
ptg16605960

ptg16605960

800 East 96th Street,
Indianapolis, Indiana 46240 USA

ARDUINO FOR
BEGINNERS

John Baichtal

ESSENTIAL SKILLS EVERY MAKER NEEDS

ptg16605960

Arduino for Beginners
ii

Arduino for Beginners: Essential Skills Every
Maker Needs

Copyright © 2014 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-4883-6
ISBN-10: 0-7897-4883-5

Library of Congress Control Number: 2013946136

Printed in the United States of America

First Printing: November 2013

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Que Publishing cannot
attest to the accuracy of this information. Use of a term in this book should
not be regarded as affecting the validity of any trademark or service mark.

Arduino is a registered trademark of Arduino, www.arduino.cc/.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fi tness is implied. The information provided
is on an “as is” basis. The author and the publisher shall have neither
liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.

Bulk Sales
Que Publishing offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information, please
contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Editor-in-Chief

Greg Wiegand

Executive Editor

Rick Kughen

Development Editor

Rick Kughen

Managing Editor

Sandra Schroeder

Senior Project
Editor

Tonya Simpson

Copy Editor

Paula Lowell

Indexer

Lisa Stumpf

Proofreader

Sarah Kearns

Technical Editor

Pete Prodoehl

Publishing
Coordinator

Kristen Watterson

Book Designer

Mark Shirar

Compositor

Mary Sudul

http://www.arduino.cc/

ptg16605960

iii

Contents at a Glance
Introduction 1

CHAPTER 1 Arduino Cram Session 5

CHAPTER 2 Breadboarding 27

CHAPTER 3 How to Solder 53

CHAPTER 4 Setting Up Wireless Connections 91

CHAPTER 5 Programming Arduino 117

CHAPTER 6 Sensing the World 143

CHAPTER 7 Controlling Liquid 165

CHAPTER 8 Tool Bin 187

CHAPTER 9 Ultrasonic Detection 243

CHAPTER 10 Making Noise 273

CHAPTER 11 Measuring Time 295

CHAPTER 12 Safely Working with High Voltage 321

CHAPTER 13 Controlling Motors 339

Glossary 359

Index 365

ptg16605960

Arduino for Beginners
iv

Table of Contents
 Introduction 1

Chapter 1 Arduino Cram Session .. 5

Arduino Uno: A Rookie-Friendly Microcontroller5

Other Arduino Products ..8

Electronics ..9

Light-Emitting Diodes ..11

Buttons and Switches ...11

Potentiometers ..12

Resistors ..13

Capacitors ...14

Motors ..15

Solenoids ...16

Piezo Buzzers ...17

Seven-Segment Displays ...18

Relays ..19

Integrated Circuits ...20

Temperature Sensors ..21

Flex Sensor...22

Light Sensor ...23

Ultrasonic Sensor ...23

Safety Rules ...24

The Next Chapter ..26

Chapter 2 Breadboarding ... 27

Assembling Circuits Using Solderless Breadboards27

Understanding Power and Ground ...30

Using Jumper Wires ...30

Project: Breadboard Blink ..32

Project: Laser Trip Beam ..35

Assembling the Laser Module ...38

Assembling the Sensor Module ...38

Building the Enclosures ..41

Laser Trip Beam Code ..47

Setting Up the Trip Beam ...49

ptg16605960

Table of Contents
v

Alt.Project: Infrared Detector ...50

Wiring Up the PIR and Buzzer ..51

Infrared Detector Code ..51

The Next Chapter ..52

Chapter 3 How to Solder ... 53

Gathering Soldering Supplies ...55

Picking a Soldering Iron..55

Choosing a Solder ..58

Getting the Other Things You Need ..59

Desktop Vises ...59

Cutters and Strippers ...60

Needle-Nose Pliers and Hemostats ..61

Fans or Fume Extractors ...62

ESD Protection ...62

Solder Stand and Sponge ..63

Soldering ...64

Desoldering ...68

Cleanup ..71

Project: LED Strip Coffee Table ..72

Preparing the Light Strip ..73

Attaching the Light Strip to the Table75

Building the Enclosure ...76

Controlling the LED Strip ...82

LED Strip Code ...82

The Next Chapter ..90

Chapter 4 Setting Up Wireless Connections 91

XBee Wireless Modules ..92

XBee Versus XBee Pro ..92

Series 1 Versus Series 2 ..93

XBee Breakout Boards ...93

Anatomy of the XBee ...94

Competing Wireless Modules...95

Freakduino Chibi ...95

JeeLabs JeeNode ...96

ptg16605960

Arduino for Beginners
vi

Project: Wireless LED Activation ..96

Wireless LED Code ..99

Project: Bluetooth Doorbell ...101

The Button ..103

Instructions for Wiring Up the Doorbell103

Button Unit ..103

Buzzer Unit ..105

Building the Doorbell Enclosures ..107

Button Unit Enclosure ..108

Bending Acrylic ...109

Buzzer Unit Enclosure ..112

Wireless Doorbell Code ...112

Button Unit Code ..113

Buzzer Unit Code ...114

The Next Chapter ..115

Chapter 5 Programming Arduino ... 117

The Arduino Development Environment118

Programming Window ..118

Menus ...120

File Menu ...120

Edit Menu ..120

Sketch Menu...121

Tools Menu ..122

Help Menu ...123

The Blink Sketch ..124

Learning from Example Code ...127

Adapt the Code ...128

Finding Example Code ..128

Arduino Playground ...129

Libraries...130

Sharing Example Code ...131

More Functions and Syntax..133

Arithmetic ..133

Arrays ..133

ptg16605960

Table of Contents
vii

Comparison Operators ..134

For ..134

Include ..135

Increment/Decrement ..135

Interrupts ..135

If/Else ..136

Mapping ..136

Random...136

Switch/Case ...137

While ...137

Debugging Using the Serial Monitor ..137

All About Libraries...139

Resources for Learning Programming ...141

Books ..141

Websites ..141

The Next Chapter ..141

Chapter 6 Sensing the World ... 143

Lesson: Sensors ...144

Digital Versus Analog ...145

Digital ...145

Analog ...145

Connecting Digital and Analog Sensors146

Know Your Sensors ..146

Accelerometer ..147

Barometric ...147

Encoder ...148

Gas ..148

Hall Effect ..149

Infrared ...150

Piezo Buzzer (Knock Sensor) ..150

Sound Sensors ...151

Tilt Sensors ..151

Project: Mood Light...152

Instructions..154

Mood Lamp Code ..159

ptg16605960

Arduino for Beginners
viii

Alt.Project: Kerf Bending ...162

The Next Chapter ..163

Chapter 7 Controlling Liquid ... 165

Lesson: Controlling the Flow of Liquid166

Solenoid Valve ...166

Pressurized Reservoir ..167

Peristaltic Pump ...168

Mini Project: Make a Pressurized Reservoir169

Instructions..170

Pressurized Reservoir Code ...171

Project: Plant-Watering Robot ...173

Instructions..175

Plant-Watering Robot Electronics ...179

Plant-Watering Robot Enclosure ..181

Adding the Electronics ..182

Plant-Watering Robot Code ...185

The Next Chapter ..186

Chapter 8 Tool Bin .. 187

Maker’s Ultimate Toolbox ...188

Basic Multimeter ..188

Multitool ...189

Measuring Tape ...190

Soldering Iron ...190

Digital Caliper ..191

Scissors..192

X-Acto Knives ...192

Screwdrivers ...193

Hardware...193

Wire Strippers ..194

Super Glue ...195

Mini Flashlight ...196

Hot Glue Gun ..196

Magnifying Glass ..197

Writing Supplies...197

ptg16605960

Table of Contents
ix

Sketchbook ..198

Charging Cables ...198

Working with Wood ..200

Laser Cutter ...200

How to Use a Laser Cutter ...201

Rotary Tool ...202

Air Compressor and Attachments ...203

Drill ...203

CNC Mill ...204

Lasering and CNCing Services ...205

Table Saw ..206

Lathe ...206

Sander ...207

Working with Plastic ..208

3D Printers ..209

LEGO ..210

Sugru ...211

Vacuum Former ...211

Extruder ...212

Tamiya ..213

Working with Metal ...214

Plasma Cutter ..215

Band Saw ..216

Grinder ..217

Welder ...218

Aluminum Building Systems ...219

80/20 ...219

MicroRAX ..220

OpenBeam ...221

Makeblock ...222

VEX ...223

Maker Spaces ..224

Software..228

GIMP ...228

Inkscape ..229

ptg16605960

Arduino for Beginners
x

Fritzing ..230

KiCad PCB Layout Software ...230

MakerCase ...231

Electronics Tools and Techniques ..232

Multimeters ...233

Harvesting Electronics ..235

Electronics Marking ...238

Part Numbers ...238

Datasheets ...239

Resistor Color Bands ...240

Schematic Symbols ..241

The Next Chapter ..242

Chapter 9 Ultrasonic Detection ... 243

Lesson: Ultrasonic Detection ...244

Ultrasonic Sensor Applications ...245

Mini Project: Make an Ultrasonic Night Light245

Ultrasonic Night Light Code ...246

Project: Cat Toy ..247

Instructions..250

Enclosure ..252

Lathe 101 ..269

Lathe Safety ..271

The Next Chapter ..272

Chapter 10 Making Noise .. 273

Noise in Electronics ...274

Thingamagoop ...275

Tactile Metronome ...275

LushOne Synth...276

Mini Project: Pushbutton Melody ...278

Instructions..279

Pushbutton Melody Code ...280

Project: Noisemaker ..282

Instructions..283

Noisemaker Code...293

The Next Chapter ..294

ptg16605960

Table of Contents
xi

Chapter 11 Measuring Time ... 295

Time Server ..295

Arduino’s Timer ..296

Real-Time Clock (RTC) Module ..297

Mini Project: Digital Clock ...298

Instructions..300

Digital Clock Code ...301

Project: Indoor Wind Chime ..302

Servo Horns ...303

Instructions..304

Code ...316

Computer Numerically Controlled (CNC) Tools318

The Next Chapter ..319

Chapter 12 Safely Working with High Voltage 321

Lesson: Controlling High Voltage ...322

PowerSwitch Tail ..322

EMSL Simple Relay Shield ..323

Beefcake Relay Control Board ..324

Mini Project: Making a Fan Controller327

Instructions..328

Fan Controller Code ...329

Project: Making a Lava Lamp Buddy ...330

Decoding Infrared ..331

Instructions..332

Lava Lamp Buddy Code ..335

The Next Chapter ..338

Chapter 13 Controlling Motors ... 339

How to Control Motors ...340

Adafruit Motor Shield ..340

Shmalz Haus EasyDriver ...341

Bricktronics MegaShield ...341

Powering Your Motor Using a TIP-120342

Alt.Project: Stepper Turner ..344

Instructions..345

Stepper Turner Code ..346

ptg16605960

Arduino for Beginners
xii

Project: BubbleBot ..347

Instructions..349

BubbleBot Code ..356

 Glossary 359

 Index 365

ptg16605960

xiii
Acknowledgments

About the Author
John Baichtal got his start writing blog posts for Wired’s legendary GeekDad blog as well
as the DIYer’s bible MAKE Magazine. From there, he branched out into authoring books
about toys, tools, robots, and hobby electronics. He is the co-author of The Cult of LEGO
(No Starch) and author of Hack This: 24 Incredible Hackerspace Projects from the DIY Movement
as well as Basic Robot Building with LEGO Mindstorm’s NXT 2.0 (both from Que). Most recently
he wrote Make: LEGO and Arduino Projects for MAKE, collaborating with Adam Wolf and
Matthew Beckler. He lives in Minneapolis, MN, with his wife and three children.

Dedication
For Harold Baichtal
1939–2013

Acknowledgments
I want to thank my loving wife, Elise, for her patience and support; all my hacker friends, for
answering my endless questions; my mother, Barbara, for working on the glossary; and my
children, Eileen Arden, Rosemary, and Jack, for their curiosity and interest.

ptg16605960

Arduino for Beginners
xiv

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Que Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at quepublishing.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

ptg16605960

Introduction

When you go to a store and buy an electronic gizmo, does it ever occur to you that you could make
one yourself? Or even that it would be FUN to make one yourself?

The learning curve can be intimidating. You have to study electronics, learn what all the components
do, and how to control them with a microcontroller. To put the components together, you’ll have
to learn how to solder. To program the microcontroller, you’ll have to learn how to code. To make a
cool container that holds the electronics, you’ll have to master certain workshop skills.

Sound intimidating?

One bit of technology that makes these dreams not only achievable but enjoyable is the Arduino,
a small microcontroller board designed to be easy to learn and a breeze to program. It lets you
operate motors and take input from sensors, allowing you to build the project you want to!

The goal of this book is to help you create those projects—not just the gizmo, but the enclosure
as well. You’ll learn workshop skills, familiarize yourself with a ton of tools, build stuff. All of these
projects use the easy-to-learn Arduino UNO microcontroller.

This book has been a huge learning experience for me, and I hope it is for you as well. You can build
a lot of cool things with an Arduino, and the projects in this book are just the beginning. Good luck
and have fun!

What’s in This Book
This book is designed to take an absolute beginner and bring him or her up to speed on a large
number of topics related to electronics, tools, and programming.

■ Chapter 1 is called “Arduino Cram Session” because it drops a bunch of information on
Arduinos and electronics—just what you need to start creating!

■ Chapter 2, “Breadboarding,” walks you through actually creating an electronics project—a laser
trip beam!—using a handy piece of equipment called a solderless breadboard.

■ Chapter 3, “How to Solder,” teaches you how to use a soldering iron to connect electronic
components. The chapter’s project involves adding an LED light strip to a coffee table.

■ Chapter 4, “Setting Up Wireless Connections,” introduces you to three different ways that you
can control a project with wireless signals. When you’re finished learning about that, you can
tackle the chapter’s project, creating a wireless doorbell.

■ Chapter 5, “Programming Arduino,” shows you the basics of controlling your Arduino with
programs you upload to the board. I’ll take you line by line through an Arduino program so you
can learn how it works.

ptg16605960

INTRODUCTION
2

■ Chapter 6, “Sensing the World,” describes a variety of sensors and explains the
difference between digital and analog sensors. Chapter 6’s project is a mood lamp that
changes its colors depending on the environment around it.

■ Chapter 7, “Controlling Liquid,” shows readers three ways to pump liquid, and then
puts one of these techniques to the test by showing how to build a plant-watering
robot.

■ Chapter 8, “Tool Bin,” is a crash course on tools, everything from the ultimate toolbox
to what to stock a wood or metal shop.

■ Chapter 9, “Ultrasonic Detection,” talks about using pulses of inaudible sound to map
out obstructions and measure distances. The chapter’s project, a cat toy, waggles a
pompom intriguingly above your cat’s nose when the sensor detects her.

■ Chapter 10, “Making Noise,” shows you how to make delightful electronic music (also
known as noise!) generated by your Arduino. The project shows you how to build a
hand-held noisemaker of your very own.

■ Chapter 11, “Measuring Time,” explains three ways in which the Arduino can keep track
of time. Then I show you how to build an “indoor wind chime” that strikes on the hour.

■ Chapter 12, “Safely Working with High Voltage,” shows you three ways to deal with wall
current safely. You’ll build a sweet lava lamp controller that starts and stops the lamp
on a schedule, plus you can trigger it with a remote control.

■ Chapter 13, “Controlling Motors,” explains motor control options for the Arduino.
Then you’ll build a bubble-blowing robot with your newfound skills!

Who Can Use This Book
This book is intended for persons new to making Arduinos. It assumes very little knowledge
on the part of the reader; the only mental attributes needed are a sense of curiosity and a
desire to tackle new challenges.

How to Use This Book
I hope this book is easy enough to read that you don’t need instructions. That said, a few
elements bear explaining.

Tip
Tips are helpful bits of advice that will save you time and/or headaches.

ptg16605960

How to Use This Book
3

TIP
This is a Tip that provides helpful advice that I have learned along the way.

Note
Notes are tidbits of useful information that are helpful, but not mission critical.

NOTE
This is a Note that provides information that’s useful, even if it is somewhat ancillary.

Caution
Cautions point out pitfalls and dangers. Don’t skip these unless you like breaking things and
spending time in the ER.

CAUTION
This is a Caution. You shouldn’t skip these! The safety of your hardware, tools, and
possibly your flesh depend on it.

Parts Lists
For each project in this book, I provide a shopping list of parts, such as the following, that
you’ll need to complete it.

PARTS LIST
■ Arduino
■ Servo (I used a HiTec HS-322HD servo, Jameco P/N 33322.)
■ Servo horns (A number of horns come with the HiTec; these should be fine.)
■ Chronodot RTC Module
■ 1/4" dowel (You’ll need about 8" to a foot.)
■ Wind chime (I used a Gregorian Chimes Soprano wind chime, SKU 28375-00651.)
■ 5mm plywood for the enclosure

ptg16605960

INTRODUCTION
4

■ 1" pine board for the support blocks
■ Eye bolt and nut (The Home Depot P/N 217445)
■ #8 × 1/2" wood screws
■ #6 × 2" wood screws
■ #4 × 1/2" wood screws
■ 24 1/4" × 1 1/2" bolts with locking washers and nuts
■ 12 1/4" × 1" bolts with locking washers and nuts
■ Drill press and a variety of drill bits
■ Chop saw
■ Table saw

Code
When a project requires code—or a sketch—I list it exactly as you should type it. However,
unless you just like typing, you don’t need to re-key the code found in this book. I’ve placed
the code online so that you can easily download it, and then copy and paste it. Chapter 5
will get you up to speed on programming your Arduino.

Go to https://github.com/n1/Arduino-For-Beginners to download this code and other files
associated with this book.

Here is a sample code listing:

int valve = 13; // renames Pin 13 “valve”

int offhours = 0; // how many hours before the water dispenses?

int offmins = 1; // how many minutes before the water dispenses?

int spray = 10; // number of seconds the water sprays

void setup() {

 pinMode(valve, OUTPUT); // designates the valve pin as “output”

 Serial.begin(115200);

}

void loop() {

 int wait = (offmins * 60000) + (offhours * 3600000); // computes milliseconds

 digitalWrite(valve, HIGH);

 delay(spray * 1000); // water stays on this number of milliseconds

 Serial.println(offmins * 60000); // I used this when debugging

 digitalWrite(valve, LOW);

 delay(offmins * 60000); // water stays off this number of milliseconds

}

https://github.com/n1/Arduino-For-Beginners

ptg16605960

1
Arduino Cram Session
What do you have to know to successfully create the projects in this book? It turns out, quite a lot!
The good news is that I dedicate Chapter 1 to getting you ready to hack. This chapter consists of
overviews of basic electronics, tips about workshop safety, as well as coverage of the Arduino Uno
itself. Let’s get started!

Arduino Uno: A Rookie-Friendly Microcontroller
What if you could shrink a computer down so it would fit on a single circuit board smaller than a
playing card? Wouldn’t it be awesome if you could add some sensors to detect the environment
nearby, buttons to trigger commands, and motors to move stuff? Actually, this isn’t a “what if”
phenomenon. The device I just described is a microcontroller-based prototyping platform called
Arduino.

Want an example of what it can do? Figure 1.1 shows Hexy the Hexapod, a cool robot built by
ArcBotics (arcbotics.com) that uses the Arduino platform as its basis. It packs 20 servos and moves
using inverse kinematics, a robotics concept that simplifies movement with the use of pre-built
routines such as “walk forward.” A device as advanced as Hexy the Hexapod certainly is a far cry
from making a light blink!

ptg16605960

CHAPTER 1: Arduino Cram Session
6

FIGURE 1.1 ArcBotics’ Hexy the Hexapod shows the potential of Arduino.
Credit: ArcBotics.

Although it’s cool, Arduino is by no means the first hobbyist microcontroller. A bunch of
others predated Arduino, but none of them have found success the way Arduino has. What
originally made the phenomenon a hit is the fact that no competing board is as easy to use.
In fact, it was designed specifically for artists, college students, and other casual tinkerers
who didn’t care to learn a professional environment and just wanted to hack.

Now that the Arduino platform has begun to mature, we’re seeing a snowball effect where
so many projects, books, websites, and hardware are being developed for Arduino that
 justifying the use of anything else is hard. This diversity of resources has made the platform
itself more visible, which brings in more projects and participants and makes the whole
experience more valuable for everyone.

TIP
We Use the Uno

This book makes exclusive use of the Arduino Uno in the projects described. Although
many variants and versions of the Arduino exist, the Uno is the default board of the
Arduino line, so I focus on it in this book. Some of the other Arduinos are bigger and
have more capabilities; others are smaller and stripped down. Not only does the Uno
fit nicely in the middle, it is considered by most to be the default model. Chapter 8,
“Tool Bin,” describes some of the other models.

ptg16605960

Arduino Uno: A Rookie-Friendly Microcontroller
7

What exactly do you get when you buy an Arduino? Let’s do a quick overview of the board
and its features (see Figure 1.2).

FIGURE 1.2 The Arduino is the size of a credit card but is packed with cool
possibilities!

1 ATmega328 Microcontroller

2 Pinouts

3 Reset Button

4 Power Jack

5 USB Jack

6 Power Indicator

7 Data Indicators

The Arduino Uno consists of a printed circuit board (PCB) with a microcontroller chip and
various other components attached to it. Refer to Figure 1.2 to identify each of the primary
components:

■ ATmega328 Microcontroller—The brains of the board, the ATmega328 features 32KB
flash memory, 2KB SRAM, and a clock speed of 16 MHz. This might not sound robust,
but Arduino programs are quite small.

1

2

3

4

5

6

7

1

2

3

4

5
6

7

2

ptg16605960

CHAPTER 1: Arduino Cram Session
8

■ Pinouts—You’ll attach wires to these little ports. For example, you could plug in a
button to one and a motor into another. Some of them do different things than others,
and we explore these differences later on in the book.

■ Reset button—When all else fails, press this button. It restarts the Arduino and
automatically relaunches whatever program is loaded onto it.

■ Power jack—This power jack can accommodate a nine-volt AC adapter (“wall wart”)
with a 2.1mm, center-positive plug. You also can connect an ordinary nine-volt battery,
as long as it has been equipped with the same plug. We explore the various ways of
powering your Arduino projects in Chapter 8.

■ USB jack—This jack accepts power and data from a standard A-B USB cable, the sort
that is often used for printers and other computer peripherals. Not only is this cable
used to program the Arduino, it also powers the board, so you can prototype a project
without wasting batteries.

■ Power indicator—This LED lights up when the board has power.
■ Data indicators—These LEDs flash when data is being uploaded to the board.

TIP
Downloading the Arduino Software

You won’t learn how to program the Arduino in this chapter, but you can get started
by downloading the software. It’s compatible with Windows, Macintosh, and Linux
and doesn’t cost a penny. Go to http://arduino.cc/en/Main/Software and follow
the directions you see there. If you need more help, I walk you through the download
process in Chapter 5, “Programming Arduino.”

Other Arduino Products
As mentioned, an entire ecosystem of Arduino variants exists, as well as add-on circuit
boards called shields. The Arduino variants include more powerful Arduinos for major
projects, small ones for small projects, and shields—add-on boards—that do everything from
playing music to connecting to the Internet to determining GPS coordinates.

Often, a project you’re contemplating has already been tackled by someone else, who made
it into a shield. If you’re looking to add a certain capability to your project, first consider
looking for an existing shield—it could save you a great deal of work! Even better, some
shields can be stacked on top of each other, allowing you to build progressively more
complicated assemblies.

The Relay Shield (see Figure 1.3) is an example of a shield shown stacked on top of an
Arduino. Created by DIY gurus Evil Mad Science LLC, the shield uses a relay to control a
high-voltage circuit. For example, the shield could be used to safely trigger a lamp that uses

http://arduino.cc/en/Main/Software

ptg16605960

Electronics
9

wall current. You can buy the Relay Shield kit at http://evilmadscience.com/productsmenu/
tinykitlist/544.

FIGURE 1.3 Evil Mad Science’s Relay Shield plugs into the Arduino’s pinouts and
allows it to control high-voltage circuits.

Interested in learning more about shields? Be sure to check out Chapter 8, where we
examine a number of shields and other add-on boards.

Electronics
An Arduino is cool, but you’ll need some electronic components to make it do anything
interesting! The project shown in Figure 1.4 uses LEGO motors and an aquarium pump
controlled by an Arduino to make and dispense chocolate milk. In Chapter 7, “Controlling
Liquid,” I show you how to make a similar pump. In the meantime, the following sections
provide a brief overview of some of the more commonplace components that you’ll
encounter.

http://evilmadscience.com/productsmenu/tinykitlist/544
http://evilmadscience.com/productsmenu/tinykitlist/544

ptg16605960

CHAPTER 1: Arduino Cram Session
10

FIGURE 1.4 You need more than an Arduino to make a cool project.

NOTE
This Is Just an Overview

Many other varieties of components are available for you to learn, some of which I
cover later in the book. Others you might have to learn about on your own. My goal in
the following sections is to get you started with the basics.

ptg16605960

Electronics
11

Light-Emitting Diodes
LEDs (see Figure 1.5) are the lights of the Arduino world. They come in different colors
and intensities, and some include additional features, such as blinking or the capability to
change color based on the software inputs. LEDs that can change color are called RGB (red-
green-blue) LEDs, and you use them later in this book.

FIGURE 1.5 LEDs are the light bulbs of the electronics world.

Buttons and Switches
Arduino responds to human inputs with the help of buttons and switches, as shown in
Figure 1.6. An amazing variety of these components exist, which is good! This enables you
to find exactly the right configuration for whatever project you’re working on. You can do
all sorts of fun things with switches, such as using two subprograms on your Arduino and
toggling between the two when the switch is thrown.

ptg16605960

CHAPTER 1: Arduino Cram Session
12

FIGURE 1.6 Buttons and switches tell the Arduino what you want it to do next.

Potentiometers
These components, often called pots, can deliver a range of voltage to a circuit, depending
on how far the knob is turned. For example, you could make an LED shine brighter if you
turn the knob one way or dimmer if you turn it the other way. Pots can control data as well.
For example, you could program in different behaviors depending on how the pot is turned.
Many different sizes and shapes of pot exist, as you can see in Figure 1.7.

ptg16605960

Electronics
13

FIGURE 1.7 Potentiometers enable you to control a circuit with the turn of your
wrist.

Resistors
Electricity is the friend of electronic components, right? Well, yes, but too much juice can
damage them. That’s where resistors come in. These small components stop all but a
fraction of the electricity from passing through to the component. Resistors are rated in
ohms. The resistors shown in Figure 1.8 are most commonly used in hobbyist projects. They
are marked with color bands so you can identify how many ohms each resistor has. You can
find a guide to the color codes in Chapter 8.

ptg16605960

CHAPTER 1: Arduino Cram Session
14

FIGURE 1.8 Resistors limit the flow of electricity, protecting your components
from too much juice.

1 Colored bands identify the ohms.

Capacitors
Capacitors (often just referred to as caps) store and discharge small amounts of electricity,
enabling them to be used as timing devices because, when paired with resistors, a cap
 discharges at a predictable rate. Because of this predictability, capacitors are also used to
“clean up” an electronic signal, such as the frequency response of an audio circuit. Figure
1.9 shows a variety of capacitors.

1

1

1

ptg16605960

Electronics
15

FIGURE 1.9 Capacitors store and release small amounts of electricity.

Motors
As shown in Figure 1.10, the following are the three main types of motor that you’ll learn
about in this book:

■ Steppers—A stepper motor rotates in “steps” rather than just rotating willy-nilly. This
 enables you to control its movement precisely, and therefore it is used for computer-
controlled milling and other tasks that require control down to the millimeter.

■ Servos—Servos are motors that have “encoders” built in that send position information
back to the microcontroller. Servos are often used for robots where control of the
motors’ shafts is important but not critical.

■ DC motors—DC motors have no feedback or other means of control beyond the appli-
cation of electricity. When a charge exists, the motor turns. When the charge stops, the
motor does as well. DC motors are used in projects where the shaft’s position really
doesn’t matter at all, such as in a remote-controlled helicopter.

ptg16605960

CHAPTER 1: Arduino Cram Session
16

FIGURE 1.10 Steppers, servos, and DC motors comprise the main types of
motors used in hobby electronics.

1 Steppers

2 Servos

3 DC Motors

Solenoids
Whereas motors turn, a solenoid (see Figure 1.11) uses an electromagnet to move a shaft
back and forth. One application for this is a valve; when the right voltage passes through
the solenoid’s coils, the valve opens. When the voltage stops, the valve closes.

1

2

3

1

2

3

ptg16605960

Electronics
17

FIGURE 1.11 Solenoids are like motors but move the shaft back and forth
instead of rotating it.

Piezo Buzzers
The primary noisemakers used in electronic kits are piezos, shown in Figure 1.12. You apply
voltage, and a noise comes out. Pretty simple!

ptg16605960

CHAPTER 1: Arduino Cram Session
18

FIGURE 1.12 Want to create a buzz with your Arduino? Plug in one of these
piezos.

Seven-Segment Displays
Say you want a display in your project that shows letters and numbers. The classic solution
is a seven-segment display that consists of a number of LEDs (usually seven) that can be
selectively lit up to show you a letter or number. Many different styles are available, as
shown in Figure 1.13, but they mostly work the same way.

ptg16605960

Electronics
19

FIGURE 1.13 A variety of displays exist; each consists of a series of LED seg-
ments that can be triggered individually to create letters and numbers.

Relays
Relays (see Figure 1.14) are like electronic switches: When your program sends a triggering
current to the relay, it activates another circuit. For example, if you wanted to control a
lamp that uses wall current, you could use a relay paired with an Arduino to control the
lamp’s current without needing to handle AC current yourself! Figure 1.3 earlier in this
chapter shows an Arduino shield that controls a relay.

ptg16605960

CHAPTER 1: Arduino Cram Session
20

FIGURE 1.14 Relays serve as Arduino-controlled switches, triggering circuits on
command.

Integrated Circuits
Also known as ICs, integrated circuits (see Figure 1.15) are just what they sound like: entire
circuits packed into individual chips, simplifying your electronics projects—assuming you can
find the right IC! Examples of ICs include microcontrollers, such as the ATmega328 used in
Arduinos, timer chips, amplifiers, and so on.

ptg16605960

Electronics
21

FIGURE 1.15 Integrated circuits put an entire circuit onto a chip.

Temperature Sensors
The temperature sensor (see Figure 1.16) takes in information about the temperature in the
area and returns a value to the Arduino. This sensor is a great addition to such projects as
weather stations or for triggering a cooling fan, for example.

ptg16605960

CHAPTER 1: Arduino Cram Session
22

FIGURE 1.16 Temperature sensors tell the Arduino about the environment
around it.

Flex Sensor
Great for wearable electronics, the flex sensor (see Figure 1.17) tells the Arduino when it is
bent by changing the amount of electricity allowed to pass through it. Wouldn’t it be great
to control a robot hand with a flex sensor–equipped glove?

ptg16605960

Electronics
23

FIGURE 1.17 Flex sensors know when they flex. Robo-glove, anyone?

Light Sensor
Light sensors (see Figure 1.18) are often used in electronics projects. In fact, you’ll use
them a few times in this book! Basically, the sensor tells the Arduino how light or dark it is,
triggering different events depending on the light level.

FIGURE 1.18 Light sensors tell the Arduino how light or dark it is.

Ultrasonic Sensor
Ultrasonic sensors (see Figure 1.19) detect movement nearby by beaming out inaudible—to
 humans!—pulses of noise, while listening for the noise to bounce back. This is kind of how a
bat’s echolocation works.

ptg16605960

CHAPTER 1: Arduino Cram Session
24

FIGURE 1.19 The ultrasonic sensor sees by bouncing ultrasonic pulses off of
nearby objects.

Safety Rules
In this book, you’ll be doing a lot of work in the shop, and this means using tools that
could potentially hurt you. This section provides an overview of some basic shop safety
rules that apply in most situations. Later chapters cover some more specific situations you’ll
encounter and the safety rules that apply. Figure 1.20 shows two of the most important
pieces of safety gear you should own—ear and eye protection!

ptg16605960

Safety Rules
25

FIGURE 1.20 Ear and eye protection should not be neglected.

Follow these rules:

■ Use protection—Goggles, hearing protection, dust masks, and protective clothing are
often necessary, depending on what tool you’re using. If you’re using irritants, you’ll
need skin protection. If you have long hair and are using a power tool, pull your hair
back so it doesn’t get caught. Always use goggles if there’s a chance that something will
fly into your eyes; regular eyeglasses are not good enough.

■ Be aware and alert—Stay away from drugs and alcohol, especially when using power
tools. Furthermore, make sure to get plenty of sleep—many a maker have gotten hurt
while pulling all-nighters.

■ Cleanliness is important—If you’re working by yourself, the temptation might be to let
your workshop get messy. Don’t do it! You’re more likely to have an accident in a messy
shop than in a clean one.

■ Be aware of your surroundings—Know who is in the workshop with you and where they
are in proximity to you and the tool you’re using. For instance, if you’re using a power
saw and a friend drops a wrench with a loud clang, an injury could result.

■ Know your tool—You should be respectful of your tools but not scared of them. If
you’re using a new tool, learn about it first. Either ask an experienced maker to “check
you out” or, if you don’t know someone like that, you can often find YouTube videos
demonstrating how the tool is used. Similarly, use the tool for its intended purpose.
Many people have been injured using a screwdriver as a pry-bar, for instance.

ptg16605960

CHAPTER 1: Arduino Cram Session
26

■ Keep your tools in good condition—If a saw blade is dull, for instance, you might have
to “force it” when cutting, which increases your chance of injury.

■ Know where your fingers are—You have ten of ‘em—ideally—and you need all of them.
When using power saws, welders, or even regular hammers, make sure you’re aware of
the danger and keep your digits safe.

■ Keep a first aid kit—In addition to the usual stuff like alcohol swabs, adhesive
bandages, and tweezers, be sure to stock gauze pads and tape in your kit because
maker injuries can sometimes be serious. Also, saline eyewash squeeze bottles are great
for getting irritants or even sawdust out of your eyes. Chapter 8 provides complete
descriptions of the ultimate maker’s first aid kit.

■ Don’t forget basic safety equipment such as fire extinguishers and smoke detectors—
A sink is great, too. Every workshop needs ready access to a sink to wash off irritants or
to rinse a wound.

The Next Chapter
In Chapter 2, “Breadboarding,” you learn how to create electronic circuits without
soldering, using a prototyping board called a breadboard. You also learn how to create a
laser trip beam to protect your home from intruders!

ptg16605960

2
Breadboarding
In this chapter, you learn all about breadboarding, the quick and easy way to prototype Arduino
projects. After you’re up to speed on that, you’ll tackle your first project: a laser trip beam for your
house! You’ll also learn how to use a passive infrared sensor in place of the laser, as well as how to
design and cut a plywood enclosure for your trip beam.

Assembling Circuits Using Solderless Breadboards
Sure, you could make your project a tangle of wires, but sometimes a little organization can make
a project easier to understand. Often, for everyone from newbies to experts, the first step toward
building a project is to breadboard it. Look at the project in Figure 2.1. If the creator wants to make
a change, it’s incredibly easy—the work of seconds. It’s perfect for prototyping.

ptg16605960

CHAPTER 2: Breadboarding
28

FIGURE 2.1 A breadboarded project is easy to set up and modify because you
don’t have to solder! Credit: Chris Connors

A solderless breadboard is a plastic board covered in wire holes and featuring concealed
conductors. These conductors in essence serve as additional wires for your project. You
simply plug in your Arduino, motors, sensors, and so on to the board and use it to manage
the connections. Figure 2.2 shows how a breadboard works.

ptg16605960

Assembling Circuits Using Solderless Breadboards
29

FIGURE 2.2 How does a breadboard work? This photo shows the operation of a
typical breadboard.

The following list describes how each of the connections functions:

A. Ground bus strip—Connect to a GND pin on your Arduino. Ground strips are
usually marked in blue or black.

B. Power bus strip—Connect a power supply to power the strip. Note, however, that
the two strips aren’t connected. Power strips are usually marked in red.

C. Terminal strips—The terminal strips are perpendicular to the bus strips. Note that
I have marked the terminal strips with light blue shading so that they stand out in
Figure 2.2. Your breadboard will not be shaded in this way.

D. Conductors—The blue strips indicate where the concealed connectors are
positioned.

E. Hole letters and numbers—These help you describe your project. For example,
“Plug the wire into H4” means you would find Row H and then count down to the
fourth plug.

ptg16605960

CHAPTER 2: Breadboarding
30

Typical breadboards consist of two bus strips on each side, with a power strip, usually
marked in red, as well as a ground strip marked in blue or black. Perpendicular to the bus
strip are the terminal strips. These are the ones in the middle, and consist of short rows of
wire holes linked together by hidden conductors as marked in blue in Figure 2.2.

Conductors are essentially wires, kept hidden so that your project is easier to wire up. Trying
to decipher a huge tangle of wire is a lot to ask of a beginner.

To use these conductors, you simply plug in a wire to the row you want, and then plug in
the component or wire to which you want to connect to another part of the row. It’s easy!

The last thing you need to know about solderless breadboards is that many of them have
an adhesive on the back. This feature comes in handy in this chapter because you’ll use the
adhesive to stick the breadboard to the enclosure.

Understanding Power and Ground
Without getting into how electricity works too much, let’s cover two important terms
you’ll find used a lot in electrical projects: power and ground. Put simply, in circuits, the
power wire is where electricity comes from, and the ground wire is its return path. On a
breadboard, both power and ground get their own bus strips, allowing you to easily power
individual elements of the circuit. You’ll plug in your power supply—whether from the
Arduino or a secondary supply—to the power bus strip, and connect the ground bus strip to
one of the GND pins on your Arduino.

Using Jumper Wires
The wires typically used in breadboarding projects are called jumpers. You can create your
own simply by using wires clipped to the right length. You’ll want to avoid stranded wire
because it has a tendency to fray; use solid wire instead.

Alternatively, you can purchase specially created jumper wires. These consist of a slender
wire—in a variety of colors and lengths—with a connector pin attached to each end, as
shown in Figure 2.3. The pins are designed to fit perfectly into the holes of a solderless
breadboard, while being durable enough to be reused many times.

ptg16605960

Assembling Circuits Using Solderless Breadboards
31

FIGURE 2.3 You can use practically any wires on your breadboard, but wires
with pins already attached, as shown here, work the best.

Another type of jumper wire comes in pre-cut lengths, already angled so that you can simply
slip them into the breadboard’s holes and the wires lay flat against the board, organizing
what otherwise would be a confusing tangle of wire. You can see this type of jumper in
Figure 2.4.

ptg16605960

CHAPTER 2: Breadboarding
32

FIGURE 2.4 Breadboard jumpers are great because the pre-cut wires fit flush
against the breadboard, keeping your wire neat and orderly.

Before you get started with your main project, let’s do a simple breadboarding project to
get your confidence up for the real thing.

Project: Breadboard Blink
Here’s a simple project you can do in just a couple of minutes; it can help you get up to
speed on breadboards. All the project does is light up an LED, as you can see in Figure 2.5.
Sound simple? It is.

ptg16605960

Project: Breadboard Blink
33

FIGURE 2.5 Do you want to make an LED blink?

PARTS LIST
■ Arduino Uno—If you haven’t bought an Arduino yet, now is the time! In a perfect

world, you should use Revision 3 of the Arduino Uno because (at least at the time of
this writing) it is the latest and greatest. You can buy it from the Maker Shed (http://
www.makershed.com/New_Arduino_Uno_Revision_3_p/mksp11.htm). However, this
project works with pretty much any version of Arduino.

■ Breadboard—I used a half-size breadboard for this project, similar to this one from the
Maker Shed: http://www.makershed.com/product_p/mkkn2.htm.

■ USB Cable—For this project, you use the most common kind, with a flat connector
that plugs in to your computer and a square connector that plugs in to the Arduino.

■ Jumper Wires—You can either use regular ol’ wire—anything that can plug in to the
breadboard is fine—or buy dedicated wires. The Maker Shed has a decent assortment:
http://www.makershed.com/SearchResults.asp?Search=jumper&Submit=Search.

■ An LED—These are astonishingly cheap. The Maker Shed has an assortment of 100
that costs $8 (http://www.makershed.com/Make_100_LED_Assortment_p/
mkee7.htm)!

http://www.makershed.com/New_Arduino_Uno_Revision_3_p/mksp11.htm
http://www.makershed.com/New_Arduino_Uno_Revision_3_p/mksp11.htm
http://www.makershed.com/product_p/mkkn2.htm
http://www.makershed.com/SearchResults.asp?Search=jumper&Submit=Search
http://www.makershed.com/Make_100_LED_Assortment_p/mkee7.htm
http://www.makershed.com/Make_100_LED_Assortment_p/mkee7.htm

ptg16605960

CHAPTER 2: Breadboarding
34

The following instructions tell you how to set up your breadboard. With this project, and
throughout the book, I use an electronic visualization program called Fritzing (fritzing.org)
to show you how to wire up your circuits. You can see a sample in Figure 2.6. Chapter 8,
“Tool Bin,” explores Fritzing in more detail.

FIGURE 2.6 This Fritzing diagram shows you how to wire up your breadboard.

1. Plug in an LED to the breadboard. The longer lead of the LED goes in to J1 and the
shorter lead plugs in to the ground terminal bus right next to it.

2. Plug in a wire to one of the Arduino’s GND ports (in Figure 2.6, the wire is plugged in to
the GND next to port 13). The other end of the wire can plug in anywhere in the ground
terminal bus. I have it in the fifth row.

3. Connect a wire from port 13 of the Arduino to the power (red) bus strip of the
breadboard.

4. Connect the bus to the LED’s terminal strip as previously shown in Figure 2.3. As you
can see, I have the terminal strip connected to F1.

5. If you haven’t already, download the Arduino software from this website: http://
arduino.cc/en/Main/Software. The web page provides instructions for installing
the software. Also, be sure to read Chapter 5, “Programming Arduino,” for more
instructions. Load the Blink example, found in File, Examples, 01.Basics of the Arduino
software.

6. Connect your Arduino to the computer via the USB cable, which will also power your
project. Select File, Upload to send the Blink program to the Arduino.

Voilà! You should have a blinking light on your breadboard.

If it doesn’t work, try these troubleshooting steps:

■ Test your connections against the preceding instructions.

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

ptg16605960

Project: Laser Trip Beam
35

■ Try plugging the LED directly into the Arduino, with the long lead plugging in to port
13 and the short lead plugging in to the GND port next to 13. It should blink if you
uploaded the program correctly. Additionally, the tiny LED on the board (labeled “L”)
will also blink.

■ Finally, if you’re still having trouble, see Chapter 5, which covers project debugging.

NOTE
More on Programming Later

If these instructions confuse you, never fear! I explore how to program your board in
Chapter 5, which guides you through the whole process in more detail.

Project: Laser Trip Beam
The Blink project was just to get your feet wet. Let’s do something cool! The main project
for this chapter is a Laser Trip Beam (see Figure 2.7). It consists of a small laser that shines
into a light sensor connected to an Arduino. If the sensor stops detecting the light, a buzzer
sounds the alarm. It’s fun, easy, and let’s face it—awesome!

FIGURE 2.7 Trip this laser beam and set off a buzzer!

ptg16605960

CHAPTER 2: Breadboarding
36

The project consists of two modules:

■ The first is the assembly that emits the laser. You’ll set up a battery pack, the laser, and
the locking switch that arms the laser.

■ The other unit consists of an Arduino, a photoresistor, and a buzzer to sound the
alarm.

You’ll also explore an alternative way to set an alarm using a special sensor called a Passive
Infrared (PIR) sensor. It’s a motion detector typically used in security systems, and you’ll
learn how to set up your own.

LASER SAFETY
The laser you use in this project is relatively modest in power—similar to a laser
 pointer—and won’t burn your skin or start a fire. That said, even weak lasers can
damage your retinas permanently (see Figure 2.8). Never let a laser shine into your
eye, even for a moment.

FIGURE 2.8 They don’t make these signs for no reason: A laser can blind you!

ptg16605960

Project: Laser Trip Beam
37

PARTS LIST
You’ll need the following parts to build your trip beam:

■ Arduino Uno
■ Power supply for the Arduino—A “wall wart” rated for 9V with a 2.1mm center-positive

plug (such as Adafruit P/N 63, www.adafruit.com/).
■ Battery pack—See Digi-Key P/N BC22AAW-ND, www.digikey.com/.
■ Sugru—This is easily moldable putty that cures into rubber; see Chapter 8 for more

information. You can buy it at www.sugru.com.
■ Heat-shrink tubing—See Anytime Tools P/N 201263, www.anytimesale.com.
■ Laser card—See Sparkfun P/N COM-00594. Figure 2.9 shows the laser card I used for

this project.

FIGURE 2.9 This laser card is rated for 0.8mW and is powered by 3 volts.

■ 11mm photo resistor—See Digi-Key P/N PDV-P5003-ND, www.digikey.com/.
■ 10K resistor—See Jameco P/N 691104, www.jameco.com; must be bought in sets of

100.
■ A half-size breadboard—See Adafruit P/N 64, www.adafruit.com/.
■ Two keylock switches—See Digi-Key P/N EG2625-ND, www.digikey.com/.
■ Buzzer—See Jameco P/N 1956741, www.jameco.com.
■ Wire
■ Breadboard jumpers
■ Standoffs—3/8 inch (Sparkfun P/N 10461, www.sparkfun.com)
■ Machine screws—#4-40 × 1"

Let’s build it! You begin with the laser module (diagrammed in Figure 2.10) because it’s
relatively simple. When you’re finished with that, you’ll move onto the sensor module.

http://www.adafruit.com/
http://www.digikey.com/
http://www.jameco.com
http://www.adafruit.com/
http://www.digikey.com/
http://www.jameco.com
http://www.sparkfun.com
http://www.digikey.com/
http://www.sugru.com
http://www.anytimesale.com

ptg16605960

CHAPTER 2: Breadboarding
38

Assembling the Laser Module
To assemble the laser module, follow these steps:

1. Connect the battery pack’s red wire to one terminal of the keylock switch, as shown in
Figure 2.10. It doesn’t matter which terminal. See the sidebar on how to heat-shrink a
wire to the lock’s terminals, later in this chapter.

FIGURE 2.10 Wire up the laser module as you see here.

2. Connect the other keylock terminal switch to the laser’s red wire.

3. Connect the black wire of the battery pack to the laser’s black wire.

Assembling the Sensor Module
Now move on to building the sensor module (see Figure 2.11) as follows:

1. Connect the GND port of the Arduino to the ground bus of the breadboard.

ptg16605960

Project: Laser Trip Beam
39

FIGURE 2.11 Wiring up the sensor module is more complicated than the other
one, but still not too difficult!

2. Plug in the photoresistor and the resistor to the breadboard, as shown in Figure 2.11.
Note that one end of the resistor plugs in to the ground bus.

3. Connect the buzzer to the Arduino. The black wire plugs in to GND, and the red wire
plugs in to port 13. (Note that I use different colored wires in Figure 2.11 to help
differentiate the wires; you need not use wires of these colors unless you really want to.)

4. Add the keylock switch, shown as a gray circle with a line. One terminal connects to port
11 and the other connects to the ground bus of the breadboard.

ptg16605960

CHAPTER 2: Breadboarding
40

HOW TO USE HEAT-SHRINK TUBING
Heat-shrink tubing (HST) is a great product for electronic tinkerers because it helps
keep wires connected to their terminals. Basically, HST is a rubbery tube that fits
around a wire, and then contracts to form a secure fit when heat is applied. Here’s
how you can use the tubing to attach wires to the keylock switch terminals:

1. Strip about a half inch of insulation from one end of a wire, and thread about an
inch of heat-shrink tubing onto the wire, as shown in Figure 2.12.

FIGURE 2.12 The keylock switch’s terminals are smooth posts. You need heat-
shrink tubing to connect the wire.

2. Wrap the exposed end of the wire around one of the terminals of the key lock, keep-
ing it as tight as possible. Wrap it a few times more with the insulated part of the
wire (see Figure 2.13).

FIGURE 2.13 Wrap the wire around the terminal several times.

ptg16605960

Project: Laser Trip Beam
41

3. Pull up the tubing so it covers the terminal and wrapped wire.

4. Apply a source of heat, such as a crème brulée torch, soldering iron, or heat gun.
Be careful not to burn your fingers or ignite any flammable items on your bench.
The tubing contracts and securely holds the wires in place. When you’re finished, it
should look just like Figure 2.14. Now, do the other terminal the same way.

FIGURE 2.14 Secure the wire by contracting the tubing around it.

Chapter 3, “How to Solder,” shows you how to do this connection using a soldering
iron and solder. This method is even more secure than heat-shrink alone!

Building the Enclosures
The next step in this project is to build the enclosures. I designed the boxes in Adobe
Illustrator and output the panels on a laser cutter. At their most basic level, the enclosures
are just wooden boxes. The main difference with this design is that it uses quarter-inch
teeth that nest with other panels, creating a remarkably solid container for your project after
it’s finished.

The panels’ teeth (shown in Figure 2.15) equal the thickness of the material, and when
paired with the precision of a laser cutter, you get a set of panels that connect so perfectly
that they barely need glue at all: Friction keeps them together. That said, you still glue all
the panels but one, and you secure that final panel with screws.

ptg16605960

CHAPTER 2: Breadboarding
42

FIGURE 2.15 Panels from one of the enclosures, ready to be assembled into a
box.

To make the enclosures:

1. Download the patterns from https://github.com/n1.

2. Use a laser cutter to cut them out of quarter-inch MDF (medium-density fiberboard).
For my settings I used a speed of 10, a power of 100, and a frequency of 1,000 on a
35-watt Epilog.

LASER CUTTER ALTERNATIVES
What, you say? You don’t have access to a laser cutter? Chapter 8 includes a tutorial
on how you can operate one of these cool gadgets, but in the meantime, you might
just want to create your own boxes out of wood pieces you cut yourself, repurpose a
cardboard box, or buy a project enclosure from an electronic hobbyist’s store.

3. After you have the pieces cut, glue the first side to the base, as shown in Figure 2.16.

https://github.com/n1

ptg16605960

Project: Laser Trip Beam
43

FIGURE 2.16 Begin the gluing process by gluing one side to the base.

4. Next, glue the remaining pieces except for the back; you must keep that panel removable
to add the electronics. I suggest gluing the pieces by adding a drop to each tooth, as
shown in Figure 2.17 (I probably used too much glue). Wipe up the excess glue and
leave it to dry. Note that you probably don’t need to clamp or secure it; those laser-cut
parts fit together very snugly!

ptg16605960

CHAPTER 2: Breadboarding
44

FIGURE 2.17 Add a dab of glue to each tooth to affix them together.

5. So, you have your finished enclosures; they should look like the ones shown in Figure
2.18. You might want to paint them at this point.

ptg16605960

Project: Laser Trip Beam
45

FIGURE 2.18 The enclosures are assembled and await painting and electronics!

Now it’s time to add electronics to the laser module enclosure, which is the smaller one of
the two. You already assembled the guts in steps 1–4, so it’ll be a breeze!

1. You can let the battery pack rattle around at the bottom of the enclosure, or you can
simply screw or hot glue the pack to the inside of the box.

2. Thread the keylock switch through the top hole of the enclosure and tighten the nut. If
the switch wants to rotate, you might want to hot glue the switch in place.

3. Glue a piece of wood to the inside of the box as shown in Figure 2.19. I chose a piece
of wood about 0.75" in length. Use a piece of Sugru putty (described in Chapter 8) to
attach the laser to the wood so the beam shines through the hole in the front of the
enclosure. Be sure the laser is shining exactly how you want it, then let the Sugru cure
overnight; this holds the laser in place.

ptg16605960

CHAPTER 2: Breadboarding
46

FIGURE 2.19 The laser module; the blue blob is the Sugru used to stick the
laser to the block of wood.

4. Attach the back panel to the laser module enclosure, and secure it with some slender
wood screws.

Now add the electronics to the sensor module enclosure:

1. Attach the Arduino to the front panel of the enclosure using the #4-40 screws and the
standoffs. (See Figure 2.20, which shows the enclosure from the back.)

ptg16605960

Project: Laser Trip Beam
47

FIGURE 2.20 The sensor module enclosure with the backplate open.

2. Screw on the buzzer, keeping it close enough to the Arduino to connect the two
together.

3. Peel off the adhesive backing on the breadboard and stick it to the backplate. Be sure to
leave enough room for the power supply.

4. Add the keylock switch to the top hole as you did with the laser module.

5. If you wired all the components as explained earlier in this chapter, you should be set!
Be sure you have the photoresistor positioned so that it’s visible through the front hole
when the module is assembled.

Laser Trip Beam Code
Use the following code to program your Arduino. Note that you’ll want the latest version of
the Arduino software installed or an error might result. You can find it at arduino.cc.

ptg16605960

CHAPTER 2: Breadboarding
48

You can download the trip beam code at https://github.com/n1/Arduino-For-Beginners.
Not sure how to upload code to the Arduino? Read the first part of Chapter 5 to learn
how!

//these tell the Arduino which pins will be used in the program

#define sensorPin A2

#define buzzerPin 13

#define keylockPin 11

int sensorValue = 0;

int threshold = 0; //make this number higher if the alarm trips too readily

void setup() {

 //this part declares whether each pin is an input pin or output pin

pinMode(keylockPin, INPUT_PULLUP);

 pinMode(buzzerPin, OUTPUT);

 pinMode(sensorPin, INPUT);

 Serial.begin(115200);

}

void loop() {

 //this loop arms the alarm based on the status of the keylock switch

 while (digitalRead(keylockPin) == HIGH) {

 senseIntruder();

 }

}

void senseIntruder() {

 //this function compares the light sensor’s value against the threshold

 //to see if the beam has been interrupted

 int sensorValue = analogRead(sensorPin);

 Serial.println(sensorValue); //for debugging purposes

 if (sensorValue > threshold) {

 digitalWrite(buzzerPin, HIGH);

delay(2000); //this sets the duration of the alarm. Higher # = longer buzz

 }

 else {

 digitalWrite(buzzerPin, LOW);

 }

 delay(20);

}

https://github.com/n1/Arduino-For-Beginners

ptg16605960

Project: Laser Trip Beam
49

Setting Up the Trip Beam
Now that you’ve completed the two modules, it’s time to set them up (Figure 2.21 shows
my completed laser beam).

1. Find a door or hallway that you want to secure, and then set up the two modules to
shine the beam across the pathway, ensuring that the laser beam hits the light sensor.

FIGURE 2.21 The trip beam in place. Yes, the photo is blurry. You try taking a
picture of an invisible beam of light in a dark room!

2. Find an outlet for the sensor module, ideally with the module actually covering the outlet
so that it can’t be easily unplugged, and plug it in.

If you can’t find a good outlet, another option might be to plug in a 9V battery to the
Arduino to power it; Adafruit has a convenient battery pack (P/N 67) with a barrel plug
that connects to the Arduino’s DC plug.

3. After the enclosures are set up, turn the key on the laser module to activate the beam.

4. Turn the key on the sensor module. The beam is now armed!

ptg16605960

CHAPTER 2: Breadboarding
50

You need to make two adjustments based on the ambient lighting in your room:

■ If the alarm goes off too readily, you must change the threshold in the code.
■ If the alarm doesn’t go off enough, try a different resistor on the breadboard; instead of

a 10K, try a 5K. This gives the light sensor more range on the lower end.

Alt.Project: Infrared Detector

Obviously, the trip beam is not a serious security measure. Another way, arguably more
effective but less cool, is to use an infrared sensor (see Figure 2.22) to detect the intrusion.

FIGURE 2.22 The passive infrared (PIR) sensor is a staple in professional secu-
rity systems—so why not use it ourselves?

Called a PIR (passive infrared), the sensor detects subtle variations of infrared light in the
area to determine whether someone or something has entered the sensing area. When it
detects something, the PIR sends a signal to the Arduino.

ptg16605960

Project: Laser Trip Beam
51

Wiring Up the PIR and Buzzer
You need to get a PIR, which you can buy from Adafruit (P/N 189) for $10. It consists of a
plastic bulb that shields the IR emitter and receiver. The circuit board has three terminals:
One that takes power from the Arduino’s 5V port, one that sends data to port 7, and
one that goes to ground. Connect the PIR and buzzer as shown in Figure 2.23, and you’re
finished! The PIR senses in a 120-degree cone, about 20 feet long. Point the PIR toward the
door you want to secure, and anyone coming through it or passing through the invisible
cone of infrared light will set off the buzzer!

FIGURE 2.23 Wiring up the PIR is extremely simple!

Infrared Detector Code
Upload the following code to your Arduino to program your PIR alarm:

#define buzzerPin 13 // Pin 13 controls your LEDs

#define pirPin 4 // Pin 4 receives motion sensor data

int val = 0; // Sets a default for your motion sensor

ptg16605960

CHAPTER 2: Breadboarding
52

void setup()

{

// Defines the buzzer and PIR as being input or output

 pinMode(buzzerPin, OUTPUT);

 pinMode(pirPin, INPUT);

Serial.begin(115200);

}

void loop()

{

// The loop watches for the PIR to be triggered, then sets

// off the alarm

 val = digitalRead(pirPin);

 if (val == HIGH) {

 digitalWrite(buzzerPin, HIGH);

Serial.println(val);

 delay(200); // alarm duration in milliseconds

 }

 else {

 digitalWrite(buzzerPin, LOW);

 }

 }

You can download the infrared detector code at https://github.com/n1/Arduino-For-
Beginners.

The Next Chapter
You’ve mastered breadboarding. Next up is soldering! In Chapter 3, “How to Solder,” you
learn how to stick your circuit together with solder and a soldering iron. In doing so, you’ll
enhance a coffee table with a controllable light strip that displays groovy lighting effects.

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

3
How to Solder
Solder is an easily meltable alloy of lead and tin used to connect electronic components. Not only
does it attach the part to the circuit board, it conducts electricity just like a wire does, allowing the
circuit to function as you intended (see Figure 3.1).

FIGURE 3.1 Soldering can look pretty intimidating, but doing it is actually easy.
Credit: Wayne and Layne.

Most electronic kits come with a printed circuit board (PCB), shown in Figure 3.2, to which you
solder the components. Typically, a board consists of a sheet of laminate drilled with numerous
holes and screen printed with instructions.

1

1 Solder Joints1

ptg16605960

CHAPTER 3: How to Solder
54

FIGURE 3.2 The typical PCB consists of a laminate plate studded with solder
pads and wire traces.

The laminate is embedded with wires called traces (visible in Figure 3.2), which connect all
the components together into a circuit. But how do you connect the components to the
traces? If you look at the photo, you’ll see tiny metal plates around each hole. These are
solder pads. When you want to attach a part, you slide the component’s wires (also called
leads) through the hole and solder them in place.

Use the following key to identify the various carts of the circuit board shown in Figure 3.2:

A—Laminate board

B—Screen printing

C—Solder pads

D—Traces

The rest of this chapter guides you through learning to solder.

ptg16605960

Gathering Soldering Supplies
55

SOLDERING SAFETY
Not surprisingly, you can hurt yourself while soldering. Keep the following tips in mind:

■ The soldering iron is hot; the tip can be upward of 600 degrees! It can burn you
and also start fires if you’re careless.

■ Use eye protection when snipping leads. When you clip the excess wire off of
electronic components, sometimes these leads fly off at high speeds. Putting on
a pair of goggles to protect your eyes is not a bad idea, even if you wear regular
glasses—sometimes, the projectile ricochets in from the side!

■ Solder fumes are toxic. Make sure to have plenty of ventilation or even invest in a
fume extractor (see “Fans or Fume Extractors,” later in the chapter) to keep your
air clean.

■ Solder is lead. Lead is toxic. After you’re finished with your project—or even when
you take a break in the middle of it—be sure to wash your hands thoroughly.
When you’re working, be aware of the fact that your hands are likely to be toxic
and don’t touch your face with them.

Gathering Soldering Supplies
Not surprisingly, you need a soldering iron to solder. Some people might not realize that
you need a bunch of other stuff as well! Following are some suggestions for equipment
to buy.

Picking a Soldering Iron
Obviously, you need a soldering iron, but which one? As with anything, the cost ranges from
inexpensive to pricy. A base model “pen style” iron (see Figure 3.3) typically consists of the
soldering wand with a heat-up tip on one end and the electrical cord on the other. You can’t
adjust temperature or much of anything else. If you want to turn it off, you just unplug it.

You can find a decent, inexpensive soldering iron at www.adafruit.com/products/180.

http://www.adafruit.com/products/180

ptg16605960

CHAPTER 3: How to Solder
56

FIGURE 3.3 A pen-style soldering iron is a great choice for a beginning tinkerer.

A more complicated model, like the Weller WES51 shown in Figure 3.4, has more
features. The Weller includes a soldering iron stand so the hot tip doesn’t burn anything
inadvertently. The stand also has a sponge for cleaning your tip, which is critical to
 maintaining the correct temperature.

FIGURE 3.4 This relatively expensive Weller WES51 offers several features the
pen irons lack.

ptg16605960

Gathering Soldering Supplies
57

More impressively, the expensive models have a more robust power supply. The Weller
shown in Figure 3.4 enables you to dial in exactly how hot you want the iron to be, has a
power switch, and even has an LED indicator telling you when the iron is at its designated
temperature. The WES51 retails for about $100 more than the basic pen iron, but trust me,
you’ll be able to tell the difference. The greatest hindrance to learning how to solder is using
a poor-quality iron.

You can buy the WES51 from Amazon: www.amazon.com/Weller-WES51-Analog-Soldering-
Station/dp/B000BRC2XU/. (It’s also cheaper than list price—score!)

TINNING YOUR TIP
No matter what iron you get, it will have a tip on it—this is the part that heats up.
Soldering iron tips get easily corroded, which inhibits their capability to get hot. To
keep your tip as pristine as possible, tin the tip after you’re finished with it for the day
(see Figure 3.5). Tinning means coating the tip in melted solder, and this protects
the tip from corrosion. You’ll also want to tin the tip periodically while you’re actually
soldering.

FIGURE 3.5 Make sure to tin the tip of your iron before, during, and after you
solder.

http://www.amazon.com/Weller-WES51-Analog-Soldering-Station/dp/B000BRC2XU/
http://www.amazon.com/Weller-WES51-Analog-Soldering-Station/dp/B000BRC2XU/

ptg16605960

CHAPTER 3: How to Solder
58

Choosing a Solder
Although it’s perhaps obvious that you’ll need solder, choosing it is not quite so simple
because several different types are available, as shown in Figure 3.6.

FIGURE 3.6 Many different gauges and alloys of solder are available. Make sure
you choose the one that works best for your project.

Let’s go over the various types:

■ Lead or lead-free—Actually an alloy of tin and lead, lead is the most common type of
solder. You can buy it in a variety of gauges (0.031"/0.8mm is a common one) and
alloys (63/37 and 60/40 are typical) depending on your soldering needs and personal
preference. Most tinkerers agree that lead makes the best solder; however, ecological
laws and concerns over lead poisoning have caused manufacturers and hobbyists to
turn to solder made without lead.
Lead-free solder skips the lead in exchange for a cocktail of antimony, zinc, silver, and
other ingredients that vary from product to product. A lot of makers don’t like lead-free
solder because it has a higher melting point than lead, it doesn’t flow as readily, gives
you messier solder joints, and can conceivably corrode over long periods of time. The
recommendation is to stay with lead solder while you’re learning; just wash your hands
afterward!

■ Flux-core or solid-core—Most solder comes with flux inside. This is used to chemically
clean the surfaces, which strengthens the mechanical connection between solder and
electronics and optimizes conductivity. The most popular type of flux is rosin, which is
purified pine sap. Rosin-flux solders put out a lot of smoke, however, and the smoke can
cause minor health problems, such as respiratory irritation and asthma-like breathing

ptg16605960

Gathering Soldering Supplies
59

difficulties. However, by using a fume extractor (see “Fans or Fume Extractors,” later
in the chapter) or just having plenty of ventilation, you can avoid taking in too much
smoke. Solid-core solder doesn’t contain flux; hardly anyone uses it anymore except for
stained glass artisans who don’t want flux stains on their creations.

■ Or just buy this one—I know this is a lot of information to take in, so allow me to sug-
gest the 0.31", rosin-core 60/40 lead solder, which is a nice all-purpose solder that I use
for all of my projects. You can buy it at www.adafruit.com/products/145.

Getting the Other Things You Need
You have a soldering iron and solder—now what? Let’s go over some additional accessories
that you can use to make your soldering experience easy and successful.

Desktop Vises
Called a “third hand,” the rig shown in Figure 3.7 is used to hold a circuit board steady with
 alligator clips while you solder. Some models also come with a magnifying glass, which can
be helpful if you’re doing some challenging solder joints and need a closer look.

FIGURE 3.7 The third hand holds your soldering project still while you work on it.

http://www.adafruit.com/products/145

ptg16605960

CHAPTER 3: How to Solder
60

You can get a decent one at www.makershed.com/product_p/mkhh1.htm.

Panavise (panavise.com) manufactures small desk vises. Its Panavise Jr. Model 201 (see
Figure 3.8) is extremely popular among tinkerers as a way of holding PCBs steady during
soldering. It’s essentially a small vise that you can attach to your workbench with bolts, and
that holds the PCB securely at any angle.

You can pick one of these up at www.makershed.com/Panavise_Jr_Model_201_p/
mkpv01.htm.

FIGURE 3.8 A Panavise Jr. is another great way of holding your circuit board
steady.

Cutters and Strippers
You’ll definitely need wire cutters and strippers (see Figure 3.9) for trimming wires to length
and stripp ing off insulation. Some models (like this inexpensive one: www.adafruit.com/
products/147) combine both strippers and cutters, but I prefer having separate tools.

http://www.makershed.com/product_p/mkhh1.htm
http://www.makershed.com/Panavise_Jr_Model_201_p/mkpv01.htm
http://www.makershed.com/Panavise_Jr_Model_201_p/mkpv01.htm
http://www.adafruit.com/products/147
http://www.adafruit.com/products/147

ptg16605960

Gathering Soldering Supplies
61

FIGURE 3.9 Wire cutters and strippers are a necessity in any electronics toolkit.

Needle-Nose Pliers and Hemostats
You might also need needle-nose pliers and hemostat medical clamps (see Figure 3.10) to
grab small items—electronics have a lot of tiny objects! Adafruit offers some inexpensive
tweezers (www.adafruit.com/products/421) with a non-conductive coating that helps
minimize the chance of accidentally statically shocking your components.

FIGURE 3.10 Need to grab or hold a small part? Needle-nose pliers or a hemo-
stat is just what you need.

http://www.adafruit.com/products/421

ptg16605960

CHAPTER 3: How to Solder
62

Fans or Fume Extractors
If you don’t have very good ventilation in your workshop, be sure to use a fan or fume
extractor to blow the rosin fumes away from you. A fan, shown in Figure 3.11, is obvious,
and you can buy one just about anywhere. Professional fume extractors are more expensive
and include cooler features such as carbon-fiber filters. A nice open window is mainly what
you need, however!

If you are interested in professional fume extractors, see this Weller model:
www.amazon.com/Weller-WSA350-Bench-Smoke-Absorber/dp/B000EM74SK/).

FIGURE 3.11 A fan carries soldering fumes safely away from your face.

ESD Protection
One threat to your electronic components is electro-static discharge (ESD), also known as
your garden-variety static shock. If you get a lot of shocks in your workshop, or if you just
don’t want to take any chances, wear an anti-static wristband (see Figure 3.12) or work on
an anti-static mat to minimize the threat of ESD.

http://www.amazon.com/Weller-WSA350-Bench-Smoke-Absorber/dp/B000EM74SK/

ptg16605960

Gathering Soldering Supplies
63

FIGURE 3.12 Wearing an anti-static strap protects your project from electro-
static discharge.

Belkin makes a good and inexpensive wristband: www.amazon.com/Belkin-Anti-Static-
Wrist-Adjustable-Grounding/dp/B00004Z5D1/.

Solder Stand and Sponge
Finally, if you have a pen-style iron, you might want to buy a separate stand to hold your
iron (see Figure 3.13), and you’ll definitely need a sponge to keep the tip clean. Adafruit
offers a nice stand-and-sponge combo (www.adafruit.com/products/1154) that also
includes a solder dispenser.

http://www.amazon.com/Belkin-Anti-Static-Wrist-Adjustable-Grounding/dp/B00004Z5D1/
http://www.amazon.com/Belkin-Anti-Static-Wrist-Adjustable-Grounding/dp/B00004Z5D1/
http://www.adafruit.com/products/1154

ptg16605960

CHAPTER 3: How to Solder
64

FIGURE 3.13 A soldering iron is hot, so you should keep it safely off the table.

Soldering
Now that you have your equipment, it’s time to solder! Here’s how:

1. Prepare your soldering equipment and work area (see Figure 3.14). Make sure you have
plenty of space in which to work and that your wire cutters, sponge, and other tools are
ready to go. Plug in your iron, and if it’s the type that needs to be turned on, turn it on.
If your iron has an adjustable temperature control, set it to 700oF/370oC for tin-lead
solder and 750oF/400oC for lead-free solder.

2. Your iron heats up, and if you have one with a readout, it will tell you when it is hot.
If you just have a basic model iron, you must test the tip to ensure that it’s ready to
solder. Touch the tip to your wet sponge; if the iron is ready, a tiny wisp of steam will
hiss out.

3. After the soldering iron is hot, melt some solder and coat the iron’s tip with it. This is
called tinning, and it helps conduct heat easier and thereby speeds up your soldering.

ptg16605960

Soldering
65

FIGURE 3.14 Have everything ready to go? Let’s get started!

4. When you’re ready, go to step 1 of your instructions, assuming you’re working from a
kit, which is how most beginners learn. Kit instructions typically guide you through the
placement of each component in turn. Slide the component’s leads through the holes in
the solder pads. Flip over the board and bend back the leads (as shown in Figure 3.15)
so the component doesn’t fall back out.

FIGURE 3.15 The best way to keep your components from falling out when you
turn the PCB over is to bend back the leads.

Bend the component

leads just enough to

prevent them from

falling back out.

1
1 1

ptg16605960

CHAPTER 3: How to Solder
66

5. Touch the tip of the hot soldering iron to both the circuit board’s pad and the lead of
the component, as you see in Figure 3.16. Hold it there for a couple of seconds. This
warms up the pad and lead and helps the solder stick to them.

FIGURE 3.16 Heating up the lead and pad helps the solder stick to them.

6. Hold a piece of solder with your other hand and touch the end to the pad and
lead while the iron is still touching them (see Figure 3.17). The solder should melt
immediately and flow into the hole, sticking everything together. Remove the iron and
you’re finished! Cooling takes barely a second, so you don’t have to wait before moving
on to the next step.

ptg16605960

Soldering
67

FIGURE 3.17 Heat up the lead and pad, and then apply a length of solder.

7. Examine the solder bead. It should cover the entire pad and there should be enough
solder that it forms a small bump. If the solder bead is flat against the pad or if you can
see extra pad sticking out from under the solder, then you probably didn’t use enough
solder and you might run into problems. Conversely, if you used too much solder,
the bead might touch more than one pad and cause the circuitry to not function as
intended. Either way, you should probably desolder (see the next section) and redo your
work.

8. If the solder looks good, clip off the excess leads; you won’t need them. See Figure 3.18.
You can then move on to the next component.

ptg16605960

CHAPTER 3: How to Solder
68

FIGURE 3.18 Clip off excess leads when you’re confident the component is
secure.

Desoldering
Sometimes your soldering effort results in a bad connection, as you can see in Figure 3.19.
Maybe you didn’t use enough solder, or maybe you used too much solder and the glop
of metal covers more than one pad. Sometimes you accidentally attach the wrong part or
solder it in backward. In these cases, you must remove the solder and redo your work.

FIGURE 3.19 See the two pins stuck together? That’s a bad solder joint.

ptg16605960

Desoldering
69

Desoldering uses a number of tools (see Figure 3.20) to help remove melted solder. These
consist of a desoldering bulb and braid, as well as a solder sucker. Ultimately you’ll need
to come up with the method that works for you, but for the record, I like the solder sucker
the best!

FIGURE 3.20 These are the tools you need to desolder.

To desolder, you need the following tools:

■ Desoldering bulb—This is a hollow rubber bulb with a nozzle. To desolder, hold the
nozzle of the bulb to the solder bead and melt the bead with your iron. To suck up
solder, you simply squeeze on the bulb while holding the nozzle up to the melted solder.
You stop squeezing and the solder is vacuumed into the bulb. You can buy a desoldering
bulb at www.radioshack.com/product/index.jsp?productId=2062742.

■ Solder sucker—This is a spring-loaded version of the bulb and comes with a plunger
and button. When you think you’ll need to desolder, you press down the plunger; when

1. Desoldering Bulb

2. Solder Sucker

3. Desoldering Braid

1

2

3

1

2

3

http://www.radioshack.com/product/index.jsp?productId=2062742

ptg16605960

CHAPTER 3: How to Solder
70

it clicks, you know it’s ready to go. Hold the sucker’s nozzle next to the bead of molten
solder and press the button. The spring releases and the plunger pops back, creating
a vacuum that sucks the solder away from the circuit board (see Figure 3.21). You can
buy one at www.adafruit.com/products/148.

FIGURE 3.21 Heat up the bad solder joint and suck up the molten metal!

■ Desoldering braid—Rather than attempting to suck up the solder, why not sop it up like
a puddle of spilled milk? Desoldering braid is loosely braided wire thread, and when it
touches melted solder, the solder flows up the braid and away from your project. You
can buy desoldering braid at www.adafruit.com/products/149.

When you’ve desoldered a component, examine it carefully to ensure that no large glops of
solder are on it, and then reattach it.

http://www.adafruit.com/products/148
http://www.adafruit.com/products/149

ptg16605960

Cleanup
71

SOLDERING TIPS
Here are some suggestions that can help your soldering experience go smoother:

■ Better too little than too much—You don’t need a lot of solder to make a good
joint. In fact, too much might cause two solder pads to connect when they
shouldn’t.

■ Tin the tip—Periodically re-tin the tip of your soldering iron to ensure enough heat
reaches the solder.

■ Bend the leads—When you insert a component, bend the leads to ensure the part
doesn’t fall out.

■ Solder one lead at a time—If you’re worried about a part being crooked, solder
just one of its leads, then heat up the solder again and adjust the fit; when it’s
straight, let the solder cool and solder the remaining lead(s).

■ Heat the pad and leads, not the solder—One common beginners’ mistake is to
melt the solder and smear it all over the leads. Do it the opposite way: Heat the
pad and leads, and then apply a length of solder and let it melt.

■ Keep your tip clean—Clean the tip periodically during the soldering process by
wiping it off on the soldering iron’s sponge. Re-tin, and then continue soldering.

■ Tin your tip before storing—Store the soldering iron with a tinned tip; this helps
keep the tip from corroding.

Cleanup
You’re finished! Congratulations on learning a new skill. Now it’s time to put away your
tools and clean up your work area. The following are suggestions on what to do:

1. Tin the tip of your iron. You learned how to do this earlier in the chapter. Covering the
tip in solder helps protect it against corrosion when not in use.

2. Unplug your tools and put them away.

3. Clean your work area. There is likely to be some tiny specks of toxic lead as well as
clipped leads on the workbench and the floor by your chair. Use a broom or vacuum on
the floor and wipe down the table with a typical multi-surface spray cleaner.

4. The final step should be to wash your hands one last time to make absolutely certain all
the lead is cleaned up.

ptg16605960

CHAPTER 3: How to Solder
72

Project: LED Strip Coffee Table
In the next project, you learn how to add a cool programmable lighting strip to an
ordinary coffee table, spicing up your next coffee klatch! The strip consists of a metal foil
strip studded with LEDs and microchips, and you can control each LED individually, with
brightness and color set by an Arduino program (see Figure 3.22). You’ll be able to toggle
through various cool lighting effects with a button, enabling you to find the one that you
want within seconds.

FIGURE 3.22 Your coffee table will light up your next social function—literally.

PARTS LIST
You won’t need many parts to build this project:

■ Arduino Uno
■ Wall wart for the Uno, which also powers the LED strip
■ Digital LED light strip (Adafruit P/N 306: Get however many meters you think

you’ll need.)
■ Coffee table
■ Jumpers
■ A button (I used a U811SHZGE pushbutton from Digi-Key.)
■ Potentiometer (Adafruit P/N 562)
■ Zip ties (optional)
■ Hot glue gun and glue (optional)

ptg16605960

Project: LED Strip Coffee Table
73

Preparing the Light Strip
Digital Red Green Blue (RGB) LED strips consist of a strip of metal embedded with tiny
microchips and LEDs. There are 32 LEDs per meter, each of which can be addressed
individually, with brightness and color fully controlled by the Arduino (see Figure 3.23).

FIGURE 3.23 All you need to control one of these LED strips is an Arduino and a
source of power!

One of the first things you might notice is that the metal strip is covered in a clear plastic
sleeve that protects it from moisture. The strip doesn’t need the sleeve to operate, but don’t
remove it unless you absolutely must. Also, the sleeve is really difficult to get back on the
strip after it’s removed!

You buy the strip in five-meter reels but you can cut it yourself into lengths as small as 2.5".
Does it sound scary to potentially damage a light strip that costs $30 a meter? It should.
However, the manufacturers thoughtfully created the strip so that it can be cut along certain
cutlines. The safe cutting line is flanked by solder pads, as shown in Figure 3.24.

To prepare the light strip for the project, follow these steps:

1. To cut the strip, find the nearest cutline—you can’t miss them, they’re every 2.5 inches!
Simply cut down the line with a sturdy pair of scissors. It doesn’t have to be a surgical
cut; the shoddy job I did in Figure 3.24 worked perfectly fine.

ptg16605960

CHAPTER 3: How to Solder
74

FIGURE 3.24 Safely cut the light strip along this line flanked by solder pads.

1. Cutting Lines

2. Solder Pads

2. Connect the separated strips back into a long one, to enable you to more effectively
wrap it around the table. Grab two lengths and lay them next to each other. Pull back
the plastic sleeve an inch or two to expose the solder pads.

3. Add a dab of solder to each pad, and then tin the end of your jumper—you probably
need less than a quarter-inch of exposed wire—and solder it to the pad, as shown in
Figure 3.25. Some people also use hot glue on the exposed contacts to ensure the
connection remains solid.

4. Connect the remaining contacts the same way.

Alternatively, Adafruit Industries (adafruit.com) sells replacement end caps and power plugs
that make the process of using a light strip more convenient because you can plug and
unplug the lengths at will, which saves you some soldering time.

FIGURE 3.25 Connect each solder pad to its mate on the other strip.

1

2 2

2

1

ptg16605960

Project: LED Strip Coffee Table
75

Attaching the Light Strip to the Table
Every model of coffee table differs from the next, so needless to say, you’ll have to adapt
certain parts of this project to the unique needs of your coffee table. Specifically, the LED
strip must be the same length as the circumference of the table.

1. Measure the coffee table to find out how much of the LED strip you’ll need. Be sure to
be cut the strips smaller than the length, so you don’t have the strip sticking out too far.

2. Cut the LED strip into the right-sized segments. My table measured 42" by 20" so I cut
my three meters of LED strip into two 42" segments and two 17" segments. (You might
not actually need to cut the strip apart, depending on your coffee table!)

3. Wire up the segments—you learned how to do this earlier in this chapter. See “Preparing
the Light Strip.”

4. Attach the light strip to the table, which you can do in any number of ways, including
hot glue or zip ties. The method you choose depends on your table.

5. Wire up the Arduino, button, and potentiometer, as shown in Figure 3.26.

FIGURE 3.26 Wire up the light strip as you see here.

ptg16605960

CHAPTER 3: How to Solder
76

■ Connect the light strip to the Arduino; GND on the strip goes to GND on the
 Arduino. The pad marked 5V connects to 5V on the Arduino. DI connects to pin 2
and CI connects to pin 3.

■ The positive terminal of the button plugs into RESET on the Arduino and the negative
connects to GND.

■ The center terminal of the potentiometer connects to A0 on the Arduino, while one
of the other two terminals plugs into GND and the other into 5V—it doesn’t matter
which goes where.

Building the Enclosure
For this project, you build the enclosure out of MicroRAX. This is a line of fairly cheap but
extremely durable aluminum beams used to build computer chassis and robots. You can buy
it at MicroRAX.com and Sparkfun.com. You can buy whole kits, individual beams, and longer
beams (up to eight feet) that you can saw down to smaller sizes. After you have the MicroRAX
framework, you add acrylic panels to serve as the sides of the box (see Figure 3.27).

FIGURE 3.27 The assembled enclosure looks super sweet!

ptg16605960

Building the Enclosure
77

PARTS LIST
Use the following parts to build your enclosure:

■ MicroRAX beams (available from MicroRAX.com)
 Four 40mm beams
 Four 100mm beams
 Four 160mm beams

■ Eight tri-corner braces (available from MicroRAX.com)
■ Six 90-degree joining brackets (available from MicroRAX.com)
■ 3mm screws (available from MicroRAX.com)
■ Acrylic or wood panels for the sides of the box
■ Standoffs, 3/8-inch, Sparkfun P/N 10461
■ Machine screws, #4-40 × 1"

The assembly is super simple!

1. Connect the beams to form a box, using the 90-degree joining brackets and 3mm
screws. You’ll be adding pieces of acrylic or wood to form the top, bottom, and sides.

2. Get your beams together. I used four each of 40mm, 100mm, and 160mm beams (see
Figure 3.28) but make yours however you want.

FIGURE 3.28 MicroRAX beams come in a variety of pre-cut lengths; I used
40mm, 100mm, and 160mm beams to build my enclosure.

ptg16605960

CHAPTER 3: How to Solder
78

3. Use corner braces (see Figure 3.29) to start building the framework of the box.

FIGURE 3.29 MicroRAX corner braces allow you to easily connect multiple
beams.

4. Cut out some panels for the sides. I laser-cut mine out of acrylic (see Figure 3.30) but
this isn’t absolutely necessary; you could cut them out of wood with a regular saw just
fine. Make the panels the same size as the beams but add 4mm–6mm to the length and
width of the panel if you’re using 2.5mm or thinner stock and 2mm–3mm if you’re using
5mm stock, the maximum thickness. If they’re a bit loose and rattle, stick a piece of
rubber band in there to pad it.

ptg16605960

Building the Enclosure
79

FIGURE 3.30 Slide the panels into the beams’ grooves.

5. While you’re building the frame, be sure to add angle braces (shown in Figure 3.31) to
connect the enclosure to the coffee table. Note that I made the bottom panel out of
wood to make it easier to connect the Arduino to the enclosure. Finish adding the other
panels and beams, leaving the top unsecured until you add the electronics.

ptg16605960

CHAPTER 3: How to Solder
80

FIGURE 3.31 The enclosure begins to take shape.

6. Attach your Arduino to the base. If you’re planning ahead, you can laser cut the
screw-holes. If you forgot, like me, then place the Arduino on the base and use a pen
to mark where the holes on the Arduino’s PCB are located. Drill holes. Then, thread
your #4-40 machine screws through the base and add the 3/8-inch standoffs. Place the
Arduino on the screws and then tighten the nuts. When you’re done, it should look just
like Figure 3.32.

ptg16605960

Building the Enclosure
81

FIGURE 3.32 The standoffs and screws keep the Arduino positioned correctly.

7. After the guts are in the enclosure, close up the top and lightly secure it with one of the
MicroRAX screws. You won’t want to secure it fully until you’re done. Figure 3.33 shows
you how the final enclosure looks.

ptg16605960

CHAPTER 3: How to Solder
82

FIGURE 3.33 The enclosure attached to the underside of the coffee table.

Controlling the LED Strip
You use the potentiometer and the button to control which of the eight effects the LED strip
displays. This is how it works:

1. The potentiometer has been mapped to return a value of 1 to 8 depending on how it’s
turned. (I explain mapping in Chapter 5.)

2. When the sketch is launched, the Arduino takes that number and displays whichever
effect is currently selected.

3. However, if you want to change the effect while the Arduino is running, you’ll have to
press the button, which resets the Arduino, to see the new effect. This is because the
sketch is looping and doesn’t recognize that the potentiometer has changed until you
press reset.

LED Strip Code
Upload the following code to make your coffee table project come alive.

ptg16605960

LED Strip Code
83

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

Uploading code to your Arduino is explained in Chapter 2, “Breadboarding,” and Chapter
5, “Programming Arduino.” Also, you’ll need the LPD8806.h library (libraries are explained
in Chapter 5), which can be downloaded from the following URL: https://github.com/
adafruit/LPD8806/blob/master/LPD8806.h.

//This sketch is derived from Adafruit’s LPD8806 example code

#include “LPD8806.h”

#include “SPI.h”

int pot1 = A1;

int dataPin = 2;

int clockPin = 3;

int toggleValue = 0;

int toggle = 0;

//the 96 refers to the number of LEDs on your strip. Change the number as needed.

LPD8806 strip = LPD8806(96, dataPin, clockPin);

void setup() {

 pinMode(pot1, INPUT);

 Serial.begin(9600);

 // Start up the LED strip

 strip.begin();

 // Update the strip, to start they are all ‘off’

 strip.show();

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners
https://github.com/adafruit/LPD8806/blob/master/LPD8806.h
https://github.com/adafruit/LPD8806/blob/master/LPD8806.h

ptg16605960

CHAPTER 3: How to Solder
84

}

void loop() {

toggle = analogRead(pot1);

int toggleStatus = map(toggle, 0, 1023, 0, 8);

 Serial.println(toggleStatus);

switch(toggleStatus) {

 case 0:

 // Clear strip data before start of next effect

 for (int i=0; i < strip.numPixels(); i++) {

strip.setPixelColor(i, 0);

 }

 break;

 case 1:

 // Send a simple pixel chase in...

 colorChase(strip.Color(127,127,127), 20); // white

 colorChase(strip.Color(127,0,0), 20); // red

 colorChase(strip.Color(127,127,0), 20); // yellow

 colorChase(strip.Color(0,127,0), 20); // green

 colorChase(strip.Color(0,127,127), 20); // cyan

 colorChase(strip.Color(0,0,127), 20); // blue

 colorChase(strip.Color(127,0,127), 20); // magenta

 break;

 case 2:

 // Fill the entire strip with...

 colorWipe(strip.Color(127,0,0), 20); // red

 colorWipe(strip.Color(0, 127,0), 20); // green

 colorWipe(strip.Color(0,0,127), 20); // blue

 colorWipe(strip.Color(0,0,0), 20); // black

 break;

 case 3:

 // Color sparkles

ptg16605960

LED Strip Code
85

 dither(strip.Color(0,127,127), 50); // cyan, slow

 dither(strip.Color(0,0,0), 15); // black, fast

 dither(strip.Color(127,0,127), 50); // magenta, slow

 dither(strip.Color(0,0,0), 15); // black, fast

 dither(strip.Color(127,127,0), 50); // yellow, slow

 dither(strip.Color(0,0,0), 15); // black, fast

 break;

 case 4:

 // Back-and-forth lights

 scanner(127,0,0, 30); // red, slow

 scanner(0,0,127, 15); // blue, fast

 break;

 case 5:

 // Wavy ripple effects

 wave(strip.Color(127,0,0), 4, 20); // candy cane

 wave(strip.Color(0,0,100), 2, 40); // icy

 break;

 case 6:

 // make a pretty rainbow cycle!

 rainbowCycle(0); // make it go through the cycle fairly fast

 break;

 case 7:

 rainbowCycle(0);

 break;

 case 8:

 // Color sparkles

 dither(strip.Color(0,127,127), 50); // cyan, slow

 dither(strip.Color(0,0,0), 15); // black, fast

 dither(strip.Color(127,0,127), 50); // magenta, slow

 dither(strip.Color(0,0,0), 15); // black, fast

 dither(strip.Color(127,127,0), 50); // yellow, slow

 dither(strip.Color(0,0,0), 15); // black, fast

 break;

}

}

ptg16605960

CHAPTER 3: How to Solder
86

/* Helper functions */

//Input a value 0 to 384 to get a color value.

//The colours are a transition r - g - b - back to r

uint32_t Wheel(uint16_t WheelPos)

{

 byte r, g, b;

 switch(WheelPos / 128)

 {

 case 0:

r = 127 - WheelPos % 128; // red down

g = WheelPos % 128; // green up

b = 0; // blue off

break;

 case 1:

g = 127 - WheelPos % 128; // green down

b = WheelPos % 128; // blue up

r = 0; // red off

break;

 case 2:

b = 127 - WheelPos % 128; // blue down

r = WheelPos % 128; // red up

g = 0; // green off

break;

 }

 return(strip.Color(r,g,b));

}

// Cycle through the color wheel, equally spaced around the belt

void rainbowCycle(uint8_t wait) {

 uint16_t i, j;

 for (j=0; j < 384 * 5; j++) { // 5 cycles of all 384 colors in the wheel

for (i=0; i < strip.numPixels(); i++) {

strip.setPixelColor(i, Wheel(((i * 384 / strip.numPixels()) + j) % 384));

}

strip.show(); // write all the pixels out

 delay(wait);

 }

}

ptg16605960

LED Strip Code
87

 // Chase one dot down the full strip.

void colorChase(uint32_t c, uint8_t wait) {

 int i;

 // Start by turning all pixels off:

 for(i=0; i<strip.numPixels(); i++) strip.setPixelColor(i, 0);

 // Then display one pixel at a time:

 for(i=0; i<strip.numPixels(); i++) {

 strip.setPixelColor(i, c); // Set new pixel ‘on’

 strip.show(); // Refresh LED states

 strip.setPixelColor(i, 0); // Erase pixel, but don’t refresh!

 delay(wait);

 }

 strip.show(); // Refresh to turn off last pixel

}

// Fill the dots progressively along the strip.

void colorWipe(uint32_t c, uint8_t wait) {

 int i;

 for (i=0; i < strip.numPixels(); i++) {

strip.setPixelColor(i, c);

strip.show();

delay(wait);

 }

}

// An “ordered dither” fills every pixel in a sequence that looks

// sparkly and almost random, but actually follows a specific order.

void dither(uint32_t c, uint8_t wait) {

 // Determine highest bit needed to represent pixel index

 int hiBit = 0;

 int n = strip.numPixels() - 1;

 for(int bit=1; bit < 0x8000; bit <<= 1) {

 if(n & bit) hiBit = bit;

 }

 int bit, reverse;

 for(int i=0; i<(hiBit << 1); i++) {

ptg16605960

CHAPTER 3: How to Solder
88

 // Reverse the bits in i to create ordered dither:

 reverse = 0;

 for(bit=1; bit <= hiBit; bit <<= 1) {

reverse <<= 1;

if(i & bit) reverse |= 1;

 }

 strip.setPixelColor(reverse, c);

 strip.show();

 delay(wait);

 }

 delay(250); // Hold image for 1/4 sec

}

// “Larson scanner” = Cylon/KITT bouncing light effect

void scanner(uint8_t r, uint8_t g, uint8_t b, uint8_t wait) {

 int i, j, pos, dir;

 pos = 0;

 dir = 1;

 for(i=0; i<((strip.numPixels()-1) * 8); i++) {

 // Draw 5 pixels centered on pos. setPixelColor() will clip

 // any pixels off the ends of the strip, no worries there.

 // we’ll make the colors dimmer at the edges for a nice pulse

 // look

 strip.setPixelColor(pos - 2, strip.Color(r/4, g/4, b/4));

 strip.setPixelColor(pos - 1, strip.Color(r/2, g/2, b/2));

 strip.setPixelColor(pos, strip.Color(r, g, b));

 strip.setPixelColor(pos + 1, strip.Color(r/2, g/2, b/2));

 strip.setPixelColor(pos + 2, strip.Color(r/4, g/4, b/4));

 strip.show();

 delay(wait);

 // If we wanted to be sneaky we could erase just the tail end

 // pixel, but it’s much easier just to erase the whole thing

 // and draw a new one next time.

 for(j=-2; j<= 2; j++)

strip.setPixelColor(pos+j, strip.Color(0,0,0));

 // Bounce off ends of strip

 pos += dir;

 if(pos < 0) {

pos = 1;

ptg16605960

LED Strip Code
89

dir = -dir;

 } else if(pos >= strip.numPixels()) {

pos = strip.numPixels() - 2;

dir = -dir;

 }

 }

}

// Sine wave effect

#define PI 3.14159265

void wave(uint32_t c, int cycles, uint8_t wait) {

 float y;

 byte r, g, b, r2, g2, b2;

 // Need to decompose color into its r, g, b elements

 g = (c >> 16) & 0x7f;

 r = (c >> 8) & 0x7f;

 b = c & 0x7f;

 for(int x=0; x<(strip.numPixels()*5); x++)

 {

 for(int i=0; i<strip.numPixels(); i++) {

y = sin(PI * (float)cycles * (float)(x + i) / (float)strip.numPixels());

if(y >= 0.0) {

// Peaks of sine wave are white

y = 1.0 - y; // Translate Y to 0.0 (top) to 1.0 (center)

r2 = 127 - (byte)((float)(127 - r) * y);

g2 = 127 - (byte)((float)(127 - g) * y);

b2 = 127 - (byte)((float)(127 - b) * y);

} else {

// Troughs of sine wave are black

y += 1.0; // Translate Y to 0.0 (bottom) to 1.0 (center)

r2 = (byte)((float)r * y);

g2 = (byte)((float)g * y);

b2 = (byte)((float)b * y);

}

strip.setPixelColor(i, r2, g2, b2);

 }

 strip.show();

 delay(wait);

 }

}

ptg16605960

CHAPTER 3: How to Solder
90

The Next Chapter
You’ve mastered breadboarding and soldering, and now it’s time to kick things up a bit!
Chapter 4, “Setting Up Wireless Connections,” shows you how to create a quick wireless
network. You’ll then use this knowledge to create a simple doorbell for your house.

ptg16605960

4
Setting Up Wireless Connections
This chapter explores the wireless networking tools that enable two or more Arduinos to talk
together. Chief among these is the XBee, an Arduino-friendly wireless module capable of connect-
ing a whole network of microcontrollers. In Figure 4.1, you can see one of my own projects, a LEGO
robot controlled with Wii nunchucks connected to XBee-equipped Arduinos. You can learn how
to build it in my book, Make: Lego and Arduino Projects (ISBN 978-1449321062). After you get up to
speed on the XBee, you will tackle the third project, a wireless doorbell!

FIGURE 4.1 This XBee-equipped bracer enables you to control a robot wirelessly.

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
92

XBee Wireless Modules
XBee modules (see Figure 4.2) are based on ZigBee, which is an industry standard protocol
that creates networks of multiple wireless nodes via serial data transmission, meaning only
 one bit (0 or 1) is sent at a time, making it slow but easy to configure. ZigBee is the default
protocol used in home automation, so learning the platform’s ins and outs could aid you in
creating your own curtain-puller or light-switcher!

FIGURE 4.2 Two Series 1 XBee modules attached to Adafruit breakout boards.

XBee also happens to be the default communication method used by Arduino, enabling
them to work together nicely. However, a wide assortment of XBee flavors are available,
and you must sure to get the right one. Let’s focus on just four of those XBee flavors in this
chapter:

■ XBee
■ XBee Pro
■ XBee Series 1
■ XBee Series 2

XBee Versus XBee Pro
You first need to choose between XBee “regular” and “professional”—the distinction is
purely about radio power. Ordinary XBees feature 1mW (one thousandth of a watt)
power, whereas Pros are rated at 63mW, giving you a much greater range. What kind of
range exactly? It depends on a complicated array of factors, including electromagnetic
interference, antenna type, and physical obstructions.

That said, Digi International, the maker of XBee products, issues range estimates for the
various models. The regular 1mW XBee is rated for 80 feet indoors and 300 feet outdoors,
and the company claims the Pro model is good for 140 feet indoors and an impressive
4,000 feet—almost a mile—outdoors. Of course, for that last number, you would need the

1

2

1

2

1 XBee Controllers

2 Breakout Board

1

2

ptg16605960

XBee Breakout Boards
93

most ideal circumstances, like beaming from one hilltop to another. Any sort of obstruction
will reduce the effective range of your radio.

If you don’t need 4,000 feet, you might be better off skipping the Pro model because it
costs more.

Series 1 Versus Series 2
The second consideration in choosing an XBee is what sort of networking you would like to
configure. Digi International sells what it describes as Series 1 and Series 2 XBees.

■ Series 1—Series 1 offers the simplest networking setup in that you don’t have to set it
up. Basically, every Series 1 module talks to every other Series 1 module within range—a
configuration known as the mesh network. It’s an easy way to get started playing around
with wireless technology.
If you want to direct data to a single module, you have to use software to set an
identifier during both transmission and reception. This sounds intimidating, but it can
be as simple as adding a single digit. Say you want to send data to Node 5; you can add
a 5 to the beginning of your stream of data and the other nodes will ignore it.

■ Series 2—Series 2 is more robust, offering—in addition to the settings of the Series 1—
the ability to

■ Create more intricate networks with nodes being designated as “coordinators,”
able to issue commands.

■ Create “routers” that send and receive data.
■ Create end devices that may only receive.

On the downside, having all these features means that you can’t plug-and-play, because
you must configure the modules before using them, unlike Series 1, which you can use
right out of the box! More technically, the Series 2 use a different wireless protocol that
makes them incompatible with Series 1 modules, so don’t even try!

XBee Breakout Boards
XBee modules are easy to use, but they require a little love before they will fit into a typical
Arduino project because their pin spacing is 2mm instead of Arduino-compatible 0.1". The
solution is a small PCB called a breakout board, a way of creating a tiny circuit that can be
plugged in to an Arduino.

The wimpiest of these is simply a PCB (printed circuit board) equipped with pins with the
right spacing for breadboarding. However, more robust breakout boards, such as Adafruit’s
(P/N 126, previously shown in Figure 4.2), have a voltage regulator and status LEDs to keep
your radio from getting fried.

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
94

Anatomy of the XBee
If you look at an XBee module, shown in Figure 4.3, it looks like a blue plate the size of
a postage stamp, with a number of metal pins sticking out underneath. The top features
an antenna. Adding it to a breakout board makes for more detail, so let’s go through the
XBee’s various features.

FIGURE 4.3 The XBee and its breakout board breadboarded up. Note that the
5V and GND pins are already connected to the proper terminal buses.

1. Pins—You can see th e tops of the XBee’s pins. They control the board, bringing in power
and sending and receiving data from the Arduino. The pins plug into headers on the
breakout board. Note that these pins have the wrong spacing for breadboards.

2. Antenna—You have multiple antenna options depending on the XBee, but I think this
wire antenna is the best for what it does, because it’s tough and can take a modest
amount of abuse without bending.

3. Power LED—This lights when the board powers up.

1
2

3

4

5

6

ptg16605960

Competing Wireless Modules
95

4. Data LED—This flashes to let you know that data is passing through the XBee.

5. Power regulator—These capacitors and the transistor manage the power going into the
XBee. Unfortunately, frying a radio by using too much power is easy to do. The good
news is that the regulator keeps the power flowing at just the right voltage.

6. Breadboard pins—Unlike the pins that connect the XBee to the breakout board, these
pins are spaced correctly for a breadboard. Just as good, they are labeled so you can see
which pin does what!

Competing Wireless Modules
It probably doesn’t surprise you that the XBee isn’t the only party in town. Here are a couple
of cool alternatives that you can purchase for use in a project.

Freakduino Chibi
Created by Tokyo-based hacker Akiba (a.k.a. Chris Wang), the Chibi (see Figure 4.4) does
away with the separate boards for the microcontroller and wireless module—Akiba has
combined them into a single board. The Chibi is Arduino compatible and uses the same
wireless band as the XBee. You can buy it at www.freaklabsstore.com.

FIGURE 4.4 Freaklabs’ Freakduino Chibi is essentially an Arduino with built-in
wireless capability.

http://www.freaklabsstore.com

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
96

JeeLabs JeeNode
A similar concept to the Chibi, the JeeNode consists of an ATmega328p, which is the same
microchip that serves as the mind of the Arduino, along with a built-in wireless module.
JeeNodes are very small and have fewer capabilities than the Chibi, but have many fans due
to the JeeNodes’ small form factor and their ease of use. You can purchase them at http://
jeelabs.com/products/jeenode.

TIP
Just Use Series 1

There is so much more to learn about radios, and you might already be overwhelmed!
I suggest just limiting yourself to the XBee, non-Pro, Series 1. It’s a wonderfully simple
 way to add wireless to your projects without spending too much money or frustrating
yourself by taking on too complicated a radio before you need to.

Project: Wireless LED Activation
Oooh, wireless radios! Working with them sounds kind of intimidating. It’s actually not,
and I’ll prove it. Let’s create a simple network (see Figure 4.5) that lets two Arduinos
communicate. In this mini-project, you’ll create two identical assemblies, each consisting of
an Arduino and XBee, along with a button and a LED. When you press the button on one
assembly, the LED on the other one lights up, and vice versa! You can see how this project
will give you a nice start toward building a wireless doorbell, which is the main project for
this chapter.

http://jeelabs.com/products/jeenode
http://jeelabs.com/products/jeenode

ptg16605960

Project: Wireless LED Activation
97

FIGURE 4.5 Control LEDs with XBee-equipped Arduinos.

PARTS LIST
You’ll be making two assemblies, so you need two of everything!

■ Arduinos (x2)
■ XBees (x2)
■ Breakout boards (x2)
■ Pushbuttons (x2)
■ Breadboards (x2)
■ LEDs (x2)
■ Jumpers

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
98

Follow these steps to assemble the XBee test platform:

1. Solder the breakout boards—Solder up your XBee breakout boards if you haven’t
already. Depending on your kit, this could mean simply soldering in some header pins.
On other kits, however, you must solder in LEDs, capacitors, and so on.

2. Connect the XBees to the breakout boards—Attach the XBees to their respective
breakout boards. This typically involves simply plugging in the XBees’ pins to the
appropriate holes in the breakout board. Just follow the directions that accompany your
kit.

3. Attach to breadboards—Plug the breakout boards and XBees into the breadboards. You
can see where to place it in Figure 4.6.

4. Attach the pushbuttons, LEDs, and jumpers—Attach these items as follows (also
shown in Figure 4.6):

A. GND on the XBee goes to GND on the breadboard. Connect the GND bus of the
breadboard to the GND port of the Arduino.

B. +5V on the XBee goes to 5V on the Arduino.
C. TX on the XBee goes to RX on the Arduino.
D. RX on the XBee goes to TX on the Arduino.
E. Connect a button to pin 8 on the Arduino; the other end connects to the

GND bus.

You should end up with two identical units, and if you upload the Arduino code to both of
them, they should work identically. Even cooler, the way the networks are set up, you could
actually create three or more of these assemblies and they’ll all work the way you would
expect. Press the button on one, and the LEDs on all the others will light up! It’s not super
practical, to be sure, but it shows how easily you can set up an XBee network.

ptg16605960

Wireless LED Code
99

FIGURE 4.6 This diagram shows you how to create these XBee test modules.

Wireless LED Code
Upload the following code to both Arduinos. Remember, both modules are identical, down
to the software. If you can’t remember how to upload sketches to your Arduino, Chapter 5,
“Programming Arduino,” explains how.

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
100

#include <Wire.h>

const int buttonPin = 8;

const int ledPin = 13;

int buttonState = 0;

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin, INPUT_PULLUP);

}

void process_incoming_command(char cmd)

{

 int speed = 0;

 switch (cmd)

 {

 case ‘1’:

 case 1:

 digitalWrite(ledPin, LOW);

 break;

 case ‘0’:

 case 0:

 digitalWrite(ledPin, HIGH);

 break;

 }

}

void loop() {

 if (Serial.available() >= 2)

 {

 char start = Serial.read();

 if (start != ‘*’)

 {

return;

 }

 char cmd = Serial.read();

 process_incoming_command(cmd);

ptg16605960

Project: Bluetooth Doorbell
101

 }

 buttonState = digitalRead(buttonPin);

 if (buttonState == HIGH) {

 Serial.write(‘*’);

 Serial.write(1);

 }

 else {

 Serial.write(‘*’);

 Serial.write(0);

 }

 delay(50); //limit how fast we update

}

Project: Bluetooth Doorbell
Now you can take what you learned about XBees and apply it to a slightly more robust
project: a wireless doorbell. Figure 4.7 shows the doorbell button, and Figure 4.8 shows the
buzzer unit that is tucked away on a shelf inside.

FIGURE 4.7 The doorbell awaits visitors!

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
102

FIGURE 4.8 The buzzer unit sits discreetly on a shelf.

Sure, you might say, they make these already! You can buy a wireless doorbell in any
hardware store. However, this one you make yourself! Even better, as you get more
confident with Arduino, you can modify it to make it uniquely yours. For instance, what if
your Arduino triggers a music player instead of a buzzer to let you know that someone has
pressed the button?

PARTS LIST
Just as in the mini-project earlier in the chapter, you’ll be using two Arduinos, linked
together. However, in this project, one Arduino waits for a button press, while the
other one sets off a buzzer when it detects that the button has been pressed.

■ 2 Arduino Unos
■ 2 XBee wireless modules (Adafruit P/N 128)
■ 2 Adafruit XBee breakout boards (Adafruit P/N 126)
■ 2 mini breadboards (these are really small breadboards the sign of a postage

stamp, Adafruit P/N 65)
■ Button (SparkFun P/N COM-10443)
■ A 330-ohm resistor
■ Buzzer (Jameco P/N 1956776)
■ Jumpers
■ 9v battery clip (Jameco P/N 105794)
■ 9v connector with barrel plug (Adafruit P/N 80)
■ 1/4-inch MDF for enclosure backing and sides
■ 5mm acrylic for enclosure front
■ 1-inch #4-40 bolts
■ Hot glue gun

ptg16605960

Project: Bluetooth Doorbell
103

The Button
The button you use in the button unit, shown in Figure 4.9, is kind of intriguing because it
has six connectors: two sets of positive and negative terminals that close when the button
is pressed—so you could have two circuits, both of which trip when the button is activated.
The last two leads—the white lugs in the photo—are for powering the LED. Be sure to attach
a resistor on the power lead so you don’t fry your LED inadvertently. I use a 330-ohm
resistor in this project.

FIGURE 4.9 The button you use in the project has six connectors.

Instructions for Wiring Up the Doorbell
The project consists of two Arduinos equipped with XBee modules and breakout boards.
One Arduino has a button, and the other has a buzzer to sound out to let you know
someone is at your door. Let’s get started!

Button Unit
Let’s begin with the button unit (see Figure 4.10), which consists of the following
components:

1. LED Terminals

2 LED Button

3. Switch Connectors

(Two Located on

Other Side, Too)

1

2

3

1

1

2

3

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
104

A. 9V battery

B. XBee module

C. Mini breadboard

D. Arduino Uno

E. Button

F. Perfboard

FIGURE 4.10 The button unit before the acrylic is added.

Now, assemble these parts together as shown in Figure 4.11, and you can follow along with
these steps:

A
B

C

D

E

F

A

B

C

D

E

F

ptg16605960

Project: Bluetooth Doorbell
105

FIGURE 4.11 The button unit consists primarily of a button, an Arduino, and the
wireless module.

1. Plug in the XBee and its breakout board to a mini breadboard.

2. Plug the XBee’s 5V to the 5V on the Arduino, its TX into RX, its RX into TX, and its GND
pin to any free GND on the Arduino.

3. Connect one of the button’s leads to pin 8 and the other to GND. (I use the breadboard
to accommodate the GND leads coming from the button.)

4. Solder a 330-ohm resistor and a jumper to the button’s LED’s power terminal, and con-
nect the other end to the 3V3 port of the Arduino. The other terminal of the LED goes
to GND.

Buzzer Unit
Next, connect the components that make up the buzzer unit, seen in Figure 4.12. These
consist of the following:

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
106

A. Arduino Uno

B. Mini breadboard

C. XBee wireless module

D. Buzzer

FIGURE 4.12 The buzzer unit waiting to be closed up. The outer holes are for
wall mounting.

Next, use Figure 4.13 as a guide for connecting the various parts:

1. Plug in the XBee and its breakout board into a mini breadboard.

A

B
C

D

A

B

C

D

ptg16605960

Project: Bluetooth Doorbell
107

FIGURE 4.13 The buzzer unit consists of an Arduino, XBee, and buzzer.

2. Plug in the XBee’s 5V to the 5V on the Arduino, its TX into RX, its RX into TX, and its
GND pin to any free GND on the Arduino.

3. Connect the buzzer’s leads to the breadboard as well, as shown in Figure 4.13. You can
connect them directly to the Arduino if you want—if you go this route, connect the red
wire to pin 8 and the black wire to any free GND.

4. To power the buzzer unit, use an Arduino-compatible wall wart or a 9V battery pack.

Building the Doorbell Enclosures
You next need to build the two enclosures for this project. The outside enclosure (see Figure
4.14) is designed to resist the elements—I hesitate to call it “weatherproof”—whereas the
inside enclosure is designed to look good.

1

2

3

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
108

FIGURE 4.14 The outside enclosure is made out of bent acrylic on a wooden back.

Button Unit Enclosure
The button unit is the module that is on the outside of the door—press the button to make
the buzzer buzz! To make an enclosure, all you need is a box with a hole for the button,
but I’ll show you how you can make one of your own. The one I made consists of a sheet of
acrylic that I bent by heating it up, and then laying the flexible acrylic over a metal pipe to
form a half-circle. I added the acrylic to a wooden back (refer to Figure 4.11) to finish the
enclosure. Here are the steps:

1. Laser-cut the top, bottom, and back out of quarter-inch medium-density fiberboard
(MDF). If you don’t have access to a laser cutter, you can create a box out of pieces
of wood, repurpose another container as an enclosure, or buy a commercial project
enclosure.

2. Laser-cut the front from 5mm acrylic. (If you want the design files I used to output the
wooden backing as well as the acrylic front, you can find them at https://github.com/
n1/Arduino-For-Beginners.)

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

Project: Bluetooth Doorbell
109

3. Glue the top and bottom wood pieces to the back wood piece. You might want to paint
the wood!

4. Attach the completed electronics as shown earlier in Figures 4.10 and 4.12. Use the
#4-40 bolts for the Arduinos and hot glue for the buzzer, battery pack, and mini
breadboards.

If you aren’t using a laser cutter, you’ll need to drill mounting holes in the acrylic. You
might want to mock it up using a sheet of paper first.

5. Bend the acrylic front plate as described in the next section, “Bending Acrylic.”

6. Attach the acrylic plate to the front so that the button can be pressed through the hole
in the plastic.

7. Install the unit outside your door of choice, and eagerly await your first visitor!

Bending Acrylic
For the outside button unit enclosure, you heat-bend acrylic (see Figure 4.15) to form
a casing. This task is easy to learn because you don’t really need anything unusual or
 uncommon.

FIGURE 4.15 Bending acrylic is easy and gives a nice effect!

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
110

Acrylic (also known as Plexiglas) is also easy to heat and re-form. After it gets to the right
temperature—not too hot or cool—the acrylic starts to bow and flex. When it gets a little
hotter, it softens. That’s when you bend it how you want it, and let it cool into an awesome
new shape!

You need three things to get started:

■ The acrylic to be bent—I suggest 1/8 inch, though you might have luck with the thicker
stuff.

■ A form—This is the surface over which the hot acrylic will cool and harden. You want
this close to the actual curve you want the plastic to hold. The easiest form of all is the
edge of a table. I used a rounded form—a pipe—to form the acrylic face seen in Figure
4.7. If you go this route, you’ll need to find a form that matches the curve of the shape
you’re looking for.

■ A source of heat—Heat guns (see Figure 4.16) and propane torches are common tools,
though you can purchase commercial acrylic-heating strips (TAP Plastics has one for
$80, P/N 169). Finally, you could heat up the plastic in an oven. This last technique
is not for the faint of heart and you should definitely monitor the plastic closely so it
doesn’t bubble or scorch.

FIGURE 4.16 Using a heat gun to soften acrylic.

ptg16605960

Project: Bluetooth Doorbell
111

Although you could conceivably use any heat-resistant surface to form your acrylic—or
even build your own out of pieces of wood—in some respects, using the edge of the table
is an easy choice because it bends the plastic perfectly, using gravity and the table’s surface
to make a fairly perfect 90-degree bend. To bend plastic using the “edge of the table”
technique, follow these steps:

1. As shown in Figure 4.17, position the acrylic so the edge of the table is right where you
want the plastic to bend. You’ll definitely want to weigh it down so it doesn’t move.

FIGURE 4.17 As the acrylic heats up, it starts to bend.

When it gets hot enough, gravity starts pulling the soft acrylic down, as shown in
Figure 4.17.

2. Position the acrylic how you want it to look—and work quickly because after it cools,
it becomes just as brittle as it was before. Don’t try to re-bend it without applying
more heat!

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
112

Buzzer Unit Enclosure
The buzzer unit doesn’t use plastic, because who wants plastic in their home? Instead, you
can use a simple arrangement of wooden panels separated by bolts. I laser-cut two pieces of
wood, one bigger than the other. (I ended up hand-drilling four additional holes, as shown
in Figure 4.18, after changing my mind on how to proceed.)

FIGURE 4.18 I used laser-cut wood for the buzzer unit’s enclosure.

To connect the two pieces I used brass bolts, #10-24 and 2.5" long, with brass washers and
nuts. This enclosure is considerably easier to do than the other enclosure and it looks great!

Wireless Doorbell Code
Upload the following code to your Arduinos. If you’re having difficulty figuring out how to
upload your sketches, see Chapter 5 to learn how. As before, you can download the code
from https://github.com/n1/Arduino-For-Beginners.

https://github.com/n1/Arduino-For-Beginners

ptg16605960

Wireless Doorbell Code
113

Button Unit Code
The Button Unit sketch consists of a loop that waits for the button to be pressed, then
 transmits a wireless alert.

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

#include <Wire.h>

const int buttonPin = 8;

int buttonState = 0;

void setup()

{

 Serial.begin(9600);

 pinMode(buttonPin, INPUT_PULLUP);

}

void loop() {

 if (Serial.available() >= 2)

 {

 char start = Serial.read();

 if (start != ‘*’)

 {

return;

 }

 char cmd = Serial.read();

 }

 buttonState = digitalRead(buttonPin);

 if (buttonState == HIGH) {

 Serial.write(‘*’);

 Serial.write(1);

 }

 else {

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 4: Setting Up Wireless Connections
114

 Serial.write(‘*’);

 Serial.write(0);

 }

 delay(50); //limit how fast we update

}

Buzzer Unit Code
The Buzzer Unit code is similarly plain. The loop monitors serial traffic, then sounds the
buzzer when it detects the command from the Button Unit.

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

#include <Wire.h>

const int buzzerPin = 13;

void setup()

{

 Serial.begin(9600);

 pinMode(buzzerPin, OUTPUT);

}

void process_incoming_command(char cmd)

{

 int speed = 0;

 switch (cmd)

 {

case 1:

 digitalWrite(buzzerPin, LOW);

 break;

case 0:

 digitalWrite(buzzerPin, HIGH);

 break;

 }

}

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

The Next Chapter
115

void loop() {

 if (Serial.available() >= 2)

 {

 char start = Serial.read();

 if (start != ‘*’)

 {

return;

 }

 char cmd = Serial.read();

 process_incoming_command(cmd);

 }

 delay(50); //limit how fast we update

}

The Next Chapter
So far we’ve been talking the hardware angle, but now it’s time to switch things up! You
get to delve into Arduino code in Chapter 5 and learn a bunch of programming techniques
as well as the specific formatting you’ll need to successfully write your very own Arduino
program.

ptg16605960

This page intentionally left blank

ptg16605960

5
Programming Arduino
So far you’ve gotten a taste of programming, if only by uploading code to your Arduino board,
pictured in Figure 5.1. In this chapter, you explore main areas of programming and learn techniques
to help you master Arduino programming on your own.

FIGURE 5.1 The Arduino programming environment enables you to control the Arduino.

ptg16605960

CHAPTER 5: Programming Arduino
118

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

The Arduino Development Environment
The software used to program Arduinos (confusingly called Arduino, too!) is called an
integrated development environment or IDE. Most of the time when a person creates a
program, it is within the framework of this environment. In layperson’s terms, you need a
program running—the Arduino IDE—to successfully send code to your board. Let’s go over
this environment and learn about its details.

Programming Window
Broadly speaking, the IDE consists of a programming window and a set of menus. Figure
5.2 shows the Arduino IDE environment. Follow along with the callouts to see what each
option does.

FIGURE 5.2 The Arduino environment’s interface gives users a lot of options.

18 29
3

10 4

11

5

12

6

13

7

14 15

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

The Arduino Development Environment
119

1. Filename—The filename of the sketch (the Arduino term for program) you’re looking
at—in this case, “Blink.” New filenames default to the month and day.

2. Version number—Confused as to which version of Arduino you’re running? Look at
the number to see what version number is loaded onto your computer. As always, be
sure to keep your Arduino environment up to date, because previous versions might
have bugs that can hinder you.

3. Serial monitor—Activates the serial monitor feature of the environment. I’ll explain all
about the serial monitor and how it could benefit you later in this chapter.

4. Tab selector—When you have multiple sketches open, you can use this button to navi-
gate to the sketch you want to use.

5. Verify—Click here if you want to check the syntax of your code without either saving or
uploading it to your Arduino.

6. Upload—Your best friend! This button verifies your code, compiles it into the pro-
gramming language the Arduino understands, and sends it to the Arduino.

7. New—Create a new sketch. Clicking this button won’t affect any other sketches you
might have open. The new filename defaults to the current month and day.

8. Open—Opens up your “Arduino sketchbook,” which is your default folder for
sketches. From there, you can open files as you normally would.

9. Save—Save the sketch! Note that Arduino sketches must be saved within a folder, so if
no folder exists for a new file, the environment will create one.

 10 Tab—Each window has its own filename, which duplicates from the top of the win-
dow. Additionally, sometimes sketches consist of more than one tab. Load the
example sketch toneMelody (see below for how to find example sketches) and you will
see how this works. The second example file, pitches.h, is a source file that the main
sketch needs to operate.

 11 Workspace—This part of the window shows the sketch. If you haven’t loaded a sketch,
the workspace area is blank. This is your main workspace when creating a sketch.

 12 Status bar—This blue bar displays status messages from the environment, usually
regarding uploads. It will also display a progress indicator letting you know where you
are in the upload process.

 13 Status window—This black pane displays error messages incurred during upload. The
Arduino software verifies all code being sent and won’t upload if there’s an error. If
a problem is found, the error message attempts to display what’s wrong, though it’s
often cryptic! As you can see, no error message appears in Figure 5.2.

 14 Line number—Each line of code is numbered, and this indicator helps you navigate by
constantly indicating which line the cursor is on.

 15 Board and port number—A bunch of different Arduino boards exist, notwithstanding
the fact that I exclusively use the Uno in this book. Select the board you’re uploading
to unless you like getting cool error messages! The second piece of information here is
the port designator. This is an arcane technical subject, and you don’t have to worry
about it because the software will suggest one for you.

1

8

2

9

3

10

4

11

5

12

6

13

7

14

15

ptg16605960

CHAPTER 5: Programming Arduino
120

Menus
Now let’s go over the various menu options, some of which are fairly typical (Open File),
whereas others duplicate some of the options from the programming window. Still, they
contain a lot of important stuff! Note that you will encounter minor differences in the
menus based on whether you’re running Mac OS X, Linux, or Windows. Just explore the
menus and find out what each option does.

Figure 5.3 shows you what you get with the Mac OS X version of the File menu. If you use
Linux or Windows, don’t worry; the menus are pretty much the same. Let’s go over what
you get.

FIGURE 5.3 The File menu helps manage your Arduino sketches.

File Menu
The typical options found in File menus in most any application are New, Open, Close,
Save, and Save As, and they work how you would expect. Following are explanations for the
other commands found in the File menu:

■ Sketchbook opens a popup window of your sketchbook, giving you the option to
launch one of your existing sketches—basically, the same option as Open icon in the
programming window.

■ Examples introduces you to example sketches, code that you’re allowed to freely use
and adapt to make your own programs. I discuss example text later in the chapter in the
section, “Learning from Example Code.”

■ Upload sends the sketch in the programming window to the Arduino board, assuming
they’re connected!

■ Upload Using Programmer is an advanced option. Don’t mess around with this,
because you could potentially wipe the Arduino’s firmware!

Edit Menu
Clicking the Edit menu shows the list of options in Figure 5.4. As with the File menu, you
will see a number of typical options that hardly require an explanation, such as Cut, Copy,
Paste, Select All, as well as the various Find commands.

ptg16605960

The Arduino Development Environment
121

FIGURE 5.4 The Edit menu gives you the usual Copy and Paste, along with some
fun extras!

The Edit menu has a number of intriguing options:

■ Copy for Forum enables you to copy Arduino sketches with formatting. In the case of
Copy for Forum, the text is formatted to look good when pasted into Arduino’s forums.

■ Copy as HTML copies a sketch and adds the appropriate tags so the sketch looks great
on your web page. It’s pretty slick!

■ Comment/Uncomment changes a line or block of text so that it’s commented, which
means that Arduino doesn’t recognize the text as actual code. I talk more about
commenting later in this chapter, in the section “The Blink Sketch.”

■ Increase Indent and Decrease Indent, well, change the indentation of code. If you look
at an Arduino sketch, you can see it uses indents to help organize the code for easy
viewing.

Sketch Menu
The Sketch menu (see Figure 5.5) offers a couple of options for managing sketches—
remember, sketches are what you call Arduino programs. Verify/Compile verifies the code
and compiles it. Because the environment won’t compile bad code, this is a great way to
ensure that your sketch is very likely to work! I say “very likely” because even though the
code compiles, it doesn’t mean that it works the way you want it to.

FIGURE 5.5 The Sketch menu offers options for connecting libraries and support
files to your sketch.

ptg16605960

CHAPTER 5: Programming Arduino
122

■ Show Sketch Folder opens the folder for the current sketch. As I mentioned, the
environment wants every sketch to have its own folder.

■ Import Library adds the reference code for a library to your sketch. A library works kind
of like a source file in that it’s a file with additional code left off of the main sketch for
simplicity’s sake. We’ll explore libraries later, in the section, “Libraries.”

Tools Menu
Tools are just that, utilities for helping you manage your programming experience. Figure
5.6 shows the available options on the Tools menu.

■ Auto Format arranges each line of the sketch so that it looks a certain way. As you
open the example sketches, you can see that they’re formatted for easy viewing. When
you create your own programs, the lines you type often will auto-format, but not
always!

FIGURE 5.6 The Tools menu has a bunch of options for making your sketches
work better.

■ Archive Sketch creates a compressed .ZIP file with your sketch in it.
■ Fix Encoding & Reload fixes typographical problems with text—for instance, in some

cases, a smart quote or special accent character displays as a code instead of a single
character. This function helps fix those translation problems.

■ Serial Monitor, like the icon mentioned earlier in this chapter, under “Programming
Window,” activates the environment’s serial monitor tool. This tool is extremely helpful
and we delve into it in the section called “Debugging with the Serial Monitor.”

NOTE
Programmer Tool Not Covered Here

The Programmer tool is an advanced topic that falls outside the bounds of this book.
However, you can learn more about this advanced topic in Sams Teach Yourself
Arduino Programming in 24 Hours, by Rich Blum, slated to publish in spring 2014.

ptg16605960

The Arduino Development Environment
123

■ Board lets you choose which Arduino board you use. Throughout this book only
Arduino Unos are used, but there are many varieties of Arduino, and you’ll have to
select the right one to successfully upload your sketch. If you forget and select the wrong
board, the upload will fail with an error message.

■ Serial Port gives you the option of choosing which serial port you would like to use to
upload your sketch. This is fairly cryptic business, and chances are you won’t need to
tinker with this setting unless you are an advanced user.

■ Burn Bootloader is the tool that formats the Arduino’s microcontroller chip. Again, this
is an advanced topic that we don’t have space for.

Help Menu
Arduino’s Help menu (see Figure 5.7) consists of a series of documents stored on the
computer with the Arduino software. They’re the typical top-level help documents, but
they’re well worth a look. In the section “Debugging with the Serial Monitor,” you learn
various ways to troubleshoot your sketches, but reading these files is a start.

FIGURE 5.7 Only a handful of documents are in the Help menu, but they’re all
extremely useful!

If you want to learn more about the Arduino IDE, check out Arduino’s page on the subject
at http://arduino.cc/en/Guide/Environment. Now that you’ve been introduced to the menu
system, let’s look at a sketch!

http://arduino.cc/en/Guide/Environment

ptg16605960

CHAPTER 5: Programming Arduino
124

UPLOADING SKETCHES TO YOUR
ARDUINO
What if you don’t need all this info, and just want to learn how to upload your sketch
(program) to the Arduino? This sidebar is for you. Here’s how it works:

1. Make sure you have the latest version of the Arduino software.

2. Connect an Arduino to your computer via a USB cable. If you need a cable, Adafruit
has a nice short one, P/N 900. Sometimes you get a popup window announcing
that it has detected the Arduino; you can dismiss this.

3. Check to make sure you have selected the correct Arduino from the Tools >
Board menu. You can read more about this menu from the Arduino Development
Environment section this chapter.

4. Pull up your sketch in the Arduino software. Click Upload to send it to the board.
You’ll see the LEDs marked TX and RX flashing crazily as the code uploads. If no
error messages result, the code should be on the Arduino and will run automati-
cally.

5. If there is an error in your sketch, it won’t upload. If you want to test out your
connection with trusted code, send an example sketch from File > Examples. If it
doesn’t work, chances are you need to check your settings and connections.

The Blink Sketch
One of the fun traditions of computer programming is that usually, the first program you
create prints the words “Hello, world!” This is the electronic equivalent of making an LED
flash—and that’s what the Blink sketch does.

Let’s delve into the code. First, however, make sure you have the latest version of the
Arduino software. Simply launch the application and look at the top of the programming
window (callout 2 on Figure 5.2) to see the version number. Next, go to the Arduino
website at arduino.cc and click on Download. It’ll tell you the current release number there.

After you’re sure you have the latest version, launching it is easy: Just choose File >
Examples > 01.Basics > Blink. The code appears in a window and you can edit it all you
want, and then save it as a new filename. (You can’t save over the Blink example; it’s
read-only.)

So, let’s look at the code step by step:

ptg16605960

The Blink Sketch
125

NOTE
You Already Have This Code

I have not included this code sample for download from the book’s website because
the code for the Blink sketch is included with the Arduino IDE.

/*

 Blink

 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.

 */

As you can see, the first part of the Blink sketch is some information with a forward slash
and asterisk and ends with them reversed. This is how you mark up text so that the Arduino
ignores it. Generally, programmers insert this kind of text into their code to remind them
what the code was designed to do, why they wrote it. Sometimes, it’s also included as a
teaching aid to other programmers.

Wouldn’t it be funny if the Arduino mistook a note you left in the code as an instruction?
Actually, no it wouldn’t! It would be a headache for you to figure out what you did wrong.
Therefore, if you want to leave a block of information in your code, use these tags.

// Pin 13 has an LED connected on most Arduino boards.

// give it a name:

int led = 13;

This next block of code has three interesting things going on. First, look at the double-slash
preceding two of the lines. This is another way of writing a comment. In this case, the entire
line following the double-slash is ignored by the Arduino, letting you leave important notes
for yourself or other people, such as what Pin 13 is for!

The second thing to notice about the block of code is the third line. It’s declaring a variable.
INT refers to an integer, another way of saying a number. For reasons too complicated to get
into here, the number must fall within a range of –32,768 to 32,767. If it doesn’t, you have
to use different syntax to declare your variable.

The word led is the actual variable name. As you might recall, the program flashes an
LED on Pin 13. But for the Arduino to know this, you have to declare that Pin 13 is the
one to flash. Declaring this takes two steps. The first step, shown in this block, is to
create a variable called led with a value of 13. If you want to learn more about declaring
variables, the Arduino website has a nice tutorial at http://arduino.cc/en/Reference/
VariableDeclaration.

http://arduino.cc/en/Reference/VariableDeclaration
http://arduino.cc/en/Reference/VariableDeclaration

ptg16605960

CHAPTER 5: Programming Arduino
126

The third item of interest is the semicolon. Typically, every line of code ends in a semicolon,
and that’s how the Arduino knows to move on to the next line. If you miss one, an error
message results and you won’t be able to upload your code.

// the setup routine runs once when you press reset:

void setup() {

 // initialize the digital pin as an output.

 pinMode(led, OUTPUT);

}

This next block begins with an intriguing command: void setup. This is actually two
commands in one. Void is a keyword that tells the Arduino that the information in this
block is self-contained and doesn’t send any information elsewhere in the larger program—
this is not really an issue in a small program like Blink.

As the comment references, the setup block runs only once when the Arduino powers up or
if the reset button is pressed, making it ideal for setting variables and other one-time-only
tasks.

Next is a curly brace, which is a bracket that looks like {, as well as its mate, }, which
appears at the end of the block of code. These are parts of the void setup command. Any
functions within the braces are triggered at the same time as the main command.

In the second half of the variable declaration, the function pinMode sets an individual
Arduino pin to either send data (output) or accept data (input). In this case, pinMode is
telling the Arduino that pin led (which was previously set to Pin 13) is set to output. This
means that the Arduino will trigger Pin 13 as instructed by the program, without attempting
to get a reading from a hypothetical sensor plugged into the pin.

The final element of this block is the closing curly brace. Every time you use curly braces,
they must have both an opening and a closing brace. If you don’t have your braces
“balanced” as this is known, your program will fail.

// the loop routine runs over and over again forever:

void loop() {

 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

The final piece of the Blink code is the loop. Unlike setup, which runs only once, a loop runs
repeatedly until the Arduino shuts down. This is typically where the functional part of the
program resides.

ptg16605960

Learning from Example Code
127

The loop contains the command to activate the LED and deactivate it. As you can see from
the comments, the digitalWrite function controls this task. Reading data from a pin or
writing to it is controlled by this command and its cousins, digitalRead, analogRead, and
analogWrite. As mentioned, any pin can be set to input and output. Additionally, a pin
must be designated as either digital or analog. Chapter 6, “Sensing the World,” explores
what this means precisely, but suffice it to say that in this code, you control an LED with a
digitalWrite command.

The keywords HIGH and LOW in the Arduino world refer to delivering voltage to the pins.
Obviously, HIGH is on and LOW is off. This loop turns on the LED on Pin 13, and then waits
one second—the delay(1000); command tells the Arduino to wait for 1,000 milliseconds—
and then turns off the LED for another second, and then starts the loop again.

So you see, even in arguably the simplest program out there, you can still learn a lot of
interesting stuff!

Learning from Example Code
You can find tons of example sketches by choosing File > Examples in the Arduino
software’s menu system (see Figure 5.8). Many of the examples cover basic stuff, but many
of them serve as useful tutorials on advanced topics. This highlights the value of example
code—not so much as a readymade solution, but more of a reference for learning the syntax
to adapt for your own uses. For instance, choose File > Examples > Digital > Button. This
sketch shows you how to light up an LED by pressing a button.

FIGURE 5.8 Need help learning how to program sketches? Look at Arduino’s
example code!

Okay, so you’ve opened up the Button sketch—now what? Let’s play around with it.

ptg16605960

CHAPTER 5: Programming Arduino
128

Adapt the Code
The first step to learning how to code is to open a program that you know works, and then
begin changing the elements one at a time to make the code conform to the needs of your
project.

For example, let’s change the pin numbers. Often, you can swap which jumper goes where.
In the Button example, the button is on pin 2 and the LED on pin 13. What happens if
you move the button to another pin? Let’s change it to pin 10. On line 29 of the code, you
see this:

const int buttonPin = 2;

Change the 2 to a 10 and upload the sketch. Voilà! You’re finished, right? Give it a try.

NOTE
Make Sure You’re Wired

Of course, to properly test the sketch, you’ll have to wire up the board as instructed
in the sketch.

When you test it out, you’ll discover that it doesn’t work. What gives? It turns out that pin 2
was important. It’s an interrupt pin, which has the ability to break into loop. As you might
have noticed in the sketch, the loop is perpetually running, waiting to be told to turn on the
LED. Pin 10 isn’t an interrupt pin, so it can’t break the loop. I talk more about this in the
later section, “Interrupts.”

Okay, that didn’t work. How about swapping the LED to pin 12? Let’s do that, but first
change buttonPin back to 2. Change the pin reference in the following line of code to 12:

const int ledPin = 13;

Hooray! It worked, and you learned something!

Finding Example Code
Yes, the Arduino software comes with some example sketches, but more is out there to be
found! Usually, when someone introduces an Arduino-compatible product—a shield, for
instance—they courteously provide an actual sketch that they know works. This way, you can
test out your board while learning about the syntax used to control it.

The most obvious way to find the example code for a specific product is to look up the
product page on the seller’s or manufacturer’s website. Let’s take the LoL (Lots of LEDs)
Shield, which creates a 9×14 grid of LEDs that can be turned on and off individually,
allowing for scrolling text and animations. Adafruit sells it (P/N 493) but doesn’t
manufacture it. Clicking on the Tutorials tab on its store website provides you with links to

ptg16605960

Learning from Example Code
129

two pages on the creator’s website. The first one shows you how to build the kit, and the
other one provides example code to show you how to use it (see Figure 5.9).

FIGURE 5.9 You can usually find example code on the website where you
bought it.

However, what do you do if you are tackling your own project rather than buying someone
else’s kit? The following suggestions might help you find the code you need to get started.

Arduino Playground
If you can’t find any example text, your next destination in hunting for code should be the
Playground (http://playground.arduino.cc/), the Arduino platform’s technical home (see
Figure 5.10). It’s packed with suggestions, tutorials, and code for nearly any situation you
might encounter.

http://playground.arduino.cc/

ptg16605960

CHAPTER 5: Programming Arduino
130

FIGURE 5.10 The Arduino Playground is where Arduino coders go to share their
ideas.

That said, you should take the name “playground” to heart when considering looking for
resources on the site. It’s not meant to be a clearinghouse for information as much as, well,
a playground. Because the resource is intended for everyone playing around with Arduinos,
it has a lot of stuff you probably wouldn’t need—bug fixes for the hardware, a guide to
making your own circuit boards, and projects involving obscure parts you don’t own. If you
go there simply hoping to learn more about Arduinos, you won’t be disappointed! On the
other hand, if you’re looking for something specific that is guaranteed to work, you might
not find it.

If a beginner does want to get a sense of the materials found in the Playground, the best
place to start might be the section marked “Manuals and Curriculum.” It consists of
numerous resources that can be downloaded to read offline, as well as links to third-party,
beginner-level tutorials.

Libraries
Another source for example code are libraries, which are files of code used to do
background work in sketches while keeping the actual sketch as neat and clean as possible.
Libraries often include example sketches showing how to use the library. Want to learn
more about how servo motors (for example) work? Download the Servo library (http://
playground.arduino.cc/ComponentLib/servo) and install it to take advantage of the two
sketches that come with it.

http://playground.arduino.cc/ComponentLib/servo
http://playground.arduino.cc/ComponentLib/servo

ptg16605960

Learning from Example Code
131

To learn more about libraries, including how to install them, see the section “All About
Libraries,” later in this chapter.

Sharing Example Code
The Arduino phenomenon is open source (see the nearby sidebar), which means that it
subscribes to a philosophy where everything should be shared. For example, if you wanted
to etch your own Arduino Uno circuit board and solder in all the components, you could
totally do that—and some people do. The flip side of this sharing is that if you develop an
open source project, you should tell people how you did it so they can learn from you.

It doesn’t mean you’re obligated to share, but it’s the courteous thing to do if you used
open source resources to create the project.

You have a couple of options for sharing code:

■ Arduino Playground—Host your code on your own site, and then add a link to the
Playground, which is a publically editable wiki, like Wikipedia. By hosting it on your
own site, you can be sure that it won’t simply vanish off the Playground. (It is publically
editable, after all!) It also sends traffic to your site, enabling you to show off your cool
projects!

■ Code.Google.com or GitHub.com—These services offer repositories for storing and dis-
tributing code, so you don’t need to host on your own site. Beyond that, the services
offer some intriguing options, such as the ability for others to “fork” the project—that is,
to spin off their own version of the project and take it to a different conclusion than you
might have.

If you share code, feel free to include a comment like so:

// Code written by John Baichtal / nerdage.net

// If you reuse this code, please give attribution!

Furthermore, if you adapted someone else’s code, you should include a reference in
comments as well, giving credit where it’s due!

WHAT IS OPEN SOURCE?
Open-source hardware (see Figure 5.11) and software are philosophies that espouse
the total sharing of source code, schematics, designs, and so on. Let’s pretend you’re
selling a robot kit. People can buy the kit from your web store, or they can simply
download the files and build the project without sending you any money. That’s right:
You provide free downloads of everything a person needs to build the robot, including
the Arduino code, the PCB schematics, and even the laser-cutter vectors for the
robot’s chassis.

ptg16605960

CHAPTER 5: Programming Arduino
132

FIGURE 5.11 Look for the open-source hardware logo. It looks kind of like a
gear and has OSHW next to it.

So, one might ask, how is this a viable business practice? Why would someone
buy your kit if they can download it for free? It turns out that it’s considerably more
expensive and labor-intensive to create one copy of a project than it is simply to buy
a kit.

You would need to create the PCB, which involves either sending it to a service or
etching it yourself. You would have to buy all the electronic components individually—
kitmakers buy in bulk at a discount and pass their savings on to the customer. Finally,
getting access to a laser to cut the chassis could be problematic or expensive—or
both! Kitmakers really don’t have anything to fear from individuals making their own.
People who etch their own boards are unlikely to buy a kit anyway.

Open source hardware sellers do, however, have reason to fear certain shady
electronics firms who take open source hardware (such as Arduinos) and have them
manufactured at sweatshops and then sold at a discount as if they were the real
thing. That said, you could certainly manufacture your own version of an open source
project and then sell it—but you should make an effort to improve upon or customize
it. No cloning!

Here are the generally agreed-upon rules of open source hardware:

 ■ Release the source—This might seem obvious, but sometimes companies want
the benefits of open source without actually giving it out. Do the right thing, and
release the source even if it’s not done.

ptg16605960

More Functions and Syntax
133

 ■ Give credit where it’s due—If you used someone else’s code to create your own
sketch, mention it in comments. Really, try to mention anyone whose open source
project contributed to yours.

 ■ If you’re creating a project based on open source designs, make it open
source—Sharing in the generosity of the Arduino community without giving back is
uncool.

If you still have your doubts about the commercial viability of open source hardware,
consider two companies whose products I mention a lot in this book: Adafruit
 Industries and SparkFun Electronics. They’re both million-dollar companies that deal
exclusively in open source hardware.

To learn more about open source hardware, visit OSHWA, the Open Source Hardware
Association at www.oshwa.org/.

More Functions and Syntax
Let’s cover some of the functions and syntax you’re likely to encounter while programming
Arduino, besides those we’ve already covered. This section explores these only briefly, but I
provide links to web pages where you can learn more.

Arithmetic
Arduinos are capable of handling math, and I’m not just talking about plus and minus. The
math.h library, which manages the math functions built into the Arduino’s microcontroller
chip, is included with your Arduino environment and doesn’t need to be downloaded. It can
do all sorts of higher math, but here is some basic arithmetic:

z = x + y;

z = x - y;

z = x * y;

z = x / y;

If you need to do some higher math such as trigonometry, you can learn more about the
math.h library on the Arduino website at www.arduino.cc/en/Math/H.

Arrays
Arrays are a way of managing a large amount of information. You can always tell an array
function because it has brackets instead of parentheses, like this:

int myArray[10]={9,3,2,4,3,2,7,8,9,11};

http://www.oshwa.org/
http://www.arduino.cc/en/Math/H

ptg16605960

CHAPTER 5: Programming Arduino
134

The number in the brackets is the number of items in the array, and the items in the curly
braces are the actual array. Each item is numbered, starting with 0—so the first item is
myArray[0] and the eighth item is myArray[7].

To learn more about arrays, visit http://arduino.cc/en/Tutorial/Array.

Comparison Operators
Greater than, less than, equal to: These are comparison operators. You represent them in
Arduino in a typical manner:

== (equal to)

!= (not equal to)

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than or equal to)

For
The For function repeats a step for a certain number of times, and then stops. For example,
if you want to flash an LED 10 times, a For function is what you want, like so:

int led = 13;

void setup() {

 pinMode(led, OUTPUT);

 for (int item=0; item < 10; item++){

digitalWrite(led, HIGH);

delay(1000);

 Serial.print(item);

digitalWrite(led, LOW);

delay(1000);

 if (item==9){

break;

}

 }

}

void loop() {

}

http://arduino.cc/en/Tutorial/Array

ptg16605960

More Functions and Syntax
135

So, what’s going on with that code? First of all, note that the For function is inside void
setup, not void loop. This signifies that the For loop will run only once. If you put it in void
loop, it will cycle from 0 through 9 infinitely.

Next, the integer item is examined by the loop. It starts at 0, and every time it loops, it
increases by 1—that’s the item++ reference. When the number reaches 9, the For loop breaks
and the sketch moves on to void loop, which is currently empty.

To learn more about For loops, check out the Arduino tutorial at http://arduino.cc/en/
Tutorial/ForLoop.

Include
The include reference indicates that another file, usually a library, will be included when the
sketch uploads. For example, if you want to run a stepper motor using the stepper.h library,
enter the following reference at the beginning of your sketch:

#include <Stepper.h>

See http://arduino.cc/en/Reference/Include for more information.

Increment/Decrement
An increment or decrement increases or decreases (respectively) the target number by one.
You can see this in the For example earlier in this section. Do you remember where it said
item++? The double plus increases the integer “item” by one. To decrease the integer by one,
you would write item--. To see more about increments and decrements, see the following
web page: http://arduino.cc/en/Reference/Increment.

Interrupts
What do you do if you want to break out or change the void loop part of the sketch? For
example, look at the following modified Blink sketch. I changed it so you have to flick a
switch for it to work.

int led = 13;

void setup() {

 pinMode(led, OUTPUT);

}

void loop() {

 int switch1 = digitalRead(2);

 if (switch1 == HIGH) {

 digitalWrite(led, HIGH);

 delay(1000);

 digitalWrite(led, LOW);

http://arduino.cc/en/Tutorial/ForLoop
http://arduino.cc/en/Tutorial/ForLoop
http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Reference/Increment

ptg16605960

CHAPTER 5: Programming Arduino
136

 delay(1000);

}

}

The key ingredient here is that switch1 is connected to pin 2 on the Arduino. Two interrupt
pins are on the Arduino Uno, digital pins 2 and 3. If you want to modify or stop a loop, you
must use those pins.

If/Else
This function enables you to set up conditions that, if met, will trigger an action and, if not
met, will trigger a different action. You can see the if part in the preceding sketch, where
 pressing a button enables an LED to blink on and off. But where does the else fit in? The
else event is triggered if the if statement is false. For example, if you had two LEDs in
the preceding sketch, you could add an else to turn on a second LED if the switch is not
thrown, like so:

switch1 == HIGH) {

 digitalWrite(led1, HIGH);

}

else

{

 digitalWrite(led2, HIGH);

}

To learn more about if/else functions, check out http://arduino.cc/en/Reference/else.

Mapping
The mapping function remaps a number from one range to another. For example, if you get
a reading of 0 through 1023 on an analog sensor, you could remap it so it instead returns a
reading of 5 through 23. Here is the syntax:

mySensor = map(mySensor, 0, 1023, 5, 23);

You get it! See http://arduino.cc/en/Reference/map for more information.

Random
If you want to generate a pseudo-random number, use this simple function:

randomNumber = random(min, max);

The min and max refer to the minimum and maximum values possible. So, random(5,10);
would return a pseudo-random number between 5 and 10. But wait, what is a pseudo-
random number? It turns out that computers, including Arduinos, are so logical and orderly
that they simply cannot create a random number. Instead, they employ such tricks as

http://arduino.cc/en/Reference/else
http://arduino.cc/en/Reference/map

ptg16605960

Debugging Using the Serial Monitor
137

counting the number of milliseconds since the device was turned on. Although this is not
truly a random number, it’s close enough for most of us.

Switch/Case
Another use of the if statement is to switch between a number of options depending on
the valuable of the variable. Suppose myVariable can be either A, B, or C. You could set it
to trigger an action depending on the result. In this example, the Arduino prints the name
of a fruit:

switch (myVariable) {

 case A:

Serial.print(“Apple”);

break;

 case B:

Serial.print(“Banana”);

break;

 case C:

Serial.print(“Cherry”);

break;

}

To learn more, see the following web page: http://arduino.cc/en/Reference/SwitchCase.

While
The while function creates a loop that runs indefinitely until the conditions are met. In the
following code snippet, the while loop runs until a button is pressed 100 times:

buttonPress = 0;

while(buttonPress < 100){

 buttonpress++;

}

There’s a great While tutorial on the Arduino site: http://arduino.cc/en/Tutorial/WhileLoop.

Debugging Using the Serial Monitor
The easiest way to debug a sketch that successfully uploads to the Arduino but nevertheless
doesn’t work correctly is to observe it in the serial monitor. The serial monitor is a window
that displays the serial data traffic going to and from the Arduino. The way it works is that
while connected to the computer via the USB cable, the Arduino environment receives info
from the Arduino as directed by the sketch, and you can send data back to the Arduino the
same way.

http://arduino.cc/en/Reference/SwitchCase
http://arduino.cc/en/Tutorial/WhileLoop

ptg16605960

CHAPTER 5: Programming Arduino
138

Let’s go over the features of the serial monitor, shown in Figure 5.12.

FIGURE 5.12 The serial monitor displays data from an Arduino running the
switchCase example sketch.

 1. The sketch window—The serial monitor needs a sketch window open to launch, but it
doesn’t have to be the actual sketch you’re interacting with.

 2. Port number—This is not something you’re likely to worry about or have to tinker with.

 3. Text entry field—Do you want to send text to your Arduino via the serial monitor? Just
type in your text and click Send. Note that the sketch must have the correct functions
in place to do anything with this text!

4. Display area—The text from the serial monitor displays here.

 5. Autoscroll—This defaults to “checked” and automatically scrolls the page to display
the latest lines of information from the Arduino. Unchecking this means that you’ll
have to use the window’s scrollbars to navigate down to the end of the page to see
the new lines.

 6. Line ending—This pulldown menu gives you options for terminating lines of text. It
defaults to “no line ending.”

 7. Baud rate—This is the speed of communication between the computer and the
Arduino. You set the speed in the serial monitor using this drop-down menu. You set
the speed in the Arduino using code, as described next.

1

2

3

4

5 6
7

1

2

3

4

5

6

7

ptg16605960

All About Libraries
139

More intriguingly, you can use these notes to tell where a bug is in your sketch. One way
to do this is to sprinkle your code with functions that send text via serial. Consider the
AnalogReadSerial sketch, one of the examples included with the Arduino software. First,
look at the function within void setup():

void setup() {

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

}

Serial.begin() turns on serial communication between the computer and Arduino, and
the number refers to the number of bits per second. The number 9600 is a pretty common
standard but you don’t have to pick a particular speed—just make sure to match the speed
in your serial monitor. Next, look at the loop:

void loop() {

 // read the input on analog pin 0:

 int sensorValue = analogRead(A0);

 // print out the value you read:

 Serial.println(sensorValue);

 delay(1); // delay in between reads for stability

}

Look at the Serial.println() function. It sends information—in this case, the reading
from analog pin 0—to the serial monitor. What is cool about it is this: If you don’t see the
reading, then you’ll know that something went wrong in the sketch and approximately where
it went wrong. If you had a hundred-line sketch with those Serial.println() functions
scattered all over, you could literally follow along with the sketch in the monitor and could
pinpoint exactly where the problem might be. Try it!

All About Libraries
Another resource the Playground offers is a selection of libraries. These consist of functions
collected in a separate document, so you can reference them from your main script while
keeping the code clean.

Pretty much any time you have a sensor or other electronic device connected to the Arduino,
you’ll need code to control it, and a library is often the best way to manage that code. If
you buy a new component, take the time to do a search for a library—it might save you a
bunch of time!

Okay, go ahead and open a library. Let’s use the library Servo.h, which you can find at
http://www.arduino.cc/en/Reference/Servo. It helps sketches control servo motors. The
following is an example of how it works. There is a basic sketch, Sweep, which can be used
to control servos. Right off the bat you can see that it needs a library to work:

#include <Servo.h>

http://www.arduino.cc/en/Reference/Servo

ptg16605960

CHAPTER 5: Programming Arduino
140

This reference serves as a notice that the library Servo.h is needed to run the sketch, and
if Servo.h is located along with all of your libraries, the relevant data loads automatically
so that the sketch operates as expected. If the library is missing, the sketch sends an error
message when you try to upload to the Arduino.

Next, look at a single instance of the library in use. In the Sweep sketch, a new servo is
declared:

Servo myservo; // create servo object to control a servo

The servo object (called myservo) is created as described by the library:

 class Servo

{

 private:

 uint8_t _index;

 uint8_t _pin;

 uint16_t _duty;

 static uint8_t _count;

 static Servo* _servos[];

 static int8_t _current;

 static uint16_t _positionTicks;

 static void start();

 static void end();

 static void service();

 public:

 Servo();

 uint8_t attach(int);

 void detach();

 void write(int);

 uint8_t read();

 uint8_t attached();

};

Private refers to functions used by the library itself, often to do background work such as
assigning bytes. The public functions are the ones you reference in the actual sketch.

As your code gets more and more complex, you might get the idea that you could benefit
from building your own library. Although discussing this task falls outside the scope
of this book, Arduino has a fine tutorial on its site at http://arduino.cc/en/Hacking/
LibraryTutorial.

http://arduino.cc/en/Hacking/LibraryTutorial
http://arduino.cc/en/Hacking/LibraryTutorial

ptg16605960

The Next Chapter
141

Resources for Learning Programming
I could easily write 10 pages of Arduino resources, but the following sections introduce just
a few of the coolest.

Books
■ Arduino Adventures: Escape from Gemini Station (Apress 2013, ISBN 978-1430246053) is a

 kids’ book by James Floyd Kelly and Harold Timmis that combines cool Arduino projects
with a fun Young Adult fiction storyline.

■ Arduino Cookbook (O’Reilly 2011, ISBN 978-1449313876) by Michael Margolis is
considered by many to be the definitive Arduino reference. Do you need to know how
to run a seven-segment display using a breadboarded LED driver? Look it up in the
Cookbook.

■ Getting Started with Arduino (O’Reilly 2011, ISBN 978-1449309879) is a pocket-sized
beginner’s guide. It is written by Massimo Banzi, one of the founders of Arduino, so you
know you’re getting authoritative information!

■ Make: Lego & Arduino Projects (Make 2012, ISBN 978-1449321062) by John Baichtal,
Adam Wolf, and Matthew Beckler. The book focuses on using Arduinos to control Lego
Mindstorms robots.

■ Making Things Move (TAB Electronics 2011, ISBN 978-0071741675) by Dustyn Roberts.
This is not an Arduino book exactly, but it packs tons of information about electronics
and robotics.

Websites
■ Adafruit Industries (adafruit.com) is one of the main sites for DIY electronics. It features

tutorials and code, as well as an excellent store packed with the stuff you need to do
Arduino projects.

■ Arduino Playground (playground.arduino.cc) was mentioned earlier in the chapter. It’s
the motherlode of Arduino code, both finished as well as experimental.

■ Instructables (instructables.com) is chock-full of DIY tutorial s, and many of them cover
electronics and Arduino topics.

■ Make (makezine.com) is the granddaddy of the modern DIY scene. Make puts on Maker
Faires (makerfaire.com) and publishes a paper magazine.

■ SparkFun (sparkfun.com) is like Adafruit: a cool electronics store with associated tutori-
als, videos, and other resources.

The Next Chapter
In Chapter 6, “Sensing the World,” we continue our exploration of sensors, which take
readings from the surrounding environment and transmit the info to the Arduino. In it,
you’ll learn how to build a mood lamp that takes those readings and changes the color of
an LED to reflect the environment around it!

ptg16605960

This page intentionally left blank

ptg16605960

6
Sensing the World
One of the most powerful tools you can plug into your Arduino is a sensor, a small electronic device
that enables the microcontroller to take readings from its surroundings, reacting in accordance to its
program. For example, you could program the Arduino to turn on a fan when a temperature reaches
a certain level or to turn off a lamp when the sun comes up.

In Chapter 1, “Arduino Cram Session,” you learned a little about some sensors —ultrasonic,
temperature, flex, and light. However, many more types are available! In this chapter, you learn
more about additional sensors and how to control them, and then you use that knowledge to
build a sensor-controlled project—a mood light that changes its color depending on environmental
conditions (see Figure 6.1).

FIGURE 6.1 Learn how to make a cool mood light in this chapter.

ptg16605960

CHAPTER 6: Sensing the World
144

Lesson: Sensors
What exactly does a sensor do? We know about temperature and light sensors, but no
sensor exists that is as sophisticated and intuitive as human sight, for example, and there’s
no such thing as a “scent sensor” that triggers an action when someone cooks up a hot dog
nearby. But what can sensors do?

Sensors are fairly simplistic—they usually focus on measuring one phenomenon. For
instance, a passive infrared sensor (described in Chapter 2, “Breadboarding”) detects
abrupt changes in temperature in its field of view, and translates that as movement. A
barometric sensor measures air pressure much the same way a barometer does, and
sends the reading to an Arduino. A photo resistor limits the flow of current with a value
depending on how much ambient light the resistor detects. Knowing how a sensor works
helps you use it effectively in your project.

Figure 6.2 shows an accelerometer, which is a sensor that determines what direction an
object is traveling and its speed.

FIGURE 6.2 This accelerometer can tell what direction you’re going and how fast.

ptg16605960

Lesson: Sensors
145

Speaking broadly, the two categories of sensor are digital and analog. Let’s explore the
differences.

Digital Versus Analog
Digital and analog are two methods of transmitting information. The Arduino world uses
both methods a lot, so you’ll need to know both.

Digital
Digital data consists exclusively of 0s and 1s (see Figure 6.3). An example of a digital sensor
is an accelerometer, which sends a series of data points (speed, direction, and so on) to the
Arduino. Usually digital sensors need a chip in the sensor to interpret the physical data.

FIGURE 6.3 Digital information is transmitted with a series of 1s and 0s; analog
data consists of a modulated signal.

Because digital sensors send only data, they need a microcontroller to interpret the readings.
A digital light sensor, therefore, could not be used as a photo resistor, although you could
rig a microcontroller-controlled circuit to do the same thing.

Analog
Analog data is transmitted as a continuous signal, almost like a wave. In other words, an
analog sensor doesn’t send a burst of 1s and 0s like digital sensors do; instead, the sensor
modulates a continuous signal to transmit data.

ptg16605960

CHAPTER 6: Sensing the World
146

You can use analog sensors in circuits without needing a microcontroller to interpret the
signal. In the case of the photo resistor, you could actually use an analog light sensor as a
photo resistor.

Connecting Digital and Analog Sensors
Not surprisingly, the Arduino reserves some pins for digital input and output, and others for
analog. A servo’s data wire plugs into a digital pin, whereas an analog light sensor sends its
data reading to an analog pin.

Which pins are which? You can easily tell just by looking at the Arduino. The digital pins are
all along one side (on the top of Figure 6.4), and the analog pins are on the opposite side—
the bottom right of the figure. If you forget, just look at the printing on the board itself.

FIGURE 6.4 The Arduino tells you where you can connect your sensors.

Additionally, when programming the Arduino sketch—which is what the Arduino world
calls programs—you’ll need to declare your pins. I cover how to do that in Chapter 5,
“Programming Arduino.”

Know Your Sensors
What exactly is a sensor? On a certain level, it’s a device that sends information to the
Arduino based on some external factor the device measures. For instance, the barometric
sensor (described shortly) measures air pressure and returns a reading based on what the
sensor detects.

The following sections describe some of the sensors you can use with your Arduino projects.

2 Analog Pins2

1 Digital Pins1

ptg16605960

Know Your Sensors
147

Accelerometer
Figure 6.5 shows the ADXL362 accelerometer as part of a small circuit board sold by SparkFun
(P/N SEN-11446). It can tell in what direction it’s going and how fast; it sends the data
digitally. You can make fun projects with the accelerometer, such as a self-balancing robot,
which uses an accelerometer to tell when it’s tipping over, and then moves to balance itself.

FIGURE 6.5 SparkFun’s ADXL362 lets you plug in an accelerometer to a
breadboard.

Barometric
The staple of science-fair weather stations, the barometric sensor is basically a digital
barometer hooked up to an Arduino. The sensor shown in Figure 6.6 (Adafruit P/N 391)
monitors air pressure and sends readings to the Arduino using I2C, a method of transmitting
data along a single wire.

FIGURE 6.6 The BMP085 barometric sensor monitors air pressure. Credit:
Adafruit Industries

ptg16605960

CHAPTER 6: Sensing the World
148

Encoder
The servo motor shown in Figure 6.7 is equipped with a rotation sensor called an encoder.
When the motor’s hub turns, the encoder sends data back to the Arduino describing the
precise angle of rotation. One possible use for this would be to create a knob that controls
a servo—the Arduino reads in the position of the knob’s encoder and instructs the servo
to respond.

FIGURE 6.7 A hobbyist servo motor transmits data through the white wire.

Gas
The MQ-4 methane gas sensor shown in Figure 6.8 (Sparkfun P/N SEN-09404) is often
used to make gas-leak alarms, as well as (ahem) fart detectors.

ptg16605960

Know Your Sensors
149

FIGURE 6.8 Concerned about gas leaks? You definitely want one of these.

Hall Effect
The Hall Effect sensor shown in Figure 6.9 detects the presence of magnets nearby. This is
great for activating another circuit without needing to be in physical contact—for example, if
the sensor is separate from a circuit by a sheet of glass. It’s also great for checking the prox-
imity of another object that has a magnet embedded in it.

FIGURE 6.9 The Hall Effect sensor produces voltage when magnetic fields are
nearby.

ptg16605960

CHAPTER 6: Sensing the World
150

Infrared
Most television remote controls use coded pulses of infrared (IR) light to tell the appliance
what you want it to do. For instance, “turn off” might be a certain code, whereas “lower
volume” might be another. The television has one of these sensors to receive the IR.

IR sensors (see Figure 6.10, Adafruit P/N 157) can be used for the same reasons one
might use a photo resistor or light sensor, except that because it uses IR, you won’t see
any annoying flashes of light. This characteristic makes IR sensors useful for projects where
you don’t want bright LEDs shining everywhere, or if you’re concerned with “garbage light”
incorrectly triggering the sensor.

FIGURE 6.10 This sensor detects infrared light. Credit: Adafruit Industries.

For example, you could position an IR sensor on a robot, right next to an IR LED, used as a
proximity sensor. When the light of the LED reflects off a nearby object, the sensor picks it
up and sends a signal to the Arduino.

Most IR sensors look like small black boxes with a bulb-shaped protrusion and three leads.

Piezo Buzzer (Knock Sensor)
A funny thing about some electronic components is that they work in reverse! Shining a
light on an LED generates a tiny trickle of voltage. A piezo buzzer—often called a knock
sensor—works the same way (see Figure 6.11). If you send voltage through a piezo, it
vibrates and makes a buzzing noise. Similarly, if you vibrate the piezo manually (for
example, by tapping on it) a small amount of voltage is generated. This means you can also
use it as a vibration sensor!

ptg16605960

Know Your Sensors
151

FIGURE 6.11 A knock sensor looks a lot like a piezo buzzer—because it is one!

Sound Sensors
A sound sensor (see Figure 6.12) is essentially a microphone that picks up nearby sound
vibrations. Those vibrations generate tiny voltages, which are picked up by the sensors. You
often use an amplifier to magnify those signals to play on a speaker. However, you can also
use the sensor to trigger actions in an Arduino program without amplification.

FIGURE 6.12 A sound sensor salvaged from a broken toy.

Tilt Sensors
A tilt sensor, like the one shown in Figure 6.13 (Adafruit P/N 173), is a tube with a ball roll-
ing around in it. When the sensor is in its normal vertical position, the ball connects two

ptg16605960

CHAPTER 6: Sensing the World
152

wires, but if the sensor tips and the ball rolls away from the contacts, the connection is lost.
For this reason, the sensor is sometimes called the “poor man’s accelerometer.”

FIGURE 6.13 A tilt sensor can tell when it’s being inverted.

Project: Mood Light
In this project, you build a mood light (see Figure 6.14) that uses a ShiftBrite module, a
very bright RGB LED mounted on a circuit board, useful for just this sort of application.
Controlling the LED is an Arduino Uno (of course!) connected to a small solar panel used
as a light sensor, a temperature and humidity sensor, and a small microphone serving as a
sound sensor. For an enclosure, you explore the world of kerf-bending, a technique where
you cut slits into a panel of wood, which allows it to curve and flex without breaking.

FIGURE 6.14 The temperature and humidity sensor (the white plastic module)
and the sound sensor (the little button in the middle of the picture) both help
control the color of the lamp.

ptg16605960

Project: Mood Light
153

PARTS LIST
You’ll need the following parts to build your mood light:

■ Arduino Uno
■ ShiftBrite module: See the nearby note for more information (SparkFun P/N

10075).
■ Light sensor: I used a mini solar panel similar to Jameco P/N 2136913, but you

could use any light sensor or solar panel.
■ DHT22 temperature and humidity sensor (Adafruit P/N 393)
■ Electret microphone (Adafruit P/N 1064) used as a sound sensor
■ Some sort of lampshade for the ShiftBrite; I used the glass globe from a lawn light

(Hampton Bay SKU #708 407).
■ 6 #4-40 x 1" bolts with nuts
■ 4 3/8" plastic standoffs (SparkFun P/N 10461)
■ Mini breadboard
■ Assorted jumpers
■ A sheet of MDF or fiberboard—an 18-inch × 24-inch sheet should be plenty.

NOTE
The ShiftBrite Module

The ShiftBrite is an LED module created by Garrett Mace that enables Arduino fans to
control a high-brightness RGB LED very precisely (see Figure 6.15). RGB represents
the colors Red, Blue, and Green, which combined can display any color of light.
The ShiftBrite, therefore, has three elements—one for each color—and the Arduino
controls the values of all three.

ptg16605960

CHAPTER 6: Sensing the World
154

FIGURE 6.15 The ShiftBrite board serves up a single RGB LED. Credit: Garrett
Mace.

It’s kind of cool how the Arduino controls the ShiftBrite’s color and brightness. It does
so with serial communication, which you used in Chapter 4, “Setting Up Wireless
Connections.” Ordinarily, an Arduino controls an LED by changing the voltage the LED
receives. In a practical sense, this makes controlling large numbers of LEDs difficult because
the Arduino has only so many pins.

The solution is to use an LED driver, a microchip that controls multiple LEDs and takes its
orders from an Arduino via a serial connection, where digital components like ShiftBrites
can be controlled with just a few wires. Guess what? The A6281, a tiny LED driver, controls
the ShiftBrite’s LED. No only does this allow you to use data to change the LED’s color
and brightness, but it enables you to connect multiple ShiftBrites together in a string, all
controlled by the same number of data pins (four) as it would take to control a single
module.

You can learn more about the ShiftBrite on the module’s product page: http://
macetech.com/blog/node/54.

Instructions
Let’s build it! The mood lamp is a relatively simple build, but there are a couple of
complicated steps:

1. Cut and assemble the enclosure—I used 5mm fiberboard to cut out shapes on the laser
cutter, using a technique called kerf bending (see “Alt.Project: Kerf-bending” at the end
of this chapter). You can download the file I used from https://github.com/n1/Arduino-

http://macetech.com/blog/node/54
http://macetech.com/blog/node/54
https://github.com/n1/Arduino-For-Beginners

ptg16605960

Project: Mood Light
155

For-Beginners. Alternatively, you can design your own enclosure! Figure 6.16 shows the
enclosure walls that have been cut out on a laser cutter using kerf bending. I cut a big
hole for the power supply, and the notches along the upper edges are for attaching the
top.

FIGURE 6.16 The project enclosure uses a kind of cutting called kerf bending,
allowing the wood to curve around to form the walls.

2. Build the LED platform—Next, add the LED assembly. I figured out how to attach the
globe to the laser-cut box—see step 5. Basically, this involves a small panel that fits into
the globe and is tensioned with a pair of screws (see Figure 6.17).

https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 6: Sensing the World
156

FIGURE 6.17 The ShiftBrite sits on a platform in the globe, using a mini bread-
board to manage the wires.

3. Attach the ShiftBrite—To attach the ShiftBrite, stick a mini breadboard onto the panel
using its adhesive backing or hot glue. Plug in the ShiftBrite, and then connect the wires
to the correct holes on the breadboard, as shown in Step 4.

4. Make the ShiftBrite wire connections—Wiring up the ShiftBrite looks intimidating but
don’t be fazed! It’s actually quite easy. It needs six wires:

■ V+ on the ShiftBrite plugs into the port marked 5V on the Arduino.
■ DI on the ShiftBrite plugs into port 10.
■ LI plugs into port 11.
■ EI plugs into port 12.
■ CI plugs into port 13.
■ GND plugs into GND.

5. Attach the globe—I used one from a yard light I bought at Home Depot (see Figure
6.18) and I’ve seen them at a lot of stores. I disassembled the light and set aside
everything but the globe. To attach the globe, I drilled two screw holes in the top panel
of the box, plus a larger hole for the wires. I used a small piece of wood that fits into the
globe but also attaches to the top panel of the box, as shown previously in Figure 6.17.
Tightening the bolts secures the globe to the top.

ptg16605960

Project: Mood Light
157

FIGURE 6.18 I used the globe from this yard light for my project.

6. Connect the Arduino to the box—After you attach the globe and wire up the ShiftBrite,
you attach and wire up the Arduino. I connected the Arduino to the box using #4 bolts
threaded through holes I drilled in the bottom panel, with 3/8" plastic standoffs. See
Figure 6.19.

ptg16605960

CHAPTER 6: Sensing the World
158

FIGURE 6.19 The Arduino, all wired up!

7. Wire up the sensors—See Figure 6.20. The light sensor plugs into analog port 1 and
GND. The temperature sensor plugs into 3V3 and analog port 3, and shares a ground
with the sound sensor, which plugs into analog port 2. It’s not too tricky!

ptg16605960

Project: Mood Light
159

FIGURE 6.20 That’s a lot of wires!

Mood Lamp Code
Here is the Arduino code for the mood lamp. Naturally, you’ll want to tweak the code
depending on your environmental conditions. For instance, a bright room might require a
higher threshold for display; I show you how to in the sketch—look where it says, “adjust
tolerances here.” All you have to do is change the number by that notation to change how
the Mood Lamp reacts to that environmental condition.

Finally, if you don’t remember how to upload a sketch to your Arduino, refer to Chapter 5.

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 6: Sensing the World
160

// This code is based on Garrett Mace’s example code on macetech.com.

int datapin = 10; // DI

int latchpin = 11; // LI

int enablepin = 12; // EI

int clockpin = 13; // CI

int pspin = A1; // photo sensor

int sspin = A2; //sound sensor

int thspin = A3; //temperature and humidity sensor

int light = 0;

int sound = 0;

int temp = 0;

unsigned long SB_CommandPacket;

int SB_CommandMode;

int SB_BlueCommand;

int SB_RedCommand;

int SB_GreenCommand;

void setup() {

 pinMode(datapin, OUTPUT);

 pinMode(latchpin, OUTPUT);

 pinMode(enablepin, OUTPUT);

 pinMode(clockpin, OUTPUT);

 pinMode(pspin, INPUT);

 pinMode(sspin, INPUT);

 digitalWrite(latchpin, LOW);

 digitalWrite(enablepin, LOW);

Serial.begin(115200); // setup serial

}

void SB_SendPacket() {

 SB_CommandPacket = SB_CommandMode & B11;

 SB_CommandPacket = (SB_CommandPacket << 10) | (SB_BlueCommand & 1023);

 SB_CommandPacket = (SB_CommandPacket << 10) | (SB_RedCommand & 1023);

 SB_CommandPacket = (SB_CommandPacket << 10) | (SB_GreenCommand & 1023);

ptg16605960

Project: Mood Light
161

 shiftOut(datapin, clockpin, MSBFIRST, SB_CommandPacket >> 24);

 shiftOut(datapin, clockpin, MSBFIRST, SB_CommandPacket >> 16);

 shiftOut(datapin, clockpin, MSBFIRST, SB_CommandPacket >> 8);

 shiftOut(datapin, clockpin, MSBFIRST, SB_CommandPacket);

 delay(1);

 digitalWrite(latchpin,HIGH);

 delay(1);

 digitalWrite(latchpin,LOW);

}

void loop() {

 light = analogRead(pspin) + 50; // adjust tolerences here

 sound = analogRead(sspin) + 50; // adjust tolerences here

 temp = analogRead(thspin) / 50; // adjust tolerences here

 SB_CommandMode = B01; // Write to current control registers

 SB_RedCommand = 127; // Full current

 SB_GreenCommand = 127; // Full current

 SB_BlueCommand = 127; // Full current

 SB_SendPacket();

 delay(2500);

 SB_CommandMode = B00; // Write to PWM control registers

 SB_RedCommand = sound;

 SB_GreenCommand = light;

 SB_BlueCommand = temp;

 SB_SendPacket();

Serial.println(“Light: “);

Serial.println(light);

Serial.println(“Sound: “);

Serial.println(sound);

Serial.println(“Temp: “);

Serial.println(temp);

}

ptg16605960

CHAPTER 6: Sensing the World
162

Alt.Project: Kerf Bending

Kerf bending is a clever way of bending wood. It’s best done with the help of a laser cutter,
although using saws to get the same effect is possible. The technique involves making a
series of cuts in the material close together, in effect making the wood thin and flexible in
spots. One obvious way to use this technique is to make a box by using kerf bends for the
corners (see Figure 6.21).

FIGURE 6.21 Laser-cut slits (circled here) in this fiberboard allow it to flex.

If you want to create a laser-cut box design, you have a couple of options:

■ You can download a box design from Thingiverse.com. This is a resource for people
using 3D printers and laser cutters, and all the designs can be adapted. For instance,
the box design I use in this chapter is a derivation of SNIJLAB’s Folding Wood Booklet
design—Thing #12707.

■ Another option is the service at MakerCase.com. This site lets you type in the dimen-
sions you want as well as select the particulars of your material such as thickness and
connector gauge, and then the service generates the laser files for you. It’s slick!

Both of these options are free, other than the actual cost to mill the designs.

ptg16605960

The Next Chapter
163

The Next Chapter
In Chapter 7, “Controlling Liquid,” you’ll learn how to—wait for it!—use an Arduino to start
and stop the flow of liquid. You’ll then build a cool LEGO plant-watering robot with the
skills you learn.

ptg16605960

This page intentionally left blank

ptg16605960

7
Controlling Liquid
Water and electronics don’t mix. Well, mostly. But in this chapter, you explore three different ways
of controlling liquids using electricity:

■ Pressurized reservoir—This is a container of liquid that is pressurized with an air pump, forcing
 liquid out of an exit tube (see Figure 7.1).

■ Peristaltic pump—A peristaltic pump massages a tube, forcing the liquid through while never
actually touching it.

■ Solenoid valve—A solenoid valve is an electrically controlled valve, opening up when it receives
the proper voltage.

FIGURE 7.1 This LEGO chocolate milk–making robot uses a pressurized reservoir (the
green jug) to pump milk.

ptg16605960

CHAPTER 7: Controlling Liquid
166

After exploring these techniques—all of which can be controlled with an Arduino—you apply
what you’ve learned and move on to the project: a robot that is programmed to water your
plants on a schedule.

Lesson: Controlling the Flow of Liquid
Let’s go over three ways to start and stop the flow of liquid.

Solenoid Valve
Let’s begin with this solenoid valve from Adafruit (P/N 997) that can be triggered with a
signal from your Arduino (see Figure 7.2). The valve is ordinarily closed, but when you apply
12 volts, the solenoid opens the valve and water goes through. When the voltage stops, the
valve closes and the water stops. Yay, technology! If you remember from Chapter 1, “Arduino
Cram Session,” a solenoid is similar to a motor except instead of rotating the shaft, it pushes
and pulls it. In the case of this valve, the solenoid opens and closes the valve.

FIGURE 7.2 A solenoid valve opens when it receives the correct voltage.

ptg16605960

Lesson: Controlling the Flow of Liquid
167

The valve connects to the water supply with half-inch plastic piping, automatically giving
you an ecosystem of plumber’s tubing and connectors you can buy in most hardware stores.
I ended up using this valve for a plant-watering robot, precisely because of this flexibility.
This convenience disguises one cool benefit—you can connect your robot directly to the
main water supply rather than relying on a container of liquid.

If you end up using one of these valves, you should remember that the valve requires around
3 psi of water pressure to work properly, and only works in one direction.

Pressurized Reservoir
One disadvantage of the solenoid valve is that it’s not food safe (see the later caution,
“Food Safety”). This means you shouldn’t use it for handling food and drink for human
consumption. A pressurized reservoir avoids this problem by having air pressure move the
liquid. One common use for a pressurized reservoir is a squirt gun (see Figure 7.3).

FIGURE 7.3 Does a pressurized reservoir sound familiar? It should! It’s the
method many squirt guns employ to shoot water.

Here’s how a pressurized reservoir works:

1. A closed container of liquid is equipped with two tubes—one positioned just above the
liquid level, and the other one all the way down to the bottom of the container.

2. When air comes in the top tube, it pressurizes the container, forcing the contents to
escape from the second tube.

3. Because that tube is below the surface of the liquid, the liquid is forced out.

Because of the reservoir’s capability to pump food-safe liquids, it’s often used in drinkbots,
also known as barbots. These are robots programmed to make cocktails by pumping liquor
and mixers in precise amounts. The way it works is that the bottle (of rum, for instance) is
the reservoir and gets pressurized with an air pump.

ptg16605960

CHAPTER 7: Controlling Liquid
168

See “Mini Project: Make a Pressurized Reservoir” to learn how to use an old aquarium
pump to make a plastic jug into a food-safe pressurized reservoir.

Peristaltic Pump
Another food-safe option is a peristaltic pump, which also never touches the liquid. Instead,
it uses a motor to massage a tube, which forces the liquid to travel along the tube. This is
similar to the way our gastrointestinal system works to, er, move food through. You most
often see peristaltic pumps in breast milk pumps—the milk goes through food-safe tubing to
stay pure for Junior.

As with pressurized reservoirs, you’ll often see tinkerers using these pumps to make
drinkbots. Peristaltic pumps are more expensive, but also much more controllable and
precise in terms of stopping and starting the flow of liquid.

The pump pictured in Figure 7.4 is available from Adafruit Industries (P/N 1150). It’s
essentially a 5000 RPM, 12-volt DC motor with a “clover”-shaped hub that squishes the
tubing and forces the liquid to move through it.

FIGURE 7.4 A peristaltic pump squishes a rubber tube to move fluid through it.
Credit: Adafruit Industries.

ptg16605960

Lesson: Controlling the Flow of Liquid
169

Mini Project: Make a Pressurized Reservoir

Let’s build an Arduino-controlled, pressurized reservoir! You’ll use an aquarium bubbler to
pressurize a milk jug, as shown in Figure 7.5. This forces its contents to dispense through
the exit tube. Voila, a pump!

PUMP

FIGURE 7.5 The pressurized reservoir displaces liquid by forcing air into the
container.

PARTS LIST
■ Arduino
■ A milk jug—the classic gallon or half-gallon plastic jug works well
■ A battery-powered aquarium pump (I used a Marina P/N 11134)
■ Two lengths of tubing (I used Tygon B-44-3 beverage tubing with a 1/4" outer

diameter)

ptg16605960

CHAPTER 7: Controlling Liquid
170

■ A TIP-120 Darlington transistor (Adafruit P/N 976; see Chapter 13, “Controlling
Motors,” to learn more about this useful component)

■ 2.2K resistor
■ 1N4001 diode (Adafruit P/N 755)
■ Some wire (I recommend Adafruit P/N 1311)
■ Drill and a 1/4" bit

Instructions
1. Drill two holes in the lid of your milk jug using the 1/4" bit.

2. Thread the tubing through the holes. One tube should reach all the way to the bottom
of the milk jug, whereas the other one should remain above the surface of the water. See
Figure 7.5 to see how to do this.

3. Wire up the aquarium pump, as shown in Figure 7.6. You’re basically replacing the
rocker switch with a Darlington transistor, which is kind of like an electronic switch
activated by the Arduino.

FIGURE 7.6 Wire up your pump as you see here!

1

2

3

4

5

6

ptg16605960

Lesson: Controlling the Flow of Liquid
171

1. Jumper wire

2. Resistor

3. Power source

4. Middle lead of Darlington goes to negative terminal on pump

5. Diode is soldered between + and - leads

6. Right lead of Darlington goes to the negative terminal of power supply and one of the Arduino’s

GND pins

a. Connect a jumper from Pin 13 of the Arduino to the leftmost lead of the
Darlington transistor, with the resistor in between. This is the blue wire in Figure
7.6.

b. Connect the power source to the positive terminal of the pump. This is the green
wire shown in Figure 7.6.

c. Connect the middle lead of the Darlington to the negative terminal of the pump;
see the yellow wire in Figure 7.6.

d. Solder the diode between the positive and negative terminals of the pump leads;
this helps prevent feedback from the motor frying your Arduino! The diode is
polarized, so it must be attached correctly; Figure 7.6 shows how to do it.

e. Connect the right-hand lead of the Darlington to both the negative terminal of the
power supply and one of the Arduino’s GND pins. This is the black wire in Figure
7.6.

Pressurized Reservoir Code
I’m going to skip code because all you need to activate the pump is a single ping from your
Arduino. I suggest using the Blink sketch from the Arduino’s example code (see Chapter 5,
“Programming Arduino,” for more info) and changing the delays from 1,000 to 10,000.
This makes the pump activate for 10 seconds, and then deactivate for the same amount of
time, repeating until you unplug the board.

LEGO PERISTALTIC PUMP
Miguel Valenzuela (pancakebot.com) built a pancake-making robot out of LEGO bricks.
It’s pretty awesome and can “print” out letters and geometric shapes in pancake
batter. Quite rightly, Miguel decided he needed a syrup-dispensing robot to accompany
it, so he built a peristaltic pump out of LEGO bricks (see Figure 7.7) that sits next to
PancakeBot, ready to squirt maple syrup onto your “printed” pancakes.

1

2

3

4

5

6

ptg16605960

CHAPTER 7: Controlling Liquid
172

FIGURE 7.7 Miguel Valenzuela’s syrup dispenser is actually a peristaltic pump.
Credit: Miguel Valenzuela.

CAUTION
Food Safety

The important thing to remember in handling liquids is that if you’re going to drink the
liquid, it should only touch “food safe” surfaces. But what does that mean, exactly?

Regulations on food safety vary from nation to nation, but typically a food-safe surface
must be free of contaminants that could hurt a person who eats or drinks off of
the surface, and that through normal use, the surface won’t decay in a way that
contaminants could build up.

Most scientific and industrial surfaces that are food-safe identify themselves as such;
if not, assume that it is NOT food safe.

ptg16605960

Project: Plant-Watering Robot
173

Project: Plant-Watering Robot
For this chapter’s project, you set up a robot that waters a plant on a set schedule, freeing
you to make more labor-saving robots! The robot uses a solenoid valve (described earlier
in this chapter) connected to a water supply (see Figure 7.8). It’s controlled by an Arduino,
which checks every minute to see whether it’s time to dispense water. Finally, you’ll build a
nifty LEGO enclosure to protect the Arduino from sprays of water!

FIGURE 7.8 Water that hungry plant with this convenient plant-watering robot.

ptg16605960

CHAPTER 7: Controlling Liquid
174

PARTS LIST
You’ll need the following parts to build your plant-watering robot:

■ Arduino Uno
■ Solenoid valve (I used one from Adafruit, P/N 997, that is threaded for half-inch

PVC fittings)
■ TIP-120 Darlington transistor (Adafruit P/N 976)
■ 2.2K resistor
■ 9V battery
■ 9V battery connector (Jameco P/N 109154)
■ 1N4001 diode (Adafruit P/N 755)
■ Some wire (I recommend Adafruit P/N 1311)
■ 1 PVC elbow joint (The Home Depot [THD] P/N 406-005HC)
■ 1 PVC elbow joint with threads (THD P/N 410-005HC)
■ 1 PVC T-joint (THD P/N 401-005HC)
■ 1/2" PVC tubing: I used the following lengths: 14", 21", and three lengths of 2.5"

each (THD P/N 136293)
■ PVC cement (THD P/N 308213)
■ 2 threaded to regular adapters (THD P/N 435-005HC)
■ A PVC end cap (THD P/N 448-005HC)
■ PVC garden hose adapter (THD P/N 795399)
■ A 3/4"-diameter dowel, sharpened on one end

PVC
A lot of makers swear by PVC (see Figure 7.9). You know, those white (usually)
plastic pipes used for plumbing around the house. PVC is great for moving liquids
around, but also finds a lot of use simply as a building material—it glues well and can
be bent with heat and permanently glued.

PVC is often used for potato cannons and other “maker-y” projects involving moving
substances such as air and water through the pipe, but what if you just want to
make a chair out of your PVC? FORMUFIT is a company that offers a vast assortment
of customized PVC connectors simply for making furniture. FORMUFIT’s parts not
only come in configurations you would never need for plumbing, but they’re also less
industrial looking. Most PVC you buy has obnoxious bar codes and other marks on the
plastic and is very stark, the assumption being that it will be hidden under your sink,
not looking good in your den. FORMUFIT’s PVC, by contrast, is considerably more
attractive, doesn’t have writing on it, and comes in black and white.

ptg16605960

Project: Plant-Watering Robot
175

FIGURE 7.9 Polyvinyl chloride (PVC) is both a common household building
material as well as a handy maker’s tool!

If you don’t want to mail order your PVC, you can almost always find what you need
(other than the specialized parts mentioned here) in your friendly local hardware
store.

Instructions
Let’s begin building the plant watering robot by starting with the PVC piping!

1. Grab the T-shaped PVC connector and connect the three 2.5" lengths of PVC, as shown
in Figure 7.10. Secure the parts with PVC cement. The T should be arranged so one leg is
pointing down, one pointing up, and one pointing backward.

ptg16605960

CHAPTER 7: Controlling Liquid
176

FIGURE 7.10 Start by cementing some PVC!

2. Add the dowel to the bottom-facing pipe of the T. The 3/4" dowel slides firmly into the
inside of the 1/2" PVC pipe, and can be permanently connected with a smear of PVC
cement. I’m not sure why a 3/4" dowel is smaller than a 1/2" pipe. Math, you’re crazy
sometimes!

3. You’ll want to sharpen the other end of the dowel—I used a disk sander—so it’ll stick
into the ground and keep the PVC upright. The assembly should look like Figure 7.11.

FIGURE 7.11 Cement in the dowel; this is the stake that keeps the robot
anchored in the ground.

ptg16605960

Project: Plant-Watering Robot
177

4. Connect the garden hose adapter to the arm of the T pointing backward, securing it
with PVC cement. You can see the adapter in Figure 7.11.

5. Now work on the valve: Screw the two threaded adapters onto the ends of the valve,
as shown in Figure 7.12. Note that the PVC threads aren’t really intended for repeated
opening and closing: After you tighten the threads, unscrewing the adapters will be very
hard, so be absolutely certain you’re ready to commit!

FIGURE 7.12 The solenoid valve, with adapters added to either end.

6. When you have the adapters firmly seated, cement the T assembly to the lower end, and
the sprayer assembly to the upper end. But which is which? The valve is unidirectional,
so you have to make sure the inlet is pointing down; look for a small arrow on the valve
and make sure it’s pointing up.

7. Take the 14" length of PVC tubing and cement one elbow joint to one end, and the
other elbow to the other end. Figure 7.13 shows you how it should look.

ptg16605960

CHAPTER 7: Controlling Liquid
178

FIGURE 7.13 Adding L-connectors to either end of the 14" length of PVC.

8. Add the 21" length of PVC and cement it to the smooth (not threaded) elbow joint.

9. Now create the nozzle. I took a standard threaded PVC end cap and drilled a bunch of
holes in it (see Figure 7.14). The size of the holes is dictated by how much water you
want to come out!

FIGURE 7.14 Drill holes in an end cap to make a sprinkler head!

ptg16605960

Project: Plant-Watering Robot
179

10. Attach the nozzle. Note that in Figure 7.15, I used a small extender module (THD P/N
434-005HC) but this is by no means necessary.

FIGURE 7.15 The top of the robot takes shape!

Plant-Watering Robot Electronics
Now it’s time to wire up the electronics, which you do pretty much the same way that you
wired up the pressurized reservoir described earlier in the chapter. See Figure 7.16.

ptg16605960

CHAPTER 7: Controlling Liquid
180

FIGURE 7.16 This diagram shows you how to wire up the valve.

1. Connect the + battery lead to the + solenoid valve lead

2. Connect + and - valve leads with diode

3. Arduino pin 13 connects to left lead on transistor

4. Connect - terminal to center pin on transistor

5. Arduino GND connects to right transistor pin

Here’s what you do:

1. Connect the positive lead of the 9V battery pack to the positive lead of the solenoid
valve. This is the red wire in Figure 7.16.

2. Connect the positive and negative leads of the valve with a 1N4001 diode, which helps
protect the other electronics from stray voltage from the motor. The stripe on the
component should be pointing toward the positive lead.

3. Connect pin 13 of the Arduino to the leftmost lead of the Darlington transistor, with a
2.2K resistor in between. This is shown as a yellow wire in Figure 7.16.

4. Connect the negative terminal of the valve to the center pin of the Darlington transistor.
This is the blue wire in Figure 7.16.

1

3

2

4

3

5

4

5

1

2

ptg16605960

Project: Plant-Watering Robot
181

5. Connect the rightmost pin of the Darlington transistor to GND (the black wire in Figure
7.16).

Plant-Watering Robot Enclosure
Now you can build a LEGO enclosure that will house the Arduino and other electronics and
protect them from the elements. Figure 7.17 shows the enclosure design.

FIGURE 7.17 The LEGO enclosure, as rendered by a computer.

You can find instructions on how to build the enclosure shown in Figure 7.17 in the form of
a LEGO Digital Designer (LDD) file at https://github.com/n1/Arduino-For-Beginners.

You can download LDD for free from ldd.lego.com, and it runs on any reasonably modern
PC or Mac—sorry Linux heads! The file consists of a 3D CAD drawing of the model, and you
can tell LDD to create step-by-steps for you right out of the program. It’s slick! There are
actually two files, one for the top of the box and one for the bottom. The instructions show
you how to build the enclosure in two parts so it can encircle the PVC.

When building the enclosure, you might want to consider whether you want to—brace
yourself—GLUE the bricks together. LEGO fanatics abhor gluing their bricks, but if you’re
serious about keeping the interior dry, you just might have to. Plus, it prevents the enclosure
from breaking apart randomly!

https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 7: Controlling Liquid
182

Adding the Electronics
You should consider how to attach the Arduino, battery, and associated circuitry to the
enclosure. One option might be to use zip ties to secure the board to one of LEGO’s
Technic bricks (see Figure 7.18). These look like regular LEGO bricks but have holes in
 them, making them great for zip ties! You then simply connect the bricks to the inside of the
enclosure as you would do any LEGO brick.

FIGURE 7.18 Secure the Arduino to the enclosure.

If you don’t have any Technic bricks, another option might be to use an adhesive to attach
the circuit boards. Maybe double-sided tape? In Chapter 2, “Breadboarding,” I used
super-cool putty called Sugru (sugru.com) to attach an especially tricky component to the
enclosure. This is not a bad option in this project. Another use of the putty could be to seal
the gaps around the PVC pipe to keep out moisture, as shown in Figure 7.19.

ptg16605960

Project: Plant-Watering Robot
183

FIGURE 7.19 Smear in some Sugru to help the enclosure resist water.

After you’ve connected the two halves of the LEGO enclosure, goop some Sugru in the space
around the PVC. After it sets (24 hours), it will not only keep out moisture, but will also
inhibit the LEGO box from rotating.

NOTE
Why Do It That Way?

The keen-witted among you are likely saying, “Why not simply drill a hole in another
material closer to the diameter of the PVC?” True, I could certainly do that, but I
wanted to use LEGO for this project.

If you’ve followed along with these instructions, the end result should look like Figure 7.20.
Congrats, and get to watering!

ptg16605960

CHAPTER 7: Controlling Liquid
184

FIGURE 7.20 You’re finished!

PROTOTYPING WITH LEGO
A lot of serious engineers (seriously) use LEGO bricks as part of the prototyping
process. It’s quick, has no learning curve, and it’s often simply lying around waiting to
be used. Why spend money on something slower and more expensive?

As you saw from this project, you can easily make LEGO boxes. However, you can
build extremely complicated robots using LEGO Mindstorms robotics set. Want to
build a robot? Consider nailing down the design with LEGO Digital Designer first (see
Figure 7.21).

ptg16605960

Project: Plant-Watering Robot
185

FIGURE 7.21 Want to build a robot virtually? LEGO Digital Designer lets you
build online!

Some people build with LEGO Digital Designer with every intention of replacing it with
a “real” enclosure. I often find the box I had in mind for a project ends up being the
wrong size. With a LEGO enclosure, you’ll already know the perfect dimensions before
you start building the final version of the project!

Plant-Watering Robot Code
The plant-watering robot has simple code. Just as in the sample project earlier in the
chapter, this project uses a modified Blink sketch, which simply turns on pin 13 for a period
of time, and then deactivates it for another period of time. Because all you need is one pin
to trigger the valve, it’s not a complicated program. The most interesting part (for me) is the
timing. I created variables that can be set by you to control how often the water dispenses,
and rather than using the rather unwieldy milliseconds the Arduino looks for, these variables
use hours and minutes.

ptg16605960

CHAPTER 7: Controlling Liquid
186

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

To learn more about how an Arduino keeps track of minutes and seconds, see Chapter 11,
“Measuring Time.”

int valve = 13; // renames Pin 13 “valve”

int offhours = 0; // how many hours before the water dispenses?

int offmins = 1; // how many minutes before the water dispenses?

int spray = 10; // number of seconds the water sprays

void setup() {

 pinMode(valve, OUTPUT); // designates the valve pin as “output”

 Serial.begin(115200);

}

void loop() {

 int wait = (offmins * 60000) + (offhours * 3600000); // computes milliseconds

 digitalWrite(valve, HIGH);

 delay(spray * 1000); // water stays on this number of milliseconds

 Serial.println(offmins * 60000); // I used this when debugging

 digitalWrite(valve, LOW);

 delay(offmins * 60000); // water stays off this number of milliseconds

}

The Next Chapter
Let’s talk about tools. Chapter 8, “Tool Bin,” explores a lot of the tools I used to prototype
and create the projects in this book, as well as some related gear that you’re likely to
encounter in a well-equipped workshop.

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

8
Tool Bin
You must have noticed thus far in the book that you need a lot of tools (see Figure 8.1) to build the
various projects. In this chapter, you’ll explore some of the equipment that conceivably you might
need, beginning with my take on the ultimate maker’s toolkit. After that, I detail multimeters, those
invaluable measuring devices that electronics hackers swear by. You’ll then learn about various tools
you need to work in wood, plastic, and metal. I know this all costs a lot of money, so I provide sug-
gestions on how to get access to tools without a huge investment. Finally, because this is primarily
an electronics and Arduino book, I provide several tips on hobbyist electronics such as mastering
multimeters, harvesting electronics from scrapped devices, and identifying mysterious parts by their
markings.

FIGURE 8.1 It’s surprising how much stuff an ordinary toolbox can hold.

ptg16605960

CHAPTER 8: Tool Bin
188

Maker’s Ultimate Toolbox
You need a bunch tools, but what exactly? The equipment you need in your main toolbox
(see Figure 8.2) will vary—toolboxes are as unique as the people who use them, and ulti-
mately only you can decide what you need. That said, here are some ideas for what you
might want to consider including.

FIGURE 8.2 The actual toolbox I used for this book, laboriously lugged to and
from the workshop every day.

Basic Multimeter
The number-one diagnostic tool used by electronics tinkerers is a multimeter. Meters are
sophisticated measuring devices used to take voltage readings, measure resistance, test
connectivity, and so on. In the “Electronics Tools and Techniques” section later on this
chapter, you’ll learn all about these handy devices. In the meantime, I suggest including a
cheap meter in your toolbox. I use the DT-830B (shown in Figure 8.3) for my “on-the-go
meter” and you can buy it at any number of online stores.

ptg16605960

Maker’s Ultimate Toolbox
189

FIGURE 8.3 The DT-830B multimeter is a great low-cost meter for your toolbox.

Multitool
The handy multitool device consists of several tools in one package, hence the name.
Multitools usually have blades, screwdrivers, files, pliers, wire cutters, and other necessary
tools. My own tool, the SOG Knives B61 (see Figure 8.4), gets used pretty much every day.

FIGURE 8.4 Multitools combine several tools into one tool, giving you a lot of
options for tackling a project.

ptg16605960

CHAPTER 8: Tool Bin
190

Measuring Tape
You might feel like a carpenter walking around with a tape measure, but it will definitely
come in handy. I keep one at the workshop, one in my toolbox, and one at home. I like the
Stanley tape measure pictured in Figure 8.5 (the Home Depot P/N 33-425D)—it’s as robust
as I like but only $10!

FIGURE 8.5 Need to measure something? Whip out your handy measuring tape!

Soldering Iron
I like a robust soldering iron, and have nothing but praise for my Weller WES51 (DigiKey
P/N WES51-120V-ND) but it’s kind of huge. A pen-style iron (such as the one shown in
Figure 8.6) with no power supply, stand, or sponge fits nicely in your toolbox for those
occasions when the full-sized iron is impractical; Adafruit offers a good model (P/N 180).
You’re also likely to need additional soldering equipment, which I detail in Chapter 3, “How
to Solder.”

ptg16605960

Maker’s Ultimate Toolbox
191

FIGURE 8.6 Sometimes a full-sized soldering iron is too much.

Digital Caliper
Measuring tapes are well and good, but sometimes you need to measure something
precisely, and that’s where a caliper comes in. The one I use has a digital readout (shown in
Figure 8.7) that displays precisely the distance between the two prongs. It’s a Neiko 01407A
and costs around $17, a steal for a tool this useful!

FIGURE 8.7 A digital caliper displays the measurement on a LCD screen—no
guessing!

ptg16605960

CHAPTER 8: Tool Bin
192

Scissors
They might seem rather pedestrian, but scissors (see Figure 8.8) are a great tool to keep in
your toolbox. Yes, you could always cut with a knife or other blade, but most of us have
extensive experience using scissors and can make precise and controlled cuts with them. A
decent pair won’t set you back much money and they don’t weigh much—why not?

FIGURE 8.8 It’s amazing how often scissors come in handy.

X-Acto Knives
Another good cutting tool are hobby knives, often called X-Acto knives (see Figure 8.9)
because that company, now owned by Elmer’s, has become synonymous with that kind of
cutting implement. When you need something cut precisely with a very sharp knife, go with
one of these tools.

FIGURE 8.9 X-Acto knives are great for precision cutting.

ptg16605960

Maker’s Ultimate Toolbox
193

Screwdrivers
I’m always reaching for a screwdriver, because there’s always a screw to tighten or loosen.
You’ll definitely want a variety of drivers, like those shown in Figure 8.10. Especially be sure
to get a set of smaller drivers, because maker projects often use small hardware. You’ll also
want a wide variety of formats such as Phillips, hex, Torx, and so on. The set pictured in
Figure 8.10 (Fuller Tool P/N 135-0916) is a good starting place. It has 16 bits and several
different tip styles, and it’s about $10 on Amazon.

FIGURE 8.10 Screwdriver set.

Hardware
You also need screws, bolts, washers, and so on. I’m always reaching into my hardware jar
(see Figure 8.11) for connectors, because it’s easier and faster than running to the store. A
 peanut butter container makes a great container for storing nuts and bolts, and it fits into
many toolboxes.

ptg16605960

CHAPTER 8: Tool Bin
194

FIGURE 8.11 Miscellaneous hardware in a plastic jar.

Wire Strippers
Another tool that you’ll barely put down is the combination wire cutter and stripper like the
Vise-Grips in Figure 8.12. I use these things all the time and they’re probably the first tool I
 grab on any particular day. You can get these for under $10 from Amazon and other online
stores.

ptg16605960

Maker’s Ultimate Toolbox
195

FIGURE 8.12 Cut your wires and strip off the insulation with this tool.

Super Glue
Super glue (often sold as Krazy Glue, see Figure 8.13) bonds pretty much anything to
anything! This is one of those things you won’t need most of the time, but when you do
need it, you’ll totally want a fresh tube in your toolbox. I say fresh because after you open a
tube, the chances of it still being useable the next time you need it is not good.

FIGURE 8.13 Every so often you’ll REALLY need super glue.

ptg16605960

CHAPTER 8: Tool Bin
196

Mini Flashlight
Another tool you mostly won’t use, but will be very grateful to have in an emergency, is a
small pen flashlight, such as the Pelican 1920 shown in Figure 8.14. It’s about $20, but you
can find similar flashlights for much cheaper. I like this model because it’s built tough, with
a stainless steel body, and it has a handy pocket clip.

FIGURE 8.14 Mini flashlight.

Hot Glue Gun
When in doubt, just glue it! A hot glue gun, like the mini model shown in Figure 8.15, is
possibly the ultimate maker’s tool—at least for temporary fixes! Hot glue comes in handy
a lot, whether for gluing together a box or tacking a difficult-to-mount part onto an
enclosure. That said, know that anything you stick with this kind of glue won’t stay stuck—
hot glue is for temporary fixes only.

FIGURE 8.15 A hot glue gun, the maker’s secret weapon!

ptg16605960

Maker’s Ultimate Toolbox
197

Magnifying Glass
Maybe it’s just me, because I recently started needing bifocals, but often times a magnifying
glass (see Figure 8.16) comes in handy. Here’s an example: Suppose you solder up a circuit
board and it doesn’t work. Being able to inspect the solder traces with a magnifying glass
greatly speeds up the debugging process.

FIGURE 8.16 Magnifying glass.

Writing Supplies
You need a wide variety of writing utensils (see Figure 8.17) to mark materials for cutting or
drilling, to jot notes, or best of all, for sketching out your projects before the build begins.

FIGURE 8.17 A variety of writing utensils.

ptg16605960

CHAPTER 8: Tool Bin
198

Sketchbook
You’ll also need a sketchbook in which to scribble your ideas. I like the Maker’s Notebook
(Maker Shed P/N 9780596519414; see Figure 8.18) because it has graph-lined pages, quick
reference guides in the back, and comes with stickers so you can customize its appearance.
The Maker’s Notebook costs about $20, which might seem steep. I actually use ordinary
composition books for most of my notes, and it’s a no-frills but very inexpensive experience.

FIGURE 8.18 The Maker’s Notebook is more than just a pad of paper.

Charging Cables
I don’t know how much time I’ve wasted because I don’t have the right cables, like those
shown in Figure 8.19. You’ll definitely want an Arduino-compatible wall wart (SparkFun
P/N 298) as well as a standard USB cable (Adafruit P/N 62) in your toolkit. Also, don’t
neglect phone-charging cables. Keeping a spare in your toolbox will save you tons of hassle,
trust me!

ptg16605960

Maker’s Ultimate Toolbox
199

FIGURE 8.19 A USB cable and Arduino-compatible wall wart are must-haves in
the maker’s toolbox.

BASIC MAKER’S FIRST-AID KIT
Hopefully you’ll never get seriously injured while working, but you should ensure
you have a bare minimum of first-aid supplies on hand just for day-to-day cuts and
scrapes. It’s amazing how often minor injuries take place in a workshop, whether
it’s getting burned with a soldering iron to getting scraped by a saw blade. Here are
some items to consider including in your first-aid kit:

■ Adhesive bandages: The classic Band-Aid-style bandage, in a variety of sizes.
■ Antibacterial ointment: Slather it on everything!
■ Disinfecting wipes: Great for clearing the skin around a wound before treating the

wound!
■ Eyewash: These come in one-use bottles of sterile liquid, and if you get something

in your eye, you can squirt it out.
■ Hand sanitizer: Great for cleaning your hands before treating a wound. Not so

great if the wound is on your hand!
■ Hydrogen peroxide: An easy way to disinfect a big scrape, but, ow! It can kind of

sting.

ptg16605960

CHAPTER 8: Tool Bin
200

■ Gauze: Comes both in squares and rolls of ribbon and is great for binding up bigger
wounds.

■ Medical tape: This is used for taping up gauze bandages.

Working with Wood
A lot of makers use wood in their builds for the same reason we’ve always used wood for
building materials: because it’s readily available, inexpensive, and easy to work with. Having
 access to a full wood shop (see Figure 8.20) makes making much easier, of course, but you
can still do a lot of fun stuff at home.

FIGURE 8.20 Having access to a wood shop makes making easier!

The following sections discuss a number of tools that you might find in a well-equipped
wood shop. This is the equipment I find myself using the most.

Laser Cutter
A laser cutter or laser etcher (see Figure 8.21) is a big machine with a precisely controlled
laser that follows a path laid down in the software. If you want to build a box, all you have
to do is design a box in a vector software program such as CorelDRAW or Adobe Illustrator,

ptg16605960

Working with Wood
201

cut it out in the laser, and you’ve got yourself an enclosure! There really isn’t a faster way to
whip up a quick project box. The downside? Well, most people don’t have access to a laser.
Never fear, however; in the “Lasering and CNCing Services” section later on this chapter, I’ll
go over some ways of having someone else do the work for you.

FIGURE 8.21 A laser cutter burns through quarter-inch MDF in seconds.

How to Use a Laser Cutter
Using a laser cutter can be extremely easy. I say “can” because they’re all different. Every
system has a propriety interface so creating a single guide on how to cut stuff with a laser is
difficult. However, here are tips on using an Epilog, which is the most common brand in the
U.S.:

■ Prepare your vector file in Illustrator or CorelDRAW. Vectors are merely lines or paths,
expressed as a series of curves. All lines to be cut should be hairlines (the skinniest
width) and all shapes to be etched or engraved (rather than cut) should be raster
images such as photos or logos. These will be burned into the wood but shouldn’t go all
the way through.

■ Select your material and place it on the laser’s bed. I had great luck with 1/4" MDF as
well as composition board and acrylic. However, the glue in plywood diffuses the laser,
inhibiting cutting and creating a huge amount of char.

■ On the laser’s accompanying PC, launch the vector design software (the one I used had
CorelDRAW on it) and open the file you intend to cut. Go to Settings and make sure

ptg16605960

CHAPTER 8: Tool Bin
202

you have the main three settings configured the way you like it: A) Speed, or how fast
the laser moves around, B) Power, how strong the laser burns, and C) Frequency, which
is how fast the laser pulses on and off.

■ When you have your material on the bed, with the design ready to cut, click Print as you
would with an ordinary inkjet. This opens a print dialog box where you can select other
options. Click Print, and the vectors will be sent to the laser!

Using a laser cutter is actually very easy and chances are, the biggest problems you’ll
encounter will be using the wrong settings and charring or melting what you’re trying to cut.
There’s a certain amount of experimentation involved! Part of the laser cutting experience
consists of playing with your settings to get the right cut. Don’t be dismayed if your material
scorches, or the laser doesn’t make it all the way through. Simply tweak your settings and
try again.

Rotary Tool
In contrast to the laser cutter, a rotary tool (most often referred to by the brand name of
Dremel, the category leader) is decidedly low tech. It’s basically a small motor with various
tools that can be mounted on the motor’s hub. The Dremel 8220, pictured in Figure
8.22, is a cordless model that comes with a charger and toolkit. It’s not as powerful as
corded versions, but it’s so much handier! It’s about $100 and accommodates saws, drills,
polishers, grinders, and a whole lot more.

FIGURE 8.22 A rotary tool is a great way to cut, carve, and etch wood.

ptg16605960

Working with Wood
203

Air Compressor and Attachments
Many makers use air-actuated tools such as nailguns, drills, blowers, and paint sprayers.
The advantage to compressed air is that the individual tools are light, because they don’t
need massive power supplies built in. Furthermore, you only need one compressor and can
swap in any number of tools as needed. Air compressors can be dirt cheap, especially off-
brand, low-capacity models (see Figure 8.23).

FIGURE 8.23 An air compressor can power a large variety of tools.

Drill
I probably use a drill—either handheld or a press—at least three times a week. When a drill
is properly equipped with bits, you can really do a large variety of jobs with it. I use my
cordless drill (an 18-volt DeWalt) at home to drive screws and bolts as well as to make
holes. I use a press (pictured in Figure 8.24) to do precision work.

ptg16605960

CHAPTER 8: Tool Bin
204

FIGURE 8.24 A drill press is a must-have for precisely drilling holes.

CNC Mill
A CNC mill is a computer-controlled cutter that follows a vector path (much like a laser
cutter) and enables you to make cuts and grinds with great precision (see Figure 8.25). One
advantage of a CNC mill over a laser is that some models can work in a third dimension,
cutting into a block of wood to make a bowl, for instance.

ptg16605960

Working with Wood
205

NOTE
More About CNC Tools

In Chapter 11, “Measuring Time,” you’ll learn all about CNC tools, and then you make
the project enclosure in that chapter from actual CNCed parts. Curious about the
technology? Read more there.

FIGURE 8.25 A CNC mill carves wood with numerical precision.

Lasering and CNCing Services
Unless you actually have a laser cutter or CNC, chances are you’ve felt stymied when reading
this book. How can you laser-cut something without a laser? Here are some options:

■ Send out the files for cutting. Numerous services, such as Ponoko (ponoko.com), will
accept your design files and send you back the cut pieces. Some of these services, such
as Shapeways (shapeways.com), even provide 3D-printing services where you can design
an object using 3D software, and the service prints it in three dimensions and mails it
back to you. I talk more about 3D printers in the next section, “Working with Plastic.”

ptg16605960

CHAPTER 8: Tool Bin
206

■ Find a hackerspace or makerspace. These are communal workshops where you can go
to use their expensive tools. I talk more about this scene in “Maker Spaces,” later this
chapter.

■ Often, educational institutions such as community colleges and even neighborhood
libraries are building fabrication shops with laser cutters and CNC mills available for
use. Look into it!

Table Saw
A fixture in wood shops since Grandpa’s day, the table saw (see Figure 8.26) is a must for
cutting large pieces of wood very quickly. It’s also very likely the most dangerous tool in
any woodshop, so make sure you’ve been taught how to use it properly. There’s a product
called Saw Stop that puts the brakes on the saw blade if it touches skin; look into this if you
buy a saw.

FIGURE 8.26 The business end of a table saw.

Lathe
I cover lathes in greater detail in Chapter 9, “Ultrasonic Detection,” but here’s an overview:
They’re powered mills (see Figure 8.27) that rotate pieces of wood or metal, and you use
lathe chisels to work the material as it turns. You can make decorative table legs with a

ptg16605960

Working with Wood
207

lathe, for instance. They’re also another dangerous item in the woodshop, because the
rotating spindle can wrap up hair and sleeves instantly, with an injury or fatality possibly
in store.

FIGURE 8.27 A lathe rotates a piece of wood, allowing you to work it with
chisels.

Sander
Smoothing out rough-cut wood involves using a disk or belt sander—or like the one in Figure
8.28, both at once! As with most woodshop tools, the available options cover a wide gamut
of price and function, and you’ll have to choose the ideal one based on your unique needs.

ptg16605960

CHAPTER 8: Tool Bin
208

FIGURE 8.28 A combination disk and belt sander allows you to smooth wood in
two different ways.

Working with Plastic
Plastic can also be a very versatile medium for maker projects. It can be melted and
extruded, sawed and drilled. You can print objects in plastic (see Figure 8.29) from 3D
designs on your computer. You can bend it with a heat gun, as you might have read about
in Chapter 4, “Setting Up Wireless Connections.”

FIGURE 8.29 These robot arms were 3D-printed out of plastic.

ptg16605960

Working with Plastic
209

It can also be cut into perfect shapes with a laser cutter. The laser loves acrylic! When used
with the correct settings, the laser slices through perfectly, leaving polished edges.

However, you already read about laser cutters a million times in this book. What else can
you do with plastic? The following sections cover some other ways you can play with the
material.

3D Printers
One of the most unique and exciting developments in the realm of working with plastic
are 3D printers (see Figure 8.30), which extrude molten plastic in precise paths, similar to
the way CNC mills and laser cutters follow paths. However, where those tools cut away
material, the 3D printer adds it. The printer creates 3D objects by extruding layer after layer
of plastic until the object is formed.

FIGURE 8.30 A Cupcake CNC 3D printer, manufactured by MakerBot Industries.

It used to be that 3D printers were the domain of successful design studios and industrial
design shops. However, in the past five years, hobbyist 3D printers have been developed
and have spread around the world, costing far less—but featuring inferior quality—than the
professional models.

One of the most successful companies selling 3D printers is MakerBot Industries
(makerbot.com), which created the Cupcake CNC printer you see in Figure 8.30. MakerBot

ptg16605960

CHAPTER 8: Tool Bin
210

almost singlehandedly turned 3D printing into a phenomenon that ordinary folks have
heard about. Thousands of makers, teachers, and industrial designers have desktop 3D
printers on their desks, and as each generation of printer gets a little bit better, look to see
the technology become even more popular.

LEGO
Why go to the trouble of printing a part if you already have a bunch of similar parts sitting
in your LEGO bin (see Figure 8.31)? LEGO bricks and beams have a lot of factors in their
favor:

■ Ubiquity—How many of us have owned, or still own, bucketsful of LEGO bricks? This
means that if you needed to, you could probably build yourself a project box or support
framework with what you have lying around.

FIGURE 8.31 A LEGO “keytar” with an Arduino and Bricktronics shield
controlling it.

■ Durability—LEGO bricks are molded out of ABS plastic, pretty much the best consumer-
grade plastic around.

■ Robotics—The LEGO Group takes its robotics kits seriously, and many engineering and
robotics curricula start their instruction with LEGO robotics. With motors, wheels, and
sensors galore, it’s hard not to be tempted.

ptg16605960

Working with Plastic
211

■ Add-Ons—Many third-party companies have developed products that can add function-
ality to LEGO robotics. For instance, Wayne and Layne (wayneandlayne.com) have built
an Arduino shield with LEGO-compatible plugs, allowing you to control your LEGO
robot with an Arduino.

Sugru
I’ve specified Sugru (see Figure 8.32) a few times in this book. To recap, it’s a plastic
modeling clay that sticks to everything and cures hard in 24 hours. You can use it to glue
two things together, to reinforce or patch broken things, and to add rubber padding to
tool handles. There are even makers who mold Sugru into rubber parts for their robots. An
assortment of eight packets of Sugru costs $18 plus shipping.

FIGURE 8.32 Sugru comes in a variety of colors.

Vacuum Former
One clever way to shape plastic is to heat it, then suck it down with a vacuum so that it
hugs the shape of another object. When the plastic cools, it keeps the shape of the object.
The resulting plastic shells can be painted, used as casting molds, and more. A vacuum
former, seen in Figure 8.33, is a machine designed to both heat plastic as well as to form it.

ptg16605960

CHAPTER 8: Tool Bin
212

FIGURE 8.33 A vacuum former heats plastic and then uses a vacuum to force
the material to conform to the shape of the object being duplicated.

Extruder
An extruder (see Figure 8.34) heats plastic and forces it into molds. To make it work, you
must have a mold already made; this can be a challenge in itself. You heat up plastic pellets
until they’re molten, and then force the plastic into the mold, where it rapidly cools. Have
you heard of a Mold-A-Rama machine? It’s a coin-operated, plastic-molding machine that
works much the same way as an extruder.

ptg16605960

Working with Plastic
213

FIGURE 8.34 An extruder melts plastic pellets and squirts the liquid into a mold.

Tamiya
A Japanese hobby company, Tamiya, builds plastic robot parts such as the tank tracks
in Figure 8.35. Using Tamiya (as well as other plastic robot sets) radically reduces the
amount of time it takes to concept and build a robot. Want a gearbox without the hassle of
designing and troubleshooting one? Go Tamiya.

ptg16605960

CHAPTER 8: Tool Bin
214

FIGURE 8.35 This Tamiya tank tread kit offers a pre-made solution to designing
your own.

Working with Metal
Although it’s more intimidating than working with either wood or plastic, working with
metal (see Figure 8.36) can be extremely rewarding as well as offer more durable results
than those other materials. In this section, you’ll learn about a number of metalworking
tools.

ptg16605960

Working with Metal
215

FIGURE 8.36 A metal shop’s welders stand ready.

Plasma Cutter
Laser cutters are great for burning through wood and plastic, but metal? Not so much—
consumer-grade lasers simply aren’t powerful enough to cut through metal. The solution is
a computer-controlled cutter that uses plasma, or really hot gas, to burn through the metal
(see Figure 8.37). If you want to precisely cut metal, this tool is for you.

NOTE
Plasma Cutting Options

Note that some plasma cutters are hand-held while others use motors for control.
Use the right tool for whatever project you’re working on.

ptg16605960

CHAPTER 8: Tool Bin
216

FIGURE 8.37 A plasma cutter uses an arc of white-hot plasma to cut through
metal.

Band Saw
Just as you have band saws in the woodshop, you’re likely to encounter a metal-cutting
band in a metal shop (see Figure 8.38). The saw’s blade is horizontal and is lifted by hand,
then lowered down on to whatever is being cut. Meanwhile, a lubricant is sprayed on the
cutting surface to keep the saw blade from overheating. The band saw is mostly for cutting
through rods and thin pieces of metal, rather than thick ones.

ptg16605960

Working with Metal
217

FIGURE 8.38 The metal-cutting band saw is great for cutting through thin pieces
of metal.

Grinder
Grinders are great for removing small amounts of surface material on a piece of metal (see
Figure 8.39). Corrosion or paint, for instance, could be ground off. Grinders can also be
used to shape metal, or even to cut through it.

ptg16605960

CHAPTER 8: Tool Bin
218

FIGURE 8.39 Grind the surface of a piece of metal to get rid of imperfections.

Welder
The classic metal-worker’s tool, welders are great for bonding two pieces of metal together.
There are three major types:

■ Stick welder—Also known as SMAW (Shielded Metal Arc Welding), this is the most
basic of modern welding techniques. The welder creates an electric arc between the
electrode and the surface to be welded. A consumable electrode burns and gives of
vapors of inert gas, which protects the integrity of the weld.

■ MIG welder—MIG stands for “metal inert gas” and it works by generating an arc of
electricity on a joint and spraying it with inert gas (hence the name) to keep the joint
free of atmospheric gas, which forms oxides and ruins the strength of the joint. The
welder’s gun automatically advances a spool of wire to form the weld. See Figure 8.40.

ptg16605960

Working with Metal
219

FIGURE 8.40 A MIG welder awaits the next use.

■ TIG welder—This kind of welding uses a non-consumable tungsten electrode (TIG
stands for Tungsten Inert Gas Welding) to protect the weld area with inert gas. Like the
MIG, the TIG also advances metal wire to fill in the gaps of a weld.

Aluminum Building Systems
Sometimes you don’t need to cut, shape, or weld metal in order to use it. Aluminum
building sets allow you to build structures much the same way LEGO can, but with a great
deal more strength—but they are also more expensive. The following sections cover some of
the most commonplace sets.

80/20
The beams professionals use are 80/20—they are even called the Industrial Erector Set. The
80/20 (8020.net) beams come in a multitude of sizes and configurations, depending on

ptg16605960

CHAPTER 8: Tool Bin
220

where along the beam you want to connect other hardware such as other chassis parts, like
the CNC router shown in Figure 8.41.

FIGURE 8.41 A CNC router’s 80/20 beam has plastic chassis parts screwed
into its T-slots.

The critical architecture of the 80/20 beam is the T-slot, which is a T-shaped groove along
the length of the beam. Nuts and bolts can be attached anywhere along the slot, enabling
you to build impressive structures out of multiple beams.

MicroRAX
A smaller but nevertheless very useful aluminum T-slot system, MicroRAX (see Figure 8.42)
was invented in a Seattle warehouse by identical twin brothers. You can buy the beam from
their store (microrax.com) or you can buy them from SparkFun. MicroRAX beams are much
slimmer than 80/20, with a width of 1 cm (.4") versus 80/20’s 25mm (1") and 40mm
(1.5") widths. They’re also much cheaper!

ptg16605960

Working with Metal
221

FIGURE 8.42 A MicroRAX framework supports a stepper motor.

OpenBeam
What if you made a T-slot system that followed the open source hardware ethos? That’s
the idea behind Open Beam (see Figure 8.43), which is designed for ease of use. The slots
 are 100 percent compatible with hardware-store nuts and bolts, while the slot’s width
accommodates 3mm Baltic birch panels. As an open source company, OpenBeam shares
all technical details of its product so you can contribute to an ecosystem of hacks and
innovations. You can buy OpenBeam from Adafruit, among other stores.

ptg16605960

CHAPTER 8: Tool Bin
222

FIGURE 8.43 A variety of OpenBeam girders and attachments. Credit:
OpenBeam.

Makeblock
The Makeblock company has taken a different approach than the T-slot systems, creating
a complicated array of beams, gears, connectors, and wheels. Makeblock (see Figure 8.44)
was conceived as the ultimate robot creation kit, and features many clever improvements
over the T-slot guys, such as making the slots threaded so screws can be inserted without a
nut. You can buy Makeblock at Seeedstudio.com—note the third “e”!

ptg16605960

Working with Metal
223

FIGURE 8.44 A Makeblock robot chassis takes form.

VEX
An educational aluminum building set, VEX (shown in Figure 8.45) is a building set like
Erector with screw-hole studded metal beams held together with screws. It has its own
custom microcontroller system including a wireless remote control system. You can buy VEX
at vexrobotics.com.

ptg16605960

CHAPTER 8: Tool Bin
224

FIGURE 8.45 A VEX robot with a battery pack and wireless receiver mounted on
top.

Maker Spaces
By now you’re sure to be thinking to yourself how difficult it is to have all those tools. Yes,
many of them are individually cheap, but when you need a whole bunch of them, it can
start to get expensive. Then there are those “big ticket” items such as laser cutters, which
can cost upwards of $10,000 even for a basic model.

One solution might be a maker space (also often called a “Hackerspace”), a relatively recent
phenomenon where local groups of makers rent out warehouses and pool their tools.

The Hack Factory (see Figure 8.46) in Minneapolis, Minnesota, has a full metal shop, a full
wood shop, a craft area, and an electronics lab that also serves as the space’s classroom.
There are about 120 members, and recently (as I write this) the board approved the
purchase of a laser cutter.

ptg16605960

Maker Spaces
225

FIGURE 8.46 The Hack Factory in Minneapolis, complete with member-made
siege machinery.

Hackerspaces are well known for their role as educational organizations. Most spaces hold
regular classes (see Figure 8.47) on lockpicking, sewing, welding, and, of course, Arduinos.

ptg16605960

CHAPTER 8: Tool Bin
226

FIGURE 8.47 A hackerspace’s Arduino class generates recruits and money for
the organization. Credit: Paul Sobczak.

The classes offer an intriguing entry into the maker arts for those not ready, or who simply
aren’t interested in becoming full hackerspace members. At the same time, many attendees
end up joining anyway, often signing up giddily the same day as their class.

One side benefit of offering classes, beyond recruitment, is that they can make much-needed
money for the organization. Frequently the money earned (classes often cost anywhere from
$25 to $60) is earmarked for class-related purchasing needs; for example, using proceeds
from a metalworking class to buy welding rods for the shop.

Classes aren’t the only way to learn maker skills. One of the best ways is to collaborate with
other makers to build a big project (such as the catapult shown in Figure 8.48) no single
person could handle.

ptg16605960

Maker Spaces
227

FIGURE 8.48 Hackerspace members assemble a catapult. Credit: Pat Arneson.

Maybe you have an idea for a project and don’t know how to build it. You could convince
another person with more skills and a little time to help you with your creation. Usually
everyone brings something to the table; however, beginners are usually welcome as long as
they’re super interested and soak up information.

Often, special team events such as hardware hacking competitions will cause a small group
of makers to band together to build a project in just a few hours or days. Usually the
contests stipulate certain rules, such as only using electronics from the hackerspace’s junk
pile.

Still other groups band together to build products to sell, often designing electronic kits for
other makers. Some of these creations end up a success, and their creators get to quit their
day job and go “maker pro.”

How much does this cost? A month’s membership at the Hack Factory is $55, and gets you
a key fob so you can access the building any time of the day or year. Other spaces are more,
with some memberships upwards of $125 a month. Nevertheless, if you’re bemoaning a lack
of tools, you can do a lot worse than joining your local maker space.

ptg16605960

CHAPTER 8: Tool Bin
228

NOTE
Learn More About Maker Spaces

Looking for a resource about maker spaces? I’ve written a book called Hack This: 24
Incredible Hackerspace Projects from the DIY Movement (Que 2011, ISBN 978-0-
7897-4897-3) that describes two dozen hackerspaces and a project each of them is
working on. It was the very first book on hackerspaces and one of the few out there
that describes the culture of these groups and shares how to create your own. Check
it out!

If you want to learn more, visit http://hackerspaces.org/wiki/—this is the central
clearinghouse of information on the hackerspace movement.

Software
Not all tools are physical! Sometimes software can be a great help in designing electronic
circuits and creating laser-cutting files. Of course, the following resources are but a fraction
of everything that’s out there, but the ones mentioned in this section are some of the best.

GIMP
The GIMP (see Figure 8.49) stands for GNU Image Manipulation Program, and it’s a free
and open-source version of the classic graphic design tool, Adobe Photoshop. It offers
versions for PC, Mac, and Linux, and the menus and options are designed to resemble those
of Photoshop. You can learn more about this program at gimp.org.

http://hackerspaces.org/wiki/

ptg16605960

Software
229

FIGURE 8.49 The GIMP is a free and open-source image manipulation program.
Credit: Adam Wolf.

Inkscape
If the GIMP is the free and open-source Photoshop, then Inkscape is the equivalent to
Adobe Illustrator (see Figure 8.50). It allows you to design and manipulate vector graphics,
which is invaluable for generating CNC toolpaths. Files are saved as SVG (scalable vector
graphics) formatted files, which is a format that most vector art programs, including
Illustrator, can open.

FIGURE 8.50 Inkscape allows you to create and edit vector paths. Credit:
Matthew Beckler.

ptg16605960

CHAPTER 8: Tool Bin
230

Fritzing
You’re already familiar with Fritzing (see Figure 8.51), or at least its output. Nearly every
wiring diagram in this book was generated by that program. In essence, it’s the ultimate
computer-based tinkerer’s tool. It consists of a library of parts that can be dragged and
dropped to create wiring layouts, and you can even output your design as a Gerber, the
de facto format for generating printed circuit boards. That said, Fritzing is in beta, which
means that it’s not considered ready for official release. Nevertheless, a lot of people use it
all the time.

FIGURE 8.51 Fritzing makes complicated wiring diagrams easy to understand.

KiCad PCB Layout Software
A more sophisticated and professional software for laying out electronic circuits, KiCad
(see Figure 8.52) is a free and open-source program much like Inkscape and the GIMP are.
KiCad’s focus is on designing printed circuit boards for production. This is how it works:
Suppose you have created a circuit and want to make a printed circuit board (PCB) out

ptg16605960

Software
231

of it. You go into KiCad, which lets you design a circuit board, route all the connections,
generate Gerber files, and output a bill of materials. It more or less offers the same
functionality as professional software, but doesn’t cost a dime.

FIGURE 8.52 KiCad helps you build printed circuit boards. Credit: Adam Wolf.

MakerCase
You’ve seen a lot of laser-cut enclosures in this book. I created them in Adobe Illustrator
because that’s what I’m accustomed to using. However, what do you do if you want to
create a nice laser-cut box and don’t have access to a vector art program? One suggestion
might be MakerCase.com, a website that generates box vectors for you so you can laser-cut
all the parts (see Figure 8.53). All you do is enter your box dimensions into the site and click
on a variety of options to create a box. You then download the vectors from the website.
You’re ready to cut out your box!

ptg16605960

CHAPTER 8: Tool Bin
232

FIGURE 8.53 MakerCase generates the vectors for laser-cutting project
enclosures.

Electronics Tools and Techniques
This is an electronics book, so it’s only fair to include electronic tools in the tools chapter.
Let’s begin with that most useful of all tinkerer’s assistants, the multimeter (see Figure
8.54). I then cover a couple of other non-Arduino microcontrollers as well as Arduino
add-on boards, how to salvage components from junk consumer components, and a bunch
of other fun stuff.

ptg16605960

Electronics Tools and Techniques
233

FIGURE 8.54 A multimeter is an invaluable tool for hardware hackers.

Multimeters
I’ve mentioned multimeters a lot in this book, but how exactly do you use one? Figure 8.55
explains the various functions of a typical low-end multimeter. Why just low end? Because
the more complicated ones could have an entire chapter devoted to them and you still
would barely understand anything about them. Let’s focus on an easy one:

ptg16605960

CHAPTER 8: Tool Bin
234

FIGURE 8.55 A meter can be surprisingly complicated, even a basic one.

 a. LCD screen, displaying up to four characters.

 b. Function selection switch. You simply turn the knob to whatever function you want.

 c. DC voltage. Change the switch to whatever value is closest to the value you’re
measuring. For instance, if you’re testing a 12V battery, change it to 20V. Put one
lead on the positive terminal of whatever you’re measuring, and the other lead on the
negative terminal.

d. AC voltage. This works the same way as DC voltage. I use this meter to test outlets at
home, and I set it to 200 for a 110VAC measurement.

A

H

B

I

C

J D

K

E

F

G

A

B

C

D

ptg16605960

Electronics Tools and Techniques
235

e. DC amps. Measuring amperage with a cheap meter like this one is tricky. You have to be
very careful or you could ruin your meter. If you look at the selections here, you see the
range goes from 200 milliamps to 200 microamps. A fuse in the meter protects it within
this range, so if the amperage of the item you’re testing exceeds 250 microamps, it will
instantly blow.

f. 10 amps. You can use this setting to measure up to 10 amps. However, unlike the
current measurement I covered in callout E, this setting is unfused, so you have to be
quite careful. You can only test for up to 10 seconds at a time, waiting 15 minutes
between tests. If this seems ridiculous, remember that the DT-830B is dirt cheap ($10)
and can’t be expected to be very robust.

g. Terminal jacks. A meter needs test leads to do most of its functions. There are three
jacks; plug your black lead into COM and your red lead into either the top jack if you’re
measuring 10A, or the middle jack if you’re doing anything else.

h. Transistor checker. This blue plug, called an hFE socket, accommodates transistors.
To test one, turn the knob to “hFE” and insert the leads of the transistor into the blue
terminal based on what kind of transistor it is.

 i. Resistance checker. Want to know the value of that mystery resistor? Use this setting.
Again, choose the value closest to the value you’re testing.

j. Power. Turn the knob to this setting to shut it down.

 k. Connectivity tester. Touch your test leads to two parts of a circuit; if they’re connected,
a built-in buzzer sounds.

Harvesting Electronics
You know that old Speak & Spell in the basement? Chances are it has components that you
can yanked out and repurpose. The same goes for old fax machines, scanners, CD players,
and other pieces of electronic junk you might have lying around.

I recently broke down an iRobot Scooba (see Figure 8.56), an autonomous mopping
robot that wanders around your kitchen floor, mopping and scrubbing while you’re
relaxing. In addition to the expected motors and pump, the Scooba had some fascinating
components such as optical proximity sensors, which detect walls and IR beacons and steer
the Scooba away.

E

F

G

H

I

J

K

ptg16605960

CHAPTER 8: Tool Bin
236

FIGURE 8.56 A broken Scooba floor-mopping robot gets broken down for parts.

Breaking down electronic junk for parts can be a lot of fun. Not only can you score cool
components, but you can theoretically hack the gadget to do something different. For
instance, you could swap in one sensor for another, or use a potentiometer instead of a
resistor. This kind of hacking is called circuit bending, and the term is most commonly used
when talking about cool audio hacks, such as making your talking teddy bear use a deep
and foreboding voice.

One obstacle to breaking open an old piece of electronics is that sometimes—actually
usually—the manufacturer uses obscure “security” screws such as hex, Torx, or triangle
to stymie…well, who knows? Maybe they use them so kids don’t wreck their toys and the
company doesn’t get inundated with emails from angry parents. One solution is to get every
single driver bit imaginable, such as the set shown in Figure 8.57 (similar to Amazon SKU
B000PLZJFK). It has a wide array of specialty bits, many of which you’ll probably never use!
Nevertheless, it’s a sweet feeling when you suddenly realize you have all the bits you need to
open up that broken toy.

ptg16605960

Electronics Tools and Techniques
237

FIGURE 8.57 This security bit set contains more than 100 different sizes and
configurations of driver bit.

Remote control cars have motors and wheels, of course, and sometimes rechargeable
battery packs and assorted switches. Best of all, if you can salvage the RC receiver and the
controller still works, you could potentially add that functionality to another robot. Old
tape players and boomboxes have speakers, motors, and often have cool switches that
could be nabbed. Other products have piezos, battery terminals, and reusable enclosures. I
once broke down a flatbed scanner and got a couple of nice stepper motors as well as some
great gears and drive belts. It was a good haul!

Unfortunately, most modern electronics involve surface mount components, really tiny
electronic parts that are basically printed onto circuit boards by machines because human
fingers are too big and clumsy. What this means for you is that salvaging components is
much more difficult because they’re really small. At the same time, if you do want to, there
are ways to soften the solder on those boards so the components can be scooped up.

ptg16605960

CHAPTER 8: Tool Bin
238

Electronics Marking
If you find a mystery electronic part somewhere, how do you tell what it does? Sure, an LED
looks different than a tilt sensor, but sometimes two radically different components look
 nearly the same, especially when you talk about integrated circuits, which all look like black
lozenges. Even if you can recognize the component type, you still have to discern which
specific part it is, because two transistors could behave differently, for instance.

The following sections cover some ways to identify which part is which.

Part Numbers
The easiest way to identify a component is to find the manufacturer’s part number where it
is printed on the housing. Sometimes it has several numbers, like the L293D motor driver
chip pictured in Figure 8.58, and you have to discern the actual part number. In this case,
the L293D is obviously the part number and the rest is some internal reference for the
benefit of the manufacturer. Ultimately, all that matters is that you can figure out what
you have.

FIGURE 8.58 What part is this? Try Googling the numbers printed on the
housing.

Grab a component out of your parts bin and run an Internet search on all the numbers
you see printed on it. Chances are, one of the numbers will give you the results you’re

ptg16605960

Electronics Tools and Techniques
239

 looking for, such as a link to an electronic component seller’s website or the manufacturer’s
data sheet.

Datasheets
Electronic components are built for engineers, and engineers like to have access to every
possible bit of information so they can make a decision about which part to specify for a
project. When an engineer is looking for information on a part, he or she downloads a PDF
datasheet, like the one shown in Figure 8.59.

FIGURE 8.59 The datasheet of a TIP120 transistor gives engineers what they
need to use the component.

ptg16605960

CHAPTER 8: Tool Bin
240

You’ll start collecting these sheets, more out of necessity than any requirement. You’ll
need them to understand which terminal does what, or to get a sense of the component’s
engineering tolerances. More esoterically, there’s a whole bunch of information only an
electrical engineer would even understand, let alone find useful.

Datasheets aren’t just for individual components. Sometimes you’ll see them for assemblies
such as pre-soldered breakout boards packing a bunch of different parts. For instance, Evil
Mad Scientist Laboratories’ Three Fives Kit (P/N 652) comes with a lushly detailed spec
sheet so you can delve into every aspect of the kit.

Resistor Color Bands
Resistors are tricky because there are dozens of values of them, as well as different
tolerances and configurations. The best way to determine a resistor’s rating is to look at the
colored stripes on the housing. Grab a resistor and look at it. You’ll see either four or five
colored bands, like on the 470-ohm resistor in Figure 8.60.

FIGURE 8.60 What do a resistor’s stripes mean?

This is how it works. Looking at a resistor, you’ll see four bands plus a fifth band, often
slightly offset from the others. This one usually has a silver or gold band. That band belongs
on the right as you read the resistor.

Each color has a number associated with it:

Black = 0

Brown = 1

Red = 2

Orange = 3

Yellow = 4

Green = 5

Blue = 6

Violet = 7

Gray = 8

White = 9

ptg16605960

Electronics Tools and Techniques
241

The first two bands on a four-band resistor are the base value. So in Figure 8.60, the first
band, yellow, is 4 and the violet band is 7. The third band is a multiplier. That band’s
numerical value is actually the number of zeroes added on to the 47. Because brown stands
for 1, the resistor’s value is 470 ohms. If the third band had been orange, it would be a
47,000-ohm resistor.

The fourth band represents the tolerance of the component. Resistors have a tolerance,
or “wiggle room” with regard to how much resistance they offer, and in projects where
the resistance has to be precisely calibrated, you’ll want to use a component with a low
tolerance. Most resistors you’ll find have a gold or silver fourth band, which represent 5
percent and 10 percent tolerance, respectively. In the case of the 470-ohm resistor you’ve
been reading about here, the gold band means the actual value might actually fall within the
range of 447 to 494 ohms.

How do you keep all these colors memorized? Neophyte engineers and makers use
mnemonics, or memory aids, to keep the color bands in order. Several mnemonics are
out there (you can find them on Wikipedia), but most of them are offensive or (worse)
unmemorable. Here’s one that you can memorize, and the first letter of each word
represents each color of the resistor rating system, in order: bad beer rots out your guts but
veggies go well.

Schematic Symbols
Electronic schematics, the way engineers draw out circuitry, seems complicated (see Figure
8.61), but it’s actually based on a finite number of elements pieced together.

FIGURE 8.61 John Wilson’s Stella Amp in schematic form. Credit: John Wilson.

Figure 8.62 shows you some of the more commonplace symbols.

ptg16605960

CHAPTER 8: Tool Bin
242

FIGURE 8.62 Here are some commonplace electronic components.

 a. Capacitor

 b. Resistor

 c. Switch

 d. Op amp

 e. Transistor

 f. Diode

g. LED

These are good to learn because many old-time books use only schematics and not photos
to describe a circuit.

The Next Chapter
In Chapter 9, “Ultrasonic Detection,” you’ll learn about ultrasonic sensors and how you
can use them for your projects. You’ll also build a fun cat toy that detects when your pet is
nearby and plays with her!

A

A

B

B

C

C

D

D

E

E

F

F

G

G

ptg16605960

9
Ultrasonic Detection
This chapter delves into the workings of the ultrasonic sensor, an electronic module that senses the
same way a bat does—with sonar. The sensor sends out pulses of inaudible sound, and then listens
for them to bounce back, computing the distance traveled.

Ultrasonic sonars make excellent rangefinders, but can also be used to detect any kind of obstruc-
tion within its sensing area. Take Steve Hoefer’s Tacit project (grathio.com/tacit; see Figure 9.1). It’s
a sonar for visually impaired people. It features a pair of Ping ultrasonic sensors paired with small
servos that squeeze the wearer’s wrist when an obstruction is detected.

FIGURE 9.1 The Tacit glove squeezes when it detects an obstruction.
Credit: Steve Hoefer.

After brushing up on sonar, you’ll create a fun project with the technology, creating a cat’s
scratching post that knows when the pet is nearby and tries to play with it using a motorized
dangly toy.

ptg16605960

CHAPTER 9: Ultrasonic Detection
244

Lesson: Ultrasonic Detection
The sonar used for the cat toy project detailed in this chapter is the MaxBotix LV-EZ1
Ultrasonic Rangefinder, a modestly priced but robust sensor that is useful for all sorts of
applications, such as range finding and detecting objects (such as panes of glass or volumes
of water) that might give a light sensor some trouble.

The way it works is that the ultrasonic module can both send out ultrasonic pings,
usually about 20 per second, while simultaneously listening for sound waves bouncing
back—you can see this in Figure 9.2. As mentioned, this is pretty much exactly how a bat’s
sonar works.

FIGURE 9.2 An ultrasonic sensor detects an object by bouncing a sound wave
off of it.

Of course, this technique isn’t perfect because certain textures or shapes won’t reflect sound
back accurately. A soft object, such as a cat or a pillow, might muffle the sound waves and
not send back an accurate range, whereas a sharply angled surface might deflect the pings.

How far does the sensor detect objects? How wide a field will return an accurate result?
How small an object can be seen? Uhhhhhhh… answering these questions is not so easy.
Many different models of sensor are available, and they all have different sensing angles,
ranges, and resolutions. The Parallax Ping ultrasonic sensor, for example, claims a range of
3 meters, sensitivity down to 2 cm, and a narrow angle of detection. The MaxBotix EZ-0 has
a range of 6 meters and its sensing area is very wide, making it great for monitoring a wide
area; by contrast, the MaxBotix EZ-4 has a very narrow beam, requiring that an object pass

ptg16605960

Lesson: Ultrasonic Detection
245

through the beam to be detected. Most beginners choose the EZ-1 because its specifications
put it nicely in the middle of those extremes.

Other sensors might detect further, or have a wider angle, or be able to spot smaller objects.
Be sure to check a sensor’s spec sheet before you buy it, so you know what you’re getting!
Finally, if you’re relying on your sonar for accurate rangefinding, you should also be aware
that temperature variation affects sensor performance.

Ultrasonic Sensor Applications
Countless uses exist for an ultrasonic sensor. Here are some fun examples:

■ Determine the water remaining in a tank by directing the sound beam down at the
surface of the liquid and computing the remaining quantity based on how high the
water level is in the tank.

■ Create an automated store display or kiosk that activates when a customer comes near.
■ Build a proximity alarm for the back of your car, buzzing when you back up too close to

something. Even better, it could tell you exactly how much space you have to spare in
those tricky parallel parks!

■ Design a model train layout that accurately positions the train and switches tracks and
opens gates accordingly.

An ultrasonic sensor is a cool gadget and great for a lot of projects! For any creation
requiring accurate distance detection over short distances, ultrasonic is the way to go.

Mini Project: Make an Ultrasonic Night Light

Let’s do a quick and simple Arduino project involving the ultrasonic sensor by making a
light that turns on when you walk past it—in other words, a motion-activated nightlight (see
Figure 9.3).

ptg16605960

CHAPTER 9: Ultrasonic Detection
246

FIGURE 9.3 Seems simple? It is!

It probably won’t come as a surprise to you that this is a gross overuse of an Arduino—you
don’t actually need a microcontroller to trigger an LED with a sensor. That said, this book is
about Arduino, so you get what you get!

The way it works is that the sonar keeps its eye on the area (figuratively) and activates the
LED when someone walks by. You might doubt that a single LED would make an effective
nightlight, but a blue one casts a surprising amount of light! If you want, you can swap
in an LED module such as a ShiftBrite (SparkFun P/N 10075, mentioned in Chapter 6,
“Sensing the World”) or other LED module to really illuminate the area!

Ultrasonic Night Light Code
The code is designed for using a single LED; if you decide to use a ShiftBrite or other LED
module, you’ll have to change the code. See the code for the main project in Chapter 6 to
get an idea of how to do this.

ptg16605960

Project: Cat Toy
247

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

int led = 13;

void setup()

{

 pinMode(led, OUTPUT);

}

void loop() {

 int distsensor, i;

 distsensor = 0;

 for (i=0; i<8; i++) {

distsensor += analogRead(0);

delay(50);

 }

 if (distsensor < 500) {

digitalWrite(led, HIGH);

delay(30000); // wait for 3 minutes, then recheck

 }

}

Project: Cat Toy
The project for this chapter involves creating a fun cat toy that interacts with your friendly
local feline. It consists of a scratching post with a motorized cat toy that dangles down,
giving your friend something to bat at when she’s not sharpening her claws on the post (see
Figure 9.4).

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 9: Ultrasonic Detection
248

FIGURE 9.4 This chapter’s project helps you make a fun toy for your favorite kitty.

You create the enclosure for this project—the scratching post—by creating a wood cylinder
on a lathe, which is a machine that rotates a piece of material and allows you to shape it
using handheld tools. It’s an awesome machine to learn to use, and you’ll find all sorts of
uses for it.

By the way, the kind-hearted among you might be concerned that cats might be bothered
by the sonar’s pings. It turns out that the sonar is outside a cat’s hearing range, and cats
won’t be bothered by it.

Anyway, let’s get started!

ptg16605960

Project: Cat Toy
249

PARTS LIST
This is a simple build with relatively few parts. This is what you’ll need:

■ Arduino Uno
■ USB cable for Arduino with wall adapter, or you could use a wall wart
■ Jumpers
■ Heat shrink tubing
■ MaxBotix LV-EZ1 Ultrasonic Rangefinder (Adafruit P/N 172; you can use other

makes and models of sonar)
■ Servo (I used a Hitec HS-322HD; see the nearby sidebar, “The Servo”)
■ Heavy wire (I used some welding rod, but anything on par with a wire coat hanger

will work)
■ Standoffs (I used 3/8" plastic standoffs, SparkFun P/N 10461)
■ L-brace (Home Depot P/N 339563)
■ #4 machine screw with washer and nut
■ #4×3/4" wood screws
■ #6×3/4" wood screws
■ #6×2" wood screws
■ Wood glue
■ Scrap wood for enclosure (I used 1×6 pine)
■ Your cat’s favorite pom-pom style toy
■ Drill and drill bits (7/64", 3/16", 1/2", and 1")
■ Lathe
■ Table saw
■ Band saw
■ Glue gun
■ Hole saw
■ Needle-nose pliers

THE SERVO
Chapter 13, “Controlling Motors,” covers a lot more about cool motors—including
servos—that you can use in your projects. In the meantime, let’s learn about the
specific motor used in this chapter’s project.

The Hitec HS-322HD servo is a great all-purpose motor, the sort that you would buy
if you could have only one (see Figure 9.5). That said, you can have as many as you
want, so you might find the HS-322HD too slow, or too big, or not strong enough.
Every motor has a spec sheet that you can download, packed with all the info you
need to make a decision.

ptg16605960

CHAPTER 9: Ultrasonic Detection
250

FIGURE 9.5 The Hitec HS-322HD is a great all-around servo.

Here’s the scoop on the HS-322HD: It takes .19 seconds to rotate 60 degrees on
4.8 volts but only .15 seconds to go the same distance with a 6v power supply. It
has 41.66 oz/in of torque (the motor’s strength) on 4.8v and 51.38 oz/in on 6v.
What does that mean? Essentially, it means that the HS-322HD is middle-of-the-road
in many respects. If you want to get a faster servo, Hitec will sell you one twice as
fast: 0.9 seconds to go 60 degrees on 4.8v. Motors with more torque are available
as well.

Instructions
First, you’ll wire up the electronics, and then tackle the construction of the project’s
enclosure, which is made out of wood and resembles a cat scratching post.

The electronics are a cinch! Just wire up your Arduino, as you see in Figure 9.6.

1. Plug in the yellow wire of the servo to digital pin 9. The black wire plugs in to a free
GND pin. Hold off on the red wire; you’ll be doing something special with that one.

ptg16605960

Project: Cat Toy
251

FIGURE 9.6 Wiring up the cat toy is easy!

1 Servo’s yellow wire goes to digital pin 9 on the Arduino

2 Data wire from ultrasonic sensor goes to Analog 0 pin on Arduino

3 Ground wire from ultrasonic sensor goes to a GND pin on Arduino

4 Spliced wire connects the servo and the sensor to the 5V pin on the Arduino

2. Connect the data wire of the ultrasonic sensor (the purple wire in Figure 9.6) to the
Analog 0 pin, and connect the ground wire (shown as gray in Figure 9.6) to a GND pin.
You connect the orange wire in the next step!

3. The only tricky part of wiring up the Arduino is that both the motor and the sensor need
5V, and there is only one 5V pin on the Arduino. What do you do? You can create a
spliced wire (see Figure 9.7) by soldering three wires together, and then sealing it all up
with heat-shrink tubing (shown as a red wire coming from the servo and an orange wire
coming from the sensor in Figure 9.6). The single end goes into the Arduino’s 5V port,
while the other two connect to the ultrasonic’s and servo’s power pins.

1

2

3

1

2

3

4

4

ptg16605960

CHAPTER 9: Ultrasonic Detection
252

FIGURE 9.7 Splicing the wires.

The next section covers how to build the scratching post enclosure, and then you’ll put it all
together.

Enclosure
After you assemble the circuit, it’s time to add it to the enclosure. But you have to build the
enclosure first! To create the rounded shape shown in Figure 9.8, you use a lathe.

ptg16605960

Project: Cat Toy
253

FIGURE 9.8 You can sure make a beautiful cylinder on a lathe!

For this enclosure, forget the laser cutter! You’ll use old-school tech to build this enclosure
(refer to Figure 9.8) out of wood. You’ll cut out a bunch of rings of wood, glue them
together, and then smooth out the exterior using a power tool called a lathe. Here are the
steps:

1. Trace rings onto pieces of pine: I used a roll of tape as a template, as shown in Figure
9.9. This wood doesn’t have to be great; the stuff I used was scrap wood from someone
else’s project. For my cat toy, I used about a dozen rings each about an inch thick, plus
top and bottom plates.

ptg16605960

CHAPTER 9: Ultrasonic Detection
254

FIGURE 9.9 Tracing out the rings with a roll of tape.

2. Cut out the circles using a band saw. I suggest making straight cuts into the wood (see
Figure 9.10), because a band saw blade sometimes has trouble curving around a circle.

ptg16605960

Project: Cat Toy
255

FIGURE 9.10 Cutting out the circles on a band saw.

3. Cut out the inside of the rings using a hole saw (see Figure 9.11). I probably should have
cut out the insides before doing the outsides, because the circles wanted to spin around
on the drill! I ended up using a clamp to secure the disks after blistering my fingers.

ptg16605960

CHAPTER 9: Ultrasonic Detection
256

FIGURE 9.11 Cutting out the insides.

CAUTION
Don’t Drill Holes in Every Disk!

Be sure to leave a couple of your disks without holes because you need solid pieces
for the top and bottom.

4. Stack up the rings, reserving the two solid disks for the top and bottom. Arrange them
as neatly as you can, and glue them together, as shown in Figure 9.12.

ptg16605960

Project: Cat Toy
257

FIGURE 9.12 Glue the rings together to form the cylinder.

5. Clamp the stack of rings (see Figure 9.13) and let the assembly dry overnight. You
should probably try to make your stack a little neater than I made mine, but it doesn’t
have to be perfect—after all, the lathe’s job is to smooth it down.

ptg16605960

CHAPTER 9: Ultrasonic Detection
258

FIGURE 9.13 The stack doesn’t have to be perfect! The lathe will smooth it out.

6. Put the disk stack on your lathe (see Figure 9.14). This is where having solid disks at the
top and bottom come in handy. Use the lathe tools (see the later section, “Lathe 101”)
to smooth out the sides.

ptg16605960

Project: Cat Toy
259

FIGURE 9.14 Putting the glued stack on the lathe.

Fresh off the lathe, the stack of disks looks great! You can see a slight taper in the
middle of the cylinder, shown in Figure 9.15. I just pressed down on the tool a little too
much in the middle. I could have evened it out if it really bothered me, but it didn’t!

ptg16605960

CHAPTER 9: Ultrasonic Detection
260

FIGURE 9.15 All finished with lathing!

7. Cut off the top and bottom of the ring cylinder to put the electronics inside, as shown in
Figure 9.16, as well as to cut holes for the ultrasonic and the power supply.

ptg16605960

Project: Cat Toy
261

FIGURE 9.16 Cutting and drilling the cylinder.

8. Add the servo. This involves drilling a hole for the heavy wire that will dangle the cat
toy. Use a 3/16" bit and drill completely through the top disk. Then drill down about
a quarter inch with a wider bit—I used a 1/2" bit—to accommodate the servo’s hub,
which protrudes somewhat (see Figure 9.17). You’ll also want to drill the holes for the
hardware that connects the motor to the enclosure, and I used 1" bits for these. It’ll be
obvious where to drill these holes when you position the motor.

ptg16605960

CHAPTER 9: Ultrasonic Detection
262

FIGURE 9.17 Drilling the wire hole with an indentation for the motor’s hub.

9. Connect the heavy wire to the hub. In my case, I used hot glue but you might decide you
want a more robust attachment. You then thread the wire through the 3/16" hole you
drilled in the top and when it’s flush, attach it with the #4 × 3/4" wood screws and 3/8"
plastic standoffs, as shown in Figure 9.18.

ptg16605960

Project: Cat Toy
263

FIGURE 9.18 Attaching the motor with screws and stand-offs.

 10. Insert the ultrasonic sensor through the base of the cylinder and stick it through the 1"
hole you drilled (see Figure 9.19). I used hot glue to secure it; there are screw holes in
the sonar’s circuit board, but I found them to be fairly inaccessible.

ptg16605960

CHAPTER 9: Ultrasonic Detection
264

FIGURE 9.19 The business end of the ultrasonic sensor peeks out of the
enclosure.

 11. Attach the Arduino as shown in Figure 9.20. I used a hardware store L-brace to connect
the Arduino using a #4 machine screw. How do you connect a square to the inside of a
cylinder? Don’t— simply connect it to one end!

ptg16605960

Project: Cat Toy
265

FIGURE 9.20 Attaching the Arduino.

 12. After the motor is in place and everything is wired up, screw down the top (see Figure
9.21) with some 3/4" #6 screws. Do the same for the bottom.

ptg16605960

CHAPTER 9: Ultrasonic Detection
266

FIGURE 9.21 After the motor is in place, screw down the top.

 13. Make the base. I cut a 9" × 9" square of 1.25" MDF on the table saw, as shown in
Figure 9.22. It has a nice solid heft to it! Attach the cylinder to the base with the 2" #6
wood screws. One consideration to keep in mind as you do so is to be sure you don’t
accidentally drill into the screws used to connect the base to the cylinder. An easy way
to make sure this doesn’t happen is to drill into the middle of the base rather than the
edges. Don’t worry, you can’t run into the screws holding the L bracket to the bottom
disk because the wood is too thick!

ptg16605960

Project: Cat Toy
267

FIGURE 9.22 Connecting the cylinder to the base.

CAUTION
Look Out!

By the way, do you see that weird gouge in Figure 9.22? The table saw grabbed
the wood and flung it back at my head—fortunately, it missed! Working with wood
is dangerous; make sure you’re using your tools properly and are following all safety
precautions.

 14. Wrap the post in cloth so the cat can scratch on it if she gets bored with the pom-pom.
I used corduroy, which might not be the best material, but it looks great! Other options
might be carpet either glued or stapled to the wood or sisal twine wrapped around the
cylinder. I measured the post’s circumference with a flexible tape measure, and then its
height. I then cut out the corduroy with a pair of scissors (see Figure 9.23). I applied
wood glue to the post, and then wrapped the cloth around until it stuck. I used an
X-ACTO knife to cut out the holes for the ultrasonic and the power cord.

ptg16605960

CHAPTER 9: Ultrasonic Detection
268

FIGURE 9.23 Preparing to wrap the post.

 15. Twist a loop at the end of the heavy wire with a pair of needle-nose pliers and connect
the pom-pom to the loop. You’re finished!

 16. Find a cat to amuse (see Figure 9.24).

ptg16605960

Lathe 101
269

FIGURE 9.24 Kitties like it!

Lathe 101
A lathe (see Figure 9.25) is essentially a motor that rotates a piece of wood or metal on
its axis so that it can be worked on with a carving tool or sanded, polished, painted, or
anything else. Some lathes have an attachment allowing the inside of a cylinder to be bored
out; unfortunately for this project, the lathe I used doesn’t do that.

ptg16605960

CHAPTER 9: Ultrasonic Detection
270

FIGURE 9.25 A wood-turning lathe is a great tool for any workshop.

So, what use is it to spin something that you want to carve? Basically, you can use it to
make beautiful cylindrical objects such as table legs and candlesticks. Although many
different types of lathes are available, this discussion pertains to the classic woodworker’s
tool.

Here’s how to work an object on the lathe:

1. Prepare the item. If you can shape it reasonably smooth with hand tools, you’ll save
time on the lathe.

2. Connect the item to the lathe. You want it as centered as humanly possible. You can
either screw connector plates to the wood, which ensures that you have it perfectly
centered, or you can use a mandrel, sort of a tooth that pokes into the wood and
secures it.

3. Spin the item on the lathe, and work it with woodworking chisels (see Figure 9.26) until
it looks the way you want it.

ptg16605960

Lathe Safety
271

FIGURE 9.26 You use long-handled woodworker’s chisels to carve into the spin-
ning wood.

If you want to learn more about lathes and how to use them, I suggest doing a YouTube
search on “how to use a wood lathe” or something similar.

Lathe Safety
When using a lathe, follow these very important safety rules:

■ Make sure an experienced operator gets you “checked out” on the lathe; in other words,
someone has walked you through the machine’s functions.

■ Wear ear and eye protection whenever the machine is in use.
■ Make sure all the lathe’s adjustable parts are secured before you start the motor, and

the mandrel (if used) is firmly seated.
■ A lathe can bind up loose items such as hair and sleeves. This can potentially be fatal,

so keep your hair up and avoid free-flowing clothing such as ties and puffy sleeves.

ptg16605960

CHAPTER 9: Ultrasonic Detection
272

The Next Chapter
In Chapter 10, you’ll learn about ways to make cool electronic noises with your Arduino.
You’ll build a sweet handheld noisemaker that generates a multitude of crazy sounds.

ptg16605960

10
Making Noise
You can do a lot of crazy things with an Arduino, and one of them is making noise! All you really
need is a speaker wired in to a couple of pins, but you can add fun extras like buttons, knobs,
and sensors to modify the sound. In this chapter, you’ll examine a few ways you can generate cool
sounds with your Arduino, and then build a fun noisemaking toy (see Figure 10.1).

FIGURE 10.1 In this chapter, you get to build a cool noisemaker.

ptg16605960

CHAPTER 10: Making Noise
274

Noise in Electronics
People have been making electronic music ever since electronics were invented, and some of
the most adventurous and creative of these folks are ordinary people hacking at home.

Take the phenomenon of circuit bending, for instance. Circuit bending (see Figure 10.2)
involves modifying existing electronic noisemakers, such as a Speak & Spell toy. Circuit
benders dismantle the gadget and play around with the electronics to create cool sound
effects.

FIGURE 10.2 Mickey Delp tinkers with his circuit-bent caterpillar toy. Credit: Pat
Arneson.

One way they do this is by replacing a key resistor with a potentiometer, also known as
a variable resistor. Turning the potentiometer’s knob changes the resistance, and might
also change the way the toy sounds. Other tactics involve swapping in different capacitors,
adding timer microchips, and even adding an Arduino or other microcontroller for more
detailed control of the toy’s various effects.

Circuit-bending is not the only kind of electronic music, however. Setting aside professional
noisemakers as well as professional music applications, a lot of cool projects are still out
there. The basic premise of many of them is to generate a tone, while using manual input
like potentiometers and buttons to modify the sound.

Some of these projects are so successful that they’ve actually been turned into commercial
products, often in kit form, meaning that you have to assemble it yourself. Let’s look at a
couple of noisemaking projects that have been turned into products.

ptg16605960

Noise in Electronics
275

Thingamagoop
Austin, Texas-based circuit benders Bleep Labs created the Thingamagoop (see Figure 10.3).
It features switches, knobs, and a button, as well as a light sensor and LED antenna. The
Thingamagoop features sample and hold, arpeggios, noise, and bit crush effects.

FIGURE 10.3 The Thingamagoop looks cool and makes even cooler noises
(Bleeplabs.com, $120).

Tactile Metronome
Electronic kitmakers Wayne and Layne built the neat kit shown in Figure 10.4. You tap on
the piezo buzzer with your finger, and the microcontroller detects the vibration and records
the pattern you tap in. It then plays it back and allows you to change the tempo to suit
your mood.

ptg16605960

CHAPTER 10: Making Noise
276

FIGURE 10.4 Wayne and Layne’s Tactile Metronome follows the beat you set by
tapping on the buzzer (wayneandlayne.com, $24.95). Credit: Wayne and Layne.

LushOne Synth
Iain Sharp builds complex modular synthesizers, like the LushOne shown in Figure 10.5. You
can control it via a computer or musical keyboard, or even a joystick, variable resistor, or
ultrasonic sensor. Modular synthesizers have multiple effects on separate parts of the circuit
board (hence the name) and you can use patch cables to connect the various modules,
giving you a ton of customizable effects.

ptg16605960

Noise in Electronics
277

FIGURE 10.5 Iain Sharp’s LushOne synthesizer fits neatly inside this sweet trea-
sure chest enclosure (lushprojects.com, $105). Credit: Iain Sharp.

ATARI PUNK CONSOLE
The Atari Punk Console was born in 1980, a project by Forrest Mims originally
included in a Radio Shack booklet. It’s a simple noisemaker driven by two 555 timer
chips, one of which is set to output as an audio frequency oscillator, which creates
a wave-shaped analog signal, whereas the other chip outputs as a monostable
multivibrator—on and off—with both controlled by potentiometers. Together they
create a fun variety of electronic noises.

The Vibrati Punk Console, shown in Figure 10.6, was created by Iain Sharp of
Lushprojects.com. It’s a variant of the Atari Punk Console that adds a low-frequency
oscillator, which increases the noise and “dirtiness” of the sound.

ptg16605960

CHAPTER 10: Making Noise
278

FIGURE 10.6 The Vibrati Punk Console, shown here, is a variant of the APC.

Mini Project: Pushbutton Melody
Let’s jump in and make some noise with your Arduino! Pushbutton Melody plays a song on
a loudspeaker every time you press a button (see Figure 10.7). I programmed the song to
play “Ode to Joy” and boy, does it sound electronic!

ptg16605960

Mini Project: Pushbutton Melody
279

FIGURE 10.7 This simple project takes care of all of your electronic “Ode to Joy”
needs.

PARTS LIST
This is a quick project so you only need a few things!

■ A speaker. I suggest the 3", 8-ohm, 1-watt speaker from Adafruit:
http://www.adafruit.com/products/1313

■ A pushbutton (SparkFun P/N 97)
■ A resistor; 220-ohm should do the trick
■ Some jumpers and a breadboard

Instructions
This project is pretty easy to assemble. Just follow the wiring diagram shown in Figure 10.8
to see where to place the wires.

http://www.adafruit.com/products/1313

ptg16605960

CHAPTER 10: Making Noise
280

FIGURE 10.8 Wire up your Arduino as you see here.

 1 Plug an 8-ohm speaker in to pin 8 (the red wire in Figure 10.8).

 2 Plug the GND (black wire) from the speaker to the Arduino.

 3 Connect the 5V port of the Arduino to one lead of the pushbutton. This is the green
wire in Figure 10.8.

 4 Connect the other lead of the pushbutton to GND, via the resistor (the blue wire).

 5 Connect the pushbutton to pin 2 on the Arduino (yellow wire).

Pushbutton Melody Code
Although perhaps not very elegant, this code should get you started on learning how
to make noise with your Arduino. Why do I say it’s not elegant? Do you see the Tone()
functions? I use a whole bunch of them rather than using a For loop, which I describe in
Chapter 5, “Programming Arduino.” In this case, I kept the sketch really obvious so you
could mess around with it.

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

1

2

3

4

5

1

2

3

4

5

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

Mini Project: Pushbutton Melody
281

const int buttonPin = 2;

const int ledPin = 13;

int pbState = 0;

void setup() {

 pinMode(buttonPin, INPUT);

}

void loop(){

 pbState = digitalRead(buttonPin);

 if (pbState == HIGH) {

tone(8, 247, 300);

delay(500);

tone(8, 247, 300);

delay(500);

tone(8, 262, 300);

delay(500);

tone(8, 294, 300);

delay(500);

tone(8, 294, 300);

delay(500);

tone(8, 262, 300);

delay(500);

tone(8, 247, 300);

delay(500);

tone(8, 220, 300);

delay(500);

tone(8, 196, 300);

delay(500);

tone(8, 196, 300);

delay(500);

tone(8, 220, 300);

delay(500);

tone(8, 247, 300);

delay(500);

tone(8, 247, 500);

delay(650);

tone(8, 220, 200);

delay(250);

tone(8, 220, 200);

delay(250);

 }

}

ptg16605960

CHAPTER 10: Making Noise
282

Project: Noisemaker
Having got our feet wet with the Pushbutton Melody, let’s proceed to this chapter’s full
project: a Noisemaker that fits into your hand like a game controller (see Figure 10.9). It
makes all sorts of cool noises, and you can build it yourself. Let’s get started!

FIGURE 10.9 The Noisemaker project uses an Arduino to make crazy sounds.

ptg16605960

Project: Noisemaker
283

PARTS LIST
Although the Noisemaker is a small build—barely larger than the Arduino inside it—it
still takes a rather surprising diversity of parts to build. This is what you need:

■ 1/8" plywood: I used two 3"×4" pieces to form the top and bottom.
■ Speaker: I used a 1.5" model, 8-ohm, 0.25-watt. It fit nicely on the front of the

Noisemaker, but it was too quiet for my tastes. I suggest SparkFun’s 2", 8-ohm,
0.50-watt speaker, P/N 9151.

■ Switch, Jameco P/N T100T1B1A1QN
■ Two 2K potentiometers, Jameco P/N 31VA302-F3
■ Light sensor, SparkFun P/N SEN-09088
■ Resistors, I use 3.3K and 470-ohm resistors
■ 9V battery
■ Battery clip, Jameco P/N GBH-1009-R
■ Battery power plug, Adafruit P/N 80
■ Plastic standoffs, 3/8", #4-40; SparkFun P/N 10461
■ Aluminum standoffs, I used hex #4-40, 1.5" male-female; Jameco P/N 166546
■ Hot glue gun
■ Drill and 11/64", 1/4", 3/8", and 3/4" bits
■ 1" #4-40 bolts
■ 1/4" #4-40 bolts
■ An assortment of #4-40 nuts and washers
■ Red, yellow, and black wire, Adafruit P/Ns 288, 289, and 290, respectively
■ Heat-shrink tubing; SparkFun P/N 9353 offers a nice assortment

Instructions
Alright, let’s get started with the actual build!

1. Cut the top and bottom out of 1/8" plywood, as shown in Figure 10.10. I made mine
3" × 4", and used a disk sander to round the corners.

ptg16605960

CHAPTER 10: Making Noise
284

FIGURE 10.10 The first step is to cut out the Noisemaker’s top and bottom.

2. Starting with the bottom, drill out the holes for the standoffs and the battery clip using
your 11/64" drill bit. Add the 1" #4-40 screws and plastic standoffs for the Arduino, as
shown in Figure 10.11.

FIGURE 10.11 Drill the holes for the #4-40 bolts, and then add the bolts!

ptg16605960

Project: Noisemaker
285

3. Attach the Arduino to the bottom plate, and add the battery clip using the 1/4" #4
screws. You can also attach the aluminum standoffs using some additional 1/4" screws.
The bottom assembly should look like Figure 10.12.

FIGURE 10.12 Add the Arduino, battery pack, and standoffs.

4. On the top panel, drill out the holes for the speaker (3/4"), standoffs (11/64"), the
potentiometers (3/8"), the light sensor (11/64"), and the switch (1/4"). It should look
similar to what is shown in Figure 10.13.

FIGURE 10.13 The top panel awaits components.

ptg16605960

CHAPTER 10: Making Noise
286

5. Insert the back end of the speaker into the 3/4" hole and hot glue it in place, as shown
in Figure 10.14. Make sure the wires are on the underside of the top panel, so they can
reach the Arduino. Note that you might need a bigger speaker hole if you went with a
different speaker than I did.

FIGURE 10.14 Hot glue the butt end of the speaker to the top panel.

6. Let’s start wiring! Solder wires to the potentiometers as shown in Figure 10.15—you did
this in Chapter 3, “How to Solder.” Don’t make the wires too long! About 5" of wire
should do the trick. Do the same with the switch, and then attach the three components
to the top panel.

ptg16605960

Project: Noisemaker
287

FIGURE 10.15 Wire up the potentiometers as you see here.

7. Insert the light sensor from the top and hot glue it in place (see Figure 10.16) from the
bottom, making sure you don’t goop up the leads!

ptg16605960

CHAPTER 10: Making Noise
288

FIGURE 10.16 Hot glue the photo resistor to the top panel.

8. Wire up a 3.3K-ohm resistor to the light sensor’s ground wire, then solder in a yellow
wire for data. The tail end of the resistor should have a black wire soldered onto it, and
this becomes the ground. You can see this in Figure 10.17. It gets plugged into a GND
pin of the Arduino.

ptg16605960

Project: Noisemaker
289

FIGURE 10.17 The ground wire of the photo resistor gets a resistor.

9. Repeat step 8, but with the switch. The ground wire of the switch gets a 470-ohm
resistor and a second wire, along with a length of wire soldered onto the end of the
resistor. The end with the resistor becomes the ground, while the wire without the
resistor becomes data.

You can see these wires in Figure 10.18. Plug the ground wire into a free GND pin on the
Arduino.

ptg16605960

CHAPTER 10: Making Noise
290

FIGURE 10.18 The switch also gets a resistor.

 10. Solder the black (ground) wires of the potentiometers to the ground wire of the
speaker, solder in a length of wire, and then cover in heat-shrink tubing. You’re basically
combining the three ground wires into one, as shown in Figure 10.19. Plug this into a
GND pin of the Arduino.

ptg16605960

Project: Noisemaker
291

FIGURE 10.19 Combine the grounds into one.

 11. Solder the positive wires of the potentiometers, light sensor, and switch together,
combining the four wires into one as you did in step 8. Cover the join with heat-shrink
tubing. It should look like Figure 10.20! This gets plugged into the 5V pin of the
Arduino.

ptg16605960

CHAPTER 10: Making Noise
292

FIGURE 10.20 Now combine the positive leads.

 12. Plug the positive wire of the speaker into pin 8, the middle lead of the potentiometers
into pins A1 and A2, the switch into pin 2, and the light sensor into A0. You’re done!
The circuit should look like Figure 10.21, except possibly not having a breadboard. All
you have to do is plug in the 9V battery via the battery plug and you’re golden!

ptg16605960

Project: Noisemaker
293

FIGURE 10.21 Wire up the Noisemaker as you see here.

Noisemaker Code
The Noisemaker code is elegantly simple.

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 10: Making Noise
294

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 int sensorReading = analogRead(A0);

 int pot1 = analogRead(A1);

 int pot2 = analogRead(A2);

 int switch1 = digitalRead(2);

 int thisPitch = map(sensorReading, 600, 1000, 1000, 100);

 int potDelay = map(pot1, 0, 1023, 1, 100);

 int potDur = map(pot2, 0, 1023, 1, 50);

 if (switch1 == HIGH) {

 tone(8, thisPitch, potDur);

 delay(potDelay);

 }

}

The Next Chapter
In Chapter 11, “Measuring Time,” you learn how Arduino marks the passage of hours and
minutes and how to help it do a better job of accurate timekeeping. Then you’ll build some
indoor wind chimes that ring on the hour, rather than relying on nature to do the work.

ptg16605960

11
Measuring Time
How exactly does a robot tell time—perhaps it looks at a clock like the rest of us? That sounds flip,
but it’s actually true: It’s possible to have the Arduino look up an Internet “time server” and get the
official time. More prosaically, you can also have the Arduino use its (not terribly accurate) internal
timer to tell time, or use a dedicated real-time clock module (RTC) to keep track of hours and
minutes. In this chapter, we explore a variety of ways in which an Arduino can keep track of time,
and then you’ll tackle the project for this chapter, a motor-controlled “wind chime” that triggers on
the hour. Figure 11.1 shows an example of an interactive Arduino-based clock.

FIGURE 11.1 Nootropic Designs’ Defusable Clock is an interactive Arduino-based clock
that looks like a Hollywood bomb! Credit: Nootropic Design

Time Server
One way for your project to keep track of time is to continuously access an Internet-based time
server via Wi-Fi, usually using a Wi-Fi shield, as shown in Figure 11.2. These sites, called NTP
(network time protocol) servers, are resources providing accurate time to Internet-connected

ptg16605960

CHAPTER 11: Measuring Time
296

gadgets. If you have a smartphone, you probably have noticed it never needs to be set,
automatically knowing the correct time. An NTP server gets the credit!

NOTE
Learn More About Accessing an NTP Server

For a tutorial on how to access an NTP server with your Arduino and Wi-Fi shield, see
this page on the Arduino site: http://arduino.cc/en/Tutorial/UdpNTPClient.

FIGURE 11.2 Arduino’s Wi-Fi shield gives your Arduino robot the ability to con-
nect to wireless networks. Credit: Arduino.cc

Arduino’s Timer
The Arduino’s main chip, the ATmega328P (see Figure 11.3), contains a timing circuit that
does a fairly okay job at keeping time. Just as you would use the command delay(1000); to
tell the Arduino to wait 1,000 milliseconds, the timer built in to the ATmega tells it when
that time has passed.

http://arduino.cc/en/Tutorial/UdpNTPClient

ptg16605960

297

FIGURE 11.3 The Arduino’s microcontroller chip also has a timing function that
you can harness to keep track of time.

Due to the board’s modest architecture, it can keep track of time for only 49 days before
it runs out of memory and must reset. In addition, accuracy is not precise. Sticklers for
precision will be upset to learn that the ATmega loses about two seconds per day. Basically,
after it reaches that 49-day mark it will already be wildly inaccurate, around 100 seconds off
the mark. Most tinkerers use an RTC if they want accurate measurement of time.

Real-Time Clock (RTC) Module
Another option for keeping track of time is to connect a real-time clock (RTC) module
like the ChronoDot shown in Figure 11.4. An RTC consists of a circuit board with a highly
accurate timer chip, as well as a coin-cell battery backup that keeps the time set even if the
board is unplugged. When properly configured, the ChronoDot loses less than a minute per
year thanks to its temperature-controlled switch, and a fresh battery will keep the time for
around eight years.

ptg16605960

CHAPTER 11: Measuring Time
298

FIGURE 11.4 A ChronoDot RTC module plugged into a breadboard.

Mini Project: Digital Clock
For this mini project, you’ll make a digital clock (see Figure 11.5) that keeps perfect time
thanks to a real-time clock module, a small board that has a timer chip and battery backup
so that it never forgets the time. It’s not pretty, but you could definitely put it in some sort
of decorative case.

ptg16605960

Mini Project: Digital Clock
299

FIGURE 11.5 An Arduino, seven-segment display, and RTC module are all you
need to create a clock!

PARTS LIST
You’ll need just a few things to make the digital clock:

■ Arduino Uno with power supply
■ RTC module: I used the ChronoDot RTC (Adafruit P/N 255), but you can also use the

cheaper DS1307 RTC breakout board kit (Adafruit P/N 264).
■ Adafruit Seven-Segment Backpack: This invaluable board (P/N 878) consists of a seven-

segment display with a circuit board designed to make it easier to bread board.
■ Half-size breadboard: Adafruit P/N 64
■ Jumpers

ptg16605960

CHAPTER 11: Measuring Time
300

Instructions
Let’s wire up the digital clock, following along with Figure 11.6. Note that the image I used
for the RTC is the DS1307 I mentioned earlier in this chapter. Functionally it works the
same as the ChronoDot, and they both use the same Arduino library, so for the purposes of
this project, which one you use doesn’t matter too much. Let’s get started!

FIGURE 11.6 Wire up your clock as you see here.

1. Plug in the seven-segment backpack to the breadboard, making sure to leave plenty of
room on those rows for jumpers.

2. Attach the RTC module. This should also leave room for jumpers, as shown in Figure 11.6.

3. Wire up the boards. This is a little tricky because both the seven-segment backpack and
the RTC share the same four pins on the Arduino!

1. Connect the “+” pin on the backpack to the 5V pin on the RTC (marked as “VCC”
on the ChronoDot) and to the 5V pin on the Arduino. This is the red wire in Figure
11.6.

2. Connect the “–” (ground) pin on the backpack to the GND pin on the RTC, and
then to a GND pin on the Arduino. This is the black wire in Figure 11.6.

3. Connect the “C” (clock) pin on the backpack to the SCL pin on the RTC and then
to pin A5 (that’s analog, not digital!) on the Arduino. This is the green wire in Figure
11.6.

4. Connect the “D” (data) pin on the backpack to the SDA pin on the RTC and pin A4
on the Arduino. This is the yellow wire in Figure 11.6.

ptg16605960

Mini Project: Digital Clock
301

You’re finished with hardware! Now, let’s program the Arduino.

Digital Clock Code
Now you can upload the sketch to the Arduino. As with previous chapters, you can
download this sketch from https://github.com/n1/Arduino-For-Beginners.

// This code is based off of Adafruit’s example text for the RTC.

#include <Wire.h>

#include “Adafruit_LEDBackpack.h”

#include “Adafruit_GFX.h”

#include “RTClib.h”

RTC_DS1307 RTC;

Adafruit_7segment disp = Adafruit_7segment();

void setup()

{

 Wire.begin();

 RTC.begin();

 if (! RTC.isrunning())

 {

 RTC.adjust(DateTime(__DATE__, __TIME__));

 }

 disp.begin(0x70);

}

void loop()

{

 disp.print(getDecimalTime());

 disp.drawColon(true);

 disp.writeDisplay();

 delay(500);

}

int getDecimalTime()

{

 DateTime now = RTC.now();

 int decimalTime = now.hour() * 100 + now.minute();

 return decimalTime;

}

https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 11: Measuring Time
302

Project: Indoor Wind Chime
For this chapter’s project you’re going to build a sweet wind chime (see Figure 11.7) that
relies on its real-time clock module to tell it when to chime. You’ll also build a geometric
enclosure to house the electronics, using a tool called a CNC router.

FIGURE 11.7 Learn how to build this sweet wind chime!

ptg16605960

Project: Indoor Wind Chime
303

PARTS LIST
■ Arduino
■ Servo (I used a HiTec HS-322HD servo, Jameco P/N 33322.)
■ Servo horns (See the following section; a number of horns come with the HiTec; these

should be fine.)
■ ChronoDot RTC module
■ Mini breadboard
■ 9V battery and battery clip (Digi-Key P/N BC22AAW-ND)
■ 1/4" dowel (you’ll need about 8" to a foot)
■ Wind chime (I used a Gregorian Chimes Soprano wind chime, SKU 28375-00651.)
■ 5mm plywood for the enclosure
■ 1" pine board for the support blocks
■ Eye bolt and nut (The Home Depot P/N 217445)
■ #8 × 1/2" wood screws
■ #6 × 2" wood screws
■ #4 × 1/2" wood screws
■ 24 1/4" × 1 1/2" bolts with locking washers and nuts
■ 12 1/4" × 1" bolts with locking washers and nuts
■ Drill press and a variety of drill bits
■ Chop saw
■ Table saw
■ Hole saw
■ Belt sander

Servo Horns
Servos connect to wheels, axles, and other parts of a robot using connectors called servo
horns. These consist of a bars or discs (see Figure 11.8) studded with screw holes, and
featuring a toothed lug that fits over the servo’s hub. A screw secures the horn.

ptg16605960

CHAPTER 11: Measuring Time
304

FIGURE 11.8 Servo horns help connect your robot to the servos that move it.

Instructions
Follow these steps to build your indoor wind chimes:

1. Mill the triangle shapes used to make the enclosure. I used a CNC router, as shown in
Figure 11.9. If you’re making your own, they’re 3" equilateral triangles with 1/4" holes
drilled in the three corners. You can download the .DXF files I used to mill the triangles
from https://github.com/n1/Arduino-For-Beginners.

https://github.com/n1/Arduino-For-Beginners

ptg16605960

Project: Indoor Wind Chime
305

FIGURE 11.9 A CNC router cuts out the shapes you need for this project.

2. After you’ve cut out the triangles, sand them down on a belt sander (see Figure 11.10)
so their edges are smooth.

ptg16605960

CHAPTER 11: Measuring Time
306

FIGURE 11.10 Smooth down the burrs on a belt sander.

3. Cut support blocks out of the 1" pine. Make these look like the one in Figure 11.11.
These blocks reinforce the top and allow you to attach the sides. Make 12 total because
you’ll need some for the bottom.

ptg16605960

Project: Indoor Wind Chime
307

FIGURE 11.11 The support blocks secure the various triangle-shaped pieces that
make up the top and bottom.

4. Cut a reinforcing disc out of the 5mm plywood using the hole saw; it should look just
like the one in Figure 11.12.

ptg16605960

CHAPTER 11: Measuring Time
308

FIGURE 11.12 This reinforcing disc keeps the top of the enclosure in order.

5. Drill six 1/4" holes surrounding a 5/8" hole. Make sure to align the six surrounding
holes so that they fit with the six holes at the center of the top of the enclosure.

6. Assemble the top, using the 1/4" × 1 1/2" bolts to attach the triangle pieces to the
support blocks, then add the disc and eye bolt in the middle. It should look just like
Figure 11.13. You’ll probably have to redrill the center hole because the points of the
triangles get in the way.

ptg16605960

Project: Indoor Wind Chime
309

FIGURE 11.13 Make a hexagonal enclosure for your indoor wind chime!

7. Build the bottom (see Figure 11.14) like the top, with a couple of differences: One is
that it doesn’t get an eye bolt. Instead, a dowel will protrude from the center bottom of
the enclosure. Another is that instead of a disc in the center, you’ll simply use the disc
from the wind chime. Screw seven holes in it just as you did with the top disk. (Note in
Figure 11.14, I show only three of the holes being populated with bolts—I just ran out of
bolts!)

ptg16605960

CHAPTER 11: Measuring Time
310

FIGURE 11.14 Drill seven holes in the top portion of the wind chime and attach
it to the bottom.

8. Cut a 2" disc out of the 5mm plywood using your hole saw, and give it a 1/4" hole in
the center. Screw the servo horn to the disc using the #4 × 1/2" wood screws, then glue
the dowel to the hole in the disc. It should look like Figure 11.15. Like the disc in the
figure, it doesn’t have to be beautiful—it’s just a convenient way to attach the servo horn
to the dowel.

ptg16605960

Project: Indoor Wind Chime
311

FIGURE 11.15 It doesn’t have to be pretty!

9. Cut side panels out of the 5mm plywood. They should be 4" on a side (see Figure
11.16). You’ll need to drill holes in the wood to attach the panels to the top and bottom
support blocks; placement of these holes isn’t super tricky, as long as it looks good and
connects to the support blocks. If you want to, at this time you can attach them to the
top of the enclosure.

ptg16605960

CHAPTER 11: Measuring Time
312

FIGURE 11.16 The side panels, ready for installation.

 10. Install the motor in the top panel, using strips of wood cut from the 5mm plywood,
with 1" spacer blocks cut from the pine. Use the #8 × 1/2" screws to attach the servo
to the strips, then use the #6 × 2" screws to attach the strips to the support blocks.
Really, the only considerations are that the strips of wood are high enough so that the
servo doesn’t bump into the top, and that the servo’s hub is aligned with the dowel-
hole in the bottom of the enclosure. You can see how it should look in Figure 11.17.

ptg16605960

Project: Indoor Wind Chime
313

FIGURE 11.17 Looking into the enclosure from the bottom, you see the servo
mounted in the center.

 11. Attach the Arduino, breadboard, and battery pack to the inside of the enclosure. I
suggest bolting the Arduino to a side panel with #4 × 1" machine screws and hot gluing
the breadboard and battery pack. It should look more or less like you see in Figure
11.18.

ptg16605960

CHAPTER 11: Measuring Time
314

FIGURE 11.18 Attach the electronics to the inside of the enclosure.

 12. Wire up the various components, as shown in Figure 11.19.

FIGURE 11.19 Connect the various components as you see here.

A

B

C

D

E

ptg16605960

Project: Indoor Wind Chime
315

Connect the servo. The yellow wire goes to pin 9 of the Arduino, the red wire goes to the 3.3V pin of

the Arduino, and the black wire connects to one of the Arduino’s GND pins.

Connect the GND pin of the RTC to a GND pin on the Arduino.

Connect the 5V pin of the RTC to the 5V pin on the Arduino.

Connect the SDA (data) pin of the RTC to A4 on the Arduino.

Connect the SCL (clock) pin of the RTC to A5 on the Arduino.

 13. Drill a hole in the clapper that came with the wind chimes (see Figure 11.20). The
clapper will rotate with the servo and bang on the chimes to make noise. However,
don’t glue the dowel in the clapper’s hole just yet!

FIGURE 11.20 The chime’s clapper gets repurposed as the chime’s clapper.

 14. Finish up by screwing the side panels onto the bottom hexagon. As a final step, glue the
clapper onto the end of the dowel (see Figure 11.21).

A

B

C

D

E

ptg16605960

CHAPTER 11: Measuring Time
316

FIGURE 11.21 The wind chimes are completed and ready to make noise!

Code
The code is fairly simple, consisting of just a function to pull the time off the RTC module
and another to rotate the servo when the minutes read as zero.

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

Project: Indoor Wind Chime
317

#include <Wire.h>

#include “RTClib.h”

#include <Servo.h>

Servo myservo;

RTC_Millis RTC;

 int pos = 0;

void setup()

{

Serial.begin(57600);

 RTC.begin(DateTime(__DATE__, __TIME__));

 myservo.attach(9); // attaches the servo on pin 9 to the servo object

}

void loop() {

DateTime now = RTC.now();

int decimalTime = now.hour() * 100 + now.minute();

Serial.print(decimalTime);

delay (60000);

 Serial.println();

 if (now.minute() == 0) {

 for(pos = 0; pos < 180; pos += 1)

 {

 myservo.write(pos);

 delay(15);

 }

 }

}

ptg16605960

CHAPTER 11: Measuring Time
318

Computer Numerically Controlled (CNC) Tools
CNC tools, like the CNC router I used to create the wooden panels used in this project’s
enclosure, take direction from the computer to move a milling tool around, grinding,
drilling, and shaping pieces of wood, metal, and other materials. Figure 11.22 shows a
CNC router.

FIGURE 11.22 The CNC router is a valuable tool for precision cutting of wood
and metal.

This is how the CNC router works:

1. Design whatever it is you want cut out, usually using a vector art program such as
Adobe Illustrator or CorelDRAW.

2. Use a CNC utility to get the art ready to mill. One example of this is Vectric Cut2D
(vectric.com), which guides you through the process of deciding how each element will

ptg16605960

The Next Chapter
319

be milled, and in what order. For instance, say you have a 1" circle in your design. In
Cut2D, you can tell the router to move in a circle to cut out that shape.

NOTE
Carving a 3D Shape Is Possible

Another factor to keep in mind is that the CNC mill can cut into a thick block of
material, essentially carving a 3D shape with its tools.

3. Place the material on the CNC router’s bed and clamp it down, to ensure that the
material doesn’t move as the router bit shapes it. Similarly, make sure you leave plenty
of material around the shape you’re cutting so it’s supported throughout the cutting
process.

4. Load up the design file on the CNC router’s workstation. You might want to do a “dry
run” of your job: This is like running through it with the tool a few inches above the
material so you can see everywhere it goes. If the tool appears to move beyond the edge
of the material, or bumps into a clamp, you know to fix the job before starting milling!

5. Finally, running a CNC router can be somewhat hazardous, with chips of material flying
off the machine—wear goggles! It can also be noisy, so make sure you wear ear protec-
tion as well.

The Next Chapter
In Chapter 12, “Safely Working with High Voltage,” you learn to harness the power of the
outlet—safely!—and how to create an Arduino-controlled lava lamp for your home.

ptg16605960

This page intentionally left blank

ptg16605960

12
Safely Working with High Voltage
Zap! We’ve successfully trained ourselves to fear high voltage electricity, and rightfully so! It’s hard
to kill yourself with an AA cell, but sticking your tongue in an outlet is sure disaster. In this chapter,
you’ll explore a couple of ways to safely use high voltage in your projects. You’ll then make an
Arduino-controlled Lava Lamp Buddy that turns your lava lamp on and off on a schedule, or at the
command of a remote control (see Figure 12.1). It’s just what every lava lamp needs!

FIGURE 12.1 The Lava Lamp Buddy controls your favorite bubbling light fixture.

ptg16605960

CHAPTER 12: Safely Working with High Voltage
322

Lesson: Controlling High Voltage
The secret to controlling high voltage is to not have anything to do with it! I joke, but that’s
actually pretty good advice. Instead, let’s allow a clever electronic component called a relay
(see Figure 12.2) do the dangerous work. I mentioned relays in Chapter 1, “Arduino Cram
Session.” They’re essentially switches that an Arduino can trigger; the relay handles the
voltage so you never need to mess with it. Of course, relays are just electronic components
and need a framework, such as a circuit board, to operate within. The following sections
detail three products that feature relays and that you can use to work with high voltage.

FIGURE 12.2 A relay is the ticket to controlling high voltage.

PowerSwitch Tail
A PowerSwitch Tail (Adafruit P/N 268) looks like a short extension cord with a power
supply built in, as shown in Figure 12.3. That’s basically what it is, except that the power
supply brick has ports for adding wires, allowing you to trigger the voltage with a single wire
from an Arduino pin. The PowerSwitch Tail also includes a ground port.

ptg16605960

Lesson: Controlling High Voltage
323

FIGURE 12.3 A PowerSwitch Tail is essentially a short power cord with a relay
board built in.

What sets the PowerSwitch Tail apart from the competition is that it really is foolproof. Can
you plug an appliance into an outlet? Then you can work a PowerSwitch Tail.

EMSL Simple Relay Shield
Offering a completely different configuration than the PowerSwitch Tail, the Simple Relay
Shield (EMSL P/N 544; see Figure 12.4) created by Bay Area hardware hackers Evil Mad
Scientist Laboratories, or EMSL for short (evilmadscientist.com), works as an Arduino
shield, meaning that it’s a circuit board with pins on the bottom, allowing it to be inserted
into headers on the Arduino. The shield itself also has headers, allowing you to not only
control the relay but also monitor sensors or light up LEDs as you normally would.

ptg16605960

CHAPTER 12: Safely Working with High Voltage
324

FIGURE 12.4 The Simple Relay Shield adds a relay to your Arduino. You can see
the edges of the Arduino under the Simple Relay Shield shown here.

The setup has a couple of downsides:

■ You can’t use it to handle standard 110V current, which you can with the PowerSwitch
Tail. Its maximum voltage is 40V/5A AC or 24V/5A DC.

■ You have to connect the high-voltage wires to the shield manually, which means poten-
tially exposing yourself to nasty shocks.

On the upside, it costs less than half as much as a PowerSwitch Tail!

Beefcake Relay Control Board
SparkFun’s Beefcake Relay Control Board (P/N 11042) is inexpensive—$8—and easy to use.
The Beefcake also has a monster relay allowing you to control up to 220V and 20A (see
Figure 12.5). However, it lacks some of the features that make the PowerSwitch Tail and
Simple Relay Shield shine:

■ The Beefcake doesn’t have the great shield configuration that makes the Simple Relay
Shield convenient because it connects directly to headers on the Arduino.

ptg16605960

Lesson: Controlling High Voltage
325

FIGURE 12.5 SparkFun’s Relay Board can control 20 amps and 220 volts.

■ Similarly, it lacks the ease of use and safety protection afforded by the PowerSwitch Tail.
The Beefcake Relay Control Board is only recommended for those experienced in using
high voltage safely.

SAFETY: ELECTRICITY
As everyone knows—or ought to know—electricity can hurt or even kill you, damage
electrical equipment, and can cause fires that destroy property and harm people. It
is imperative, therefore, that you handle high-voltage electricity with extreme care, or
better yet, don’t handle it at all! The symbol shown in Figure 12.6 warns you of the
potential electrical hazard. Just don’t assume that a symbol such as this will always
be present when the risk for electrical shock is present.

ptg16605960

CHAPTER 12: Safely Working with High Voltage
326

FIGURE 12.6 When you see this warning symbol, you’ll know there’s an elec-
trical hazard nearby.

Keep the following safety tips in mind at all times:

■ Avoid contact with bare wires and exposed terminals, including those on ostensibly
HV-rated circuit boards. Anything more than 50V should have an enclosure or other
insulation to prevent accidental contact.

■ Treat all electrical devices as if they were live or energized. Test using a voltmeter if
you’re not sure. Also, be aware that some components, such as capacitors, retain a
charge for a long time after the part has been connected to a power source.

■ Disconnect the power source before working on any piece of equipment.
■ Avoid conductive tools, jewelry, and other items that could transmit electricity to your

body.
■ Don’t use electrical equipment—including power cords—that have been damaged or

improperly modified.
■ Don’t use electrical equipment that is wet, whether submerged or simply dripping.

Unplug the equipment and let it dry out before you work on it. Even heavy condensa-
tion can transmit a lethal shock!

■ Do not attempt to touch, repair, or open a high-voltage project unless you really,
REALLY know what you’re doing!

ptg16605960

Mini Project: Making a Fan Controller
327

Mini Project: Making a Fan Controller
For the mini project, you’ll build a fan controller that starts a fan when the temperature
reaches a certain level (see Figure 12.7). The controller consists of an Arduino Uno, a
temperature sensor, and a PowerSwitch Tail, with the latter connecting an ordinary desk fan
to house current.

FIGURE 12.7 Turn on a fan when the temperature reaches a certain point.

PARTS LIST
You need just a couple of things for this project:

■ Arduino Uno and wall wart
■ PowerSwitch Tail II (Adafruit P/N 268)
■ LM355AZ temperature sensor (Jameco P/N 120820)
■ Breadboard
■ Jumpers
■ A fan that operates on 110V

ptg16605960

CHAPTER 12: Safely Working with High Voltage
328

Instructions
This is a quick-and-dirty build, with only five wires and a single electronic component,
shown in Figure 12.8.

FIGURE 12.8 The fan controller is a quick and easy build.

 1. Connect the first and second terminals of the PowerSwitch Tail to pin 13 and a GND on
the Arduino. In Figure 12.8, these are shown as being green and orange wires, respec-
tively.

2. Looking at the flat face of the temperature sensor, connect the left lead to GND (black
wire), the center lead to 5V (red wire), and the right-hand lead (yellow) to A0.

Finally, plug the male end of the PowerSwitch Tail into an electrical outlet and connect the
female end to the fan’s plug.

1

2

1

2

ptg16605960

Mini Project: Making a Fan Controller
329

Fan Controller Code
Upload the following sketch to the Arduino. As always, if you can’t remember how to do it,
I explain how to upload code in Chapter 5, “Programming Arduino.”

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

int sensorPin = A0; // connect the data pin of the sensor here

int fanPin = 13; // connect the PowerSwitch Tail here

int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {

 pinMode(fanPin, OUTPUT);

 Serial.begin(9600);

 Serial.println(“starting!”);

}

void loop() {

 sensorValue = analogRead(sensorPin);

 Serial.print(sensorValue);

// Change the sensorValue number here depending at what temperature

// you want the fan to start.

 if (sensorValue >= 753)

{

 digitalWrite(fanPin, HIGH);

 delay(10000); // how long the fan stays on in milliseconds

}

 else

 {

 digitalWrite(fanPin, LOW);

 delay(10000); // how long before the sensor checks again in MS

 }

}

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 12: Safely Working with High Voltage
330

Project: Making a Lava Lamp Buddy
Everyone loves lava lamps, those friendly glowing cones of bubbling liquid. They’re actually
very simple: a light bulb concealed in the base both lights up and heats a jar of wax and
liquid. When the wax reaches a certain temperature, it starts bubbling and moving around.

One downside of lava lamps is that they take a while to heat up. When it occurs to you that
you would like to have the lamp on, and flick the switch, the lamp still needs a good hour
until it gets interesting to look at. Wouldn’t it be awesome if you could set a schedule so
your lamp turns on automatically an hour before you get home from work? Additionally,
many people don’t realize that manufacturers recommend keeping your lamp on no more
than 10 hours at a time, so the lamp should shut off automatically as well. Finally, we’re
all lazy, and being able to use an ordinary TV remote control to turn on and off the lamp
would be perfect.

All you need is an Arduino-controlled Lava Lamp Buddy (see Figure 12.9) to control the
lamp’s schedule and interface with a remote control. As luck would have it, that is precisely
this chapter’s project!

FIGURE 12.9 The Lava Lamp Buddy controls your lava lamp so you don’t have to!

ptg16605960

Project: Making a Lava Lamp Buddy
331

PARTS LIST
You’ll need the following components to build a Lava Lamp Buddy:

■ Arduino Uno and power supply
■ PowerSwitch Tail II
■ TSOP38238 IR sensor (Adafruit P/N 157)
■ Sony remote control (Actually, any reasonably recent remote will do!)
■ ChronoDot Real-Time Clock (RTC) module (described in Chapter 11, “Measuring

Time”)
■ Jumpers
■ Cigar box (The glitzier the better; mine was covered in silver foil.)
■ Extension cord (I used a Home Depot P/N 158-007.)
■ Power drill
■ 1 1/4" drill bit
■ 1/2" drill bit
■ Hot glue gun

Decoding Infrared
Infrared sensors (see Figure 12.10) are obviously designed to notice infrared light, but they
are very selective. Only infrared (IR) light pulsing at 38 Khz (that’s 38,000 off-and-on cycles
per second) is sensed, and the sensor toggles its voltage output accordingly. If it detects a
38 Khz carrier, it outputs 0V; otherwise, it outputs 5V.

FIGURE 12.10 An infrared sensor like this one listens for signals of 38 Khz but
ignores all other infrared light. Credit: Adafruit Industries

The 38Khz number brings up the opposing problem: How do you send such a signal? You
can use a number of electronic tricks involving pulsing an infrared LED, but many tinkerers
use ordinary household remote controls. Each button’s IR code can be scanned in and
the programmer can tell the Arduino to perform a different action for each code. In other
words, you could put an IR sensor on a robot and control the bot with the same remote
control you use with your TV.

ptg16605960

CHAPTER 12: Safely Working with High Voltage
332

Instructions
This is a slightly more complicated rig than the mini project earlier in this chapter, which
also features a PowerSwitch Tail. Not only are you adding an IR sensor, but there’s a real-
time clock module, as well as the expected Arduino. Here’s how to wire up the Lava Lamp
Buddy, following along with Figure 12.11.

FIGURE 12.11 Wire up your Lava Lamp Buddy as you see here.

1. Wire up the Arduino, PowerSwitch Tail, RTC module, and IR sensor, as you see in Figure
12.11.

A. Connect terminal 1 of the PowerSwitch Tail to pin 13 of the Arduino. This is the
green wire shown in Figure 12.11.

B. Connect terminal 2 to a GND pin on the Arduino. This is the orange wire shown
in Figure 12.11.

C. Plug in the RTC module to the breadboard and connect the 5V pin (red wire) to
the breadboard’s power bus.

D. Connect the GND (black wire) to the breadboard’s ground bus.

A

H

B

I

C

J
D

E

F

G

A

B

C

D

ptg16605960

Project: Making a Lava Lamp Buddy
333

E. Connect the SDA (purple wire) to A4 on the Arduino.
F. Connect the SCL (brown wire) to A5 on the Arduino.
G. Solder jumpers (see Figure 12.12) to the infrared sensor so it can be attached to

the outside of the cigar box.
H. The infrared sensor’s left lead (yellow wire), looking at the bulb on the compo-

nent’s face, connects to pin 11 on the Arduino.
I. The infrared sensor’s center lead (black wire) goes to the breadboard’s ground

bus.
J. The infrared sensor’s right-hand lead (red wire) plugs into the breadboard’s power

bus.

FIGURE 12.12 The IR sensor with jumpers soldered on.

2. Drill a hole in the back of your cigar box with the 1 1/4" bit, and drill a hole in the front
of the box with the 1/2" bit.

3. Hot glue the sensor to the front of the box with the wires passing through the hole, as
shown in Figure 12.13.

H

I

J

E

F

G

ptg16605960

CHAPTER 12: Safely Working with High Voltage
334

FIGURE 12.13 The IR sensor protrudes from the front of the cigar box.

4. Hot glue the breadboard and Arduino in place inside the cigar box.

5. Plug in the Arduino’s power supply and the PowerSwitch Tail into the extension cord.
The cord I specified has three plugs in the end; you can just use a splitter if you want.

6. Pass the lava lamp’s power plug through the hole in the back of the cigar box so it can
plug into the PowerSwitch Tail’s female end. It should look more or less like Figure
12.14.

ptg16605960

Project: Making a Lava Lamp Buddy
335

FIGURE 12.14 The guts of the Lava Lamp Buddy.

Lava Lamp Buddy Code
This code is rather complicated because it’s doing two things:

■ Interpreting IR signals from the remote control
■ Pulling in data from the RTC

Assisting in this work are three libraries, which you’ll have to download before the sketch
will upload.

■ The wire.h library comes pre-installed with Arduino, so you don’t have to worry about
this one.

■ The RTC library is available from Adafruit’s github repository: https://github.com/
adafruit/RTClib.

■ Finally, you can find the IRremote.h library in Ken Shirriff’s github: https://github.com/
shirriff/Arduino-IRremote/blob/master/IRremote.h.

https://github.com/adafruit/RTClib
https://github.com/adafruit/RTClib
https://github.com/shirriff/Arduino-IRremote/blob/master/IRremote.h
https://github.com/shirriff/Arduino-IRremote/blob/master/IRremote.h

ptg16605960

CHAPTER 12: Safely Working with High Voltage
336

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

#include <Wire.h>

#include “RTClib.h”

#include <IRremote.h>

int RECV_PIN = 11;

int RELAY_PIN = 13;

int startTime = 1600; // lamp turns on at this time -- 1600 is 4pm.

int stopTime = 2200; // lamp turns off at this time -- preset for 2200 or 10pm.

RTC_Millis RTC;

IRrecv irrecv(RECV_PIN);

decode_results results;

void dump(decode_results *results) {

 int count = results->rawlen;

 if (results->decode_type == UNKNOWN) {

 Serial.println(“Could not decode message”);

 }

 for (int i = 0; i < count; i++) {

 if ((i % 2) == 1) {

Serial.print(results->rawbuf[i]*USECPERTICK, DEC);

 }

 else {

Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);

 }

 Serial.print(“ “);

 }

 Serial.println(“”);

}

void setup()

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

Project: Making a Lava Lamp Buddy
337

{

Serial.begin(57600);

 // following line sets the RTC to the date & time this sketch was compiled

 RTC.begin(DateTime(__DATE__, __TIME__));

 pinMode(RELAY_PIN, OUTPUT);

 pinMode(RECV_PIN, INPUT);

 Serial.begin(9600);

 irrecv.enableIRIn(); // Start the receiver

}

int on = 0;

unsigned long last = millis();

void loop() {

DateTime now = RTC.now();

int decimalTime = now.hour() * 100 + now.minute();

Serial.print(decimalTime);

delay (1000);

 Serial.println();

 if (decimalTime == startTime) {

digitalWrite(RELAY_PIN, HIGH);

 }

 if (decimalTime == stopTime) {

digitalWrite(RELAY_PIN, LOW);

 }

 if (irrecv.decode(&results)) {

 // If it’s been at least 1/4 second since the last

 // IR received, toggle the relay

 if (millis() - last > 250) {

on = !on;

digitalWrite(RELAY_PIN, on ? HIGH : LOW);

ptg16605960

CHAPTER 12: Safely Working with High Voltage
338

dump(&results);

 }

 last = millis();

 irrecv.resume(); // Receive the next value

 }

}

The Next Chapter
Chapter 13, “Controlling Motors,” introduces you to various techniques for controlling
motors. Whether they’re steppers, servos, or regular old DC motors, you’ll learn how to
control them with the help of your Arduino. You’ll then take what you’ve learned and build
a fabulous bubble-making machine.

ptg16605960

13
Controlling Motors
In this chapter, you’ll add to your motor knowledge by exploring motor control boards, which
enable you to control and power all sorts of motors. You’ll then work on this chapter’s project, a
BubbleBot that spreads joy and soap bubbles throughout the neighborhood (see Figure 13.1).

FIGURE 13.1 Need more bubbles in your life? Okay, silly question. Of course
you do.

ptg16605960

CHAPTER 13: Controlling Motors
340

How to Control Motors
We’ve already covered the basic motor types—steppers, servos, and DC motors. Now let’s
talk about how you control them using an Arduino! The secret is that you have to use a
motor control chip such as the L293D. It manages the flow of data between the motor and
the Arduino, enabling you to control more motors than you would ordinarily be able to.

Even better, motor control chips are the brains of convenient motor control boards that
include extra features such as supplying power to the individual motors. Let’s examine three
cool examples of motor control boards.

Adafruit Motor Shield
The Motor Shield (Adafruit P/N 81; see Figure 13.2) is kind of a perfect weapon for
controlling motors. One of the biggest limitations when running motors from an Arduino
is running out of pins and power, because motors use a lot of both. For instance, a servo
motor uses three wires, each of which would ordinarily need its own pin. Furthermore, the
Arduino’s 5V pin can barely handle one servo much less a number of them. The motor
shield manages power and data so only the bare minimum of resources are needed. It can
run two servos and two steppers, or up to four DC motors in place of the steppers. All of
this with the convenient shield form factor.

FIGURE 13.2 The Adafruit Motor Shield—the circuit board in the middle—can
control DC motors, steppers, and servos. Credit: Adafruit Industries

ptg16605960

How to Control Motors
341

Shmalz Haus EasyDriver
A more elegant solution than a full-fledged shield, the EasyDriver (SparkFun P/N ROB-
10267, pictured in Figure 13.3) stepper controller is a single board with inputs for data and
power, with an on-board voltage regulator controlling how much juice your stepper gets. It
only costs around $15 and is far smaller than an Arduino shield.

FIGURE 13.3 The EasyDriver easily drives stepper motors, hence the name.

Bricktronics MegaShield
Featuring three L293D chips and able to control six motors and take input from four
sensors, the Bricktronics MegaShield (see Figure 13.4) allows you to control LEGO
Mindstorms motors, even accommodating LEGO’s proprietary cables.

FIGURE 13.4 The Bricktronics MegaShield controls up to six motors and takes
input from as many as four sensors.

ptg16605960

CHAPTER 13: Controlling Motors
342

It’s a fairly robust board, exceeding the specs for LEGO’s own Mindstorms microcontroller
while offering all the programmability of the Arduino platform.

Note the term “MegaShield.” It’s a reference to an Arduino Mega, a really big Arduino with
a lot more computing power than an Uno. So basically, this board is a shield for a Mega
and wouldn’t work with an Uno, the Arduino we use in this book. Never fear, designers
Wayne and Layne (wayneandlayne.com) have an Uno-sized board as well.

Powering Your Motor Using a TIP-120
Part of the reason why motor control boards exist is because the Arduino has a hard time
powering motors with only its on-board power supply, which consists of 3.3V and 5V for
the two relevant pins. That might be enough for one motor, but for a robot with several
motors, your average Arduino won’t be able to keep up. One solution might be a motor
control board like the ones mentioned at the beginning of this chapter. A simpler and
cheaper alternative is to use a Darlington transistor, like the TIP-120 (see Figure 13.5;
Adafruit P/N 976).

FIGURE 13.5 A Darlington transistor controls electricity so your Arduino doesn’t
have to.

A Darlington transistor is basically a solid-state, electrically actuated switch, allowing you to
control larger amounts of electricity with a tiny bit of current.

B

C
E

ptg16605960

Powering Your Motor Using a TIP-120
343

Here’s how it works. The transistor has three terminals protruding from it, and these are
called the base, collector, and emitter, often abbreviated B, C, and E. You can see these
marked on Figure 13.5.

■ Base—This pin triggers the circuit when it gets pinged by the Arduino.
■ Collector—You hook up your power supply to the middle pin.
■ Emitter—Power from the collector is released by the emitter when commanded by the

base.

Figure 13.6 shows a simple example of how you would wire up an LED to turn on when
pinged by the Arduino.

The power supply is wired up to the positive lead of the LED with a 220-ohm resistor
in between.

FIGURE 13.6 Wiring up a TIP-120.

The base is connected to a digital pin of the Arduino; this pin will trigger the circuit.

Where it gets weird is that the negative lead of the LED is connected to the collector of
the transistor.

The emitter, which is supposed to release the voltage when triggered, goes to ground.
What gives? Think of it this way: The base of the transistor is the trigger, and the col-
lector and emitter are the circuit. When the base gets pinged, the entire loop beginning
at the battery pack, passing through the resistor, LED, transistor, and then to ground,
immediately becomes a circuit.

1
2

3

4

1

2

3

4

ptg16605960

CHAPTER 13: Controlling Motors
344

Alt.Project: Stepper Turner

In this project, you’ll set up a stepper motor to turn as directed by a potentiometer (see
Figure 13.7). As you learned in Chapter 1, “Arduino Cram Session,” a potentiometer
(or pot, as it’s called) is an analog device that delivers a variable amount of resistance
depending on how far the knob is turned. You can take a reading from the pot and turn it
into a value (degrees) that can be used to direct how far the motor turns.

FIGURE 13.7 Turn a stepper motor as directed by a potentiometer.

PARTS LIST
You’ll need the following parts to build the project:

■ Arduino Uno
■ 12V power supply (You can use an 8 × AA battery pack if you don’t have another type

of power supply.)
■ Schmalz Haus EasyDriver (described previously in this chapter)
■ Stepper motor (Adafruit P/N 858)
■ Potentiometer (You can pretty much use any one; try Adafruit P/N 562.)
■ Jumpers (the usual!)
■ Breadboard

ptg16605960

Powering Your Motor Using a TIP-120
345

Instructions
This project consists of a surprising number of connections, but just follow along with
 Figure 13.8.

FIGURE 13.8 Wire up the project as you see here.

Connect the potentiometer. The left terminal, with the terminals pointed toward you,
connects to 5V on the Arduino (the gray wire), the middle one to A2 (green), and the
right terminal (brown) to GND.

Plug in your EasyDriver to a breadboard. Connect it to the Arduino with two jumpers,
marked as white and purple in Figure 13.8. The white wire connects the pin marked
“STEP” on the PCB to pin 3 on the Arduino. The purple wire connects from the pin
marked “DIR” on the PCB to pin 2 on the Arduino. The pin marked GND on the
EasyDriver plugs into the ground bus.

The stepper motor has five wires: red, orange, yellow, pink, and blue. The red wire is
ground and can plug into the breadboard’s ground bus. The other four wires plug into

1

2

3

1

2

3

ptg16605960

CHAPTER 13: Controlling Motors
346

the four pins labeled “MOTOR” on the EasyDriver PCB. However, it’s a little tricky.
You can’t just plug them in in the same order the yellow and pink wires need to be
swapped, as marked in Figure 13.8.

Finally, add the stepper’s 12V power supply. It plugs into two pins marked “PWR IN,”
and I used red and black wires in Figure 13.8 to show where they go. Also, don’t forget
to connect the breadboard’s ground bus to an Arduino GND pin. You’re finished!

Stepper Turner Code
Use the following code to program the Stepper Turner.

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

#define DIR_PIN 2

#define STEP_PIN 3

#define potPin A2

void setup() {

 pinMode(DIR_PIN, OUTPUT);

 pinMode(STEP_PIN, OUTPUT);

 pinMode(potPin, INPUT);

 Serial.begin(9600);

}

void loop(){

int potReading = analogRead(potPin);

Serial.println(potReading);

 rotateDeg(potReading, 1);

 delay(1000);

}

4

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

Project: BubbleBot
347

void rotate(int steps, float speed) {

 int dir = (steps > 0)? HIGH:LOW;

 steps = abs(steps);

 digitalWrite(DIR_PIN,dir);

 float usDelay = (1/speed) * 70;

 for(int i=0; i < steps; i++){

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(usDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(usDelay);

 }

}

void rotateDeg(float deg, float speed){

 int dir = (deg > 0)? HIGH:LOW;

 digitalWrite(DIR_PIN,dir);

 int steps = abs(deg)*(1/0.225);

 float usDelay = (1/speed) * 70;

 for(int i=0; i < steps; i++){

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(usDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(usDelay);

 }

}

Project: BubbleBot
For the final project of this book, you’re going to kick summer (or whatever season it might
be as you’re reading this) into high gear with this excellent BubbleBot, shown in Figure
13.9. It’s a simple robot with a wooden framework, and it dips a bubble wand into a tray of
bubble solution, then raises it up and blows on it. It keeps blowing bubbles until it runs out
of soap or you pull the plug!

ptg16605960

CHAPTER 13: Controlling Motors
348

FIGURE 13.9 Beauty shot—the BubbleBot.

PARTS LIST
Gather the following supplies to build your BubbleBot:

• Arduino Uno
• Adafruit motor shield (P/N 81)
• Servo (I used a HiTec HS-322HD servo, Jameco P/N 33322.)
• Servo horns (The ones that came with the servo are fine.)
• Switch (Jameco P/N 76523)
• Mini breadboard (SparkFun P/N 11658)
• 12V battery pack (Adafruit P/N 449)

ptg16605960

Project: BubbleBot
349

• Computer fan (I used a Comair P/N FE24B3 fan.)
• 1/4" MDF for chassis; an 18" × 24" sheet should suffice.
• A bubble wand (I used a wand from a 25-piece Miracle Bubbles set.)
• 1/2" diameter wooden dowel, about 10" in length
• 2 1/4" threaded rods, each about 8" long (You can buy threaded rods at any hardware

store.)
• A couple of #4-40 × 3/8" wood screws
• 8 1/4" nuts with locking washers
• 8 #4-40 × 1" machine screws with washers and nuts
• Jumpers (the same sort you’ve used throughout the book)
• Wood glue
• Hot glue and hot glue gun

Instructions
After you have gathered the parts together, it’s time to begin building! Follow along with
these steps to create your BubbleBot:

1. Laser-cut the enclosure out of quarter-inch MDF, shown in Figure 13.10. You can
download the design from https://github.com/n1/Arduino-For-Beginners. Alternatively,
simply build a wooden chassis as you normally would and drill the holes for the
hardware.

FIGURE 13.10 Laser-cut this design to make the BubbleBot’s chassis.

2. Mesh the teeth on the sides and back of the chassis and glue them in place with wood
glue.

https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 13: Controlling Motors
350

TIP
My Prototype Looks a Little Different

When I built my own BubbleBot, my prototype used screws instead of teeth to hold
the sides to the back. Having built the robot, I redesigned the chassis somewhat to
take advantage of the techniques I learned the first time around. So basically, there
may be a couple of cosmetic differences between the two versions but mostly they
are the same.

3. Insert the threaded rods with locking washers and nuts, as shown in Figure 13.11.
Tighten the hardware so the sides of the chassis don’t move.

FIGURE 13.11 The threaded rods help secure the chassis.

ptg16605960

Project: BubbleBot
351

4. Use the 3/8" #4 screws to connect the servo horn to one end of the dowel, as shown in
Figure 13.12.

FIGURE 13.12 Secure the servo horn to the end of the dowel.

5. Insert the dowel into the hole opposite the servo’s horn. It doesn’t need to be secured
because the opposite end is connected to the servo. Figure 13.13 shows how it should
look. If it sticks out too much, feel free to trim it down.

ptg16605960

CHAPTER 13: Controlling Motors
352

FIGURE 13.13 The dowel protrudes from the opposite side of the chassis.

6. Drill pilot holes and attach the bubble wand to the dowel with the 3/8" #4 wood
screws, as shown in Figure 13.14.

ptg16605960

Project: BubbleBot
353

FIGURE 13.14 Screw on the bubble wand to the dowel.

7. Thread the switch through the small hole in the upper portion of the back panel. Secure
it with the hex nuts that came with the switch, and thread the wires through the fan
hole, as shown in Figure 13.15.

ptg16605960

CHAPTER 13: Controlling Motors
354

FIGURE 13.15 The switch turns off and on the bubble machine.

8. Attach the computer fan (see Figure 13.16) to the back of the chassis using the #4 × 1"
screws, washers, and nuts.

ptg16605960

Project: BubbleBot
355

FIGURE 13.16 Attach the computer fan to the back panel of the enclosure.

Attach the Arduino to the back panel using the 1" #4 screws, and then mount the
Adafruit motor shield to the Arduino by inserting the pins of the shield into the
Arduino’s headers. Wire up the shield, following along with Figure 13.17.

ptg16605960

CHAPTER 13: Controlling Motors
356

FIGURE 13.17 The motor shield controls your BubbleBot.

1. Solder wires to the switch if you haven’t already, then connect the black wire to
the 3V pin on the motor shield, and the red wire to pin 2. You might want to add
just a dab of solder to keep the wires from falling out of the shield.

2. Plug in the servo’s wires to the pins marked “SERVO2.” The red wire should plug
into +, the black to –, and the yellow to “S”. Note that servos combines their wires
into triple plugs, so this is totally foolproof.

3. Connect the fan’s wires to the blue terminal block marked “M2.” The red and
black wires can go either way.

4. Hot glue the 12V battery pack to the back or side of the chassis. Connect the bat-
tery pack to the blue terminal block marked “+M” and “GND.” This will power the
motors.

9. Hot glue the 9V battery pack (not shown in Figure 13.17) to the chassis and connect the
plug to the Arduino’s power plug. This will power the Arduino.

BubbleBot Code
Upload the following code to your BubbleBot’s Arduino. Note that you’ll need to download
Adafruit’s AFMotor.h library from its code repository: https://github.com/adafruit/Adafruit-
Motor-Shield-library.

1

2

3

4

1

2

3

4

https://github.com/adafruit/Adafruit-Motor-Shield-library
https://github.com/adafruit/Adafruit-Motor-Shield-library

ptg16605960

Project: BubbleBot
357

NOTE
Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/
n1/Arduino-For-Beginners to download the free code.

// This code is based on Adafruit’s Motor Shield example code.

#include <AFMotor.h>

#include <Servo.h>

AF_DCMotor motor(2);

Servo servo1;

int toggle = 2;

int toggleStatus = 0;

void setup() {

 Serial.begin(9600);

pinMode(toggle, INPUT);

 // turn on servo

 servo1.attach(9);

 // turn on motor #2

 motor.setSpeed(200);

 motor.run(RELEASE);

}

int i;

void loop() {

 int toggleStatus = digitalRead(toggle);

 if (toggleStatus == 1) {

Serial.println(toggleStatus);

https://github.com/n1/Arduino-For-Beginners
https://github.com/n1/Arduino-For-Beginners

ptg16605960

CHAPTER 13: Controlling Motors
358

 motor.run(FORWARD);

 for (i=255; i!=0; i--) {

 servo1.write(i-90

);

 delay(30);

 }

 delay(5000);

 Serial.println(“waiting1”);

 motor.run(FORWARD);

 for (i=0; i<2000; i++) {

 motor.setSpeed(i);

 delay(5);

 }

 delay(5000);

}

}

ptg16605960

Glossary

3D printer—A machine able to extrude and deposit layers of plastic in order to form a three-
dimensional object.

analog—Data sent in a continuous wave of varying voltage, as opposed to digital, which sends data
with a series of on-and-off signals.

array—In programming terminology, an array is a list of values stored for future use.

band saw—A power saw, used for woodworking and metalworking, consisting of a loop-shaped saw
blade.

Barbot—A robot designed to make and serve cocktails.

barometric sensor—A sensor that detects changes in air pressure, much the way a barometer does.

Baud rate—The speed in which data is transmitted; baud value equates to the number of characters
sent per second. So, 9600 baud equals 9,600 characters transmitted every second.

bit—One piece of data, usually assumed to be a 0 or 1.

Bluetooth—A low-power, wireless data protocol used by computer mice, wireless earphones, and
other commercial applications.

board—A shorter way of saying a PCB, or printed circuit board.

breadboard—A hole-punched plastic board with concealed conductors, allowing you to wire up
circuits easily and without solder.

breakout board—A small PCB used for controlling a single component. For instance, you could
create a breakout board for managing an L293D motor control chip.

caliper—A device for accurately measuring short distances.

capacitor—An electronic component that stores small amounts of electricity in an electrostatic field.

circuit bending—A technique for retrofitting commercial electronic toys and devices to change their
behaviors.

compile—To convert one computer language to another, typically used to turn people-readable code
to machine-readable code.

Computer Numerically Controlled (CNC) tools—Rail-mounted power tools that precisely follow
paths as directed by a computer program.

datasheet—A manufacturer-created description of an electronic component or assembly’s functions,
tolerances, and architecture.

ptg16605960

GLOSSARY
360

DC motor—A commonplace motor that rotates its hub when voltage is applied to its
terminals.

digital—A type of data that consists exclusively of yes-or-no instructions, versus analog data,
which consists of varying voltage levels.

diode—An electronic component that typically allows voltage only in one direction.

encoder—A device that can detect how far a motor’s hub has turned, and returns this value
to a microcontroller.

flex sensor—A sensor built into soft plastic. It’s essentially a variable resistor, with the
resistance changing based on how far the plastic is bent.

Fritzing—Free electronics visualization software useful for designing circuits online. Look for
a wiring diagram in this book and you’ll see an example of Fritzing.

ground—The return path of an electric circuit. On a battery, the ground is marked with a –
(minus sign). Ground is often abbreviated GND in electronic parlance.

ground bus—The strip of conductor on a breadboard, usually marked black or blue and
designated as the ground.

hackerspace—See maker spaces.

heat-shrink tubing—Non-conductive rubber tubing used to cover wire joins. As heat is
applied, the tubing shrinks down to cover up the exposed wire.

infrared (IR) light—A bandwidth of light outside of the visible range for humans, IR light is
often modulated to send small amounts of data—for instance, the “off ” signal for a TV.

integrated circuits (ICs)—A series of circuits miniaturized, then embedded in a plastic
housing.

Integrated Development Environment (IDE)—Software that provides technical services to
programmers to assist them in creating code.

interrupt pin—An Arduino pin that can interrupt a loop. If you wanted a button-push to
stop a loop, you would need to wire up the button to an interrupt pin.

IR receiver—Sensor that detects infrared light pulsed at the correct frequency, 38 Mhz.

jumper—A generic term for wires or conductors used in electronics projects.

Kerf-bending—A laser-cutting trick that enables you to bend thin sheets of wood by making
a series of cuts in the material.

keylock switch—A switch that turns with a key, allowing you to restrict who can activate
your project.

knock sensor—A sensor that detects when it has been struck and sends voltage to the next
part of the circuit.

laser cutter—Also known as a laser etcher, a laser cutter burns through thin materials such
as cardboard, MDF, and particle board.

ptg16605960

GLOSSARY
361

laser diode—The electronic module that emits a laser beam when voltage is applied to its
terminals.

lathe—A device for shaping wood that works by rotating the material at high speeds while
an operator applies a tool.

lead—A wire or terminal on a component to which a wire is attached.

LED—Short for Light Emitting Diode, the LED is the light bulb of the electronics world.

LED driver—An integrated circuit able to control multiple LEDs without maxing out the
Arduino’s pins.

library—Supporting code referenced by an Arduino sketch, allowing you to keep the main
sketch relatively simple.

light sensor—A sensor that detects light. Some of these operate as a variable resistor, where
the level or light dictates resistance, whereas others are digital and send numeric data to the
microcontroller.

maker spaces—Communal workshops where tools and expertise can be shared, classes
taught, and projects built.

MDF—Medium density fiberboard, an artificial wood that lends itself to maker projects.

mesh network—A network consisting of multiple nodes, each able to see every other node.

microcontroller—A miniature computer, able to take input from sensors and activate
motors and lights.

motor control chip—An integrated circuit optimized to control motors, expanding on the
Arduino’s capabilities.

multimeter—A combination voltmeter and ohmmeter with additional functionality, designed
to be the electrical engineer’s primary measurement tool.

multitool—A folding tool, often in the form of pliers, with additional tools such as drivers,
blades, scissors, and so on.

open-source hardware and software—Electronics projects where the code and electronic
designs are shared freely, and anyone is free to modify or recreate it.

passive infrared (PIR) sensor—An infrared sensor that detects movements via subtle
changes in temperature.

peristaltic pump—A pump that works by massaging a tube, preserving the substance
pumped from contamination.

piezo buzzer—A component that buzzes when voltage is applied to its terminals.

pin—The power and data connectors of an Arduino.

plasma cutter—A CNC machine that cuts metal according to a design on a computer.

PVC—Polyvinyl chloride, also known as PVC, is the project-friendly plastic pipe most
commonly used as plumbing pipes.

ptg16605960

GLOSSARY
362

potentiometer—Usually referred to as pots, potentiometers are variable resistors adjusted by
turning a knob.

power bus—The conductor strip on a breadboard designated to supply voltage to the
board.

PowerSwitch tail—A convenient and safe tool for triggering wall-current with signals from a
microcontroller.

pressurized reservoir—A way of pumping water by pressurizing a reservoir of liquid, forcing
it out of an exit tube.

printed circuit board (PCB)—Composite boards coated in a conductive material, enabling
you to etch circuits onto the board and thereby create electronic assemblies.

Real-Time Clock (RTC) module—A timekeeping chip with a battery backup, designed to
maintain the correct time for several months.

relay—A microcontroller-triggered, electromechanical switch able to control high-voltage
circuits.

resistor—An electronic component designed to limit the flow of electricity to protect fragile
components and control the flow of voltage in the circuit.

RGB LED—A light-emitting module consisting of three elements, one each of red, blue, and
green. By lighting one or more of these elements, a large variety of colors can be created.

rotary tool—A small power tool with multiple types of attachments ranging from saws to
sanders to polishers. You’ve probably heard of the category leader, Dremel.

schematic—The drawn representation of a circuit, with symbols representing the various
components.

sensor—An electronic device that sends data or voltage to a microcontroller about the
environment around it.

serial communication—A method of data whereby data is sent along a single wire, with
each bit sent sequentially.

serial monitor—The window in the Arduino IDE where serial traffic can be monitored. This
can be a great tool for debugging programs.

servo—A motor equipped with a gearbox and encoder, enabling precision control of how
far the motor’s shaft turns.

seven-segment display—An LED display of a letter or number, formed out of seven smaller
LED segments.

shield—An add-on circuit board for the Arduino. It stacks right on top, sharing the
Arduino’s pins while adding additional capabilities.

sketch—Arduino parlance for the program that controls the Arduino’s pins.

solenoid—A motor, only instead of the shaft rotating, it moves back and forth. This is often
used for valves.

ptg16605960

GLOSSARY
363

standoffs—Metal or plastic inserts that create space or support between a PCB and another
surface.

stepper motor—A motor designed to rotate in increments, called steps. It usually has four
or more wires.

Sugru—Moldable, quick-setting adhesive putty with myriad uses.

table saw—A saw in the form of a work table with a saw blade sticking out of the surface.

temperature and humidity sensor—A digital sensor that measures temperature and
humidity and returns a numeric reading to the microcontroller.

terminal strips—The rows of connectors in breadboards, running perpendicular to the
power and ground bus.

tilt sensor—A sensor with a conductive ball rolling inside, so it knows when the sensor has
been tilted to one side.

transistor—A miniature electronic switch controlled with electrical signals.

ultrasonic sensor—A sensor that detects obstructions and measures distances by
transmitting a beam of inaudible sound and then listening for an echo.

voltage regulator—A component that helps measure the right amount of voltage in an
electronics project.

XBee—A wireless module using the popular Zigbee protocol, which is often used for home
automation.

ptg16605960

This page intentionally left blank

ptg16605960

Index

Symbols
3D printers, plastics, 209-210
80/20, 219

A
accelerometer, 147
acrylic, bending, 109-111
Adafruit Industries, 141
Adafruit Motor Shield, 340
adapting example code, 128
air compressors, 203
Akiba (Chris Wang), 95
aluminum building systems, 219-223
analog sensors, 145

connecting to digital sensors, 146
antenna, XBee, 94
ArcBotics, Hexy the Hexapod, 5
Arduino, 5-6

overview, 7
Arduino IDE, 118

menus, 120
Edit menu, 120-121
File menu, 120
Help menu, 123
Sketch menu, 121-122
Tools menu, 122-123

programming window, 118-119
Arduino Playground, 129-130, 141

sharing code, 131
Arduino Uno, 6-8, 33
arithmetic, 133

arrays, 133
assembling

laser modules, 38
sensor modules, 38-39

Atari Punk Console, 277
ATmega328 Microcontroller, 7
ATmega328P, 296

B
band saws, metal, 216
barometric sensors, 146-147
Beefcake Relay Control Board, 324-325
Belkin, ESD protection, 63
bending acrylic, 109-111
Bleep Labs, 275
Blink sketch, 124-127
Bluetooth doorbell project, 101-102

button, 103
doorbell enclosures, 107-112
wiring instructions, 103-107

BMP085 barometric sensor, 147
books, programming resources, 141
breadboard blink project, 32-35
breadboard pins, XBee, 95
breadboarding, 27

assembling circuits with solderless
breadboards, 27-30

ground, 30
jumper wires, 30-32
power, 30

breakout boards, XBee, 93
Bricktronics MegaShield, 341-342

ptg16605960

366
BubbleBot project

BubbleBot project, 347-349
code, 356-358
instructions, 349-356

buttons, 11
Bluetooth doorbell project, 103

buzzers, piezo buzzers, 17

C
calipers, digital, 191
capacitors, 14
caps (capacitors), 14
cat toy project, 247-250

enclosures, 252-268
instructions, 250-251

charging cables, 198
Chibi, 95
ChronoDot, 297
circuit bending, 274
circuits

assembling with solderless breadboards,
27-30

ground, 30
jumper wires, 30-32
power, 30

integrated circuits, 20
cleaning up after soldering, 71
CNC (computer numerically controlled)

tools, 318-319
CNC mills, 204-206
CNC routers, 302, 318
code

BubbleBot project, 356-358
digital clock project, 301
example code, 127

adapting, 128
fi nding, 128-129
fi nding in Arduino Playground, 129-130
fi nding in libraries, 130
sharing, 131

fan controller project, 329

indoor wind chime project, 316-317
lava lamp buddy project, 335-338
mood light code, 159-161
for Noisemaker project, 293-294
plant-watering robot project, 185-186
for pressurized reservoir project, 171
for pushbutton melody project, 280-281
stepper turner project, 346-347
ultrasonic night light project, 246-247
wireless doorbell code

button unit code, 113-114
buzzer unit code, 114-115

wireless LED code, 99-101
Code.Google.com, 131
comparison operators, 134
conductors, 29
connecting sensors, digital and analog

sensors, 146
controlling

fl ow of liquid
peristaltic pumps, 168
pressurized reservoirs, 167
solenoid valves, 166-167

high voltage, 322
Beefcake Relay Control Board, 324-325
EMSL Simple Relay Shield, 323-324
PowerSwitch Tail, 322-323

motors, 340
Bricktronics MegaShield, 341-342
EasyDriver, 341
Motor Shield, 340

Cupcake CNC 3D printer, 209
curly braces, 126
cutters, 60

D
data indicators, 8
data LED, XBee, 95
datasheets, electronics, 239-240
DC motors, 15

ptg16605960

367
flux-core solder

debugging with serial monitor, 137-139
decrement, 135
Delp, Mickey, 274
desktop vises, 59-60
desoldering, 68-70
desoldering braids, 70
desoldering bulb, 69
Digi International, 92
digital calipers, 191
digital clock project, 298-301

code, 301
digital sensors, 145

connecting to analog sensors, 146
doorbell enclosures, Bluetooth doorbell

project, 107-112
downloading Arduino software, 8
drills, 203

E
EasyDriver, 341
Edit menu, Arduino IDE, 120-121
electricity, safety, 325-326
electro-static discharge (ESD)

protection, 62
electronics, 9

buttons and switches, 11
capacitors, 14
fl ex sensors, 22
harvesting, 235-237
integrated circuits, 20
LEDs (light-emitting diodes), 11
marking, 238

datasheets, 239-240
part numbers, 238-239
resistor color bands, 240-241
schematic symbols, 241-242

motors, 15-16
piezo buzzers, 17
plant-watering robot project, 179-180
potentiometers, 12-13

relays, 19
resistors, 13-14
seven-segment displays, 18
solenoids, 16
temperature sensors, 21

EMSL Simple Relay Shield, 323-324
enclosures

building for laser trip beam project, 41-47
building for LED strip coffee table

project, 76-81
cat toy project, 252-268
plant-watering robot project, 181-183

encoders, 148
ESD protection, soldering, 62
Evil Mad Science LLC, 8
example code, 127

adapting, 128
fi nding, 128-129

Arduino Playground, 129-130
libraries, 130

sharing, 131
extruders, plastics, 212

F
fan controller project, 327

code, 329
instructions, 328

fans, 62
File menu, Arduino IDE, 120
fi nding example code, 128-129

Arduino Playground, 129-130
libraries, 130

fi rst-aid kits, 199
fl ashlights, 196
fl ex sensors, 22
fl ow of liquid, controlling

with peristaltic pumps, 168
with pressurized reservoirs, 167
with solenoid valves, 166-167

fl ux-core solder, 58

ptg16605960

368
food safety, pressurized reservoirs

food safety, pressurized reservoirs, 172
For function, 134-135
FORMUFIT, 174
Freakduino Chibi, 95
Fritzing, 34, 230
fume extractors, 62
functions

For, 134-135
if/else, 136
mapping, 136
max, 136
min, 136
random, 136
serial.begin(), 139
Serial.println(), 139
switch/case, 137
while, 137

G
gas sensors, 148
GIMP (GNU Image Manipulation

Program), 228
GitHub.com, 131
glue

hot glue guns, 196
super glue, 195

grinders, metal, 217
ground, 30
ground bus strip, 29

H
Hack Factory, 224
Hackerspace, 224
hackerspaces, 225
Hall Effect sensor, 149
hardware, 193
harvesting electronics, 235-237
heat-shrink tubing (HST), 40-41
Help menu, Arduino IDE, 123

hemostats, 61
Hexy the Hexapod, 5
HIGH, 127
high voltage, 322

Beefcake Relay Control Board, 324-325
EMSL Simple Relay Shield, 323-324
PowerSwitch Tall, 322-323

Hitec HS-322HD servo, 249
hole letters and numbers, 29
hot glue guns, 196
HST (heat-shrink tubing), 40-41

I
IDE (integrated development

environment), 118
if/else functions, 136
include, 135
increment, 135
indoor wind chime project, 302-303

code, 316-317
instructions, 304-315
servo horns, 303

Industrial Erector Set, 219
infrared detector project, 50

code for, 51-52
wiring up the PIR and buzzer, 51

infrared sensors, 150, 331
Inkscape, 229
Instructables, 141
integrated circuits, 20
integrated development environment

(IDE), 118
interrupts, 135-136
iRobot Scooba, 235

J
JeeLabs JeeNode, 96
JeeNode, 96

ptg16605960

369
Maker2s Notebook

jumper wires, assembling circuits with
solderless breadboards, 30-32

K
kerf bending, 162
keywords

HIGH, 127
LOW, 127
void, 126

KiCad PCB Layout software, 230
knives, X-Acto knives, 192
knock sensors, 150
Krazy Glue, 195

L
laser cutters, 200

CNC mills, 205
how to use, 201-202

laser modules, assembling, 38
laser trip beam project, 35-37

assembling the laser module, 38
assembling the sensor module, 38-39
building enclosures, 41-47
code for, 47-48
setting up the trip beam, 49-50

lasers, safety, 36
lathes, 206, 269-271
lava lamp buddy project, 330-331

code, 335-338
instructions, 332-334

lead-free solder, 58
lead solder, 58
LED strip code, LED strip coffee table

project, 82-89
LED strip coffee table project, 72

attaching light strips to tables, 75-76
building enclosures, 76-81
controlling LED strips, 82

LED strip code, 82-89
preparing light strips, 73-74

LED strips, controlling for LED strip coffee
table project, 82

LEDs (light-emitting diodes), 11
wireless LED activation project, 96-98

LEGO
plastics, 210-211
prototyping, 184-185

LEGO enclosures, 181
LEGO peristaltic pumps, 171
libraries, 139-140

fi nding code, 130
servo objects, 140

light-emitting diodes. See LEDs
light sensors, 23
light strips

attaching to tables for LED strip coffee
table project, 75-76

preparing for LED strip coffee table
project, 73-74

lights, ultrasonic night light
project, 245-246
code, 246-247

liquid, controlling fl ow
with peristaltic pumps, 168
with pressurized reservoirs, 167
with solenoid valves, 166-167

LoL (Lots of LEDs), 128
LOW, 127
LushOne synthesizers, 276

M
Mace, Garrett, 153
magnifying glasses, 197
Make, 141
Makeblock, 222
maker spaces, 224-228
MakerCase, 231
Maker2s Notebook, 198

ptg16605960

370
mapping function

mapping function, 136
marking electronics, 238

datasheets, 239-240
part numbers, 238-239
resistor color bands, 240-241
schematic symbols, 241-242

max, 136
measuring tapes, 190
MegaShield (Bricktronics), 341-342
menus

Arduino IDE, 120
Edit menu, 120-121
File menu, 120
Help menu, 123
Sketch menu, 121-122
Tools menu, 122-123

metal, tools, 214
aluminum building systems, 219-223
band saws, 216
grinders, 217
plasma cutters, 215
welders, 218-219

metal inert gas (MIG), 218
MicroRAX, 220

beams, 77
corner braces, 78

MIG (metal inert gas), 218
min, 136
mini fl ashlights, 196
mood light project, 152-158

code, 159-161
Motor Shield (Adafruit), 340
motors, 15-16

BubbleBot project, 347-349
code, 356-358
instructions, 349-356

controlling, 340
Bricktronics MegaShield, 341-342
EasyDriver, 341
Motor Shield, 340

Hitec HS-322HD, 249

powering with TIP-120, 342-343
stepper turner project, 344-346

code, 346-347
multimeters, 188, 233-235
multitools, 189

N
needle-nose pliers, 61
network time protocol (NTP), 295
noise, 274
Noisemaker project, 282-283

code, 293-294
instructions, 283-292

noisemaking projects
LushOne synthesizers, 276
Noisemaker, 282-283

code, 293-294
instructions, 283-292

pushbutton melody, 278-279
code, 280-281

Tactile Metronome, 275
Thingamagoop, 275

NTP (network time protocol), 295

O
Open Beam, 221
open source hardware, 131-133

P-Q
part numbers, electronics, 238-239
passive infrared (PIR), 50
PCB (printed circuit board), 93, 230
pen style soldering irons, 55
peristaltic pumps, 165

controlling fl ow of liquid, 168
piezo buzzers, 17, 150
pinouts, 8

ptg16605960

371
projects

pins, XBee 94
PIR (passive infrared), 50

wiring, 51
plant-watering robot project, 173-174

code, 185-186
electronics, 179-180
enclosures, 181-183
instructions, 175-179

plasma cutters, 215
plastic, tools, 208-209

3D printers, 209-210
extruders, 212
LEGO, 210-211
Sugru, 211
Tamiya, 213
vacuum formers, 211

Playground, 129-130
pliers, needle-nose pliers, 61
potentiometers, 12-13
pots (potentiometers), 12-13
power, 30
power bus strip, 29
power indicator, 8
power jack, 8
power LED, XBee, 94
power regulators, XBee, 95
powering motors with TIP-120, 342-343
PowerSwitch Tail, 322-323
pressurized reservoir project, 169-171

code for, 171
pressurized reservoirs, 165

controlling fl ow of liquid, 167
printed circuit board (PCB), 93, 230
private, 140
programming

arithmetic, 133
arrays, 133
Blink sketch, 124-127
comparison operators, 134
example code, 127

adapting, 128
fi nding, 128-130

sharing, 131
For function, 134-135
if/else, 136
include reference, 135
increment/decrement, 135
interrupts, 135-136
mapping function, 136
random, 136
resources, 141
switch/case, 137
while function, 137

programming window, Arduino
IDE, 118-119

projects
Bluetooth doorbell, 101-102

button, 103
doorbell enclosures, 107-112
wiring instructions, 103-107

breadboard blink, 32-35
BubbleBot, 347-349

code, 356-358
instructions, 349-356

cat toys, 247-250
enclosures, 252-268
instructions, 250-251

digital clock project, 298-301
code, 301

fan controllers, 327
code, 329
instructions, 328

indoor wind chime, 302-303
code, 316-317
instructions, 304-315
servo horns, 303

kerf bending, 162
laser trip beam, 35-37

assembling the laser module, 38
assembling the sensor module, 38-39
building enclosures, 41-47
code for, 47-48
setting up the trip beam, 49-50

ptg16605960

372
projects

lava lamp buddy, 330-331
code, 335-338
instructions, 332-334

LED strip coffee table, 72
attaching light strips to tables, 75-76
building enclosures, 76-81
controlling LED strips, 82
LED strip code, 82-89
preparing light strips, 73-74

mood lights, 152-158
Noisemakers, 282-283

code, 293-294
instructions, 283-292

noisemaking projects, pushbutton
melody, 278-281

plant-watering robot, 173-174
code, 185-186
electronics, 179-180
enclosures, 181-183
instructions, 175-179

pressurized reservoirs, 169-171
code for, 171

stepper turner, 344-346
code, 346-347

ultrasonic night lights, 245-246
code, 246-247

wireless LED activation, 96-98
projects infrared detectors, 50

code for, 51-52
wiring up the PIR and buzzer, 51

prototypes, LEGO, 184-185
pushbutton melody project, 278-279

code, 280-281
PVC (polyvinyl chloride), 174-175

R
random functions, 136
real-time clock (RTC), 295-297
Relay Shield, 8

relays, 19, 322
Beefcake Relay Control Board, 324-325
EMSL Simple Relay Shield, 323-324
PowerSwitch Tail, 322-323

reset button, 8
resistor color bands, 240-241
resistors, 13-14
resources for programming, 141
rotary tools, wood, 202
routers, CNC routers, 318
RTC (real-time clock), 295-297
rules, safety, 24-26

S
safety

controlling high voltage, 322
Beefcake Relay Control Board, 324-325
EMSL Simple Relay Shield, 323-324
PowerSwitch Tail, 322-323

electricity, 325-326
fi rst-aid kits, 199
lasers, 36
lathes, 271
soldering, 55
working with wood, 267

safety rules, 24-26
sanders, 207
schematic symbols, marking electronics,

241-242
scissors, 192
screwdrivers, 193
sensor modules, assembling, 38-39
sensors, 143-146

accelerometer, 147
analog, 145
barometric sensors, 146-147
connecting digital and analog sensors, 146
digital, 145
encoders, 148
fl ex sensors, 22

ptg16605960

373
stick welders

gas sensors, 148
Hall Effect sensor, 149
infrared, 331
infrared sensors, 150
knock sensors, 150
light sensors, 23
mood light project, 152-158
piezo buzzer, 150
sound sensors, 151
temperature sensors, 21
tilt sensors, 151-152
ultrasonic sensors, 23, 244-245

serial monitor, debugging, 137-139
serial.begin(), 139
Serial.println(), 139
Series 1 (XBee), 93, 96
Series 2 (XBee), 93
servo horns, 303
servo objects, 140
servos, 15
setup, 126
seven-segment displays, 18
sharing example code, 131
Sharp, Iain, 276
Shielded Metal Arc Welding (SMAW), 218
shields, Relay Shield, 8
ShiftBrite module, 153
Simple Relay Shield (EMSL), 323
Sketch menu, Arduino IDE, 121-122
sketchbooks, 198
sketches, uploading, 124
SMAW (Shielded Metal Arc Welding), 218
software

downloading, 8
Fritzing, 230
GIMP, 228
Inkscape, 229
KiCad, 230
MakerCase, 231

solder, 53
choosing, 58-59
fl ux-core, 58

lead-free solder, 58
lead solder, 58
solid-core, 58

solder pads, 54
solder stand, 63
solder suckers, 69
soldering

cleaning up, 71
cutters and strippers, 60
desktop vises, 59-60
desoldering, 68-70
ESD protection, 62
fans and fume extractors, 62
how to, 53-54, 64-67
needle-nose pliers and hemostats, 61
safety, 55
solder stand, 63
tips for, 71

soldering irons, 190
choosing, 55-57
tinning tips, 57
Weller WES5, 56

solderless breadboards
assembling circuits, 27-30

ground, 30
jumper wires, 30-32
power, 30

solenoid valves, 165
controlling fl ow of liquid, 166-167

solenoids, 16
solid-core solder, 58
sonar, 243
sound, 274
sound sensors, 151
SparkFun, 141

ADXL362, 147
Beefcake Relay Control Board, 324-325

sponge (for soldering), 63
stepper turner project, 344-346

code, 346-347
steppers, 15
stick welders, 218

ptg16605960

374
strippers

strippers, 60
Sugru, plastics, 211
super glue, 195
switch/case, 137
switches, 11
synthesizers, 276

T
table saws, 206
Tactile Metronome, 275
Tamiya, plastics, 213
temperature sensors, 21
terminal strips, 29
Thingamagoop, 275
TIG welders, 219
tilt sensors, 151-152
time

digital clock project, 298-301
code, 301

indoor wind chime project, 302-303
code, 316-317
instructions, 304-315
servo horns, 303

timer servers, 295
ATmega328P, 296

tinning tips, 57
TIP-12, powering motors, 342-343
toolboxes, 188
tools

charging cables, 198
cutters, 60
desktop vises, 59
desoldering braids, 70
desoldering bulb, 69
digital calipers, 191
ESD (electro-static discharge)

protection, 62
fans, 62
fi rst-aid kits, 199
fl ashlights, 196

fume extractors, 62
hardware, 193
harvesting electronics, 235-237
hemostats, 61
hot glue guns, 196
magnifying glasses, 197
measuring tapes, 190
metal, 214

aluminum building systems, 219-223
band saws, 216
grinders, 217
plasma cutters, 215
welders, 218-219

multimeters, 188, 233-235
multitools, 189
needle-nose pliers, 61
plastics, 208-209

3D printers, 209-210
extruders, 212
LEGO, 210-211
Sugru, 211
Tamiya, 213
vacuum formers, 211

scissors, 192
screwdrivers, 193
sketchbooks, 198
solder stands, 63
solder suckers, 69
soldering irons, 190
sponges, 63
strippers, 60
super glue, 195
wire strippers, 194
woodworking, 200

air compressors, 203
CNC mills, 204-206
drills, 203
laser cutters, 200-202
lathes, 206
rotary tools, 202
sanders, 207
table saws, 206

ptg16605960

375
XBee

writing utensils, 197
X-Acto knives, 192

Tools menu, Arduino IDE, 122-123
traces, 54
troubleshooting breadboard blink

project, 34
Tungsten Inert Gas Welding (TIG), 219

U
ultrasonic detection, 243-245
ultrasonic night light project, 245-246

code, 246-247
ultrasonic sensors, 23, 244-245

cat toy project, 247-250
enclosures, 252-268
instructions, 250-251

Uno, 6
uploading sketches, 124
USB jack, 8

V
vacuum formers, plastics, 211
Valenzuela, Miguel, 171
VEX, 223
Vibrati Punk Console, 277-278
void, 126

W
Wang, Chris, 95
Wayne and Layne, 275
websites, programming resources, 141
welders, metal, 218-219
Weller WES51, 56
while function, 137
Wi-Fi shield, 296
wire strippers, 194

wireless connections
Bluetooth doorbell project, 101-102

button, 103
doorbell enclosures, 107-112
wiring instructions, 103-107

Freakduino Chibi, 95
wireless doorbell code

button unit code, 113-114
buzzer unit code, 114-115

wireless LED activation project, 96-98
wireless LED code, 99-101
wireless modules

JeeLabs JeeNode, 96
XBee wireless modules, 92

wiring instructions, Bluetooth doorbell
project, 103-107

wiring PIR (passive infrared), 51
woodworking tools, 200

air compressors, 203
CNC mills, 204-206
drills, 203
laser cutters, 200

how to use, 201-202
lathes, 206
rotary tools, 202
sanders, 207
table saws, 206

writing utensils, 197

X-Y
X-acto knives, 192
XBee, 94

antenna, 94
breadboard pins, 95
breakout boards, 93
data LED, 95
pins, 94
power LED, 94
power regulators, 95
Series 1 versus Series 2, 93

ptg16605960

376
XBee

versus XBee Pro, 92
wireless LED activation project, 96-98

XBee-equipped bracer, 91
XBee Pro versus XBee, 92
XBee wireless modules, 92

Z
ZigBee, 92

ptg16605960

This page intentionally left blank

ptg16605960

QUEPUBLISHING.COM
Your Publisher for Home & Office Computing

Quepublishing.com includes all your favorite—
and some new—Que series and authors to help you
learn about computers and technology for the home,
office, and business.

Looking for tips and tricks, video tutorials, articles and
interviews, podcasts, and resources to make your life
easier? Visit quepublishing.com.

• Read the latest articles and sample chapters
by Que’s expert authors

• Free podcasts provide information on the
hottest tech topics

• Register your Que products and receive updates,
supplemental content, and a coupon to be used
on your next purchase

• Check out promotions and special offers
available from Que and our retail partners

• Join the site and receive members-only offers
and benefits

Que Publishing is a publishing imprint of Pearson

QUE NEWSLETTER
quepublishing.com/newsletter

twitter.com/
quepublishing

facebook.com/
quepublishing

youtube.com/
quepublishing

quepublishing.com/
rss

quepublishing.com

ptg16605960

* Available to new subscribers only. Discount applies to the Safari Library and is valid for fi rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

ptg16605960

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: MJGFXBI.

STEP 2: New Safari users, complete the brief registration form.

Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,

please e-mail customer-service@safaribooksonline.com

Your purchase of Arduino for Beginners includes access to a free online edition for 45 days

through the Safari Books Online subscription service. Nearly every Que book is available

online through Safari Books Online, along with thousands of books and videos from

publishers such as Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, O’Reilly

Media, Prentice Hall, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands

of technology, digital media, and professional development books and videos from leading

publishers. With one monthly or yearly subscription price, you get unlimited access to learning

tools and information on topics including mobile app and software development, tips and tricks

on using your favorite gadgets, networking, project management, graphic design, and much

more.

FREE
Online Edition

	Table of Contents
	Introduction
	Chapter 1 Arduino Cram Session
	Arduino Uno: A Rookie-Friendly Microcontroller
	Other Arduino Products
	Electronics
	Light-Emitting Diodes
	Buttons and Switches
	Potentiometers
	Resistors
	Capacitors
	Motors
	Solenoids
	Piezo Buzzers
	Seven-Segment Displays
	Relays
	Integrated Circuits
	Temperature Sensors
	Flex Sensor
	Light Sensor
	Ultrasonic Sensor

	Safety Rules
	The Next Chapter

	Chapter 2 Breadboarding
	Assembling Circuits Using Solderless Breadboards
	Understanding Power and Ground
	Using Jumper Wires

	Project: Breadboard Blink
	Project: Laser Trip Beam
	Assembling the Laser Module
	Assembling the Sensor Module
	Building the Enclosures
	Laser Trip Beam Code
	Setting Up the Trip Beam

	Alt.Project: Infrared Detector
	Wiring Up the PIR and Buzzer
	Infrared Detector Code

	The Next Chapter

	Chapter 3 How to Solder
	Gathering Soldering Supplies
	Picking a Soldering Iron
	Choosing a Solder
	Getting the Other Things You Need

	Soldering
	Desoldering
	Cleanup
	Project: LED Strip Coffee Table
	Preparing the Light Strip
	Attaching the Light Strip to the Table

	Building the Enclosure
	Controlling the LED Strip

	LED Strip Code
	The Next Chapter

	Chapter 4 Setting Up Wireless Connections
	XBee Wireless Modules
	XBee Versus XBee Pro
	Series 1 Versus Series 2

	XBee Breakout Boards
	Anatomy of the XBee
	Competing Wireless Modules
	Freakduino Chibi
	JeeLabs JeeNode

	Project: Wireless LED Activation
	Wireless LED Code
	Project: Bluetooth Doorbell
	The Button
	Instructions for Wiring Up the Doorbell
	Building the Doorbell Enclosures

	Wireless Doorbell Code
	Button Unit Code
	Buzzer Unit Code

	The Next Chapter

	Chapter 5 Programming Arduino
	The Arduino Development Environment
	Programming Window
	Menus

	The Blink Sketch
	Learning from Example Code
	Adapt the Code
	Finding Example Code

	More Functions and Syntax
	Arithmetic
	Arrays
	Comparison Operators
	For
	Include
	Increment/Decrement
	Interrupts
	If/Else
	Mapping
	Random
	Switch/Case
	While

	Debugging Using the Serial Monitor
	All About Libraries
	Resources for Learning Programming
	Books
	Websites

	The Next Chapter

	Chapter 6 Sensing the World
	Lesson: Sensors
	Digital Versus Analog
	Connecting Digital and Analog Sensors

	Know Your Sensors
	Accelerometer
	Barometric
	Encoder
	Gas
	Hall Effect
	Infrared
	Piezo Buzzer (Knock Sensor)
	Sound Sensors
	Tilt Sensors

	Project: Mood Light
	Instructions
	Mood Lamp Code

	Alt.Project: Kerf Bending
	The Next Chapter

	Chapter 7 Controlling Liquid
	Lesson: Controlling the Flow of Liquid
	Solenoid Valve
	Pressurized Reservoir
	Peristaltic Pump

	Mini Project: Make a Pressurized Reservoir
	Instructions
	Pressurized Reservoir Code

	Project: Plant-Watering Robot
	Instructions
	Plant-Watering Robot Electronics
	Plant-Watering Robot Enclosure
	Plant-Watering Robot Code

	The Next Chapter

	Chapter 8 Tool Bin
	Maker’s Ultimate Toolbox
	Basic Multimeter
	Multitool
	Measuring Tape
	Soldering Iron
	Digital Caliper
	Scissors
	X-Acto Knives
	Screwdrivers
	Hardware
	Wire Strippers
	Super Glue
	Mini Flashlight
	Hot Glue Gun
	Magnifying Glass
	Writing Supplies
	Sketchbook
	Charging Cables

	Working with Wood
	Laser Cutter
	Rotary Tool
	Air Compressor and Attachments
	Drill
	CNC Mill
	Table Saw
	Lathe
	Sander

	Working with Plastic
	3D Printers
	LEGO
	Sugru
	Vacuum Former
	Extruder
	Tamiya

	Working with Metal
	Plasma Cutter
	Band Saw
	Grinder
	Welder
	Aluminum Building Systems

	Maker Spaces
	Software
	GIMP
	Inkscape
	Fritzing
	KiCad PCB Layout Software
	MakerCase

	Electronics Tools and Techniques
	Multimeters
	Harvesting Electronics
	Electronics Marking
	Schematic Symbols

	The Next Chapter

	Chapter 9 Ultrasonic Detection
	Lesson: Ultrasonic Detection
	Ultrasonic Sensor Applications

	Mini Project: Make an Ultrasonic Night Light
	Ultrasonic Night Light Code

	Project: Cat Toy
	Instructions
	Enclosure

	Lathe 101
	Lathe Safety
	The Next Chapter

	Chapter 10 Making Noise
	Noise in Electronics
	Thingamagoop
	Tactile Metronome
	LushOne Synth

	Mini Project: Pushbutton Melody
	Instructions
	Pushbutton Melody Code

	Project: Noisemaker
	Instructions
	Noisemaker Code

	The Next Chapter

	Chapter 11 Measuring Time
	Time Server
	Arduino's Timer
	Real-Time Clock (RTC) Module

	Mini Project: Digital Clock
	Instructions
	Digital Clock Code

	Project: Indoor Wind Chime
	Servo Horns
	Instructions
	Code

	Computer Numerically Controlled (CNC) Tools
	The Next Chapter

	Chapter 12 Safely Working with High Voltage
	Lesson: Controlling High Voltage
	PowerSwitch Tail
	EMSL Simple Relay Shield
	Beefcake Relay Control Board

	Mini Project: Making a Fan Controller
	Instructions
	Fan Controller Code

	Project: Making a Lava Lamp Buddy
	Decoding Infrared
	Instructions
	Lava Lamp Buddy Code

	The Next Chapter

	Chapter 13 Controlling Motors
	How to Control Motors
	Adafruit Motor Shield
	Shmalz Haus EasyDriver
	Bricktronics MegaShield

	Powering Your Motor Using a TIP-120
	Alt.Project: Stepper Turner
	Instructions
	Stepper Turner Code

	Project: BubbleBot
	Instructions
	BubbleBot Code

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W
	X-Y
	Z

