
CSci 5103
Operating Systems

Jon Weissman

Administrivia

Greetings
• Welcome to CSci 5103!

– me: Jon Weissman, Professor CS

• office hours M 9-11am, 4-225F KH

• or when I am around

– interests: distributed and parallel systems

– cycling, hiking, XC-ski

– TA: Bowen Wang
• office hours TBD, 2-209 KH

• This is a grad-level OS course suitable for grad
students and highly motivated senior undergrads

Who Gets In?

• 1 Effective TA – cap around 60
– 62 enrolled in room, 9 in UNITE

• Will make final decision by next Thursday based on
who shows up today; preference to CS grads, CS
seniors, CS majors, ….
– Class will be offered again in Spring 2020

• If you plan on dropping PLEASE let me know
ASAP (as a courtesy to your classmates).

More Admin
• 5103 is hard work … but it will be fun work

• Prereqs
– undergraduate OS (4061 or equiv.)
– soft prereq: Computer Org/Architecture (2021)

• Knowledge of C/C++, Unix, and debugging is key
– get to know gdb or ddd
– sorry can’t use Java

• easy to gen assembly/sys calls with C
• believe me this is a bigger burden on us … but we think it is the

right way to learn OS concepts

More Admin

• Website: http://www.cse-labs.umn.edu/classes/
Fall-2017/csci5103

– check it out – read announcements daily

– start by looking at schedule, syllabus, dates

• Books
– Operating Systems: Principles and Practice 2nd Edition,

Recursive Books (Anderson and Dahlin)

– More cutting edge than Tanenbaum, S&G: industry
practice

– On-line materials including research papers

More Admin

• Lectures + active exercises + class participation

– coming to class is important

– papers and more advanced topics this semester

More Admin

• Grades
– 4 programming projects, 2 exams (mid + final), 4

written homeworks (exam prep)

• Late work – 1 proj, 10% penalty, 1 extra day

• Some/most projects will be groups; all get same score

• Regrading – within 2 week window

More Admin

• Working together

– Team projects require a necessary collaboration.
No barriers on this collaboration.

– Homeworks are done individually!

– Can discuss meaning of questions or issues, but
should not share code, solutions.

Topics
• Course Introduction: History and Background (1)

• Kernel, Processes, API (1)

• Threads (1)

• Synchronization (2)

• Scheduling (1)

• Memory Management and Virtual Memory (3)

• File Systems and Storage, I/O (3)

• File System Reliability (1)

• Protection and Security (1)

• Wrapup (1)

What do I need for this course?

• Computer architecture

– CPU, interrupts, I/O devices, protection

• C/C++ and Unix comfort

– Systems programming (e.g. 4061) is required

– Experience with Unix debuggers is also helpful

• Willingness to work hard

– Systems is hard work … but your hard work will
be rewarded. “No Pain No Gain”

Course Materials for CSci 5103

• Operating Systems: Principles and Practice (OSPP)

– source for most of the lecture content, but not all

– may take a bit from Tanenbaum Modern Operating Systems

• Linux Device Drivers

– see web-page

• There will also be some papers to read, they will be
posted soon

Textbook

• Lazowska, U Washington: “The text is quite
sophisticated. You won't get it all on the first
pass. The right approach is to [read each
chapter before class and] re-read each chapter
once we've covered the corresponding
material… more of it will make sense then.
Don't save this re-reading until right before
the mid-term or final – keep up.”

Am I up to it?

• If Chapter 1 has you worried, you may want to bail.
• Also, can you “grok” this code?

void thread_create(thread_t *thread, void (*func)(int), int arg) {

// Allocate TCB and stack

TCB *tcb = new TCB();

thread->tcb = tcb;

tcb->stack_size = INITIAL_STACK_SIZE;

tcb->stack = new Stack(INITIAL_STACK_SIZE);

tcb->sp = tcb->stack + INITIAL_STACK_SIZE;

tcb->pc = stub;

// Create a stack frame by pushing stub's arguments and start address

// onto the stack: func, arg

*(tcb->sp) = arg;

tcb->sp--;

*(tcb->sp) = func;

tcb->sp--;

…

(*func)(arg); // Execute the function func()

thread_exit(0); // If func() does not call exit, call it

}

Or this?

#define DO_SYSCALL syscall(SYS_getpid)

unsigned int timediff(struct timeval before,

struct timeval after) {

unsigned int diff;

diff = after.tv_sec - before.tv_sec;

diff *= 1000000;

diff += (after.tv_usec - before.tv_usec);

return diff;

}

4061 vs. 5103

• Small overlap in OS concepts
• We’ll explore concepts in greater depth

– 4061: locks, condition variables
– 5103: how are these implemented, used today

• Focus is on the inside-view of the OS
– How are things implemented INSIDE the OS
– 4061: how can I manipulate processes?
– 5103: how are processes implemented inside the

kernel?
• What kinds of architectural support is needed?

OS as case study

• Book promotes idea that OS is great way to
learn about many system concepts useful
even if you never ever look at OS source code!

– abstraction

– policy vs. mechanism

– …

Programming Projects

• Reflect the 5103 orientation

• Systems-programming is the focus of 4061 – how
does one use OS facilities from the outside

• Our projects generally reflect inside perspective
– projects will help shed light on how the OS works

internally, often this is a “grey-box” approach

– some kernel level experimentation

Questions?

CSci 5103
Operating Systems

Jon Weissman

Introduction
Chapter 1, 2 OSPP

Main Points (for today)

• Operating system definition

• OS challenges briefly

– Reliability, security, responsiveness, portability, …

• OS history

– How we got here and where we are going?

What is an operating system?

• Software to
manage a
computer’s
resources for its
users and
applications

• Two key
interfaces

• The operating system (OS) is the interface between
user applications and the hardware.

• An OS implements a virtual machine that is easier to
program than the raw hardware
– Example?

Operating Systems: Two Interfaces

physical machine interface

User Applications

Operating System

Architecture

virtual machine interface

Operating System Roles: OS Design
Pattern

• Referee
– Resource allocation among users, applications

– Isolation of different users, applications from each other

– Communication between users, applications

• Illusionist
– Each application appears to have the entire machine to itself

– Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

• Glue
– Common services for apps: libraries, terminals, drivers, cut-

and-paste, …

Example: File Systems

• Referee
– Prevent users from accessing each other’s files

without permission

– Sharing disk space across the file system

• Illusionist
– Files can grow (nearly) arbitrarily large

– Files persist even when the machine crashes in the
middle of a save

• Glue
– named directories, stdio library (e.g. printf)

More?

• Other examples from OS?

Not easy: many policy choices

• How should an operating system allocate
processing time between competing uses?
– Give the CPU to the first to arrive?

– To the one that needs the least resources to
complete? To the one that needs the most
resources?

• Many choices as referee, illusionist, even glue
represent trade-offs. No clear-cut best.

OS Design Pattern: web service

• How does the server manage many simultaneous client
requests?

• R on client side?

• How do we make it seem that all web pages are local? (I)

• How do we enable Web programming, client-server
connectivity, etc. (G)

• Book has other nice examples!

OS Challenges

• Reliability
– Does the system do what it was designed to do?

• Availability
– What portion of the time is the system working?

– Mean Time To Failure (MTTF), Mean Time to Repair

• Security
– Can the system be compromised by an attacker?

• Privacy
– Data is accessible only to authorized users

OS Challenges

• Portability

– For programs:

• Application programming
interface (API)

• Abstract virtual machine

– For the operating system

• Hardware abstraction layer

OS Challenges

• Performance
– Latency/response time

• How long does an operation take to complete?

– Throughput
• How many operations can be done per unit of time?

– Overhead
• How much extra work is done by the OS?

– Fairness
• How equal is the performance received by different users?

– Predictability
• How consistent is the performance over time?

Early Operating Systems:
Computers Very Expensive

• One application at a time
– Had complete use of hardware

– OS was runtime library

– Users would stand in line to use the computer

• Batch systems: multiprogramming
– Keep CPU busy by having a queue of jobs

– OS would load next job while current one runs

– Users would submit jobs, and wait, and wait

– What new OS facilities are needed?

Interactive: People Expensive

• Multiple users on computer at same time

– Interactive performance: try to complete
everyone’s tasks quickly: good response

– As computers became cheaper, more important to
optimize for user time, not computer time

Today’s Operating Systems:
Computers Cheap

• Smart phones

• Embedded systems

• Laptops

• Tablets

• Virtual machines

• Data center servers

• Different resources?
– power

Tomorrow’s Operating Systems

• Giant-scale data centers

• Increasing numbers of processors per computer

• Increasing numbers of computers per user

• Very large scale storage

• Going the other way …

• Internet of things

– New concerns?

– Privacy!, Reliability!!

