
A Methodology for Constructing a DesignHandbook for Object Oriented SystemsD Janaki Ram, K N Anantha Raman, K N Guruprasad and Suchitra RamanDistributed and Object Systems GroupDepartment of Computer Science and EngineeringIndian Institute of Technology, MadrasIndiadjram@iitm.ernet.in
AbstractDesign reuse in mature engineering disciplines is helped by the presence ofDesign Handbooks. These handbooks help in organizing design knowledge in aformat suitable for systematic reuse. This paper attempts to provide a method-ology to construct a design handbook to help reuse in building object orientedsystems. The handbook attempts to provide a formal basis for design decisions inthe context of object oriented software development. A speci�c case of choosing adesign pattern is illustrated to demonstrate the practical utility of the methodologyproposed.Keywords - Design problem, design pattern, design handbook, metrics, coding e�ort,static adaptability, dynamic adaptability, performance, correlation table, selection func-tion1 IntroductionMost engineering disciplines provide mechanisms to capture and organize existing designknowledge which can be used while building new systems. Handbooks and manuals are1

often the desired form of organization of this knowledge. Systematic presentation ofdesign in the form of handbooks enables designers to make e�ective design decisions fora large number of routine design problems.The construction of a handbook requires identi�cation of often used components andcodi�cation of properties of these components in terms of a few key parameters. Thevalues of these parameters form the basis of choosing appropriate design componentsin a given context. For example, in electronics engineering, a transistor ampli�er hand-book gives the general characteristics of a transistor viz. current gain, voltage gain,power gain, input resistance, output resistance etc. in numbers. While designing a tran-sistor ampli�er, an electronics engineer consults this handbook for selecting a suitabletransistor.Design patterns can be thought of as components of an object oriented design. How-ever, they fail to provide a suitable representation for handbooks. To develop a hand-book on design patterns, it is essential to identify the important characteristics of designpatterns and provide a method to quantify these characteristics.This paper identi�es four important characteristics of a design pattern viz. Codinge�ort, Static adaptability, Dynamic adaptability and Performance. We propose a setof metrics which can be correlated to these characteristics. This correlation helps inquantifying these characteristics and constructing the design handbook. This designhandbook is useful when there exists more than one design pattern applicable in agiven context and the design decision involves choosing one among the applicable set.The application of the design handbook for the case of Adapter patterns has beendemonstrated.The rest of the paper is organized as follows. Section 2 de�nes some important terms.Section 3 describes the proposed metrics. Section 4 illustrates how these metrics aid thedecision making process and demonstrates the construction of a handbook. Section 5concludes and discusses the contribution of this paper.2 TerminologyA few terms are introduced in this section.Coding e�ort of a pattern is the amount of coding that must be done for implementingthe pattern in a programming language. 2

Static adaptability is a measure of easiness with which a pattern can be adapted to aparticular context at the time of coding.Dynamic adaptability reects the ease with which the behavior of a pattern can bemodi�ed/adapted at runtime.Performance is a measure of the speed with which a pattern delivers services expectedof it.Hook method is one which is declared in a class and de�ned in the subclass.Template method is that which calls at least one hook method.Rigid method is one which is declared and de�ned in the same class.Root class is one whose task is to de�ne a common interface for its subclasses. It has atleast one hook method and it cannot be instantiated.Concrete class is that which has only rigid methods.Indirection link exists between two classes when a method of one class calls a method ofanother class through a reference variable.Inheritance link exists between two classes when one class is subclass of another.Number of activations of a link for a method is number of times the link is "used" whenthe method is called. It is applicable to indirection and inheritance links. An exampleis given in Figure 1.3 MetricsIn the following paragraphs, a set of metrics is proposed to provide quantitative measureof the four important characteristics of a pattern viz. coding e�ort, static adaptability,dynamic adaptability and performance. While applying the metrics, the children classesare not considered as part of the pattern. The value of each metric as applied toClass Adapter(Figure 2) is also given. The correlation between the metrics and thecharacteristics is summarized in Table I.1. Total Methods : TMThe Total number of Methods that have been declared in the pattern.
3

...

...

a()

A

b()

p->b();
b()

C

B
p

L1

L2

For method a() of class A :

Inheritance link = L2

Indirection link = L1

No. of activations of indirection link = 1

No. of activations of inheritance link = 1Figure 1: ExampleAs the value of TM goes up, more number of methods must be declared and de�nedduring the implementation phase. This increases the coding e�ort.Class Adapter pattern has two methods(Request() and Speci�cRequest()). TMfor Class Adapter pattern is 2.2. Percent Hook Method : PHMPercentage of Hook Methods in TM.Since a hook method is declared in the root class and de�ned only in the subclass,behavior of a pattern with a high percentage of hook methods can be easily adaptedto our requirements by suitable de�nitions during sub classing of root classes.Thus, static adaptability increases with increase in PHM.Class Adapter pattern has a hook method(Request()). PHM for the Class Adapterpattern is 50.3. Percent Template Method : PTMPercentage of Template Methods in TM.
4

When a template method is called, it in turn calls hook method(s). In a patternwith high PTM, we may have many methods that call hook method(s). Thisresults in decreased performance. Thus, performance comes down with increase inPTM.Class Adapter pattern has no template methods. PTM for the Class Adapterpattern is 0.4. Percent Rigid Method : PRMPercentage of Rigid Methods in TM.The declaration and de�nition of a rigid method is done in the same class and it isnot changed. High PRM for a pattern implies that a high percentage of behaviorof the pattern is �xed and cannot be adapted. Since the rigid methods do not callother methods, a pattern with high PRM gives good performance.Class Adapter pattern has a rigid method(Speci�cRequest()). PRM for the ClassAdapter pattern is 50.5. Percent Client Called Methods : PCCMPercentage of the total number of methods which the client calls directly.When PCCM of a pattern is low, most of the methods are hidden from the client.This improves static adaptability. For example, two methods which are not calleddirectly by the client may be merged without the client being aware of it. Similarly,a method not called directly by the client can be split into two methods undersuitable circumstances. When PCCM is low, there exists a high percentage ofmethods which are called by the client indirectly, through client called methods.This results in poor performance. Thus, high PCCM implies low static adaptabilityand high performance.In the Class Adapter pattern, Request() is the only method which is called by theclient. PCCM for the Class Adapter pattern is 50.6. Percentage of Methods with Dynamically Determined Number of Link Activations: PMDDNLAPercentage of methods called directly by the client for which the number of acti-vations of an inheritance or indirection link can be determined only at runtime.A nonzero value for PMDDNLA exists when the pattern has at least one root classwith a reference to itself or a subclass which has a reference to its root class. Every5

method which contributes to PMDDNLA may result in a number of indirection linkactivations or indirection and inheritance link activations at runtime. Each of theseactivations is an opportunity to change/adapt the behavior at runtime. However,every activation increases the response time and performance comes down. Thus,high PMDDNLA implies high dynamic adaptability and low performance.In the Class Adapter pattern, there is no class which has either a reference to itselfor to its root class. PMDDNLA for this pattern is 0.Table ICorrelation tableNo. Metric Coding Static Dynamic PerformanceE�ort Adaptability Adaptability1 TM + o o o2 PHM o + o o3 PTM o o o -4 PRM o - o +5 PCCM o - o +6 PMDDNLA o o + -7 ASDIDAPM o o + -8 ASDINAPM o + o o9 TC + o o o10 PRC o + o o11 NROP + o o o+ : Positive Correlation- : Negative Correlationo : Little or no Correlation7. Average Statically Determined Indirection Activations per Method : ASDIDAPMIt is the sum of total number of activations of all indirection links for each methodin the client called methods divided by number of client called methods. Methodsfor which number of activations of some indirection link can be determined onlyat runtime are not considered.An indirection link activation is an opportunity to change the behavior of the pat-tern at runtime. But every indirection link activation increases the response time.6

Thus, high ASDIDAPM means high dynamic adaptability and low performance.There is no indirection link in the Class Adapter pattern. Hence ASDIDAPM forthis pattern is 0.8. Average Statically Determined Inheritance Activations Per Method : ASDINAPMIt is the sum of total number of activations of all inheritance links for each methodin the client called methods divided by number of client called methods. Methodsfor which number of activations of some inheritance link can be determined onlyat runtime are not considered.Every inheritance link activation corresponds to an opportunity to statically adapt(by sub classing a root class) the pattern during implementation. Thus, highASDINAPM implies high static adaptability.There are two inheritance links which are active for each invocation of Request()method in the Class Adapter pattern. ASDINAPM for this pattern is 2.9. Total Classes : TCTotal number of Classes in the pattern.If TC is high, many classes have to be declared and de�ned. This increases thecoding e�ort.There are two classes(Target and Adaptee) in the Class Adapter pattern. TC forClass Adapter pattern is 2.10. Percent Root Classes : PRCPercentage of Root Classes in TC.During implementation every root class can be adapted to the requirements byproper sub classing. Thus, high PRC implies high static adaptability.Target is the only root class in the Class Adapter pattern. PRC for Class Adapterpattern is 50.11. Number of Root Classes Outside Pattern : NROPNumber of Root classes Outside the Pattern which must be declared and de�nedfor using the pattern.When NROP is high, many classes have to be declared and de�ned, though theyare not part of the pattern. This implies high coding e�ort.No root classes outside the pattern are required for the working of the ClassAdapter pattern. NROP for Class Adapter pattern is 0.7

4 Design HandbookThis section explains in detail, the construction and usage of the design handbook.4.1 Handbook ConstructionThe construction of the handbook is demonstrated with the following example:Assume a handbook which has information about only two patterns - ClassAdapter(Figure 2) and Object Adapter(Figure 3). The results of applying the metricsto these patterns are given in Table II. Table IIMetric values for Adapter patternsNo. Metric Class ObjectAdapter Adapter1 TM 2 22 PHM 50 503 PTM 0 04 PRM 50 505 PCCM 50 506 PMDDNLA 0 07 ASDIDAPM 0 18 ASDINAPM 2 19 TC 2 210 PRC 50 5011 NROP 0 0Normalization of these values is done by dividing each element of a row by the maxi-mum value in the row, and multiplying the result by 100. The results after normalizationare shown in Table III.
8

Client AdapteeTarget

Request() SpecificRequest()

Adapter

Request() SpecificRequest()Figure 2: Class Adapter patternTable IIINormalized metric values for Adapter patternsNo. Metric Class ObjectAdapter Adapter1 TM 100 1002 PHM 100 1003 PTM 0 04 PRM 100 1005 PCCM 100 1006 PMDDNLA 0 07 ASDIDAPM 0 1008 ASDINAPM 100 509 TC 100 10010 PRC 100 10011 NROP 0 0
Consider the "+" entries in the correlation table to be 1 and the "-" entries tobe -1. For each characteristic, the metric values are multiplied with the values in thecorresponding entries of the correlation table and summed. This gives a quantitativemeasure for the characteristic.

9

AdapteeClient Target

Request() SpecificRequest()

Adapter

Request()

adaptee

adaptee->SpecificRequest()Figure 3: Object Adapter patternFor Class Adapter :Coding E�ort = (1 * 100) + (1 * 100) + (1 * 0) = 200Static Adaptability = (1 * 100) + (-1 * 100) + (-1 * 100) + (1 * 100) + (1 * 100) = 100Dynamic Adaptability = (1 * 0) + (1 * 0) = 0Performance = (-1 * 0) + (1 * 100) + (1 * 100) + (-1 * 0) + (-1 * 0) = 200For Object Adapter :Coding E�ort = (1 * 100) + (1 * 100) + (1 * 0) = 200Static Adaptability = (1 * 100) + (-1 * 100) + (-1 * 100) + (1 * 50) + (1 * 100) = 50Dynamic Adaptability = (1 * 0) + (1 * 100) = 100Performance = (-1 * 0) + (1 * 100) + (1 * 100) + (-1 * 0) + (-1 * 100) = 100The handbook will have entries as shown in Table IV.Table IVHandbook entries for Adapter patternsPattern Coding Static Dynamic PerformanceE�ort Adaptability AdaptabilityClass Adapter 200 100 0 200Object Adapter 200 50 100 10010

4.2 Handbook UsageA decision situation is said to exist if it is necessary to choose one course of action fromamong several. During the design of an object oriented system using design patterns,decision situations may occur when there is more than one pattern which is applica-ble to the given problem. The designer has to select one which is best suited to hisrequirements. The handbook helps in this decision making.This is illustrated with an example.Consider a design problem in which a client requires a service which is provided bya server, whose interface is di�erent from that which is expected by the client. Thisproblem can be solved by using an Adapter pattern. There exists two types of Adapterpatterns viz. Class Adapter and Object Adapter. The designer has to choose one ofthese.To select one of these patterns, the value of the Selection Function(SF) for eachpattern is calculated. The pattern with highest SF is selected.Selection Function (SF) = �(x1 � a) + (x2 � b) + (x3 � c) + (x4 � d)where x1::x4 are values obtained from the handbook and a, b, c, d are user speci�edweights. Negative value of the �rst term in the SF expression is due to the fact that thecoding e�ort is to be minimized.When performance is the most important criterion of the system being designed,the set of values for a, b, c and d can be 0, 0, 0 and 1 respectively. By consulting thehandbook, the following values for SF are obtained.Class Adapter : SF = 200Object Adapter : SF = 100Therefore, Class Adapter pattern will be chosen for the above design problem.5 ConclusionA set of eleven metrics was proposed for the selection of patterns in the context of ob-ject oriented system design. The metrics were correlated with four important attributesof the pattern viz. coding e�ort, static adaptability, dynamic adaptability and perfor-11

mance. Steps involved in the construction and usage of the handbook of design patternswere demonstrated taking the speci�c case of selection of an Adapter pattern. We arepresently working on a detailed software process model which uses design handbooks.We expect this approach to go a long way in providing a formal basis for systematicreuse of design knowledge in building object oriented software systems.References[1] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns { Elementsof Reusable Object{Oriented Software, Addison-Wesley Publishing Company, 1995[2] Pree, W., Design Patterns for Object{Oriented Software Development, ACM Press,1995[3] Booch, G., Object Oriented Analysis And Design With Applications, Ben-jamin/Cummings Publishing Company Inc, 2nd edition[4] Harrison, W., "Software Measurement : A Decision-Process Approach," Advancesin Computers, 1994[5] Chidamber, S.R. and Kemerer, C.F., "A Metrics Suite for Object Oriented Design,"IEEE Transactions on Software Engineering, June 1994[6] Coad, P., "Object Oriented Patterns," Communications of the ACM, Sept 1992[7] Anderson, B., "OOPSLA '93 Workshop Report, Patterns: Building Blocks forObject-Oriented Architectures," ACM SIGSOFT, Jan 1994[8] Lea, D., "Christopher Alexander: An Introduction for Object-Oriented Designers,"ACM SIGSOFT, Jan 1994[9] Schmidt, D.C., "Using Design Patterns to Develop Reusable Object-Oriented Com-munication Software," Communications of the ACM, Oct 1995[10] Marciniak, J.J., Encyclopedia of Software Engineering - Volume 2, Wiley-InterScience Publication, 1994[11] Hicks, T.G., Standard Handbook of Engineering Calculations, McGraw-Hill Publi-cations, 3rd Edition 12

