

Avro

i

About the Tutorial

Apache Avro is a language-neutral data serialization system, developed by Doug Cutting,

the father of Hadoop. This is a brief tutorial that provides an overview of how to set up

Avro and how to serialize and deserialize data using Avro.

Audience

This tutorial is prepared for professionals aspiring to learn the basics of Big Data Analytics

using Hadoop Framework and become a successful Hadoop developer. It will be a handy

resource for enthusiasts who want to use Avro for data serialization and deserialization.

Prerequisites

Before you start proceeding with this tutorial, we assume that you are already aware of

Hadoop's architecture and APIs, and you have experience in writing basic applications,
preferably using Java.

Disclaimer & Copyright

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Avro

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Disclaimer & Copyright ... i
Table of Contents... ii

PART I – AVRO BASICS ... 1

1. Avro ─ Overview .. 2
What is Avro? .. 2
Avro Schemas .. 2
Comparison with Thrift and Protocol Buffers .. 2
Features of Avro .. 3
General Working of Avro ... 4

2. Avro ─ Serialization ... 5
What is Serialization? .. 5
Serialization in Java .. 5
Serialization in Hadoop .. 5
Writable Interface.. 6
Writable Comparable Interface ... 6
IntWritable Class .. 7
Serializing the Data in Hadoop .. 8
Deserializing the Data in Hadoop .. 10
Advantage of Hadoop over Java Serialization ... 11
Disadvantages of Hadoop Serialization ... 11

3. Avro ─ Environment Setup .. 12
Downloading Avro ... 12
Avro with Eclipse ... 13
Avro with Maven ... 14
Setting Classpath ... 16

PART II – AVRO SCHEMAS AND APIS.. 17

4. Avro ─ Schemas ... 18
Creating Avro Schemas .. 18
Primitive Data Types of Avro ... 19
Complex Data Types of Avro .. 20

5. Avro ─ Reference API... 23
SpecificDatumWriter Class .. 23
SpecificDatumReader Class ... 23
DataFileWriter ... 24
Data FileReader ... 25
Class Schema.parser .. 25
Interface GenricRecord .. 26
Class GenericData.Record .. 26

Avro

iii

PART III – AVRO BY GENERATING A CLASS ... 28

6. Avro ─ Serializing the Data .. 29
Serialization by Generating a Class .. 29
Defining a Schema ... 29
Compiling the Schema ... 30
Creating and Serializing the Data ... 33
Example – Serialization by Generating a Class .. 34

7. Avro ─ Deserializing the Data .. 37
Deserialization by Generating a Class .. 37
Example – Deserialization by Generating a Class .. 38

PART IV - AVRO USING PARSERS LIBRARY .. 40

8. Avro ─ Serializing the Data .. 41
Serialization Using Parsers Library ... 41
Example – Serialization Using Parsers ... 43

9. Avro ─ Deserializing the Data .. 46
Deserialization Using Parsers Library ... 46
Example – Deserialization Using Parsers Library ... 47

Avro

iv

Part I – Avro Basics

Avro

v

To transfer data over a network or for its persistent storage, you need to serialize the data.

Prior to the serialization APIs provided by Java and Hadoop, we have a special utility, called

Avro, a schema-based serialization technique.

This tutorial teaches you how to serialize and deserialize the data using Avro. Avro provides

libraries for various programming languages. In this tutorial, we demonstrate the examples
using Java library.

What is Avro?

Apache Avro is a language-neutral data serialization system. It was developed by Doug

Cutting, the father of Hadoop. Since Hadoop writable classes lack language portability, Avro

becomes quite helpful, as it deals with data formats that can be processed by multiple
languages. Avro is a preferred tool to serialize data in Hadoop.

Avro has a schema-based system. A language-independent schema is associated with its read

and write operations. Avro serializes the data which has a built-in schema. Avro serializes the

data into a compact binary format, which can be deserialized by any application.

Avro uses JSON format to declare the data structures. Currently it supports languages such
as Java, C, C++, C#, Python, and Ruby.

Avro Schemas

Avro depends heavily on its schema. It allows every data to be written with no prior

knowledge of the schema. It serializes fast and the resulting serialized data is lesser in size.

Schema is stored along with the Avro data in a file for any further processing.

In RPC, the client and the server exchange schemas during the connection. This exchange

helps in the communication between same named fields, missing fields, extra fields, etc. Both
the old and new schemas are always present to resolve any differences.

Avro schemas are defined with JSON that simplifies its implementation in languages with
JSON libraries.

Like Avro, there are other serialization mechanisms in Hadoop such as Sequence Files,

Protocol Buffers, and Thrift.

Comparison with Thrift and Protocol Buffers

Thrift and Protocol Buffers are the most competent libraries of Avro. Avro differs from
these frameworks in the following ways:

 Avro supports both dynamic and static types as per the requirement. Protocol Buffers

and Thrift use Interface Definition Languages (IDLs) to specify schemas and their

types. These IDLs are used to generate code for serialization and deserialization.

1. Avro ─ Overview

Avro

vi

 Avro is built in the Hadoop ecosystem. Thrift and Protocol Buffers are not built in

Hadoop ecosystem.

Unlike Thrift and Protocol Buffer, Avro's schema definition is in JSON and not in any
proprietary IDL; that makes it language neutral.

Property Avro Thrift and Protocol Buffer

Dynamic schema Yes No

Built into Hadoop Yes No

Schema in JSON Yes No

No need to compile Yes No

No need to declare IDs Yes No

Bleeding edge Yes No

Features of Avro

Listed below are some of the prominent features of Avro:

 Avro is a language-neutral data serialization system.

 It can be processed by many languages (currently C, C++, C#, Java, Python, and

Ruby).

 Avro creates binary structured format that is both compressible and splittable.

Hence it can be efficiently used as the input to Hadoop MapReduce jobs.

 Avro provides rich data structures. For example, you can create a record that

contains an array, an enumerated type, and a sub record. These datatypes can be

created in any language, can be processed in Hadoop, and the results can be fed to a

third language.

 Avro schemas defined in JSON facilitate implementation in the languages that already

have JSON libraries.

 Avro creates a self-describing file named Avro Data File, in which it stores data along

with its schema in the metadata section.

 Avro is also used in Remote Procedure Calls (RPCs). During RPC, client and server

exchange schemas in the connection handshake.

 Avro does not need code generation. The data is always accompanied by schemas,

which permit full processing on the data.

Avro

vii

General Working of Avro

To use Avro, you need to follow the given workflow:

 Step 1: Create schemas. Here you need to design Avro schema according to your

data.

 Step 2: Read the schemas into your program. It is done in two ways:

o By Generating a Class Corresponding to Schema – Compile the schema

using Avro. This generates a class file corresponding to the schema.

o By Using Parsers Library – You can directly read the schema using parsers

library.

 Step 3: Serialize the data using the serialization API provided for Avro, which is found

in the package org.apache.avro.specific.

 Step 4: Deserialize the data using deserialization API provided for Avro, which is found
in the package org.apache.avro.specific.

Avro

viii

Data is serialized for two objectives:

 For persistent storage

 To transport the data over network

What is Serialization?

Serialization is the process of translating data structures or objects state into binary or textual

form. Once the data is transported over network or retrieved from the persistent storage, it

needs to be deserialized again. Serialization is termed as marshalling and deserialization is
termed as unmarshalling.

Serialization in Java

Java provides a mechanism, called object serialization where an object can be represented

as a sequence of bytes that includes the object's data as well as information about the object's

type and the types of data stored in the object.

After a serialized object is written into a file, it can be read from the file and deserialized. That

is, the type information and bytes that represent the object and its data can be used to
recreate the object in memory.

ObjectInputStream and ObjectOutputStream classes are used to serialize and deserialize
an object respectively in Java.

Serialization in Hadoop

Generally in distributed systems like Hadoop, the concept of serialization is used for
Interprocess Communication and Persistent Storage.

Interprocess Communication

● To establish the interprocess communication between the nodes connected in a

network, RPC technique was used.

● RPC used internal serialization to convert the message into binary format before

sending it to the remote node via network. At the other end the remote system

deserializes the binary stream into the original message.

● The RPC serialization format is required to be as follows:

○ Compact: To make the best use of network bandwidth, which is the most

scarce resource in a data center.

2. Avro ─ Serialization

Avro

ix

○ Fast: Since the communication between the nodes is crucial in distributed

systems, the serialization and deserialization process should be quick,

producing less overhead.

○ Extensible: Protocols change over time to meet new requirements, so it should

be straightforward to evolve the protocol in a controlled manner for clients and

servers.

○ Interoperable: The message format should support the nodes that are written
in different languages.

Persistent Storage

Persistent Storage is a digital storage facility that does not lose its data with the loss of power
supply. Files, folders, databases are the examples of persistent storage.

Writable Interface

This is the interface in Hadoop which provides methods for serialization and deserialization.

The following table describes the methods:

S. No. Methods and Description

1
void readFields(DataInput in)

This method is used to deserialize the fields of the given object.

2
 void write(DataOutput out)

This method is used to serialize the fields of the given object.

Writable Comparable Interface

It is the combination of Writable and Comparable interfaces. This interface inherits

Writable interface of Hadoop as well as Comparable interface of Java. Therefore it provides
methods for data serialization, deserialization, and comparison.

S. No. Methods and Description

1
 int compareTo(class obj)

This method compares current object with the given object obj.

In addition to these classes, Hadoop supports a number of wrapper classes that implement

WritableComparable interface. Each class wraps a Java primitive type. The class hierarchy of
Hadoop serialization is given below:

Avro

x

These classes are useful to serialize various types of data in Hadoop. For instance, let us

consider the IntWritable class. Let us see how this class is used to serialize and deserialize

the data in Hadoop.

IntWritable Class

This class implements Writable, Comparable, and WritableComparable interfaces. It

wraps an integer data type in it. Shortly, it provides methods used to serialize and deserialize

integer type of data.

Constructors

S. No. Summary

1 IntWritable()

2 IntWritable(int value)

Avro

xi

Methods

S. No. Summary

1

int get()

Using this method you can get the integer value present in the current

object.

2
void readFields(DataInput in)

This method is used to deserialize the data in the given DataInput object.

3
void set(int value)

This method is used to set the value of the current IntWritable object.

4

void write(DataOutput out)

This method is used to serialize the data in the current object to the given

DataOutput object.

Serializing the Data in Hadoop

The procedure to serialize the integer type of data is discussed below.

1. Instantiate IntWritable class by wrapping an integer value in it.

2. Instantiate ByteArrayOutputStream class.

3. Instantiate DataOutputStream class and pass the object of

ByteArrayOutputStream class to it.

4. Serialize the integer value in IntWritable object using write() method. This method

needs an object of DataOutputStream class.

5.

6. The serialized data will be stored in the byte array object which is passed as parameter

to the DataOutputStream class at the time of instantiation. Convert the data in the
object to byte array.

Example

The following example shows how to serialize data of integer type in Hadoop:

import java.io.ByteArrayOutputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

public class Serialization {

Avro

xii

 public byte[] serialize() throws IOException{

 //Instantiating the IntWritable object

 IntWritable intwritable = new IntWritable(12);

 //Instantiating ByteArrayOutputStream object

 ByteArrayOutputStream byteoutputStream = new ByteArrayOutputStream();

 //Instantiating DataOutputStream object

 DataOutputStream dataOutputStream = new

 DataOutputStream(byteoutputStream);

 //Serializing the data

 intwritable.write(dataOutputStream);

 //storing the serialized object in bytearray

 byte[] byteArray = byteoutputStream.toByteArray();

 //Closing the OutputStream

 dataOutputStream.close();

 return(byteArray);

 }

 public static void main(String args[]) throws IOException{

 Serialization serialization= new Serialization();

 serialization.serialize();

 System.out.println();

 }

}

Deserializing the Data in Hadoop

The procedure to deserialize the integer type of data is discussed below:

1. Instantiate IntWritable class by wrapping an integer value in it.

Avro

xiii

2. Instantiate ByteArrayInputStream class.

3. Instantiate DataInputStream class, and pass the object of ByteArrayInputStream class

to it.

4. Deserialize the data in the object of DataInputStream using readFields() method

of IntWritable class.

5. The deserialized data will be stored in the object of IntWritable class. You can retrieve
this data using get() method of this class.

Example

The following example shows how to deserialize the data of integer type in Hadoop:

import java.io.ByteArrayInputStream;

import java.io.DataInputStream;

import org.apache.hadoop.io.IntWritable;

public class Deserialization {

 public void deserialize(byte[]byteArray) throws Exception{

 //Instantiating the IntWritable class

 IntWritable intwritable =new IntWritable();

 //Instantiating ByteArrayInputStream object

 ByteArrayInputStream InputStream = new ByteArrayInputStream(byteArray);

 //Instantiating DataInputStream object

 DataInputStream datainputstream=new DataInputStream(InputStream);

 //deserializing the data in DataInputStream

 intwritable.readFields(datainputstream);

 //printing the serialized data

 System.out.println((intwritable).get());

 }

 public static void main(String args[]) throws Exception {

 Deserialization dese = new Deserialization();

 dese.deserialize(new Serialization().serialize());

Avro

xiv

 }

}

Advantage of Hadoop over Java Serialization

Hadoop’s Writable-based serialization is capable to reduce the object-creation overhead by

reusing the Writable objects, which is not possible with the Java’s native serialization
framework.

Disadvantages of Hadoop Serialization

To serialize Hadoop data, there are two ways:

● You can use the Writable classes, provided by Hadoop’s native library.

● You can also use Sequence Files which store the data in binary format.

The main drawback of these two mechanisms is that Writables and SequenceFiles have
only a Java API and they cannot be written or read in any other language.

Therefore any of the files created in Hadoop with above two mechanisms cannot be read by

any other third language, which makes Hadoop as a limited box. To address this drawback,
Doug Cutting created Avro, which is a language independent data structure.

Avro

xv

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

