites.netapi/Women-HttpTrigger
https://azurefunctioncookbook-women.azurewebsites.netapi/Women-HttpTrigger
https://azurefunctioncookbook-kids.azurewebsites.netapi/Kids-HttpTrigger
https://azurefunctioncookbook-kids.azurewebsites.netapi/Kids-HttpTrigger
https://azurefunctioncookbook-gateway.azurewebsites.net/Men
https://azurefunctioncookbook-gateway.azurewebsites.net/Women
https://azurefunctioncookbook-gateway.azurewebsites.net/Kids

Chapter 10

[321]

Testing the proxy URLs
As you already know, our HTTP triggers accept a required name parameter, we
need to pass the name query string to the proxy URL. Let’s access the following
URLs in the browser:

•	 Men:

•	 Women:

•	 Kids:

Observe the URLs of the three screenshots. You will notice that they look like they
are being served from one single application with different routes. However, they
are three different microservices that could be managed individually.

There’s more...
All the microservices that we have created in this recipe are anonymous, which
means they are publicly accessible to everyone. In order to make them secure, you
need to follow either of the approaches recommended in Chapter 9, Implementing
Best Practices for Azure Functions.

Configuring of Serverless Applications in the Production Environment

[322]

The Azure Function proxies also allow you to intercept the original request and,
if required, you can add new parameters and pass them to the backend API.
Similarly, you can add additional parameters and pass the response back to the
client application. You can learn more about Azure Function proxies in the official
documentation at https://docs.microsoft.com/azure/azure-functions/
functions-proxies.

See also
•	 The Controlling access to Azure Functions using function keys recipe of Chapter 9,

Implementing Best Practices for Azure Functions
•	 The Securing Azure Functions using Azure AD recipe of Chapter 9, Implementing

Best Practices for Azure Functions
•	 The Configuring throttling of the Azure Functions using API Management recipe

under Chapter 9, Implementing Best Practices for Azure Functions

Moving configuration items from one
environment to another using resources
Every application that you develop will have many configuration items (such as
application settings as connection strings) that will be stored in Web.Config files for
all your . NET-based web applications.

In the traditional on-premises world, the Web.Config file would be located in the
server and the file would be accessible to all people who have access to the server.
Although it is possible to encrypt all the configuration items of Web.Config, it had
its limitations and they’re not easy to decrypt every time you want to view or update
them.

In the Azure PaaS world, with Azure App Services, you still can have the Web.
Config files and they work as they used to in the traditional on-premises world.
However, Azure App Service provides us with additional feature in terms of
application settings, where you can configure these settings (either manually
or via ARM templates) and these settings are stored in an encrypted format.
But you can view them as normal text in the portal if you have access.

https://docs.microsoft.com/azure/azure-functions/functions-proxies
https://docs.microsoft.com/azure/azure-functions/functions-proxies

Chapter 10

[323]

Depending on the application type, the number of application settings might grow
to a large size, and if you want to create new environments, then creating these
application settings would take quite a bit of time. In this recipe, we will learn a
tip of exporting and importing these application settings from a lower environment
(say, Dev) to a higher environment (say, Prod).

Getting ready
Perform the following steps:

1.	 Create a function app (say, MyApp-Dev) if not created already
2.	 Create some application settings:

3.	 Create another function app (say, MyApp-Prod)

In this recipe, we will learn how easy it is to copy the application settings from one
function to another. This technique will be handy when there are many app settings.

Configuring of Serverless Applications in the Production Environment

[324]

How to do it...
Perform the following steps:

1.	 Navigate to the Platform features tab of the MyApp-Dev Function app and
click on the Resource Explorer:

2.	 The Resource Explorer will be opened, and from there you can traverse
all the internal elements of a given service:

Chapter 10

[325]

3.	 Click on the config element, as shown in the preceding screenshot, which
opens all the items related to configurations:

4.	 Resource Explorer will display all the application settings in the right-hand
window. Now, you can either edit them by clicking on the Edit button, which
is highlighted in the preceding screenshot, or you can copy all the application
settings from AppSetting0 to AppSetting 9.

Configuring of Serverless Applications in the Production Environment

[326]

5.	 Navigate to the MyApp-Prod function app (which won’t have the application
settings highlighted in the previous screenshot), click on the Resource
Explorer and then click on the config | appsettings elements to open
the existing application settings. It should look something like this:

6.	 Click on the Edit button and paste the content that you copied earlier.
Once you’ve reviewed the settings, click on PUT, which is shown in
the preceding screenshot.

Chapter 10

[327]

7.	 Navigate to the application setting blade of the MyApp-Prod function app:

You should see all the application settings that we have created in the Resource
Explorer in a single shot.

[329]

Implementing and Deploying
Continuous Integration

Using Azure DevOps
In this chapter, you will learn the following:

•	 Continuous integration – creating a build definition
•	 Continuous integration – queuing a build and triggering it manually
•	 Configuring and triggering an automated build
•	 Continuous integration – executing unit test cases in the pipeline
•	 Creating a release definition
•	 Triggering the release automatically

Introduction
As a software professional, you might have already been aware of different software
development methodologies that people practice. Irrespective of the methodology
being followed, there will be multiple environments, such as dev, staging and
production, where the application life cycle needs to be followed with these
critical stages related to development:

1.	 Develop based on the requirements
2.	 Build the application and fix any errors
3.	 Deploy/release the package to an environment (dev/stage/prod)

Implementing and Deploying Continuous Integration Using Azure DevOps

[330]

4.	 Test against the requirements
5.	 Promote the release to the next environment (from dev to stage and stage

to prod)

Note that for the sake of simplicity, the initial stages, such as requirement
gathering, planning, design and architecture, are excluded just to
emphasise the stages that are relevant to this chapter.

For each change that you make to the software, we need to build and deploy the
application to multiple environments, and it might be the case that different teams
are responsible for releasing the builds to different environments. As different
environments and teams are involved, considering the amount of time that is spent
in running the builds, deploying them in different environments would be more
dependent on the processes that different teams follow.

In order to streamline and automate a few of the steps mentioned earlier, in this
chapter, we will discuss some of the popular techniques that the industry follows
in order to deliver software quickly, with minimal infrastructure.

In previous chapters, most of the recipes provided us with a solution
for an individual business problem. However, in this chapter,
the entire chapter as a single entity will try to provide you with a
solution for the Continuous Integration and Continuous Delivery of
your business-critical application.

The Azure DevOps team continuously adds new features to Azure DevOps
at https://dev.azure.com (formerly known as VSTS at https://www.
visualstudio.com) and updates the user interface as well. Don’t be surprised if
screenshots that are provided in this chapter don’t match those of your screens at
https://dev.azure.com while you are reading this.

Prerequisites
Create the following if you have don’t have them already:

1.	 Create an Azure DevOps organisation of your choice at https://dev.
azure.com and create a new project in that account. While creating the
project, you can either choose Git or Team Foundation Version Control
as your version control repository. I have used Team Foundation Version
Control for my project:

https://dev.azure.com
https://www.visualstudio.com
https://www.visualstudio.com
https://dev.azure.com
https://dev.azure.com
https://dev.azure.com

Chapter 11

[331]

2.	 Configure the Visual Studio project that you developed in Chapter 4,
Understanding the Integrated Developer Experience of Visual Studio Tools for
Azure Functions, to Azure DevOps. You can go through the https://www.
visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs link
to follow the step-by-step process of creating a new account and project
using Azure DevOps.

I will be making some small changes to the response messages
embedded within the code to shown different outputs. Ensure that
you modify the unit tests accordingly. Otherwise, the build will fail.

Continuous integration – creating a build
definition
A build definition is a set of tasks that are required to configure an automated build
of your software. In this recipe, we will perform the following:

•	 Create the build definition template
•	 Provide all the inputs required for each of the steps to create the

build definition

Implementing and Deploying Continuous Integration Using Azure DevOps

[332]

Getting ready
Perform the following prerequisites:

1.	 Create an Azure DevOps account.
2.	 Create a project by choosing Team Foundation Version Control, as shown

in the following screenshot:

Chapter 11

[333]

How to do it...
Perform the following steps:

1.	 Navigate to the Pipelines tab in your Azure DevOps account, click on
Builds and choose New pipeline to start the process of creating a new
build definition, as shown in the following screenshot:

2.	 In the next step, click on the Use a visual designer link, as shown in the
following screenshot:

Implementing and Deploying Continuous Integration Using Azure DevOps

[334]

3.	 You will be taken to the Select your repository screen where you can choose
your repository. For this example, I have mine sourced in TFVC. As shown
next, select TFVC and click on Continue. Make sure that you have chosen
your project, which in my case is AzureServerlessCookBook:

4.	 You will be taken to the Select a template step, where you can choose
the template required for your application. For this recipe, we will
choose C# Function, as shown in the following screenshot, by clicking
on the Apply button:

Chapter 11

[335]

5.	 The create build step is a set of steps used to define the build template, where
each step has certain attributes that we need to review and provide inputs
for each of those fields based on our requirements. Let’s start by providing
a meaningful name in the pipeline step and also ensure that you choose
Hosted VS2017 in the Agent Pool drop-down, as shown in the following
screenshot:

An agent is software hosted on the cloud that is capable
of running a build. As our project is based on VS2017,
we have chosen Hosted VS2017.

Implementing and Deploying Continuous Integration Using Azure DevOps

[336]

6.	 In the Get sources step, ensure that the following are selected:
1.	 Select the version control system that you would like to have.
2.	 Choose the repository that you want to build. In my example,

I have chosen AzureServerlessCookBook:

7.	 Leave the default options for all the following steps:
°° Use NuGet and NuGet restore: This step is required for

downloading and installing all the required packages for the
application.

°° Build solution: This step uses MS build and has all the predefined
commands to create the build.

°° Test assemblies: This would be useful if we had any automated tests.
We will make some changes to this step in the Continuous integration
– executing unit test cases in the pipeline recipe later in this chapter.

°° Archive files: This step lets us archive the folders in the required
format.

°° Publish symbols path: These symbols are useful if you want
to debug your app hosted in the Agent VM.

°° Publish artifact: The step has configuration related to the
artifacts and the path for storing the artifact (build package).

8.	 Once you review all the values in all the fields, click on Save, as shown in
the following screenshot, and click on Save again in the Save build definition
pop-up:

Chapter 11

[337]

How it works...
A build definition is just a blueprint of the tasks that are required for building
a software application. In this recipe, we have used a default template to create
the build definition. We can choose a blank template and create the definition by
choosing the tasks available in Azure DevOps as well.

When you run the build definition (either manually or automatically, which will be
discussed in the subsequent recipes), each of the tasks will be executed in the order
in which you have configured them. You can also rearrange the steps by dragging
and dropping them in the pipeline section.

The build process starts with getting the source code from the chosen repository
and downloading the required NuGet packages, and then starts the process of
building the package. Once that process is complete, it creates a package and stores
it in a folder configured for the build.artifactstagingdirectory directory
(refer to the Path to publish field of the Publish artifact task).

You can learn about all different type of variables in the Variables tab shown here:

Implementing and Deploying Continuous Integration Using Azure DevOps

[338]

There’s more...
•	 Azure DevOps provides many tasks. You can choose a new task for the

template by clicking on the Add Task (+) button, as shown in the following
screenshot:

•	 If you don’t find a task that suits your requirements, you can search for
a suitable one in the marketplace by clicking on the Marketplace button
shown in the preceding screenshot.

•	 C# function has the correct set of tasks required to set up the build definition
for Azure Functions as well.

Continuous integration – queuing a build
and triggering it manually
In the previous recipe, you learned how to create and configure the build definition.
In this recipe, you will learn how to trigger the build manually and understand the
process of building the application.

Getting ready
Before we begin, make sure of the following:

•	 You have configured the build definition as mentioned in the previous recipe
•	 All your source code is checked in to the Azure DevOps team project

Chapter 11

[339]

How to do it...
Perform the following steps:

1.	 Navigate to the build definition named AzureServerlessCookBook-C#
Function-CI and click on the Queue button available on the right-hand
side, as shown in the following screenshot:

2.	 In the Queue build for AzureServerlessCookBook-C# Function-CI pop-up,
make sure that the Hosted VS2017 option is chosen in the Agent pool drop-
down if you are using Visual Studio 2017 and click on the Queue button,
as shown in the following screenshot:

Implementing and Deploying Continuous Integration Using Azure DevOps

[340]

3.	 In just a few moments, the build will be queued and the message will
be displayed, as shown in the following screenshot:

4.	 Clicking on the build ID (in our case, 20181025.1) will start the process,
and it waits for a few seconds for an available agent to start it.

5.	 After a few moments, the build process will start, and in just a few minutes,
the build will be completed and you can review the steps of the build in the
logs, as shown here. Ignore the warning that is shown for Test Assemblies
for now. We will fix this in the recipe Continuous integration – executing unit
test cases in the pipeline later in this chapter:

Chapter 11

[341]

6.	 If you would like to view the output of the build, click on the Artifacts
button highlighted in the following screenshot. You can download the
files by clicking on the Download button as shown here:

Configuring and triggering an automated
build
For most applications, it might not make sense to perform manual builds in Azure
DevOps. It would make sense if we can configure Continuous Integration (CI)
by automating the process of triggering the build for each check-in/commit done
by the developers.

In this recipe, you will learn how to configure continuous integration in Azure
DevOps for your team project and also trigger the automated build by making a
change to the code of the HTTP trigger Azure Function that we created in Chapter
4, Understanding the Integrated Developer Experience of Visual Studio Tools for Azure
Functions.

Implementing and Deploying Continuous Integration Using Azure DevOps

[342]

How to do it...
Perform the following steps:

1.	 Navigate to the build definition AzureServerlessCookBook-C# Function-
CI by clicking on the Edit button as shown in the following screenshot:

2.	 Once you are in the build definition, click on the Triggers menu, shown
as follows:

3.	 Now, click on the Enable continuous integration checkbox to enable
the automated build trigger.

4.	 Save the changes by clicking on the arrow mark available beside the Save
& queue button and click on the Save button available in the drop-down
menu, which is shown in the following screenshot:

Chapter 11

[343]

5.	 Let’s navigate to the Azure Function project in Visual Studio. Make a small
change to the last line of the Run function source code that is shown next. I
just replaced the word hello with Automated Build Trigger test by:
return name != null ? (ActionResult)new OkObjectResult($"Automated
Build Trigger test by, { name}")
 : new BadRequestObjectResult("Please pass a name on the
query string or in the request body");

6.	 Let’s check in the code and commit the changes to the source control.
As shown here, you will get a new change set ID generated. In this case,
it is Changeset 32:

7.	 Now, immediately navigate back to the Azure DevOps build definition to
see that a new build got triggered automatically and is in progress, as shown
in the following screenshot:

Implementing and Deploying Continuous Integration Using Azure DevOps

[344]

How it works...
These are the steps followed in this recipe:

1.	 We enabled the automatic build trigger for the build definition
2.	 We made a change to the codebase and checked it into TFVC
3.	 Automatically, a new build got triggered in Azure DevOps – builds

immediately after the code is committed to the TFVC

There’s more...
If you would like to restrict the developers to checking in code only after a successful
build, then you need to enable gated-check-in. In order to enable this, edit the build
definition and then navigate to the Triggers tab and Enable gated check-in, as
shown in the following screenshot:

Now, go back to Visual Studio and make some changes to the code. If you try
to check in the code without building the application from within Visual Studio,
then you will get an alert, as shown here:

Chapter 11

[345]

Click on Build Changes in the preceding step to start the build in Visual Studio.
As soon as the build in Visual Studio is complete, the code will be checked into
Azure DevOps and then a new build will be triggered automatically, as shown here:

Continuous integration – executing unit
test cases in the pipeline
One of the most important steps in any software development methodology is
to write automated unit tests that validate the correctness of our code. It is also
important that we run these unit tests every time the developer releases new code,
to provide test code coverage.

In this recipe, we will learn how to incorporate the process of building the unit tests
that we developed in the Developing Unit Tests for Azure Functions HTTP Triggers
recipe of Chapter 6, Exploring Testing Tools for the Validation of Azure Functions.

Implementing and Deploying Continuous Integration Using Azure DevOps

[346]

How to do it...
Perform the following steps:

1.	 In the Continuous integration – creating a build definition recipe of this chapter,
we utilised a build template that had both the Build solution and build Test
Assemblies steps, as shown in the following screenshot:

2.	 Click on Test Assemblies as shown in the previous screenshot. Replace
the default configuration with the one provided here, in the Test files field:
\$(BuildConfiguration)*test*.dll
!**\obj**
!***TestAdapter.dll

3.	 The previous configuration settings let the test runner do the following:
°° Search for any .dll file with the word Test in its name that is

located in the release folder any where in the artifacts. You might
be wondering where release has come into picture. It’s the value
of the $(BuildConfiguration) variable in the Variables section
shown in the following screenshot:

Chapter 11

[347]

°° Ignore all the .dll files in the obj folder as our goal is to work
only on the .dll files located inside the release folder.

4.	 That’s it. Let’s now queue the build by clicking on the Queue button after
saving the changes. After a few minutes, the build pipeline will get passed
without any warnings, as shown in the following screenshot:

Implementing and Deploying Continuous Integration Using Azure DevOps

[348]

5.	 Here is the summary of the test cases. You can see the chart that shows
the percentage of the test cases that have passed and failed:

There’s more...
If you have followed all the naming conventions as per the instructions, then you
won’t face any issues with this recipe. However, if you have used a different name
for the unit project and if you haven’t used the word test somewhere in the name
of project (which is the same name as the generated .dll file), then feel free to
change the format in the following setting:

\$(BuildConfiguration)*whateverwordyouhaveinthenameofthedllfi
le*.dll

In the recipe, you used *, ** and !, which are called file matching patterns. You can
learn more about the file matching patterns at https://docs.microsoft.com/en-
us/azure/devops/pipelines/tasks/file-matching-patterns?view=vsts.

Creating a release definition
Now that we know how to create a build definition and trigger an automated build
in Azure DevOps – pipelines, our next step is to release or deploy the package to
an environment where the project stakeholders can review it and provide feedback.
In order to do that, first we need to create a release definition in the same way that
we created the build definitions.

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/file-matching-patterns?view=vsts
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/file-matching-patterns?view=vsts

Chapter 11

[349]

Getting ready
I have used the new release definition editor to visualise the deployment pipelines.
The release definition editor is still in preview. By the time you read this, if it is still
in preview, then you can enable it by clicking on the profile image and then clicking
on the Preview features link, as shown in the following screenshot:

You can then enable new release definition editor, as shown in the following
screenshot:

Let’s get started with creating a new release definition.

Implementing and Deploying Continuous Integration Using Azure DevOps

[350]

How to do it...
Perform the following steps:

1.	 Navigate to the Releases tab, as shown in the following screenshot, and click
on the New Pipeline link:

2.	 The next step is to choose a Release definition template. In the Select
a template pop-up, select Azure App Service deployment and click
on the Apply button, as shown in the following screenshot. Immediately
after clicking on the Apply button, a new environment (stage) pop-up
will be displayed. For now, just close the Environment pop-up:

Chapter 11

[351]

3.	 Click on the Add button available in the Artifacts box to add a new artifact,
as shown in the following screenshot:

Implementing and Deploying Continuous Integration Using Azure DevOps

[352]

4.	 In the Add an artifact pop-up, make sure that you choose the following:
1.	 Source type: Build
2.	 Project: The team project your source code is linked to
3.	 Source (build definition): The build definition name where

your builds are created
4.	 Default Version: Latest

5.	 After reviewing all the values on the page, click on the Add button
to add the artifact.

6.	 Once the artifact is added, the next step is to configure the stages, where
the package needs to be published. Click on the 1 phase, 1 task link, shown
in the following screenshot: Also, change the name of the release definition
to release-def-stg:

Chapter 11

[353]

7.	 You will be taken to the Tasks tab, shown next. Provide a meaningful name
to the Stage name field. I have provided the name Staging Environment
for this example. Next, choose the Azure subscription in which you would
like to deploy the Azure Function. You will need to click on the Authorize
button to provide the permissions, as shown here:

Implementing and Deploying Continuous Integration Using Azure DevOps

[354]

8.	 After authorising the subscription, you need to ensure that you have chosen
the App type to be Function App, and then choose the function app name
in the App Service name to which you would like to deploy the package,
as shown here:

If you don’t see your subscription or app service, refresh
the item by clicking on the icon that is available after the
Authorise button of the above screen screenshot.

9.	 Click on the Save button to save the changes. Now, let’s use this release
definition and try to create new release by clicking on Create release,
as shown in the following screenshot:

Chapter 11

[355]

10.	 Next, you will be taken to the Create a new release pop-up where you
can configure the build definition that needs to be used. As we have only
one, we can see only one build definition. You also need to choose the
right version of the build, as shown here. Once you review it, click on
the Create button to queue the release:

Implementing and Deploying Continuous Integration Using Azure DevOps

[356]

11.	 Clicking on the Create button in the preceding step will take you to the
following step. Click on the Deploy stage button as shown here to initiate the
process of deploying the release:

12.	 You will now be prompted to review the associated artifacts. Once you
review them, click on the Deploy button as shown here:

Chapter 11

[357]

13.	 Immediately, the process will start and it will show In Progress to indicate
the progress of the release, as shown here:

Implementing and Deploying Continuous Integration Using Azure DevOps

[358]

14.	 Click on the In Progress links shown in the previous screenshot to review
the progress. As shown next, the release process succeeded:

How it works...
In the Pipeline tab, we have created artifacts and an environment named staging,
and linked them together.

We have also configured the environment to have the Azure App Service related
to the Azure Functions that we created in Chapter 4, Understanding the Integrated
Developer Experience of Visual Studio Tools for Azure Functions.

There’s more...
If you are configuring continuous deployment for the first time, you might see a
button with the text Authorise in the Azure App Service deployment step. Clicking
on the Authorise button will open a pop-up window where you will be prompted
to provide your Azure Management portal’s credentials.

You can rename the release pipeline by clicking on the name at the top,
as shown here:

Chapter 11

[359]

Currently, there is a template specific to Azure Functions, shown next. However,
it looks like it’s not working. By the time you read this book, you should probably
give a try:

See also
The Deploying an Azure Function app to Azure Cloud using Visual Studio recipe of
Chapter 4, Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions.

Implementing and Deploying Continuous Integration Using Azure DevOps

[360]

Triggering the release automatically
In this recipe, you will learn how to configure continuous deployment for an
environment. In your project, you can configure dev/staging or any other pre-
production environment, and configure continuous deployment to streamline
the deployment process.

In general, it is not recommended that you configure continuous deployment for
a production environment. However, this might depend on various factors and
requirements. Be cautious and think about various scenarios before you configure
continuous deployment for your production environment.

Getting ready
Download and install the Postman tool if you have not installed it yet.

How to do it...
Perform the following steps:

1.	 By default, the releases are configured to be pushed manually. Let’s
configure Continuous Deployment by navigating back to the Pipeline
tab and clicking on the Continuous deployment trigger, as shown in
the following screenshot:

Chapter 11

[361]

2.	 As shown in the following screenshot, enable the Continuous deployment
trigger and click on Save to save the changes:

3.	 Navigate to Visual Studio and make some code changes, as highlighted here:
return name != null ? (ActionResult)new OkObjectResult($"Automated
Build Trigger and Release test by, { name}")
 : new BadRequestObjectResult("Please pass a name on the
query string or in the request body");

4.	 Now, check in the code with a comment, Continuous Deployment, to
commit the changes to Azure DevOps. As soon as you check in the code,
navigate to the Builds tab to see a new build get triggered, as shown in
the following screenshot:

Implementing and Deploying Continuous Integration Using Azure DevOps

[362]

5.	 Navigate to the Releases tab after the build is complete to see that a new
release got triggered automatically, as shown in the following screenshot:

6.	 Once the release process is complete, you can review the change by making a
request to the HTTP Trigger using the Postman tool:

How it works...
In the Pipeline tab, we have enabled the Continuous deployment trigger.

Every time a build associated with AzureServerlessCookBook-C# Function-CI is
triggered, the Azure Serverless Cookbook Release release will be automatically
triggered to deploy the latest build to the designated environment. We have also
seen the automatic release in action by making a code change in Visual Studio.

There’s more...
You can also create multiple environments and configure the definitions to release
the required builds to those environments.

363

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Architecting Microsoft Azure Solutions – Exam Guide 70-535

Sjoukje Zaal

ISBN: 978-1-78899-173-5

ff Use Azure Virtual Machines to design effective VM deployments
ff Implement architecture styles, like serverless computing and microservices
ff Secure your data using different security features and design effective

security strategies
ff Design Azure storage solutions using various storage features
ff Create identity management solutions for your applications and resources
ff Architect state-of-the-art solutions using Artificial Intelligence, IoT and Azure

Media Services
ff Use different automation solutions that are incorporated in the Azure platform

Other Books You May Enjoy

364

Hands-On Linux Administration on Azure

Frederik Vos

ISBN: 978-1-78913-096-6

ff Understand why Azure is the ideal solution for your open source workloads
ff Master essential Linux skills and learn to find your way around the Linux

environment
ff Deploy Linux in an Azure environment
ff Use configuration management to manage Linux in Azure
ff Manage containers in an Azure environment
ff Enhance Linux security and use Azure’s identity management systems
ff Automate deployment with Azure Resource Manager (ARM) and Powershell
ff Employ Ansible to manage Linux instances in an Azure cloud environment

Other Books You May Enjoy

365

Leave a review – let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book’s Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors and Packt. Thank you!

