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Preface

The purpose of this book is to isolate and draw attention to the most
important probl lving techniques typically d in undergradu-
ate mathematics and to illustrate their use by interesting examples and
problems not easily found in other sources. Each section features a single
idea, the power and versatility of which is demonstrated in the examples
and reinforced in the problems. The book serves as an introduction and
guide to the problems literature (e.g., as found in the problems sections of
undergraduate mathematics journals) and as an easily accessed reference of
essential knowledge for students and teachers of mathematics.

The book is both an anthology of problems and 2 manual of instruction.
It contains over 700 problems, over one-third of which are worked in detail,
Each problem is chosen for its natural appeal and beauty, but primarily for
its unique challenge. Each is included to provide the context for illustrating
a given problem-solving method. The aim throughout is to show how a
basic set of simple techniques can be applied in diverse ways to solve an
enormous variety of problems. Whenever possible, problems within sections
are chosen to cut across expected course boundaries and to thereby
strengthen the evidence that a single intuition is capable of broad applica-
tion. Each section ludes with “Additional E les” that point to
other contexts where the technique is appropriate.

The book is written at the upper undergraduate level. It assumes a
rudi v k ledge of bi ics, number theory, algebra, analysis,
and geometry. Much of the content is accessible to students with only a
year of calculus, and a sizable proportion does not even require this.
However, most of the problems are at a level slightly beyond the usual
contents of textbooks. Thus, the material is especially appropriate for
students preparing for mathematical competitions.




viii Preface

The methods and problems featured in this book are drawn from my
experience of solving problems at this level. Each new issue of The
American Mathematical Monthly (and other undergraduate journals) con-
tains material that would be just right for inclusion. Because these ideas
continue to find new expression, the reader should regard this collection as
a starter set and should be encouraged to create a personal file of problems
and solutions to extend this beginning in both breadth and depth. Obvi-
ously, we can never hope to develop a “system” for problem-solving;
however, the acquiring of ideas is a valuable experience at all stages of
development.

Many of the problems in this book are old and proper referencing is very
difficult. I have given sources for those problems that have appeared more
recently in the literature, citing contests whenever possible. I would appreci-
ate receiving exact references for those I have not mentioned.

I wish to take this opportunity to express my thanks to colleagues and
students who have shared many hours of enjoyment working on these
problems. In this regard 1 am particularly grateful to O. E. Stanaitis,
Professor Emeritys of St. Olaf College. Thanks to St. Olaf College and the
Mellon Foundation for providing two summer grants to help support t}w
writing of this manuscript. Finally, thanks to all individuals who contrib-
uted by posing problems and sharing soluti Special acknowled
goes to Murray S. Klamkin who for over a quarter of a century has stood
as a giant in the area of problem-solving and from whose problems and
solutions I have learned a great deal.

March 21, 1983 LoreN C. LARSON
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Chapter 1. Heuristics

Strategy or tactics in problem-solving is called heuristics. In this chapter we
will be concerned with the heuristics of solving mathematical problems.
Those who have thought about heuristics have described a number of basic
ideas that are typically useful. Among these, we shall focus on the follow-
ing:

(1) Search for a pattern.

(2) Draw a figure.

(3) Formulate an equivalent problem.

(4) Modify the problem.

(5) Choose effective notation.

(6) Exploit symmetry.

(7) Divide into cases.

(8) Work backward.

(9) Argue by contradiction.
(10) Pursue parity.
(11) Consider extreme cases.
(12) Generalize.

Our interest in this list of problem-solving ideas is not in their descrip-
tion but in their implementation. By looking at examples of how others
have used these simple but powerful ideas, we can expect to improve our
problem-solving skills.

Before beginning, a word of advice about the problems at the end of the
sections: Do not be-overly concerned about using the heuristic treated in
that section. Although the problems are chosen to give practice in the use
of the heuristic, a narrow focus may be psychologically debilitating.* A
single problem usually admits several solutions, often employing quite
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different heuristics. Therefore, it is best to approach each problem with an
open mind rather than with a preconceived notion about how a particular
heuristic should be applied. In working on a problem, solving it is what
matters. It is the accumulated experience of all the ideas working together
that will result in a heigh of the ibilities in a problem.

1.1. Search for a Pattern

Virtually all problem solvers begin their analysis by getting a feel for the
problem, by Ives of the ibility of the result. This is
best done by exammmg the most immediate special cases; when this
exploration is undertaken in a systematic way, patterns may emerge that
will suggest ideas for proceeding with the problem.

1.1.1, Prove that a set of n (different) elements has exactly 2" (different)
subsets.

‘When the problem is set in this imperative form, a beginner may panic
and not know how to proceed. Suppose, however, that the problem were
cast as a query, such as
(i) How many subsets can be formed from a set of # objects?

(ii) Prove or disprove: A set with n elements has 2" subsets.
In either of these forms there is already the implicit suggestion that one

should begin by checking out a few special cases. This is how each problem
should be approached: remain skeptical of the result until convinced.

Solution 1. We begin by examining what happens when the set contains
0,1,2,3 elements; the results are shown in the following table:

Elements Number of
n ofS§ Subsets of § subsets of S
0 none ] 1
1 x B, (x} 2
2 xpx B, {x1}, {2}, {21, %2} 4
3 xpxpxs @,{x} (%) {(xpx2} 8

{x3h (X023}, {32,235}, (312 %2,%3)

Our purpose in constructing this table is not only to verify the result, but
also to look for patterns that might suggest how to proceed in the general
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case. Thus, we aim to be as systematic as possible. In this case, notice when
n =3, we have listed first the subsets of {x,,x,} and then, in the second
line, each of these subsets angmented by the element x;. This is the key
idea that allows us to proceed to higher values of n. For example, when
n =4, the subsets of § = {x,,x,,x;,,} are the eight subsets of {x,,x;, x5}
(shown in the table) together with the eight formed by adjoining x, to each
of these. These sixteen subsets i the entire collection of possibili
ties; thus, a set with 4 elements has 2* (= 16) subsets.

A proof based on this idea is an easy application of mathematical
induction (see Section 2.1).

Solution 2. Another way to present the idea of the last solution is to argue
as follows. For each n, let 4, denote the number of (different) subsets of a
set with n (different) elements. Let § be a set with n + 1 elements, and
designate one of its elements by x. There is a one-to-one correspondence
between those subsets of § which do not contain x and those subsets that
do contain x (namely, a subset T of the former type corresponds to
T U {x}). The former types are all subsets of §— {x), a set with n
elements, and therefore, it must be the case that

+1=24,.
This recurrence relation, true for n =0,1,2,3,..., combined with the fact
that Ay=1, implies that 4,=2" (4,=24, =22, ,=--- =24,

=2")
Solution 3. Another systematic enumeration of subsets can be carried out

by constructing a “trec”. For the case #n =3 and S = {g,b,¢}, the tree is as
shown below:

Subset
{a,b,¢}

< =
{a, c}

b< @
{b.c}

<
_ b<€ b}
<

h<E 9

Each branch of the tree corresponds to a distinct subset of S (the bar over
the name of the element means that it is not included in the set correspond-
ing to that branch). The tree is constructed in three stages, corresponding to
the three elements of S. Each element of § leads to two possibilities: either
it is in the subset or it is not, and these choices are represented by two
branches. As each element is considered, the number of branches doubles.
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4
Thus, for a three-element set, the number of branches is 2 X 2 X 2 = 8. For
an n-element set the number of branches is
2X2X%X X2=2"
n
thus, a set with n elements has 27 subsets.

Solution 4. Suppose we enumerate subsets according to their size. For
example, when S = {a,b,¢,d}, the subsets are

Number of Number of
clements subsets
0 a 1
! {a}, {b}, {c), {d} 4
2 (a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d} 6
3 {a.b,c), (a,b,d}, (a.c,d}, {b,c,d} 4
4 {a,b,c,d} i

This beginning could prompt the following argument. Let S be a set with
n elements. Then

n
No. of subsets of § = >, (No. of subsets of S with k elements)
£=0

S THE

k=0
The final step in this chain of equalities follows from the binomial theorem,
n
n n km—k
X+ = x T,
=2 (3)
upon setting x =1 and y = 1.
Solution 5. Another beginning is i in Table 1.1, whi.ch
Iists the subsets of S = {x,,x,,x,}. To understand the pattern here, notice
the correspondence of subscripts in the leftmost column and the occurrence

Table 1.1

Subset Triple Binary number Decimal number
[4 0,0,0) 0 1]
{x3} 0,0,1) 1 i
{x2} ©,1,0 10 §

{x2,%3} ©.1,1) 11

{*:} (1,0,0 100 4
{21, %3} (1,0,1) 101 5
(%), x2) 1,1,0 110 :

{1, %2, %3} oLy it
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of Is in the second column of triples. Specifically, if A is a subset of

S={x,x3,...,x,), definea, fori=12,...,nby
st i aEa
Tlo if gqea
1t is clear that we can now identify a subset 4 of S with (a, 4, . . . , a,), an

n-tuple of 0’s and 1’s. Conversely, each such n-tuple will correspond to a
unique subset of S. Thus, thé number of subsets of § is equal to the
number of n-tuples of 0's and 1’s. This latter set is obviously in one-to-one
correspondence with the set of nonnegative binary numbers less than 2”.
Thus, each nonnegative integer less than 2" corresponds to exactly one
subset of §, and conversely. Therefore, it must be the case that S has 2°
subsets.

Normally, we will give only one solution to each example—a solution
which serves to illustrate the heuristic under consideration. In this first
example, however, we simply wanted 1o reiterate the earlier claim that a
single problem can usually be worked in a variety of ways. The lesson to be
learned is that one should remain flexible in the beginning stages of
problem exploration. If an approach doesn’t seem to lead anywhere, don’t
despair, but search for a new idea. Don’t get fixated on a single idea until
you've had a chance to think broadly about a variety of alternative
approaches.

L1.2. Let S,q, S, ,, and ,, denote the sum of every third element in the
nth row of Pascal’s Triangle, beginning on the left with the first element,
the second element, and the third element respectively. Make 2 conjecture
concerning the value of ;.

Solution. We begin by examining low-order cases with the hope of finding
patterns that might generalize. In Table 1.2, the nonunderlined terms are
those which make up the summands of S, the singly underlined and

Table 1.2
Pascal’s triangle ,. Soo Sr 5
[} 1™ 0 0
1 1 1 0-
2 1 2+ 1
3 2- 3 3
4 5 5 6+
5 1 10- u
6 2+ 21 21
N S
¥ — 55—
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doubly underlined terms are those of S, and §,,, respectively. The three
columns on the right show that, in each case, two of the sums are equal,
whereas the third is either one larger (indicated by a superscript +) or one
smaller (indicated by a superscript —). It also appears that the unequal
term in this sequence changes within a cycle of six. Thus, from the pattern
established in the first rows, we expect the anomaly for » = 8 to occur in
the middle column and it will be one’ an the other two.

We know that S, + S, + S,, = 2" (see 1.1.1). Since 100 = 6 X 16 +4,
we expect the unequal term to occur in the third column (S81g02) and to be
one more than the other two. Thus Sig00 = S0 = Sygo, — 1. and Sioo, +
Sto01 + Sio + 1 =2, From these equations we are led to conjecture
that

2% -1
S = =—5— -
A formal proof of this j is a igh ward lication of
mathematical induction (see Chapter 2).
LL3. Let x;,x,,%;, ... be a sequence of nonzero real numbers satisfying
P ./ CL R X

" Ix %,
Establish necessary and sufficient conditions on x, and x, for x, to be an

integer for infinitely many values of n.

Solution. To get a feel for the sequence, we will compute the first few terms,
expressing them in terms of x, and x,. We have (omitting the algebra)
*1X2

X3 = g———
P 2% —x,

X%,
Xy = B
+7 3%, - 2x;
1 2
X)Xy

M T P

We are fortunate in this particular instance that the computationg are
manageable and a pattern emerges. An easy induction argument establishes
that
Xi%y
B TR A T T
which, on isolating the coefficient of n, takes the form
XXz
R CRES e x)

1.1. Search for a Pattern 7

In this form, we see that if X # X, the denominator will eventually exceed
the numerator in magnitude, so X, then will not be an integer. However, if
X = X3, all the terms of the sequence are equal. Thus, x, is an integer for
infinitely many values of # if and only if x, = x,.

1.14. Find positive numbers » and A8y ..., a, such thata + - - - + g,
= 1000 and the product aa, - - - a, is as large as possible.

Solution. When a problem involves a parameter which makes the analysis
complicated, it is often helpful in the discovery stage to replace it temporar-
ily with something more manageable. In this problem, we might begin by
examining a sequence of special cases obtained by replacing 1000 in turn
with 2,3,4,5,6,7,8,9, ... . In this way we are led to discover that in a
maximum product

(i) no a; will be greater than 4,
(i) no a; will equal 1,
(iii) all a’s can be taken to be 2 or 3 (because 4=2X2and 4 =2 + 2),
(iv) at most two a.s will equal 2 (because 2X2X2<3X3and 2+2 + 2
=3+3).

Each of these is easy to establish. Thus, when the parameter is 1000 as in
the problem at hand, the maximum product must be 332 x 22,

LL5. Let S be a set and + be binary operation on § satisfying the two
laws

X*Xx=x forall x in §,
(x*y)rz=(ysz)sx forall x, y,z in S.
Showlha!x‘y=ytxforal]x,yin S,

Solution, The solution, which appears so neatly below, is actually the end
result of considerable scratch work; the procedure can only be described as
a search for pattern (the principle pattern is the eyclic nature of the factors
in the second condition). We have, forall x, y in 5, x *p=(x*p)e(x+yp)
S rexenlex = [(xep)rxgey = ex)yex)sy = [(xex)xyluy
=[x ex)=yux

Problems
Develop a feel for the following problems by searching for patterns. Make

appropriate conjectures, and think about how the proofs might be carried
out.
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1.1.6. Beginning with 2 and 7, the sequence 2,7,1,4,7,4,2,8, ... is con-
structed by iplyi ive pairs of its bers and adjoining the
result as the next one or two bers of the seq d. ding on

whether the product is a one- or a two-digit number. Prove that the digit 6
appears an infinite number of times in the sequence.

1.1.7. Let S, denote the sequence of positive integers 1,2,3,4,5,6,. ..,
and define the sequence S, , in terms of S, by adding 1 to those integers in
S, which are divisible by n. Thus, for example, S, is 2,3,4,5,6,7,..., S;
is 3,3,5,5,7,7, . . . . Determine those integers » with the property that the
first n — | integers in S, are n.
1.1.8. Prove that a list can be made of all the subsets of a finite set in such
a way that

(i) the empty set is first in the list,

(i) each subset occurs exactly once, and

(iii) each subset in the list is obtained either by adding one element to the
preceding subset or by deleting one element of the preceding subset.

1.1.9. Determine the number of odd binomial icients in the exp

of (x + y)'*. (See 4.3.5.)

1.1.10, A well-known theorem asserts that a prime p > 2 can be written as
a sum of two perfect squares (p = m>+ n?, with m and n integers) if and
only if p is one more than a multiple of 4. Make a conjecture concerning
which primes p > 2 can be written in each of the following forms, using
(not necessarily positive) integers x and y: (a) x* + 16y (b) 4x” + dxy +
5% (See 1.5.10.)

1.1.11. If <a,) is a sequence such that for n > 1, (2 — a,)a,,, = 1, what
happens to a, as n tends toward infiity? (See 7.6.4.)

1.1.12. Let S be a set, and let * be a binary operation on S satisfying the

laws oy
x+(x*ry)y=y foralix,yinsS, Y

= o .
(yrx)xx=y forallx,yinS. ~ ¥ (ﬂdy)l

Show that xsy = y=+x forall x, y in S.

Additional Examples oy <

Most induction problems are based on the discovery of a pattern. Thus, the
problems in Sections 2.1, 2.2, 2.3, 2.4 offer additional practice in this
heuristic. Also see 1.7.2, 1.7.7, 1.7.8, 2.5.6, 3.1.1, 3.4.6, 43.1, 44.1, 443,
4.4.15, 4.4.16, 44.17.

e

1.2. Draw a Figure 9
1.2. Draw a Figure

V;/hen_cver possilble it is helpful to describe a problem pictorially, by means

om a: ef;g_\:re, a dl:gramv, oxI- a grla:ph. A diagrammatic representation usually
it easier to assimilate the relevant data i i i

o 0 and to notice relationships

l._2.l. .A chord of constant length slides around in a semicircle. The

$1dpou:_t of l};e chord and the projections of its ends upon the base form
e vertices of a triangle. Prove that the tri is i

Jroliienui e triangle is isosceles and never

Solutifm. I._,et AB denote the base of the semicircle, let XY be the chord, M
the midpoint of XY, C and D the projections of X and ¥ on AB (Fig’ure
lA_l). L_et the projection of M onto 4B be denoted by N. Then N is the
midpoint of CD and it follows that A CMD is isosceles.

To show_ that the shape of the triangle is independent of the position of
the chord, it suffices to show that Z MCD remains unchanged, or equiva-
lently, that Z XCM is constant, for all positions of X7, To seey that this is
Fhe case, extend XC to cut the completed circle at Z (Figure 1.2). Then CM
is parallel to ZY (C and M are the midpoints of XZ and X Y, respectively),

0
4

?;\—{( N

PN
>
A

Figure 1.2
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NN

v
A Cc 0 D B
Figure 1.3,

and consequently ZXCM = ZXZY. But £ XZY equals one-half the arc
XY, and this arc depends only on the length of the chord XY. This
completes the proof.

One might ask: How in the world did anyone ever think to extend XC in
this way? This is precisely the step that makes the argument so pretty, and
it is indeed a very difficult step to motivate. About all that can be said is
that the use of auxiliary lines and arcs (often found by reflection, extension,
or rotation) is a common practice in geometry. Just the awareness of this
fact will add to the possible approaches in a given problem.

Another interesting approach to this problem is to coordinatize the
points and to proceed analytically. To show that the shape of the triangle is
independent of the position of the chord, it suffices to show that the
height-to-base ratio, MN / CD, is constant.

Let O denote the midpoint of AB, and let § = Z YOB. It is clear that the
entire configuration is completely determined by # (Figure 1.3).

Let a = £ XOY. Using this notation,

CD = cosf — cos(f + a),
_ sin# + sin(f + &)
) ,
and the height-base ratio is
sinf + sin(f + «)

Neosh—co@ray)’ SIS

F(8) =
1t is not immediately clear that this quantity is independent of 8; this is the
content of 1.8.1 and 6.6.7.

1.2.2. A particle moving on a straight line starts from rest and attains a
velocity v, after traversing a distance s,. If the motion is such that the
) was never i ing, find the time for the trans-

verse.

Sohution. Focus attention on the graph of the velocity v = v(#) (Figure 1.4).
We are given that v(0) = 0, and the graph of o is never concave upward
(because the accelcration, dv/dt, is never increasing). The area under the

1.2. Draw a Figure 11

Figure 14.

curve is equal to s, (distance traversed = [4v(r)df). From this representa-
tion, it is clear that we will maximize the time of traverse when the curve
o(f) from 0 to P is a straight line (Figure 1.5). At the maximum time fos
$ 2900 = 5y, or equivalently, 1, = 25,/ v,.

1.23. If a and b are positive integers with no common factor, show that

NN 0 R LRI N

Solution. When b = 1, we will understand that the sum on the left is 0 so
the resuit holds.

It is not clear how a figure could be useful in establishing this purely

arithmetic identity. Yet, the involves two ind dent variables,
a and b, and a/b, 2a/b, 3a/b,... are the values of the function
f(x)=ax/b when x = 1,2,3,..., respectively. Is it possible to interpret

Ba/b], [2a/b1,... geometrically?

To make things concrete, consider the case @ =5 and b = 7. The points
Py =(k,5k/7), k=1,2,...,6, cach lic on the line y =5x/7, and
[54/7 ] equals the number of lattice points on the vertical line through P,
which lie above the x-axis and below P,. Thus, 3% _, [5k/7 ] equals thé

Figure 1.5.
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b [
s .
4 . L . . - . -
3 . . . . . .
2 . . . o e .
1 o« o s+ o s e .
B
A 1 2 3 4 5 6 71 8
Figure 1.6.

number of lattice points interior to AA4BC (see Figure 1.6). By symmetry,
this number is one-half the number of lattice points in the interior of
rectangle ABCD. There are 4 X 6 =24 lattice points in 4BCD, which
‘means that triangle ABC contains 12 interior lattice points.

The same argument goes through in the general case. The condition that
a and b have no common factor assures us that none of the lattice points in
the interior of ABCD will fall on the line y = ax /b. Thus,

b-1

> [[%]I = }(No. of lattice points in the interior of ABCD)

k=1
(a—1}b-1)
= -

1.2.4 (The handshake problem). Mr. and Mrs. Adams recently attended
a party at which there were three other couples. Various handshakes took
place. No one shook hands with his/her own spouse, no one shook hands
with the same person twice, and of course, no one shook his/her own hand.
After all the handshaking was finished, Mr. Adams asked each person,
including his wife, how many hands he or she had shaken. To his surprise,
each gave a different answer. How many hands did Mrs. Adams shake?

Solution. Although a diagram is not essential to the solution, it is helpful to
view the data graphically in the following fashion. Represent the eight
individuals by the eight dots as shown in Figure 1.7.

Now the answers to Mr. Adams’ query must have been the numbers
0,1,2,3,4,5,6. Therefore, one of the individuals, say 4, has shaken hands
with six others, say B, C, D, E, F, G. Indicate this on the graph by drawing
line segments from A to these points, as in Figure 1.8.

From this diagram, we see that # must be that person who has shaken
no one’s hand. Furthermore, 4 and H must be spouses, because 4 has
shaken hands with six others, not counting his/her own spouse.

1.2. Draw a Figure 13

A
.
H B Hy B
Ge .C G c
F*® *p
. F D
E E
Figure 1.7, Figure 1.8,

Figure 1.9, Figure 1.10.

By supposition, one of B,C,D,E,F,G, has shaken five hands. By
relabeling if necessary we may assume this person is B. Also, we may
assume without loss of generality that the five with whom B has shaken
hands are labeled A4,C, D, E,F. This is shown in Figure 1.9. From this
sketch we easily see that G is the only person who could have answered
“one”, and B and G must be spouses.

Again, as before, by relabeling the points C, D, E if necessary, we may
assume that C shook four hands and that they belonged to 4, B, D, E. The
corresponding diagram is given in Figure 1.10. Using the same reasoning as
above, F and C are spouses, and consequently, D and E are spouses.

_ Each of D and E has shaken hands with three others, Since Mr. Adams
did not receive two “three” answers, D and E must correspond to Mr. and
Mrs. Adams; that is to say, Mrs. Adams shook hands with three others,

Problems

1.2.5. Two poles, with heights a and b, are a distance d apart (along level
ground). A guy wire siretches from the top of each of them to some point P
on the ground between them. Where should P be located to minimize the
total length of the wire? (Hint: Let the poles be erected at points C and D,
and their tops be labeled 4 and B, respectively. We wish to inimize
AP + PB. Augment this diagram by reflecting it in the basc line CD.
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Suppose B reflects to B (PB = PB’). Now the problem is: Where should P
be located to minimize AP + PB'?)

1.2.6. Let ABC be an acute-angled triangle, and let D be on the interior of
the segment 4B. Locate points E on AC and F on CB such that the
inscribed triangle DEF will have minimum perimeter. (Hint: Reflect D in
line AC to a point D’; reflect D in CB 10 a point D” and consider the line
segment D'D".)

1.2.7. A rectangular room measures 30 feet in length and 12 feet in height,
and the ends are 12 feet in width. A fly, with a broken wing, rests at a point

one foot down from the ceiling at the middle of one end. A smudge of food -

is located one foot up from the floor at the middle of the other end. The fly
has just enough energy to walk 40 feet. Show that there is a path along
which the fly can walk that will enable it to get to the food.

1.2.8. Equilateral triangles 4BP and ACQ are constructed externally on
the sides AB and AC of triangle ABC. Prove that CP = BQ. (Hint: For a
nice solution, rotate the plane of the triangle 60° about the point 4, in a
direction which takes B in the direction of C. What happens to the line
segment CP?)

1.29. Let  and b be given positive real numbers with 2 < b. If two points
are selected at random from a straight line segment of length b, what is the
probability that the distance between them is at least ? (Hint: Let x and y
denote the randomly chosen numbers from the interval [0, 5], and consider
these independent random variables on two separate axes. What arca
corresponds to |x — y| > a?)

1.2.10. Give a geometric interpretation to the following problem. Let f be
differentiable with f* continuous on [a,5]. Show that if there is a number ¢
in (a, b} such that f'(c) = 0, then we can find a number d in (@, b) such that

" fd)~ fa)
fhy=—==

1.2.11. Let ¢ and b be real numbers, 4 < b. Indicate geometrically the
precise location of each of the following numbers: (a + b)/2 (= }a + 1b);
Za+ib; fa+ib; [m/(m+ ma +[n/(m + n)]b, where m >0 and
n >0, (The latter number corresponds to the center of gravity of a system
of two masses—one, of mass m, located at a, and the other, of mass n,
located at b.)

1.2.12. Use the graph of y =sinx to show the following. Given triangle
ABC,

inB+sinC . g, B+ C
(E)M’Z&<sm E o

(b) =M sinB+ A —sinC <sin{ A B+ 4 C)m>0,n>0.

m+n m+n m m+n
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1.2.13. Use a diagram (a rectangular array (2,4))) to show that

@)
®)

©

Additional Examples

Most of the problems in Chaper 8 (Geometry); also 1.3.11, 1.9.2, 1.9.4,

é.:ll.f!, 2.13,2.5.5,26.11,5.1.2,6.22,64.1, 6.6.3,68.1, 7.1.14, 7.4.19, 7.6.1,

1.3. Formulate an Equivalent. Problem

The_ message of the preceding section is that the first step in problem
solving is to gather data, to explore, to understand, to relate, to conjecture,
to aqalyw. But what happens when it is not possible tr; do this in a;
meaningful way, either because the ions become too i d
or _because the problem simply admits no special cases that shed an;

insight? In this section we will consider some problems of this type. ThZ
recqmmendation of this section is to try to reformulate the problem in-to an
equlv‘al_ent but simpler form. The appeal is to one’s imagination and

o S_ome : d refor 1 ques involve algebraic or
" ic t or change of variable, use of
and reinter in the | of another

corresp
subject (algebra, geometry, analysis, combinatorics, etc.).

1.3.1. Find a general formula for the,ath derivation of f(xy=1/(1~ x¥.

gr:uﬁ«W A common simplifying step when working with rational functions
o write the function as a sum of partial fractions. In this case,

fo=3[ T35+ iz )

T-x " T+x
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. " . . 5
. : s that alent problem is to find all x (other than x = 1) which satisfy x* = 1. These
and in this form it is easy to show tha » are the five fifth roots of unity, given by

f(,.)(x)=ﬂl _l__l+i_l)”_“ . x, =cosiz + isindw,

2= w4 isind
Xy=cosgm + isintn,
X3 =cosgn + isinnm,
. . 34 52 =
1.3.2. Find all solutions of x* + x>+ x>+ x + 1 =0. 2y = costm + isintm,
Solution. This equation can be solved by dividing by x?, then substituting xs=1.
y = x + 1/x, and then applying the quadratic formula. Thus, we have As a by-product of having worked this problem two different ways, we
1 see that

e

(xz+z+;'3)+(x+%)+(1—2)=6,

(x+ 1)2+(x+%)—1=0,

x

2 1
Z4+1=0
X+ +x+ -+ ,

— Y10+ 2y5
cosin + isinz = I—IE +i—4‘/‘~ .
Equating real and imaginary parts yields

cosT20 = ZLHVS §in72° = y10+25
4 v 4 )

The roots of this equation are ' (Similar formulas can be found for x,, x,, and x,.)
—1445 _Zl=f
—3 7 T ) .

y+y-1=0.

= 1.3.3. Pis a point inside a given tria:{gle ABC; D,E, F are the feet of the
. X ) i perpendiculars from P to the lines BC, C4, AB, respectively. Find all P for
It remains to determine x by solving the two equations which
1 1
x+loy and x+lay, BC . CA, AB
B x ot PEY PF
which are equivalent to is minimal.
X —yx+1=0 and x*—px+1=0
The four roots found by solving these are Solution. Denote the lengths of BC, AC, AB by a,b,c, respectively, and
PD, PE, PF by p,q,r, respectively (see Figure 1.11). We wish to minimize
_‘+¢g+l,ho+2¢§ alp+b/g+c/r
x=— =

1455 y10+2
Xo=—g i3>
-5 N10-25
Xy=—F ti——5—,
3 7 3
Z1-§5 i,/lo—z\/s'
I S T

i i i i f the original
Another approach to this problem is to multiply each side of . )
equation by 3- 1. Since (x — IXx* + x> + x>+ x + 1) = x* — 1, an equiv- Figure L11.

X4
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Notice that
Area AABC = Area A BCP + Area ACAP + Area AABP
=lap + Lbg + fer
_aptbgter
=E =
Thus, ap+ bg + cr is a consiant, independent of the placement of P.
Therefore, instead of minimizing a/p+ b/q + ¢/r, we will minimize
(ap+ bg+ cri{a/p+ b/q+c/r). (This step will appear more natural
after a study of inequalities with constraints taken up in Section 7.3.) We
have
ap + b +cr(£+£+£)
(aprbgrey p+aty
=a’+b2+c2+ab(£+1)+bc(1+1)+/ac(£+L)
9 7 ro9q [ 4
> a?+ b2+ c? + 2ab + 2bc + 2ac
=(a+b+c)

The inequality in the second step follows from the fact that for any two
positive numbers x and y we have x/y + y/x > 2, with equality if and
only if x = y. As a result of this fact, (ap + bg + cra/p + b/q + ¢/ will
attain its minimum value (¢ + & 4 ¢)* when, and only when, p=¢=r.
Equivalently, a/p + b/q + ¢/r attains a minimum value when P is located
at the incenter of the triangle.

1.3.4. Prove that if m and n are positive integers and 1 < k < », then

3" ("E )

i=0

Solution. The statement of the problem constitutes one of the fundamental
identities involving bi ial fici . On the left side is a sum of

d of bi ial coefficients. Ot ly, a direct itution of facto-
rials for binomial coefficients provides no insight.

Quite often, finite series (especially those which involve binomial coeffi-
cients) can be summed combinatorially. To understand what is meant here,
transform the series problem into a counting problem in the following
manner. Let $= A U B, where 4 is a set with » elements and B is a set,
disjoint from A4, with m elements. We will count, in two different ways, the
number of (distinct) k-subsets of S. On the one hand, this number is ("}").
On the other hand, the number of k-subsets of S with exactly i elements

|
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from 4 (and k — i elements from B) is (7)™ ). It follows that

+
( " X ") = No. of k-subsets of §

M=

i

-3

{Another solution to this problem, based on the i i
e e properties of polynomials,

) (No. of k-subsets of S with i elements from 4)

Counting problems can often be simplified by “identifying” (by means
N i
:,f.oa;he,- clo-on cml P the el of one set with those of
whose elements can more easily be counted. The
examples illustrate the idea. ext three

1.3.5. On acircle n points are selected and the chords joining them in pairs
are drawn. Assummg that no three of these chords are concurrent (except
at the endpoints), how many points of intersection are there?

Solutinl)n. 'l_'he cases for n=4,5,6 are shown in Figure 1.12. Notice that
each _(mtenor) intersection point determines, and is determined by, four of
the given # points along the circle (these four points will uniquely ’produce
two chords which intersect in the interior of the circle). Thus, the number
of intersection points is (3). '

1.3.6. Given a positive inte; i i
ger #, find the number of quadruples of
(a,b,c,d)ysuchthat 0< a<b<e<d<n 4 ples o intepers

S]ohmnn. '!"he key idea which makes the problem transparent is to notice
at there is a one-to-one correspondence between the quadruples of our set

1 5 15
Figure 1.12.
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and the subsets of four objects taken from {0, 1,...,n+3}. Specifically,
let (a,b,c,d),0<a<b<cs d < n, be identified with the subset {a,b+
1,c + 2,d + 3). It is easy to see that this correspondence is one-t0-one—
each element of our set corresponds to exactly one subset of four from
{0,1,...,n+3), and vice versa. Thus, the desired number is (" %).

1.3.7. The number 5 can be expressed as a sum of 3 natural numbers,
taking order into account, in 6 ways, namely,as S=1+1+3=1+3+1
—3+1+1=1+2+2=2+1+2=2+2+1 Letm and n be natural
numbers such that m < n. In how many ways can n be written as a sum of
m natural numbers, taking order into account?

Solution. Write # as a sum of # ones:

a=l+14 - +1,
—_—
n

The number we seek is the number of ways of choosing m — 1 plus signs
from the 7 — 1; that is, (52').

Problems

1.3.8. Show that x” — 2x’ + 10x? — 1 has no root greater than 1. (Hint:
Since it is generally easier to show that an equation has no positive root, we
are prompted to consider the equivalent problem obtained by making the
algebraic substitution x =y + 1.)

1.3.9. The number 3 can be expressed as a sum of one or more positive
integers, taking order into account, in four ways, namely, as3,14+2,2+1,
and 1 + 1 + 1. Show that any positive integer # can be so expressed in 277!
ways. -

1.3.10. In how many ways can 10 be exp d as a sum of 5

integers, when order is taken into account? (Hint: Find an equivalent
problem in which the phrase “5 nonnegative integers” is replaced by “5
positive integers”.)

13.11. For what values of a does the system of equations

xt=y?
-ap+yi=1

have exactly zero, one, two, three, four solutions, respectively? (Hint:
Translate the problem into an equivalent geometry problem.)
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1.3.12. Given # objects arranged in a row. A subset of these objects is
called unfriendly if no two of its elements are consecutive. Show that the
number of unfriendly subsets each having k elements is ("~¥*'"). (Hint:
Adopt an idea similar to that used in 1.3.6.)

1.3.13. Let a(n) be the number of representations of the positive integer n
as a sum of 1’s and 2’s taking order into account. Let (n) be the number
of repfesentations of n as a sum of integers greater than 1, again taking
order into account and counting the summand n. The table below shows
that a(4) = 5 and b(6)=5:

g-sums . b-sums
I+1+2 —4+2
1+2+1 343
24141 - 2+4
242 2+42+2
T+1+14+1 6

(a) Show that a(n) = b(n +2) for each n, by describing a one-to-one
correspondence between the a-sums and b-sums.

(b) Show that a(l)=1, a(2)=2, and for n>2, a(n)=a(n— 1)+
a(n—2). t

1.3.14. By finding L}_ne area of a triangle in two different ways, prove that if
Py P2s p3 are the altitudes of a triangle and r is the radius of its inscribed
circle, then 1/p + 1/p, + 1/py=1/r.

1.3.15. Use a counting argument to prove that for integers 7,7, 0 < r < n,

(3 (32 =(rel)

Additional Examples

12.3,_ 5_.].5, 5.1.14, 7.4.6, 8.2.6. There are so many examples of this heuristic
lhat»lt is difficult to single out those that are most typical. Noteworthy are
the ?ndu'ect proofs in Section 1.9, 1.10, 1.11, the congruence problems in
Secnpu 3.2, the limit problems in Section 6.8. Other examples of partial
fractions (see 1.3.1) are 4.3.23, 5.3.1, 5.3.2, 5.3.3, 5.3.6, 5.3.12, 5.4.9, 5.4.13,
5420, 5.4.24, 5.425. Examples based on the identity x = exp(log.x) are
53.7%c), 6.3.3, 6.7.1, 6.74, 6.7.5, 6.7.7, 6.9.5, 74.1, 74.2, 7.4.9, 7.4.20.
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1.4. Modify the Problem

In the course of work on problem 4 we may be led to consider problem B.
Characteristically, this change in problems is announced by such phrases as
“it suffices to show that...” or “we may assume that ... or “without
loss of generality . . . ”. In the last section we looked at examples in which
A and B were equivalent problems, that is, the solution of either one of
them implied the solution of the other. In this section we look at cases
where the solution of the modified (or auxiliary) problem, problem B,
implies the solution of A, but not necessarily vice versa.

1.4.1. Given positive numbers a, b, ¢, d, prove that
E+bted Brl+d  Crdirad Bt b
a+b+c bt+c+d c+d+a d+a+b

>at+ b+t dd

Solution, Because of the symmetry in the problem, it is sufficient to prove
that for all positive numbers x, y, and z

4y + 22 >x1+y2+z2
x+y+z 3 :

For if this were the case, the left side of the original inequality is at least

a2+l;'2+t‘2+b2+c;+d2+62+d;+a1+d2+4;2+b2

=a+ b+ ct+dr
Now, to prove this latter inequality,” there is no loss of generality in
supposing that x + p + z = 1. For if not, simply divide each side of the
inequality by (x + y + 2f%, and let X = x/(x + p+2), Y = p/(x + y + 2),
and Z=z/(x+y+2).
Thus, the original problem reduces to the following modified problem:
Given positive numbers X, Y, Z such that X + Y 4 Z = 1, prove that

X:+y:+zs>WA

(For a proof of this inequality, see 7.3.5.)

1.4.2. Let C be any point on the line segment AB between 4 and B, and
let semicircles be drawn on the same side of 4B with 4B, 4C, and CB as
diameters (Figure 1.13). Also let D be a point on the semicircle having
diameter 4B such that CD is perpendicular to AB, and let E and F be
points on the semicircles having diameters AC and CB, respectively, such
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A c B
Figure 1.13.

that EF is a segment of their common tangent. Show that ECFD is a
rectangle.

Solution. Note that it is sufficient to show that 4, E, and D are collinear (the
same argument would show that B, F, and D are collinear). For if this were
the case, ZAEC = 90° (E is on circle AEC), ZADB = 90°, £ CFB =90°,
and the result holds. It turns out, however, that without some insight, there
are many ways of going wrong with this approach; it’s difficult to avoid
assuming the conclusion. |

. One way of gaining insight into the relationships among the parameters
in a problem is to notice the effect when one of them is allowed to vary
(problem modification). In this problem, let D vary along the circumfer-
ence. Let G and # (Figure 1.14) denote the intersections of the segments
AD and BD with the circles with diameters AC and CB (and centers 0 and
_0') respectively. Then ZAGC = L ADB = £ CHB =90°, so that GDHC
is a rectangle. Furthermore, / OGC = £ 0CG (A 0GC is isosceles), and
L CGH = £ GCD because GH and CD are diagonals of a rectangle.
Therefore, £ OGH = £ OCD. Now, as D moves to make CD perpendicu-
lar to AB, £ OGH will also move 1o 90°, so that GH is tangent to circle O,
and G coincides with E. A similar argument shows GH is tanget to circle
0’, so H=F. This completes the proof. (Note the phrase “a similar

D

A 0 C 0 B
Figure 114,
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argument,” another simplifying technique, has the same effect when placed
after an argument as “it suffices to show that” has when placed before the
argument.)

Note that we have solved the problem by solvmg a more general
problem. This is a probl g we will see more
examples of it in Section 1.12.

1.43. Prove that there do not exist positive integers x, y,z such that

x4y + 2= 2xyz.

Solution. Suppose x, y, and z are positive integers such that x* + y* + 22
=2xyz. Since x* + y* + 27 is even (= 2xyz), either two of x, y, and z are
odd and the other even, or all three are even. Suppose x, y,z are even.
Then there are positive integers x,, y),z, such that x =2x;, y =2y, z
=2z,. From the fact that (2x,)1 + (2y,)2 + (22,7 = 2(2x,X2p)(2zy) it fol-
lows that x,, y,,z, satisfy x7 + yf + 22 = 2%, p z,. Again, from this equa-
tion, if x,, y,, 2, are even, a .vxm:lar argument shows there will be positive
integers x;, 2,23 such that x} + y3 + 25 = 2% X22%2

Contmue in !hls way. Eventually we must arrive at an equation of the
form a2 + b% + ¢* = 2"abc where not all of a,b,¢ are even (and hence two
of a,b,c are even and one is odd).

Thus, we are led to consider the following modified problem: Prove
there do not exist positive integers x, y,z and #, with x, y odd, such that

x4yt 4 2= 2xyz
(This is Problem 1.9.3.)

1.44. Evaluate (e dx.

Solution, The usual integration techniques studied in first-year calculus will
not work on this integral. To evaluate the integral we will transform the
single integral mto a double integral.

Let / = [¥e”* dx. Then

11=[Lwe”zdx][£)we’y2dy]
=L°°[J;me"’dx]e"ldy
=Lmee”‘1e‘71dxd)7

- [ [Fe e
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Now change to an
We then have

quivalent integral by to polar

1t follows that I = /2.

A modified (auxiliary) problem can arise in many ways. It may come
about with a change in notation (as in 1.4.4; see Section 1.5) or because of
symmetry (as in 1.4.1; see Section 1.6). Often it is the result of “working
backward” (see Section 1.8) or arguing by contradiction (as in 1.4.3; see
Section 1.9). It is not uncommon to consider a more general problem at the
outset (as in 1.4.2; see Section 1.12). Thus we see that problem modification
is a very general heuristic. Because of this, we will defer adding more
examples and problems, putting them more appropriately in the more
specialized sections which follow.

1.5. Choose Effective Notation

One of the first steps in working a mathematics problem is to translate the
problem into symbolic terms. At the outset, all key concepts should be
identified and labeled; redundancies in notation can be ecliminated as
relationships are discovered. :

15,1, One morning it started snowing at a heavy and constant rate. A
snowplow started out at 8:00 AM. At 9:00 AM. it had gone 2 miles. By
10:00 A.M. it had gone 3 miles. Assuming that the snowplow removes a
constant volume of snow per hour, determine the time at which it started
snowing,

Solution. It is difficult to imagine there is enough information in the
problem to answer the question. However, if there is a way, we must
proceed systematically by first identifying those quantities that are un-
known. We introduce the following notation: Let ¢ denote the time that has
elapsed since it started snowing, and let T be the time at which the plow
goes out (measured from ¢ = 0). Let x(z) be the distance the plow has gone
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at time ¢ (we are only interested in x(¢) for ¢ > T). Finally, let 2(¢) denote
the depth of the snow at time ?.

We are now ready to translate the problem into symbolic terms. The fact
that the snow is falling at a constant rate means that the depth is increasing
at a constant rate; that is,

dh ¢ constant.

Integrating each side yields
h(ty=ecr+d,  c.dconstants.
Since #(0) = 0, we get & = 0. Thus A(#) = ct.

The fact that the plow removes snow at a constant rate means that the
speed of the plow is inversely proportional to the depth at any time ¢ (for
example, twicg the depth corresponds to half the speed). Symbolically, for
t>T,

I~

k constant

A
X

K= % constant.

2Ux
~Ix

Integrating each side yields
x(f) = Klogt + C, C constant.

‘We are given three conditions: x =0 when =T, x =2 whent=T+1,
and x =3 when 7= T + 2. With two of these conditions we can evaluate
the constants K and C, and with the third, we can solve for 7. It turns out
(the details are not of interest here) that

=5~ 0.618 hours ~~ 37 minutes, 5 seconds.

Thus, it started snowing at 7:22:55 A.M.

1.5.2.

(a) If n is a positive integer such that 2n + 1 is a perfect square, show that
n + 1 is the sum of two successive perfect squares.

(b) If 3n + 1 is a perfect square, show that » + 1 is the sum of three perfect
squares.

Solution. By introducing proper notation, this reduces to a simple algebra

problem. For part (a), suppose that 27 + | = 52, 5 an integer. Since s* is an

odd number, so also is 5. Let # be an integer such that s =21+ 1. Then
2n+ 1= (2t + 1Y, and solving for n we find

2+ 17 -1 2

Al ) 2) a ;""=212+21.
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A
E
B
o c
Figure 1.15.
Consequently,

=204 24 1= 4 (14 1),
(b) Suppose 3n 4+ 1= 5% s an integer. Evidently, s is not a multiple of 3,
0 5 = 3¢ * 1 for some integer #. Then 3n + | = (31 % 1), and therefore
2
aoBEY -1 goug
3 3

Hence,

n+l=3121‘2t+1=211+(111)2=

P+ 242 1)%

153. In tﬁan;lc ABC, AB = AC, D is the midpoint of BC, E is the foot
of the perpendicular drawn D to AC, and F is the midpoint of DE (Figure
1.15). Prove that AF is perpendicular to BE,

S_o_lution. We can transform the problém into algebraic terms by coordina-
llzmgl the relevant points and by showing that the slopes mgg and m, are
negative reciprocals.

One way to proceed is to take the triangle as it appears in Figure. 1.15:
take D as the origin (0,0), 4 = (0,a), B=(-5,0), and C = (b,0). This is a
natural labeling of the figure because it takes advantage of the bilateral
Symn?elry‘of the isosceles triangle (see the examples in Section 1.6). How-
ever, in this particular instance, this notation leads to some minor complica-
tions when we look for the coordinates of E and £,

A better coordinatization is to take 4 = 0,0), B = (4a,4b), C = (4c,0),
as in Figure 1.16. Then a2 + 5% = 4 D=Qa+ 2¢,2b), E=Q2a + 20,0),
and F =(2a + 2¢,b). (Almost no computation here; all relevant points ’ar:;
coordinatized.) It follows that |

marmse = ( 5655 N s= gy ) -

and the proof is compiete. “
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Al E C
Figure 1.16.

1.54. Let —1 < a, < 1 and define recursively
/2
a,= ( # ) ) n>0.

Let A, = 4"(1 — a,). What happens to 4, as n tends to infinity?

Sulutum Dlrect attempts to express a, in terms of ag lead to hopelessly
ini nested qt of radicals, and there

is no way to condense them into a closed form.
The key insight needed is to observe that there is a unique angle &,

0 < @ < m, such that ;= cos#. For this 8,

o= (L0 ) o ),

Similarly,

1+ cos(8/2)\'? [
- (L) o 8), o )
‘We can now compute
A, =4'(1 —cos(8/27)
4"(1 — cos(8/27))(1 + cos(8/27)}
1+ cos(8/27)

4"sin’(8/2")
= T+ cos(8/7")

92 sin(8/2%) \?
= ( T+ cos(8/2") )( /7" ) :
As # becomes large, 82/(1 + cos(9/27) tends to #2/2, and (sin(8/2")/

(8/2") approaches 1 (recall that (sinx)/x— 1 as x>0), and therefore, 4,
converges to §2/2 as n tends to infinity.
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Problems

1.5.5. Write an equation to represent the following statements:

(a) At Mindy's restaurant, for every four people who ordered cheesecake,
there were five who ordered strudel.
(b) There are six times as many students as professors at this college.

1.5.6. Guy wires are strung from the top of each of two poles to the base
of the other. What is the height from the ground where the two wires cross?

1.5.7. A piece of paper 8 inches wide is folded as in Figure 1.17 5o that one
corner is placed on the opposite side. Express the length of the crease, L, in
terms of the angle & alone.

1.5.8. Let P, P,, ..., P, be the successive vertices of a regular dodeca-
gon (twelve sides). Are the diagonals P, P,, P,P,;, P, P,, concurrent?

1.5.9. Use algebra to support your answers to each of the following.

(a) A car travels from A4 to B at the rate of 40 miles per hour and then
returns from B to A4 at the rate of 60 miles per hour. Is the average rate
for the round trip more or less than 50 miles per hour?

(b) You are given a cup of coffee and a cup of cream, each containing the

same amount of liquid. A spoonful of cream is taken from the cup and

put into the coffee cup, then a spoonful of the mixture is put back into
the cream cup. Is there now more or less cream in the coffee cup than
coffee in the cream cup? (This problem has an elegant nonalgebraic
solution based on the observation that the coffee in the cream cup has
displaced an equal amount of cream which must be in the coffee cup.)

Imagine that the earth is a smooth sphere and that a string is wrapped

around it at the equator. Now suppose that the string is lengthened by

six feet and the new length is evenly pushed out to form a larger circle

Jjust over the equator. Is the distance between the string and the surface

of the earth more or less than one inch?

e

Figure 1.17.
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1.5.10. A well-known theorem asserts that a prime p > 2 can be written as
a sum of two perfect squares (p = m? + n% with m and » integers) if and
only if p is one more than a multiple of 4. Assuming this result, show that:

(a) Every prime one more than a multiple of 8 can be written in the form
x? +16y% x and y integers.

(b) Every prime five more than a multiple of 8 can be written in the form
(2x + yY* + 4y x and y integers.

Additional Examples

LL10, 2.5.10, 3.2.15, 3.3.11, 3.3.28, 3.4.2, 3.44, 4.1.5, 6.4.2, 7.24, 8.1.15,
8.2.3, 8.2.17. Also, see Sections 2.5 (Recurrence Relations), 3.2 (Modular
Arithmetic), 3.4 (Positional Notation), 8.3 (Vector Geometry), 8.4 (Complex
Numbers in Geometry).

1.6. Exploit Symmetry

The presence of symmetry in a problem usually provides a means for
reducing the amount of work in arriving at a solution. For example,
consider the product (a + b + cXa” + b% + > — ab — ac — bc). Since each
factor is symmetrical in a, b, ¢ (the expression remains unchanged when-
ever any pair of its variables are interchanged), the same will be true of the
product. As a result, if ® appears in the product, so will 5* and ¢
Similarly, if % appears in the product, so will a%, b%a, b%, c%a, ¢%, and
each will occur with the same coefficient, etc. Thus, a quick check shows
the product will have the form

A(@® + B+ )+ B(a® + a’c + bla + b + c'a + c%B) + C(abe).
It is an easy matter to check that A =1, B=0,and C= —3.

1.6.1. Equilateral triangles ABK, BCL, CDM, DAN are constructed inside
the square A BCD. Prove that the midpoints of the four segments KL, LM,
MN, NK and the midpoints of the eight segments AK, BK, BL, CL, CM,
DM, DN, AN are the twelve vertices of a regular dodecagon.

Solution. The twelve vertices are indicated in Figure 1.18 by heavy dots;
two of these vertices are labeled 4 and b as shown.

Using the symmetry of the figure, it suffices to show that Z bOK = 15°,
£a0b = 30° and (a0| = |bO|.

Note that AN is part of the perpendicular bisector of BK, and therefore
|KN|=|NB|. Using symmetry it follows that MBN is an equilateral
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triangle, say of side length s, and that £ CBN = 15°. Now consider triangle
DBN; note that Ob joins the midpoints of DB and DN, so Ob is parallel to
BN and half its length, Thus |Ob| = s/2 and £ bOK = 15°. From this it is
easy to check that £ a0b = £ DOK — £ bOK = 45° — 15° = 30°, and 04|
=|KN|/2=s/2.

The presence of symmetry in 2 problem also provides 2 clarity of vision
which often enables us to see and discover relationships that might be more
difficult to find by other means. For example, symmetry considerations
alone suggest that the maximum value of xy, subject to x +y=1x>0
>0, should occur when x = y =13 (x and y are symmetrically related).
This is an example of the principle of insufficient reason, which can be stated
briefly as follows: “Where there is no sufficient reason to distinguish, there
can be no distinction.” Thus, there is no reason to expect the maximum will
oceur when x is anything other than }, that is, closer to 0 or to 1. To verify
this, let x=1 +e. Then y =4 e, and, xy = (4 +eX} —e)=1 —e? In
this form it is clear that the maximum occurs when e =0; that is, x= y
=1 ~
=4

The next problem offers several additional examples of this principle.

1.6.2.

(a) Of all rectangles which can be inscribed in a given circle, which has the
greatest area?
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X

Figure 1.19.

(b) Maximize sin 4 + sin B + sin C, where 4, B, C are the measures of the
three angles of a triangle.

{c) Of all triangles of fixed perimeter, which has the greatest area?

(d) Of all parallelepipeds of volume 1, which has the smallest surface area?

(¢) Of all n-gons that can be inscribed in a given circle, which has the
greatest area?

Solution. (a) The principle of insufficient reason leads us to suspect the
rectangle of maximum area that can be inscribed in a circle is a square
(Figure 1.19). To verify this, let x and y denote the length and width of the
rectangle, and suppose without loss of generality that the units are chosen
so that the diameter of the circlé is unity. We wish to maximize xy subject
to x>+ 9% = 1. It is equivalent to maximize x%? subject to x* + y* = 1. But
this is the same problem as that considered prior to this example; the
maximum value occurs when x* = yz =1, that is, when the rectangle is a
square.

(b) Notice that the sum, sin4 + sin B + sin C, is always positive (since
each of the terms is positive), and it can be made arbitrarily smail (in
magnitude) by making A arbitrarily close to 180°. There is no reason to
expect the maximum will occur at any point other than 4 = B = C = 60°
(an equilateral triangle). A proof of this follows from the discussion in 2.4.1.

In a similar manner, we suspect the answers to (c), (d), and (e) are an
equilateral triangle, a cube, and a regular n-gon. Proofs for these conjec-
tures are given in 7.2.1, 7.2.12, and 2.4.1.

1.63. Evaluate

J‘w/z dx .
¢ 1+ (tan x)‘fi

Solution. Here is a problem that cannot be evaluated by the usual tech-
niques of integration; that is to say, the integrand does not have an
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antiderivative. However, the problem can be handled if we happen to
notice that the integrand (Figure 1.20) is symmetric about the point ({7,1).
To show this is so (it is not obvious), let f{x)=1/(1 + (lanx)ﬁ), Tt suffices
to show that f(x)+ f(m/2~x)=1 for all x, 0< x < 7/2. Thus, we
compute, for r =2,
-yt fy=—— L
f@/2=x)+f(») T+ tan’(37 — x) v tan'x
=1 41
I+ cot’x + 1+ tan'x
_ __tan’x + 1
I+ tan’x 1+ tan'x
=1
Tt follows from the symmetry just demonstrated that the area under the
curve on [0,} 7] is one-half the area in the rectangle (see Figure 1.20); that
is, the integral is (7/2)/2 = /4.

Another way to take advantage of symmetry is in the choice of notation.
Here are a couple of illustrations.

1.64. Let P be a point on the graph of y = f(x), where f is a third-degree
polynomial; let the tangent at P intersect the curve again at Q; and let A be
the area of the region bounded by the curve and the segment PQ. Let B be
the area of the region defined in the same way by starting with Q instead of
P. What is the relationship between A and B?

Solution. We know that a cubic polynomial is symmetric about its inflec-
tion point (see 8.2.17). Since the areas of interest are unaffected by the
choice of coordinate system, we will take the point of inflection as the
origin. Therefore, we may assume the equation of the cubic is

f(x)=ax’+bx, a#0

(see Figure 1.21).
Suppose x, is the abscissa of P. It turns out that the abscissa of Q is
—2x4. (We will not be concerned with the details of this straightforward
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Figure 1.21.

f:ompuunion. There is, indeed, a very elegant way to arrive at this fact, but
it uses ideas found in Section 4.3 (see 4.3.7).)

A stra%gh_lfnrward integration shows that the area 4 is equal to Kx§,
where K'is independent of x,. (Again, the details of this computation are
not of concern here.)

We now can apply our previous conclusions to the point Q. The tangent
at O will intersect the curve at R, the abscissa of which evidently is
~2(~2x) = 4x,, and the area B is equal to K(—2x)' = 16Kx4 = 164.

1.6.5. Determine all values of x which satisfy
tanx = tan(x + 10°)tan(x + 20°)tan(x -+ 30°).

Solution. We will introduce symmetry by a simple change of variable. Thus,
set y = x + 15°. The equation then is

tan(y — 15°) = tan(y — 5°)tan( y + 5°)tan(y + 15°),
which is equivalent to

sin( y — 15%)cos(y + 15°) _ sin(y — 5°)sin(y + 5°)

cos(y — I5°)sin(y +15°) ~ cos(y = 5°)cos(y + 5% °
Using the identities

sind cos B =4[sin(4 ~ B)+sin(4 + B)],
sindsin B = {[cos(4 — B) — cos(4 + B)],
cosd cos B =4[ cos(4 — B) + cos(4 + B)],
we get
sin{ —30°) + sin 2y _ cos(—10°) — cos2y
sin(30°) +sin2y  cos(— 10°) + cos2y
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or equivalently,
2sin2y — 1 _ cos10° — cos2y
2sin2y +1  cos10° + cos2y
This simplifies to
sindy = cos 10°,
which implies that
4y = 80° + 360° k, 100° + 360°k,
x=5°+90°k, 10° +90° &,

Problems

1.6.6.
(a) Exploit symmetry to expand the product
(% + y% + ) (02 + y2t + 2x7).
(b) If x + p + z =0, prove that
(x2+y2+zz)( x2+y5+25)= X +y +2
2 5 7 ’

(Substitute z = —x — p and apply the binomial theorem. For another
approach, see 4.3.9.}

1.6.7. The faces of each of the fifteen pennies, packed as exhibited in
Figure 1.22, are colored either black or white. Prove that there exist three
pennies of the same color whose centers are the vertices of an equilateral
triangle. (There are many ways to exploit symmetry and create “without
loss of generality” arguments.)

1.6.8. Make use of the principle of insufficient reason to minimize x? +
x2+ .-« + x2, subject to the condition that 0< x,< 1, and x, + x, +
-+ +x,= 1. Prove your conjecture. (For the proof, take x,=1/n+¢,.)

1.6.9. A point P is located in the interior of an equilateral triangle 4ABC.
Perpendiculars drawn from P meet each of the sides in points D, E, and F,
respectively. Where should P be located to make PD + PE + PF a maxi-
mum? Where should P be located to make PD + PE + PF a minimum?
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Figure 1.23.

Justify your answers. (Hint: It is helpful to reflect the figure about one of
the sides. What happens to PD + PE + PF as P moves parallel to the line
of reflection?)

1.6.10. In Figure 123, ABCD is a square, £ ECD = L EDC = 15°. Show
that triangle AEB is equilateral. (The key to this very beautiful problem is
to create central symmetry. Specifically, add identical 15° angles on sides
AB, BC, and AD (as on side:CD) and create a diagram much like that
constructed in 1.6.1.)

1.6.11. The product of four consecutive terms of an arithmetic progression
of integers plus the fourth power of the common difference is always a
perfect square. Verify this identity by incorporating symmetry into the
notation.

Additional Examples

1.4.1, 8.14, 815,818,823,

1.7. Divide into Cases

It often happens that a problem can be divided into a small number of
subproblems, each of which can be handled separately in a case-by-case
manner. This is especially true when the problem contains a universal
quantifier (“for all x ... ™). For example, the proof of a proposition of the
form “for all integers . . . ” might be carried out by arguing the even and
odd cases separately. Similarly, a theorem about triangles might be proved
by dividing it into three cases depending upon whether the triangle is acute,
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right, or obtuse. Occasionally, the subproblems can be arranged hierarchi-
cally into subgoals, so that the first cases, once established, can be used to
verify the succeeding stages. Such a procedure is called hillelimbing.

Tn the early stages of analysis, it is good to think about how a problem
might be subdivided into a small number of (hopefully) simpler subprob-
lems. The heuristic of this section is often given in the following form: “If
you can’t solve the problem, find a simpler related problem and solve it.”

1.7.1. Prove that an angle inscribed in a circle is equal to one-half the
central angle which subtends the same arc.

Solution. We are given a circle, say with center O, and an inscribed angle
APB; some examples are shown in Figure 1.24. We are to prove that in all
instances Z APB =1} Z AOB. The three preceding figures represent three
essentially different situations. Specifically, the center of the circle, O, is
cither inside Z APB (diagram 2), or outside Z APB (diagram 3), or on one
of the rays of ZAPB (diagram 1). We shall prove the theorem by
considering each of these cases separately.

Case 1. Suppose the center O is on PA. Then LAOB= LOPB+
£ OBP (exterior angle equals sum of opposite interior angles) =2/ OP8
(A OPB is isosceles) = 2/ APB. The result follows.

Case 2. If O is interior to Z APB (diagram 2), extend line PO to cut the
circle at D. We have just proved that 2/ APD = £ AOD and 2/ DPB
= £ DOB. Adding these equations gives the desired result.

Case 3. If O is exterior to £ APB (diagram 3), extend PO to cut the
circle D. Then, using case 1, 2 DPB= / DOB and 2/ DPA= £ DOA.
Sut ing the second equation from the first yields the result. This
completes the proof.

1.7.2. A real-valued function f, defined on the rational numbers, satisfies
Sfx+3)=fx) + f(»)
for all rational x and y. Prove that f(x) = f(1) - x for all rational x.



38 1. Heuristics

Solution, We will proceed in a number of steps. We will prove the result
first for the positive integers, then for the nonpositive integers, then for the
reciprocals of integers, and finally for all rational numbers.

Case 1 (positive integers). The result holds when x = 1. For x =2, we
have f(2)=f(1 + 1) = f(1) + f(1)=2f(1). For x=3, f3)=f2+1)
= f(2) + f(1)=2f(1y + f(1y =3f(1). Tt is clear that this process can be
continued, and that for any positive integer n, f(n) = nf(1). (A formal proof
can be given based on the principle of mathematical induction—see Chap-
ter 2).

Case 2 (nonpositive integers). First, f(0) = f(0 + 0) = f(0) + f(0). Sub-
tract f(0) from each side to get 0= f(0); that is, f(0)=0-f(1). Now,
0=f(0)= f(1 + (=) = f(1) + f(—1). From this, we see that f(—1)=
— fQ1). Similarly, for any positive integer n, f(n)+ f(—n)= fin +(=n))
= f(0) =0, so that f(—n) = — nf(1).

Case 3 (reciprocals). For x =4, we proceed as follows: f(1) = f(} +3)
= f(4) + f(4) = 2f(}). Divide by 2 to get f(})= f(1)/2. For x =4, (1)
SHE AL H D) = f(5)+ f3)+ (1) =3f(L), or equivalently, f(})=
f(1)/3. In a similar way, for any positive integer n, f(1/n) = f(1)/n. For
x=—1/n, we have f(1/m) + f(=1/m)= f(1/n+(=1/m)=fl®)=0, so
J=1/my= —f1)/n.

Case 4 (all rationals). Let n be an integer. Then f(2/n) = f(1/n+1/n)
= f(1/n) + f(1/n) = 2f(1/n) = (2/m)f(1). Similarly, if m/n is any rational
number, with m a positive integer and » an integer, then

A2 ohe )

n

m times m times
=mi(3) = 50

This establishes the result—a good example of hillclimbing.

1.7.3. Prove that the area of a lattice triangle is equal to / + § B — 1, where
1 and B denote respectively the number of interior and boundary lattice
points of the triangle. (A lattice triangle is a triangle in the plane with
lattice points as vertices.)

Solution. This is a special case of Pick’s theorem (see 2.3.1). There are a
number of ingenious proofs, each of which divide the set of lattice triangles
into a few special types. One way to do this is to “circumscribe” about the
triangle a rectangle with edges parallel to the coordinate axes. At least one
vertex of the rectangle must coincide with a vertex of the triangle. Now it
can be checked that every lattice triangle can be classified into one of the
nonequivalent classes sketched in Figure 1.25.
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In the first class are those right triangles whose legs are parallel to the
coordinate axes. The second class includes acute-angled triangles one of
whose sides is parallel to a coordinate axis. Such triangles are the “sum” of
two triangles from the first class. In the third class are the obtuse triangles
which have one side parallel to a coordinate axis. They are the “difference™
of two triangles from the first class. The fourth and fifth classes cover those
triangles having no sides parallel io the coordinate axes.

The proof of the result follows a hiliclimbing pattern. To get started, let
us consider the rectangle ABCD in case 1. Suppose that line segments AB
and AD contain a and b lattice points, respectively, not counting their
endpoints. Then, with / and B the interior and boundary points of ABCD,

I+3B—1=ab+}2a+2b+4)-1

=ab+a+b+1
=(a+)b+1)
= Area ABCD.
Now supposc that AB, BC, and 4C contain a, b ¢ lattice points,
not ing their endpoints, and suppose that 4 BC contains

mtenm points. Then rectangle ABCD has 2i + ¢ interior points, and we
have, with J and B the interior and boundary points of ABC,

I+1B-l1=i+i(a+b+c+3)—-1
=iQi+a+b+c+]1)
=}[Qi+c)+iQa+20+4) - 1]
=1AreadBCD
= Area ABC.

The other cases can be handled in a similar way; we leave the details to
the reader.
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Problems

1.7.4 (Triangle inequality).

(a) Prove that for all real numbers x and p, |x + y| < x| + | y|.

(b) Prove that for all real numbers x, y, and z, [x ~ y| < {x — z| + |y — 2[.
1.7.5. Find all values of x which satisfy

3 2
=T <x+1°

1.7.6. Let S= (i(3,8)+j(4, -1} + k(5,4)|i, j,k are integers}, and T
= {m(1,5) + n(0,7)| m,n are integers}. Prove that § = T. (Note: Ordered
pairs of integers are added componentwise: (5,0} + (s, )= (s + 5,1 + 1),
and n(s, #) = (ns,nt).)

1.7.7. A real-valued function f, defined on the positive rational numbers,
satisfies f(x + y) = f(x)f(y) for all positive rational numbers x and y.
Prove that f(x) = { f(1)]* for all positive rational x.

1.7.8. Determine F(x) if, for all real x and y, F(x)F(y) - F(xy) = x + y.

Additional Examples

1.1.7, 2.5.11¢, 2.5.12, 2.5.13, 2.6.3, 3.2.14, 3.2.15, 3.2.16, 3.2.17, 3.2.18, 3.4.1,
413, 4.14, 44.14, 4429, 52.1, 5.3.14¢c, 6.54, 743, 762, 764, 7.6.10,
8.2.4. Some particularly nice examples which reduce to the study of very
special cases are 3.3.8, 3.3.9, 3.3.21, 3.3.22, 3.3.26.

1.8. Work Backward

To work backward means to assume the conclusion and then to draw
deductions from the conclusion until we arrive at something known or
something which can be easily proved. After we arrive at the given or the
known, we then reverse the steps in the argument and proceed forward to
the conclusion.

This dure is in high-school algebra and tri y. For
example, to find all real numbers which satisfy 2x + 3 =7, we argue as
follows. Suppose that x satisfies 2x + 3 = 7. Then, subtract 3 from each
side of the equation and divide each side by 2, to get x = 2. Since each step
in this derivation can be reversed, we conclude that 2 does indeed satisfy
2x + 3 =7 and is the only such number.
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Often, in routine manipulations, such as in the previous example, an
explicit rewriting of the steps is not done. However, it is important to be
aware of what can, and what cannot, be reversed. For example, consider
the equation yx+1 —yx —1 =2. (Here, as usual, the square root is
interpreted as the positive square root.) Write the equation in the form
Vx+1 =yx—1 +2, and square each side to get x+1=x—1+
4yx —1 +4, or equivalently, yx — 1 = — !, Square a second time to get
x—1=4, or x =4 We conclude that if there is a number x such that
¥x+1 —vx—1 =2, it has to equal §. However,  does not satisfy the
original equation. The reason for this is that the steps are not all reversible.
Thus, in this example, we proceed from yx — 1 = — 1 tox — 1 = 1. When
this is reversed, however, the argument goes from x — 1=} tox - 1 =4,

1.8.1. Let « be a fixed real number, 0 < a < #, and let
sinf + sin(f + &)

cosf —cos(f + a) ’ O<f<n—a

F(#)=
Show that F is a constant. (This problem arose in 1.2.1.)

Solution. Suppose that F is a constant. Then F(#)= F(0) for ail 6,
0< 6 <7~ a Thatis,

sinf + sin(f + a) sina
cosi—cos(@+ o) ~ T= cosa’ @
[sing +sin(6 + @) ][1 — cosa] = sinacosf ~ cos(d + a)],  (2)

sind + sin(4 + a) — sinfcosa — sin(# + «)cosa
=sinacosf — sinn);cos(ﬁ +a), 3)

sinf + sin(f + ) — [sinfcosa + sina cos§]

—[sin(8 + a)cosa — sinacos(d + a)] =0, )
sind + sin(4 + a) — sin(# + o) — sin(f + a — a) = 0. 5)

The last equation is an identity. For the proof, we must reverse these steps.
The only questionable step is from (2) to (1): the proof is valid only if we
do not divide by zero in going from (2) to (1). But (1 — cosa) 0 since
0 < a<m, and cosf — cos(# + a) > 0 since 0 < # < § + & < 7. The proof
therefore can be carried out; that is, starting with the known identity at (5),
we can argue (via steps (4), (3), (2), (1)) that for all 4, 0< 8 < 7 —a,
F(#) =sina/(1 — cosa) = constant.
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1.8.2. If a,b, ¢ denote the lengths of the sides of a triangle, show that
3(ab + be + ca)y < (a+ b+ ¢y’ < 4ab + be + ca).

Solution. Consider the leftmost inequality:
3ab + be + ca) <(a+ b+ ),
3(ab + be + ca) < @+ b* + > + 2(ab + be + ca),

ab+ bc+ca<a’+ b+
a+b+c’—ab—bc—ca>0,
2a* + 2b* + 2¢* — 2ab — 2bc — 2¢a > 0,
(a* —2ab + b%) + (b — 2bc + *) + (c* — 2ca + a®) > 0,
(a— by +(b—c)+(c—a)>0.
This last inequality is true for all values of a,b,c. Now consider the right
inequality:
(a+b+c) < 4ab+ be + ca),
a’+ b+ ¢* + 2(ab + bc + ca) < 4(ab + be + ca),
a®+ b* + ¢ < 2(ab + bc + ca),
a*+ b+ P <a(b+c)+ bla+c)+e(b+a)
This final inequality is true, since the sum of any two sides of a triangle is
larger than the remaining side. Thus, a® < a(b + ¢), b* < b(a + ¢), and
< c(b+ a).
The steps in each of these arguments can be reversed, so the proof is
complete.

1.8.3. Given: AOB is a diameter of the circle O; BM is tangent to the
circle at B; CF is tangent to the circle at E and meets BM at C; the chord
AE, when extended, meets BM at D. Prove that BC = CD. (See Figure
1.26)

Solution. Suppose BC = CD. Then CE = CD, since BC = CE (langents
from C to the circle at E and B are equal). Thus, Z CED = / CDE (base
angles of an isosceles triangle are equal). We are led to consider the angles
as labeled in Figure 1.26.

Now, Zd is complementary to Z a since AABD is a right triangle, and
ZLe is complementary to /¢ since Z BEA is a right angle (408 is a
diameter). Therefore, £ a = Zc. But we know that Za = /¢, since they
both cut off the equal arc BE on the circle O.
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The proof can now be completed by reversing these steps. Thus (omit-
ting reasons), Za = Zc, and therefore, /e = / d. Hence CD = CE, CE
= BC, and therefore BC = CD.

1.84. In a round-robin tournament with n players P, P,, . .., P,, where
n> 1, each player plays one game with each of the other players and rules
are such that no ties can occur. Let W, and Z, be the number of games won
and lost, respectively, by player P,. Show that

» »
SwW=3 L

r=1 r=1
Solution. Suppose 37, W2 =3"_ L% Then,

> (W-1L)=0,

r=1
”
3 (W, = LY(W,+ L)=0.
=1
But W, + L, = n—1 for each r, so
n
(n=1)Z (W, - L)=0,
r=1
3 (W, - L)=0,
r=1

" n
SW=3L.
r=1 =

This last equation is true, since the total number of games won by the n
players has to equal the total number of games lost. The proof follows on
ing the di
g




44 1. Heuristics
Problems

185.

(a) Given positive real numbers x and y, prove that
Vet <y i3t
(b) Given positive real numbers a and b such that a + b = I, prove that

2
m(ax+by, x>0, y>0.

1.8.6.

(a) 1f a,b, ¢ are positive real numbers, and a < b + ¢, show that

a b ¢
T+a “T+p " Twe-
(b) If a,b,c are lengths of three segments which can form a triangle, show
that the same is true for 1/(a + ¢), 1/(b + ¢), 1/(a + b).

1.8.7. Two circles are tangent externally at 4, and a common external
tangent touches them at B and C. The line segment BA is extended,
meeting the second circle at D. Prove that CD is a diameter.
1.8.8. Consider the following argument. Suppose # satisfies
cotd + tan38 = 0.
Then, since
tano + tanB
t +8)y=— T 20
an(a + £) 1—tanatan 8’

it follows that
tang + tan 268
o0+ T ndtan26 ~
cotf(1 — tanftan28) + tan @ + tan26 = 0,
cotd —tan28 + tand + tan28 = 0,
cotf + tanf =0,
1+ tan®d =0,

Since this last equation cannot hold, the original equation does not have a
solution (we don’t need to reverse any steps because the final step doesn’t
yield any contenders). However, 8 = 17 does satisfy coté + tan34 = 0.
‘What’s wrong with the argument?

1.8.9. With i tools igh and inscribe a square
in a given triangle so that one side of the square lies on a given side of the
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triangle. (Hint: Begin with the square and construct a triangle around it
similar to the given triangle. Then use the fact that similar figures have
proportional parts.)

Additional Examples

2.1.5,7.1.1, 7.4.6. Also, see Section 2.2 (Induction) and Section 2.5 (Recur-
sion).

1.9. Argue by Contradiction

To argue by contradiction means to assume the conclusion is not true and
then to draw deductions until we arrive at something that is contradictory
either to what is given (the indirect method) or to what is known to be true
(reductio ad absurdum). Thus, for example, to prove V2 is ivrational, we
might assume it is rational and proceed to derive a contradiction. The
method is often appropriate when the conclusion is easily negated, when
the hypotheses offer very little substance for manipulation, or when there is
a dearth of ideas about how to proceed.

As a simple example of this method of proof, consider the following
argument which shows that the harmonic series diverges. Suppose on the
contrary, that it converges—say to r. Then

(IR S P N S REE

D R E a Ed Ba B R

= 1+ 4+ 4 + 4+
=7,

a contradiction. We are forced to conclude that the series diverges.

1.9.1. Given that a,b,c are odd integers, prove that equation ax® + bx + ¢
=0 cannot have a rational root.

Solution. Suppose p/q is a rational root, where (without loss of generality)
P and g are not both even integers. We will first establish that neither p nor
q is even. For suppose Lhatp is even. From a(p/q)Z + b(p/q) +c=0we
find that ap + bpg-+ cq® = 0. Since ap® + bpq is even, cq® must be even,
but this is impossible, since ¢ and g are both odd. We get a similar
contradlcuon |f we suppose ¢ is even. Therefore, both p and g are odd and
ap + bpg + cq = Q. But this last equation states that the sum of three odd
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b is zero, an i ibility. Therefore, the equation has no rational

root.

It is instructive to consider another proof of this result. The roots of
ax® + bx + ¢ = 0 are rational if and only if b2 — 4ac is a perfect square. So,
suppose that b%—dac = (2n+ 1) for some integer n (by supposition,
b* — 4ac is odd, and therefore, if it is a square, it must be the square of an
odd integer). Collecting multiples of 4 we have

B —1=4[n(n+1)+ac].

Since either 7 or # + 1 is even, n(n + 1) + ac is odd. Thus, the right side of
the last equation is divisible by 4 but not by 8. However, the left side is
divisible by 8, since 52~ 1 =(b— 1}b+ 1) and one of 5~ 1 and b + | is
divisible by 4, while the other is divisible by 2. Therefore the displayed
equation above cannot hold, and we have a contradiction. (In this proof,
we have reached a contradiction by looking at how two numbers stand
relative to multiples of 8, rather than multiples of 2 as in the first proof. We
will return to a deeper consideration of this idea in Section 3.2.)

The next two sections contain additional illustrations of proof by contra-
diction.

Problems

1.9.2. In a party with 2000 persons, among any set of four there is at least
one person who knows each of the other three. There are three people who
are not mutually acquainted with each other. Prove that the other 1997
people know everyone at the party. (Assume that “knowing” is a symmetric
relation; that is, if 4 knows B then B also knows A. What is the answer if
“knowing” is not necessarily symmetric?)

1.93. Prove that there do not exist positive integers a, b, ¢, and » such that
a*+ b* + ¢* =2"abc. (From 1.4.3, we may assume that @ and b are odd
and ¢ is even. How are the sides of the equation related to 42)

1.9.4. Every pair of communities in a county are linked directly by exactly
one mode of transportation: bus, train, or airplane. All three modes of
transportation are used in the county; no community is served by all three
modes, and no three communities are linked pairwise by the same mode.

Four communities can be linked according to these stipulations in the
following way: bus, AB, BC, CD, DA; train, AC; airplane, BD.

(a) Give an argument to show that no community can have a single mode
of transportation leading to each of three different communities.

(b) Give a proof to show that five communities cannot be linked in the
required manner.
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1.9.5. Let S be a set of rational numbers that is closed under addition and

iplication (that is, wi a and b are bers of S, soare a+ b
and ab), and having the property that for every rational number r exactly
one of the following three statements is true: r& S, —r € S, r=0.

(a) Prove that 0 does not belong to S.
(b) Prove that all positive integers belong to S.
(c) Prove that S is the set of all positive rational numbers.

Additional Examples

1.5.10, 1.6.7, 3.2.1, 3.2.6, 3.2.11, 3.2.13, 3.2.15, 3.2.17, 3.2.18, 3.34, 3.3.14,
34.2, 4.1.3, 44.6, 5.4.1. Also, sce Section 1.10 (Parity) and Section 1.11
(Extreme Cases).

1.10. Pursue Parity

The simple idea of parity—evenness and oddness—is a powerful problem-
solving concept with a wide variety of applications. We will consider some
examples in this section, and then generalize the idea in Section 3.2.

1.10.1. Let there be given nine lattice points in three-dimensional Euclid-
ean space. Show that there is a lattice point on the interior of one of the
line segments joining two of these points.

Solution. There are only eight different parity patterns for the lattice points:
(even, even, even), (even, even, odd), . . ., (odd, odd, odd). Since there are
nine given points, two of them have the same parity pattern. Their mid-
point is a lattice point, and the proof is complete.

1.10.2. Place a knight on each square of a 7-by-7 chessboard. Is it possible
for each knight to simultaneously make a legal move?

Solution. Assume a chessboard is colored in the usual checkered pattern.
The board has 49 squares; suppose 24 of them are white and 25 are black.

Consider 25 knights which rest on the black squares. If they were to each
make a legal move; they would have to move to 25 white squares. However,
there are only 24 white squares available, therefore such a move cannot be
made.
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F\gure 127,

1.10.3. Place a knight on a 4-by-n chessboard. Is it possible, in 4n
consecutive knight moves, to visit each square of the board and return to
the original square?

Solution. Before considering this problem, it is interesting to consider the
same question for the 7-by-7 chessboard. Suppose that such a “closed tour”
is attempted. On the first move the knight moves to a square of the opposite
color; on the second move it returns to a square of the same color; and so
forth. We see that after an odd number of moves the knight will occupy a
square opposite in color from its original square. Now a closed tour of the
7-by-7 board requires 49 moves, an odd number. Therefore the knight
cannot occupy its original square, and the closed tour is impossible.

Consider, now, the 4-by-n board. The argument fo the 7-by-7 does not
carry over to this case, because 4n is an even number. To handle this case,
color the 4-by-n board in the manner indicated in Figure 1.27.

Notice that knight moves made from the white squares in the top and
bottom rows lead to white squares in the second and third rows. Con-
versely, in a tour of the required type, knight moves from the inner two
rows must necessarily be to the white squares in the outer two rows. This is
because there are exactly n white squares in the outer two rows, and these
can be reached only from the n white squares in the inner two rows.
Therefore, the knight path can never move from the white squares to the
black squares, and so such a closed tour is impossible.

1.104. Let n be an odd integer greater than 1, and let 4 by an n-by-n
symmetric matrix such that each row and each column of A consists of
some permutation of the integers 1,..,, n. Show that each one of the
integers 1, ..., n must appear in the main diagonal of 4.

Solution. Off-diagonal elements occur in pairs decause 4 is symmelric.
Each number appears exactly » times, and this, together with knowing that
n is odd, implies the result.

1.10.5. Let a4, . . ., ay,,, be a set of integers with the following prop-
erty (P): if any of them is removed, the remaining ones can be divided into
two sets of n integers with equal sums. Prove that ¢, =a, = - -+ = a,,,,.
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Solution. First, observe that all of the integers @), . . ., @,,,, have the same
parity. To see this, let 4 =a, + --- +a,,,,. The claim follows after
noting that for each i, 4 — a4; is even (otherwise the remaining numbers
could not be divided in the required manner).

Let a denote the smallest number among ay, . . ., @,,,, and for each i,
let b, = @, — a. The problem is equivalent to showing that b, = 0 for all i.

Now b, b,, . . ., by, satisfy property (P). Since one of them is zero, it
must be the case that they all are even. If they are not all zero, let k be the
largest positive integer for which 2* divides each of the b,. For each i/, let
¢;=b;/2X. Then ¢\, ¢, . . . , €3, satisfy (P); however, they don’t all have
the same parity (since one of them is zero, and another is odd because of
the choice of k). Therefore, all the b, are zero and the proof is complete.

Problems

'1.10.6.

(a) Remove the lower left corner square and the upper right corner square
from an ordinary 8-by-8 chessboard. Can the resulting board be cov-
ered by 31 dominos? Assume each domino will cover exactly two
adjacent squares of the board.

(b) Let thirteen points P, . .., P, be given in the plane, and suppose they
are connected by the segments P Py, PoPs, ..., PP, PP, Is it
possible to draw a straight line which passes through the interior of
each of these segments?

110.7.

(a) Is it possible to trace a path along the arcs of Figure 1.28(a) which
traverses each arc once and only once? (Hint: Count the number of
arcs coming out of each vertex.)’

(b) Is it possible to trace a path along the lines of Figure 1.28(b) which
passes through each juncture point once and only once? (Hint: Color
the vertices in an alternating manner.)

1.108. Letay,a,, ... an arbitrary ar of the num-

bers 1,2,...,n Prove !hal 1f n is odd, the product
(@@ -2 - (4, =)

is an even number.

1.10.9. Show that (2° — 1)(2® — 1)=2% +1 is impossible in nonnegative

integers @, b, and ¢. (Hint: Write the equation in the equivalent form

20%6 90 _ 95 = 9% ang investigate the possibilities for @, 4, and ¢.)

1.10.10. Show that x2 — y = 4° always has integral solutions for x and y
whenever g is a positive integer.
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(a)

(b)
Figure 1.28.

Additional Examples

1.5.10, 1.9.1, 2.2.7, 3.2.13, 3.3.4, 3.3.20, 4.2.16(a), 4.3.4, 7.4.6. See Section 3.2
for a generalization of this method.

1.11. Consider Extreme Cases

In the beginning stages of problem exploration, it is often helpful to
consider the consequences of letting the problem parameters vary from one
extreme value to another. In this section we shall see that the existence of
extreme positions are often the key to understanding existence results
(problems of the sort “prove there is an x such that P(x)").

L11.1. Given a finite number of points in the plane, not all collinear,
prove there is a straight line which passes through exactly two of them.

Solution, If P is a point and L a line, let 4(P, L) denote the distance from P
to L. Let § denote the set of positive distances d(P, L) as P varies over the
given points, and L varies over those lines which do not pass through P but
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P
l)I Q PZ PJ
Figure 1.29,

which do pass through at least two of the given points. The set § is
nonempty (because the given points are not all collinear) and finite (there
are only a finite number of points and a finite number of lines which pass
through at least two such points). Therefore S has a minimal element, say
d(P,M). We claim that M passes through exactly two of the given points.

Suppose that M passes through three of the given points, say P,, P,, and
P,. Let Q denote the point on M which is closest to P. At least two of the
points P, P,, Py lic on the same side of Q (one may equal ), say P, and
Py (see Figure 1.29). Suppose the points are labeled so that P, is closer to P
than P;. Now let N denote the line through P and P,;, and note that
d(Py, N} < d(P,M), a contradiction to our choice of P and M. It follows
that M can only pass through two of the given points.

1.11.2, Let 4 be a set of 2n points in the plane, no three of which are
collinear. Suppose that n of them are colored red and the remaining » blue.
Prove or disprove: There are n closed straight line segments, no two with a
point in common, such that the endpoints of each segment are points of 4
having different colors.

Solution. If we disregard line crossings, there are a number of ways the
given n red points can be paired with the given blue points by # closed
straight line segments. Assign to each such pairing the total length of all the
line segments in the configuration. Because there are only a finite number
of such pairings, one of these configurations will have minimat total length.
This pairing will have no segment crossings. (If segments R B, and R,8,
intersected, R,, R, being ted points and Bl, B, blue pomts, then we could
reduce the total length of the confi by ing these

with R B, and R,B,.) (For another solution, see 6. 2 3)

1.11.3. At a party, no boy dances with every gitl, but each girl dances with
at least one boy. Prove there are two couples bg and b’'g’ which dance,
whereas b does not dance with g’ nor does g dance with &',

Solution. Although not necessary, it may make the problem more under-
standable if we interpret the problem in matrix terms. Let the rows of a
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matrix correspond to the boys and the columns to the girls. Enter a 1 or ¢
in the b-row and g-column according to whether b and g dance or don’t
dance with one another. The condition that no boy dances with every girl
implies that (i) every row has at least one 0 entry. Similarly, (ii) every
column has at least one 1 entry. We wish to prove that there are two rows,
b and ¥, and two columns, g and g, whose entries at their intersection
points have the pattern

Let & denote an arbitrary row. By (i) there is a 0 entry in this row, say in
column k, and by (ii) there is a 1 entry in column &, say in row m:
3
i |
i i
hofeee om0 —
| '
! }
m o\ === 07— ] ———

Now, we’re done if there is a column which contains a 1 in row % and a 0 in
column m. In general, such a column may not exist. However, if & had been
chosen in advance as a row with a maximal number of 1’s, then such a
column would have to exist, and the problem would be solved.

With this background, we can rewrite the solution in language indepen-
dent of the matrix interpretation. Let b be a boy who dances with a
maximal number of girls. Let g’ be a girl with whom b does not dance, and
b a boy with whom g’ dances. Among the partners of &, there must be at
least one girl g who does not dance with b* (for otherwise & would have
more partners than b). The couples bg and b'g’ solve the problem.

1.11.4. Prove that the product of n successive integers is always divisible
by n!.

Solution. First, notice that it suffices to prove the result for n successive
positive integers. For the result is obviously true if one of the integers in the
product is 0, whereas if all the integers are negative, it suffices to show that
n! divides their absolute value.
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So suppose there are n successive positive integers whose product is not
divisible by n!. Of all such numbers », choose the smallest; call it N. Note
that N > 2, since the product of two successive integers is always even. We
are supposing, therefore, that there is a nonnegative integer m such that
(m+1}m+2)---(m+ N)is not divisible by N!. Of all such numbers m,
let M be the smallest. Note that M > 0, since N! is divisible by N!. Thus,
we are supposing that (M + [} M +2) - - - (M + N) is not divisible by N1.
Now,

(M+1)Y(M+2)- - (M+N—1)(M+N)
=M[(M+l)(M+2)-»-(M+N—1)}
FN[(M+ 1M +2)--- (M+N-1)].

By our choice of M, n! divides M[(M + 1M +2)- - - (M + N — 1)]. By
our choice of N, (N — 1)! divides (M + 1M +2)--- (M + N — 1), and
consequently, N! divides N[(M + 1)}(M +2) - - - (M + N — 1)]. Combin-
ing, we see that N'! divides the right side of the last equation, contrary to
our supposition. This dicti blishes the result.

(A slick proof of this result is to recognize that the quotient (m + 1)(m +
2) -+ (m+ n)/n! is equal to the binomial coefficient ("}™, and is there-
fore an integer if m is an integer.)

Problems

1.1L5. Let f(x) be a polynomial of degree n with real coefficients and such
that f(x) > 0 for every real number x. Show that f(x)+ f'(x)+
oo+ f(x) > 0 for all real x. (f*'(x) denotes the kth derivative of
f(x)) :

1.116. Give an example to show that the result of 1.11.1 does not
necessarily hold for an infinite number of points in the plane, Where does
the proof 'of 1.11.1 break down for the infinite case?

L11.7. Show that there exists a rational numbser, ¢/d, with 4 < 100, such

that
el =e-2 =
l[kz]]_”k 1ooﬂ for k=1,23,...,9.
L11.8. Suppose that P, is a statement, for n=1,2,3, ... . Suppose fur-
ther that

(i) P, is true, and
(ii) for each positive integer m, P, , is true if P,, is true.
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Prove that P, is true for all n. (Hint: Let § denote the set of all positive
integers for which P, is not true. Let m denote the smallest element in S,
assuming that S is nonempty.)

Additional Examples

3.1.9, 3.3.11, 3.3.28, 4.4.7, 44.10, and the referrals given in 6.3.7. Also, see
Sections 7.6 (The Squeeze Principle) and 6.2 (The Intermediate-Value
Theorem) for examples which require consideration of “extremelike” cases.

1.12. Generalize

It may seem paradoxical, but it is often the case that a problem can be
simplifed, and made more tractable and understandable, when it is general-
ized. This fact of life is well appreciated by mathematicians; in fact,
b ion and lization are basic ch ristics of modern mathe-
matics. A more general setling provides a broader perspective, strips away
nonessential features, and provides a whole new arsenal of techniques.

1.12.1. Evaluate the sum 35 k*/2%.

Solution. We will instead evaluate the sum S(x)=3%_k*** and then
calculate S(4). The reason for introducing the variable x is that we can
now use the techniques of analysis. We know that
n ntl
PO E-F
k=1 I-x
Differentiating each side we get
n 1= x)(—(n+ x") + (1 - x"*'
P Uk G U . Rl U
k=1 (1—x)

1—(n+ 1)x" + nx"*!
TR
Multiplying each side of this equation by x, differentiating a second time,
and multiplying the result by x yields
24y — g — 1) = x™*2

(1-xy

S(xy= ’;::Iksz x(1+x)—x
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It follows that
n
v K 1 2 _1
1) = Sy - lp—pn—1)7-
sh=E & -6-Ln-n-- 2L

2 + 4
=6_(n2E""+6)A

1.12.2. Evaluate the following determinant (Vandermonde’s determinant):

2 -1
1 a a -+ af
1 a, & --- af”'
2 & @
det 2
2 -1
1 a, a a;

Solution. We will assume that g, + a;, i # j, for otherwise the determinant
is zero. In order to more clearly focus on the main idea, consider the case
n=3

1 a a®
det|] p p2|.
1 ¢ ¢

In this d;nerminant, replace ¢ by a variable x. Then, the determinant is a
polynomm]v P(x) of degree 2. Moreover, P(a)= 0 and P(b) = 0, since the
f:orrespondmg matrix, with ¢ replaced by a or b respectively, then has two
identical rows, Therefore,

P(x)= A(x - a)(x - b)

for some constant 4. Now, A is the coefficient of x?, and, returning to the
determinant, this coefficient is
de(( ! a)'
1 b

Thus, 4 = b — a, and the original 3-by-3 determinant is
P(c)=(b-a)[(c - a)c—-b)]
The general case is analogous. Let D, denote the desired determinant (of
order n). Replace a, in the bottom row of the matrix by the variable x. The

resulting determinant is a polynomial P, (x) of degree n — 1, which vanishes
atay,ay, ..., a,_,. Hence, by the Factor Theorem (see Section 4.2),

Pp(xy=A(x —a)(x~a) - (x=a,_y),
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where A is a constant. As before, 4 is the coefficient of x"3 and expanding
along the bottom row makes it clear that 4 = D,_,. That is,

D, = Po(a) = Dy\[(a,— @)@, — @) - -~ (4, ~ @,-1) ]
We can repeat the argument for D, _,, etc. The final result will be

e i [T -]

=)
1.12.3. Given that {&(sinx)/xdx = {m, evaluate [F(sin’)/x*dx.

Solution. We will evaluate the more general integral

« sin’ax
I(a)=L —s—;f—dx, a>»0,

by using a techni called diff i .
yDifferenﬁating each side of the previous equation with respect to a, we
get

I'@) =j'o°° 25inax;:§)sax X gy
- [=sin2as gy,
(] x
Now, with y = 2ax, we get dy = 2adx, and
I'(a) =f0"° “"Tydy= im.
Integrating each side gives

I(a)y=14ma+ C, C constant.

Since I(0) =0, we get C = 0. Thus I(a) = 4ma, a > 0. Settir}g a=1 yields
1(1) = [$(sin*)x*dx = } 7. (Incidentally, the value .of [(sinx)/ x dx ‘can
be found by evaluating a more general integral integral of a p!
valued function over a contour in the complex plane.)

Problems

1.12.4. By setting x equal to the appropriate values in the binomial
expansion

(1+x)"= éo(:)x"

'
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(or one of its derivatives, etc.) evaluate each of the following:
& 2 n S k(1
@ Z () ® Z3(;)
S 1 (n & n
©2ntl @ P *\”(k)'
1.12.5. Evaluate

1 2 gt

a
det|l b 8 &
1 ¢ & ¢
1 4 4% g*

(Replace d by a variable x; make use of the fact that the sum of the roots
of a fourth-degree polynomial is €qual to the coefficient of x* (see Section
4.3).)
L12.6.
(a) Evaluate [(e*sin x)/xdx. (Consider G(k)= J& (e sinkx)/x dx

and use parameter differentiation.)
(b) Evaluate f}(x — 1)/Inxdx. (Consider H(m)= [}(x™ — D/Inxdx and

use parameter differentiation.)
(c) Evaluate

oo &rctan(wx) — arctanx
f —_——— dx.
o x

(Consider F(a)= S (arctan(ax) — arctanx)/xdx and use parameter
differentiation.)

L1277, Which is larger 60 or 2+ ¥7? (Cubing each number leads to
complicati/oﬁs that are not easily resolved. Consider instead the more

general problem: Which is larger, Ya(x +y) or ¥ + ¥y, where Xy
>02Take x = 2, p = b3)
Additional Examples

142, 226, 227, 414,513, 514, 5.1.9, 5.L11, 5.44, 545, 5.4.6, 54.7,
6.9.2, 7.44. Also, see Section 2.4 (Induction and Generalization).



Chapter 2. Two Important Principles:
Induction and Pigeonhole

Mathematical propositions come in two forms: universal propositions
which state that something is true for aff values of x in some specified set,
and existential propositions which state that something is true for some
value of x in some specified set. The former type are expressible in the form
“For all x (in a set §), P(x)"; the latter type are expressible in the form
“There exists an x (in the set §) such thatP(x),” where P(x) is a statement
about x. In this chapter we will consider two important techniques for
dealing with these two kinds of statements: (i} the principle of mathemati-
cal inducti for uni | propositi and (ii) the pi; hole principle,
for existential propositions.

2.1. Induction: Build on P{k)

Let g be an integer and P(n) a proposition (statement) about # for each
integer n > a. The principle of mathematical induction states that:

if
(i) P(a)is true, and
(i) for each integer k > a, P(k) true implies P(k + 1) true,
then P(n) is true for all integers n > a.
Notice that the principle enables us, in two simple steps, to prove an infinite
number of propositions (namely, P(n) is true for all integers n > a). The

method is especially suitable when a pattern has been established (sce
Section 1.1, “Search for a Pattern™) for the first few special cases (P(a),
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P(a+1),Pa+2),...). In this section we consider induction arguments
which, in step (ii), proceed directly from the truth of P(k) to the truth of
Pk + 1)—that is, the truth of P(k + 1) is “built on” an initial consider-
ation of the truth of P(k). This is in slight contrasL to arguments (consi-
dered in the next section) which begin with a considération of Pk +1).

2.1.1. Use math ical induction to prove the bi jal theorem:

"
(a+b)'=3 ('l.')a‘b"", n a positive integer.
i=0

Solution. It is easy to check that the result holds when 7 = 1.
Assuming the result for the integer & (we will build on the truth of P(k)),
multiply each side by (a + b) to get

(a+ by (a+b) =L§k“o(’:)a'bk" (a+h)

-3 (fs)ambk-wéﬂ ()ase=r-

i=0Mi
In the first sum, make the change of variable j=i+1,toget

k+1 k
. (]f 1)”Jb“‘ﬁ+ S (If)a.bul—.

=t i=0M i
- ﬁ:(k )a/bku—/ akht] 4 Zk:(k)a.bku—. ke
IAvAe! =AY
_ak+|+[ )+(]f)]aibkv\—i]+bk+l
i

=kt g 2(k+ I)a.bk-vl—; _."bk+|

- é‘(k+|)utl7k+l»:
) s

Wwhere we have made use of the basic identity (,%,) + (¥) = (*11) (see 2.5.2).
This is the form for P(k + 1), so by induction, the proof is complete.

212. Let 0<a,<ay< -+~ <a,, and let €= *1. Prove that 37_,e.q,
assumes at least ("}') distinct values as the ¢; range over the 2" possible
combinations of signs.

Solution. When » = 1, there are exactly 2 distinct values (a, and —a,)),and
3 =1, 50 the result holds.
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Suppose the result is true when n = k; that is, 2% e,a, assumes at least
(*3') distinct values. Suppose another element g, is given, with g,
> a,. We must show that we can generate (*3?) distinct sums. There are
already (“3') distinct sums (generated by a,, . . ., g;); we need to generate
¢31 = (*1Y = k + 1 additional sums. These can be found in the following
manner: let S=3%_a, (so § > 3% e,a, for all choices of ¢), and note
that §+ a0, 8+ (a1 =) S+ (@ = &1y -, S+ (a4 — a),
are distinct and greater than S. There are k + 1 numbers in this list, so the
result follows by induction.

Mathematical induction is a method that can be tried on any problem of
the form “Prove that P(n) holds for all n > a.” The clue is often signaled
by the mere presence of the parameter n. But it should be noted that
induction also applies to many problems where the quantification is over
more general sets. For example, a p ition about all pok jals might
be proved by inducting on the degree of the polynomial. A theorem about
all matrices might be handled by inducting on the size of the matrix.
Several results concerning propositions in symbolic logic are carried out by
inducting on the number of logical connectives in the proposition. The list
of unusual “inductive sets” could go on and on; we will be content to give
just two les here; other are d hout the book
(e.g. see the next four sections and the listings in the “Additional Exam-
ples™).

2.13. If ¥, E, and F are, respectively, the number of vertices, edges, and
faces of a connected planar map, then

V—E+F=2.

Solution. Your intuitive understanding of the terms in this result are
probably accurate, but to make certain, here are the definitions.

A network is a figure (in a plane or in space) consisting of finite, nonzero
number of arcs, no two of which intersect except possibly at their end-
points. The endpoints of these arcs are called vertices of the network. A path
in a network is a sequence of different arcs in the network that can be

d i ly without ing any arc. A network is connected if
every two different vertices of the network are vertices of some path in the
network. A map is a network, together with a surface which contains the
network. If this surface is a plane the map is called a planar map. The arcs
of a planar map are called edges. The faces of a planar map are the regions
that are defined by the boundaries (edges) of the map (the “ocean” is
counted as a face).

Figure 2.1 shows three examples of connected neworks. The first two are
planar maps. In the first, ¥ =4, E =4, F = 2; in the second, V=5, E=6,
F=3. The third network is not a planar map. However, if we should
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— DO &

1 2 3
Figure 2.1.

flatten it onto a plane and place vertices at the intersection points, we
would have V' =10, E =20, F = 12. )

Nx_)w return to a consideration of the theorem. The key idea in the proof
o_{ this result is to realize that connected planar maps can be built from a
single vertex by a sequence of the following constructions (each of which
leaves the map connected):

(l) Add a vertex in an existing edge (e.g. ———— becomes ———s),
(_1!) Add an edge from a vertex back to itself (e.g. » becomes O ).
(iii) Add an edge between the two existing vertices (e.g. becomes

(iv) Add an edge and a vertex to an existing vertex (e.g. « becomes —).

We will induct on the number of steps required to construct the
connected planar map. If the network consists of a single point, then V' = 1
F=1,E=Oand V- E+ F=2. |

Suppose the result holds when k steps are required in the construction.
The net change for each of the steps is given in the following table:

Operation | AV AE AF | MV-E+F)
(1) +1 +1 0 0
(i) 0 +1 +1 0
(f"} 0 +1 +1 0
(iv) +1 +1 0 [}

_Since the quantity ¥ ~ E + F remains unchanged when the (k + 1)st step
is taken, the proof is complete by induction.

2.1.4. Given a positive integer 7 and a real numbser x, prove that

|[x]+[[x+%]]+ﬂx+%‘u+-w+[[x+"‘lﬂ=[nx]4

n

Solution, Al!hough there is an integer parameter » in this problem, it will
not work to induct on # for a fixed x. Also, of course, we cannot induct on
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X, since x ranges over the real numbers (for a given real number x, there is
no next larger real number y). Therefore, it is not clear that induction can
be applied to this problem.

The idea is to prove the result for all x in the subinterval [k/n,(k + 1)
/myfork=0,+1,+2, ...,

First, suppose x belongs to the subinterval [0,1/n). Then [x+i/n]
=0fori=0,1,...,n—1,sothat 37 [x+i/n]=0.Also [nx]=0,
so the result is true in the “first” subinterval.

Now suppose the result holds in the interval [(k — 1)/a, k/n), where k is
a positive integer, and let x be any real number in this interval. Then

[x]+[[x+1]l+[[x+%ﬂ+-~~+[[x+"’1]|=[nx],

n n

By adding 1/n to x (thereby getting an arbitrary number in [k/n,(k + 1)
/1), each of the terms, except the final term, on the left side of the previous
equation is “shifted” one term to the right, and the final term, [x + (n —
1)/n |, becomes [x+ 1], which exceeds [x ] by 1. Thus, replacing x
by x + 1/n increases the left side of the previous equation by 1.

At the same time, when x in [ #x ] is replaced by x + 1/n, the value is
increased by 1. Since each side of the equation increases by 1 when x is
replaced by x + 1/n, the result continues to hold for all numbers in the
interval [k/n,(k + 1)/n).

By induction, the result is true for all positive values of x. A similar
argument shows it is true for all negative values of x (replace x by
x~1/n).

The next example is a good illustration of “building” P(k + 1)
from P(k).

2.15.1f a>0 and »>0, then (n—1)a"+ b” > na"~'b, n a positive
integer, with equality if and only if a = &.

Solution. The result is true for » = 1; assume the result true for the integer
k. To build P(k + 1), we must, to get the proper left side,

(i) mulitiply by a:
(k— 1)a**' + b*a > ka*b,
(i) add a**":
ka**' + b*a » ka*b + a**!,
(iii) subtract b*a:
ka**' > ka*b + a**' — b*a,
(iv) add p**":
Ka**' 4+ b5 > kath + ak*l = bha 4 bA*L

We are assuming that this inequality is an equality if and only if a = b. It
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only remains to show that ka’b+ a“*'—b¥a't %' > (k + 1)a*b
with equality if and only if 2 = b. To do this we work backwards:

ka*b +a**! = bra + b*T! 3 (k + 1)a’h,
—a*b+a**tt - bra+ b¥*' 50,
a*(a— by + b¥(b—a)> 0,
(a* — b¥Ya-b)> 0,
and this is true (@ — b and a* — b* have the same signs) with equality if
and only if @ = b. Thus, the proof follows by induction. (Note: This result

is a special case of the arithmetic mean-geometric mean inequality; see
Section 7.2.)

Problems

2.16.

(2) Use induction to prove that 1+ 1/v2 +1/¥3 + -+ +1/¥n <2Vn.
(b) Use induction to prove that 2t4! - - - (2n)! > ((n + I})".

2.1.7. The Euclidean plane is divided into regions by drawing a finite
number of straight lines. Show that it is possible to color each of these
regions cither red or blue in such a way that no two adjacent regions have
the same color.

2.1.8. Prove that the equation x>+ p®=:" has a solution in positive
integers (x, y,z) for all n=1,2,3, ... . (For a nice proof, divide into two
cases: even n and odd 5. For a noninductive proof, see 3.5.1.)

2.1.9. A group of 7 people play a round-robin tournament. Each game
ends in either-a win or a loss. Show that it is possible to label the players
P, Py, Py, ..., P, in such a way that P, defeated P,, P, defeated

Py, ..., P, defeated P,.
2.1.10. If each person, in a group of n people, is a friend of at least half

the people in the group, then it is possible to seat the # people in a circle so
that everyone sits next to friends only.

2.1.11. The following steps lead to another proof of the binomial theorem.
We know that (a + x)" can be written as a polynomial of degree n, so there
are constants Ay, A4, . . ., A, such that

(24 x)'= Ao+ A\ x + Apx®+ -+ - + 4, x"

(a) Use induction to describe the equation which results upon taking the
kth derivative of each side of this equation (k= 1,2, ..., n).

(b) Evaluate 4, for k= 0,1,..., n by setting x =0 in the kth equation
found in part (a).
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2.1.12. Suppose that f: R —> R is a function for which f(2x — f(x))=x for
all x, and let r be a fixed real number.

(a) Prove that if f(x) = x + r, then f(x — nr) = (x — nr) + r for all positive
integers n.

(b) Prove that if { is a one-to-one function (i.e., f(x) = f(y) implies x = )
then the property in (a) also holds for a¥f integers n.

Additional Examples:

112, 1.1.8,3.2.8, 6.5.13, 7.14.

2.2. Induction: Set Up P(k + 1)

In this section we consider induction arguments which begin with a direct
assault on P(k + 1) and which work backwards to exploit the assumed
truth of P(k). Theoretically, the arguments in this section could all be
recast into the form of the previous section, and vice versa. However, from
a practical standpoint, it is often much more convenient to think the one
way rather than the other.

2.2.1. Prove that n°/5+ n*/2+ n’/3— n/30 is an integer for n=0,1,
2,....

Solution. The result is obviously true when »n = 0. Assume the result holds
for n = k. We need to prove that

(k+1)  (k+1* (k+1) (k+1])
5T Ot T T Tm

is an integer. We expand,
K4 5K+ 10K + 10k + Sk + 1 | k*+4K" + 6k + 4k + |
5 2

L4331 k]
3 30

and recombine (to make use of P(k)):

LKLk
[5+z+3 30]

[+ 26+ 287 + k) + (2K + 367 4+ 26) + (K2 + k).

The first grouping is an integer by the inductive assumption, and the
second grouping is an integer because it is a sum of integers. Thus, the
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proof follows by induction. (Notice how difficult it would have been to
arrive at P(k + 1) by starting from P(k).)

222. Let a,b,p,, py, .. .. p, be real numbers with a + b. Define f(x)
=(p = x)p — x)(ps— x) - - - {p, — x). Show that

P a a a a a
b p,oa a a a
b b poa a a

detlb b b p, a o |_Y@-ab)
.o . b—a :
b b b b Prer @
b b b b b p,

Solution. This is similar to many determinant problems that can be worked
by mathematical induction. When n=1, we have J(x)=p, —x, and
det(p,) = py, and
bf(a) ~ af(®) _ b(p -~ @)~ a(p - b)
b-a b—a =re
0 the result holds.

Assume the result holds for k ~ 1, & > 1, and consider the case for k real
numbers p,, ..., p,. (We begin by setting up the situation for P(k) and
plan to fall back on the truth of P(k ~ 1) to complete the inductive step.)
We wish to evaluate

pa a a a a
;
b p,a a a a
b b a a a
det ’ig
b b b b - pa
b b b b .- b 2

Subtract the second column from the first (this does not change the
determinant):

p—a a a a 2 a
b=p p @ a a
0 b p ¢ a
det| O b b p, a af
0 5 b b Pu-n
0 b b b b a
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and expand down the first column to get

poa - a a
b py - a a
(p)— a)det .
L] P @
b b by

a a a a

b py a a

= (b~ py)det : : :

b b e py @

b b b p

The latter two determinants (on (k — 1)-by-(k — 1) matrices) are of the
form for which we can apply the inductive assumption P(k — 1). To do
this, we will need to introduce some notation. For the first determinant, set
F(x)=(p,— xXpy~x)---(p— x) and for the second, set G(x)=
(@=x)(p3— x)- - (p, — x). Then, by the inductive assumption, the last
expression equals
bF(a) — aF(b) bG(a) - aG(b)
(pr—a) T]‘(b‘liz)[b—,a‘ -
But G(a) =0 and (p, — @)F(a) = f(a), and therefore we have
@) —a(p—a)p—b) (A —b)—a(@=b)(p = b) - (p = b)
b-a ’
bf(@)~a(p=b)- - (P~ (P = @) + (a — )]
b—a ’
bf(a) ~ af(®)
b—a :

The result follows by induction.

Problems

2.2.3. Give a proof for the inductive step in 1.13.
2.24. For all x in the interval 0 < x < =, prove that
|sinnx| < nsinx, n a nonnegative integer.

2.2.5. Let O denote the set of rational numbers. Find all functions f from
Q to Q which satisfy the following two conditions: (i) f(1)=2, and (ii)
Fopy=ff(p) = fix + )+ 1forall x, y in Q.
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2.26. If a,b,c > 1, prove that 4(abc + 1) > (1 + a)1 + b)1 + ¢). (Hint:
Prove, more generally, that 2" (a2, - - g, + D> (1 + a )1 +ay) - - -
+a))

2.2.7. Given a set of 51 integers between 1 and 100 (inclusive), show that
at least one member of the set must divide another member of the set.
(Hint: Prove, more generally, that the same property will hold whenever
n+ 1 integers are chosen from the integers between 1 and 2# (inclusive).)
For a noninductive proof, see 2.6.1.

2.2.8. Criticize the proof given below for the following theorem:

An n-by-n matrix of nonnegative integers has the property that for any zero entry,
the sum of the row plus the sum of the column containing that zero is at least n.
Show that the sum of all elements of the array is at least n’/2.

Proof (?): The result holds for n=1. Assume the result holds for
n=k—1, and consider a k-by-k matrix. If there are no zero entries, the
result obviously holds. If a; = 0, the sum of row i and column j is at least k,
by assumption, and the sum of the elements in the (k — 1)-by-(k — 1)
submatrix obtained by deleting row i and column j is at least (k — 1)?/2
(by the inductive assumption). It follows that the sum of the elements in the
k-by-k matrix is at least (k — 1?/2+ k= (k> =2k + 1)/2+ k= (k?+ 1)
/2> k?/2. The result follows by induction.

Additional Examples
ll 1,4221,4357, 43.24, 6.5.12, 6.6.1, 7.1.6, 7.1.13, 7.2.5,

LLIT, 1122,
7.3.5. -

2.3. Strong Induction

Let a be an integer and P(n) a proposition about n for each integer n > a.
The strong form of mathematical induction states that:

if
@) P(a)is true, and
(i) for each integer k > a, P(a), P(a+1),..., P(k) true implies
Pk + 1) true,

then P(n) is true for all integers n > a.
This differs from the previous induction principle in that we are allowed

a stronger assumption in step (ii), namely, we may assume P(a), P(a +
1), ..., P(k), instead of only P(k), to prove P(k + 1). Theoretically, the
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two forms of induction are equivalent, but in practice there are problems
which are more easily worked with this stronger form.

23.1 (Pick’s theorem). Prove that the area of a simple lattice polygon (a
polygon with lattice points as vertices whose sides do not cross) is given by
I+ 3B -1, where I and B denote respectively the number of interior and
boundary lattice points of the polygon.

Solution. We will induct on the number of sides in the polygon. The case of
a triangle is given in 1.7.3. Consider, then, a simple lattice polygon P with k
sides, k > 3. We first establish that such a polygon has an interior diagonal.
This is clear if the polygon in convex (equivalently, if all the interior angles
are less than 180°). So suppose the interior angle at some vertex, say V, is
more than 180°. Then a ray emanating from V and sweeping the interior of
the polygon must strike another vertex (otherwise the polygon encloses an
infinite area), and this determines an interior diagonal D with ¥ as one
endpoint.

Suppose that our polygon P has / interior points and B boundary points.
The interior diagonal D divides P into two simple lattice polygons P, and
P, with 1) and I, interior points respectively, and B, and B, boundary
points respectively. Suppose there are x lattice points on D, excluding its
endpoints. Then B= B, + B,—2—2x, and [ = L+ +x

Now, let 4, 4,, and 4, denote the areas of P, Py, and P, respectively.
Then

A=A, +4,
=L +1B - 1)+ (L+18,— 1)
=+ L)+{(B + By-2
=i+ L+x)+3(B+ By—2x)~2
=I+4(B+2)-2
=I+1B-1
The result follows by induction.

Notice in this example that it is the first step of the induction argument
which is the most difficult (done in 1.7.3); the inductive step (step (ii)) is
conceptionally very simple.

Problems

232,

(a) Prove that every positive integer greater than one may be written as a
product of prime numbers.
(b) B s once a

but now a known theorem, states

69
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that for every number x > 1, there is a prime number bc!wegn x and
2x. Use this fact to show that every positive integer can be wnt.ten asa
sum of distinct primes. (For this result, assume that one is a prime.)

2.33.

(a) Show that every positive integer can be written as a sum of distinct
Fibonacei numbers. o

(b) Let k> m mean that k¥ > m + 2. Show that every positive integer n has
a representation of the form n=F, + F,_ + - -+ + F, , where F, are
Fibonacci numbers and k> k,>» -+ - >k, » 0.

(c) Show that the representation in part (b} is unique.

Addifipnal Examples

3.1.1,3.1.2, 3.1.18, 3.5.5, 6.2.3.

2.4. Induction and Generalization

We have seen (in Section 1.12) that a problem is sometimes easi_er to han_clle
when it is recast into a more general form. This is true ?lso in mdu_cy.non
problems. For example, it may happen that the Qﬁg\nal propositions
P(1),P(2),P(3), ... do not contain enough infom_la_uon to enable one to
carry out the inductive step (step (ii}). In this case it is natural to reformu-
late the propositions into a stronger, more general forlm o), Q(Z), L
(where Q(n) implies P(n) for each n), and to look again for an inductive
proof.

., n, then

241 A+ +A,=7,0< A, <7,i=
sinA,+--~+sinA,,<nsin%,

Solution. Let P(k) be the statement of the theorem for a given k, and
suppose P(k) is true. For the inductive step, suppose A, + -+ + A4, +
Ay =m0< A, <@ i=1,...,k+ L In this form, it is not clear how to
make use of P(k). We might, for example, group 4, and A, ,, togiether,.so
that 4,4+ -+ + 4, _, + (4, + A, )=, and then apply the inductive
assumption to get

sind, + - -+ +sind,_, +sin(4, + 4;,,) < ksin% .
But now it is not at all clear that this implies P(k + 1):

sind; + - -+ +sind, +sind,, <(k+ l)sinkI I-
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The requirement that the 4,’s add to 7 seems too restrictive. Consider
instead the following proposition Q(n):
f0< A, <mi=1,...,n then
. . (At A,
sind;+ - -- +sind, < nsnn(T).
(Note that Q(n) implies P(n).) Obviously, Q(1) is true. Suppose that
Q(k) is true, and suppose that 0 < 4; < m,i=1,..., k + 1. Then

sind + -+ - +sind, +sind,,,

(ksin("l—+.l;;+A")+sinAk”

=(k+1){ = sin(w% _— sinAH,]
<(k+ I)[sin = (A'*'—“k'J'_Ak)arﬁAm”
=(k+l)sin(A'+ ‘k';:”'“‘).

(The inequality in the next to last step follows from the result in 1.2.12(b).)
‘The result now follows by induction.

We are now able to prove the conjecture made in 1.6.2(e): The polygon
of greatest area that can be inscribed in a circle is the regular polygon. To
do this, suppose that P, P,, . . ., P_, n > 3, are the successive vertices of an
inscribed polygon (inscribed in a circle of radius 7). Let O denote the center
of the circle; let T, denote the area of triangle P,OP,, ,i=1,..., n (we set
P,.1=P); let4,= £ P,OP,,  (Figure 2.2). Then

T,=2] %(rcos%A,)(rsin%Ai)]
= r*cosLA;sintd,

= 1,2
=1rsin4;.

Figure 2.2,
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The polygon of maximal area must satisfy 0 < A, < # for each i. Thus,
our preceding result shows that

"
Area of polygon = > 7,

"
=3 4risind, =172 sind,
=1
n 1<
et 1
<gr mn[ . Z)IA,J

=n[§rzsin<27'”)]A

The right-hand side is the area of a regular n-gon, and this completes the
proof.

2.4.2. Let f(x)=(x"~1)"/% x > 1. Prove that f"”(x) > 0 for odd n and
fi™(x) < 0 for even n.

Solution. We might expect to be able to express f**(x) in terms of
F%®(x). But a look at the first few derivatives makes this plan appear
hopeless:

e fes -]

)= X S
e (=*-1) -y
2
fr(xy= _(xz le)S/z B ()lcfxv ;:71/1 ,

60x> + 31 v 522x% + 266x? + 31
fx) = PEXZR fe = - A 264
{(x*—1 (x*-1
Consider instead the following reformulation: If f(xy=(2- 172
x > 1, then
8 (%)
(xz _ l)(zn— /2

where g,(x) is a polynomial of degree n — 2, and

7 =

an odd function all of whose
coefficients are nonnegative if 7 is odd,

. (x) is R
&) an even function all of whose
coefficients are nonpositive if n is even.
This blish by induction (we omit the messy

i can be
details), and this implies the original result.
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2.4.3. Let F, denote the ith term in the Fibonacci sequence. Prove that
Flo+ Fl=Fyr

Solution. The result holds for # = 1, so suppose the result holds for the
integer k. Then

Float Bl =(Foa + BY+ Ry,
= Fl +2F  F+ PP+ F,,
= (Fl i+ F2)+ (B B+ Fly)
= Py + QF B+ Fluy),

the last step by the inductive assumption.

We would be done if we could show 2F,, \F, + FZ,, = Fy,,, for we
could then continue the previous argument, Fy, + 2F,, F, + FZ.)
= Fyes1 + Fopyp= Fyy 5, and this completes the inductive step. There-
fore, it remains to prove that 2F, , \F, + F2 | = Fy,,. We proceed by
induction. It is true for n = 1, and assuming it true for &, we have

2F1aFis+ Floy=AFp + EYF + Fyy
=2F2, +2F \F + Flyy
=(2Fc F+ Bl + (Fa + Fly)
= Fypr+ (Flor + Flas)

But now we are back to the earlier problem: does F2, , + Fl,, = Fy, ;7 If
50, Fopypy + (Fly+ F2p) = Fyyn + Fyo5= Fa g and the induction is
complete. Thus, the problems are interrelated: the truth of the first depends
upon the truth of the second, and conversely, the truth of the second
depends upon the truth of the first.

We can resolve the difficulty by proving them both in the following
manner. Consider the two propositions

P(ny: Fl +Fl=Fy,

Qn): 2F, \F, + Fl = Fyp.
P(1) and Q(1) are each true. The previous arguments show that P(k) and
Q(k) imply P(k+ 1), and that P(k + 1) and Q(k) imply Q(k + 1). It

follows that P(k) and Q(k) imply P(k + 1} and Q(k + 1), and the proof is
complete.

244. Let f(x)=asinx + a,sin2x + - - - + a,sinnx, where ay,...,a,
are real numbers and where n is a posmve mwger Given that | /(x)|
< |sinx| for all real x, prove that |a, + 2a, + - - - + na,| < 1.
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Solution, Suppose we try inducting on the number of terms in f(x). When
n=1, f(x)=asinx, and since |f(x)| < [sinx], it follows that ja|=
|aysin(z/2)| = | f(m/2)| < [sin(w/2)| = 1.

Suppose the resuit holds for &, and consider the function

f(x)=asinx + asin2x + - - - + gsinkx + a4, sin (k + 1)x,
for some choice of real numbers ay,4,, . . ., ;. ,, and suppose that | f(xX}
< [sih x| for all real x. Since sin(k + 1)x = sinkx cosx + sinx coskx, we
can write
f(x)={(a *+ a, coskx)sinx + asin2x + - - -
+a,_sin(k — x + (g, + G, cosx)sinkx.

‘We have now rewritten f(x) as a sum of k terms, more or less of the type
from which we can apply the induction assumption. The difficulty is that
the coefficients of the sine terms in this expression are not constants; rather
they contain functions of x. This suggests considering the following more
general problem.

Let ay(x),...,a,(x) be differentiable functions of x, and let f(x)
= a(x)sinx + a(x)sin2x + - - - + a,(x)sinnx. Given that | f(x)| < |sinx]|
for all real x, prove that

|2,(0) +2a,(0) + - - - + na,(0) < 1.

If we can prove this proposition, we will have solved the original
problem also, because, taking 4,(x) =g, 4; a constant, i = 1,2, .. ., », for
all x, we recover the original problem.

Again we proceed by induction. We are given |a,(x)sin x| < [sinx]. As x
approaches 0, sinx 0, so that for these x, |a)(x)| < 1. Since a,(x) is
continuous at x = 0, it follows that |a,(0){ < 1. This implies that the result is
true for the case n = 1.

Now suppose the result is true for » = &, and consider the function
J(x)=ay(x)sinx + ay(x)sin2x + - -+ + @, (x)sin (k + 1)x,
where | f(x)| < [sinx| and g,(x) are differentiable. As before, this can be

rewritten in the equivalent form
Fxy=[a)(x) = ., (x)eoskx]sinx + ay(x)sin2x + - -+
+a,_(x)sin(k — D)x + [ak(x) + @, (x)cosx |sinkx.
‘We may now apply the i and lude that
I[@(0) + ., (0)] + 2a5(0) + - - -
+(k = Da,_(0) + k[ a,(0) + g, (O] < 1.

But this is the same as

la(0) + 2a,{(0) + - - - + ka, (0) + (k + Da,,(0) < 1.
which is the desired form. (A noninductive proof of this result is given in
6.32)
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Problems

24.5. Let S denote an n-by-n lamcc square, » > 3. Show that it is possible
to draw a pol | path ing of 2rn—2 which will pass
through all of the n? lattice points of S.

2.4.6. Let fy(x)=1/(1 — x), and define f,, (x)= xf;(x). Prove that
Jorf(x)>0for0< x < 1.

2.5. Recursion

In the second solution to 1.1.1, we let 4, denote the number of subsets of a
set with n elements. We showed that A,,,=24,, Ao=1. This is an
example of a recurrence relation. Even though we do not have an explicit
formula for A4, (as the method of induction requires), the recurrence
relation defines a “loop” or algorithm which shows us how to compute
A, .- In this section we look at problems that can be reduced to equivalent

with smaller The idea is to apply the reduction
argumenl recursively until the parameters reach values for which the prob-
lem can be solved.

2.5.1 (Tower-of-Hanoi problem). Suppose n rings, with different outside
diameters, are slipped onto an upright peg, the largest on the bottom, to
form a pyramid (Figure 2.3). Two other upright pegs are placed sufficiently
far apart. We wish to transfer all the rings, one at a time, to the second peg
to form an identical pyramid. During the transfers, we are not permitted to
place a larger ring on a smaller one (this necessitates using the third peg).
What is the smallest number of moves necessary to complete the transfer?

Solution. Let M, denote the minimal number of moves for a stack of n
rings. Clearly M, = 1, so suppose # > 1. In order to get the largest ring on
the bottom of the second peg, it is necessary to move the topmost n — 1
rings to the third peg. This will take a minimum of M, _, moves (by our

Figure 2.3,
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1 2 3 4 5
Figure 2.4.

choice of notation). One move is necessary to transfer the largest ring to the
second peg, and then M,_, moves are necessary (o transfer the n — 1 rings
to the second peg. Thus

M,=2M,_,+1, M =1
An easy induction, based on this recurrence, shows that M, =2"*'—1
(M, (=2M,+1=202*"— 1]+ 1=2""2—_1)

Leta,,a,, ..., a, bea permutation of 1,2, ..., n. We can interpret this
permutation geometrically in the following way. Take an » by n chess-
board, and for each i, place a rook in the ith column (from the left) and the
ath row (from the bottom). For example, the permutation 3,2,5,4,1 is
represented in Figure 2.4. In this way we see that a permutation of
1,2,...,ncor ds to a pl of n king” rooks on the n
by n chessboard. This correspondence enables one to think of permutations
geometrically and to use the language and imagery of nonattacking rooks
on a chessboard.

2.5.2. Let 0, denote the number of ways of placing » nonattacking rooks
on the n-by-n chessboard so that the ar is symmetric about the
diagonal from the lower left corner to the upper right corner. Show that

G.= Qs+t (- DQs

Solution. A rook in the first column may or may not occupy the square in
the lower left corner of the board. If it does, there are Q,_, ways of placing
the remaining n — 1 rooks. If it doesn’t, it can occupy any » — | squares in
the first column. Once it is placed, it uniquely determines the location of a

ically placed rook ic with respect to the given diagonal) in
the first row. The remaining n — 2 rooks can be placed in Q,_, ways.
Putting these ideas together gives the result.

2.53. Acoinis lossed n times. What is the probability that two heads will
turn up in here in the of throws?




76 2. Two Important Principles: Induction and Pigeonhole

Solution. Let P, denote the probability that two consecutive heads do not
appear in n throws. Clearly P, = 1, P, = §. If n > 2, there are two cases.
If the first throw is tails, then two consecutive heads will not appear in
the remaining n — 1 tosses with probability P,_, (by our choice of nota-
tion). If the first throw is heads, the second toss must be tails to avoid two
consecutive heads, and then two consecutive heads will not appear in the
remaining # — 2 throws with probability P,_,. Thus,
P,=1P,_+iP,_,, n>2.

This recurrence can be transformed to a more familiar form by multiply-
ing each side by 2":
1P, =2"P, 427,
and setting S, = 2"P, for each n:
Sy =81+ S,
This is the recurrence for the Fibonacci sequence (note that S, = F,, ).
Thus, the probability we seck is 0, =1— P, =1—F, ,/2"%

The next example doesn’t lead to an explicit recursive formula, but it
illustrates the “working backward” thinking that is characteristic of the
recursive concept.

2.5.4. Prove that any positive rational number can be expressed as a finite
sum of distinct terms of the harmonic series.

Solution. Let #/n be any positive rational. Then

m_1,.1, . 41

n n n
is a sum of harmonic terms with # — 1 duplications. Recursively expand all
duplicates by the identity 1/7 = 1/(n + 1)+ 1/n(n + 1) until all terms are
distinct.

Problems

2.5.5. Let P, denote the number of regions formed when # lines are drawn
in the Buclidean plane in such a way that no three are concurrent and no
two are parallel. Show that P, = P, + (n + ).

25.6.

(a) Let E, denote the determinant of the n-by-n matrix having — 1’s below
the main diagonal (from upper left to lower right) and 1’s on and above
the main diagonal. Show that E, =1 and E, =2E, ,forn>1.
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(b) Let D, denote the determinant of the n-by-n matrix whose (i, /)th
element (the element in the /th row and jth column) is the absolute
value of the difference of i and j. Show that D, = (—~ 1"~ (n — 1)2""2

(c) Let F, denote the determinant of the #-by-n matrix with a on the main
diagonal, 5 on the superdi 1 (the diagonal i diately above the
rhain diagonal—having » — 1 entries), and ¢ on the subdiagonal (the
diagonal immediately below the main diagonal—having n — 1 entries).
Show that F, = aF, | — bcF,_,, n > 2. What happens whena=b=1
and ¢ = —1?

(d) Evaluate the n-by-n determinant A, whose (i, ))th entry is 2"~/ by
finding a recursive relationship between 4, and 4, _,.

25.7.

(a) Let ay,4,, ..., a, be positive real numbers and 4, = (&, + - - - +a,)
/n. Show that 4, > 4$7"/"a}/" with equality if and only if 4, _, = a,.
(Hint: Apply the inequality of 2.1.5.)

(b) Arithmeti ic-mean inequality. Using part (a), show that

a+- - +a,
'—n__>(al”Aan)l/n

with equality if and only if ¢, =a,= - -+ =q,.

2.5.8. Two ping pong players, 4 and B, agree to play several games. The
players are evenly matched; suppose, however, that whoever serves first has
probability P of winning that game (this may be player 4 in one game, or
player B in another). Suppose A serves first in the first game, but thereafter
the loser serves first. Let P, denote the probability that 4 wins the nth
game. Show that P,,, = P,(1 — P)+ (1 — P,)P.

2.59. A gambling student tosses a fair coin and scores one point for each
head that turns up and two points for each tail. Prove that the probability
of the student scoring exactly » points at some time in a sequence of n
tosses is 4[2 + (—{)"]. (Hint: Let P, denote the probability of scoring
exactly » points at some time. Express P, in terms of P,_|, or in terms of
P,_, and P,_,. Use this recurrence relation to give an inductive proof.)

2.5.10 (Josephus problem). Arrange the numbers 1,2, ..., n consecu-
tively (say, clockwise) about the circumference of a circle. Now, remove
number 2 and proceed clockwise by removing every other number, among
those that remain, until only one number is left. (Thus, for » = 5, numbers
are removed in the order 2, 4, 1, 5, and 3 remains alone.) Let f(n) denote
the final number which remains. Show that

f@my=2f(my— 1,
f@n+1)y=2f(n) + 1.
(This problem is continued in 3.4.5.)
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2.5.11.

(a) Let R, denote the number of ways of placing n nonattacking rooks on
the n-by-n chessboard so that the arrangement is symmetric about a
90° clockwise rotation of the board about the center. Show that

Rin=(4n =Ry,
Ryps1= Ry

Ripsz=0=Ry.;.

(b) Let S, denote the number of ways of placing n nonattacking rooks on
the n-by-n chessbeard so that the arrangement is symmetric about the
center of the board. Show that

S0 =2n85,_5,
Sspat = Saq

(c) Let T, denote the number of ways of placing » nonattacking rooks on
the n-by-» chessboard so that the arrangement is symmetric about both
diagonals. Show that

8§,=2,
Sane1= S35
820 =282+ (21 =2)85, -
2.5.12. A regular 2n-gon is inscribed in a circle. Let T, denote the number

of ways it is possible to join its vertices in pairs so that the resulting
segments do not intersect one another. If we set 7, = 1, show that

T,=TT, +T\T, ,+ T,T, s+ ---+7T,_,T,.
(For a continuation of this problem, see 5.4.10.)

25.13. Let ay.a,. . . ., a, be a permutation of the set S, = {1,2,...,n}.
An element i in S, is called a fixed point of this permutation if @, = i.

(a) A de of §, is a per of S, having no fixed points. Let
g, be the number of derangements of S,. Show that

&=0 g=1

and
f=(1— D(gi*gus)  for n>2.
(Hint: a derangement either interchanges the first element with another
or it doesn’t.)
(b) Let f, be the number of permutations of S, with exactly one fixed
point. Show that [f, — g |=1.
2.5.14. Suppose n men check in their hats as they arrive for dinner. As

they leave, the hats are given back in a random order. What is the
probability that no man gets back his own hat? (Hint: Let p, denote this
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probability. Then p, = g,/n!, where g, is as in 2.5.13. Let C, = p, — p,_r.
Use the recurrence relation found in 2.5.13(a) to show that C,=1, C, =
— C,_,/n. Use this to show that p,=1/21=1/31+ - - +(—1)"/nl.
Then for large n, p, ~1/e.)

25.15.

(a) Let I, = [5/%in"x dx. Find a recurrence relation for .
(b) Show that
IX3XSX - X(2n—1)

4
L,=

TIXAx6x X 1
(c}-Show that

2X4X6X -++ X (2n—2)

fn = xS X @)

Additional Examples

1.1.1 (Solution 2), 4.3.9, 5.3.5, 5.3.14, 5.3.15, 548, 549, 54.24, 5425,
5.4.26. Closely related to induction and recursion are arguments based on
“repeated arguments”. Examples of what is meant here are 4.4.4, 44.17, the
proof of the intermediate-value theorem in 6.1, 6.1.5, 6.1.6, 6.3.6, 6.8.10,
and the heuristic for the arithmeti 2 ic-mean i lity given
in Section 7.2.

2.6. Pigeonhole Principle

When a sufficiently large collection of objects is divided into a sufficiently
small number of classes, one of the classes will contain a certain minimum
number of objects. This is made more precise in the following self-evident
proposition:

Pigeonhole Princlple. If kn + | objects (k » 1) are distributed among n boxes, one
of the boxes will contain at least k + 1 objects.

This principle, even when k=1, is a very powerful tool for proving
existence theorems. It takes some experience, however, to recognize when
and how to use it.

2.6.1. Given a set of n + 1 positive integers, none of which exceeds 2n,
show that at least one member of the set must divide another member of
the set.
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Solution. This is the same as 2.2.7, where it was done by induction on »;
However, the problem is really an existence problem for a given n, and jt
can be carried out very nicely by the pigeonhole principle, as we shall se¢.

Let the chosen numbers be denoted by x,x,, ..., x,, , and for each s,
write x; = 2"y,, where n; is nonnegative integer and y, is odd. Let 7=
{y;:i=12,...,n+ 1) Then T is a collection of n + 1 odd integers, each
less than 2n. Since there are only n odd numbers less than 2n, the
pigeonhole principle implies that two numbers in T are equal, say y, = I
i <j. Then

X =2y and x;=2%y,.

If n, < m, then x, divides x;; if n, > n;, then x; divides x;. This completes
the proof.

2.6.2. Consider any five points P,, Py, P,, Py, Ps in the interior of a square
S of side length 1. Denote by dj; the distance between the points P, and P;.
Prove that at least one of the distances dj is less than V2 /2.

Solution, Divide § into four congruent squares as shown in Figure 2.5. By
the pigeonhole principle, two points belong to one of these squares (a point
on the boundary of two smaller squares can be claimed by both squares).
The distance between these points is less than y2 /2.

2.6.3. Suppose that each square of a 4-by-7 chessboard, as shown below, is
colored either black or white. Prove that in any such coloring, the board
must contain a rectangle (formed by the horizontal and vertical lines of the
board), such as the one outlined in the Figure 2.6, whose distinct corner
squares are all the same color.

Solution, Such a rectangle exists even on a 3-by-7 board. The color .

configurations of the columns each must be of one of the types shown in
Figure 2.7.

Figure 2.5.
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Figure 2.7.

Suppose one of the columns is of type ). We are done if any of the
remaining six columns are of type 1, 2, 3, or 4. So suppose each of the other
columns is of type 5, 6, 7, or 8. Then, by the pigeonhole principle, two of
these six columns must have the same type and we are done.

The same argument applies if one of the columns is of type 8.

So suppose none of the columns are of type 1 or type 8. Then we have
seven columns but only six types. By the pigeonhole principle, two columns
have the same type and the proof is complete.

2.64. Prove that there exist integers a,b,¢ not all zero and each of
absolute value less than one million, such that

la+ B2 +cf3| < 1071,

.

Solution. Let S be the set of 10'® real numbers r + 5y2 + /3 with each of
rs,tin{0,1,2,..., 105~ 1}, and fetd = (1 + 2 +3)10%. Then each x in
§ is in the interval 0 < x < d. Partition this interval into 10" - 1 equal
subintervals, each of length e = d/(10'® — 1), By the pigeonhole principle,
two of the 10" numbers of § must be in the same subinterval. Their
difference, @+ by2 +¢y3, gives the desired a,b,c, since e < 107/10"®

=10-1

2.6.5. Given any set of ten natural numbers between 1 and 99 inclusive
(decimal notation), prove that there are two disjoint nonempty subsets of
the set with equal sums of their elements.
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S

Solution. With the chosen set of ten numbers, we can forr; 210 7\) 1=1023
(different) nonempty subsets. Each of these subsets has a sum smailer than
1000, since even 90 + 91 + - - - + 99 < 1000, Therefore, by the pigeonhole
principle, two subsets 4 and B must have the same sum. By throwing away
the elements which belong to both sets we obtain two disjoint sets X = 4 —
AN B, Y= 8- 40N B, with the same sum, (Neither X nor Y is empty, for
this would mean that either A C B or B C A, which is impossible, since
their elements add to the same number.)

Problems

2.6.6. Let 4 be any set of 20 distinct integers chosen from the arithmetic
progression 1,4,7, .. ., 100. Prove that there must be two distinct integers
in 4 whose sum is 104.

26.7.

(a) Let S be a square region (in the planc) of side length 2 inches. Show
that among any nine points in S, there are three which are the vertices
of a triangle of area <4 square inch.

(b) Nineteen darts are thrown onto a dartboard which has the shape of a
regular hexagon with side length one foot. Show that two darts are
within V3 /3 feet of each other.

2.6.8. Show that if there are n people at a party, then two of them know
the same number of people (among those present).

2.6.9. Fifteen chairs are evenly placed around a circular table on which
are name cards for fifteen guests. The guests fail to notice these cards until
after they have sat down, and it turns out that no one is sitting in front of
his own card. Prove that the table can be rotated so that at least two of the
Buests are simultaneously correctly seated.

2.6.10. Let X be any real number. Prove that among the numbers
X2X, ... (n-1)X

there is one that differs from an integer by at most 1/x.

2.6.11.

(2) Prove that in any group of six people there are either three mutual
friends or three mutnal strangers. (Hint: Represent the people by the
vertices of a regular hexagon. Connect two vertices with a red line
segment if the couple represented by these vertices are friends; other-
wise connect them with a blue line segment. Consider one of the
vertices, say 4. At least three line segments emanating from A have the
same color. There are two cases to consider.)
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(b) Seventeen people correspond by mail with one another—each one with
all the rest. In their letters only three topics are discussed. Each pair of
correspondents deals with only one of the topics. Prove that there are at
least three people who write to each other about the same topic.

2.6.12. Prove that no seven positive integers, not exceeding 24, can have
sums of all subsets different.

Additional Examples

1.10.1,3.2.1, 3.2.5, 3.2.19, 3.2.20, 3.3.24, 4.4.10.



Chapter 3. Arithmetic

In this chapter we consider problem-solving methods that are irf\portant in
solving arithmetic problems. Perhaps the most basic technique is based on
the fundamental theorem of arithmetic, which states that every integer can
be written uniquely as a product of primes. The theoreti_cal b{lckground
necessary for the proof of this key theorem requires a dnscussxon_ol‘ !he
notion of divisibility. Therefore, we will begin the chapter by consld_enng
problems about greatest common divisors and least_ common multlpl_esA
Important to this understanding are the division algorithm and the Euclid-
ean algorithm. ) )
In the second section we introduce the technique of modular mfnhmeuc
(a generalization of the notion of parity), and see in it an efficlem and
effective method for many problems concerned with relationships between
integers. In the last two sections we are again reminded of the importance
of notation in solving problems, and we consider problems related to the
ion of bers: the itional notation for integers, and the
polar, and ial i for representing complex

1

numbers.

3.1. Greatest Common Divisor

Given integers a and b, we say that a divides b, an4 we vfl'i.tt? al !7, .if there is
an integer g such that = ga. On the basis of this definition it is easy to
prove the following very useful result: If » divides two of the terms in lh.e
expression a = b + ¢, then n divides all three of the terms. .(Note: In this
chapter, unless otherwise stated, all variables are integer variables.)
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If a,...,a, are given integers, we will denote their greatest com-
mon divisor by ged(ay,...,a,), and their least common multiple by
lem{a,, ..., a,).

3.L.1. Find all functions f which satisfy the three conditions

Q) flx,0) = x,
@) f(x, p) = f(3,2),
Gil) f(x, y) = f(x,x + ),

assuming that the variables and the values of f are positive integers.

Solution. A look at special cases leads us to suspect that f(x, y) = ged(x, »).
We will prove this by inducting on the sum x + »

The smallest value for x + p is 2, and this occurs when x =y =1 By (),
J(1,1) =1, and also ged(1,1) = 1, so our supposition is confirmed in this
case.

Suppose that x and y are positive integers such that x +y=k>2 and
suppose the claim has been shown for ail smaller sums. By (i) and (ii), there
is no loss in generality in supposing that x < y. By (iii), flx. =
Jlx,x +(y = x)) = f(x, y — x). But by the inductive assumption, f(x, y —
x)=ged(x, y — x). The proof will be complete if we can show that
ged(x, p — x) = ged(x, y).

If ¢]x and c|y, then ¢|x and ¢ |y = x. It follows that ged(x, »
< ged(x, y — x). Similarly, if ¢|x and ¢|y— x, then ¢|x and ¢|y, and
therefore ged(x, y ~ x) < ged(x, ). Putting these together, it must be the
case that ged(x, y — x) = ged(x, ), and the proof is complete.

The following result rests at the very foundation of number theory.

Division Algorithm. If a and b are arbitrary insegers, b0, there are unique
integers q and r such that

a=gb+r, 0<r<b.

By repeated use of the division algorithm we can compute the greatest
common divisor of two integers. To see how this goes, suppose that b, and
b, are positive integers, with b, > b,. By the division algorithm there are
integers g and b5 such that

bi=gh+ by, 0<by<b,.
1t is easy to check, using this equation, that ged(d,,b,) = ged(b,, b,).
If by =0, then ged(b,, by) = by If b; > 0, we can repeat the procedure,

using b, and b, instead of b, and by, to produce an integer b, such that
80d(by, b3) = ged(bs, by), by > by > 0.
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By continuing in this way, we will generate a decreasing sequence of

nonnegative integers
by>by>by>

such that ged(d,,b,) = god(b,,by) = - - - =ged(b, b,yy), i=1,23,... .
Since such a sequence cannot decrease indefinitely, there will be a first »
such that b, , = 0. At this point ged(b,,b,) = ged(b,, b,, ) = b,.

This procedure for finding ged(,,4,) is called the Euclidean algorithm.

Before giving an example of this algorithm, we will state and prove the
major result of this section,

3.1.2. Given positive integers @ and b, there are integers s and 7 such that
sa + tb = ged(a, b).

Solution. We will prove the result by inducting on the number of steps
required by the Euclidean algorithm to produce the greatest common
divisor of @ and b. (Another proof is outlined in 3.1.9.) .

Suppose a > b. If only one step is required, there is an integer g such
that a = bg, and in this case ged(a,b) = b. Also, in this case, ged(a,b) = b
=a+(1—-q)h,sosets=1,1=1— g, and the proof is com_pleta .

Assume the result has been proved for all pairs of positive integers which
require less than k steps, and assume that @ and b are integers that require
k steps, k > 1. By the division algorithm, there are integers ¢ and r such
that

a=gb+r, 0<r<b.
The greatest common divisor of b and 7 can be computed by the Eu_clidean
algorithm in & — 1 steps, so by the inductive assumption, there are integers
¢ and 4 such that
¢b + dr = ged(b,r).

From these last two equations, it follows that
ged(a, b) = ged(b,r)

=ch+dr
=cb+d(a—gb)
=da + (c — dq)b,

and the proof is complete upon setting s = d and ¢t = ¢ — dg.

The steps of this proof will be clarified by an example.

3.1.3. Find integers x and y such that
T54x + 221y = ged(754,221).
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Solution. We first apply the steps of the Euclidean algorithm to find the
greatest common divisor of 754 and 221. We find that
754 =3 x 221 + 91,
221 =2X91+39,
91 =2x39+13,
39=3x13.
This shows that ged(754,221) = 13.
To find the desired integers x and »» we proceed “backwards” through
the steps of the Euclidean algorithm (this was the essence of the inductive
proof given above):

13=91-2x39
=91-2(221 ~2x91)
=5x91-2x221

=5(754 - 3% 221) — 2 x 221
=5X754~17x221,
Thus, one solution is x =5 and y = —17.

The following result is often useful.

3.14. The equation ax + by = ¢, a,b,c integers, has a solution in inte-
gers x and y if and only if ged(a, ) divides ¢. Moreover, if (xq, yp) is an
integer solution, then for each integer k, the values

X'= xo+ bk/d,
Y =)o~ ak/d,
are also a solution, and all integer solutions are of this form.

d=ged(a, b),

Solution, For the first part, it is clear that ged(a, b) must divide ¢, since
gcd(a, b) divides ax + by. Therefore, ged(a,b)| ¢ is a necessary condition
for the existence of a solution. On the other hand, if ¢ is a multiple of
ged(a, b), say ¢ = ged(a,b) X ¢, we can find an integer solution in the
following manner. We know there are integers s and ¢ such that sa + b
= ged(a, ). So set x = sq and y = 1. Then ax + by = asq + brg = (as +
th)g = ged(a, b)q = c.

A straightforward calculation shows that (x', ), as given, gives a
solution, provided (x,, y,) is a solution. To show all integer solutions have
this form we argue geometrically as follows (Figure 3. 1). '

Note that the problem of solving ax + by =c in integers x and y is
equivalent to the problem of finding the lattice points that lic on the
straight line ax + by = . Suppose that (%9, yp) is a lattice point on the line
ax + by = ¢; that is, suppose that

axg+ by, =c.
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«.¥)

Figure 3.1.

The result is easy to prove if & = 0, so suppose here that_b #0.If (x', y’? is

any other lattice point in the plane, then (x’, ) will be on the line

ax + by = ¢ if and only if
Y =Yo_ _

a__a/d where d = ged(a,b).
X' Xy b

-3
Since a/d and b/d are relatively prime, this equation will hold if and only
if there is an integer k such that

Y =yo=—(a/d)k,

X = xo=(b/d)k.

It follows that all integer solutions of ax + by =c are given by the
equations

x'=xy+ bk/d,

¥ = yo= ak/d,
k an integer, d = ged(a, b).

3.1.5. Prove that the fraction (21n +3)/(14n + 3) is irreducible for every
natural number ».

Solution. We need to prove that 142 + 3 and 211 + 4 are relaﬁv;ly prime
for all #n. Our preceding discussion shows that we will be done if we can
prove that there exist integers s and ¢ such that

sln+4)+1(14n+3)=1,
or equivalently,
Tn(Bs +20) + @ds + 3= 1.
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This equation will hold for all » if we can find integers s and 7 which satisfy
3s+2=0,
4s+3r=1.
It is straightforward to see that these equations are satisfied bys=—-2and
¢=3, and this completes the proof.

3.1.6. The measure of a given angle is 180°/n, where n is a positive integer
not divisible by 3. Prove that the angle can be trisected by Euclidean means
(straightedge and compass).

Solution. We do not expect this problem to have anything to do with
numbers, and yet, what is the significance of the condition that n is not
divisible by 3? This means 3 and # are relatively prime, so there are integers
s and 7 such that
ns+3t=1.

We wish to construct an angle of 60°/». When we multiply each side of the
last equation by 60°/n, we get

60°5 + (180°/m)t = 60° /.
But now observe that the left side of this equation describes how to
construct 60° /. This is because we can construct a 60°angle, we are given
the angle 180°/n, the integers s and ¢ can be found, and therefore we can
construct 60°s + (180°/n)r.

Problems

3.1.7. If ged(a,b) = 1, prove that

(a) ged(a — b,a+ by < 2,

(b) ged(a — b,a + b,ab) =1,

(c) ged(a® — ab + b a + b) < 3.

3.1.8. The algebraic sum of any number of irreducible fractions whose
denominators are relatively prime to each other cannot be an integer. That

is, if ged(a,, by =1,i=1,..., n, and ged(b,,b) = 1 for i # j, show that
a + a + + Gy
b b 5,

is ot an integer.
3.1.9. Let S be a nonempty set of integers such that

(i) the diff x—ypisin § x and y are in §, and
(ii) all multiples of x are in S whenever x is in S.
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(a) Prove that there is an integer d in .S such that S consists of all multiples
of d. (Hint: Consider the smallest positive integer in S.)

(b) Show that part (a) applies to the set {ma + nb|m and n are positive
integers}, and show that the resulting 4 is gcd(a, b).

3.1.10.

(a) Prove that any two successive Fibonacci numbers F,, F,, ;, n> 2, are
relatively prime.

(b) Given that T, =2, and T, = T2 — T, + |, n >0, prove that 7, and
T,, are relatively prime whenever n # m.

3.1.11, For positive integers a,,...,a,, prove there exist integers

ki, ..., k,such that kya, + - - - + k,a,=ged(ay, ..., a,).

3.1.12. Prove that (@ + b)/(c + d) is irreducible if ad — be = 1.

3.1.13. Prove that ged(a,,. .., a,)ged(b,, . . ., b,) = ged(a,by,a30, . . -,

a,,b,), where the parentheses on the right include all mn products g,b;,

i=1,...,mi=1...,n

3.1,14, When Mr, Smith cashed a check for x dollars and y cents, he

received instead y dollars and x cents, and found that he had two cents
more than twice the proper amount. For how much was the check written?

3.1.15. Find the smallest positive integer a for which

1001x + 770y = 1,000,000 + a
is possible, and show that it has then 100 solutions in positive integers.
3.1.16. A man goes to a stream with a 9-pint container and a 16-pint

container. What should he do to get 1 pint of water in the 16-pint
container? (Hint: Find integers s and ¢ such that 9s + 161 =1.)

3.1.17. There is more than one integer greater than 1 which, when diyided
by any integer k such that 2 < k < 11, has a remainder of 1. What is the
difference between the two smallest such integers?

3.1.18. Let b be an integer greater than one. Prove that for every nonnega-
tive integer N, there is a unique nonnegative integer » and unique integers
a,i=0,1,...,n0<a <b,such that a, # 0 and

N=ab"+a,_b" "+ - +ap’ +ab+a.
(The result is immediate for N < b, so assume N > b. Use induction.)

Additional Examples

3.24,3221,33.11, 33.19, 3.3.28, 4.1.9, 4.2.1, 4.2.2, 424, corollary (iii) of
Lagrange’s theorem in Section 4.4, 4.4.5, 4.4.6, 4.4.8.
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3.2. Modular Arithmetic

The parity of an integer tells us how that number stands relative to the
number 2. Specifically, a number is even or odd according to whether its
remainder when divided by 2 is zero or one respectively. This formulation
of parity makes it natural to generalize the idea in the following manner,

Given an integer n > 2, divide the set of integers into “congruence”
classes according to their remainders when they are divided by n; that is to
say, two integers are put into the same congruence class if they have the
same remainders when they are divided by ». For example, for n =4, the
integers are divided into four sets identified with the possible remainders
0,1,2,3. For an arbitrary n > 2, there will be n congruence classes, labeled
0,L2,...,n— 1L

Two integers x and y are said to be congruent modulo n, written

x =y (mod n),

if they each give the same remainder when they are divided by n (or,
quivalently, and more i? in practice, if x ~ y is divisible by n).
It is easy to prove that

@i} x = x (mod n),
(i) x = y (mod n) implies y = x (mod n), and
(i) [x =y (mod n) and y = z (mod )] imply x = z (mod n).

These properties mean that congruence has the same characteristics as
equality, and we often think of congruence as a kind of equality (in fact we
sometimes read x = y (mod #) as “x equals y modulo #”).

3.2.1. Prove that any subset of 55 numbers chosen from the set {1,2,3,
4, , 100} must contain two numbers differing by 9.

Solution. There are nine congruence classes modulo 9: 0,1,2,3,4,5,6,7,8.
By the (generalized) pigeonhole principle, seven numbers from the chosen
55 are in the same congruence class (if each congruence class had six or
less, this would account for at most 54 of the 55 elements). Let ay, . . ., a;
be these numbers, and suppose they are labeled so that @, < a, < a; < - - -

<a,. Since a,,,=a, (mod 9), a,,,— 4 €(9,18,...). We claim that
@41 ~ @ =9 for some i. For if not, then for each i, @, , — a; > 18, and this
would mean that a;— a, > 6 X 18 = 108. But this is impossible, since
a; — a; < 100. Thus, two of the clements (among 4, . . ., a,) differ by 9.

The real power of congruences is a consequence of the following easily
proved property.
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Modular Arithmetic. If x = y (mod r) and u = v (mod ») then
x+u=y+ o(modn),

and
x u=y-v(modn).

This result allows us to perform arithmetic by working solely with the
“remainders” modulo n. For example, since

17=5(mod 12) and 40=4 (mod 12),

we know that
17+40=5+4=9 (mod 12)

and
17 X 40 = 5 X 4 =8 (mod 12).

Let n be a positive integer, n > 1, and let Z,={0,1,2,...,n— 1}
Observe that if x and y are elements of Z,, there are unique elements 7, s,/
in Z, such that

x —y=r(modn),
x + y=s(mod n),
x+y=t(modn).
The set Z, together with these operators of subtraction, addition, and
multiplication is called the set of integers modulo 7. In this system,
computations are carried out as usual, except the result is always reduced
(modulo #) to an equivalent number in the set Z,.

322, Let N=22X31+ 11X 17+ 13 X 19. Determine (a) the parity of
N; (b) the units digit of N; (c) the remainder when N is divided by 7. (Of
course, the idea is to make these determinations without actually comput-
ing N.)

Solution. For part (a), 22 X 31 is even, since 22 is even, 11 X 17 is odd, and
13 X 19 is odd, so the sum is even + odd + odd, and this is even. Notice
that this ing is equivalent to ing modulo 2:
2X3+1X17+13X19=0X1+1X1+1xt=1+1=0(mod2).
For part (b), we need only keep track of the units digit: 22 X 31 has a
units digit of 2, 11 X 17 has a units digit of 7, and 13 X 19 has a units digit
of 7. Therefore, the units digit of N is the units digit of 2+ 7 + 7, or 6. Here
again, this analysis is equivalent to computing ¥ modulo 10:
2Xx31+1X17+13X19=2x1+1x7+3X9(mod 10)
=2+7+7=6(mod 10).
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‘Whereas parts (a) and (b) can be done without an awareness of modular
arithmetic, it is not so apparent what should be done in part (c). The point
of the example is that part (c) can be handled as a natural extension of the
modular approach used in the previous cases. We work modulo 7:

22X+ X7+ 13X 19=1X3+4X3+(=1)X5 (mod 7)
=3+5-5=3(mod 7).

Thus N is 3 more than a multiple of 7. (As a check: N = 1116 = 459 x 7
+3)

3.2.3. What are the last two digits of 3'24

Solution. We work modulo 100. There are many way to build up to 334,
For example, 32 = 9 (mod 100), 3* =81 (mod 100), 3° = 81 x 81 = 61 (mod
100), 3'°=9x 61 =49 (mod 100), 30 =49 x 49 (mod 100). Since
1234 =20 X 61 + 14, we have 3'5%=(32)F1(3)4 =314 =3930 = g1 x 49
=69 (mod 100). The last two digits are thus seen to be 69.

3.2.4. Show that some positive multiple of 21 has 241 as its final three
digits.
Solution. We must prove that there is a positive integer » such that
211 =241 (mod 1000).
Since 21 and 1000 are relatively prime, there are integers s and ¢ such that
215+ 1000 = 1.

Multiply each side of this equation by 241, and rearrange in the form

21(2415) — 241 = —241 X 10007,
In congruence notation, the last equation means that

21 X 2415 = 241 (mod 1000).

If s is positive, we are done, for we can set n = 241s. If s is not positive, let
n=24ls + 1000k, where k is an integer large enough to make » positive
(by choosing k in the appropriate manner, we may even assume that 7 is
between 0 and 1000). It follows that

21n =21(2415 + 1000k) = 21 X 2415 = 241 (mod 1000).

3.2.5. Prove that for any set of n integers, there is a subset of them whose
sum is divisible by n.
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Solution. Let x,,x,, . . ., x, denote the given integers, and let

N1= X
Y2 =X+ X,

e xhxyH e hx,
If y;=0 (mod n) for some i, we’re done, so suppose this is not the case.
Then we have n numbers y,, ..., y,, and n — 1 congruence classes modulo
n (namely, 1,2, ..., n— 1), so by the pigeonhole principle, two of the y;’s
must be congruent to one another modulo n. Suppose ;= y; (mod n), with
i < j. Then
Xie( ¥ oo+ x5 =y - 3, =0 (mod n),

and the proof is complete.

In the preceding example, we made use of the fact that » divides « if and
only if 0 (mod n). By means of this correspondence, problems concern-
ing divisibility can be translated directly into the language of modular
arithmetic.

3.2.6. Prove that if 2n+ 1 and 3n + 1 are both perfect squares, then  is
divisible by 40.

Solution. It is enough to show that » is divisible by both 5 and’8. This is
equivalent to showing that # =0 (mod 5) and 7 =0 (mod 8).

Consider modulo 5. The table below shows that a square number is
either 0, 1, or —1 modulo 5:

x(mods) | 0 i 2 3 4
P(mods) | 0

Thus, 27+ 1 and 37+ 1 must be either 0, I, or —1 modulo 5. There are
nine cases to consider: 2z + 1 can be 0, 1, or —1 modulo 5, and 37 + 1 can
be 0, 1, or —1. Some thought however reduces the number of cases to just
two, as we shall see. Suppose that 2n+1=4a (mod 5) and 3n+1=5
(mod 5), a,b € (0,1, —1}.

Case 1. a # b. In this case, we add the last two equations to get

2=a+b(mod ).

But this equation cannot hold for our choices of @ and b, therefore this case
can never occur.
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Case 2. a = b. In this case, subtract the first equation from the second to
get

n=b— a(mod5).
In this case n is divisible by 5 (which is part of what we wanted to prove).

Now consider modulo 8. In this case, the table shows that a square is
either 0, 1, or 4 modulo 8:

x(modS)lO 1 2 3 4 5 6 1
*(mod8) | 0

Again, there are nine cases, depending on the values of 27 + [ and 31 + |
modulo 8. These nine cases can be reduced to two exactly as in the modulo
5 case, and the argument in each case is exactly the same. We conclude
that 8 divides #, and the proof is complete.

In congruence arithmetic, the operations of addition, subtraction, and
multiplication behave as in ordinary arithmetic (except everything is taken
with respect to the modulus under consideration). What about division?

We say that a divides b modulo n if there is an integer ¢ such that
a - c¢=b(mod n). If there is an integer ¢ such that @ - ¢ = 1 (mod n), then ¢
is called the (i iplicative) inverse of a, i denoted by a~'. Note
that if a has an inverse, the equation ax = b (mod n) can be solved by
simply multiplying each side of the equation by a~'; x = a~'b (mod n).

An important theoretical fact is that an integer @ has a multiplicative
inverse with respect to modulo n arithmetic if and only if ¢ and n are
relatively prime (see 3.2.21).

As a special case of the result of the previous paragraph, consider the
case in which the modulus » is a prime number, say p. In this case, each of
1,2,...,p— 1 is relatively prime to p, so they all have multiplicative
inverses. In fact, the numbers Z,={0,1,2,...,p—1} can be added,
subtracted, multiplied, and divided (by nonzero elements), and they form a
field (see Section 4.4).

3.2.7. Prove that the expressions
2x + 3y, 9x + 5y

are divisible by 17 for the same set of integral values of x and y.

Solution. It suffices to show that
2x + 3y =0 (mod 17) ifandonlyif 9x + 5y =0 (mod 17).
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The plan is to multiply each side of the left congruence by a suitable
constant so as to transform it into the congruence on the right. So we ask:
does there exist a constant ¢ such that c(2x + 3y) = 9x + 5 5y (mod 17)? For
this to be possible, it is necessary that 2c = 9 (mod 17). Since 2 is relatively
prime to 17, it has an inverse. It tumms out that 2~ ' =9, and therefore,
¢=9X9=281=13 (mod 17). Therefore, 2x + 3y =0 (mod 17) implies

13(2x + 3y} =0 (mod 17),

26x + 39y =0 (mod 17),

“9x + 5y =0 (mod 17).

Conversely, multiply each side of 9x+ 5y =0 (mod 17) by 4 to get
2x +3y =0 (mod 17).
The next example is a theoretical result which not only is interesting

from a conceptional point of view, but also has many applications through-
out mathematics.

3.2.8 (Chinese remainder theorem). If m and n are relatively prime
integers greater than one, and @ and b are arbitrary integers, there exists an
integer x such that

X = a (mod m),

x = b (mod n).
More generally, if m|,m,, ..., m, are (pairwise) relatively prime integers
greater than one, and a,,a,, . . ., g, are arbitrary integers, there exists an

integer x such that
x =g, (mod m,), i=12,...,k

Solution. Consider the » numbers a,a + m,a + 2m, . .. ,a4(n—Dm.
Each of these is congruent to @ modulo m. Moreover, no two of them are
congruent modulo . For, if a + im=a + jm (mod n), 0 < i < j < n, then
(i—jym=0 (mod n). But m and n are relatively prime, so this last
congruence can hold only if n divides i — j. However, i — j cannot be a
multiple of n because of the restrictions on i and j. Therefore, i =j. Tt
follows that the numbers a,a+m,...,a+(n— )m are congruent in
some order to the numbers 0,1,2,...,n~ 1 modulo n. Therefore, for
some i,a + mi = b (mod n). The proof of the first part is established upon
setting x = a + mi.

The more general statement can be proved in a similar way, using
induction on k. (Let c=m, ---m,_,, and consider ag,a + c,a + 2e,
@ + (my, — 1)c, where a is chosen by the inductive hypothesis so that
a; (mod m), i=12,...,k—1. Then a+ ic=a; (mod m), i=
1,..., k=1, and no two of the numbers are congruent modulo m,, etc.)

3.2, Modular Arithmetic 97

3.2.9. Do there exist 1,000,000 consecutive integers each of which contains
a repeated prime factor?

Solution. Let py, p,, . . . , Py 000000 denote 1,000,000 distinct prime numbers.
Then p? and pjz are relatively prime if i % j, so by the Chinese remainder
theorem, there is an integer x such that

x=—k(modpl), k=12...,10°

It follows that x + k is divisible by p? (i.e., x + k has a repeated prime
factor), and the answer to the question is yes: take the consecutive integers
x+Lx+2,x+3,...,x+ 1,000,000

3.2.10. A lattice point (x,y) € Z? is visible if ged(x, y) = 1. Prove or
disprove: Given a positive integer n, there exists a lattice point (a, b) whose
distance from every visible point is > n.

Solution. We will look at a very special case first, but the pattern for the
general case is a simple generalization which will be clear. Begin by
choosing nine distinct primes p,, p;. .. ., ps. We now look for a lattice
point (a, ) such that

a—1=0(mod p,p,p3),
a=0(mod p,psp;), ©]
a+1=0(mod p;pspy),
and
b+ 1=0(mod p, p,sp;),
b =0 (mod pyps pg), @
b —1=0(mod ps peps)-
Geometrically, (4, b) is a point characterized by the following diagram:

Muliple of

—_—
PrP2ps PaPsPe PrPaPy

PiPaPy et
Muttiple of P2PsPs ¢
P3PoPs et
a1 a a+1
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Since p, p2ps. papsper P1Psps are relatively prime, the Chinese remainder
theorem says that an integer a exists which satisfies equations (1). Similarly,
SINCE P pa 7, P2PsPss P3PePo are relatively prime, an integer b exists which
satisfies (2). By the way @ and b are chosen, it is clear that the eight lattice
points closest to (a, b} are invisible. Take, for instance, the point (a,5 + 1),
which has the form (k, p, psps, ko p\ p‘p-,) for some integers k, and k,. Since
Paisa factor of the this point is invisible. A similar
argument applies to the other seven closest lattice points.

The general case can be handled in exactly the same way, and we leave
this as Problem 3.2.26.

Problems

3.2.11. Prove that any subset of 55 numbers chosen from the set (1,2,
3,..., 100} must contain numbers differing by 10, 12, and 13, but need
not contain a pair differing by 11.

3.2.12. The elements of a determinant are arbitrary integers. Determine
the probability that the value of the determinant is odd. (Hint: Work
modulo 2.)

3.2.13.
(a) Determine whether the following matrix is singular or nonsingular:

54401 57668 15982 103790

33223 26563 23165 71489

36799 37189 16596 46152

21689 55538 79922 51237
(Hint: A matrix 4 is nonsingular if det4 7 0. Examine the parity of the
determinant of the given matrix; that is, compute its determinant
modulo 2.)

(b) Determine whether the following matrix is singular or nonsingular:

64809 91185 42391 44350
61372 26563 23165 71489
82561 39189 16596 46152
39177 55538 79922 51237

3214

(a) Show that 22**! + 1 is divisible by 3.

{(b) Prove or disprove: 2* =2” (mod n) if x = y (mod n).

(c) Show that 43+ + 22x+1 4 | g dwnslble by 7.

(d) If n > 0, prove that 12 divides n* — 4n> + 51% — 2.

(¢) Prove that (2903)" — (803)" — (464)” + (261)" is divisible by 1897,

32. Modular Arithmetic 99

3.2.15.

(a) Prove that no prime three more than a multiple of four is a sum of two
squares. (Hint: Work modulo 4.)
(b) Prove that the sequence (in base-10 notation)
1L 1L T T, L
contains no squares.

. {¢) Prove that the difference of the squares of any two odd numbers is

exactly divisible by 8.

(d) Prove that 2™ + 37 is divisible by 13.

(e) Prove that the sum of two odd squares cannot be a square.

(f) Determine all integral solutions of @ + bZ + ¢? = a%”. (Hint: Analyze
modulo 4.) &

3.2.16.

(2) If x*+ y* = 2% has a solution in integers x, y,z, show that one of the
three must be a multiple of 7.

(b) If n is a positive integer greater than 1 such that 2" + »? is prime, show
that n = 3 (mod 6).

(c) Let x be an integer one less than a multiple of 24. Prove that if # and b
are positive integers such that ab = x, then a + 4 is a multiple of 24.

(d) Prove that if n> + m and n? — m are perfect squares, then m is divisible
by 24.

3.2.17. Let S be a set of primes such that 4,6 € S (2 and b need not be

distinet) implies ab + 4 € S. Show that S must be empty. (Hint: One

approach is to work modulo 7.)

3.2.18. Prove that there are no integers x and y for which

X4 3xy -2 =122,
(Hint: Use the quadratic equation o solve for x; then look at the discrimi-
nant modulo 17. Can it ever be a perfect square?)

3.2.19. Given an integer n, show that an integer can always be found
which contains only the digits 0 and I (in the base 10 notation) and which

" is divisible by n.

3.2.20. Show that if » divides a single Fibonacci number, then it will
divide infinitely many Fibonacci numbers.

3.2.21. Suppose that a and » are integers, # > 1. Prove that the equation
ax =1 (mod ») has a solution if and only if @ and » are relatively prime.
3.2.22. Leta, b, c,d be fixed integers with 4 not divisible by 5. Assume that
m is an integer for which

am® + bm* + cm + d
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is divisible by 5. Prove that there exists an integer n for which
dn’+cn’+bn+a
is also divisible by 5.

3.2.23. Prove that (21n — 3)/4 and (151 + 2)/4 cannot both be integers
for the same positive integer .

3.2.24.

(a) Do there exist n consecutive integers for which the jth integer, 1 < j
< n, has a divisor which does not divide any other member of the
sequence?

(b) Do there exist n consecutive integers for which the jth integer, 1 < j
< n, has at least j divisors, none of which divides any other member of
the sequence?

3.2.25. Let mg,my, ..., m, be positive integers which are pairwise rela-
tively prime. Show that there exist r+ 1 consecutive integers s,s + 1,
.,8+ rsuch that m, divides s+ i fori=0,1,...,r.

3.2.26. Complete the proof of 3.2.10.

Additional Examples

3.3.11, 343,349,413, 424, 42.14, 434, 435, 44.6, 44.7, 448, 449,
4.4.19,4.4.20, 4421, 4422, 44.23, 4.4.24, 4429, 44.30, 4.4.31.

3.3. Unique Factorization

One of the most useful and far-reaching results at the heart of elementary
number theory is the fact that every natural number greater than one can
be factored uniquely (up to the order of the factors) into a product of prime
numbers. More precisely, every natural number # can be represented in one
and only one way in the form

n=pipg g
where p, p,, . .., p; are different prime numbers and a,,a,, ..., a, are

positive integers. Here are some easily proved, but very useful, conse-
quences.

3.3.1. All the divisors of

n=pips--p
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are of the form
m=ptph---ph,  0<b<a, i=l... .k

and every such number is a divisor of n. It follows that n has exactly
(a, + 1{a, + 1) - - - (a, + 1) distinct divisors.
3.3.2. An integer n = pfips® - - - p is a perfect square if and only if 4; is
even for each /, a perfect cube if and only if each g, is a multiple of three,
and so forth.
333. Leta,b, ..., g bea finite number of positive integers. Suppose their
unique factorizations are

a=pipsre - pl b=plpde-pd ., g=pteE o pls
where ay, ..., 4.0 .. by ..., 81y .. g are nonnegative integers
(some may be zero). Then

ged(a.b, ..., g)=p"pi” - P

and
lem(a,b, . .., g) = pi'pi" - - pi*,
where m, =min{a, b, ..., g} and M, =max{a,b,...,g)} for each i

=1,2,.. k. From this it easily follows that
ged(a,b, . .., glem(ab, ..., gy=ab---g.

3.3.4. Use unique factorization to show that y2 is irrational.

Solution. Suppose there are integers r and s such that y2 =r/s. Then
25% = r2. But this equation cannot hold (by unique factorization), for on the
left side, the prime 2 is raised to an odd power, and on the right side, 2 is
raised to an even power (2 occurs an even number of times (perhaps zero)
in s and r?). This contradiction implies that y2 must be irrational.

3.3.5. Find the smallest positive integer n such that n/2 is a perfect square,
n/3 is a perfect cube, and n/5 is a perfect fifth power.

Solution. Since # is divisible by 2, 3, and 5, we may assume it has the form
9365, Then n/2=2°"'35, n/3=2°3"15, n/5=235"". The
conditions are such that 2 — | must be even, and @ must be a multiple of
both 3 and 5. The smallest such a is ¢ = 15. Similarly, the smallest values
for b and ¢ are b=10 and ¢ = 6. Thus n = 2'*3'%5° is the smallest such
positive integer.

3.3.6. Prove there is one and only one natural number n such that
2%+ 2'' 4+ 27 is a perfect square.
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Solution. Suppose m? = 2% + 21" + 2", Then
P St T}
=m? =251+ 2%
=mi-(3x2Y
= (m— 48)(m + 48).
Because of unique factorization, there are nonnegative integers s and ¢ such
that
m—48=2, m+48=2, s+t(=n
Thus m =2’ + 48, m = 2' - 48, so that
2+48=2-48
2 -2 =96,
22— 1)=2"x3.
Since 2°*— 1 is odd, unique factorization implies that 2~*—1=3. Tt
follows that s =5, 1 =7, and n = 12.

3.3.7. Let n be a given positive integer. How many solutions are there in
ordered positive-integer pairs (x, y) to the equation
R4

=n?
x+y "

Solution. Write the equation in the form
Xy = n(x+y),
xy—nx—ny=0,
(x = m(y = m)=nl
Since we want positive integer solutions, it must be the case that x > » and
y>n@<x<nand 0<y<nimply (x — n)(y — n) < n?.
Suppose the prime factorization of # is pfips?- - - p&. Then n?

_ play2a » " . :
= pi*p3*: - - - p2. Each divisor of n* determines a solution, and therefore

the number of such solutions is (2a, + 1)(2a, + 1) - - - (2a, + 1).

3.3.8. Let r and s be positive integers. Derive a formula for the number of
ordered quadruples (a, 5, ¢,d) of positive integers such that

37 = lecm(a, b, c) = lem(a, b,d ) = lem(a,c,d) = lem(b,¢,d).

Solution, In view of the result of 3.3.3, it is apparent that each of a, 5, c,
and 4 must have the form 3"7" with m in {0,1,...,7} and # in {0,
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1,...,s). Also, n must be r for at least two of the four numbers, and #
must be s for at least two of the four numbers. There are (3} allowable
ways of choosing the s in which exactly two m’s will equal r; there are
($)r allowable ways in which exactly three m’s will equal r; there are @
allowable ways in which all m’s equal 7. Putting this together, there are

W WA H

choices of allowable m’s. Similarly, there are

(k)

allowable n’s. The desired number is therefore (1 + 4r + 67°)(1 + 4s + 657).

3.39. Given positive integers x, y, z, prove that

=D 2P =[xy [ 6] 2] 5020

where (a, . .., g) and {a, ..., g] denote god(a, ..., g} and lem(a, . ... g)
respectively.

»
Solution. Because of unique factorization, it suffices to show that for each
prime p, the power of p on the left side (in its prime factorization) is equal
to the power of p on the right side. So suppose x =p°r, y = p’s, and
z=p%, for integers r,s,1, each relatively prime to p. We may assume
(because of symmetry, and by relabeling if necessary) thata < b < ¢. Then
the power of p in the unique factorization of [x, y, zJ? is 2¢; the powers of p
in (x, y), (x,z), and (y,z) are 4, @, and b respectively. Hence the power of p
on the left side is 2a + b + 2c.

In the same manner, the power of p on the right side is & + ¢ + ¢ + 2a
=2a + b + 2¢. Thus, by our earlier Temarks, the proof is complete.

33.10. Show that 1000! ends with 249 zeros.

Solution. Write 10001 = 295%, where r is an integer relatively prime to 10.
Clearly, @ > b, and the number of zeros at the end of 1000! will equal b.
Thus, we must find 5.

Every fifth integer in the sequence 1,2,3,4,5,6,. .., 1000 is divisible by
S there are [ 1000/5 § = 200 multiples of 5 in the sequence. Every 25th
integer in the sequence is divisible by 25, so each of these will contribute an
additional factor; there are [1000/25 ] = 40 of these. Every 125th integer
in the sequence is divisible by 125, and each of these will contribute an
additional factor; there are §1000/125 | = 8 of these. Every 625th integer
will contribute an additional factor; there are [1000/625 J =1 of these.
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Thus, b= [1000/5] + [1000/25 } + [1000/125 ] + [ 1000/625 ]
=200+40+ 8+ 1=1249.

In exactly the same manner, the highest power of p in n! is given by the
(finite) sum

In/p ¥+ 0n/p* 1+ En/PP 14 -,

3.311. Prove that there are an infinite number of primes of the form
6n—1.

Solution. First, notice that if p is a prime number larger than 3, then either
p=1(mod 6) or p= —1 (mod 6). [If p=2 (mod 6), for example, then
P =6k +2 for some k, which implies that p is even, a contradiction. A
similar argument works for p = 3 (mod 6) or p =4 (mod 6).]

Now suppose there are only a finite number of primes of the form
65 — 1. Consider the number N = p! — 1, where p is the largest prime of the
form 6n — 1. Write N as a product of primes, say

N=pl=l=pp2 pu. m
Observe that each of the primes p, is larger than p. For, if p, < p then
equation (1) shows that p, divides 1, an impossibility. Since p is the largest
prime congruent to — 1 medulo 6, it follows that p, = 1 (mod 6) for each k.

If we now consider equation (1) modulo 6, we find that
pl—1=1(mod6),
or equivalently,
P!=2(mod 6).

But this is clearly impossible, since p! = 0 (mod 6). Therefore, there must be
an infinite number of primes of the form 6 ~ 1.

Problems

3.3.12. In a certain college of under 5000 total enrollment, a third of the
students were freshmen, two-sevenths were sophomores, a fifth were Jjuniors
and the rest seniors. The history department offered a popular course in
which were registered a fortieth of all the freshmen in college, a sixteenth of
all the sophomores, and a ninth of all the juniors, while the remaining third
of the history class were all seniors. How many students were there in the
history class?

3.3.13. Find the smallest number with 28 divisors.

3.3.14. Given distinct integers a, b, ¢,d such that
(x—a)x —b)(x — c)(x —d)~4=0

has an integral root r, show that 4r = a + b+ ¢+ d.
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33.15.

(a) Prove that 172 is irrational.
(b) Prove that there is no set of integers m,n, p except 0,0,0 for which

m+n~/5+p~/§=0.

3.3.16. Given positive integers a,b,¢,d such that @® = b2, ¢’ =d? and
¢ — a =25, determine a, b, ¢, and d.

3.3.17. Prove that if ab, ac, and bc are perfect cubes for some positive
integers a,b, ¢, then a, b, and ¢ must also be perfect cubes.

3.3.18. A changing room has n lockers numbered 1 to n, and all are
locked. A line of n attendants P, P,, ..., P, file through the room in
order. Each attendant P, changes the condition of those lockers (and only
those) whose numbers are divisible by k: if such a locker is unlocked, P,
will lock it; if it is locked, P, will unlock it. Which lockers are unlocked
after all » attendants have passed through the room? What is the situation
if each attendant performs the same operation, but they file through in
some other order?

3.3.19. The geometry of the number line makes it clear that among any set
of n consecutive integers, one of them is divisible by n. This fact is
frequently useful, as it is for example in the following problems.

(a) Prove that if one of the numbers 2" — 1 and 2" + 1 is prime, n > 2, then
the other number is composite.

(b} What is the largest number N for which you can say that n* — 5n° + 4n
is divisible by N for every integer n?

(c) Prove that every positive integer has a multiple whose decimal represen-
tation involves all ten digits.

3.3.20. For each positive integer n, let H,=1+1/2+ -+ +1/n. Show
that for n > 1, H, is not an integer. (Hint: Suppose H, is an integer.
Muttiply each side of the equality by lem(1,2, .. ., n), and show that the
left side of the resulting identity is even whereas the right side is odd.)

3.3.21. If ged(a, b) = 1, then show that

(i) ged((a + b)".(a — 5)") < 27, and
(i) ged(a™ + b™,a™ — b™) < 2.

3.3.22. For positive integers 4, ..., g, let (a,...,8) and [a, ..., g] de-
note the ged(a, . . ., g) and lem(a, . . ., g) respectively. Prove that

(a) xyz = (xy,x2z, yz)[x, y.z],

(b) (x[y, 2D = [(x;9) (x, 2},

© [x (3, 2] = (% y)[x. 2],

@ (x yb[x, 20 Ly, 2D = [(x, ) (x,2), (9,20,
@) [x, y,2l(x, yXx,2X,2) = xyz(x, y,2),
O (x5 )=+ p,[x pD-
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3.3.23. Let m be divisible by 1,2, ..., n. Show that the numbers 1+
m(1+4),i=0,1,2,. .., n, are pairwise relatively prime.

3.3.24. The prime factorizations of r + 1 positive integers (r > 1) together
involve only r primes. Prove that there is a subset of these integers whose
product is a perfect square.

3325,

(a) Determine all positive rational solutions of x* = y*.
(b) Determine all positive rational solutions of x**” = (x + y)".

3.3.26. Suppose that a®+ b2 =c? a,b,c integers. Assume ged(a,b)
= god(a, ¢) = ged(b, ¢} = 1. Prove that there exist integers « and v such that
c—b=2% c+b=2v% ged(u,0) = 1. Conclude that a = 2uv, b= v* —
u?, ¢ = v? + u* (Hint: By examination modulo 4, it is not the case that a
and b are both odd; neither are they both even. So without loss of
generality, @ is even and b is odd.)

Conversely, show that if # and o are given, then the three numbers a,5,¢
given by the above formulas satisfy a + b2 = ¢%

3.3.27. Find all sets of three perfect squares in arithmetic progression.
(Hint: Suppose @ < b < ¢ and #* — a® = ¢ ~ b?, or equivalently, a® + ¢?
=2b% Lets = (c + a)/2, = (c — a)/2. Show that 52 + > = b%. Now apply
the resuit of 3.3.26.)

3.3.28.

(a) Suppose there are only a finite number of primes of the form 6n — 1;
call them p,,...,p,. Reach a contradiction by considering N
=(pp) -l

(b) Prove that there are an infinite number of primes of the form 4» — 1.

Additional Examples

1.10.9, LI10.10, 2.6.1, 3.1.4, 3.4.8, 4.1.3, 4.2.3, 4.2.16b, 4.49, 5.2.1, 524,
526,529, 52.14, 52.15, 5.2.16, 5.2.17.

3.4. Positional Notation

We will assume a familiarity with the positional system of representing real
numbers. Namely, if b is an integer greater than one (called the base), each
real number x can be expressed (uniquely) in the positional form

x=A A, ... A Agaa;. ..
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where Ay, ..., A,.a,,a,, ... {(called the digits) are integers, 0 < A; < b,
0 < a,< b, and there is no integer m such that g, = b — 1 for all k > m.
This representation is used to denote the sum of the series

Ab A, b+ A b+ Agtad T Hap i

3.4.1. Let C denote the class of positive integers which, when written in
base 3, do not require the digit 2. Show that no three integers in C are in
arithmetic progression.

Solution. Let d denote the common difference for an arbitrary arithmetic
progression of three positive integers, and suppose that when d is written in
base 3 notation its first nonzero digit, counting from the right, occurs in the
kih position. Now, let a be an arbitrary positive integer, and write it in base
3 notation. The following table gives the kth digit of each of the integers a,
a + d, and a + 2d, depending upon the kth digit of 4 and a:

1f the kth digit of d is 1 kth digit of d is 2

and and
jgit of a i kth digit of a is

Then the kth digit of a is g

kth digit of o . 5 0 . 5
a 0 1 2 0 1 2
at+d 1 2 0 2 0 1
a+2d 2 [ 1 1 2 0

In every case, one of @, a + d, a + 2d has a 2 in the kth digit, which means
the corresponding number does not belong to C.

34.2. Does [x ]+ [2x [+ [4x 1+ [8x 1+ [16x § + [32x | =12345
have a solution?

Solution. Suppose that x is such a number. It is an easy matter to show that
195 < x < 196 (since 63 X 195 = 12,285 < 12,345 < 12,348 = 63 X 196).
Now, write the fractional part of x in base-2 notation (the a.b,c, ... are
either 0 or 1):

x =195 +.abcdef . . . .
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2x =2X 195+ a.bedef . . .,
Ax =4X 195 + ab.cdef . . .,
8x=8X195+ abc.def . ..,
16x =16 X 195 + abed.ef . . .,
32x=32X 195+ abede.f ... .
In this form we see that
[x]=195,
[2xT=2X195+a,
[4x]1=4X195+2a+b,
[8xI=8X195+4a+2b+¢,
[16x]=16X195+8a +4b +2c + d,
E32x §=32x 195+ 16a+8b +4c+2d+e.
Adding, we find that [x 1+ [2x ]+ [4x ]+ f8x ]+ [16x ]+ [32x 1
=63 X195+ 31a+ 156 + 7c + 3d + e. The problem is therefore reduced
to finding a,b,c,d, e, each 0 or 1, such that 31a + 155 + 7c + 3d + e = 60.
But this equation cannot hold under the restrictions on a,5,c,d, e, since

3la+15b+7c+3d+e <31+ 15+ 7+ 3+ 1=57<60. Therefore,
there can be no such x.

‘When an integer is written in decimal notation (base 10), it is possible to
determine very easily if it is divisible by 2 or 5. There are other: divisibility
tests that are easy to apply. For example: An integer N is divisible by 4 if
and only if its last two digits are divisible by 4. To see this, write N in base
10:

N=(a,100+ -+ + a,10%) + (4,10 + ay)

and note that ¢,10" + - - - + g,107 is always divisible by 4. Thus, 4| ¥ if
and only if 4}(a,10 + ag).

One of the most striking and useful divisibility tests is that an integer is
divisible by 9 if and only if the sum of its digits (in decimal notation) is
divisible by 9. To see why this is so, notice that 10=1 (mod 9), and
therefore, by the properties of modular arithmetic, 102 = 1 (mod 9), 10°= 1
(mod 9), and so forth. It follows that

N=al0+ - +a,10+a,=a,+ - - +a,+ay(mod 9).

A similar proof shows that an integer is divisible by 3 if and only if the
sum of its digits is divisible by 3. As an application of this test, suppose we
ask: for what digits x is 4324x98765223 divisible by 3? We simply need to
add the digits modulo 3, and choose x that will make the sum congruent to
zero modulo 3. In this case, the sum of the digits is 1 + x modulo 3, so the
number is divisible by 3 if and only if x =2, 5, or 8.
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3.4.3. When 4444*% s written in decimal notation, the sum of its digits is
A. Let B be the sum of the digits of 4. Find the sum of the digits of B. (4
and B are written in decimal notation.)

Solution. Let N = 4444%44 Then N < (10°** = 10?22, which means that
when N is written in decimal notation, it will have less than 22,220 digits.
Since each of the digits of N must be less than or equal to 9, we are certain
that A4 < 22,260 X 9 = 199,980.

Tn a similar manner, A has at most 6 digits, so that the sum of the digits
of A must be less than 54 (= 6 X 9); that is, B < 54.

Of the positive integers less than 54, the number with the largest sum of
digits is 49, and this sum equals 13. Let € denote the sum of the digits of B.
‘We have just seen that C < 13.

From our reasoning preceding the problem, we know that

N=A=B=C(mod9),
50 let us calculate the congruence class of C by calculating the congruence
class of N. First, 4444 = 9 X 493 + 7, and therefore 4444 = 7 (mod 9). Also,
73 =1 (mod 9). Since 4444 = 3 X 1481 + 1, we have

4444*% = 7% (mod 9)
=720 7 (mod 9)
=7 (mod 9).

Thus, € =7 (mod 9) and C < 13. The only number which can satisfy both
of these requirements is C = 7, and the problem is solved.

3.4.4. An (ordered) triple (x,,x,,x;) of positive irrational numbers with
X| + %, + x; =1 is called balanced if each x, <}. If a triple is not balanced,
say if x; >4, one performs the following “balancing act”:
B(x),x7,%;) = (%},x3,x3),

where x = 2x, if i # j and x{ = 2x, — 1. If the new triple is not balanced,
one performs the balancing act on it. Does continuation of this process
always lead to a balanced triple after a finite number of performances of
the balancing act?

Selution. Write x,, x,, x; in base 2 notation in the manner described at the
beginning of the section, say

X =.aaa.. .,

xy=bybob,. ..,

X3=.016563 .. 1,

where a,,b,, ¢, are each 0 or 1.
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To say that each x, <} is to say that g, b,, and ¢, are each equal to
zero. Notice that the balancing act consists of moving the “decimal” point
one place to the right and then disregarding the integer part. Thus, for
example, if x,,x,,x; were not balanced, the representations (base 2) of
X}, x5, x} are given by

x| =448, . . .,
xy=.bybsby .. .,
X5 =.0035C4 1 n -

Many examples can be given to show that the process need not termi-
nate in a balanced triple. For example, define x|, x,, x5 (using the earlier
notation) by

4= { 1 if i is a perfect square,
! 0 otherwise,
b= { 1 if  is one more than a perfect square,
otherwise,
ifa,+b,=0,
otherwise,

that is,

=.100100001000000100 . . .,

x, =.010010000100000010 . . .,

=.001001110011111001 . .. .
Each of x,, x,, and x; is irrational (rational numbers are those which
correspond to periodic “decimal” representations), and their sum is 1 (since
X+ X+ X, =4 +4 + 1+ - = 1). Repeated applications of the balanc-
ing act will never transform x,,x,,x, into a balanced triple (because, in
every case, one of 4,,b;,c; is equal to 1).

3.4.5 (Continuation of 2.5.10). Suppose f is a function on the positive
integers which satisfies

@Ry =2f(ky -1,
F@k+ 1)y =2f(k)y+ 1.
Let a be an arbitrary positive integer whose binary representation is given
by
=a4, ... 608 (=a2+a_ 27"+ - +al+a)
Show that
@y =b2"+b, 2 "+ - + b2+ by,
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where
a=1,
if a,=0.

(The idea is to replace each of the 0s in the binary sum for a with —I's; for
example, for n = 10, f(1010,) = 1111, (the I's stand for —1I's)=8 -4 +
2—-1=35

Solution. We will induct on the number of digits in the binary representa-
tion of a.

The result is true for a = 1, so suppose it holds whenever a has fewer
than k + 1 digits. Now consider an integer @ with & + 1 digits (in base 2),
say

a=aa | ... 00a.
If ag=0, then a=2(aa,_, ...a,) f(a)- 2f(a, ...a))—1=
A6 22X+ - +524b]— 1= b2+ - +b22+b7+b,, and the
result holds. If ao=1, then a= 2(akak,, Lo.a)+ 1, fla)=
2f(a, . .a)+1=2(52""+ - +b)+ 1 =524 - + b2+ by,
and again the result holds.

This is a nice lication of number rep i Notice how simple
it is to compute: f(25) = f(11001,) = H1TTl, =16 +8-4—2+1=19.

In the next example, a special number representation allows us to
investigate and understand a set of real numbers of central importance in
advanced analysis.

3.4.6. Let K denote the subset of [0,1] which consists of all numbers
having a ternary expansion

PR

in which g, =0 or 2. This is called the Cantor set. Show that K is the
complement of the union of disjoint open intervals I,, n=1,2,3,...,
whose lengths add to 1.

Solution. First observe that none of the numbers in the interval I, = (1,%)
are in K. This is because numbers in this interval have ternary representa-
tions of the form

(lagasa, ... ),
Similarly, none .of the numbers in the interval I, =(4§,3) are in K,
because these bers have ternary i of the form
(Olazagas . .. ),.
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Figure 3.2.

Also, numbers in the interval I = (3,3) have ternary representations of the
form

(2layaas ... )5,

so these are not in K. In the same manner, none of the intervals [,
= (450 L= (8, 8). fo=(h.4), L = (§,%) contain clements in X.
It is apparent that this process can be carried out systematically. Figure
3.2 and Table 3.1 help make the idea precise.
To find I, (that is, X, and Y,) for an arbitrary positive integer n, write n
in base 2 notation:

n=(@qag. .- 0ay),

Gco n=a,+2ay+ -~ +2g, q=00r ), let b;=2a, i=12,....k
and set I, =(X,,Y,), where
b b b,
,,—?‘+3—§+ +3—+——(be by,
Y,==+—+- +bk‘+— bb. )
=3t i (biby - b2
It is easy to see that X, and Y, are elements of X for each n (note that
=b /3 +by/3 4 -+ (b ,)/(3k )+ 32 ,(2/3**), and that no el-
emenls in I, are in K (!he kth digit of every element of [, = (X, ¥,) is 1).
From these facts it follows that the /,’s are disjoint.

Table 3.1, 1, =(X,, Y.}

n n X, Y
(base 10) (base 2) (base 3) (base 3) 1, (in fractional form)

1 1 0.1 02 .9
2 10 0.01 002 4.3)
3 11 021 0.22 G5
4 100 0.001 0.002 (3.%)
5 101 0.201 0202 .3
6 110 0021 0022 (&R
7 11 0221 0222 5.4
8 1000 00001 0.0002 Grod)
9 1001 0.2001 0.2002 (#.8)
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Also, the lenglh of I, is 1/3%, where k = Jlog,n 1, and therefore
o [2mt1_] .

ngll— 3|[10g2n]|ﬂ m2=0|: ;m(ﬂlog,nnﬂ)]
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Our construction of the I,’s makes it clear that K is what remains after
the intervals 1, are removed from [0, 1}, and the result is proved.

Problems

3.4.7. Prove that there does not exist an integer which is doubled when the
initial digit is transferred to the end.

3.4.8. Find the smallest natural number n which has the following proper-
ties:
(i) its decimal representation has a 6 as its last digit, and

(if) if the last digit 6 is erased and placed in front of the remaining digits,
the resulting number is four times as large as the original number ».

3.49.
{(a) Solve the following equation for the positive integers x and y:
(360 + 3x)’ = 492,04,

(b) Devise a divisibility test for recognizing when a number is divisible by
11. (Hint: 10 = —1 (mod 11).)

(¢) If 62ab427 is a multiple of 99, find a and b.

(d) Find the probability that if the digits 0,1,2,...,9 are placed in
random order in the blank spaces of 5_383_8_2_936_5_8_203_9_3_76_,
the resulting number will be divisible by 396.

3.4.10. Given a two-pan balance and a system of weights of 1,3,3%,3%,
34 ... pounds, show that one can weigh any integral number of pounds
(weights can be put into either pan). (Hint: Show that any positive integer
can be represented as sums and differences of powers of 3.)

3.4.11.

(a) Does the number 0.1234567891011121314 . . ., which is obtained by
writing successively all the integers, represent a rational number?

(b) Does the number 0.011010100010100 . . ., where a, = 1 if n is prime, 0
otherwise, represent a rational number?

34.12. Let S = apa,a, . . ., where @, =0 if there are an even number of
I’s in the expression of # in base 2 and a, = 1 if there are an odd number of
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I’s. Thus, §=01101001100. .. . Define T = b,byb; ..., where b, is the
number of 1’s between the ith and the (i + 1)st occurrence of 0 in S. Thus,
T=2102012 . .. . Prove that T contains only three symbols 0, 1,2.

3.4.13. Show there is a one-to-one correspondence between the points of
the closed interval [0, 1] and the points of the open intervai (0, 1). Give an
explicit description of such a correspondence.

Additional Examples

1.1L.1 (Solution 5), 44.8, 5.2.5, 6.1.1, 6.1.4, 6.1.8, 6.2.13, 7.6.6.

3.5. Arithmetic of Complex Numbers

Recall that a complex number z can be written in several different forms:

rectangular form: z=a+ bi,
polar form: z =r(cosd + isinf),
exponential form:  z = re®,

where a, b, r, and @ are related as in Figure 3.3, and e” = cos# + isin§.
The angle 8 is the argument of z (determined only up to a multiple of 27),
and r is the magnitude (absolute value) of z; these are denoted by argz and
jz] respectively. The numbers @ and b are called the real part and the
imaginary part of z respectively, and are denoted by Re(z) and Im(z).

If z=a+bi and w=c+di, then z+ w={(a+ c)+ i(b + d) corre-
sponds geometrically to the diagonal of the parallelogram having z and w
as adjacent sides (see Figure 3.4).

If z=re” and w=se”, then zw=rse’®*®, Notice that |zw|=rs
={z||w] and argzw = # + ¢ = argz + argw; that is, under multiplication,
the absolute values multiply and the arguments add.

3.5. Arithmetic of Complex Numbers 115

{a+c)+i(b+d)

Figure 34,

35.1. If a, b, and n are positive integers, prove there exist integers x and y
such that

(@ + b= x>+ 7.

Solution. Let z = a + bi. Then (2’ + %" = (|z[%" = )z]* = (|2|")*. But z”
= x + iy for some integers x and y (because a and b are integers), so
(127> = lx + iy)* = x* + y?, and the proof is complete.

3.5.2. Let 7 be an integer > 3, and let &, B,y be complex numbers such
that a” = 8" =y" =1, a + B + y = 0. Show that » is a multiple of 3.

Solution. We may assume without loss of generality that « = 1 (for if not,
divide each side of a+ 8+ y=0 by a to get 1+ 8/a+ v/a =0, and
then set =1, B,=B/a, v,=7v/a). We will assume that 0 < arg 8
<argy < 27

Now, B and y are of magnitude 1 (since 87 = y" = 1), 5o they lie on the
unit circle (center (0,0), radius 1). From the equation 8 + y = — 1, we can
equate imaginary parts to see that Im(8 + y) = Im(8) + Im(y) =0, or
equivalently, Im(8)= —Im(y) (Figure 3.5). Equating real parts yields

R 1m (§)
/ Im(y)

[
\
\.1

Figure 3.5,
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Re( B) + Re(y) = — 1. Since we also have established that | 8| =[y| =1, it
must be the case that Re(8) = Re(y) = — 1, and therefore § = e*"/*, and
y=e*/3, The fact that 8" =1 implies that /> =1, and this can
happen only if » is a multiple of 3.

The following result is very useful; it can be proved by induction.
De Moivre’s Theorem. For each integer n,
(cos# + isin8)"=cosnd + isinnf.

(In exponential notation, (e®) = ¢™.)

3.5.3. Express cos58 in terms of cosé.
Solution. An efficient way to do this is to recognize that cos 58 is the real
part of e*®, Then we can apply De Moivre’s theorem:
c0s 58 + isin 58 = (cosd + ising)’
=cos*® + 5cos¥ (isind) + 10cos™d (i%sin )
+ 10cos® (i%in’f ) + 5 cos# (i*sin¥f ) + i*sin’p
= (cos’d — 10cos™¥sin™ + 5cosfsin'f)
+i(sin’d — 10sin’f cos’¥ + SsinB cos¥). ,
Equating real and imaginary parts, we get
cos 58 = cos’ — 10cos™ sin® + 5cosf sin'g,

sin 56 = sin® — 10sin’ cos + 5sin f cos®.
For the case of cos58,

0558 = cos™® — 10cos® (1 — cos®) + Scos# (1 — cos¥)’
= 16c0s’0 — 20c0s¥ + Scos .

3.5.4. Find constants ag,a,, . .., a so that

€059 = a,c0s 68 + a,c0s58 + - - - + acosf + ag.

Sollltinn As in the last problem, we can do thns very mcely by exploiting
the rel hip between tri ic lly the sine and
cosine) and complex variables. In this case, write cos# in the form

8 —i@
_e"+e
cosé e
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and apply the binomial theorem to get
(P te®\®
cosfg = ("t 7
=l6[(e )+ 6(e®y’ (™) + 15(e®) (e’
o+ 20(e®) (e + 15(e*Y (e~ )" +6(e")(e ™) + (7Y
ZL[(e”+e"m)+6(e”+e"‘”)+ 15(22A9+e—zm)+20]
i[zcosse+2xscos40+2x 150526 +20]

=3 [c0s66 + 6cos4d + 15¢0520 + 10].

3.5.5. Let G, = x"sinnd + y"sinnB + z"sinnC, where x, y,z,4,B,C are
real and 4 + B + C is an integral multiple of «. Prove that if G, = G, =0,
then G, = 0 for all positive integral n.

Solution. A standard trick (similar to 3.5.3) is to recognize that G, is the
imaginary part of the expression
H, = x"e™ + yreinB 4 g7
Suppose that H, is real for n=0,1, ..., k, and consider H, . We have
HH =H, +H,
where
H = xeityfei 1 xexAzke:kC+yeerke:kA
+yeBzkeiC 4 7giCykgikA 4 ze.cyke.w
= xpe AT B polgikDB 4 yk=lgith=A]
+xzelAH O £k lgik=1C 4 k= tgitim D]
+yze

B+of k-le:(kfl)ﬂ+Zk‘le:(k7])(.‘]

Y
- xye‘(‘*”’[Hk,l _ zkflei(kfl)C]

+Xzen(A¢C)[Hk7‘ _yk*lgrikfllﬂ]

+)’”'(“C)[ka| — xkfle:(kfl)A]
= Hy_,[xpe™4+ 8 4 xzeitA+O) +yzeiBO] — yyzeiA+BeOy,
= H,_ K~ xyze*A+8+Opp

where K = xyeA+8) 4 x70/A+C) ¢ yz0i(B+C)
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Observe that H, = H? + 2K, and since H, and H, are real, by hypothe-
sis, it must be the case that X is real. Also, by the inductive assumption,
H,_, and H,_, are real. Because 4 + B + C is a multiple of =, giA+EEC)
is real. Putting these facts together, the formula of the last paragraph shows
that H is real. Now since H, is real, by the inductive assumption, and since
Hyy = H\H,— H, it follows that H,, is real. Thus, the result of the
problem follows by mathematical induction.

Problems

35.6.

(a) Given that 13 =27+ 3* and 74 = 57 + 7, express 13X 74 =962 as a
sum of two squares. (Hint: Let z =2 + 3i, w = 5 + 7, and use |z]’|w]’
=|zwl’)

(b) Show that 4 arctan} — arctanzk; = 4 . (Hint: Consider (5 — D+ i)

3.5.7. Suppose A is a complex number and » is a positive integer such that
A" =1and (4 + 1) = 1. Prove that n is divisible by 6 and that AP=1

3.5.8. Show that

(- 6+ ()- )+ -menf

-+ -z

(Hint: Consider (1 + i)".)

and

3.5.9. By considering possible magnitudes and arguments,

(a) find all values of ¥—i;
(b) find which values of (3 — 47)~%/® lie closest to the imaginary axis.
3.5.10.

(a) Prove that if x — x ' = 2isin# then x" — x " = 2isinnf.
(b) Using part (a), express sin™¥ as a sum of sines whose angles are
multiples of 8.

L n
3.5.11. Show that

(5) - (;)an .

'l‘)tana - (")mn’o .
tannf = ———————————
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3.5.12.
(a) Prove that
2 ] if n is odd,
RN coskf _ 1 ,
lgo( ) (k) cosd (—=1)"*"*tan"®  if niseven

(Hint: Consider itanf = —1 + (cos8 + isin#)/cos8.)
(b) Prove that

E": - 1)**‘(")cos*9cosk9= (=) %5inYsinag  if n is odd,
i=o 4 (=)' *"*sin"g cos nf if n is even.

(Hint: Consider —1 + cos#[cos# + isin#] = isin#[cos@ + isinf].)
3.5.13. Prove that

%’(% =1- (;)tanZO + (Z)tan‘o -

35.14. Show that if e” satisfies the equation z”+a, 2"~ '+ -+« +
@z + 4= 0, where the a, are real, then a, |sinf + a,_,sin26 + - - -
+ aysin(n ~ 1)8 + agsinnd = 0.

Additional Examples
1.3.2, 4210, 4.2.11, 4.2.13, 4.2.15, 4.2.17, 4.2.20, 4.2.22, 43.18, 5.2.2, 5.2.3,

5.2.11, 5.3.4, 5.3.10, 54.11, 5.4.28, 54.29. Also, see Section 8.4 (Complex
Numbers in Geometry).



Chapter 4. Algebra

Algebra is one of the oldest b hes of h ics, and it i to
be one of the most active areas of mathematical research. The subject is
still rich in new ideas, and it shows no signs of soon becoming exhausted or
barren.

In high-school algebra one learns to manipulate equations and formulas
into equivalent forms which are more understandable and interpretable. A
large proportion of the problems in this book attest to the usefulness of this
basic subject. One of the most important algebraic manipulations involves
factorization of algebraic expressions. In the first section we will look at
problems whose solution depends upon knowing some elementary factor-
ization formulas.

The middle two sections are devoted to problems from classical algebra:
namely, the study of polynomials. Much of this material once belonged to a
branch of algebra called the theory of equations. The rudiments of this
subject are now scattered throughout the high-school and college curricu-
lum. In these sections we draw together the ideas of this subject that
constitute essential knowledge for problem solving.

In the final section we introduce those topics which professional mathe-
maticians think of when they speak of algebra. Here the emphasis' is on
formal systems and formal thinking. The subject contains a whole new
world of concepts which genemhm the classical ideas and methods. We

the most fi that make up the subject mat-
ter: groups, rings, and fields.
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4.1. Algebraic Identities

In this section we will look at applications of some of the most basic
factorization formulas, which include the following:

a’ - b’=(a—b)a+b),
a*+2ab+ b= (a + by,
a®+ b+ ¢+ 2ab + 2ac + 2be = (a + b + ¢},
a"—b"=(a—-b)a"'+a"H+ - +ab" i+ b,
If # is an odd positive integer, we can replace b by — b in the last formula
and get a formula for the factorization of the sum of two perfect nth
powers:
a"+b"=(a+b)a" ' —a"B+ - —ab" 4+ b"7Y),  nodd.

4.1.1. Show that n* — 20r® + 4 is composite when # is any integer.

Solution. The idea is to try to factor the expression. If we proceed
n* —20n? + 4= (n* — 200> + 100) — 96 = (n* — 10)> — 96, we are stymied
because 96 is not a perfect square. It does work, however, to argue that
- 20n +4=(n*—an’+4) — 1602 = (n* — 20 — (dny = (n — 2 — 4n)
X (n? ~ 2 + 4n). If we can show that neither of these factors equals + 1, we
are done.

Suppose n2 —2 — 4n = 1; or equivalently, n> — 4n —3 = 0. By the qua-
dratic formula, n=2=x7, and this is not an integer. Thus, if » is an
integer, n — 2 — 4n is not equal to 1. A similar argument works for the
other three cases.

4.1.2. Determine all solutions in real numbers x, y,z,w of the system
xt+y+z=w,

1,111

x y z

Solution. Some initial guesses lead us to suspect solutions only when one of
X, p,2 is equal to w and the other two are negatives of one another (for
example, x = w, y = —z). Certainly, these are solutions, but how can we
prove there are no others?
From the second equation,
yztxz+xy |
xyz -
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and this, together with the first equation yields
(x+y+2)(yz + xz+ xp) = xpz.
This expands to
X+ xz+y+pz+ 2%+ 2y + 2z =0,
which in turn factors into
(xty)(x+)(y+ 2=

Our initial conjecture follows (i.e. one of x + y,x + z, y + z equals zero,
sayy=—z,and thusx =x+y+z=w).

4.13.

(a) Find all pairs (m,n) of positive integers such that |37 — 2"| = 1.
(b) Find all pairs (n,#) of integers larger than 1 such that |[p™ — ¢"| =1,
where p and ¢ are primes.

Solution. (a) When m = 1 or 2 we quickly find the solutions
(m,ny= (1,13, (1,2), (2,3).
We will show there are no others.

Suppose that (m,n) is a solution of (3" — 2" = I, where m >2 (and
hence n > 3). Then 3" — 2" =1, 0r 3" —2"= —1.

Case 1. Suppose 3™ —2"= —1, n > 3. Then 3" = —1 (mod 8). But this
congruence cannot hold, since 3" =1 or 3 (mod 8), depending upon
whether m is even or odd (3 = 3 (mod 8), 3>=1 (mod 8), 3° =3 (mod 8),
3*=1(mod 8),...).

Case 2. Suppose 3" — 2" = 1, n > 3. Then 3" = | {(mod 8), 50 m is even,
say m = 2k, k > 1. Then 2" = 3% — | = (3* — 1)(3* + 1). By unique factor-
ization, 3* + 1 = 2’ for some r, r > 3. But, by case 1, we know this cannot
happen. This completes the proof of part (a).

(b) Tt is immediate that not both p and g are odd, for this would imply
that p™ — ¢” is even. So suppose that ¢ = 2. We will show, by using only
the algebraic identities of this section, that the only solution is that found in
part (a), namely |3* — 23| = 1.

Suppose m and 7 are larger than 1, and that | p™ — 2"( = L. It cannot be
the case that m and » are both even, for if m = 2r and n = 2s, then

L= (pm = 2= 1p = 2= |p" = 2||p"+ 2],
and this is impossible (since p” + 2° > 1).
Suppose that m is odd. Then
P=pmEl=(p)(p" ' Fp" 4 —pH ),
and this is impossible, since the last factor on the right side of the equation

is an odd number larger than
Therefore, it must be the case that m is even and # is odd.
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Suppose m = 2k, where k is odd and suppose & > 1. Then

" 3 - k= ”
TEprEl= (Y == (R (Y T e - () + 1),
and again the factor on the right is odd, a contradiction.

Therefore, m =2" for some positive mteger rand n is odd and our
equation has the form |p* — 2°| = 1. Bither p? — 2" =1 orp¥—2"=—1.

Case 1. If p* —2" = —1, then

Pr= =212 42 224 1) =3 (mod 4),
but this is 1mposs1ble, since for any odd mteger X, x =1 (mod 4)

Case 2. If p¥ "2 =1, then =pT - 1=(p% ‘—1)(p "'+ 1). The
only way bo}h ¥~ 1and p* '+ 1 could be powers of 2is for p¥ ' — 1
=2 and p*”' + 1 = 4. Adding these yields p?”' =3, and this implies that
p=3,r=1,m=2, and n = 3. This completes the proof,

4.1.4. Prove that there are no prime numbers in the infinite sequence of
integers
10001, 100010001, 1000100010001, . . . .

Solution. The terms of the sequence can be written as
T4HI105T+ 100+ 105 ..., E+10%+ - - +10%, ... .
Consider, more generally, then, the sequence
T+t T+ xt 28 1+ x4 e
for an arbitrary integer x, x > 1.
If nis odd, say n =2m + 1,
T+ x*+ x84 .0 4 x4m+D
=1+ M1+ x4 a1+ xY)
=S+ x4+ 41y,
Thus, if m > 0, the number is composite. For m = 0 and x = 10, we also get
a composite number, since 10001 = 73 x 137,
Suppose n is even, say n = 2m. Then

- (X‘)2m+|

1-x*

_ l—(X2m+|)2 1+(X2m+l)2

(1 ey

THxt+ oo+ x¥m =

X{1=x24 -+ (x))

This factorization shows the number is composite.
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Problems

4.15.

@) If a and b are consecutive integers, show that @’ + b + (ab)’ is a
perfect square.

(b) If 2a is the harmonic mean of b and c (i.e, 2a = 2/(1/b + 1/c)), show
that the sum of the squares of the three numbers a, b, and ¢ is the
square of a rational number.

(c) If N differs from two successive squares between which it lies by x and
y respectively, prove that N — xy is a square.

4.1.6. Prove that there are infinitely many natural numbers ¢ with the
following property: The number n*+ a is not prime for any natural
number 7.

4.1.7. Supposing that an integer # is the sum of two triangular numbers,

2 2
+a bB+b
7 T2
write 4n + | as the sum of two squares, 4n + 1 = x? + y?, and show how x
and y can be expressed in terms of a and b.
Show that, conversely, if 4n + 1= x?+ y?, then n is the sum of two
triangular numbers.

4.1.8. Let N be the number which when expressed in decimal notation
consists of 91 ones:

n=

N=111..
—
91
Show that N is a composite number.

4.1.9. Prove that any two bers of the following seq are
prime:
24L2 L2 L2020
Show that this result proves that there are an infinite number of primes.
4.1.10. Determine alt triplets of integers (x, y,z) satisfying the equation
B+l =(x+y+y

Additional Examples

1.8.4, 1.12.7, 3.3.6, 4.2.5, 52.15, 537, 7.1.11. Also, see Section 5.2
(Geometric Series).
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4.2. Unique Factorization of Polynomials

A polynomial of degree n (n a nonnegative integer) in the variable x is an
expression of the form
ax"+a,_x" "+ +ax+a,

where ag,4,, . . ., a, are constants (called the coefficients), and a, #0. A
polynomial all of whose coefficients are zero is called the zero polynomial;
no degree is assigned to the zero polynomial. The coefficient a, is called the
leading coefficient; if it is equal to 1 we say the polynomial is a monic
polynomial. Two polynomials are called (identically) equal if their coeffi-
cients are equal term for term, that is, their coefficients for the same power
of the variable are equal.

If the coefficients of the polynomial P(x) are integers, we say that P(x)
is a polynomial over the integers; similarly if the coefficients are rationals,
we say the polynomial is over the rationals, and so forth.

In many respects polynomials are like integers. They can be added,
subtracted, and multiplied; however, just as in the case of integers, when a
polynomial divides another the result will be a quotient polynomial plus a
remainder polynomial (more on this later). A polynomial F divides a
polynomial G (exactly) if there is a polynomial Q such that G = QF (that
is, G is a multiple of F). A polynomial H is a greatest common divisor of
polynomials F and G if and only if (1) H divides F and G and (2) if K is
any other polynomial that divides F and G, then K divides H. It can be
shown that H is unique up to a constant multiple.

Also, as in the case of integers, there is a division algorithm.

Division Algorithm for Polynomials. If F(x) and G(x) are polynomials over a field
K (for example, K might be the rationals, the reals, the complexes, the integers
modulo p for p prime), there exist unique polynomials Q(x) and R(x) over the field
K such that .
F(x) = Q(x)G(x}+ R{(x),

where R(x} = 0 or deg R(x) < deg G(x) (deg denotes degree).

Moreover, if K is an integral domain (such as the integers), the same result
holds provided G(x) is a monic polynomial.

As an example of the division algorithm for polynomials, let F(x) = 3x°+
2x? - S and G(x) = 2x* + 6x + 3. Then

g ix2_9
3X 3
246x+1)3° +2  —5
3x%4 9x* + 3x?
—9x3+1x? -5
—9x? —27x-3

$
I 27x—4
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In this case, Q(x)=3x"—%, and R(x) = }x*+ 27x — }. (This example
should make it clear that the algorithm will work in the general case only if
the coefficients come from a field; however, it also should be clear that an
integral domain is sufficient if the divisor is monic.)

As in the case of the integers, the division algorithm can be used to find
the greatest common divisor of two polynomials. Furthermore, as in the
case of the integers, if F and G are polynomials (over a field K), there are
polynomials S and T (over K) such that

god(F,G) = SF + TG,
where ged(F, G) denotes the greatest common divisor of F and G.

4.2.1. Find a polynomial P(x) such that P(x) is divisible by x*>+ 1 and
P(x) + 1 is divisible by x> + x>+ 1.

Solution. By the conditions of the problem, there are polynomials S(x) and
T(x) such that
P(x) = (x*+ 1)S(x),
P(x)+ 1=(x*+ x>+ 1)T(x).
It follows that (x? + 1)S(x) = (x> + x> + 1)T(x) — 1, or equivalently
(X + 57+ DT(x) = (2 + DS(x) = 1.
By our remarks preceding the example, x> + x?>+ 1 and x? + 1 are “rela-

tively prime” and we can use the Euclidean algorithm for polynomials to
find S(x) and T(x). Thus, we have

B4xt+l=(x+ )2+ )+ (—x),
+l=—x(—x)+1,
and “working backwards,” we have
I=(x+1)+ x(—x)
=D+ = (x+ (T |
=02+ D[1-x(x+ ]+ x[x*+ x*+ 1]
=+ x4+ D — (2P P+ x = 1)

In this form, we find that we can take S(x) = x>+ % — 1 and T(x) = x. It
follows that

P(xy=(x*+1)(x* + x - 1).

4.2.2. Prove that the fraction (n* + 2n)/(n* + 3n% + 1) is irreducible for
every natural number n.
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Solution. We have
n* 4302+ 1=n(n*+2n) + (B + 1),
4 2n=n(n’+1)+n,
n+l=n(m)+1
n=n(l).

It follows that ged(n* + 3n* + 1,#* + 2n) =1, and the proof is complete.

Let F(x) be a polynomial over an integral domain D, and consider the
polynomial equation F(x) = 0. If an element a of D is such that F(a)=0,

we say that a is a root of F(x) =0, or that a is a zero of F(x). The following
very useful theorem is an easy application of the division algorithm.

Factor Theorem, If F(x) is a polynomial over an integral domain D, an element a
of D is a root of F(x)=0if and only if x — a is a factor of F(x).

By repeated application of the factor theorem, we can prove that there is a
unique nonnegative integer m and a unique polynomial G(x) over D such
that

F(x)=(x~ a)"G(x),

where G(a)# 0. In this case, we say that a is a zero of multiplicity m.
The next two examples illustrate the use of the factor theorem.

4.23. Given the polynomial F(x)=x"+a, x" '+ ---+ax+a,
with integral coefficients ag,a,, ..., a,_,, and given also that there exist
four distinct integers a,b,¢,d such that F(a)= F(b)= F(c)= F(d)=>5,
show that there is no integer k such that F(k) = 8.

Solution. Let G(x) = F(x) — 5. By the factor theorem, x ~a, x — b, x — ¢,
and x — d are factors of G(x), and we may write
G(x)=(x = a)(x = b)(x = ¢)(x — d)H(x),
where H(x) is a polynomial with integer coefficients. If k is an integer such
that F(k) = 8, then G(k)= F(k) — 5 =8 —5=3, or equivalently,
(k — a)(k — b)(k — c)(k — d)H (k) =3.

The left side represents a product of five integers, and each of the integers
k—a,k— b,k — ¢,k — d must be distinct, since a,b,¢,d are distinct. But
this is impossible, since at most one of the numbers k — g,k — bk — ¢,

k — d can equal =3, so the other three must be + 1. Thus, such 2 k cannot
be found.
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4.2.4. Prove that if F(x) is a polynomial with integral coefficients, and
there exists an integer k such that none of the integers F(1), F(2), . .., F(k)
is divisible by k, then F(x) has no integral zero.

Solution. 1t is equivalent to prove that if F(x) has an integral zero, say r,
then for any positive integer k, at least one of F(1),F(2), ..., F(k) is
divisible by k. So suppose F(r) =0. By the factor theorem, we can write
F(x)=(x = NG(x),
where G(x) is a polynomial with integer coefficients. From the division
algorithm for integers, there are integers ¢ and s such that r=gk +s,
0< s < k (note the inequalities on s). Substituting s = r — gk into the
equation above, we get
F(s)y=(s—nG(s)=— gkG(s).

This equation shows that F(s) is divisible by & (G(s) is an integer), and this
completes the proof.

A simpler approach for this problem, based on modular arithmetic, is to
observe that if @ = b (mod k) then F(a) = F(b) (mod k). The resuit follows
directly from the fact that for any given integer a, F(a) is congruent to one
of F(1), ..., F(k) modulo k, and by assumption, none of these is divisible
by k.

The unique-factorization theorem for integers states that every integer
can be written uniquely as a product of primes. There is a similar theorem
for polynomials: every polynomial over a field can be written tniquely as a
product of irreducible polynomials (ie., prime factors). In the case of the
complex numbers, the irreducible factors are the first-degree (linear) poly-
nomials. In the case of the real bers, the irreducible pol: ials are
the linear polynomials and the quadratic polynomials with negative dis-
criminant (that is, those of the form ax? + bx + ¢, where 5° — dac < 0).

As in the case of integers, unique factorization is often a useful way of
representing a polynomial. The next two examples illustrate the idea.

4.2.5. Prove that every polynomial over the complex numbers has a
nonzero polynomial multiple whose exponents are all divisible by
1,000,000,

Solution. Let the given polynomial be represented by the unique factoriza-
tion

P(xy=A(x = 5)"(x =)™ (x =)™
where A is a constant, s,, ..., s, are the roots of P(x) of multiplicities
my, ....m, respectively. For any positive integer 2 (e.g.. a = 1,000,000),
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(x = 5)/(x — 5,) is a polynomial over the complex numbers (see Section
4.1). Set

Q(x>=xa(ﬂ)“‘ » (Xa‘s,f )w_

x— 5 X =8

Then Q(x) is & polynomial over the complex numbers, and
P(x)Q(x) = A(x = s)™ - (x = 5)™
(o) ()
(x=s)™ (x=s)™
= AxO(xe = sy (xT= 5™

is a pt ial all of whose exp are divisible by a.

4.2.6. Let f be a polynomial with real coefficients. Show that all the zeros
of f are real if and only if f° 2 cannot be written as the sum of squares

/2 = gz T2
where g and h are polynomials with real coefficients and deg g 7 degh.

Solution. Suppose f2= g2+ #% where g and k are polynomials with real
coefficients, deg g = degh, and suppose that all the zeros of f are real.
Write f in factored form:
fxy=A@=a)y™ - (x—a)™
where A is a nonzero real number.
From the equation

Ax = a)f ™ (g = ()P + (R(x)
it follows that for each i = 1,2,..., &,

0= (g(a))*+ (h(a))
Since g(a;) and h(a;) are both real numbers, it must be the case that
g(a;) =0 and h(a;) = 0. In fact, it follows that the multiplicity of these zeros
is at least m,. Thus, the factor theorem implies that there will be polynomi-
als gy(x) and A (x) with real coefficients such that g(x) = f(x)g\(x) and
h(x) = f(x)h,(x). It follows that

1= (g + ()
But this equation is impossible, because deg g, # deg /, (that is, not both

of g, and k, are constants). This contradiction implies that f must have a
zero that is not a real number.
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Now suppose that not all the zeros of f are real numbers, and write f in
factored form:
Jy=A(x—a)™ - (rma) (R bx o) (3 bx 6
where A is a real number, m,, ..., m, are nonnegative integers, s is a
positive integer and n,, . .., #, are positive integers, a;,b;,¢; are real num-
bers, and 57 — 4¢, < O for j=1,. .., 5. We have

X2 Bx+ ¢ = (X2 + bx +4b7) + (¢~ 48])

2
= (x+ib)+ (&,/49 -8 ) ,
which shows that each quadratic factor of f is a sum of squares. Replace

each quadratic factor in the unique factorization of f? by its representation
as a sum of squares. This yields an equation of the form

Sy =A% = agm - (x = a)™

» n
X (ghx)+ h(2)" - () + K (x)

where g, .. ., g.hy, . . ., b, are polynomials, deg g, = 1, and degh, = 0.

The result now follows by repeated use of the fact that the product of a
sum of two squares with another sum of two squares is itself expressible as
a sum of two squares:

(f+ )0+ 10y = (Ja = gk)*+ (fk + gh)’.

Also, in this identity, if deg f > deg g and degh > degk, then deg(fh — gk)
> deg( fk + gh). Thus, we see that there are polynomnals g(x) and h(x) with
real coefficients, deg g(x) # degh(x) such that f2 = g%+ A%,

Problems

4.2.7. Find polynomials F(x) and G(x) such that
(= HF(x)+ (- )e(x)=x- 1.
4.2.8. What is the greatest common divisor of x" — I and x™ — 17

4.29. Let f(x) be a pol ial leaving the inder A when divided by
x —a and the remainder B when divided by x — 5, a b. Find the
remainder when f(x) is divided by (x — a)(x — b).

4.2.10. Show that x* 4+ x®*t 4 x**2 4 x4+3 g b ¢ d positive integers,
is divisible by x* + x2 + x + 1. (Hint: x>+ x* + x + 1 = (x> + I)(x + 1)))

4.2.11, Show that the polynomials (cos8 + xsin#)" — cosnf — xsinnf is
divisible by x? + 1.
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4.2.12. For what » is the polynomial 1+ x2+ x*+ - -+ + x>~ 2 divisible
by the polynomial 1 + x + x>+ - - + x*~'?

4.2.13. A real number is calted algebraic if it is a zero of a polynomial with
integer coefficients.

(a) Show that y2 +3 is algebraic.
(b) Show that cos(w/2n) is algebraic for each positive integer . (Hint: Use
de Moivre’s theorem to express coszx as a polynomial in cosx.)

4.2.14. If P(x) is a monic polynomial with integral coefficients and k is
any integer, must there exist an integer m for which there are at least'k
distinct prime divisors of P(s)? (Hint: First prove, by induction, that there
are k distinct primes gy, ..., q, and k integers n, ..., n, such that g,
divides P(n) for i=1,..., k. Then prove that a prime g divides P(n) if
and only if ¢ divides P(n + sq) for all integers 5. An affirmative answer
follows from these facts together with an application of the Chinese
Remainder Theorem.}

4.2.15.

(a) Factor x®+ x*+ 1 into irreducible factors (i) over the rationals, (ii)
over the reals, (iii) over the complex numbers.

(b) Factor x" — 1 over the complex numbers.

(c) Factor x*—2x® + 6x? + 22x + 13 over the complex numbers, given
that 2 + 3i is a zero.

4.2.16. Here are two results that are useful in factoring polynomials with
integer coefficients into irreducibles.

Rational-Root Theorem. If P(x) = a,x" + a,_;x" '+« + + @yx + aq is a poly-
nomial with integer coefficients, and if the rational number r/s (r and s relatively
prime integers) is a root of P(x) =0, then r divides ay and s divides a,.

Gauss’ Lemma. Let P(x) be a polynomial with integer coefficients. If P(x) can be
Jactored into a product of two polynomials with rational coefficients, then P(x) can
be factored into a product of two polynomials with integer coefficients.

(a) Let f(x)=a,x"+a, ,x""'+ - +ax + g, be a polynomial of de-
gree n with integral coefficients. If a,, a,, and f(1) are odd, prove that
f(x)=0 has no rational roots

(b) For what integer  does x> — x + a divide x'* + % + 90?

4.2.17.

(a) Suppose f(x) is a polynomial over the real numbers and g(x) is a
divisor of f(x) and f’(x). Show that ( 2(x))? divides f(x). (This fact can
be used to check f(x) for multiple roots.)
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(b) Use the idea of part (a) to factor x4+ x*+3x*+2x +2 into a
product of irreducibles over the complex numbers.

4.2.18. Determine all pairs of positive integers (m,n) such that T+x+

X4 o x™ s divisible by 1+ x+ X7+ -+ + X,

4.2.19.

(a) Let F(x) be a polynomial over the real numbers. Prove that g is a zero
of mutliplicity m if and only if F(a)= F(a)= - -- = F"}(a)=0 and
Fom*D(g) £ 0.

{(b) The equation f(¥)= x"—nx +n—1=0, n> 1, is satisfied by x = 1.
What is the multiplicity of this root?

4.2.20. If n > 1, show that (x + 1)" — x" — 1 = 0 has a multiple root if and
only if n — 1 is divisible by 6.

4.2.21, Let P(x) be a polynomial with real coefficients, and assume that
P(x) >0 for all x. Prove that P(x) can be expressed in the form
(@) + (O + -+ - + (Q,(x)) where 01(x), @), - . ., Qy(x) are

polynomials with real coefficients.
4.2.22.
(a) Set w = cos(27/n) + isin(27 /n). Show that
X T T I (@) x — D) (xm e,
(b) Set x = 1 and take the absolute value of each side to show that

n—1
2"---sing— n

n n 2L

sin Z sin
n

Additional Examples

1.12.2, 1.12.5, 6.5.13, 6.9.3.

4.3. The Identity Theorem

Let P be a nonzero polynomial of degree n over an integral domain D.
According to the factor theorem, if @ is a root of P(x)=0, there is a
polynomial @ of degree n — 1 such that P(x) = (x — a)((x). Using this
fact, an easy induction argument shows that P has at most # zeros.

The preceding observation has a very important corollary. Suppose that
F and G are polynomials over a domain D, each of degree less than or
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equal to n, and suppose that F and G are equal for n + 1 distinct values.
Then F — G is a polynomial of degree less than n + 1 with n + 1 zeros. If
F— G is not the zero pol. ial, we have a diction to the i
in the previous paragraph. Therefore, F — G is the zero polynomial, and it
follows that F equals G {coefficient for coefficient). (For another proof, see
6.5.10.)

Identity Theorem. Suppose that two polynomicls in x over an integral domain are
each of degre < n. If these polynomials have equal values for more than n distinct
values of x, then the two polynomials are identical.

43.1. Determine ali polynomials P(x) such that P(x*+ 1) = (P(x)’ + 1
and P(0)=0.

Solution. We start by testing some cases:
P(ly= PO+ )= (PO +1=1,
PQy=P(+)=(P(YF+1=1+1=2,
P(S)=P2+ 1)=(P2)P+1=4+1=5
P26)=P(52+ 1)=(P(5)P+1=5"+1=26.

In general, define x, = 0, and for n > 0 define x, = x?_ + 1. Then an easy
induction argument shows that P(x,) = x,. Thus, the polynomial P(x) and
the polynomial x are equal for an infinite number of integers, and there-
fore, by the identity theorem, P(x)= x. That is, there is only one polyno-
mial with the stated property, namely, P(x) = x.

4.3.2. Prove that if m an n are positive integers and 1 < k < n, then

S 0= (")

r=0

Solution. We proved this identity in Chapter 1 (see 1.3.4) by using a
counting argument. Here is another proof, based on the identity theorem.
The i is dard: the pol ial (l+x&’l"(l+x)" and (1 +
xY"*" are equal for all vdlues of x. Therefore, by the identity theorem,
their coefficients are equal; that is, for each k, the coefficient of x* in
(1+ x)"(14 x)" is equal to the coefficient of x* in (I + x)™*". It follows

S 0=

r=0
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4.3.3. For each positive integer n, show that the identity
n
(x+p)'=3 (:)x"y""‘, X, y positive integers
i=0
implies the identity

n
x+p)'=2 (Z)X"y"’k. x, y real numbers.
k=0

Solution. Let y, be an arbitrary but fixed positive integer, and let

"
Py=(x+y)h 0@ =3 ([
k=0
P(x) and Q(x) are polynomials in x, and they are equal whenever x is a
positive integer. Therefore, by the identity theorem, P(x) and Q(x) are
equal for all real numbers x.
Now, let x, be a fixed real number, and let

n
SO)=(ty) amd TO)= 3 (s

S(y) and T(y) are polynomials in y, and since they are equal whenever y is

a positive integer, it follows that S(y) = T(p) for ali real numbers y. This

completes the proof.

(Incidentally, the identity

P
(x+y)'=3 (:)x“y"'k, x, y positive integers
k=0

can be proved neatly as follows. Let § = {1,2,..., n}; let A be a set with
x elements and B be a set, disjoint from A, with y elements. Now, count, in
wwo different ways, the number of functions from § to A U B. This,
together with the preceding solution, constitutes another proof of the
binomial theorem.)

434. Is x° — x* + 1 irreducible over the rationals?

Solution. By the rational-root theorem (see 4.2.16), the only possible ra-
tional zeros are 1, and neither of these is a zero. Therefore, if the
polynomial is reducible, it must necessarily be the product of a quadratic
and a cubic. So suppose

-+ 1= (x4 ax+ bY(x* + ex? + dx + e).

By Gauss’ lemma (see 4.2.16), we may assume that a,b,c,d, e are integers.
Since these polynomials are equal for all x, their coefficients are equal; so,
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equating coefficients, we get the following equations:

a+c=0,

bd + ae =0,
be=1.

Tt is not difficult to show these equations cannot hold simultaneously. For
example, the last equation shows that b and e are both odd. Thus, the
fourth equation shows a and 4 have the same parity. Similarly, the first
equation shows that a and ¢ have the same parity. Therefore a, ¢, and d
have the same parity. But then ac + d is even, and the second equation
cannot hold (b is odd). Therefore x* — x?+ 1 is not reducible over the
integers, or the rationals.

Another way to proceed with the problem is based on the following
observation. If f, g, and k are polynomials over the integers and f= gh,
then f = gh(mod n), where f; , and / are the polynomials formed from f,
g2, and h respectively by taking their coefficients modulo . If fis reducible
over the integers, then f is reducible over the integers taken moduio n. In
the case at hand, the pol. jal x*— x*+1 £ o X +x+1
(mod 2). The only irreducible quadratic polynomial over Z, = (0,1} is
x2+ x + 1 (the other quadratic polynomials and their factorizations mod-
wlo 2 are x> = x-x, x24 1 =(x + 1), and x>+ x = x(x + 1)). But x*+
x + 1 does not divide x* + x2+ 1in Z, (x° + x2 + 1 = (x> + x)(x? + x +
1) + 1 (mod 2)), and therefore, x° + x? + 1 is irreducible over Z,. It follows
that x> — x2 + 1 is irreducible over the integers, and the rationals.

In the preceding discussion, we made use of the fact that polynomials
over Z, can be added, subtracted, and multiplied in the usual manner
except that the arithmetic (on the coefficients) is done within Z, (i.e.
modulo ). If n is a prime number, say n = p, then Z, is a field, so all the
results concerning polynomials over fields (e.g., the factor theorem, the
identity theorem) continue to hold. This is not the case if # is not a prime.
For example, 2x° — 2x, as a polynomial over Z,, has four distinct zeros in
Z,, namely, 0, 1, 2, and 3, whereas it would have at most three if the
arithmetic were carried out in a field.

Let p be a prime, and consider the binomial theosem modulo p

a+ x)"z’go(i)x“ (mod p),

where each side is regarded as a polynomial over z,. For1<k<p—1,
we have (§) = 0 (mod p), since none of the factors in k!(p — k)! divide the
factor of p in p!. Thus, as polynomials over Z,,

(1+ xy'=1+ xP (mod p).
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More generally, for each positive integer n,
(1+ %"= 1+ x*" (mod p).

The argument is by induction. It is true for n = 1, and assuming it true for
k, we have

I+ P =1+ xpP (1 +xy" - (1 + xy" (mod p)
 times

=(1+x7 Y1+ 27"y -« (1 + x7") (mod p)

=(1+ x?*Y (mod p)
=1+ (xr") (modp)
=(1+ x”m) (mod p).
By equating coefficients of x’ on each side, we find that

(P")EO(modp), 1<i<pn

i

43.5. Prove that the number of odd binomial coefficients in any finite
binomial expression is a power of 2.

Solution. A conjecture, based on the examination of several special cases
(see 1.1.9), is that the number of odd coefficients in (1 + x)" is'2%, where k
is the number of nonzero digits when » is expressed in binary notation.
An example will make it clear how the proof goes in the general case.
Consider n = 13. In binary notation, 13 = 1101, = 8 + 4 + 1. Therefore,
(14 x)%= (1 + x)*+4*!

=(L+x)¥ 1+ x)(1 + x)

i

=(1+ 281+ x*)(1+ x) (mod 2),

making use of the previously established result. From this we can see that
there are eight odd binomial coefficients in (1 + x)'*. This is because when
the right side in the preceding equation is expanded, (1 + x*)(1 + x) will
have four terms, and (1 + x®)(1 + x* + x + x°) will have eight terms. (In
general, if 1 + x" is multiplied by a polynomial P(x) of degree smaller than
n, the result will be a polynomial with twice as many nonzero coefficients
as the corresponding number in P(x).)

Consider the polynomial equation x?+ ax + b =0, and suppose its
roots are r, and r,. Then we can write

x4 ax+b=(x~r)x—r)

=x = (rtr)x+rr.
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From this, using the identity theorem, it follows that
ntrn=—a
rry=b.
Similarly, if x* + ax? + bx + ¢ = 0 has roots ry,r,,7; we have
Xt axt+bx+o=(x—r)(x—r)x—ry)
=x’—(r+ )t
R GRS 2 e lres
In this case,
ntrn+rn=—a
nry ANt =25
ity =—c.
In each case, we have expressed the coefficients of the polynomial
equation in terms of the roots (in a rather patterned way). An induction
argument shows this is true in general: specifically,

Ifx"+ g, x" " 4+ o Fagx + ag =0 has roots ry,ry, -, 1, then
Si=n+nt o trn=—a_,
R T R T A o R L I S T LAk

Sy=rirarst gt o R Rarstet v R L ot (= — @3,

Se=rnrp o =(-1a,
where S; is the sum of all the products of the roots taken i at a time.

4.3.6. Consider all lines which meet the graph
y=2x*+7x+3x -5
in four distinct points, say (x;, y;), { = 1,2,3,4. Show that
X+ x,+ x5+ x,

is independent of the line, and find its value.

Solution. Let y = mx + b intersect the curve in four points (x;, y)), i = 1,2,
3,4. Then x, x,, X3, X4 are the roots of the equation
mx+b=2x"+7Tx*+3x -5,
or equivalently, of
447,03 3-m
x4+ 3x +( 5 )x +(

1t follows from our earlier remarks that (x, + x, + x; + x)/4 = (— 1)/4
= —1,and this is independent of m and b.
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4.3.7. Let P be a point on the graph of f(x)=ax’+ bx, and let the
tangent at P intersect the curve y = f(x) again at Q. Let the x-coordinate of
P be x,. Show that the x-coordinate of Q is —2x,.

Solution. The straightforward approach is to write the equation of the
tangent to the curve y = f(x) at P, say y = T(x), and to solve y = T(x) and

= f(x) simultaneously to find g.

Another approach is to argue as follows. We recognize that solving
» = T(x) and y = f(x) simultaneously is the same as finding the roots of
f(x} — T(x) = 0. Now x, is a double root (that is, of multiplicity 2) of this
equation, since T(x) is'tangent to y = f(x) at x,. What we seek is the third
root, denoted by x;. We know that the sum of the roots, 2x, + x,, is equal
to the coefficient of the x? term. But the coefficient of the x? term is 0, so it
follows that x, = —2x,.

4.3.8. Let x, and x, be the roots of the equation
x*—(a+d)x+(ad — bc)=0.
Show that x} and x} are the roots of

y*=(a’+ d® + 3abc + 3bed ) y + (ad — be)*=0.

Solution. We know that
X +x,=a+d,
X%y = ad — be.
Since (x; + x,)° = x3 + 3xfx, + 3x,x% + x}, we have
X} + x3 = (x, + %)’ = 3xdx, — 3xx3
=(a+d)-3xxy(x, + x5)
=(a+dy—3(ad - be)a + d)
=(a+d)[a*+2ad + d* = 3ad + 3bc]
=(a+d)a’ - ad + d*+ 3bc)
=a’ + d*+ 3abe + 3bcd.
Furthermore,
xix} = (ad - be)’,

and the proof is complete.

4.39. Let a,b,¢ be real numbers such that a + b + ¢ = 0. Prove that
a5+b’+c’=(a’+b3+c’ al+ b2+ c?
5 3 2 :
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Solution. Here is a very clever solution based on the ideas of this section.
Let 4 = ab + ac + be and B = abc. Then a,b, ¢ are roois of the equation

x*+Ax—-B=0.
For each positive integer #, let T, = a" + " + ¢”. Then,
To=3,
T,=0,
Ty=(a+b+c) —2ab+ac+ bcy= —24.
Forn»0, T,,;= —AT,, | + BT, (substitute a,b,c into x"*> = — 4x"*!
+ Bx" and add), and this gives
T,= —AS, + BS,=3B;
Ty= —AS, + BS, =242,
Ty= —AS,+ BS,= —54B. -

It follows that
TS Tl T2
ERai 2
4.3.10. Show that the polynomial equation with real coefficients
Pxy=ax"+a,_x" "'+ - +ax’+xitx+1=0

cannot have all real roots.

Solution. Let r|,7,,...,r, denote the roots of P(x)=0. None of
Fis - .y Iy i 2er0. Divide each side of P(x)=0 by x" and set y = 1/x, to
get .

Q=Y +p " T gy T ay +ay =0,

Note that 7 is a root of P(x) =0 if and only if 1/r is a root of Q(y)=0.
Therefore, the roots of Q(y)=0 are s,5,,...,s,, where 5,=1/r, i
L ..., n It follows that

and therefore,

(g )—zzs,s_l—z-—l

This equation implies that not all the s;’s are real; equivalently, not all the
r’s are real.
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Problems

43.11. Let k be a positive integer. Find all polynomials
P(x)=a,x"+ - +ax+a,
where the g, are real, which satisfy the equation

p(p(x) =[P(0)]"

43.12.

(a) Prove that logx cannot be expressed in the form f(x)/ g(x) where f(x)
and g(x) are polynomials with real coefficients.

(b) Prove that e* cannot be expressed in the form f(x)/ g(x) where f(x)
and g(x) are polynomials with real coefficients.

4.3.13. Show that
(L4 x) = x(1+x)+ (4 x)" =+ o 21+ x)"
=R (- 1Y,
and use this identity to prove that

()= =6

43.14.
(a) Differentiate each side of the identity
n
1+ x)"= Pyxk
1+ Eu(k)

By comparing the coefficients of x*~" in the resulting identity, show

that
n=1Y_ ("
"(k—l) - k(%)
(b) Use the result of part a to show that
n—1
_nifn—1y_1__1
21( l)( i )i+l n’

43.15. Let x” = x(x — 1) - - - (x — n + 1) for n a positive integer, and let
x® = 1. Prove that for all real numbers x and y

(x+p)"= k}:)o(Z)x"‘fV‘"”".

4.3. The Identity Theorem 141

(Hint: This can be done by induction, but consider a proof similar to 4.3.3
which first establishes the result for positive integers x and y. For this,
count in two different ways, the number of one-to-one functions from
{1,2,...,n}into 4 U B, where 4 is a set with x elements and B is a set,
disjoint from A, with y elements. Prove the identity for all real numbers by
making use of the identity theorem.)

43.16. Is x* + 3x* + 3x2 — 5 reducible over the integers?
4.3.17. Let p be a prime number. Show that

(@) CH=(=—1F (modp), 0< k< p—1,
) *1)=0(modp),2< k< p—1,

(© ¢ =@G)(modp),a>b>0,

@ (D=2 (mod p).

4.3.18. Let w = cos(27/n) + isin(2w/n).

(a) Show that 1,w,w? ..., w" ' are the n roots of x” — 1=0.

(b) Show that (1 —w)(1 —w?) - (1 —@" H=n.

(c) Show that w+ -+ + " '=—1

4.3.19.

() Solve the equation x* — 3x?+4 =0, given that two of its roots are
equak.

(b) Solve the equation x* — 9x? + 23x — 15 = 0, given that its roots are in
arithmetical progression.
4.3.20. Given r,s,1 are the roots of x* + ax?+ bx + ¢ =0.
(a) Evaluate 1/7%+ 1/s%+ 1/, provided that ¢ # 0.
(b) Find a polynomial equation whose roots are 2,5, ¢%.
4.3.21. Given real numbers x, y,z such that
x+y+z=3,

it t=5,

X4y +=7,
find x* + y* + z*. (Hint: Use an argument similar to that used in 4.3.9.)

We close this section with three problems which draw attention to some
additional results about polynomials that are very useful in certain prob-
lems.

4.3.22 (Theorem). If x,x,, . .., x, are distinct numbers, and y,, ..., y,
are any numbers, not all zero, there is a unique polynomial f(x) of degree
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not exceeding » — 1 with the property that f(x,) =y, f(x)) =y, ...,
Jxy =y
Outline of Proof:
(2) Let g(x)=(x ~ x;}(x ~ x) - - - (x — x,). Show that
8(x) (=("—x2)("*)‘3)"'(x*xn))

(x = x)g'(x)) (xp=x) (1= x)
is a polynomial of degree n — 1 with zeros at x, ..., x, and which
equals 1 at x = x,.
(b) Lagrange interpolation formula. Show that

e £ N
= e ' G

8(x)
7
G- g ()

takes the values y|, y,, . . ., , at the points x,, . . ., x, respectively.
(c) Application. Suppose that P(x) is a polynomial which when divided by

x —1,x —2,x -3 gives remainders of 3,5,2 respectively. Determine

the remainder when P(x) is divided by (x — 1)(x — 2)(x ~ 3). (Hint:

Write £(x)= Q(x)(x — 1)(x — 2)(x — 3) + R(x), where R(x) is of de-

gree less than 3. Find R(x) by the Lagrange interpolation formula,

since R(1)=3, R(2)=5, R(3)=2)

4.3.23 (Partial Fractions).

(a) Show that if f(x) is a polynomial whose degree is less than #, then the
fraction

fx)
(F—x)(x=xg) - (5~ %) 7
where x,,x,, ..., x, are n distinct numbers, can be represented as a
sum of n partial fractions
A A A
P I
x—x  x—x x = X,
where 4,,..., A, are constants (independent of x). (Hint: Use

Lagrange’s interpolation formula: divide each side by g(x), etc.)

(b) Application. Let f(x) be a monic polynomial of degree » with distinct
2€108 X|,X;, ..., X,. Let g(x) be any monic polynomial of degree
n— 1. Show that

- 8% _
= (%)
(Hint: Write g(x)/f(x) as a sum of partial fractions.)

1
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4.3.24. A sequence of numbers ug,u;,u,, . . . is called a sequence of kth
order if there is a polynomial of degree k,

Px)y=agx*+a_x*'"+ . - +ax+a

such that 4, = P(i) for i =0,1,2,... .
The firsi-difference sequence of the sequence uy,u),u, ... is the se-
quence uf”,u{", 4", . .. defined by

U =up ~u, n=0,123 ...

(a) Prove that if uy,u,u,, ... is a sequence of order k, then the first-
difference sequence is a sequence of order k — 1. Define the second-
difference sequence of ug, 4, u,, . . . to be the first-difference sequence
of the first-difference sequence, that is, the sequence u?,u{®,u(?, . . .
defined by

W =l =
=ty =2+ U, n=0,12,....

From part (a) it follows that u{®,u{?,u{?, ... is a sequence of order
k —2. Similarly, define the third-difference sequence, the fourth-
difference sequence, and so forth. Repeated application of part (a)
shows that if wg, 4,4, ... is a sequence of order k, the (k + 1)st
diff el will be identi zero. We aim to establish the
converse: if the successive difference sequences of an arbitrary se-
quence ug, 4,4, . . . eventually become identically equal to zero, then
the terms of original are ive values of a pol ial
expression; that is, there is a polynomial P(x) such that u, = P(n),
n=012....

(b) Use induction to prove that

G (0 (57

(c) Suppose that the original sequence is described by the function F(x).

That is, suppose that F(n) = u,, n=0,1,2,. Fork=0,1,2,3,...,

let AKF(0) = u§®, and for x a real number and i a positive integer, let

xD = x(x = 1)}(x —2) -+ (x — i + 1). Show that the result of part (b)
can be written in the form

.

= AYF(0

Fny=73, %n"‘).

=0 :

Note the similarity to the Taylor expansion of F(x):

=

F(x) =k2 (FO(0)/kt)x*.

=]
(d) Prove that if the (k + 1)st difference sequence is identically zero, then
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the original sequence is given by

P()z

(€) Use the result of part (d) to find a closed formula for the sum of the
series 14+ 2%+ - .- + n*. (Hint: Notice that the first-difference se-
quence is given by a polynomial of degree 4, and therefore, the sum will
be a polynomial of degree 5.)

F(O) SFO) .

Additional Examples

4430, 4431, 7.2.10, 8.2.2, 8.2.3, 8.2.10, 8.4.11.

4.4. Abstract Algebra

A group is a set G together with a binary operation * on G such that:

(i) Associative property. For all elements a,b,¢ in G
(asb)sc = as(bxc).
(ii) Identity. There is a unique element e in G (called the identity of G)
such that for every element @ in G,
ase=a=e*q.
(iii) Jnverse. For each element a in G, there is a unique element a'inG
(called the inverse of a) such that
a sa=e=ara.

When working with groups, we sometimes think of the operation * as
“multiplication,” and in this case we often suppress the  in writing
products. Thus, a* is written simply as ab, and a+(b»c) is written as a(bc),
or abe, and so forth. Furthermore, when we think of + as a product, we
sometimes denote the identity element as “1.” In addition, we use exponen-
tial notation to simplify expressions; e.g., a* = aaaa, etc. It is not difficult
to show that the usual laws of exponents hold in a group, namely,

aa™=a"t",  (a"Y"=a"™,  nmintegers.

The group operation need not be commutative; i.e., it may not be the
case that ab = ba for all elements a,b of G. An example of such a group is
the set of a-by-n nonsingular matrices over the real numbers.

In any group G, it is the case that

(ab)y'=b"Ya"!, abeG.
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This identity is fundamental and can be proved in the following way.
Observe that (ab)(b 'a~")=a(b(b™'a ') =a((bb™"Ya" ") = a(ea™ )
=aa”'=e, and (b”'a""Yab) = b~ "(a"\(ab)) = b~ "((a~'a)b) = b~ (eb)
= b"'b = e. Therefore 5~ 'a™" is an inverse for ab. But ab has a unique
inverse, denoted by (ab)~'. It follows that (ab) ™' = b~ 'g~".

1f the group G is commutative (i.e., if ab = ba for all a,b € G), it is easy
to show that

(ab)'=a"",  a,bE€G naninteger.

4.4.1. Suppose that G is a set and * is a binary operation on G such that:

(i) Associative property. For all a,b,¢ in G, as(bxc) = (asb)*c;
(ii) Right identity. There is an element e in G such that for every element a
in G, a*e = a; and
(iii) Right inverse. For each element @ in G, there is an element ¢~ ' in G

such that axa™' =e.

Prove that G is a group.

Solution. We will show that the right identity e is also a left identity, and
the right inverse @ ~' is also a left inverse for a. Then we will show that e
and @~ are unique.

Observe that a~' is an element of G, and therefore by (ii), there is an

element (a~")"" in G such that (@~ ")*(a~!)~' = . We now compute
ala=(a"'a)e= (a"a)(a’ Wa~ ')71)
-t “lg-!
a [a(a (a )] .
=a[(aa"Ya™) "]
= a"{e(a")"] =(a )@y
=a"ay"
=e.
This shows that @' is an inverse (left inverse and right inverse).
Also, ea = (aa™")a = a(a”'a)= e =a, and therefore e is an identity
for G (that is, for each a, ea = a = ae).
. Sl{ppose € is also an inverse for G. Then e = exe’ (because ¢ is an
identity) = ¢’ (because e is an identity). This shows the identity element of
G is unique.
Suppose (a~') is also an inverse for a. Then (@~ ') = (a~Ye=(a"y

(aa~')={(a"'Yala™' = ea~' = a~'. This shows the inverse of « is unique.
It follows that G is a group.
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4.4.2. Let G be a group.
(a) Cancellation property. For all a,b,c in G, show that
ab=ac implies b=c¢,
ba=ca implies b=c.
(b) Let a be an element in G, and consider the sequence
Laaia’, ... .
Show that either all the elements in the sequence are different, or there
is a smallest integer n such that a” = 1 and l,a, ..., a" "' are distinct.

In the latter situation, n is called the order of a, denoted by ord(a); in
the former case we say that ¢ has infinite order.

Solution, (a) This follows immediately by multiplying each side on the left
(and right respectively) by a~

(b) Suppose that not all elements in the sequence are different, and let n
be the smallest integer such that a” is a repetition of a previous element in
the sequence. Then a” = l for if a” = a’, 0 < i < n, then by the cancella-
tion property, @' = a’™!, and this contradicts our choice of n.

4.4.3. Let 2 and b be two clements in a group such that aba = ba’h,
, and 5>~ = ¢ for some positive integer n. Prove that b= e.

Solution. Note that if ab = ba, then aba = ba’ is the same as @%b = a%?,
and the cancellation property implies b = e. Although the group may not
be commutative, we shall prove that this particular set of equations for
and b does imply that ab = ba.

Nollce that ab = ba is the same as ab®" = b*"a, since by assumption

= b. To show that ab® = b¥a it suffices to show that ab® = b%a, since
abz" = a(b?" = (b*Ya (by repeated application of ab? = b%a) = b¥a.

Thus, the proof is complete after observing that ab’ = (aba)a™'b)
= (ba’b)(a 'b) = (ba’)(ba = 'b) = (ba®)(ba’h) = (ba’)(aba) = ba’ba = b%a
(since a° = ¢).

Let G be a group. We say that H isa subgraup of G if H is a subset of G
which is itself a group (under the operation of G). The order of H is defined
to be the number elements in H, and this number is denoted by ord(H).

An important class of subgroups are the following. Let 4 € G, and let

{a>= {a" : nis an integer}.
It is easy to check that {a) is a subgroup of G; it is called the cyclic
subgroup generated by a. Note that ord(e) = ord({a)).

The following theorem constitutes one of the most important results in
the theory of finite groups.
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Lagrange’s Theorem. If H is a subgroup of a finite group G, then the order of H
divides the order of G.

Here are three important corollaries.

(i) If G is a group of order n and a € G, then @" = 1.
(i) If G is a group of order p, where p is a prime, then G is a cyclic group
(ie., G = {a) for some a € G).
(iii} If G is a group and @" = 1, then the order of a divides n.
We will leave the proof of Lagrange’s theorem as a problem (see 4.4.18);
however, it is instructive to see the arguments for the corollaries.

Proof of (i). Let @ € G and let m = ord(a). By Lagrange’s theorem m
divides n, 0 suppose #n = mq for some integer . Then a” = @™ = (a™)?
=1"=1

Proof of (ii). Let a be an element of G different from the identity. Then
{a) is a subgroup of G with more than one element (namely, | and a). By
Lagrange’s theorem, the order of {a) divides p, but since p is prime, it must
be the case that (a) is of order p; that is, {a) = G.

Proof of (iii). Let m = ord(a). By the division algorithm there are inte-
gers ¢ and r such that n=gm+r, 0<r<m Thus 1=g"=qg?*"
={(a™Y%a" = a’. Since l,a,...,a™ " are distinet, it must be the case that
r=0, and it follows that m divides n (this is a typical application of the
division algorithm for integers).

4.44. If in the group G we have a’ =1, aba~' = b® for some a,b € G,
find ord(d).

Solution. Since a® = 1, the order of a is either 1 or 5. If ord(a) = 1, then
a=1and it follows that b = b%, or b= 1, apd so ord(h) = 1.

Suppose ord(a) = 5. We have (aba~'Yaba™') = (b*)%, or equivalently,
ab’a~''= b* Substituting aba~' for b on the left side of this equation
yields a%a=? = p*, Squanng this, we get (a%a~2(a%ha=?) = (b*Y, or
equivalently, a®% =2 = b°. Again, subsmutmg aba ™" for b* on the left, we
get a’ba~* = b%. Squaring gives a’b%a~>=b', and subsmutmg gwes

a'ba~* = ', One more time: a’b% ~* = 5%, or equivalently, bz~ = b2,
Buta®=a"%=1,50 b= b*, and on cancellation, we get b*' = 1. Since 31
is a prime number, the order of b is 1 (if 4 is the identity) or 31.

4.4.5. If G is a finite group and  is a positive integer relatively prime to
the order of G, then for each a in G there is a unique & in G such that
b™=aq.

Solution. Let 7': G— G be defined by T(x) = x™. We aim to show that T is
a one-to-one function. So suppose that T(x) = T(y) for elements x and ¥
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of G. Then x™ = y™. Let n = ord{G). Since n and m are relatively prime,
there are integers s and ¢ such that sn+ tm=1. Hence x=x"""
={(x"F(x") = (x") (since x"=1) =(p”) (since x"=y")y=(y"y

Y (since y" = 1) = pt = .

o T)he(reforeyT isa )one::o-one fu{wtion, and since G is a finite set, T is onto
G. That is, for a € G, there is a unique b in G such that T(b)=a
(equivalently, ™ = a).

The first corollary to Lagrange’s theorem states that a®% %> = 1 for each
element in the finite group G. This has a number of interesting and
important consequences when applied to particular groups. Fo_r example,
let ¥, denote the set of positive integers less than # that are relatively prime
to n. The elements of ¥, form a group under multiplication modulo ». Let
@(n) = ord(V,). (The function @ is called the Euler g-function.) Then
Lagrange’s theorem implies the following.

Euler’s Theorem. If  is any integer relatively prime to n, then

a®" =1 (mod n).

When » is a prime number, say n=p, we have g(p)=p— lf so that
a?~'=1 (mod p) whenever a is not a multiple of p. If we multiply e:ach
side by a, we get a” = a (mod p). This congruence holds even when a is a
multiple of p, and thus we have the following resuit.

Fermat's Little Theorem. If a is an integer and p is a prime, then
2# = a (mod p).

4.4.6. Prove that each prime divisor of 27 — 1, whgre Iz.isA a.grime, is
greater than p. (It is a corollary that the number of primes is infinite.)

Solution. The result is true for p =2, so henceforth assume that p is odd.
Suppose that g is a prime that divides 2# — 1. Then ¢ is odd and 27 =1
(mod g). By Fermat’s little theorem, 2¢97' =1 (mod g). If g = p we have
2=2x1=2x27""'=27=2/ =1 (mod ¢), a contradiction. If ¢ < p, then
g — 1 and p are relatively prime, so there are integers sjr:d ¢ such that
sp+t(g— 1) =1 It follows that 2 = 2P+ = (27y(297 1Y =1 (mod ¢),
a contradiction. Thus ¢ must be larger than p.

4.4.7. Show that if » is an integer greater than 1, then n does not divide
2" -1

Solution, Suppose that » divides 2" — 1; that is, 2" = 1 (mod n)_. Clea'rly, n
is an odd number, since 2" — 1 is odd. Suppose that p is a prime divisor

44. Abstract Algebra 149

of n. Then 2" =1 (mod ). Now, regard 2 as an element of the group V,.
We know that 22~' =1 (mod p) (Fermat’s little theorem, since ged(2,n)
= 1). By the third corollary to Lagrange’s theorem, p — 1 divides n. So far
there is no contradiction. However, suppose p is chosen as the smallest
prime which divides 5. Then these same conclusions hold, but now, the fact
that ord(2) divides » and ord(2) divides p — 1 produces a contradiction to
our choice of p. Therefore, # can never divide 27 — 1.

4.4.8. Show that for any positive integer n there exists a power of 2 with a
string of more than n successive zeros (in its decimal representation).

Solution. For any positive integer s, there exists a positive integer ¢ such
that 2' =1 (mod 5*) (for example, take 1 = @(5%)). Let s = 2n. There exist
positive integers ¢ and r such that 2/ — 1 = g X 5*". Multiply each side by
2%, rewrite as

YISy g x 10,

and notice that 2’*2" has at least # consccutive zeros in its decimal
representation, since 2% < 107

4.4.9. Given positive integers @ and b, show that there exists a positive
integer ¢ such that infinitely many numbers of the form an + b (n a
positive integer) have all their prime factors < c.

Solution. The result is obviously true when a = 1, so suppose a > 1. First,
consider the case in which ged(a, 5) = 1. We will prove there are an infinite
number of terms of the arithmetic sdquence an + b among the terms of the
sequence (a + b)), k=1,2,3,... .-

From Euler’s theorem, 5% = 1 (mod @), since  is relatively prime to a.
It follows that for each positive integer s,

(a+ BY™* = pro@+ L= (poN'p = b (mod a).
This means that for each positive integer s there is an integer ¢, such that
(a+by* 9 = ga+b.

Tt follows that each of the terms ¢a+b, x=1,23,... has only those
prime factors that occur in a + b.

Now consider the case in which gcd(a,5) = d > 1. Then ged(a/d,b/d)
= 1, so from our preceding argument, there is a ¢ such that infinitely many
members of the sequence (a/d)n + (b, /d) have all their prime factors < c.
From this it follows that infinitely many members of the form an + b have
all their prime factors < cd. This completes the proof.
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A ring is & set R with two binary operations, + and -, such that

(i) R is a commutative group with respect to the operation +;
(ii) For all a,b,¢ in R, a(bc) = (ab)c (- suppressed);
(iii) For all a,b,c in R,
a(b+c)=ab+ac,

(b+c)a=ba+ca

R need not have a multiplicative identity: if it does, we say R is a ring
with identity. The multiplication in R need not be commutative: if it is, we
say that R is a commutative ring.

4.4.10. Let a and b be elements of a finite ring such that ab® = b. Prove
that bab = b.

Solution. Obviously, if the ring were commutative the result would be
immediate, but we must show the result holds even when the ring is
noncommutative. In addition, we cannot assume the ring has a muitiplica-
tive identity.

Suppose b= b%. Then bab = bab>=b*>=b, and we are done. Sup-
pose b=b" for some integer m >2. Then bab= bab™ = b(abPb™"?
= p%m-2=p™ = b, and we are done. Therefore it is sufficient to show
that & = 5™ for some integer m > 2. '

Suppose the ring has n elements. By the pigeonhole principle, at least
two elements in the sequence b,b?, ..., b"b"*" are equal. Let i be the
smallest integer such that b’ equals some subsequent power of b in the
preceding sequence; that is, bi=b"", 1<i<i+j<n+1 Suppose
i > 1. Then multiply each side of ab> =& on the right by 5'*/72 to get
ab'*/ = b+, But since b’ = b'*/, we have ab’ = b'*/~'. From here there
are two cases to consider.

Suppose i = 2. Then b = ab® = b/*! (from the last equation), and this
contradicts our choice of i. So, suppose i >2. Then b '=5- bi7?
= (ab) X b'~2 = ab’ = ab'*/~", which dgain contradicts our choice of .
Therefore, i = 1; that is, b= b/ for some j. By the argument in the first
paragraph, the proof is complete.

An integral domain D is a commutative ring with unity in which for a,b
in D, ab = 0 implies @ = 0 or b = 0. The cancellation property holds in an
integral domain. For, suppose ab = ac and a 5 0. Then a(b — ¢) = 0, so
b — ¢ =0, or equivalently, b = c. Similarly, ba = ca, a # 0, implies b = c.

A field is a commutative ring with identity in which every nonzero
element has a multiplicative inverse.
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4_.{.]1. Show that a finite integral domain (an integral domain with only a
finite number of elements) is a field.

Solution. We must show that every nonzero element of the integral domain
has a multiplicative inverse. So, let D*={a,,...,a,} be the nonzero
elen_ncms of the integral domain, and consider an arbitrary element a of D*.
Define 7: D*— D* by T(a)} = aa,. If T(a)= T(ay) then aa; = aa,, so by
the cancellation property, a; a. Thus we see that 7 is a on(/e»to-one
function. Since D* is finite, the mapping T is onto D*. But one of the

- elements in D* is the multiplicative identity, denoted by 1. Therefore,

T(ak?= 1 for some @, € D*; that is, ag, = 1. This shows that a has a
multiplicative inverse.

Problems

4.4.1.2. Let G be a set, and * a binary operation on G which is associative
and is such that for all a,b in G, a’ = b = ba? (suppressing the +). Show
that G is a commutative group.

4.4.13. 4 is a subset of a finite group G, and 4 contains more than
one-half of the elements of G. Prove that each element of G is the product
of two elements of 4.

4.4.14. Let H be a subgroup with & elements of a group G. Suppose that G
has an element a such that for all x in H, (xa)’ = |, the identity. In G, let P
be_lhe set of all products x,ax,a - - - x,a, with 2 a positive integer and the
x; in H. Show that P has no more than 34 elements.

4.4.15. 1f a~'ba=b"" and b~'ab=a"" for elements a,b of a group,
prove that a* = b= 1.

4.4.16, Let a and b be elements of a finite group G.

(a) Prove that ord(a) = ord{a ™ !).

(b) Prove that ord(ab) = ord(ba).

(c) If ba = a*h®, prove that ord(a‘h) = ord(a%?).

4.:1.17. Let a and b be elements of a group. If b~'ab = a*, prove that
b™"a'h" = a**’ for all positive integers 7 and s.

4.4.18 (Outline for the proof of Lagrange’s Theorem). Let G be a finite
group and H a subgroup with m distinct elements, say H = {Lhy,
hy ..., h,). For each a € G, let Ha = {a,hya,hsa, . .., b a).

(a) Prove that Ha contains m distinct elements.

(b) Prove that Hh, = H.

{¢) If b & Ha, prove that Ha and Hb are digjoint sets.

o
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(d) Prove that there are elements @,,a,, . . ., 4, in G such that G = Ha, U
HayU -~ - U Ha, and Ha, O\ Ha, =0 if i # .
(e) Use the previous results to formulate a proof of Lagrange’s theorem.

4.4.19, Find the smallest integer n such that 2" — 1 is divisible by 47.
4.4.20. Prove that if p is a prime, p > 3, then ab? — ba” is divisible by 6p.

4.4.21. Let a and b be relatively prime integers. Show that there exist
integers m and n such that a™ + b” = 1 (mod ab).

4.422. It a,b,c,d are positive integers, show that 30 divides a®*—
a4r+d_

4.4.23. Let T, =2"+1 for all positive integers. Let ¢ be the Euler -
function, and let k be any positive integer and m = n + kp(7,). Show that
T,, is divisible by T,,.

4.4.24. Prove that there exists a positive integer k such that 2" + 1 is
composite for every positive integer #. (Hint: Consider the congruence class
of n modulo 24 and apply the Chinese Remainder Theorem.)

4.4.25. A Boolean ring is a ring for which a® = a for every element a of the
ring. An element a of a ring is nilpotent if a” = 0 for some positive integer 2.
Prove that a ring R is a Boolean ring if and only if R is commutative, R
contains no nonzero nilpotent elements, and ab(a + by=0for all ¢,b in R.
(Hint: Show that a* — a® = 0, and consider (x? — x*)%)

4.4.26. Let R be a ring with identity, and let @ € R. Suppose there is a
unique element @’ such that aa” = 1. Prove that a’'a = 1.

4.4.27. Let R be a ring with identity, and a be a nilpotent element of R
(see 4.4.25). Prove that 1 — a is invertible (that is, prove there exists an
element & in R such that (1 —a)=1=(1— a)b).

4.4.28. Let R be a ring, and let C={x € R:xy = yx for all y in R}.
Prove that if x2 — x € C for all x in R, then R is commutative. (Hint: Show
that xy + yx € C by considering x + y, and then show that x> € C.)

4.4.29. Let p be a prime number. Let J be the set of all 2-by-2 matrices
Z,’j) whose entries are chosen from {0,1,2,...,p— 1} and satisfy the
conditions a + d = 1 (mod p), ad — bc = 0 (mod p). Determine how many
members J has.

4.4.30. Let p be a prime number, and let Z,= {0,1,2,...,p—1}.2, isa
field under the operations of addition and multiplication modulo p.

(a) Show that 0,1,...,p— | are the zeros of x” — x (considered as a
polynomial over Z)). Conclude that xf—x = x(x — I}x — 2.
(x=(p— 1) (mod p).
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(b) Wilson’s theorem. From part (a), show that
(p— 1)!= —1(mod p).
(c) Consider the determinant |a;| of order 100 with a; =1i-j. Prove that the

absolute value of each of the 100! terms in the expansion of this
determinant is congruent to | modulo 101.

4.4.31. Let F be a finite field having an odd number m of elements. Let

p(x) be an irreducible polynomial over F of the form x> + bx + ¢, b,c € F.
For how many elements k in F is p(x) + k irreducible over F?

Additional Examples

L15, L1.12.



Chapter 5. Summation of Series

Tn this chapter we turn our atiention to some of the most basic summation
formulas. The list is quite short (e.g., the binomial theorem, arithmetic- and
geometric-series formulas, elementary power-series formulas) but we shall
see that a few dard techni (e.g. tel ing, differentiation, integra-
tion) make them extremely versatile and powerful.

5.1. Binomial Coefficients

Here are some basic identities; we are assuming that » and & are integers,
n> k>0

Factorial representation:

(8= mosr - M
Symmetry condition:
(Z)=(nfk)' @
In-and-out formula:
(&)-%Goi) o ®
Addition formula:
W-C1G) e e

154
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The next formula is ob d by repeated lication of the addition
formula.
Summation formula:
n +(n+l) (n+k___n+k+l
()+ (11 x i) ©)

Sums of products (see 4.3.2 and 1.3.4):

GGG+ +CR=7)  ©
Binomial theorem (see 2.1.1, 2.1.11, 43.3):
S (F)esmrm ey )

k=0

S.1.1. Use the summation formula 1o show that
_nn+1)
==

n(n+ 1)(2n + 1)
—

@ 14+2+3+---+n

®) P+2+ - 2=

Solution. (a) We have

e s (o Qe ol
SRR

(=)=

(b) We first look for constants a and b such that
k(k =1y
k= (k) * (k) =
a 5 b ) a ) + bk

for k.= 1,12, ce Think of each side as a polynomial in & of degree 2.
The identity will hold if and only if the coefficients of like powers of k are
equal; that is, if and only if

+

+

I=a/2,
0=—a/2+b.
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This yields @ = 2 and b = 1. It follows that

24224 -+ n?

=[(3)+ (D] +[23)+ ()] - +[23)+ (D)

)+ S ] [( +( ,.+(';)}
| M | [ R G R el
= O AHEE B R )
=2("+l)(z)("-l)+w

n(n+1)(2n+ 1)
=T 6
(Another approach for part (b) is given in 5.3.11.)

The preceding sums occur so often that it is desirable to memorize them
or in some way be able to recall them easily. One way to remember the first
formula is shown in Figure 5.1 (for n = 5).

The diagram also prompts the following argument for the general case.
Let S denote the sum of the first # positive integers. Then

S=1+ 2 +---+n
S=n+(n—-+ - +1

. . . . -
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

142434445 =228
Figure 5.1.
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Adding, we get
2S=(n+ D+ (n+h+ - +(n+1)
=n(n+1),
and it follows that

n(n+ 1)
§=—5—.

The technique of evaluating a sum by rvearranging the terms is a
common one. In particular, when the terms are represented as a double
ion, it is often ad to exch the order of
The next example is an illustration of this idea.

£20)0)

Solution. The terms of this sum are indexed by ordered pairs (i, j), where
(i, j) vary over the elements in the following triangular array:

5.1.2, Sum

In the given sum, the elements are first added columnwise. When we
interchange the order of summation, $o that the terms are first added
rowwise, the sum is expressed in the form

2200)

or, equivalently,
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This is easily eval d in the following manner. A ding to the bi ial
theorem,

1+ x)'= 2’ (})x’

j=0

A

S0

i=0
which by the binomial theorem is (1 + 2)" = 3".

When x = 1, we get

The original sum is therefore

5.1.3. Sum the following:
@ (1) +23)+3(5)+ - +(2).

® 130+ 5G)+ - maG)

Solution. The first sum is

n
qn

> l( )

IS

Our aim, in summations of this type, is to use the in-and-out formula to

bring the index of summation “inside” the binomial coefficent. Since

(=502

it follows that

and therefore

I
X
%5
w8
i
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The second sum is

1
Ty [ZHH_ -

There is another instructive way to handle these sums, based on differen-
tiating and integrating each side of

n
ny_i_ n
igo(")x (1+x)"
For part (a), we differentiate to get
"

(MY it ne1
Z:ol(i)x L= n(1+x)"",
and, with x = 1, we get

LA 1
Mz(,.) nx 2.

For part (b), we integrate to get

n i1 1+ x)!
ny x =
,gﬂ(i)i+l_ PES NS

When x =0, the left side of this equation is 0, and this implies that
C = —1/(n+1). Thus, when x = 1, we get (as before)

Ssmy_1_ _ _1 1
E,(i)iﬂ BT3GR
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5.1.4. Show that

R T RS TIRES SR

2=

Solution. The left side of the identity looks like the definite integral of a
binomial series, and this provides the idea for the following argument:

0= = (0)= (D (-
e = (e (e ()
ST ()

We are now set up to integrate each side from 0 to 1, and we get

'L‘”"dﬁ(n% L)L) -

fo x 1 212 313 .

To finish the problem, we must show the integral on the left is equal to
1+1/2+1/3+ .- +1/n Lety=1—x.Then

Llﬂd)(=.£]ll+);dy

X
1 -
=f0(l+y+y’+~-y" Yy

—y+lye el

syt ,,y]
RIS SR |
—1+2+ +o

The problem can be done without calculus, using the basic identities of
this section, but it is technically harder. However, since it is instructive, we
will sketch the idea.

First, by repeated use of the addition formula and the in-and-out
formula, we have, forn > i > 1,

1n
n ( i)

=) ) =4 )
=H (o]0
e R P L T

and continuing in this way, we get

T2 (7)1 0
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Therefore,
S i-Eer g0

When we i

ge the order of ion, we obtain

"i'[z( (")

j=oli=1

Let k = n — j, so that the right side is

3 3 (k)

k=lim)

5.1.5. Sum
A=l ntl
2,2.0710)

Solution. This can be evaluated using the basic identities of this section;
however, we want to illustrate another technique. Although this approach
will seem artificial and unlikely, the fact is that the thinking is not as
unusual as it might at first appear. The idea is to interpret the sum in
probabilistic terms, in the foll manner.

Multiply the sum by 1/22"+! and write it in the form

SO0 e
S VAT A G N2

Now consider the following matching game between players A and B.
Player A flips n + 1 coins and keeps n of the coins to maximize the number
of heads. Player B flips n coins. The player with the maximum number of
heads wins, with ties awarded to 8.

Observe that the above sum represents the probability that 4 wins. We
will now calculate this probability in another way.

The game is equivalent to the following. Let A and B each flip » coins.
The player with the most heads wins. If they each have the same number of
heads, but not all heads, 4 flips the (7 + 1)st coin, winning if it is heads
and losing if it is tails. At this point, 4 and B have equal chances of
winning.

In the remaining case, both 4 and B have ail heads. In this case B wins
regardless of A’s last toss. Thus, B wins in exactly 2 more cases than A.




162 5. Summation of Series

That is, out of the 2%* ' total flips, B wins in the 2 cases last described, and
B wins in exactly one-half of the other cases ($(2™"* ! —2)). Thus, the
probability that 4 wins is
24IET =) gy gy

Pyl Pl

1 — Pr(B wins) =1 —
o

T e

It follows that the original sum is 2 — 1.

Problems

5.1.6. )

() Sum ali the numbers between 0 and 1000 which are multiples of 7 or
i

(b) Sum all the numbers between 0 and 1000 which are multiples of 7, 11,
or 13,

5.1.7.

(a) Prove that for any integer k > 1 and any positive integer n, n* is the
sum of n consecutive odd numbers.

(b) Let n be a positive integer and m be any integer with the same parity as
1. Prove that the product mn is equal to the sum of n corsecutive odd
integers.

5.1.8. Use the summation formula (5) to sum (2) 3% o k% (6) Sha k™
5

@ 1=(1)+()-(3)
(b) 1x2(;)+2x3(
@ (1) +2(3)+

Sum each of the following:
(R
;)+--~+(n—1)n(ﬁ)A
()
@ (7)-2(3)+2(5) -+ 0T
(
)

+

+ 3

) 3
@ (53036 - e G)
® /g][(—l)’(j71 /l<§<jkj|A

5.1.10.

(a) What is the probability of an odd number of sixes turning up in a
random toss of 7 fair dice? (To evaluate the sum, consider 4[(x + )" —

x=-yrh
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(b) Show that if n is a positive multiple of 6,

(1)-3G)+#(5) - =0

()-3G)r5(5)- =0

5.111. Prove the following identities:
0 _6.,06

® T3 753 3% T

()

Tx2 2x3 3x4 an+ 1)
@ _G), 6 4
(b)‘lT_Lz+i2_'” (1)"(71(-:)1)2

5.1.12. Show that

@ QG+ (DG G+ 06D = (20
O (@) (Y G+ + ()= ()

5.1.13. Use the identities of this section to show that

S0

mol
i— 1\t
,vg,, (n - l)
(Hint: For i.= nn +1,...,2n— 1, compute P(E), the probability that /
tosses of a fair coin are required before obtaining # heads or n tails.)

5.1.14. sum

5.1.15. A certain student, having just finished a particularly hairy summa-
tion, stared glassy-eyed at an “x, y,” which was written on the scratch
paper. After some doodling the student wrote:

X1z
(1) x1p2psxs
(@) X1 y2y1Xays*eX1Vs
(3) X12yXeys¥eX1Vs YR VX p Y e 15%1s -
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On each line, the student copied the line above exactly, and then copied it
again, changing x’s 10 y's, y’s to x’s, and continuing the subscripts in order.
The student noticed that the sum of the x-subscripts equals the sum of the

y-subscripts in line (1). In line (2) the same equation holds, a similar one for
the sums of the squares of the x- and y-subscripts, ie., 1>+ 4>+ 6* + 7%
=22+ 32+ 52 + 8% The student immediately made the inductive leap that
in line (n), the sum of the kth powers of the x-subscripts would equal the
sum of the kth powers of the y-subscripts for k = 1,2, .. ., n. Prove this for
alln>0.

Additional Examples

1.34, 1.3.15, 1.11.4, 2.1.1, 2.1.2, 4.3.5, 4313 4314 4.3.15, 43.24, 548,
6.8.3, 7.2.9, 7.3.8. Applications of the b : 1.1.1 (Solution 4),
1.1.2, 1.3.8, 1.6.6(b), 1.12.4, 3.5.8, 3.5.10, 3.5.II, 3.5.12, 3.5.13, 4.2.13, 4.3.5,

449,512, 5.1.15,52.13, 6.8.3, 7.1.5, 7.1.15.
5.2. Geometric Series
The geometric series arises lly in many probl and it is therefe
imperative to know its sum:

2 1

Sat=lox™ iy

i=o T-x

% n

it
2=, 2wt = lim, o<l

5.2.1. For a positive integer n, find a formula for o(#), the sum of the
divisors of n.

Solution. Clearly o(1) = 1. If p is a prime, the only divisors are 1 and p, so
o(p=p+1

1f 7 is a power of a prime, say n = p™, the divisors are 1, p, p% ..., p™,
soo(p™y=14+p+--- +p"=(1—p™*/(1-

Suppose 7 = ab, where a and b are relatively prime integers, each larger
than one. Suppose the divisors of @ are a,,a,, . . ., 4, and the divisors of &
are by,b,, ..., b,. Then' the divisors of n are g;b;, i=12,....5j=1,
2,...,t and the sum of these is

@b+ A ab) (@bt tab)+ oo+ (ab 4 - +ab),
1“1 cad |
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or equivalently,
(@+ay+ - +a)b +by+ - +b).
Thus, o(n) = a{a)s(d).

Consider now an arbitrary positive integer »n, and suppose its unique
factorization is

n=pips el
From the preceding work, we find that

e 1 g L
”(")_( 5 )( 7 ) ( T )

5.2.2. Let n = 2m, where m is an odd integer greater than 1. Let§ = ¢
Express (1 — )~} explicitly as a polynomial in 8,

2ni/n

ab +a,_ 8+ +ab+a,,

with integer coefficients a;.

Solution. Notice that # is an nth root of unity, and that §” = (2"/2my"
=¢™ = —1. Thus,

. pgm_ 10" _ 2
1+8+6%+ +8 T T 15 m

Also, since m is odd, we have
)

- 2 ... Ml T
1-6+86 +0 =9

=0 @
Now, adding equations (1) and (2), we get

24 ... mel o 2

24207+ - +20 25

or, equivalently,

=14+6074 044+ . +9m .

1-4

5.2.3. Sum the finite series cos§ + cos26 + - - - + cosnf.

Solution. The series we wish to evaluate is the real part of the geometric
series

DA e R R A X 2
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whose sum is

a8 _ | _ (# _
Y = e 1—(e 1y _ Qim0 _ i

e~ 1 e?=1 e" =1

i sin{é

=
N

i b _ ik [ gitnedi i)
il P =3
M0 _ ¢

11
27 sinif

[(cos(n +4)8 — cos}0)

+i(sin(n +4)0 —sin48)]
- m [(sin{n +})8 — sin16)
+ i(cos}8 — cos(n + é)g)}

Equating teal parts, it follows that

1 . .
cosf +cos28 + - - - + cosnf = Tn 10 [sin(r + 1)6 — sin 18
sin{n +4)8
T T2sinig 2

5.2.4. Prove that the fraction
IX3x5+ - x2n-1)
2X4X6---X2n

when reduced to lowest terms, is of the form a/2” where a is odd and
w < 2n.

Solution. We can write the fraction in the form

(2n)! _ L(Zn)

2int - 27\ n ) ‘
Now, (%) is an integer, so the only question that remains is to show that
w < 2n. The highest power of 2 in (2n)! is

204 P22 o[22+ 2]+ ...
ﬂ 2 J] ]l 4 ﬂ [[ 8 ]I l[z H
(see 3.3.10), and in n! is

EI I ERRY I P
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Tt follows that

and therefore

5.2.5. For x > 0, evaluate in closed form
® (- 1) Lee)]
—

n=1

Solution. Write x in the form
o
x=Ix1+ 3 2,
L=t

where a, is 0 or 1, and where, if x has the form m/2" (m an odd integer),
we take a, = 0 for all sufficiently large .

For each n, [27x ] is even if and only if a, is 0. It follows that for each
n, (—DI2*D = | - 24 . Therefore,

. 2
S = 1o,

n=1 2" =l 2"
» ©
1 a
= a2
ngl 2" ngl 2"
=1-2(x— [x])

5.2.6. Evaluate in closed form .
1
(P%-IW’ x>,
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where the sum extends over all positive integers p and g such that p and ¢
are relatively prime.

Solution.
1 1
- L S(LY
(p.%::l xP¥e (ngo("“q) )

)
(r9=1 'gl( X" J
As p, g, and n vary over the index set in this sum, the powers of 1/x will
vary over all possible ordered pairs of positive integers (i, j). Since the
series is absolutely convergent (1/]x| < 1), we can rearrange the terms of
the series into the form
5

g1t X" N

Problems

5.2.7. Let n=27"'(2? — 1), and suppose that 2° — 1 is a prime number.
Show that the sum of all (positive) divisors of n, not including » itself, is
exactly n. (A number having this properiy is called a perfecr number.)
5.2.8. Sum theseries 1 +22+333 + - -+ + n(11...1).

7
5.2.9. Let E(n) denote the largest integer & such that 5% is an integral
divisor of the product 1'223? - - - n". Find a closed-form formula for E(5™),
m a positive integer. What happens as m — 0?

5.2.10. A sequence is defined by a, = 2 and a, = 3a,_, + 1. Find the sum

a+a+ - +a,.
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5.2.11. Verify the following formulas:

(a) 2": sin(2k — )¢ =
i=1

sin4nd
4sin26 °

(b) zn:sinz(ZkA HNo=-1in—
=1

5.1.12.

(a) If one tosses a fair coin until a head first appears, what is the
probability that this event occurs on an even-numbered toss?

(b) The game of craps is played in the following manner: A player tosses a
pair of dice. If the number is 2, 3, or 12 he loses immediately; if it is 7
or 11, he wins immediately. If any other number is obtained on the first
toss, then that number becomes the players “point” and he must keep
tossing the dice until either he “makes his point” (that is, obtains the
first number again), in which case he wins, or he obtains 7, in which
case he loses. Find the probability of winning.

5.2.13. If a, b and c are the roots of the equation x* — x? —
(a) show that a, b and ¢ are distinct;
(b) show that
1000 _ p1000  p1000 __ (000 1000 _ 1000
a—-b b-e¢ c—a

is an integer.

5.2.14.

(a) Prove "Ya! < I1,;,p"/""~", where the product on the right is over those
positive primes p which divide #: (Hint: First prove that

Bl <55

I3 P I3 p-1

(b) Use part {a) to prove there are an infinite number of primes. (Hint:
First prove that (1)’ > n".)

5.2.15. Prove that [[2 (14 x) =3 ox"=1/(1 - x), [x] < L.

5.2.16. Evaluate in closed form: 37, (x* /(1 — x™)), x| < 1.

5.2.17. (a) Letp,, p,, . . . , p, be all the primes less than m, and define

i3]

Show that A(m) = S(pflps: - - - pi=)™", where the sum is over all n-tuples of
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nonnegative integers (a,,4,, . . ., a,). (Hint:
-1 2
(1fl) =1+(i)+(l)+4.4'
Pi b »i

(b) Show that 1+1/2+1/3+ ---1/m<A(m), and conclude that
there are an infinite number of primes.

Additional Examples

1121, 4.14, 4.1.8, 4.1.9, 4.2.5, 4.2.8, 4.2.12, 4.2.18, 4.3.13, 4.3.18(c), 5.1.4,
5.1.11,54.1, 547, 54.9, 7.6.6.

5.3. Telescoping Series

Infinite series and infinite d can i be evall d by means

of “tel ing.” The are self-explanatory.

5.3.1. Sum the infinite series

w

1
2, BGi-)@i+ 1)

Solution. The trick is to break the summand into a sum of partial fractions,
with the result that most of the terms in the partial sum will cancel. We
look for numbers 4 and B such that

4 B
Gi—@i+n) 32 %N+l
This leads to
1=A@Bi+ 1)+ B(3i~2)
and equating coefficients, we have

34+3B=0,
A-2B=1

It follows that 4 =}, B= —{. Thus

(=8 G-D) G t) (-]
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In this sum we have the “telescoping™ property: the second term in each
pair cancels with the first term in the successive pair, with the result that

L P
S=3 [' In+l ]
It follows that the infinite series adds to lim,,, S, =1.
5.3.2. Sum the infinite series

3 5 7 9
TX3x3 T Ix3x4d T 3%4x5 T axsxe T

Solution. Again, by partial fractions, we look for real numbers 4, 8, C such
that

B (o}

2n+1 A
n+n+]+n+2'

A+ D+
We get
2n+ 1= A(n+1)(n+2)+ Ba(n+2)+ Ca(n+ 1).

Setting 7 =0 yields 4 = 1; setting n = —1 yields B = 1; setting n= -2
yields C = — 3. Thus, the nth partial sum is

1,113 P13
S~‘[T*5'5]*[7*§‘ﬂ
1 3 1
I 1 H b3
2,1 2 | 2
+[3+4 5]+ +{n—2 ]
n 3 1 H
2 1__2 2 2
+[n71+; n+l}+{n+n+l n+ ]
In this case, the telescoping takes p‘lace across groupings: the last term of

one triple cancels with the sum of the middle term of the next grouping and
the first term of the third grouping after that:

3

It follows that the infinite sum adds to lim

S,=3
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5.3.3. Express

© o |

ngl m2=| mn + mn® + 2mn

as a rational number.

Solution. Let S be the desired sum. Then, leaving out the details of the
partial-fraction decomposition, we have

s=3 3 i

=§1% :m

=§‘% i;[l/(n+2) %}
-2 (- ) (- we)

_s(z__¢ 1
—,,21(7_71+2)(1+ toty 2)
SHO-DOH D HE- DO
DO+ IR+ ]
[(L+3+ D+ 40+ E+1+ 1)+ 54D

FAEHD A+ ]
_A[M L1251 1 1
2[6+2 +(3x4+4 s¥3xet )
1
(33 * a6 5x7+”‘)]
SHEEHG-DHA- D)

)]
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5.3.4. Sum the series

Solution. Using de Moivre’s Theorem,
sin 30 = Im(e*) = Im{(¢*)")
=Im[cosf + isinﬂ]3
= Im[cos’ + 3cos9isind + 3cosf i’sin’f + Psin’]
= 3cos™sind — sin’d
=3[(1 —sin®)sing] — sin’
=3sind — 4sin’.
Tt follows that
sin’g =3 sin® — } sin 34,

Thus,

Therefore, the series adds to

" . 3% . 1.
et o)
sin(x /3%
= lim| % ‘( /39 L
ko | 4 (x /3k) 4
The telescoping idea is particularly useful in solving recurrence relations.
Here is an example; other examples are given in the next section.
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5.3.5. A sequence of numbers satisfies the recursion
xo=0, mx,=(n-2)x,_,+1 for n>0

Find a closed-form expression for x,.

Solution, We see that x,=0, x, =1, x,=1, x, =1, and consequently
x, =% for all n> 2. But finding a pattern for a given recursion is not
always so simple, and it is instructive to consider the problem in the
following manner.

For n > 2, multiply each side of the recursion by n — 1, and for each n,
set y, = n(n — 1)x,. The recursion in terms of the y,’s is

=yt (n=1), =0

Tt follows that

yemyn=1
“»n=2
=3
—Jar=n—1
Adding (notice the telescope), we get
(n—1)n
=424 k(- )=
and therefore,
s n>2.
Problems
53.6. Sum the following:
1 2 3 n—1
@ty tg
(b) IX 142X 243X 3+ -« +nxal,
2 4 6 . 2
O Txaxitixaxa taxaxs b T ama i ry

5.3.7. Evaluate the following infinite products:

(@) o1 = 1/n7),

®) [[7.:(° = /(2 + 1)

(c) Show that an infinite product can be transformed into an infinite series
by means of the identity P =¢'*¢”. Work part (a) in this way by
evaluating the infinite series 3. log(1 — 1/n%).
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5.3.8. Prove that for each positive integer m,
2m
m <3 1. m 3m+1
A DEmTT) 2, 2 e DEm+ ) T dm(m+ OEmE D
(Hint: Notice that 1/r(r + )< 1/722 < 1/(r + 1)(r—1).)
5.39. Let F,, F,,... be the Fibonacci sequence. Use the telescoping
property to prove the following identities:

@ Fi+ R+« + F,=F,,— |.(Hint: F,_,=F,—F,_,)
(b) Fy+ Fy+ - Fz,, =P,
(©) FZ—FZ F?+FFM. (Hint: F2=F(F,,,— F,_))=
—1)
@ En.zl/F Fpe1=1. (Show that 1/F, \F,, =1/F,_,F,—1/
F,F,,

@ ET-zF,./FruF..H =L

5.3.10. Sum the following infinite series:
inix + L sin® 1 o392

(a) smx+§sm 3x+;sm3x+ B

(b) cos’ — %coslﬁix + %90533% +o

53.11.

(a) Use the identity (k + 1)’ — k* = 3k? 4+ 3k + 1 to evaluate the sum of
the first n squares. (Hint: Let & vary from 1 to # in the given identity,
and consider the sum, on the left side and the right side, of the resulting
n equations.)

(b) Use the telescoping idea, as in part (a), to evaluate the sum of the first n
cubes.

(c) Find

4 232 4
Hm[ 2 2 (5h* — 181%> + Sk )}
5.3.12. Show that the reciprocal of every integer greater than 1 is
the sum of a finite number of consecutive terms of the infinite series
Sral/n(n+1).

5.3.13. If m > 1is an integer and x is real, define

e

=33 Pl i
m

k=0 i=1t

Show that
1 if x>0,
fx)= [[x+1] it x <0,

(Hint: See 1.2.3.)
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5.3.14. Solve the following recurrence relations (by the methods of this
section).

(@) xo=1, x,=2x,_, + 1 for n > 0. [Hint: Divide each side by 2]

(b) xg=0, nx, +(n+2)x,_,+ 1 forn>0.

© xo=1x=1x=2x,.3=x,+3forn>0.

5.3.15. Show that a plane is divided by » straight lines, of which no two
are parallel and no three meet in a point, into {(n2 + n + 2) regions.

5.3.16. Let

R BN SR I
s RS rE
Show that

[T S T | . L _ 1
d=l-3+373 t o1
[Hint: Consider the telescoping series 377(d,,, — d).] Conclude that
d,~—>log2 as n—>co. (For another proof of the first part, consider the
difference of each expression from the harmonic sum 1+ 1/2+ - - +
1/(2(n — 1)). Also, see Section 6.8.)

+ -

Additional Examples

6.6.6,7.1.8, 7.2.2.

5.4. Power Series

A power series is an expression of the type
Gotax+axi+t - taxt+--

where ag, a,, a,, . . . are real numbers.

Given a power series, we can define a function f(x), whose domain is the
set of those real numbers x which make the power series into a convergent
infinite series, and whose value is given by

f(e)=ap+ac+ae+ - +ac+ -
for any ¢ such that the right side converges.

Given a power series 3,7 o,x”, it can be shown that exactly one of the
following holds:

(i) The series is convergent for all real numbers x.
(ii) The series is convergent only for x = 0.
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(iii} There exists a real number r such that the series is convergent for
|x| < r and divergent for |x| > r.

We define the radius of convergence to be + oo if (i) holds, 0 if (i) holds,
and r if (iii) holds.
We can ask the following question: Given a function f, is f represented
by a power series? One result along these lines is Taylor’s theorem (with
inder): If f can be dif iated as many times as we like on an
interval [0, 4], then

O o

JOY= O + 2yt S x
where R,(x)=f"*"Yc)a"*!/(n + 1)! for some ¢, 0 < ¢ < a. The impor-
tant part here is that if R,(x) is well behaved, so that R,(x)—0 as n—> 0,
then

. ™)

2
PR
n!

+ R, (x),

o pingy
jo=5 L0
=
This gives us a method of finding a power series for a given function flx).
Using this idea, one can find power-series expansions for the most
common elementary functions. The following series occur so often they
should be memorized:

2 3 n
e"=l+x+%+~)35!—+-»-+i—!+~-, )
X 3 5 n x2n—1 .
slnx=x—%+5§v~~-+(—l)ﬁ+--n (if)

4 2

+%—~~+(—1)"ﬁ+w, (iii)
—11X=l+x+x2+--<+x"+"w Jx| <1, (iv)

3

T XT—~-»+(—1)""7"+-~-, K<t ()
(l+x)'=l+(;)x+(£)xl+~-~+(;)X"+"'; rreal, |x| <1,
i)

where

n

rr—Tyr=2y.--
()=

5.4.1. Prove that e is an irrational number.
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Solution. Suppose e = h/k, where h and k are integers. Using the power-
series expansion for e, and setting x = 1, we have

e—l+— %+ - +ZIT
[
ED TS
Multiply each side by k!, and write in the form
1 1 1 1 1
2y - L _L_ ... _ =1 4 1
k[ 't k!] k1P kT *

Notice that the right side of this equation is positive, and the left side is an
integer. Thus, the left side is a positive integer. However, on the right side,

1 |
K+1 T A+ TRk T

1
m*m*"‘}

k+1

SR

|y e
k+1

Thus, the right side is not a positive integer, and we have a contradiction. It
must therefore be the case that e is irrational.

5.4.2. Show that the power-series representation for the infinite series
S%.0x"(x — 1)*"/n! cannot have three consecutive zero coefficients.

Solution. The series sums to f(x) = e**~ ", To find its power-series repre-
sentation, we need to compute f*0) for n = 1,2,3,, ... . We have

F(x)= et B3x2 — x4 1),
which is of the form
F(xy=f(x)g(x)
where g(x) is a polynomial of degree 2. It follows that
J7(x) = £ (x)g(x) + f(X)g (%),
() = 1(x)8(%) + 21 (x)g'(x) + f(x)g" ().
SENx) = (x)g(x) + 37 (x)g (x) + 3f(¥)g" (%)
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(note: g"’(x) = 0). An induction argument shows that for n=3,4,5, ...
F0) = [P(x) g (x) + af "7 X g (x) + b ST P (%) £7(x)
for some integers a, and b,.

Suppose that three successive terms in the power series for f(x) were
zero, say f(0) = £~ "(0) = f"~(0) = 0. Then, the recursion of the last
paragraph implies that () = 0 for all kX > n, and this means that f(x) is
a polynomial, a contradiction. Therefore we are forced to conclude that the
power series for f(x) cannot have three successive zero coefficients.

5.4.3. Evaluate lim, . [(e/2)x + x{(1 + 1/x)* — e]i.

Solution. We will find the first few terms of the Taylor series for (1 + 1/x)*
in powers of 1/x. We have

(I + l) = gxlouI+1/n =exp[ [(l/x)

o =413

P LL/AUS T2 AR TLVE N

(l/x) (1/;)3 . ”

i

SO COIREI
=e[l7i+ﬁ(£)%+higherpowersof%}4
It follows that
i e
=}L";[2X+X[" Erie(E) e ]

1

x
Lle | pigher powers of L
24 x

83

=l|
x

]
¥

An extremely useful fact about power series is that they can be differen-
tiated and integrated term by term in the interior of the interval of
convergence. By this we mean that if 3a,x” has a radius of convergence r
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and if f(x) = T a,x", then
q,

fi(xy=Sna,x""" and j:f(x)dx= Pl _: i X,

and both resulting series have radius of convergence r.

One consequence of the preceding result is that the power-series repre-
sentation of a function f is unique; that is, if f(x) = 3a,x" = 3b,x", then
a,=b, for all n. In fact, a, = b, = f0)/n!. To see this, simply differenti-
ate each side of f(x)=3a,x" repeatedly and evaluate each successive
derivative at x =0. For example, f(0) = ap; f(x)= Zna,x"~", so f1(0)
=a,; f'(x)=Zn(n— Da,x"7% so f"(0)=2!a,, or equivalently, a,
= f"(0)/2!, and so forth.

5.4.4. Sum the infinite series
122

2 32 g
atrmtatEt
Solution. Begin with the series
&
e* = ’zo EE
Mulitiply each side by x:
©
. X
xe "go Rk
and differentiate each side:
L E (n X"
{1+ x)e*= > —

n
Multiply each side by x again:
@ (n+x"t!

(x+xhe* =3
n=0

and differentiate to get

n!

© (n+1Px"
(L +3x+xDe" =3 (——')—

o n!
Now set x = i, and find that

i (+1

Se.
T
ol

The following theorem is often useful.
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Abel’s Limit Theorem. Let r >0, and suppose S:%_qa,r" converges. Then
S7-0d,5" converges absolutely for x| < r, and
w @
lim 3 ax"= 3 a,r"
0 =0

5.4.5. Sum the infinite series

| RS

Solution. We know that

=420 = x4, 6l

and therefore

x_dx _ _xt xl_ X"
-f(.)l+x3 Xyt o gFt s [x[ <L

qu. the series on the right side converges for x =1 (by the alternating-
series test), and therefore, by Abel’s limit theorem,

l—Ll4... = lim f‘_dx._A

T x=>mJo 1+ x°

This integral can be worked by partial fractions (the details are not of
interest here), and we get

J;*L-_-
1+ x*

1-4+

2x—1 -1 ]
arctan — arctan .
A B }
Thus, the series sums 1o

%[Iog2+ %]

5.4.6. Let S, =37 ,(~1y*'/i and S=Ilim

S, Show that
SPdS,~ §)=log2 1. s a0 S

Solution. We must evaluate the double series
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For this purpose, consider the function

rey- 5 5 500

. x| <1
itj

Then
Fx)y= 2‘ i(—")”"'(—l)
=i

=3 (- B0
J=1 i=1

- j_1
= N s

1
(l+x) T4k R

It follows that

F(x)dx = x_dx _ (*_ dx R
JRACLE N e AT
- = AT
F(x) - F(O) =log(1 + X) o + 795 ]0,
and we find
F(x)y=log(l + x)+ —— =1
The series for F(x) is convergent for x = 1, so by Abel’s limit theorem,
F(ly=log2+1~1=log2—}.

5.4.7. Given the power series ag + a,x + ayx* + -« - with g, = (0> + 1)3",
show that there is a relation of the form

a,+ pa,, |+ gl ¥ a3 =0,
in which p, g, are independent of n. Find these constants and the sum of
the series.

Solution. Substituting the given values of a, into the recurrence, we find
(7 + )3 + p(n* +2n + 2)3"!
+g(rt+ 40+ 5T+ p(n? 4+ 6n 4+ 10)3770 =0,
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Now divide each side by 3". Then equating coefficients, we find that p, ¢,
and r must satisfy

3p+ 99+ 27r=-1,

2p+ 129+ 54r 0,

6p +45g +270r = — 1.

These equations have a solution: p= —1,g=1,

For the second half, we wish to sum the series

i (n®+ 1)37%",
n=0

=L
r -

which breaks into two parts,
« o
> 2 3x)"+ X (3x)"
n=0 n=0

Let § = 32 4(3x)". If |x| <4, § = 1/(1 - 3x). Therefore, from

%muﬁ, Ixl <t
it follows that
"i”(h)"" 3= ﬁ .
; n(3x)" = (I—Sﬁf
in@x)” 3. dx[ﬁ}_%’
Sroo- 20

Combining, we get

& a n_ 3x(3x+ 1) )
Eo( *HExy'= (1-3x)? Yo
_ 18x*—3x+ 1.
(1—-3x)?

5.4.8. Evaluate in closed form:

- 29 ("h)
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Solution. We can compute the first few terms:

R
s2=((2))—4(3)+ 16(:) 1-12+16=5,

5= (3)-4(3) +1e(3) - +4(5)

=1-24+80-64= -7

From this pattern, we expect that S, = (— " (2n + 1) ) .
If we think of proving this conj I we are
led to look for a recurrence relation. Thls ]eads to the following reasoning:

(n+k)=(n+k—l)+(n+k—l)

2k 2k-1 2k
n+k 2 (n+k—2) +(n+k—l)
2k-2 2k -1 2k

gl
(n;kk 22) [(n+k—1) (n+k 2)] (n+2kk—l)
() )

En( 4y (n+k)

=§L,<‘4>*(";J_32)
+2§":(,4)k(n+212—l),éo(,4)k(n+2/;;2)
2( 4 (n+k 2)
+2k§<-4>‘("‘£:*)-2}-@*("‘&”)

- -4§"j (74)k*'("+k_‘22)+2s",, —8s

Thus,

442( 4 ("+"")+ZSH— -~

S 425, S
==28,_1~ Sh-2-
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Using this recurrence relation, we can use mathematical induction to

establish the claim that S, = (— 1)*(2n + 1).

Consider the recurrence relation
=-28,_,= S, 5 So=1, §=-3,

and, for the sake of the illustration, let us suppose that we are not able to

discover the formula for S, by a consideration of the first few cases. We

wish to give here a technique for making this discovery. The method is to
make use of a generating function F(x), in the following way.
Let F(x) be the name of the power series whose coefficients are Sy, S,

85, ..., namely,

F(x)=So+ Six+ Sx+ - + §,x"+ -+ .

We will act as though the series converges at x to the function F(x). Then
2XF(x)=28gx + 28, x? 42 8,x* 4 -+ 428, \x"+ -+,
**F(x) = Spx? 4 Sk S ox" e

Adding, and making use of the fact that S, +2S,_, + §,_, =0, we find

that

(1+2x + xH)F(x) = S5+ (S, + 2Sp)x,
or, equivalently,

—x
o= (1 + x)

‘We now express the right side of this equation as a power series. To do this,
first differentiate each side of

=3 (-
n=0

to get

2(—1) nxn !

(l + x) n=0
Then multiply each side by x — 1 to get

F(x)=n§0(-l)"n(x - xt
=2 ()m"= F (=) e
n=0 n=0
= i (—1)'nx"+ i (=1)’(n+ x"
n=0 =0

= § (—1)"(2n+ D)x".
n=0

Here again, we find that $,,, the coefficient of x”, is S, = (= 1)"Qn + ).
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1t is true that the generating-function approach shown here cannot be
justified in a step-by-step manner, since we have completely disregarded
convergence considerations. However, the method can nevertheless be used
in similar problems to formulate conjectures (about the solution of the
recurrence relation), and these conjectures can then be verified by other
means (for example, mathematical induction).

5.49. Sum the finite series ap+ a; + - - - + a,, where 4= 2, a, =5, for
n>1,a,=5a,_,—6a,_ 2

Solution. The first few terms of the a-sequence are
2,5,13,35,97,275,393, ... .
Here, a general formula for the nth term is not apparent, so we turn to the

of g Consider
F(x)=a0+alx+a2x2+~- +axtH o
We have
—S5xF(x)= —5a0x —Saxi— - —Sa, x"— 0,
6x2F(x) = 6agx?+ -+ H6a, X"+ .

Adding and using the recurrence @, — 5a,_ + 6a,_, =0, we get
(1= 5x + 6x2)F(x) = dg + (a, = 5ap)x,
so that
= 2—-5x
P = =21 - 3%)
Write this as a sum of partial fractions, and make use of the geometric

series, to find that

[P I
Fx) l—2x+1>3x

=)'+ 200
i=0 i=0

®
=3 @+
=0
Thus, g, =2'+3 for i= 0,1,2,3,... .[Asa check, we can verify this

formula by induction. Note that @y =2"+3"=2,a,=2+3= 5, and, for
- 6a,= 5@+ 3T -6+ 3T =52+ 3N
—2x ¥ =243

Y

5.4. Power Series

We are now ready to compute the sum:
n " "
Gta+ o ta,=2+3)=32+33
i=0 =0 i=0

g+l _
3-1

i

2-1

PR |
3

_rriesiog
3 .

5.4.10. Find a closed-form expression for T,, if 7y =1 and for n > 1
T, =TT, + T\T,p+ - + T,_\Ty.
Solution. This recurrence relation arose in 3.5.12. To solve it, let
Jy=To+ Tix+ Tpx?+ - + T,x"+ -« -
and set
F(x)=xf(x)= Tox + Tyx? 4 Tpx*+ - + Tx™ '+ .o,
The reason for this step is that
(F(x))' = Tox2 + (ToTy + T\ Ty + -+
F(T T, 4 T\Ty 4 oo + T, Tx™ 4 oo,
50 in view of the recurrence relation we have
(F))P=Tx+ Typx* + - + Tyx™ '
= F(x) — Tyx.
Using the quadratic formula we find that
Fry=12Vl—4x VIZ*“" .

(We choose the negative si =0: ol o
vield FOy = 1) galive sign because F(0)=0; the positive sign would

Now by the power-series expansion,

m=1+(f)(—4x)+(i)(—4xy+m

187
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1t follows that the coefficient of x"*Vin F(x) is

n--(F Jev

n+1

_1
2 (G
=7lAl><3><5><<-~><(2n—l)'(—l) ety
2 (n+ 1) e
=141><2><3x4x»--><2n_4"*'
2 (n+ D12l et
1 @n)!
Sa+1 At
=1 _(2n
n+l(n)‘

In a manner analogous to the case for real numbers, we can introduce
the notion of a complex valued power series

®
> a,z",
n=0

where the coefficients may be complex numbers and z a complex variable.
The values of z for which this series converges defines a function

f(2)= i a,z".
n=

Tt can be shown that the power series (i)-(vi) given for the elementary
functions at the beginning of the section continue to hold when the real
variable x is replaced with the complex variable z.

A useful fact regarding complex power series is that if f(z) = S e08.2"s
then Re f(z) = )7_oRe(a,z") and Im f(z) = % oIm(a,z”).

As an example, we will justify the use of the formula e® =cosf + isind
introduced in Section 3.5. We have

= @) 2 @)
o _ =
Ree —Rengo Ml ,,EQRE o
w (_l)kazk
= S — =cosf
2 @

and

=siné.

o By = () & (— 1y
v

w_ - )7
Tme?=1Im 3, =1 ,golm al " pzp (2k+ D!

1t follows that e = Ree® + ilme” = cos8 + isiné.

5.4. Power Series 189

5.4.11. Sum the infinite series

2 3
S=rcoso+%cos20+%c053€+~--, 0<r<l, 0<f<m.

Solution. Consider the infinite series

_ _ _ 12 23 "
logl-g)=z+S+5 4+ 4w o<y,

and set z = r(cos® + isind). Then
—log(1 — rcosf — irsinf)
r*(cos28 + isin2
= r(cos@ + isinf) + M 4o,
and taking the real part of each side gives
Re(—log(1 — rcos# — irsing))

2 3
=rcosﬂ+'7cuslﬂ+%cosiw+

Now, for a complex number w, logw = log|w| + iargw. It follows that

2
reosd + %0052‘9+ -+ - = —logy/(1 — rcos# ) + (rsinf)*
= —logyl — 2rcosf + r* .

Problems

5.4.12. Let p and ¢ be real numbers with 1/p—1/g=1,0<p <1. Show
that

F+%pz+%113+"'=‘l‘%qz+%‘i3*"‘

5.4.13. Find the power-series expansions for each of the following:

(@) 1/(x*+ 5x +6).

(®) 1+x
1+ x3)(1 - x)*

{c) arcsinx.

(dy :m:t.;n x (use this to find a series of rational numbers which converges
1O 7).
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5.4.14. Sum the following infinite series:

( A’y ) .
(@) 2 @ , r a nonzero integer.

1X3 , 1x3X5
DI

SRR TR S CI R el R

242 2, P4 2243 5 2424344 4,

(b)1+1+ P

(@ —x+ oy + R x Fh
54,15, Let fy(x) = e* and f,,, (x) = xf;(x) forn =0,1,2,, . .. . Show that
= H_ L

3

n=0
(Hint: Consider g(x) = e*")
5.4.16. Prove that the value of the nth derivative of x*/(x? — 1) for x =0
is zero if n is even and —n! if # is odd and greater than 1.

at e’

5.4.17. Show that the functional equation

A7Es) =0+ 7

is satisfied by
Jy=1+dx2+ 1+ 2x5+ -, x| <L
5.4.18. Using power series, prove that sin(x + y)=sinxcosy + cosx
sin p.
5.4.19. Show that

+(1—%+%)x5+(17%+% %8
N

5.4.20. Let B(n) be the number of ones in the base 2 expression for the
positive integer n. For example, B(6) = B(110,) =2 and B(15) = B(1111y)
= 4. Determine whether or not
= B(n)
e"";_: n(n+ 1)

is a rational number.

5.4. Power Series 191

5.4.21. For which real numbers a does the sequence defined by the initial
condition u,=a and the recursion u,,, =2u, — n> have u, >0 for all
nz0?

5.4.22. Prove that
3
(}’:7;) S1+6x+18x7+ - + (A2 x4 -+, |x] <L
54.23. Let T,= 37, (= 1Y*'/Qi— 1), T=lim, ., T,. Show that

<A _m_1
Fm-nei-t

5.4.24. Solve the recurrence relation a,= 1,4, =0,a,= —5,and forn > 3
a,=4a,_, —5a,_,+2a, 5
5.4.25. Use the techni of ing functi to show that the nth

Fibonacci number £, is equal to

1445\ _{1=y5 "
F 2 2
,. 5. .
5.4.26. Sum the finite series ag+ a, + - - - + a,, where a;=2, ¢, =17,
and for i > 1, 4;=Ta;,_; — 12a,_,.

5.4.27. Show that the power series for the function e**cosbx, a >0, 5 >0
in powers of x has either no zero coefficients or infinitely many zero
coefficients.

5.4.28. Sum the infinite series
S=1-2rcosf + 3r%c0s20 —4r¥cos@ + - -+, || <L

5.4.29. Show that 3%_(sin nf)/n! = sin(sin §) e°*%.
5.4.30. Use infinite series to evaluate lim,, [Yx* — 5x* + 1 —x].

Additional Examples

L12.1, 5.3.16, 6.8.1, 7.6.7(c). Also, see Section 5.2 (Geometric Series) and
Section 7.5 (Inequalities by Series).



Chapter 6. Intermediate Real Analysis

In this chapter we will review, by way of groblem_s,ume hlerarchy L:‘)l
initi nd results concerning dif! an !
?:::ig::s\ah’e will build on the reader’s understz_mding of_ limits to l_"e:vw_w
the most important definitions (continuity in Section 6.1, dnfferenuabl.ny in
Section 6.3, and integrability in Section 6.8). We will al_so call a.ltenuor: to
the most important properties of these classes of functions. Tt is _usefuh to
know, for example, that if a problem involves a continuous:function, then
we might be abie to apply the intermediate-value theorem or the extreme-
value theorem; or again, if the problem involves a differentiable funct‘:on,
we might expect to apply the mean-value theorem. Examplgs qf 1! esi
applications are included in this chapter, as well as applications of

[’Hépital’s rule and the fundamental theorem of calculus.
Throughout this chapter, R will denote the set of real numbers.

6.1. Continuous Functions.

at a if f(x)%f(a) as x — g, or more

I-valued function f is
precisely, if
(i) f(a) is defined,
(i) lim,_,, f(x) exists, and
(i) lim, ., f) = fl@)-

int i i it i hat the x’s in

is a boundary point in the domain of f, it is understood that s
Eili‘)aa: :eslol'lzted?o})!he domain of f. We will assume the reader is familiar
with these contingencies.)
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A function f is continuous in a domain D if it is continuous at each
point of D.
It is not difficult to prove that f is continuous at « if and only if for every
{x,) ging to a, the seq { f(x,)} converges to f(a).
The sequential form for the definition of continuity of f is used most
often when one wishes to show a function is discontinuous at a point. For
example, the function f defined by

f(x)={sin% it x=0,
o i x=0

is discontinuous at 0 because, for instance, the sequence x, =2/(4n + 7
converges to 0, whereas { f(x,)} = {sin(27n + L m)} converges to I (rather
than to f(0) = 0).

6.1.1. Define f:[0,1]—>[0,1] in the following manner: f(1)=1, and if

a=.a,a,a;a, . . . is the decimal representation of a (written as a terminat-
ing decimal if possible; e.g., 099999 .. .. is replaced by .1), define f(a) =
0a,0a,0a; . . . . Discuss the continuity of f.

Solution. Observe that f is a monotone increasing function. We will show it
is di i at each terminating decimal number (i.e., at each point of
the form N /107, N an integer, 1 < N < 10").

Consider, as an example, the point a =.413. By definition, f(a)=
.040103. Now define a sequence x, by

x, = 4129,
x; = 41299,
x; = 412999,

412999 .
(GRS

n times

The sequence {x,} converges to a; however,

f(x,) =.040102 09 09
n pairs
and we see that { f(x,)} does not converge to f(a). Thus f is not continuous
ata.
A similar construction can be made to show that f is discontinuous at
each terminating decimal number. The argument is based on the fact that
the terminating decimal numbers have two decimal representations,
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namely,

a=.a\a,a;...8,_,a,, a,+0,

a=.4,8;. .. 8, (3, 1)999... .

Now suppose that @ in (0,1) is not a terminating decimal number. We
will show that f is continuous at a. Write a in its unique decimal form:
a= 410,858, .. -

Because the number a is not a terminating decimal number, there are
arbitrarily large integers » such that a, % 0 and a,,, 7 9. For each such n,
define X, and Y, by

X,,=.a,a2,“a,,(

i+ 1
107+

Then a € (X,, Y,). Moreover, the first  digits of each of the numbers in
(X,, Y,) are the same as those of X, and Y,. Consequently, all the numbers
within (X,,, Y,) are mapped to the interval ( f(X,), f(Y,)).

1t is clear that the sequences { X, } and {Y,} converge to a; furthermore,
the sequences {f(X,)} and {f(Y,)} converge to f(a). Since any sequence
{x,} which converges to @ must eventually become interior to (X,,, ¥,) for
any #, it must be the case that { f(x,)} converges to f(a). It follows that f is
continuous at a.

Y,=.a8;...6,(8,, +)=X,+

The preceding example is difficult to visualize geometrically, and a
thorough understanding of the proof requires a clear understanding of
continuity. The next example also demands a precise rendering of the
definition: a function f is continuous at @ if for every e >0 there is a
number & > 0 such that |x — a| < & implies | f(x) — f(a)| <e.

6.1.2. Suppose that f: R— R is a one-to-one continuous function with a
fixed point x, (that is, f(xo)= x,) such that f(2x — f(x)) = x for all x.
Prove that f(x) = x.

Solution. Let S = {x|f(x)=x}. Because f is continuous, the set § is a
closed subset of R (ie., if x, € S and x, = x, then x € §; this is because
x = lim, %, = [, f3,) = i, .o, x,) = f£))

Now suppose that S = R. Let x, be a boundary point of S (every
neighborhood of x, contains points that are not in §; note that x, € §
because S is closed).

If y is a point that is not in S, there is a nonzero real number r such that
f(») =y + r. The fact that f is one-to-one and satisfies f(2x — f(x)) = x
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Figure 6.1.

implies that
f(y+nr)=(y+nr)+r

for every integer n (this is the content of 2.1.12). This identity is crucial to
the argument which follows.

Here's the idea: Suppose x is not in S; that is, f(x)# x. Choose y in
R — § so that y is “close”™ to x, and f(y) is “close” to p (this can be done
because f is continuous at xq and f(xo} = x,). Then, if r is such that
f)=y+r, and if r is sufficiently small, the fact that f(y + nr) =
(y + nr)+ r will lead to a contradiction to the continuity of f and x (see
Figure 6.1).

A formal proof goes as follows. Suppose, as above, that x, is a boundary
point of § and x is such that f(x) # x. Let e = | f(x) — x|. Because f is
continuous at x, there is a 8 > 0, and we may assume that 8 < e, such that
Jz — x| < 8 implies | f(z) — f(x)| <ie. Because f is continuous at x,, there
is an 5 >0, 5 < &, such that |w — x,| < 5 implies | f(w) — f(xp)] < 8.

Now choose y € (xg — m,xo + 1) such that f(y)# y (such a y exists
because x, is a boundary point of §). Then

O<f(3) = I < 1f() = f(xo) + | f(x0) = 3|
= 1) = fxo)l +1xo =yl
<8+7
<28,

Pel r=f(y)— y (note: r may be negative). Since 0 < {r| < 28, there is an
integer n such that y + nr € (x ~ §,x + 8). But we know that f(y + nr)
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=(y + nr) + r. Tt follows that
e=f(x)-
<1f(xy = fo + nr)l + | f(y + nr) = x|
<le+l(y+nry+r—x
<le+|(y+nry—x|+|r
<le+8+28
<jet+iet+ie
=e
This contradiction means that § = R and the solution is complete.

Two of the most important facts about continuous functions over closed
intervals [a,5] are that they have maximum and minimum values on the
interval and take on every value between these two. This is the content of
the following two theorems.

Extreme-Value Theorem, If f is @ continuous function on [a,b}, then there are
numbers ¢ and d in [a, b) such that f(c} < f(x) < f(d) for all x i [a,b) (that is to
say, f(d) is the maximum value for f over (a,b), and f(c) is the minimum value).

Intermediate-Value Theorem. If f is @ continuous function on {a,b] and if f(a) < y
< f(b) (or, J(B} < p < flaY), then there is a number ¢ in (a,b) such that fic) = y.

These results can be proved in a variety of ways; we will sketch a proof of
the intermediate-value theorem which makes use of a methodology (re-
peated bisection) that is applicable in other problems (e.g,, see 6.3.6).

Suppose that f is a continuous function on the closed interval [a,b], and
suppose that f(a) < f(b) (a similar proof can be given if f(a) > f(b)). Let
y E[f(a), f(b)]. We wish to find an element c in [a,5] such that f(c) = y.
The procedure goes as follows (a diagram will help). Let a, = a, by = b, and
let x, denote the midpoint of the interval [a,b] (the first bisection). If
f(x)) < p, define a, = x,, b, = b, whereas if y < f(x,), define a,=a, Q,
= x,. In either case we have f(a,) < y < f(8,), and the length of [a;,b)] is
one-half the length of [a,5).

Now, let x, denote the midpoint of [a,b,] (the second bisection). If
f(x2) < y, define a, = x,, by = by, and if p < f(x,), define a, = ay, by = x,.
Again, it follows that f(a,) < y < f(b,), and b, — a, = (b — a)/4.

Continue in this way. The result will be an infinite nested sequence of
closed intervals

[@0:b0] 2[a1-51] Slab]D -2
whose lengths converge to zero (in fact, b, — ;= (b — a)/2'). These condi-
tions imply that {a;} and {b,} each converge to the same real number in
[a,5]: call this number c.
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By the continuity of f, lim,, , f(a;) = f(¢) and lim,_,, f(,) = f(¢). Fur-
thermore, for each i, f(a) < y < f(), and therefore (by the squeeze
principle, which will be treated in Section 7.6),

J(e) = lim f(a) < y < fim f(b)=f(e).
It follows that f(c) = p, and the theorem is proved.

The proof of the extreme-value theorem can be carried out in similar
manner and is left as a problem (6.1.5).

Problems

6.1.3. Suppose that ¥ is bounded for @ < x < b and, for every pair of
values x,,x, witha < x, € x, < b,

G+ =) <3(f(x) +(x2))-
Prove that f is continuous for @ < x < . [Hint: Show that f(x + &) — f(x)
SE[f(x +28) = f()] < -+ - (/2 f(x +2%) = f(x)], a <x+2%
< b. Let §>0] -

6.1.4. A real-valued continuous function satisfies for all real x and y the
functional equation

J+ 57 ) = [ f ).

Prove that f(x) = [f(l)]"{ [Hint: First prove the theorem for all numbers of
the form 2"/? where n is an interger. Then prove the theorem for all
numbers of the form m/2", m an integer, n a nonnegative integer.]

6.1.5. Use the method of repeated bisection to prove the extreme-value
theorem.

6.1.6. Let f(0) >0, f(1) < 0. Prove that f(x)=0 for some x under the
assumption that there exists a continuous function g such that f+ g is
nondecreasing. (Hint: Use repeated bisection—choose the right half of the
interval if there is a point x in it such that f(x) > 0, otherwise choose the
left half. This yields a nested sequence of intervals {a,,b,] 2 [a;,5,]2 - - -
which converge to a point ¢. Note that for each n there is a point y, in
[a,,¢] such that f(y,) > 0. Prove that f(c)=0.)

6.1.7. Let f be defined in the interval [0, 1] by
fx)= 1] if x is irrational,
()= 1174 ifx = p/q (in lowest terms).

(a) Prove that f is discontinuous at each rational number in [0, 1).
(b) Prove that f is continuous at each irrational number in [0, 1].
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6.1.8. If x is an element of the Cantor set K (see 3.4.6), it can be expressed
uniquely in the form

"=

where b, =0 or 1. Define g: K—[0, 1] by setting
© b,
=2 -
n=l

Now extend g to [0,1] in the following manner. If x €[0,1] is not in the
Canlor set, then, using the notation of 3.4.6, there is a unique integer # such
that x € 1,, where 1, =(X,,Y,), X, and Y, in K. Define g(x)=g(¥,)-
(Note that for all n, g(X,)=g(Y,), and thus we have simply made g
constant on the closed interval [X,,, Y,].) Prove that g is continuous. (Also,
see 6.2.13)

Additional Examples

6.3.1, 63.5, 6.3.6, 643, 6.7.2, 6.7.7, 6.8.9, 6.8.10, 6.9.5. Continuity is an
underlying assumption in most of the examples in Chapter 6; in particular,
see Section 6.2 (intermediate-value theorem).

6.2. The Intermediate-Value Theorem

The intermediate-value theorem states that if f is a continuous function on
the closed interval [a,b) and if d is between f(a) and f(b), then there is a
number ¢ between a and & such that f(c) = d. The power of the theorem
lies in the fact that it provides a way of knowing about the existence of
something without requiring that it be explicitly found.

As an example, let us show that —2x° + 4x = 1 has a solution in the
interval (0, 1). Consider f(x) = ~2x*+ 4x, and take two “pot-shots”: f(0)
is too small, and f(1) is too large. Therefore, by the intermediate-value
theorem, there is a number in (0, 1) that is just right.

6.2.1. A cross-country runner runs a six-mile course in 30 minutes. Prove
that somewhere along the course the runner ran a mile in exactly 5 minutes.

Solution. Let x denote the distance along the course, measured in miles
from the starting line. For each x in [0,5], let f(x) denote the time that
elapsed for the mile from the point x to the point x + 1. The function f is
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Figure 6.2.

.

continuous. We are given that f(0) + f(1) + f(2) + f(3) + f(4) + f(5) = 30.
1t follows that not all of f(0), . . ., f(5) are smaller than 5, and similarly, not
all of f(0), . . ., f(5) are larger than 5. Therefore, there are points a and b in
[0,5] such that f(a) < 5 < f(b). Thus, by the intermediate-value theorem,
there is a number ¢ between a and b such that f(c} = 5; that is 10 say, the
mile from ¢ to ¢ + 1 was run in exactly 5 minutes.

6.2.2. Suppose that f:[a,5]— R is a continuous function.

(a) Mean value theorem for integrals. Prove that there is a number ¢ in [a,]
such that [% f(1)dr = f(cXb — a).

(b) Prove there is a number ¢ in [a,b] such that [5 f(s)dt = [% f(r)dr.
(Note: For this, it is enough to know that f is integrable over {a,5])

Solution. (a) Let M and m be the maximum and minimum values of f on
[a, b] respectively (guaranteed to exist by the extreme-value theorem), and
let A =% f(r)dt. The intuition for the argument which follows is shown
(for the case of a positive function f) in Figure 6.2. As the line y = 4 moves
continuously from y = m to y = M, the area A(h) in the rectangle bounded
by y =k, y=0, x = a, x = b moves from being smaller than A {(at A(m))
to being greater than 4 (at A(M)). Algebraically (and true independentl
of the “area” interpretation), A(m)= m(b— a)< [4 f(t)dt < M(b~ a)
= A(M). Since A(h)= h(b— a) is a continuous function of A, it follows
from the intermediate-value theorem (note: A(h)= h(b — @) is a continu-
ous function) that there is a point 4 such that A(d) = A; or equivalently,
d(b— a)= A. But d is between m and M, so again by the intermediate-
value theorem, since f is continuous, there is a point ¢ in [a,b] such that
fle) = d. Tt follows that

! sy ae=giex -~ a).

(b) Again, the intuition is shown in Figure 6.3 (for the case of a positive
function). Let 4 = fﬁ f(Hydr, and let A(h) = f’; J(Ods. In the figure, for
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h

Figure 6.3.

a < h< b, A(h) represents the area bounded by y = f(x), y=0, x=a,
x = h (shaded). The problem asks us to find a point ¢ such that 4(c} =1 4.
Tt is clear that as the vertical line x = 2 moves to the right from x = a to
x = b, the corresponding integral (area) will move from 0 to 4, and must
therefore pass through 1 4 at some point.

The preceding argument is perfectly valid provided we prove that A (k) is
a continuous function of 4. To see this, note that

htx

Ah+x)— A(h)= ndr.
(r+x - A= "7
From part (a), we know there is a point ¢, between h and /4 + x such that

h+
[ = el
Therefore,
lim [A(h+x)- A(B)] = Tim ¢,|x|=0.

(Note: ¢, is bounded because f is integrable.) Thus, 4(k + x)—> 4 (k) as
x—0, and this means that A(h) is continuous at &.

6.2.3. Let 4 be a set of 2n points in the plane, no three of which are
collinear. Suppose that n of them are colored red and the remaining » blue.
Prove or disprove: there are n closed straight line segments, no two with a
point in common, such that the endpoints of each segment are points of 4
having different colors.

Solution. This problem was considered in 1.11.2, but it is instructive to see a
proof based on the intermediate-value property.

We shall prove that the result holds by induction on n. Certainly the
property holds when » = 1. Suppose the result holds when n = 1,2, ..., k,
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and consider a set A with 2(k + 1) points, no three of which are collinear,
such that k + 1 are colored red and & + 1 are colored blue.

Suppose that two vertices of the convex hull of A4 have different colors.
Then, there are two consecutive vertices along the perimeter of the convex
hull, say P and @, that have different colors. By the inductive assumption,
the set of points A — {P, 0} may be connected in the desired way. None
of these segments will intersect the line segment PQ because of the way P
and Q were chosen, and therefore, the result holds for the set 4.

Tt remains to consider the case in which all the vertices of the convex
hull have the same color, say red. If L is any nonhorizontal line in the
plane, let B(L) denote the number of points of 4 to the left of L that are
colored blue, let R(L) denote the number of points of A to the left of L that
are colored red, and let B(L) = B(L) — R(L). Now choose a nonhorizontal
line L that lies to the left of ali the points in 4 and which is not parallel to
any of the line segments that can be formed by joining points of 4. In this
position, D(L) = 0. As L moves continuously to the rght, it will encounter
points of 4 one at a time, and in passing such a point, D(L) will change
+1 if the point is colored blue and —1 if the point is colored red. As L
moves to the right, its first nonzero value will be negative (obtained just
after passing the first point of A). Since the last-encountered point of A is
also red, its last nonzero value will be positive (obtained just before passing
the last point of A).

It follows from these observations that D(L) will equal zero somewhere
between the first and last encountered points of A (note that D(L) is an
integer-valued function). When L is in such a position, the inductive
assumption can be applied to the points to the left of L and also to the
points to the right of L. Since none of the resulting segments will intersect,
the result follows for the set 4, and by induction, the proof is complete.

Problems

6.24. Suppose f:[0,11-[0,1] is continuous. Prove that there exists a
number c in [0, 1] such that f(c) = c.

6.2.5. A rock climber starts to climb a mountain at 7:00 A.M. on Saturday
and gets to the top at 5:00 p.M. He camps on top and climbs back down on
Sunday, starting at 7:00 a.M. and getting back to his original starting point
at 5:00 p.M. Show that at some time of day on Sunday he was at the same
elevation as he was at that time on Saturday.

6.2.6. Prove that a continuous function which takes on no value more than
twice must take on some value exactly once.
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6.2.7. Prove that the trigonometric polynomial
ap+ acosx + - - - + a,co8nx,

where the coefficients are ail real and |go| + |a| + - - +|a,_,| < g, has
at least 2 zeros in the interval [0, 27).

6.2.8. Establish necessary and sufficient conditions on the constant & for

the exi of a l-valued function f(x) satisfying f(f(x))
= kx® for all real x.
6.2.9.

(a) Suppose that f:[a,5]— R is continuous and g :[a,5]—> R is integrable
and such that g(x) » 0 for all x € [a, b]. Prove that there is a number ¢
in {a, b} such that

I fgeoye= fie) [ fxya.
(b) Suppose that f:[a,b]—> R is i ing (and th ), and

g:[a,b]> R is integrable and such that g(x)>0 for all x €[a,b].
Prove that there is a number ¢ in [, 5] such that

[ = fla) [ geder f5) [ gtx)a.

6.2.10. Let £:[0,1]— R be continuous and suppose that f(0) = f(1). Prove
that for each positive integer n there is an x in [0,1 —1/#] such that
Jx)=flx+1/n).

6.2.11. A polynomial P(x) of degree at most 3 describes the temperature
of a certain body at time . Show that the average temperature of the body
between 9 A.M. and 3 P.M. can always be found by taking the average of the
temperature at two fixed times, which are independent of which polynomial
occurs, Also, show that these two times are 10:16 AM. and 1:44 p.m. to the
nearest minute. [Hint: Use the mean-value theorem for integrals; see
62.2(a)]

6.2.12. For any pair of triangles, prove that there exists a line which
bisects them simultaneously.

6.2.13. Give an example of a continuous real-valued function f from [0, 1]
to [0, 1] which takes on every value in [0,!] an infinite number of times.
[Hint: One way to do this is to modify the continuous function defined in
6.18]

Additional Examples

6.1.6, 6.5.2, 6.5.3, 6.5.4, 6.5.13, 6.6.4, 6.6.5, 6.6.6, 6.6.9, 7.6.13.
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6.3. The Derivative

The derivative of f:[a,5]—> R at a point x in (a,b) is defined by
. St - fx)
feoy=fim =
provided this limit exists. We note that if f has a derivative at x, then f is
continuous at x, because

tim [/ + )~ /()] =Li§:,[(
( S+ my - ftx) )
h

Jx k) = f(x)
_hﬁ),,]

= lim
=

= F'() imh
=0.

limh
h=0

6.3.1. If the function xf(x) has a derivative at a given point x, # 0, and if
is continuous there, show that f has a derivative there.

Solution. Let
*(x) — %o f(x0) .

L= lim

x=xXo X — Xy
The limit on the right exists, since it represents the derivative of xf(x) at the
point xg (in the definition of the derivative given above, we have substituted
x — x for k). For x sufficiently close to, but different from, x, (and
therefore different from zero),

M) xof(x0)
f) = ey _ %o

X=X X~ X
_ xxof(%) = x%0f(X0)
- xxg(x — xg)
_ xxpf(x) = Xf(x) = xxpf(x0) + xf(x)
a xxo(X — Xp)
_ )Xo~ x) + x(x(x) = xof(xa)}
Xxg(x — Xg)
_1 ( Xf(x) = xof(*0) ) _f®
A X = Xg E
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1t follows that

f¥) = f(x0)

Fow) = jim T

[ ( Xf(x) -~ Xof(Xo) (X) ]
Xo

I
)

X = Xy

lim f(x).

Xo x7%0

o1 lim(xfm—x(,f(xo))

X=Xy

The fact that lim,,, f(x) = f(x,) follows from the hypothesis that f is
continuous at x,. However, this assumption is not necessary, because

J0) = f(x0) _ xxof(x) = x%0f(%o)

X — Xg XXo(X = Xq)
_ xxof(x) X3 (xg) = 260 f(%0) + X3 f(x0)
XXp(X — Xg)
1 ( H(X) = xof(x0) ) _fx9)
x X — X x

Using this we find that

(S
v = Jim, ( Sl
i (L{ TP =B\ fxo)
xoxo| X X=X x

1

= (LS
6.3.2. Let f(x)=a sinx + azsm2x + -+ + a,sinnx, where a,,a,, ...
a, are real numbers and where n is a posmve integer. Given that | f(x)|
< Jsin x| for all real x, prove that |a, + 2a,+ - - - + na,| < 1.

Solution. We gave an induction proof of this problem in 2.4.4; however, a
more natural approach is based on noticing that f'(x) = a,cosx + - -+ +
na,cosnx, from which we see that f(0)= a, + 24, + - - - + na, (which is
the left side of the inequality we wish to prove). This prompts the following
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argument:
) - J0)
17O = lim | ———F=—
—jim | /2
=0 x
< lim | $i0.X
x=0| x

=1
and this completes the proof.

6.3.3. Let f be differentiable at x = a, and f(a) # 0. Evaluate
[ fla+1/n) y

lim @)

v

Solution, It suffices to evaluate
. fla+xy >
0| f(@)

For x small enough, f(a + x) and f(a) have the same sign, and it follows

that
o fa+ @+ %1y~
‘“g[iﬂ(w) }ﬂ‘i‘h["’g(w) }

. log|f(a + x)| — log| f(a)|
=lm ——
%0 x
The last expression on the right is the definition of the derivative of
log| f(x)| at x = a, which we know from calculus is f'(a)/f(a). Thus,

[ f(;(+)X) ]”; oS/
a

lim
x>0

Problems
634.

(a) Suppose that instead of the usual definition of the derivative, which we
will denote by Df(x), we define a new kind of derivative D*f(x) by the
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formula
S Ry - fH)
* = —_ 7
e
Express D*f(x) in terms of Df(x).
(b) If f is differentiable at x, compute
. fix+ ah)— f(x + bh)
lim ( _ )
#—0 h
(c) Suppose f is differentiable at x = ¢ and satisfies the functional equation
S(x + y)= fx) + f(y) for all x and y. Prove that f is differentiable at
every real number x.

6.3.5. Define f by

i) = {xzsin} it x#0,
0 if x=0.

(a) Show that f'(x) exists for all x but that it is not continuous at x =0.
(The derivative for x # 0 is 2x sin(1/x) — cos(1 / x); what is the deriva-
tive at 07)

(b) Let g(x) = x + 2f(x). Show that g'(0) > 0 but that f is not monotonic
in any open interval about 0.

6.3.6. Let f:[0,1)> R be a differentiable function. Assume there is no

point x in {0, 1] such that f(x) =0 = f'(x). Show that f has only a finite

number of zeros in [0, 1]. [Suppose there are an infinite number..Either [0,4]

or [},1] contains an infinite number of these zeros (perhaps both will).

Choose one that does, and continue by repeated bisection. Along the way,

construct a convergent sequence of distinct zeros. Use this to reach a

contradiction.]

6.3.7. Prove that if f is differentiable on (a,b) and has an extremum (that
is, 2 maximum or minimum} at a point ¢ in (a,b), then f(c)=0. [For
applications of this result, see 6.4.1, 6.4.2, 6.4.5, 6.4.6, 6.4.7, 6.6.4, 7.4.1.]
Additional Examples

6.6.2,6.72,69.1, 762

6.4. The Extreme-Value Theorem

An existence theorem is a theorem which states that something exists (for
example, a point within the domain of a function which has some stated
property). Quite often this special object occurs at some “extreme” position.
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Figure 64.

It is in this way that one comes to make use of the extreme-value theorem:
If £ is a continuous function over a closed interval [a,b], there are points ¢
and 4 in [a,b] such that f(c} < f(x) < f(d) for all x in [a,b].

6.4.1. Suppose that f:{a,b]— R is a differentiable function. Show that
satisfies the lusion of the intermedi lue theorem (i.e., if d is any
number between f’(a) and f(), then there is a number ¢ in the interval
(a, b) such that f'(c) = d).

Solution. If f were continuous we could get the result by a direct applica-
tion of the intermediate-value theorem (applied to f7). However, f* may not
be continucus (for example, see 6.3.5(a)), so how are we to proceed?

To help generate ideas, consider Figure 6.4. In this figure, a line L of
slope d is drawn through the point, (4, f(a)), where f'(b) < d < f"(a). For
each point x in [a,b}, let g(x) denote the signed distance from the point
f(x) to the line L (the length of AB in the figure). Our intuition is that the
point we seek is that point which maximizes the value of g. We shall show
that this is indeed the case, but to simplify the computation we look at a
slightly different function.

For each x in [a,b], let h(x) denote the signed distance of the vertical
segment from the point (x, f(x)) to the line L (the length of BC in the
figure). We observe that the point which maximizes the value of 4 on [4, 5]
is the same as the point which maximizes the value of g on [a,5]. (This is
because g(x) = A(x)cosa, where a is the inclination of L.) The advantage
of considering 4(x) is that we can easily get an expression for it in terms of
f{x) and the equation of L.

So now return to the problem as stated, and consider the function

(x) = f(x) = [ f(2) + d(x ~ a)].
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We see that
H(x)=f(x) - d.

Since f'(b) < d < f'(a), we have h'(b) <0< h(a). These inequalities
imply that neither (a) nor h(b) is a maximum value for » on [a,b] (this is
a consequence of the definition of the derivative). Therefore, since & is
continuous on {a,b), the exireme-value theorem says that # takes on a
maximum value at some point ¢ in (a,). At this point, by 6.3.7, K(c) =0,
which is to say, f'(¢)=d.

A similar argument can be made if f'(a) < d < f(b). In this case, h takes
on a minimum value at some point ¢ in (¢,b), and at this point, f'(¢)=4d.

6.4.2. P is an interior point of the angle whose sides are the rays 04 and
OB. Locate X on OA and Y on OB 5o that the line segment XY’ contains P
and so that the product of distances (PX)PY) is a minimum.

Solution. The situation is illustrated in Figure 6.5.

The problem is typical of the “max-min” problems encountered in
beginning calculus: it does not ask “Is there a minimum value?,” but
rather, “Where does the minimum value occur?.” The technique is to apply
the result of 6.3.7: if the minimum is in the interior of an open interval, it
will occur at a point where the derivative is zero. Thus, we need 1o express
(PX)(PY) as a function of a single variable, and find where it has a zero
derivative.

For each positive number x, there is a unique point X on 04 such that
x = |0X|, and this point in turn determines a unique point ¥ on OB such
that X, P, and Y are collinear. Thus, (PX)(PY)is a function of x. How-
ever, an explicit expression for this function is very messy; perhaps there is
another way.

Notice that (PX)(PY) is uniquely determined by the angle y (see Figure
6.5). To obtain an explicit expression for (PX YWPY), first use the Law of

T—(a+pty)

Figure 6.5.
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Sines in AOXP and AOPY to get
B

PX ~ 0P ™ TPy 0P
Then, it follows that

Foy =Xy PY) - (82) - or)-

sing _siny o sinﬁ=5iﬂ(7f*a—ﬂ—‘1)

sin B
sin{fm —a— B—y)
= C(esey)(esc(m—a— B - 1)) 0<y<m
where C = sinasin S(OP)? is a constant.
The function ¥ is continuous and differentiable on (0,7), and F(y)—> o0
as 7-4»0* and as y > ~, and therefore F will take on a minimum value at
a point in (0, 7). At this point F'(y} = 0; that is

siny

JRE

O=cscyose(m — a— B — y)[coty — cot(7 — a = B— )]
Since neither cscy nor esc(m — o — B — y) equal zero on (0,w), the mini-
mum occurs when coty=col(#z —a— 8 — y). But this happens for
0<y<w and 0<@m—a—B—y<= only when y=m—a—8—7v.
Thus, the minimum occurs when A QXY is an isoceles triangle; that is,
when OX = OY. (For another proof, see 8.1.3.)

Problems

64.3.

(a) Let f:[a,5] > R be continuous and such that f(x) > 0 for all x in [a, ].
Show that there is a positive constant ¢ such that f(x) > ¢ for all x in
[a,b].

(b) _Show that there is no continuous function f which maps the closed
interval [0, 1] onto the open interval (0, 1).

6.4.4. Letf:[a,b]—> R be differentiable at each point of [, 5], and suppose
that (@) = f'(b). Prove that there is at least one point ¢ in (a, ) such that
\ S -fa
fo==—"=""

64.5.

(a) Rul]e’s theorem. Suppose f:[a,b] > R is continuous on [a, b] and differ-
entiable on (a,b). If f(a) = f(b), then there is a number ¢ in (a,b) such
that f'(c) = 0.

(b) Mean value theorem. 1f f:[a,b]-> R is continuous on [a, b] and differen-
tiable on (&, b), then there is a number ¢ in (a, b) such that

f(b) — f(a)
b=z ~f©

a
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6.4.6. If A, B, and C are the measures of the angles of a triangle, prove
that

—2<sin34 +sin38 +sin3C <33,
and determine when equality holds.

6.4.7. Given a circle of radius r and a tangent line L to the circle through a
point P on the circle. From a variable point R on the circle, a perpendicu-
lar PQ is drawn to L with Q on L. Determine the maximum of the area of
triangle POR.

Additional Examples

L1115, 6.6.1, 6.6.4, 6.6.5.

6.5. Rolle’s Theorem

One of the fundamental properties of differentiable functions is the follow-
ing existence theorem.

Rolle’s Theorem. Stppose f: [a, 6] R is continuous on [a,b] and differentiable on
(a,b). If fla) = f(b), then there is a number c in (a,b) such that {'(c)=0.

This result is a direct consequence of 6.3.7: For let ¢ be a point in (a,b)
such that f(c) is an extremum (such a point ¢ exists by the extreme value
theorem). Then by 6.3.7, f/(¢) = 0. Rolle’s theorem is important from a
theoretical point of view (we shall subsequently show that the mean-value
theorem and a host of useful corollaries are easy consequences of Rolle’s
theorem), but it is also important as a problem-solving method.

6.5.1. Show that d4ax®+ 3bx>+ 2cx = a+ b+ ¢ has at least one root
between 0 and 1.

Solution. Any attempt to apply the intermediate-value theorem (as in the
solution to a similar problem in Section 6.2) leads to complications, because
not enough information is given regarding the values for a,b,c. But
consider the function f(x)= ax* + bx>+ ex? — (@ + b + c)x. Notice
that f(0) = 0 = f(1). Therefore, by Rolle’s theorem, there is a pmnt din
(0,1) such that f'(d) = 0; that is to say, d is a root of 4ax® + 3bx? + 2cx
= a + b + ¢, and the solution is complete.
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6.5.2. Prove that if the differentiable functions f and g satisfy f'(x)g(x)
+# g'(x)f(x) for all x, then between any two roots of f(x) = 0 there is a root
of g(x)=0.

Solution. Let a and b be two roots of f, @ < b. The condition implies that
neither @ nor b are roots of g(x) = 0. Suppose that g has no zeros between a
and b, Then, as a consequence of the intermediate value theorem, the sign
of g on [a,b] is always the same (that is, g(x) >0 for all x in [a,b], or
£g(x) <0 for all x in [a,b]).

Now consider the function F(x) = f(x)/g(x). This function is continu-
ous and differentiable on [a,5] and F(a) = 0= F(b). Therefore, by Rolle’s
theorem, there is a point ¢ such that F'(c)=0. But this leads to a
contradiction, since

_ B - £(()
8%

and, by supposition, g(c)f'(¢) — g'(¢)f(c) # 0. This contradiction implies

that g must have a zero between a and b, and the proof is complete.

Fe)

A useful corollary to Rolle’s theorem is that if f is a continuous and
differentiable function, say on the interval [a,5], and if x, and x, are zeros
of f, a < x; < x, < b, then f has a zero between x, and x,. More generally,
if f has n distinct zeros in [a,b], then f’ has at least n — I zeros (these are
interlaced with the zeros of f), f* has at least n — 2 zeros (assuming f” is
continuous and differentiable on [a, 8]), and so forth.

6.5.3. Show that x? = xsinx + cos x for exactly two real values of x.

Solution. Consider f(x)= x?— xsinx — cosx. Then f(—7/2)>0, f(0)
< 0, and f(#/2) > 0, so the intermediate-value theorem implies that f has at
least two zeros. If f has three or more zeros, then, by the remarks preceding
this example, f* has at least two zeros. However,

f(x)=2x—sinx — xcosx + sinx
= x[2 - cosx],

has only one zero. Therefore, f has exactly two zeros and the result follows.

6.54. Let P(x) be a polynomial with real coefficients, and form the
polynomial

Q=) = (5 + DPRP() + A[ (PN + (PN
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Given that the equation P(x) =0 has » distinct real roots exceeding 1,
prove or disprove that the equation Q(x)= 0 has at least 2n — 1 distinct
real roots.

Solution. Let a,,4;,...,4, be n distinct real roots of P(x)=0, where
1<a <ay< -+ <a,, and write Q(x) in the form
0(x) = (x — PP(IP(x) + x[ P(x) + P ()]

Suppose that P(x) has no zeros in the open interval (g;,q; aki=l
2,...,n— L (There is no loss of generality here, for if there are more, say
m, m > n, relabel the s to include these, and the following proof will
show that Q has at least 2m — 1 distinct real roots.) By ]_(olle‘s lheorgm,
there is a point b, in (a;,a;, ) such that P(b;) =0. Since Pisa polynor.mal,
P'(x) =0 has only a finite number of roots in (@, ), so for each i, we
may assume that b, is chosen as the largest zero of P’ in (al.‘a,ﬂ)A

Suppose that P(x) is positive for all x in (a, 4, +1) (see Flgure 6._6), an_d
consider the function F(x) = P(x) + P'(x). Our idea is to find a point ¢; in
(b;,a;,,) where F(c;) <0. Then, since F(b) >0, the intermediate-value
theorem would imply that there is a point 4, in (b;,¢;) such that F(d) =0,
and consequently,

0(b) = b(F(b)Y >0,
0(d)) = (d, = 1’ P(d)P'(d) <0
(note that P'(x) < 0 for all x in (5,4, ) and
Qi31) = o r(F(@41))" > 0.

Therefore, by the intermediate-value theorem, there are points x; in (b, d)
and y, in (d;,a,,,] such that Q(x)=0=Q(»).

P(X)

b ———

e

Figure 6.6.
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|
i
x
Figure 6.7.

For the preceding argument to work we must show there exists a point ¢;
in (b;,a,,,) where F(c)<0. If a,,, is a root of multiplicity one, then
F(a,, )= P'(a;,,) <0, and the desired ¢, can be found in a sufficiently
small neighborhood of g,,,. If 4, is a root of multiplicity greater than
one, then P(g;, ) = 0= P'(4;,,) and there is an interval (a,,, — 8,4,,,) for
sufficiently small 8 > 0, where P"(x) > O (see Figure 6.7). For such an x, it
is the case that

Py Pla) _ P(x)

X = ay, x—a,

Pix)<

and therefore,
F(x)=P(x}+ P'(x)

<P(x)[1+x_;‘%HJ

= P(x)[———-x Geit 1 ]
X =y,

Therefore, let ¢; = x, where x is chosen sufficiently close to a,, | 50 that
the of this last ion is positive and the denominator is
negative. Then, for such a ¢;, F(¢) <0, b; < ¢; < a;,,. This completes the
argument: Q(x) =0 has two roots in (¥,,4,, ]

The preceding argument was based on the assumption that P(x) > 0 for
X in (a;,a,,,). For the case in which P(x) <0 for all x in (a;,a,,,), an
exactly analogous argument leads to the same conclusion. Thus, we have
shown that Q has at least 2n — 2 zeros (two in each of the intervals
(a,,,,,),i=1,2,..., 1~ 1). The solution will be complete if we can show
Q has a zero in (—00,4;). Again there are several cases to consider.

Suppose that P'(x) =0 has a root in the interval (0,a;). Then, without
going through the details again, the same arguments show that Q has a zero
in (by,a,), where by is chosen as the largest zero of P’ in (0,a)).

We are left to consider what happens if P’(x) = 0 does not have a zero
in (0,a)). If P(x) > 0 for all x in (0,a,), then P’(x) <0 for all x in (0,a,)
and therefore Q(0) < 0 and Q(a,) > 0. By the intermediate-value theorem,
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Q(x)=0 has a root in (0,,). Similarly, if P(x) < 0 for all x in (0,a,), we
get Q(0) >0 and Q(a,) <0, etc. Thus, in all cases Q(x) =0 has at least
2n — 1 distinct roots.

The preceding analysis, though tedious and complicated, was based
entirely on first principles: Rolle’s theorem and the intermediate-value
theorem. With these two ideas the conceptional aspects of the proof are
quite natural and easy to understand. There is another solution which is
much easier going, after a clever, but not uncommon, key step (e.g., sce
6.5.11 and 6.9.4). Since it is instructive, we will consider it also.

First, notice that Q can be written as a product in the following manner:

Q(xy = (x* + WP()P'(x) + x[(P(=)) + (P'(%)']
=[P/(x) + xP(x)][ xP'(x) + P(x)].
Let F(x) = P'(x) + xP(x) and G(x) = xP'(x) + P(x). The key step, as we
shall see, depends on noficing that F(x) = e ~/2[¢*/2 P(x)]' and G(x)
=[xP()I-

Assume that P(x) has exactly m distinct real zeros g, exceeding 1, with
1<a,<ay< -+ <a, (m>n). Then e*/2P(x) also has zeros at a,,
a,, ..., 4,, so by Rolle’s theorem, [e"l/2 P(x)], and hence also F(x), has
at least m — 1 zeros b; with a; < b, < a;,,. Similarly, by Rolle’s theorem,
G(x) has at least m zer0s, Co,€y, .- .5 €y 0< o< a1 & <6 < ipys
i=1,2,...,m~1. We will be done if we can show that b,# ¢, for
i=l...,m—-1

So, assume that for some i, b, =c;, and let r be this common value.
From F(r)=0, we find that P’(r) = — rP(r). Substituting this into G(r)
=0, we get r[— rP(r)] + P(r)=0, or equivalently, (r* — 1)P(r) = 0. Since
7> 1, the last equation implies P(r)= 0. But since a, < r < a;,, we then
have a contradiction to our assumption concerning the roots of P(x) =0
(namely, g; and a,,,, were assumed (o be consecutive roots of P; i.e., all the
roots of P exceeding 1 were included among the a;’s). Tt follows that the s
and the ¢s are different, and therefore Q(x)=0 has at least 2m ~ 1
(» 2n — 1) distinct real roots.

Problems

6.5.5.
(a) Show that 5x* — 4x + 1 has a root between 0 and 1.
(b) 1f ag.ay, . . . , a, are real numbers satisfying
% ) e G =
Tra2 ottt
show that the equation ag + @,x + - - - + a,x" = 0 has at least one real
root.
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6.5.6.

(@) .Suppose that f:[0,1]-> R is differentiable, f(0) = 0, and f(x)> 0 for x
in (0, 1). Prove there is a number ¢ in (0, 1) such that
) _fi-9
Moy fl-o)”
(Hint: Consider fX(x)f(1 — x).)
(b) Is there a number 4 in (0, 1) such that
W) _Jo-dy,
fd)y -4y

6.5.7.

(a) C‘aut‘hy (nean-value theorem. 1f f and g are continuous on [a,5] and
differentiable on (a,b), then there is a number ¢ in (a,b) such that
[y~ fa)]g') = [ 2(2) — g(@)] S (o)
(b) Show that the mean-value theorem (6.4.5(b)) is a special case of
part (a).

6.5.8.

(2) Show that x’ — 3x + b cannot have more than one zero in [—1,1],
regardless of the value of 4.

(b) .Let fx)= (x2— 1)e®™. Show that f(x)=0 for exactly one x in the
interval (— 1, 1) and that this x has the same sign as the parameter c.

6.5.9. How many zeros does the function f(x) = 2% — | — x* have on the
real line?

6.5.10. Let f(x)=ay+ a;x + - - - + a,x" be a polynomial with real coef-
ficients such that f has n + 1 distinct real zeros. Use Rolle’s theorem to
show that g, =0 for 0 < k < n.

§.5.11. If f: R—> R is a differentiable function, prove there is a root of
J'(x) — af(x) = 0 between any two roots of f(x)=0.
6.5.12. Suppose n is a nonnegative integer and

S(X)=cee™ +cie™ + - g™,
where ¢; and r, are real numbers. Prove that if f has more than r zeros in R,
then f(x) =0. (Hint: Induct on n.)
6.5.13. The nth Legendre polynomial is defined by

Po(x) = g D (x* = 1)']

where D" d.enotes the nth derivative with respect to x. Prove that £, (x) has
exactly # distinct real roots and that they lie in the interval (— 1, 1). (Hint:
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(x? = 1)" = (x — 1)*(x + 1Y". Show, by an inductive argument, that the kth
derivative of (x — 1Y°(x + 1)” has | as a zero of multiplicity n — k, —l asa
zero of multiplicity 7 — k, and at least k distinct zeros between — 1 and 1.)

6.6. The Mean-Value Theorem

Suppose that f:[a,5)—> R is continuous on [a,5] and diflerenlia_ble on
(a,5). In a manner similar to that used in the solution to 6.4.1, consider the
function
F(xy=f(x) = L(x}
(see Figure 6.8), where y = L(x) is the equation of the line from (a, f(a)) to
(b, f(b)). Geometrically, F(x) represents the signed distan}:e along the
vertical line segment from (x, f(x)) to the line y = L(x_). Su.we Fla)=0
= F(b), we know from Rolle’s theorem that there is a point ¢ in (a, b) such
that F'(c) = 0. At that point, f'(c) — L'(¢) =0, or equivalently,
f(b) -~ f(a)
()= L'(c)=(slopeof L) = —pTa
‘We have just proved the following.

Mean-Value Theorem, If /: [a, 5] > R is continuous on [a,b) and differentiable on
(@, b), then there is a number ¢ in (a,b) such that
fio)—flay _ ,
B e
If f(a) = f(b), this is just the statement of Rolle’s theorem. Otherwise, ‘it
says that there is a point between a and b where the slope of the curve is
equal to the slope of the line through (a, f(a)) and (b, f()).

Figure 6.8.
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6.6.1. Let g(x) be a function that has a continuous first derivative g'(x) for
all values of x. Suppose that the following conditions hold:

@) g0 =0,
(i) |g'(0)] < | g(x)| for all x.

Prove that g(x) vanishes identically.

Solution. We will give a rather unusual solution, simply to illustrate the use
of the mean-value theorem. Begin by considering the interval [0, 1]. Let x
be an arbitrary point in (0, 1]. By the mean-value theorem, there is a point
¢, in (0, x) such that
ey = 8(x) — (9
gia x—0 .

Tt Follows that | g(0) = |xg'ten)] = [| gl < || gle).

Similarly, there is a point ¢, in (0,¢,) such that | g(c /)| < |¢,|| g(c,), and
substituting this into the last inequality, | g(x)| < |x]|c ||| g(e)-

Continuing in this way, we are able to find numbers ¢, ¢y, . . ., ¢,,
0<e, < -+ <eg<e<x<l, such that |g(x)|<|x]lef---
le,—ilg(e.)l- Since g is continuous on [0, 1], it is bounded (between its
minimum and maximum values, which exist by the extreme-value theorem),
and therefore, since the right side of this last inequality can be made
arbitrarily small by taking sufficiently large n (each of the |¢;’s is less than
1), it must be the case that g(x) = 0. Thus, g(x) is identically equal to zero
on [0,1).

The same argument can now be applied to the interval [1,2] (for x in
(1,2) there is a ¢, in (1,x) such that |g(x)| < |x — 1]| g(c})|, etc.). As a
consequence of this argument, we will get g(x) identically zero on [1,2].

By an inductive argument, we will get g equal to zero on [n,n + 1] for all
integers n. Therefore, g is identically zero. (Notice that we did not use the
hypothesis that g’ was continuous.)

The mean-value theorem has a number of important corollaries which
are useful in practice. Among these are the following.

Suppose f and g are continuous on [a,b] and differentiable on (a,b).

(i) If f(x) =0 for all x in (a,b), then f is a constant.
(i) If fi(x) = g'(x) Jor all x in (a,b), then there is a constant C such that
fx)=glx}+ C.
(i) If f(x) > 0 for all x in (a,b), then f is an increasing function. Similarly,
ff(x)<O(f(x) > 0, f(x) < 0) for all x in (a,b) then [ is decreasing
d i i ing, respectively) on (a,b). [ For applications,

see Section 14.]
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Proof of (i): Let x & (a,b). By the mean-value theorem, there is a
number ¢ in (a,x) such that [f(x) — f@))/ix — al=f(e)=0. 1t follows
that f(x) = f(a) for all x in (a,b).

Proof of (ii): Apply (i) to the function A(x) = f(x) = g(x).

Proof of (iii): Consider x, p €(a,b), x < y- By the mean-value theorem
there is a number ¢ in (x, y) such that [f()) - fEl/ly — x]= f{e) >0,
from which it follows that f{ y) > f(x), and f is increasing.

6.6.2. Let f: R—> R be such that for all x and y in R, |f(x)—f(MI <
(x — y)*. Prove that f is a constant.

Solution, By the first of the preceding corollaries, it suffices to show that
f(x)=0 for all x. Therefore, we argue as follows:

ool = 101

lim
%

= lim
by

I =x)

y— X

(5 (]

=lm —
= |y =al

cim Y2
yox |y —x|

=}ignx\y> x|

=0

6.6.3. Suppose that f: R—> R is twice differentiable with f7(x) > 0 for all
x. Prove that for all g and b, @ < b,

o) FOFE

Solution. Figure 6.9 makes the conclusion believable, but it is the mean-
value theorem that enables us to translate the local property, f/(x) >0
(f at x is determined by those values of f close to x), into a global
property (true for ali a and b regardless of their proximity).
By the mean-value theorem there is a number x, in (a,1(a + b)) such
that
fG(a+8) — fie)

NCED R
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Figure 6.9,

and a number x, in (4(a + ), b) such that

S~ i+ by
bl S

But f"(x) > 0 for all x in (x X3), 50 f’ is a nondecreasing function. Thus
S} 2 f1(x)), or equ]valenll)lf, d e .

f®) - f(3(a+ b)) , fG@+8) - fla)

b—a b—a ’
fha vy < L0200

I . . .
- r[)) [th71 re;namder .of the_ section we will consider problems which make
e of z:j 1 <t) th;: ma:lor existence theorems considered in this chapter: the
ediate-value theorem, the extreme-valu y
3 -value ’
and the mean-value theorem. . theorem, Rolles theorem,

6.6.4. Let f be differentiable with f continuous on [a, ). Show that there is

a number ¢ in (a, 5] such (c) = i
oy € in ] such that f'(c) =0, then we can find a number § in

fo= 1010

Soluti . .
t]:: utman.hW_e begm by getting a geometrical feel for the problem: consider
graph in Figure 6.10, where B is located so that the line CB is

horizontal. For a point i
b point x between a and b, the right side of the equation,

S - S
b—a
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Figure 6.10.

represents the slope of the line AB, whereas the left side, f'(x), represents
the slope of the tangent to the curve at C.
Consider, then, the function

, )~ f(@)
Fxy=f(0)-—3—¢
i i he fact that f* is
This is a continuous function of x (here we use t f 2 ]
corl:stinuous), so by the intermediate-value theorem, there is a point £ |bn
(a,b) such that F(§=0 provided we can find points x, and x, in (a,b)
,htthx >0 and F(x)) <0 . X
SucObscarve zhz;: F(x) moves ?rom being positive at x = a toqbemg negative
ill thi ing simi be the case?
t x = ¢. Will this, or something similar, always
¢ Suppose that f(c} > f(a). Then fe)y=0, and [f(c) — f@))/1b—al>0,
so that
\ fo) - fla)
F(c)=/(c)——b—T<0.
By the mean-value theorem, there is a point 4 in (0,c
F(d) =1f(c) — f@)}/lc = al. Therefore,
. f(d) ~ f(a)
Fdy=f(d)-—p=¢

Q- f@) _ fd)-f@)
="=a b—a

) such that

c—a
f(e)=f@ _ fid)~f(®)
>=3"a " b-a

_fe-fd)
b—a
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a d c b

Figure 6.11.

Now, we would be done if it were the case that f(c) > f(4). Unfortunately,
this may not be true, as the graph in Figure 6.11 indicates.

To alleviate this difficuity, we can proceed as follows. Consider the
function f over the interval [a,c]. By the extreme-value theorem, it attains a
maximum value on this interval, say at x = s (s may equal ¢). Since we are
assuming that f(c) > f(a), we know that a <s < c. If s=c then f(s)
= f(¢})=0, whereas if @ < s < c then f'(s)=0 by 6.3.7. Now proceed as
before: There is a point 4 in (a,s) such that f(d)=[f(s) - fla)}/
[s — a], and

4y —
Fiay=iay - 221
_ o) =f@) _ (@)~ f@)
s—a b—a
> J&O-f@ _ fid)-fl9)
b—a b—a
_ o f@)
b—a

and this last expression is nonnegative, since f(s) > f(<) by our choice of 5.
This completes the proof for this case. The argument is similar for the cases

[f(e) < f(a) and f(c) = f(a).

6.6.5. Suppose f is a twice i ly dif i |-valued function
defined for all real numbers such that | f(x)| < 1 for all x and (fOY +
(f'(O))2=44 Prove that there exists a real number Xg such that f(xp) +
S (xg)=0.

Solution. There are two natural approaches we might consider. One is to try
to apply the intermediate-value theorem: that is, to consider the function
F(x)= f(x)+ f"(x) and 1o find @ and & for which F(a) > 0 and F(b) < 0.
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Unfortunately, it is hard to see how the condition ( JOF +(f 0 =4
could be used in this approach.

Another idea is to see if G(x) = (f(x))* + (f'(x))* has an extremum in
the interior of some interval. At such an extremum, G'(x) = 0. Notice that
G'(x) = 2f(x)f(x) + 2 (x)f (x) = 2 (O f(x) + f"(x)]. This looks more
like it!

Qur approach will be to show that there are pointsa and b, —2 < a < 0,
0< b<2, such that |G(a)| < 2 and |G(b)| < 2. Since G(0) =4, it will
follow that G(x) attains its maximum at a point x, in (a, b), and at this
point, G'(xo) = 0.

From the mean-value theorem there is a point  in (—2,0) and & in (0,2)
such that

0) — f(~2 2y — (0
f(a= ———f( ) zf( ) and f'(b)= ———f( )Zf( ) .
It follows that
0) - f(—2 0y + [ f(—2
\f’(0)1=\f() 2f( )|<|f( ) 2\f( )1<1;|=1’
2)— f(—0 2)| + | f(O
U,(b)|=lf() 2f( )‘<kf()|2‘f()‘(1;|=l.

Thus,
1G@)| = (f(@)) + (f@) < If@F +If(@f <2
G = [(FB)) + (S ()] < L) +IF @I < 2.
Let x be the point in (a,b) where G(xo) is a maximum. Then
6'(x0) = Y (xg) f(xo) + f(x0)] = 0.

If f(x) =0, then G(xo)=(fixo)* + ([ (xg)’ = (fxpf* < 1. But G(x)
> 4, since G(0)=4. Therefore f(xg)+ 0, and it must be the case that
f(xp) + f(x0) = 0. This completes the proof.

6.6.6. Let f(x) be differentiable on [0,1] with f(0) =0 and f(1}=1. For
each positive integer n, show that there exist distinct points x, X5, .. ., X,
in [0,1] such that

n

oy
ngl F(x)

Solution. To help generate ideas, consider the case n = 1. We wish to find
x, in [0,1] such that 1/f(x)=L This is possible by the mean-value
theorem, since on the interval [0, 1], there is a point x, such that f'(x;)= L.
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.Consider the case » = 2. Consider the subintervals [0, x] and [x, 1] where
x is some number between 0 and 1 yet to be determined. By the mean-
value theorem, there is an x, in (0,x) and x, in (x, 1) such that

- 1O S~ f(x)
x—0 TT=-x

Fy= and () = S

Thus,

if and only if

x4 x
fx) 1= f(x)
(1= )+ (1 ) fx) =260 = 2Af(9)>
X xf(x) + f0) = (] = 2(x) + 2 f) = 0
® = 2x(x) — f(x) + 2 f(x)) = 0.
X(1=2(x)) = f(x)(1 = 24(x)) =0,
[x = f0)][1 - 2f(x)] = 0.
Now, had we chosen x in (0, 1) so that f(x) = | (this could be done, by the
intermediate-value theorem), the proof would be complete upon reversing
the previous steps.
. With this background we can consider the case for an arbitrary positive
integer n. Let ¢; be the smallest number in [0, 1] such that f(c) = i/n (the
existence of this number is a of the intermedi theo-
rem together with the assumption of continuity). Then 0 < ¢, < ¢; <
.< ¢, < 1. Define c,=0 and ¢, =1, and for each interval (c,_,,c),
i=12,...,n, choose x, such that
Sy = fle-)

G = Giny

flxy=

(this can be done, by the mean-value theorem). Then

5o that
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Problems

6.6.7.

(a) Show that

F sinx + sin(x + a)
=)= cosx — cos(x + a)
is a constant function by showing that F'(x) = 0. (This problem arose
in 1.2.1)
(b) If P(x) is a polynomial of degee three in x, and ¥? = P(x), show that
D(y’DY)
yl

is a constant, where D denotes the derivative operator. (Hint: first write
the above expression in terms of P and its derivatives.)

6.6.8.

(a) If y = f(x) is a solution of the differential equation y” +y =0, show
that f* + (f")? is a constant.

(b) Use part (a) to show that every solution of y” + y = 0 is of the form
y = Acosx + Bsinx. (Hint: It is easy to show that ali functions 4 cosx
+ Bsinx satisfy the differential equation. Let f(x) be a solution. For
f(x) to have the form f(x) = A cosx + Bsinx it is necessary that 4
=f(0) and B = f(0). Now consider F(x)= f(x)= f(O)xosx —
f(Osinx. Apply part (a) to F(x), making use of the fact that
F(0)=0= F/(0).

(c) Use part (b) to prove the addition formulas

sin(x + y) =sinxcos y + cos X sint y,

cos(x + y) = cosx cos y — sinxsin y.

6.69. Let f(x) be differentiable on [0, 1] with f(0)=0 and J(1) = L. For
each positive integer n and arbitrary given positive numbers k. &, - . ., K,
show that there exist distinet x,,X,, . . . , X, such that
"k n
= Sk
2 oo = &

i=l im1

Additional Examples

6.9.6, 6.9.10, Section 7.4.
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6.7. L’Hépital’s Rule

We will assume the reader is familiar with the various forms of L'Hépital’s
rule.

6.7.1. Evaluate

Jim (

_\x
a‘l) N where a>0, a#1.

Solution. Rewrite the expression in the equivalent form
1 a— 1\ 1 1 a =1
(x afl) “P[xbg(; a—l)]‘
In this way the problem is transformed to that of evaluating
1

. { log X
lim | ———
x>0

or equivalently,

log %

. (@ =1\ _ o (=1
}L“L[ + lim (2 - pim (251
provided each of these limits exists.
Clearly, lim, _, (a — 1)/x = 0, and by L’Hépital’s rule,
log(1/x —
" g(/)=“m( logx)
x x-r00 X

x—00

Also, by L’Hdpital’s rule,
I *~-1
i (20
x

x—e0

Tt follows that

N
% “’L ll ) =exploga = a.

6.7.2. Suppose that f is a function with two continuous derivatives and
f(0) = 0. Prove that the function g defined by g(0) = f'(0), g(x) = f(x), / x
for x # 0 has a continuous derivative.
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Solution. For x 0,

I Gl (G
gy =—7
x

and since f’ is continuous, so also is g’ for all x + 0. Tt only remains to
check that g has a derivative at x =0, and if g'(0) exists, to see if g’ is
continuous at x =0.

For the existence of g'(0) we must examine the following limit:

Gkt {0
& =0

= lim
x

( S /x -~ f(©® )

= lim
X0

S~ X0
x? ’
Since f(x) — xf'(0)~>0 as x>0, and since f and f” are differentiable, we
may apply L"Hopital’s rule to this limit to get
, (S-S
go= l'i'é( 2= )
L (f1O
2 x>0 X
=41
(The last step follows from the definition of £(0).) Thus g'(0) exists.
To check continuity of g’ at 0 we have

( xf(x

lim g'(x) = li
lim g'(x) = lim

= lim
x=0

( S+ sz"ix) ™ )

G "
- im( 5] =470
The last step follows because we are given that f has a continuous second
derivative. Thus lim,_g’(x) = g'(0), and the proof is complete.

Problems

6.7.3. Evaluate
(]

Jin:o4"(l —cos 7 )
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6.7.4. Evaluate the following limits:

@ Jim(1+1)

® Jim (21)

{1e5)
@ Jm(141)
2p,P,

i ,wherep”=(1+%)",andrn=(1+ %)"',

(¢) lim

o

(e) lim

n—w p

6.7.5. Let 0 < a < b. Evaluate

!i:?)[.rol[bx+a(l —x)']dt]

1"
6.7.6. Calculate
. X a_g
Xlggcxfo 3 dt.

6.7.7. Prove that the function y = (x*)*, y(0) = 1, is continuous at x = 0.

6.8. The Integral

Consider that happens to the sum

1 1
+ ..
atasi?t +2n

1

as n—> . One way to think about this is to interpret the sum geometri-
c?lly: Fonstmcl rectangles on [#,2n] as shown in Figure 6.12. From the
figure it is clear that

1,1 1 2 1 "
Ty Loy 1 Lgeo
R R e >fn xdx—logx]"

=log2n —logn =log2.
Similarly, from Figure 6.13 it follows that

[ DU NI | 2n 1
Aitarat +E<fn Jdi=log2.
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) = 1/t

Figure 6.12.

Putting these together, we have

L, 1 oy b g1 L
log2 <1+ — + +2n41<(n 2n)+log24

Now, as n— o0 it is apparent that the sum in question approaches log2.
Another way to see this is to rewrite the sum in the form

n=1 1 n—1 1 1
k§0n+k=k§,( 1+k/n)2

and to think of each term,

1)1

T+k/nln’
as the area of the rectangle with base [k/n,(k + 1)/n] and height 1/(1 +
k/n). In this way, the sum represents the area in the shaded rectangles

=1/t

Figure 6.13.
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n
Figure 6.14.

shown in Figure 6.14. As n— co, these areas approach the area bounded by
y=1/(1+x),y=0,x=0x=1 Thatis,

-1 n—1
li 1 _ g _ 1\
Jn 'S A= tim 5 ()

k=0

.| -
—L l+de-logZ.

6.8.1. Evaluate

n

2n n

2n ) _ofa]).
2218
Solution. The problem asks us to evaluate definite integral

LD -2L )
o M|l * x
We will do this geometrically by computing the area under the graph of
f(x)=[2/x]~201/x ) between x = 0 and x = 1. The points of discon-
.lmuily of f(x) in (0, 1) occur at the points where either 2/x or 1/x is an
integer. In the first case, 2/x = n when x =2/n, and in the second case,
1/x = n when x = 1/n. Thus, we concentrate on the points 1 >2/3 > 2/4
>2/5>2/6> ...

Tt is easy to check that for each n,

lim
n—wm

3=

; 2 2
o i Xe(znﬂ*ﬁ}
=1 Jrm]
1ot xe(ghm )
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1
t
L2022 2 t
6 5 4 3
Figure 6.15.

The graph is as shown in Figure 6.15. The integral is therefore equal to
2_2 2 2 2_ 2y,
(3-9+G-H+G-5)

or

Now recall that

exo XXX - 1

log(+x)=x— 5+ 5 -+, l<x<l
This means that

2(%—-}+%—%+-~)=2[log2—l+%]=log4—|‘

and this completes the solution.
6.8.2. Evaluate

H(n )"

n—»uo

Solution. We can change the product into an equivalent form by writing
2n 2n "
L II‘(n2+ #)"= exp[log# 1'[](n2+ i)/ ]
i= i-

2
= exp{ El %log(,,l + ,'1) — logm].
iz

6.8. The Integral

Therefore, we will examine

. 2n
A, [ z

lim [
Ao

lim [
lim

e
[

N

]|m

lim [
n—w

% log(n® + i%) — log n‘]

2 .
2 1lognz(%)flogn‘]
&1
>1 [logn +Iog(l (1) )] —-Iogn“}
2
logn® + 2 llog(l+(ﬁ) )—logn"}

ELET I 2 ]log(l + (ﬁ)z) —logn‘}

é’:‘log(l +(#)2) %]

We recognize this final expression as the definite integral

fu “log(1 + x%)dx.

Using integration by parts,

Thus, the original limit is

or equivalently,

6.8.3. Prove that

2 2
log(1 + x?)dx = 1+ x%) |~
'E)og( x%dx = xlog( +x)] ZJ; l+x2dx
2| 1
=2log5—2|"[1~- dx
o8 fn [ 1+ x2 ]
=2log5 — 2[ x — arctanx];
=2log5 —2[2 —arctan2].
exp[2log$ — 4 + 2arctan2],
25exp(2arctan2 — 4).
() e
k+n+1

Eo<“)( e

231
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Solution. The key is to observe that

1

1
1 _ krm gy
k+m+1

Using this, we find that
5"3 DM et 2( KRk At
-5 2( W (F)rma

Ut an
=foz(1 " dr.

Now use a change of variable: let s=1— ¢ Continuing from the last
integral:

=fu's"(l —s)"ds

=f0‘s~éo(-1)k(':)s*¢v

£=0
_ k[ 1
_kgo( D) (k)k+n+l
Problems
6.8.4. Evaluate each of the following:
J L
@ nliw[2n+1+2n+2 +3n]
(b) lim [ LL ¥ LN S } a>-1.
=) e
i n n n
SR s A

@) HIL";[(H%)(H%).‘,(] +%)]|/n.
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6.8.5. Evaluate each of the following:
n
im n=32
(a) lim » é}l V& .

by fim S ——L .
(ML";%W

6.8.6. Find the integral part of 3 1 ~2/%, (Hint: Compare the area under
(x) = x~* over [1, 10° + 1] with the area under g(x) = (x — 1)~ %> over

2, 10° + 1))

6.8.7. Suppose that f and g are continuous functions on [0, ], and suppose

that f(x) = f(a — x) and g(x) + g(a — x) = k for all x in [0,a], where k is a

fixed number. Prove that

[ feogexyde= 4k [ oy

Use this fact to evaluate

7 _xsinx
1+ cos’x
68.8.
{a) Let
A= f T_COSX gy
0 (x+ 2)
Compute

7/2 sin x cos x
== d
.I(; x+1 X

in terms of 4.
(b) Let

f(x) =fx llo+gt’ dr for x>0,

Compute f(x) + f(1/x).

6.89. Find all continuous positive functions f(x), for 0 < x < 1, such that
[ f(xydx =1, fixf(xydx = a, [px*f(x)dx = a’, where a is a given real
number.

6.8.10. Let f(x, y) be a continuous function on the square
S={(xy):0<x<1L0< p<1}.
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For each point (a,b) in the interior of S, let S, be the largest square that
is contained in S, centered at (a, ), and has sides parallel to those of S. If
the double integral [{f(x, y)dxdy is zero when taken over each square
S(o1» must f(x, ) be identically zero on $?

Additional Examples

144, 1.63, 1123, 1.12.6, 2.5.15, 6.2.2, 6.2.9, 7.6.3.

6.9. The Fundamental Theorem

The fundamental theorem of calculus refers to the inverse relationship that
holds between differentiation and i The fund I theorem
for integrals of derivatives states that if F(¢) has a continuous derivative on
an interval [, b), then

f"F'(z)d:= F(b) - F(a)-

In other words, diffe iation followed by i ion recovers the function
up to a constant, in the sense that

Fxy=("F(nydt+ C
@ =["Fo
where C = F(0).
For example, the derivative of F(1) = sin’t is F'(¢) = 2sintcosz. Integra-
tion of F'(2) on [0, x] yields
in’x = ( “2sintcostd.
sin“x j; sinfcos
In this case we have recovered the function exactly because F(0) = 0. But
also observe that the integration can be carried out in another manner;
namely (let # = cost),

X o
f 2sintcoside = —coszl] = —cosx + 1.
0 o

Tt follows that sin® = —cos’ + 1, or equivalently, sin® + cos’x = 1 for
all x.

6.9.1. Find all the differentiable functions f defined for x > 0 which satisfy
fe) =fx)+ 5. xy>0
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Solution. When x =y = 1, we get f(1)=f(1 X 1) = f(1) + f(1), and it fol-
lows that f(1}=0.
If x # 0, we have 0= f(1) = f(x X 1/x) = f(x) + f(1/x), and therefore,
F(1/x) = — f(x). 1t follows that f(x/p) = f(x) + f(t/y) = f() = f(p)-
Now the idea is to look at the derivative of f and then to recover f by
integration:

Foo=tim{ L5 h) f(x) )

Six+ ")/X))

where h/x=1

i L
-l
(f(l+!))

1-04 X

=1im(l- /(|+'I)-f(l))

_in
=5

Therefore, by the fundamental theorem,

S i
S = 0 =0 = [T ydx= | IO e 1y

Thus, the functions we seek are those of the form f(x) = 4 logx, where 4 is
an arbitrary constant.

6.9.2. Find the sum of the series

JE N RS USRS A S
Ll Bt AR ooy S ey

+oee
Solution. Consider the function defined by the infinite series
5 7 n x6n*5 6n—1

SO LU -
Ui S T P T

for 0 < x < 1. The series is absolutely convergent for |x| < 1, and therefore
we can rearrange the terms:

2 = X5’V’5 e
f(x)—(x+7+13+ e+ )
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Our idea is to differentiate f, to change its form, and then to recover f by
integration by use of the tundamental theorem. We have, for 0 < x <11,

sy = (L4 xS 4 - A xTE y= (x X0 xS T
x)=( ) )
1 4 (1= xH)(1+x%) 14 x2

TR IS (—(+ e tx)  Leaxt

Integrating (the details are not of interest here), and noting that f(0) = 0, we

get
f(x) = % [arctan( 2xﬁ— ! )+ arclan( 2)(\/; . )}

Since the series representation of f is convergent for x = I, Abel's theorem
(see Section 5.4) implies that the original series converges to

fy= % [arctan% + arclanﬁ] = % .

The fundamental theorem for derivatives of integrals states that if fis a
continuous function in an interval {a, b], then for any x in (a,b)

2 [“Rod=iex)

1In other words, i ion followed by
exactly.

recovers the function

6.9.3. If a(x), b(x), c(x), and d(x) are polynomials in x, show that
flxa(x)c(x)dx‘rb(d)d(x) dx— f“a(x)d(x) dxfl‘b(x)c(x)dx

is divisible by (x — D%

Solution. Denote the expression in question by F(x). Notice that F(x) is a
polynomial in x. Also, notice that F(1)=0 and therefore x — 1 is a factor
of F(x).

Because F is a polynomial, we know that (x — 1)* is a root of F(x)=0if
and only if F(1)=0. We can compute F’ by use of the fundamental
theorem:

Fi(x)=ac fl “bd+ bd f‘ “ac— ad f. “be— be fl “ad.

(Note that F’(1)=0 and hence that (x — 1)? is a root of F(x)= 0.) The
derivatives F” and F’" are done in a similar manner; it turns out that
F(1) = (acy bd + (bd ac — (ady bc — (bcY ad],., = 0. This completes the
proof.
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The next three examples combine several ideas from this chapter.

6.9.4. Let f:(0,00)— R be differentiable, and assume that "
, 3 x)+ 0
when x - o0, Show that f(x) 0 as x - co. e+ J o=

Soluti_on. First, a digression: If p(x) and g(x) are continuous functions, the
equation

L4
e TP =49(x)
can be solved in the following manner. Multiply each side of the equation

by m(x) = e/P* % and notice that the resulting equation can be put into
the form

£ (ym(x)) = m(x)q(x).

Thus, by the fundamental theorem of calculus, for each constant a, there is
a constant C such that

ym(x) =f’m(x)q(z)dz+ fol
a
From this, we can solve for y.
Now, rt_zturn to our problem and set g(x) = f(x) + f'(x). According to
the reasoning of the last paragraph, we can solve for f(x) (in terms of g(x))
by first multiplying each side by e*. As above, this leads to the equation

f(x)e* =f‘e'g(z)dx+ C,
A
or equivalently,
fx)= e”f‘e'g(:)dm Ce .
.

Let ¢ > 0. Since g(x)}—>0 as x— o0, choose a so that
x> a.Then so that | g(x)| < e for all

Il < e

[esaf+ice
<o [elgldrtice |

<ee s [Te'dr+ |Ce|
.

e ¥(e* —e”) +|Ce ™|
e(l— e "y +|Ce™"|.

Now, for sufficiently large x, we will have
4 <2 It fi
f(x)>0 as x> co. |f(0)] < 2. Tt follows that

It
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6.9.5. Evaluate
" x s
)l(lg"n)(l/x)'[) (1 +sin 20)'/"dr.

Solution. Qur aim is to apply L’Hépital’s rule, but some preliminary work
must be done. First, there is a question concerning the existence of the
integral because the integrand is undefined at r = 0. However,

lim (1 + sin2x)/*= i 1 in2
XT“)( sin2x) Jim | exp log(1 + sin 2x)
{ . log(l +sin2x)
=exp| lim ( _ )
x>0 x
which by L'Hépital’s rule is

exp2=el

2¢082x
EXP[ )l(lgtl) 1+sin2x

Thus, if we define
oy = { (I+sin20)/* if x#0,
if x=0,

the function f is continuous, and [§(1 + sin2¢)!/"di = [§ f(t)ds.

In order to apply L’Hépital’s rule to this problem, we must show that
J3(1 +5in2)/'dr >0 as x—>0. To do this, let K be an upper bound for
/()] for all x in (~ 1, 1). Then, for x in (—1,1),

‘f‘(l +sin21)’/’dl’<fx|l+sin2t\'/’dx < Klxl.
0 0
Tt follows that
f’(|+sinzx)'/'dx—>o as x—0.
o
We are now able to apply L'Hdpital’s rule to the original problem:
f*(l +sin20)/"de
'

lim 0 = lim (1 +sin2x)"/*= &%
x—0 X x—0

6.9.6. Suppose that £:[0, 1] R has a continuous second derivative, that
f(0)=0= f(1), and that f(x) > O for all x in (0, 1). Show that

[

dx > 4.

f(x)
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Solution. Let X denote a point in (0,1) where f(x) is a maximum, and
suppose that ¥ = f(X). Then

[

dx>mf [f7(x)ldx

f(x)
L[ _SH-f
>mf0f(x)dx_ e
‘We appear to be stymied at this point, because it is certainly not necessary
that f’(1) — f(0) > 4| Y|. However, by the mean-value theorem, there are
points a in (0, X) and & in (X, 1) such that

FO O _ fX) _y
X

fe=——F5—5—"="3"=%
and
Fby = f(]) f(X) %
Thus,
1| f(x .
k f(x) a [ oy | il o,

so applying the fundamental theorem to the last integral, we have

[

dx> m 17 (®) = f(@)
But the maximum value of x(1—x) in (0,1) is } (when x=1) and
therefore

f(x)

t
><-<
~ |~

[

<|_ <|_

tx |X(l——X)’

()
J(x)

1
.y
X1 =x)l

Problems

6.9.7. What function is defined by the equation
x
= ndr+ 1?7
Je =10
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Figure 6.16.

6.9.8. Let f:[0,1]—>(0,1) be i Show that the equati
x
2x7f0 f(ryde=1
has one and only one solution in the interval [0, 1].
6.9.9. Supposc that f is a continuous function for all x which satisfies the
equation
~ R PRNE LGN L)

fof(t)dt L/f(z) i+ 5+ 5
where C is a constant, Find an explicit form for f(x) and find the value of
the constant C.

6.9.10. Let C, and C, be curves passing through the origin as shown in
Figure 6.16. A curve C is said to bisect in area the region between C 1 and
C, if for each point P of C the two shaded regions A4 and B_shown in the
figure have equal areas. Determine the upper curve C, given that the
bisecting curve C has the equation y = x? and the lower curve C, has the
equation y = %x‘.

69.11, Sum the series 14+1 =1 —4 +4+4 -4 —

6.9.12. Suppose that f is differentiable, and that f'(x) is §trictly increasing
for x > 0. If f(0) = 0, prove that f(x)/x is strictly increasing for x > 0.

Additional Examples

1.5.1, 5.1.3, 5.1.9, 5.1.11, 5.4.6, 7.6.5.

Chapter 7. Inequalities

Inequalities are useful in virtually all areas of mathematics, and inequality
problems are among the most beautiful. Among all the possible inequalities
that we might consider, we shall concentrate on just two: the arithmetic-
mean-geometric-mean inequality in Section 7.2 and the Cauchy-Schwarz
inequality in Section 7.3. In addition, we shall consider various algebraic
and geometric techniques in Section 7.1, and analytic techniques in Sec-
tions 7.4 and 7.5. In the final section, Section 7.6, we shall see how
inequalities can be used to evaluate limits. .

7.1. Basic Inequality Properties

The most i PP h for ishing an i lity is to appeal to
an algebraic manipulation or a geometric interpretation. For example, the
arithmeti ic-mean i i

atb 50, 0<a<h

can be established algebraically by writing it in the equivalent form

(fa =By >0,

or geometrically by considering the semicircle in Figure 7.1. (The semicircle
is constructed with diameter 4B of length 4 + b, and C is a point chosen so
that AC = g and CB = b. A perpendicular to 4B from C meets the circle at
D. Triangles ACD and CDB are similar, and therefore a/CD = CD/b.

N 241



242 7. Inequalities

Figure 7.1.

It follows that CD =Vab . Clearly, Yab < radius of circle =(a + b)/2)
Both derivations make it clear that equality holds if and only if 2 = b.

In this section we will consider examples of inequalities that can be
verified by using only algebraic and geometric ideas.

7.1.1. Show that for positive numbers g, b, ¢,
a’+ b + ¢2 > ab+ be + ca.

Solution. Working backwards,
a’+ b*+ ¢ > ab+ be + ca,
2a% + 26 + 2¢2 > 2ab + 2bc + 2ca,
(a?=2ab + B + (b2 = 2bc + ¢} + (¢ = 2ca + @) 3 0,
(a~ b+ (b—cy+(c—a)>0

This last inequality is obviously true, and since the steps are reversible, the
solution is complete. (The proof also makes it clear that equality holds if
and only if a = b=c)

This example illustrates a common theme: manipulate the expression
into a form to take advantage of the fact that a squared number is
nonnegative.

7.1.2. Prove that for 0 < x <}z, cos’ + xsinx <2.

Solution. Consider the function

f(x)=2— cos’ — xsinx,
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and perform the following manipulations:
J(x) =14 (1 - cos’x) — xsinx
=1 +sin’x — xsinx
= (1 = 2sinx + sin’x) — xsinx + 2sinx
=(1—sinx)*+ (2~ x)sinx.

In this form we see that the desired inequality holds for 0 < x < 2.

713. If 0< a,b,c < 1, show that

a b <
Frevi texasi Tarsrr TU-a(-B(I-g<t

Soluﬁon.‘ﬂ‘ere,' igk .wa?d Igeb leads to horrendous
and 4 1 One simplification is to assume, without
loss of generality, that 0 < @ < b < ¢ < 1. Then, for example, we have

a b 4 atb+e
+
breri cxar iV arorl Sarbtl”

and we might try to prove that

atb+c

arbe1 TIma(-b)l- <l

This pfoblem is easier algebraically, but still messy, and of course, we may
have given away too much (that is to say, this inequality may not even be

true). However, we have the following:
atb+c
a+b+1
—athb+1 e—1

“arbrr Tavrr T A0 -0(1-9)

+(l—a)t-b}(l-c)

1—(%[75“)[1 —(1+a+b)1—a)i-b)].

The desired inequality follows from this expression after noting that
(I+a+b)(1—a)(l-by<(1+a+b+ab)(l—a)l—b)

=(1+a)(1+b)1—a)l-b)

=(-a)l-b)

<1
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7.1.4. Let n be a positive integer, and @, > 1, for i = 1,2, ..., 1. Show that

(l+a,)(|+ﬂz)"'(1+“~)>,,2+”1('+”'+'”+"")'

Solution. Induction is a natural strategy here, avnd it is not diffif:ull o cfarr).'
out in this manner. But the following “give a little” argument is more fun:

(I+a)l+a)---(1+a)

{3

a— 1
4.
2
- -1
a-l &=l & )
>2H(H—n+l+n+l+ n+l

- i"l(n+1+a,—1+arl+~-+ar1)
n

=;%:1(1+a|+a2+‘“+‘7n)~
n

7.1.5. For each positive integer a, prove that
1 xd 1 n41
(1+;)<(1+—n+1) .

Solution. This is an important inequality that can be proved in a number of

ill give a proof based on
ways (see 7.1.11, 7.2.8, 74.18). Here we wi ! g - p of based on

comparing cor ding terms in the bi
On the left side,

(3= 206

. np=lyn=2)- - (rok+ D)
PO S 13

BO-20-3) 055

»

M=

~
1
o

M=

&

]
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In a similar manner,

B a4l _
(i) =2 A0 )0 F) - (-4

(
=(nJlr1)"+I
*E )R (-

The inequality is now obvious, since comparing the coefficients of 1/k! in
these expressions, we see that for each k,k=0,1,2,...,n,

(=32 (=55
(=gt ) (45

Tt is worth noting that

k=0 k=1
” n—1 1
1+ +> -
< kz-:l ! kgo 2%
«
<1+ 3
£

Thus, the sequence (1 + 1/n)" is increasing and bounded above by 3. (It
can be shown that the sequence converges to the number e)

The next result is important theoretically and is very useful (e.g., see
7.4.9 and 7.4.20).

7.1.6. Suppose that f: R— R satisfies
x+yy SR+
=) <=5

for all x and y is an interval {(a,b), x # y. Show that

RS SO e f

whenever the x.’s are in (a, b), with x; % x; for at least one pair (4, ).
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Solution. Assume the result holds for n = m; we will show it holds also for
n=2m. We have

f(x,+'-<+x2m)

L(a X Xt X )
=f(§( " + m )

(%{f(x.+~;n'+x,,,)+f(xm+.*'”;‘ +X2m):1

(e fome)t - 4l

m m
S+ )+ -+ [(Xam)
-

Thaus, by induction, the result hoids for all positive powers of 2..

Now suppose that 7 >2 and n is not a power of 2; that is, suppose
that 2"~' < n <27 for some integer m. Let k=2"—n, and set y
=(x+ -+ x)/nfori=12 ...k Then X, X3 -5 X Pio- - -2 i
are 27 numbers in the interval (a, b), and therefore our preceding argument
implies that

(x|+-<-+x,,+y|+--~+yk)<f(xl)+"'+f()’k)'

A 27 2"
But note that
Xph Xy
(=)

Xt A x,H k(s x)/n

’f( 7 )
,,(x|+4.-+x”)+(2"'—n)(x‘+--~+x~))

=f( K2

X+t x,,)
(=)
Making this substitution into the last inequality,

f( Xt *Xn)<f(xx)+ +f(Xn)2*;f()’x)+ s )
FE)+ )+ K((x -+ x)/n) .
= -
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Multiplying each side by 2” yields

Xyt e+ x,
B R O PR B4
Xt +x,
+ (=)
and from this we get the desired inequality for n:
Bt by o)+ ()
f( ! ” )< .

n

Problems

7.1.7. Suppose that a,b, ¢ are positive numbers. Prove that:

(a) (@ + b)(b + c)c + a) > 8abe.
(b) a®? + b + c%a? > abe(a + b + o).
@ Ifa+b+c=1,then ab + bc + ca <4
7.1.8. Prove that
1,35 999999 _ 1

2 46 1000000 ~ 1000 °

(Hint: Square each side and “give a little” to create a “telescoping” product
(see Section 5.3).)

7.1.9.

(2) If @ and b are nonzero real numbers, prove that at least one of the
following inequalities holds:

a+yat+ 28
1) <l

a—ya*+25°
5 <L

(b) If the # numbers X1, X35 - 1y X, lie in the interval (0, 1), prove that at
least one of the following inequalities holds:

X, <270 (=mx)(l-x) e (1-x) <270

7.1.10.
(@) Let a,/b,a,/b,, ..., a,/b, be n fractions with b,>0 for i=1,
2,..., n. Show that the fraction
a+a+ - ta
bi+b,+ - +5,

is a number between the largest and the smailest of these fractions.
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(Note the special case in which ail the fractions a,/ b, are equal.)
by If

pwvethaleilhera=cora+b+t+d=0.
7111,
(a) For 0 < a < b, show that
(n+ )b - @ <b —a™t ! <(n+ (b ayp”.
a=1+1/(n+andb=1+

a1

is i i ial case
b) Apply this inequality to the special
¢ 1/n to show that (1 +1/n)" <(1+1/(n+1)

7.1.12. Prove that for all n,
(%)n< nt< e(%)".

h inequality). By " ical induction on n,

7.1.13 (Cauchy A b
prove that for all real numbers a,, . . ., @by 0 Ons

]akbk)l < (kil az)( kél bl%)

i interior to the
rilateral (the two diagonals are interior
v ¢ als is less than the

7.1.14, [n a convex q :
quadilateral) prove that the sum lengths of the diagon:

perimeter but greater than one-half the perimeter.

7.1.15. Prove that for any positive integer #, "Yr <1+ V2/n.

Additional Examples

7, 2.15, 2.1.6, 2.24, 2.26, 24.1,
13.3, 174, 1.7.5, 1.8.2, 1.8.5, 1.8.6, 1127, 3
244,246, 538, 613,731,748, 749, 7420, 7421,7422, 7423

72. Arithmetic-Mean-Geometric-Mean Inequality

Let x, > 0 for i = 1,2, . . ., n. The arithmetic mean of Xp,%, .+ - » X, I8 the

number
XXy X,
n
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and the geometric mean of x,,x,, . . ., x, is the number
[EAER X,,)I/".
The arithmeti n-g ic-mean | lity states that
xp+ x4+ -+
[CECRERD S DA il BRI

n
with equality if and only if all the x;’s are equal.

The special case n =2 was verified both algebraically and geometricaily
in the beginning paragraphs of Section 7.1. A proof for larger values of n
can be handled by mathematical induction (e.g., see 7.2.5 or 2.5.7), or by
considering the concavity of the function f(r) = log (see 7.4.20). However,
a more enlightening heuristic (however, not a proof) can be made as
follows.

Consider the geometric mean (xx, - - - x,)'/" and the arithmetic mean
(xy+ -+ + x,)/n. If not all the x;’s are equal, replace the largest and the
smallest of them, say x,, and x,, respectively, by 1(xy + x,,). Then, since
30y + X,) + J(X + X,) = Xy + X,y a0d [J (x4 + X,)]2 > Xpyx,,, the re-
sult of this replacement is that the geometric mean has increased while the
arithmetic mean has remained unchanged. If the new set of n numbers are
not all equal, we can repeat the process as before. By repeating this process
sufficiently often, we can make the quantities as nearly equal as we please
(this step needs additiona! justification, but we won’t worry about it here).
At each stage of the process, the geometric mean is increased and the
arithmetic mean is unchanged. If it should happen that all the numbers
become equal (this may never happen, however; eg., take x; =1, x,=13,
X3 = 4), the two means will coincide. It must be the case, therefore, that the
geometric mean is less than or equal to the arithmetic mean, with equality
when and only when all the numbers are equal.

As an example of this process, consider the case Xy =2,x,=4, x,=8,
X4 = 12. The algorithm described yields the following sequences of sets:

(24,812} > (7,4,8,7) > (1.6,6,7) > [ §. 4,4, 4}.

The geometric means of the corresponding sets increase to 4, the arithme-
tic means remain fixed at 4.

7.2.1. Prove that the cube is the 1 llelepiped with
volume for a given surface area, and of minimum surface area for a given
volume.

Solution. Let the lengths of the three adjacent sides be a, b, and ¢. Let A
and ¥ denote the surface area and volume respectively of the parallelepi-
ped. Then

A=2ab+bc+ca) and V= abe.
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By the arithmeti ic-mean i lity,

V2 = a’b’c? = (ab)(be)(ca)
<(sbrtex m)’=(w)3=(%)3_

Thus, for all a,b,¢,

Vi< A
Furthermore, 6V2/>< A in all cases except for when ab = be = ca (or
equivalently, when @ = &= ¢), and in this case 6V =A. Thus, if 4 is
fixed, we get the greatest volume (namely V' = (4 /6P whena=b=c(a
cube), and when V is fixed, we get the least surface area {(namely A
=6V whena=b=c (a cube).

7.2.2. Prove the following inequality:
Ve _ LI PR B Y Al
nf(n+1) <itgtgt -ty <n-(x yn .
Solution. Let s, = 1 +4 + - -+ + 1/n. The leftmost inequality is equivalent
to proving
n+s, in
- >+ 1)
which has vaguely the look of an arithmetic-mean—geometric-mean in-
equality. We can make the idea work in the following way:
n+s, a+(+1/2+-.- +1/n)
n n
A+N+(1+1/)+ - +(1+1/n)
B n
243/244/34 - 4+ (n+1)/n
n

>(2~%‘%"' ,,:1)‘/"

=+ 1)
For the rightmost inequality, we need to show that
B Sy gt
=

7.2. Arithmetie-Mean-Geometric-Mean Tnequality 2
S1

Aeai . . .
gain, using the arithmetic-mean—geometric-mean inequality, we have

n—:"=n—(l+l/2+l/3+-<-+l/n)
n—1 n—1
_U=D+ -1+ -1y
n—1
_ l/2+2/3+»~+(n—l)/n
n—1

)l/(n>|)

7.23. 1f a,b,c are positive numbers such

prove thar ot 2 that (14 a)(i + b)1 + ¢) =8,

Solution, We are given that
l+(a+b+c)+(ab+bc+ca)+ab(‘=84
By the arithmetic-mean—geomeltric-mean inequality.
a+b+c<3abe)’® and ab+ be+ ca 3abey?/?,
each with equality if and only if ¢ = b = ¢, Thus,
83 1+ 3(ab)°+ 3(abc) + abe
=[1+ (abey T’
It follows that
(abe)'P<(2-1y=1,
or equivalently,
abe < 1

with equality if and onlyifa=b=c=]

7.2.4. Suppose that x, >0, i = 1,2, , . . »nandlet x,, | = x,. Show that
w1 = X 2

2(5) <)
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Solution. Consider the case n = 3. By the arithmetic-mean—geometric-mean
inequality, we have

3 3
% X l(ﬁ>+1(§) 41
Z==—=1 < s
Xy X3 X, 3l x; 3l x 3
3 PRU
X _ XL % l("x) +l(43)+_
L L 1 B s
X, X X 3\ x, 3l x 3
3 3
LN <l(ﬁ)+%(ﬁ)+ L
Xy X3 X3 3\x X3

Also,
3 3
1=ﬁAﬁAﬁ<l(ﬁ)°+l(ﬁ) “(2)-
X, X3 X 3\x 38 x, X,
Adding these inequalities gives the desired result. The case for an arbitrary

positive integer n is similar.

Problems

7.2.5. Fill in the steps of the ing inductive proof of the ari
mean—geometric-mean inequality: For each k, let A, =(x;+x,+ -~
+ x)/k, and G, = (x,%, - - - x,}'/*. Assume that we have shown A, > G-
Let

‘)I/k-

+ (k- 1)4 ~
,4=X";‘Lk# and G = (AL

i i i i d it follows that
Then, using the inductive assumption, we have 4 > (i an A
Ao = S(A, + A) > ()72 7 (G,G)/2 = (GEHAT/A0. From this
it follows that A, > Gy, . On the basis of this argument it is easy to
prove the equality holds if and only if all the x;’s are equal.

7.2.6. If a,b,c are positive numbers, prove that
(a% + b + clay(a’c + ba + ) > 9a%b%?,
7.2.7. Suppose that a,, . . ., a, are positive numbers and b,....,b, isa
rearrangement of ay, . . ., a,. Show that
a;  a 4,
4=+t 20
55 b

728.

(a) For positive numbers a and b, a % b, prove that

n a+nb
(@b V< AR
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(b) In part (a), consider the case a =1 and =1 + 1/» and show that
1y 1yt
(1+;)<(1+—n+l) .
(c) In part (a), replace n by n+ 1, let a= 1 and b = n/(n + 1), and show
that
[+ 1+
(1+;) >(1+—M) .
7.2.9. For each integer n > 2, prove that
LIy g _g\n-!
@ )<=
o (nt1y
(b) n4<(—2 )
() IX3IX5x .- X@2n—-1)<na"

7.2.10. Given that all roots of x5 —6x"+ ax*+ bx* + ex? + dx +1=0
are positive, find a,b,¢,d.
7.211.
(a) Let Xi)> o f(;lr i=12,...,n, and let p,, p,, ..., p, be positive inte-
gers. Prove that
+ 4 px
XPxfr .o xpet e ¢ LAl /ol
(g ) e

(b) Prove the same result as in part (a) holds even when the p;’s are positive
rational numbers.

7.2.12. Use the arithmetic-mean-—, ic-mean i lity for each of
the following:

(a) A tank with a rectangular base and rectangular sides is to be open at
the top. It is to be constructed so that its width is 4 meters and its
volume is 36 cubic meters. If building the tank costs $10 per square
meter for the base and $5 per square meter for the sides, what is the
cost of the least expensive tank?

(b) A farmer with a field adjacent to a straight river wishes to fence a
rectangular region for grazing. If no fence is needed along the river, and
he has 1000 feet of fencing, what should be the dimensions of the field
so that it has a maximum area? (Hint: It is equivalent to maximize
twice the area.)

(c) A farmer with 1000 feet of fencing wishes to construct a rectangular
pen and to divide it into two smaller rectangular plots by adding a
common fence down the middle. What should the overall dimensions
of the pen be in order to maximize the total area?

(d) Prove that the square is the rectangle of maximum area for a given

i and of mini i for a given area.
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(¢) Prove that the equilateral triangle is the triangle of ma?(imum area ﬁ?r a
given perimeter, and of minimum perimeter for a given area. (Hint:
The area of a triangle is related to the perimeter of the triangle by the
formula A = (s(s — a)s — b)(s — ¢))*/%, where a,b,c are the lengths of
the sides of the triangle and s = 1 P, P the perimeter of the triangle.)

Additional Examples

Introduction to Section 7.6; 7.3.1, 8.14.

7.3. Cauchy-Schwarz Inequality

Let g, >0and b, >0 fori= 1,2, ..., n. The Cauchy-Schwarz inequality
states that
/2

ii ab < (,éla'z)l/z(,él b,z) ,

with equality if and only if @,/b, = a;/b;= -+ - = a,/b,-

A proof can be given using mathematical induction (see 7A1,I3). But
an easier approach is to consider the quadratic polynomial P(x)=
S_ (ax — b)*. Observe that P(x) > O for all x; in fact, P(x)=0 only
under the conditions in which a,/b,=a,/b,= -+ =4a,/b, and x
= b,/a,. Now

n
P(x)y= 3 (ax? = 2abx + b)
=

z”:]aiz)xz - 2(§| a,b,)x + é b2,

and since P(x) > 0, the discriminant of P.cannot be positive, and in fact
will equal zero only when P(x) = 0. Thus,

or equivalently,

with equality if and only if @,/b; = - - - = 0/ By
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In this inequality, note that the requirement that the , and b, be positive
is redundant, since for all a,, 5,

" " ” 1/2 n 172
S an<Slalbl<(S) (Z#) -
i=1 =]

7.3.1. 1f 4,b,¢ >0, is it true that acos’d + bsin® < ¢ implies Va cos¥
+Vbsin¥ <ye?

Solution. By the Cauchy-Schwarz inequality
{@cos’d +p'sing
<[@cosdy? + (Fsin8)?]"" (cos8 ) + (sin8)?]”*

= (acos’d + bsinzﬂ)‘/2

<c.

There is also a nice solution based on the arithmetic-mean-geometric-
mean inequality:

(Va cos’d + b sin’9 )2 = acos* + 2ya Vb cos¥sin + bsin'g

< acos® + (a + b)cos™ sin + bsin'd

= (acos® + bsin'd )(cosd + sin’9)
<e.
Another solution, more geometric in nature, is given in 7.4.19.

7.3.2. Let P be a point in the interior of triangle 4BC, and let r,,ry,r;
denote the distances from P to the sides a,,a,,a; of the triangle respec-
tively. Let R denote the circumradius of ABC. Show that

1/2
\/I_,+~/E+\/r:<‘/2l_k(alz+a§+a§)/

with equality if and only if ABC is equilateral and P is the incenter.

Solution. By the Cauchy-Schwarz inequality
Vi 4 =Var 1/ ey +Vagr, 1/ ay +Vaurs 1/ a,

< L1, 1”7
7+ ayry + ayr, +
L 272 33) (“1 a, a:)
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with equality if and only if

il Va2 M)

Vl/a 1/a 1/ay
or equivalently, if and only if
alr = airy = adry.

In the preceding inequality, we recognize that a,r, + ayry + ayry =24,
where A is the area of the triangle. Also, we know that the area of a
triangle, in terms of the circumradius R, is given by A = @,a,a,/4R (see
8.1.12). Therefore, a,r| + a,r, + a3r; = 4,a,a;/2 R, and we have

ada\i 1 1y
+ LI S &
it ‘/Z<( 2R ) a|+a2+a3
- ( a,a,a, )'/2 a,a; + aya, + a3, \'/?
2R a,a,a,
=1 (3,03 + aya, + a,a,)"/2

'3

Now, again by the Cauchy-Schwarz inequality,

a8y + aya, + aya, < (af + af + af)‘“(a% +al+ ag)‘/2
= (a,2 +ai+ a3)
with equality if and only of a,/a;=ay/a,=a,/a, (=(a,+a,+a))/
{ay + a, + a;) = 1; see 7.1.12), or equivalently, if and only if
ay=a,=a;.

Thus, we have

Vry 4 44 < 1 (af+ a}+ a§)|/2
¥2R
with equality if and only if alr, = air, = a}r, and @, = a, = ay; that is, if
and only if a, = a, = a; and r, = r, = r;. This completes the proof.

7.3.3. Given that a, b, ¢, d, e are real numbers such that
a+b+c+d+e=8,
a’+ b+l +d2+ 2 =16,
determine the maximum value of e.

Solution. The given equations can be put into the form
8—e=a+b+c+d,
16— e*=a*+ b2+ c?+d2%
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We wish to find an inequality involing only ¢; the Cauchy-Schwarz
inequality provides a way, since

a+b+ct+dy<(l+1+1+1)%a+ b2+ 2+ a3
) <( Pad ¢

Making the substitutions given 'above, and squaring, we have
(8- e)* <4(16— ¢,
64— 16¢ + ¢* < 64 — 4¢?,
Se* ~ 16e < 0,
e(5e~16) <0
It follows that 0 < e <. The upper bound, 1§, is attained whena =5 = ¢
=d=1.

7.3.4. Suppose that a,a,, . . ., a, are real (n > 1) and
n . "2
A+ Ea,2<7(2a,)4
= =143
Prove that 4 <2a,q; for 1< i<j<n

Solution. By the Cauchy—Schwarz inequality
n 2
(Za) =la+aea+ - +ar
i
S+ -+ D+ @i +ai+ - +al)
n
=(n- l)[ Sat+ Za,az}
i=1
This, together with the given inequality, implies that
n 1 a2
A< —(2a12)+7(2a,)
i= n=1\5
| n
< - )+ ——|[(n=1)| 3 a?+2a0,
i=1 n-1 i=1

=2a4,.

In a similar manner, A < Za,a/ forl<i<j<n

73.5. Letx;>0fori=1,2,..., n For each nonnegative integer k, prove
that
XE+ o+ xk (x{‘“+ R
3 N+ +x,
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Solution. We may assume without loss of generality that x; + -+ - +x,
= 1, for if not, we can replace x; by X, = x,/(x  + - - - + X,).

The result holds when k = 0. Assume the result holds for all nonnegative
integers less than k. By the Cauchy-Schwarz inequality,
, x{k=ns2

k+1)/:

YR
st ]
‘ ) (2‘. n? )

By the inductive assumption, 3,x*~'/n < St.1xf, and therefore, con-
tinuing from the last inequality, we have

By induction, the proof is complete.

Problems

7.3.6. Use the Cauchy—Schwarz inequality to prove that if s a, are
real numbers such that a, + - -+ +a, =1, thenai + - -+ a2 > 1/n.

7.3.7. Use the Cauchy-Schwarz inequality to prove the following:
@ Ifp. ... PpXps . . - X, are 2n positive numbers,
(poxi o RS+ s FpY(pd D)
(b) I a,b,c are positive numbers,
(% + b% + ca)(ab + be? + ca?) > 9a%b%c.

(©) ¥ x,, ¥, k=1,2,.. ., n, are positive numbers,
V2

kél g < ( kil ka})vz( kél bZ/k) /
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(d) If @, by, ¢, k= 1,2, ..., n, are positive numbers,

( "z::l akbkc’() " < ( kél a:)(kz::| bt)(kzz:] CZ)Z‘

@B =G forn>2,1<k<n,

kz:j‘ V&, <yn@ -1y

7.3.8. For n a positive integer, let (a,,a,, ..., a,) and (b,,b,, ..., 5,) be
two (not necessarily distinct) permutations of (1,2, ..., n). Find sharp
lower and upper bounds for @,b, + - - - + a,b,.

739. If a,b,c,d are positive numbers such that ¢+ d2 = (a® + b?p,
prove that

LAy s > 1,
with equality if and only if ad = bc. (Hmt: Show that (a*/c + b%/dXac +
bd) > (a® + b > ac + bd)
7.3.10. Let P be a point in the interior of triangle ABC, and let r,,ry,ry
denote the distances from P to the sides aj,4,,a, of the triangle respec-
tively. Use the Cauchy-Schwarz inequality to show that the minimum
value of

LAY

nonon

occurs when P is at the incenter of triangle 4BC. (Hint a, =Var, ya,/r, )

Additional Example

7.6.14.

7.4. Functional Considerations

In this section we will give examples to show how the techniques of
analysis, particularly differentiation, can be used effectively on a wide
variety of inequality problems.

7.4.1. Given positive numbers p, ¢, and r, such that 2p=g+r, g#r,
show that

Pt

Lo <t
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Solution. Suppose that ¢ and r are positive integers, and consider the ¢
numbers 1/q, ..., 1/q and the r numbers 1/r, ..., 1/r. By the arithme-
ti ic-mean i ity,

( 1.1 )‘/“'*”< q0/+rd/n o
q’ g+r r’
which is equi to the desired i lity.

Of course, this method breaks down if either ¢ or ~ is not an integer, so
how shall we proceed? One idea is to rewrite the inequality in the following
manner:

prg

Pt < g%,

(%)W< 9%’

(1) <(75) G5

1 g \Yer . \/ern
2<(q+r) (q+r) !

Set x=q/(¢g+r) and y=r/(g+r). Observe that x+y=1 and
0 < x, y < 1. Then the problem is equivalent to proving that
F)sx*(1-x)"">4, 0<x<l, x+#}.

By introducing the function in this way, we are able to use the methods
of analysis. The idea is to find the minimum value of F on (0,1). To
simplify the differentiation, we will consider the function G(x) = log F(x).
To find the critical points, we differentiate:

G(x)= % [xlogx + (1 ~ x)log(1 - x)]

= (logx + 1) — 1 — log(1 — x)

x
1-x"

= log

We see that G’(x) = 0 if and only if x = }. Furthermore, G'(x) <0 on the
interval (0,1), and G'(x) > 0 on the interval (4, 1). Therefore G(x) takes its
minimum value on (G,1) at x = 4. Thus, the minimum value of F(x) on
©, 1) is F(4)= ()% 1)/ = L. It follows that F(x)>{ for all x in (0, 1),
x #14, and the proof is complete.

7.4.2. Let p and g be positive numbers with p + ¢ = 1. Show that for all x,

pelP + gem 4 < X/,
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Solution. Consider the function
x/p ~x/q
pe’t+ qe
Py B2
Our problem is to prove that F(x) < 1 for all x. Because of the symmetry in
the problem, it suffices to prove that F(x) < 1 for all x > 0.

We note that F(0) = 1. By Coroliary (it} of the mean-value theorem (see
the discussion preceding 6.6.2), it suffices to prove that F(x) < 0 for all x.
To simplify the computation, consider the function G(x) = log F(x). Rou-
tine differentiation and algebraic simplification yields

F'x) e*/P — e~ /9 x

G(x) = __x
&)= Fm PP x ge T apig

/P — | x

peMg

Since £(x) >0 for all x > 0, F'(x) < 0 if and only if G'(x) < 0. Unfortu-
nately, the preceding expression for G'(x) makes it difficult to determine
whether or not G'(x) < 0. Therefore, we will carry the analysis through
another step. Namely, G(0) = 0, and (again leaving out the details)

N 2
(pe*/rt - g
4P (pe*/e + g’
Here is is clear that G"(x) < 0 for all x > 0. This, together with G'(0) =0,
implies that G'(x) < 0 for all x > 0, and this in turp implies F'(x) < 0 for

all x > 0. Therefore, since F(0) = 1, it must be the case that F(x) < 1 for all
x » 0, and the proof is complete.

G"(x)= -

The procedure used in the preceding problem is very common. To
recapitulate, it goes like this: To prove an inequality of the form

J0>gx)  x>a
it is equivalent to prove either that
fx)
8(x)

>, x> a,

2=
or that
D(x)=f(x)-g(x)>0, x»a.
Each can be done by showing the inequality for x = a and then by showing

that Q'(x) » 0 (or D’(x) > O respectively) for all x > a.
In the previous example, if we had considered instead the function

D(x) = e”/% — pe™/P — ge=*/4,

this analysis wouldn’t have been conclusive: even though D(0) =0, it is not
necessarily the case that D’(x) > 0 (for example, whenp=4,9=2,x=1).
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7.4.3. Prove that for all real numbers @ and b,
la+ B <laf+]p7, O0<p<l

Solution. The inequality is trivial in several special cases. For example, the
result holds if @ =0, or if @ and b have opposite signs. Also, if p=0 or
p = 1, the result is true. Therefore, it suffices to show the result is true when
a and b are positive and 0 < p < 1.

For such z and b and p, let x = b/a. Then, the problem is to show that

T+xf<l+xP, x>0, 0<p<l
( 14

For this, let D(x)=1+ x? — (1 + x)*. We have D(0)=0 and D'(x)
=px?~' = p(1+ x)?~' >0, so by our earlier remarks, the proof is com-
plete. (Note that if p > 1, the inequalities would be reversed.)

7.4.4. On [0, 1], let f have a continuous derivative satisfying 0 < f(1) < 1.
Also, suppose that f(0) = 0. Prove that

] > "o 4
{1 0

Solution. Here, as in the last example, it is not clear how to make use of
differentiation. The idea is to introduce a variable and prove a more
general result. For 0 < x < 1, let

F(x) z[fo‘f(,)m]zffu‘(j(;))’d:.
Then F(0) =0, and
Fey =2 [T =[]

=f(x) Z'LXf(t)dl—[/‘(x)}z].

We do know that f(x) » 0 for 0 < x < 1 (since we are given f(0) = 0 and
['(x) > 0); however, it is not clear that the second factor in the last
expression for F’ is nonnegative. Therefore, let

6 =2 fyd=[fm], 0<x<l
Then G(0) =0, and

G'(%) = 2f(x) = 2f(x)}f ()
=21 -rm] >0
(the last inequality holds because f(x) > 0 and, by hypothesis, 1 — f'(x)
> 0)
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It follows from these arguments that F(x) > 0 for all x, 0 < x < I; in
particular, F(1) > 0 and the proof is complete.

7.4.5. Show that if x is positive, then log(1 + 1/x) > 1/(1 + x).

Solution. Let f(x)=log(l + 1/x)— 1/(1 + x) (=log(l + x) — logx —
1/(1 + x)). Then

y=—1_ -1, 1
/(X) T+ x x+(1+x)1
x(1+x)—(1+x) +x

x(1+ %)
—%<0 for x>0.
x(1+ x)

Furthermore, lim, _,, f(x) =0, and this, together with f'(x) <0 for x >0,
implies that f(x) > 0 for x > 0.

7.4.6. Find all positive integers » such that
A+ (n+2) = (n 4+ 3

Solution. A direct calculation shows that we get equality when n = 2 and
when # = 3. A parity argument shows that it can’t hold when either n = 4
or n =35, Based on this beginning, we might expect that the key insight
should involve modular arithmetic in some way. However, these attempts
aren’t fruitful, and we look for another approach. We will show that

I 44 ()" <(n+3)

for n » 6, and thus equality holds only when n=2 or n = 3.
The inequality we wish to prove can be written in the following form: .

(735) () = (383) <
() e (=a3) e (o) <
or, ing the order for 3

(1—"—13)"+(1—%)"+-~-+(1—""Ts)"<|,

To prove this inequality it suffices to show that

(1—"£3)"<(%)k, k=12....n.
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For then,

) e e A (==
<%+(%)z+m +(%)”<1.
It remains, then, to prove that

( ,%)Z(ﬂﬁ k=12....m

By Bernoulli’s inequality (a very useful inequality; see 7.4.10),

(1-5) > (k)

and therefore,

%
(=) <) [0 ) T
The final step is to show that

(17"‘_:_3)”(% when n > 6.

For this, consider the function
x

!
F(x)=(]— x+3) ’
Tt is straightforward to show that F’(x) <0 for x > 6, and that F(6) <{.
Thus, the proof is complete.

7.4.7. Prove that for 0< @ < b <}m,

bAza <tanbd —tana < b—za .
cos‘a cosh

Solution, Consider the function f(x)=tanx on [a,b]. According to the
mean-value theorem there is a point ¢ in (,5) such that

by -
SO _

In this case, this means that

tand — taana = secle

for some ¢ in (a,b). The desired inequality follows from the fact that
sec’a < sec’c < sec’h for 0 < a < b < 7w/2.

Many i lities can be blished by idering an appropriate
convex (or concave) function. The idea is based on the result of 6.6.3: if
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f: R R is such that f"(x) > 0, then
x+yy SO+
55) <=
and if f"(x) < 0, then
x+yy S+
=) ==
For example, for real numbers ¢ and 5,
Xty xi+y?
()<=

because f(x)=x2 is a convex function. As another example, if
0<x,y<m,

_rx+y sinx + sin y
sm(‘2 ) >———2

because f(x) = sinx is a concave function on (0, 7).
7.4.8. Prove that if @ and b are positive numbers such that g + b = 1, then
(a+5)2+(b+%)2>275.
Solution. We have seen that
Takex =¢ +1/aandy = b+ 1/b. Then
HaedV+ o a2 (3]l D)o+ h)])
(304

But by the Cauchy-Schwarz inequality (1/a + 1/b)a+ b) > (1 + 1)* =4,
so that

1 I AN | 4 \Po(l+4V_25
1ih+141 L 2| =4y ==
[2( a+b)]>[2(1+a+b)] (5-%
The result follows after putting together the two preceding inequalities and
multiplying each side by 2.

7A49. Let 0< x, <m i=1,...,n and set x =(x, + x; + - - + x,)/n.

Prove that
ul sin Xi sinx \"
iI—-II ( x4 ) < ( x ) ’
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Solution. The problem is equivalent to proving that

< sinx; sinx
log 225 .
Z:l log . < nlog =

Consider the function
sing

fy= Iog——— R
It is a straightforward matter to show that f is concave (f"(1) < 0) on the
interval (0, 7). Therefore

R J(x0) + f(*2)
f(—x 2x2)>————'2 .

In a manner completely analogous to the proof of 7.1.6, it follows that
e b ) )
A )> . .

n

Direct itition into this i 1 l the proof:

Slﬂx
log( 5‘"’() (log SIBX L 4 peg R )

Problems

7.4.10 (Bernoulli’s inequality). Prove that for 0<a <1,
(t+x)'<l+ax, x>-L
How should the inequality go when a < 0, or when a > 1?

7.4.11, Prove that
(x+2)

x
S >0.
Axr

X
1+

7.4.12 (Huygens’s inequality). Prove that
2sinx + tanx > 3x, 0O<x<m/2.

7.4.13. For all x >0, (2 + cosx)x > Isinx.

(a) Prove this inequality by considering the function F(x) = x — (3sinx)/
(24 cosx). B

(b) Prove this inequality by considering the function F(x) = (2 + cosx)x

3sinx.
7.4.14. Prove that
0< xlogx

1 0, x#1.
1241<2, x>0,
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7.4.15. Prove that

log(l - x> -2

1 x
)t Gryary <8
7.4.16. Prove that

(55)7>(3) ab>0 ane
7.4.17. Prove that

sina _a
sinb " b

<8 gch<acin

74.18. Use the methods of this section to prove that for each positive

integer n,
(e3) <(es) ™

(That is, show that f(x) = (1 + 1/x)* is an increasing function.)

7.4.19. Use the concavity of f(x)=yx to prove that if a,b,c¢ are positive,
then acos® + bsin¥ < ¢ implies Va cos™ + Vb sin¥ <c . (Hint: Sketch the
graph of f(x) =Vx.In the domain, where is the point a cos® + bsin%, and
in the range, where is Va cos® + b sin8?)

7.4.20. Let ;>0 for i=1,2,..., n. Consider the function f(r)= logs,
and in a manner similar to that used in 7.4.9, prove that

+x 4+
(1% k) X"‘Z%
with equality if an only if all the x; are equal.
74.21.
(a) Let x,>0fori=1,2,..., n Use the result of 7.4.20 to show that
3 T <(xx e x,)'/"
[ i
Xy X3 Xn

(b) For positive numbers a,b,c such that 1/a + 1/b + 1/¢ = 1, show that
(@—1)0b—1)c—1)> 8.

7.4.22. Show that if a,b,c are positive numbers with a + b + ¢ = I, then
1)? 1 100
(a+;) +(b+3) (c+ ) >i0
7.4.23. Let a,b,c denote the lengths of the sides of a triangle. Show that
3

3 a b c
2%Fvetevatars <
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Additional Examples

6.4.6, 64.7.

7.5. Inequalities by Series

Another way to prove an inequality of the form

f(x)< g(x)y 0<x<c
(see the discussion preceding 7.4.3) is to expand f and g in power series, say
J(x) = 3% oa,x" and g(x) = T5_ob,x", for x in the interval (—d,d). If it
should ha’]’)}en that @, < b, for all n, then it is obvious that f(x) < g(x) for
all x in the interval (0,d).

7.5.1. For which real numbers ¢ is 1(e* + 7"} < £ for all real x?

Solution. If the inequality holds for all x then

0< e —J(e"+e ™)

_ * C"Xl" _ = Xln
';_:0 ! ED 21
S| )xl"

=S fer- L
PACES b

To see that ¢ > 1, divide each side by x* and set x = 0.
On the other hand, if ¢ »1,

x

o
HET e = 2, Gy
L
=e¥/2
< e
It follows that the stated inequality holds for all x if and only if ¢ > 4.
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Another important series techni with lication to i lity prob-
lems concerns alternating series. Recall that if ag,a,a,, ... is a sequence
of positive numbers, then the series 7 o(—1)"a, converges provided the
terms steadily decrease to zero (i.e., a,, < g, and a, >0 as n— o). More
importantly for our purposes here, the sum of the series lies between any
two successive partial sums. (If S denotes the sum of the series and S,
denotes the ath partial sum, then {S,,,,} is an increasing sequence, {S,, )
is a decreasing sequence, and for ali , S,,,, < S < So)

7.5.2. Show that for all x,

Xz L XZ’I
Thxd ot gy >0

Solution. Certainly the claim is true when x is positive or zero. When x is

negative the series on the left is an alternating series, and because 2n is

even (so'the last term in the finite sum on the left is positive), the reasoning
preceding the problem implies that

2 2n

T+x+ 23+ 4 2

20 @n)!

X2 X _
>l+x+ﬁ+...+m+,,__.ex>0'

7.5.3. Prove that (2 + cosx)x > 3sinx, x > 0.

Solution. This is the same problem as 7.4.13, but here we will give a
solution based on series considerations.
On the left side of the desired inequality, we know that for x > 0,
x?xt_ x®
(2+cosx)x>(2+ 1- FTrAr —A)x,

and on the right side

3
3sinx<3(x—%+—- .

= XL,,
—

Therefore, it is sufficient to prove that
3 5 7 3 s

x x X - X X
3x—i+ﬁ—ﬁ>3(x o )
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This is true for x > 0 if and only if

XS X7 3){5

PO e
L_3y.1 2
(a-3)> e

x2<6!(%)=12.

This proves the desired inequality for the case in which 0 < x <12,
But the inequality is obvious for x »y12, and therefore, it is true for all
x>0, and the proof is complete.

In the preceding proof, one might ask why these many terms from the
infinite series were chosen. Why not more or less? To keep the inequalities
going in the right direction, we need to underestimate cosx and overesti-
mate sin x, thus dictating the signs of the final terms in the series approxi-
mations. The crudest estimate would be to replace cos x by | — x2/2 and to
replace sinx by x. This leads us to investigate

2
(3 -z )x >3x,
which is equivalent to
3
- X
5 >0,
and this is not true for any positive value of x.

As the number of terms in the series increases, the approximations
improve, so the next try might be to replace cosx by 1 — x?/2 + x*/4!—
x%/6! and sinx by x — x*/3!14 x°/5!. This leads to the solution as it was
presented.

7.5.4. Prove that

o 3
(M)>cosx, 0<x <fm.
x

Solution. For x >0,
( sinx )3> 1= X2
x !

cosx <1 —

and

Therefore, it suffices to show that
Xt X2ty Xt x s
U T A TR e Ml R (I T
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or equivalently,

Lol by 1 Ve 1
@t~ ot >

The left side is decreasing on the interval (0,47), and therefore takes its
minimum when x = { 7. In particular, for 0 < x < 2,

IO N IR W SR 1z

R R ) e >ar (- mg) oo
1_4,1_30-2-1
I

This completes the proof.

Problems

7.5.5. Use infinite series to prove the following inequalities:
(@) e* > 1+ (1 + x)log(l + x), x > 0.
®A+x)/(1-x)>e” 0<x <1
() arcsinx < x/(1 — x},0< x < 1.
7.5.6. Prove that YT+ x — 1 —4x +4x> <Fx% x>0,
7.5.7. Prove that
x <f(2sinx + tanx), x>0,

[Hint: Show the equivalent inequality, ’

sinx(2cosx + 1) >3xcosx, x>0]

7.5.8. Show that sin’x < sinx? for 0 < xy/iw .

7.6. The Squeeze Principle

}n this section we will see how inequality considerations can play an
important role in evaluating limits. The key idea (which has many varia-
tions) is expressed in the following result.

The Squeeze Principle. If {a,}, (b,), {c,) are infinite sequences such that a, < &,
< ¢, for all sufficiently large #, and if {a,} and { ¢,} converge to the same
number L, then {5,} also couverges to L.

As inno{:uo_us as this principle appears (obviously, there is no alternative
for {b,,?; it is “squeezed” between {a,} and {c,), both of which are
converging to the same limit), it is surprising that it can be useful in
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problem solving. Nevertheless, it is applicable in the following situation.

Suppose we wish to evaluate the limit of a sequence {b,}, and suppose the

b,’s are hopelessly complicated, so that they cannot be handled directly.

The squeeze principle suggests that we try to “squeeze” {b,} with two
simpler sequences {a,} and {c,}.

For example, consider the sequence { n'/"). We could evaluate this limit

by L’Hépital's rule; however, consider the following argument. By the
ic-mean

1/n
|<n'/"=(1x1>< xlxﬁxﬁ)

<M=|+2(L_l)
7

n nf

Now, by the squeeze principle (with a, =1, and ¢, =1+ 2(1/‘5 —1/n)
we see that n'/” is forced to converge to 1.

7.6.1. Prove or disprove that the set of all positive rational numbers can be
arranged in an infinite sequence {5,} such that { (b,)'/"} is convergent.

Solution, We begin by ordering the rational numbers by following the usual
serpentine path through the square array of rationals shown in Figure 7.2,
where we omit all fractions not reduced to lowest terms. The sequence thus
begins 1,%,2,3,;.%,g,4,5,g,g, ... . If b, denotes the nth term of this
sequence, we would like to prove that {B)/") converges to 1.

In Figure 7.2, observe that every element in the nth row is less than or
equal to n, and every element in the nth column is greater than or equal to

e

1 2 13 4 s e

Figure 7.2.
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1/n. Also, if b, occurs in row i and column j, then i < n and j < n.
Therefore

1.1 ;
"<j<b,,<t<n forall n,

and consequently,

/0
a,,s’”l/"=(%) <b/m<n/n=e,.

Now, by the squeeze principle, { b,:/ 7} converges to 1.

7.6.2. Let f(x) be a real-valued function, defined for —1< x <1, such

that f(0) exists. Let {a,}, {b,} be two sequences such that
-1<a,<0<b, <1, lim (a,)=0= lim (b,).

Prove that

lim
w0

fb)—fa)
b, — a, -

1.

Solution. The quotient
f(6a) — f(a)
b,—a,
can be interpreted geometrically as the slope of the line segment
Po(ay, f(@)), Qu(b,, f(By) (see Figure 7.3.)
bel R be the point (0, f(0)). Either the p-intercept of the line segment
P,0, is less than or equal to f(0) (case 1), or it is greater than f(0) (case 2).
(Case 1)
R

Qub,, f(b,)

R
P,(a,f(a,) (Case )

Figure 7.3.
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In the first case,
Slope RQ, < Slope P,Q, < Slope PR,
or equivalently,
J6) - FO) S~ fla) fla) ~JO)
5,-0 b, - a, a,-0

In the second case,
Slope P,R < Slope P,Q, < SlopeRQ,,
or equivalently,
fa) = 1O b)) ~fla) ftb) — 1O)
a,-0 b,—a, b,—0

In case 2, the inequalities are just reversed from those in case 1. To
correct this, we define two new sequences which reverse the roles of @, and
b, in case 2. Thus, let {c,} and {d,} be defined by

¢, =b, and d ,=a, if case 1 holds for a, and b, ,
¢, =a, and d,=b, if case 2 holds for 4, and b, .
Then, for all n,

J&) = JO S = fla)  fi4) = O

¢, =0 b,—a, d,—0
Since f'(0) exists, and since lim,_, ¢, =0=lim,__d,,
i 2DTO o)y S IO gy

The result now follows from the squeeze principla
Another instructive solution, also based on the squeeze principle, is
based on the fact that if  and b are real numbers, a < b, then
a<ra+sb<b
for all positive numbers r and s that add to 1 (see 1.2.11). In this problem,

write
a, )

(R )

and set r=b,/(b,—a,) and 5= —a,/(b, ). Then r >0, s > 0, and
r+ 5 = 1. Therefore [ f(5,) — f(a,))/[b, — a,] lles between 1 f(5,) — fO)]/ b,
and [f(a,) — f(0))/a,. Since these latter quotients converge to f'(0), so also
must [ f(b,) — f(a,))/1b, — a,] by the squeeze principle.

f(bgj:ifan) _ ( f(b,.)b—f(o) )( . b
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Figure 7.4

7.6.3. Evaluate

Solution, The sum

"é P . é _n

S+ S+ i/np?
can be regarded as a Riemann sum for the function j(x) 1/(1 + x?) over
the interval [0, r] (see Figure 7.4). Unfortunately, it is not really a Riemann
sum, because the interval over which it is taken is not a fixed interval; thus,
as n— o0, we don’t get a definite integral. We can say, however, that for
each n

n 2
n n_ dx 2
—_— | < = arct; 8
/%(n’ﬂ") fo T4 oA
'l"c_) geta lower bound for the sum under consideration, let k be a fixed
positive integer, and fix the interval [0,£]. Then, for any  greater than k,
§ n & I/n
S+ S g/my
is a Riemann sum for f(x) = 1/(1 + x%) over the interval [0, k]. Also,

kn n

n n
- < —- -
,Z:, n*+ )t Z:, nt+ )2
Putting all of this together, we have

& n”

)

n
<
j=1mt e+t ng n?

n — <arctann’,
+J
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s0, by the squeeze principle,
kn n?
1/n N n . 2
i —t—— < lim < lim arctann?,
L il M R

-
f" dx ¢ fim 3
{J

n
T+x2 e S ply 2

<y

But, since k was an arbitrary positive integer, we must have
e
. n '
im=li <4im
47 = lim arctank < lim ~ <4

It follows that the desired limit equals } .

Another important lication of inequalities to the ion of limits
is based on the following important fact.

Monotonic, bounded sequences converge.

That is to say, if {a,} is a sequence of real numb‘e‘rs such that a, ., > a, for
all sufficiently large n (or a,,, < a, for all sufficiently largc n), and if for
some constant K, a, < K for all n (or a, > K respectively), then the

nce {a,) converges. o
seq]‘-‘l;r exfm’l’l)ale, to pgrove that the sequence (1 + I./ n)Y" converges, it is
sufficient to prove it is monotonic (increasing in this case) and bounded
above (by 3; see 7.1.5).

7.64. If {a,} is a sequence such that for n > 1
2-a)a,, =1

prove that lim,_, a, exists and is equal to 1.

Solution. First we will prove that if the sequence converges, it must
converge to 1. The is dard when a sequence is defined recur-
sively as it is here. Let lim,_, ,a, = L. Then, taking the limit of each side of
the recurrence relation (2 - a,)a,,;=1, we see that 2— L)L =1, or
equivalently, (L — 1)* = 0, from which we conclude tha! L=1 o

Now, to prove that the sequence converges, we will prove thaf it is
bounded, and y” becomes ic. (For another solution of
this problem, see 1.1.11.)

Suppose that for some a,, 0 < a, < 1. Then

1-(2~a,)a,
= 2—a,
(1-a)y
=g >0
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and a,,,=1/(2 — a,) < 1. Therefore, a4, <a,,,<@,,< -+ <1,s0the
is ic and bounded and theref: converges. Thus, it

suffices to prove that for some n, 0 < a, < 1. There are several cases.

Ifa, <0, then 0<a,<1/(2 - a) <1, so we're done by the preceding
argument.

Ifa, >2 thena,=1/(2 - a;) < 0, s0 again we're done.

If g, =1, then a, = 1 for all n,

It remains to check the case 1< a, < 2. Some playing around with
special cases in this interval leads to the following (each of which can be
proved by induction),

First, the recursion cannot hold for all # if a, has the form (n + 1)/n.
For if @)= (n + 1)/n, then (one can show that) @, =2 and consequently
4,41 cannot be defined. Secondly, if a, belongs to the interval

(%l,nf]) for n>1,

then (one can show that) dn41 lies in the interval (0,1) and the proof is
complete by previous reasoning.

Thus, in all cases (for which the sequence is defined) the sequence
converges.

7.6.5. Let f(x) be a function such that f(1)=1 and for x > 1
fx=

1
R4

Prove that lim, , , f(x) exists and is less than 1 + FLA

Solution. By the fundamental theorem of calculus
rs
S = 1) = [ r(x)a.
Observe that f(x) is increasing; moreover, f(x) > 1 for all x > 1, since
J(1)=1 and f'(x) > 0. Therefore
— = {*__dx <% _dx
Sy =Sy J; X2+ fY(x) j; 1+ x2
=arctanx];
= arctan x — arctan |
<Aw—fm=4im.

Thus, f(x) is increasing and bounded above by 1+ }7, and consequently,
lim, _, , f(x) exists and is less than 1 + Lo

7.6.6. Consider all the natural numbers which represented in the decimal
system have no 9 among their digits. Prove that the serics formed by the
ip of these ge:
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Solution. Let S, denote the mth partial sum of the series under consider-
ation. The seq {S,)is i ing, SO to prove convergence,
we need only prove that the sequence is bounded.

For a given partial sum S, let n denote the number of digits in the
integer m. The number of integers of exactly n digits which have no 9 in
their decimal representation is 8 X 9"~ (the first digit cannot be zero).
Therefore, the sum of their reciprocals is less than 8 X 9"~'/10"~". Thus

S, <8+BXL+8X(H)+ - +8xX(H) "
<s{1+,%+(%)2+ o] =80,

and the proof is complete.

Problems

7.6.7. Prove the inequalities which follow and apply the squeeze principle
to evaluate a limit:

(a)"<é <=2

Vnien i=tynl4+i P41 ’

) a<(a"+b")/"<a2,0<a<h
© el 1/an <(1+ l/n)" < e|*|/(2n)+l/(3n1).

7.6.8. Prove that each of the following sequences converges, and find its
limit:

@ JT,,/1+¢T,‘/1+\/|+‘H, 1+ﬂ|+\/1+ﬁ
(b) ﬁ_\/2+ﬁ,ﬁz+‘/2+ﬁ ,\[2+‘/2+\/2+ﬁ

7.6.9. Prove that the sequence {a,} defined by

a,,=l+%+<--+%—logn

converges.
7.6.10. Prove that the sequence {a,} defined by
6(1 +a,
R

converges, and find its limit.
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7.6.11, Let it
h by et @ and b, be any two positive numbers, and define {a,) and

Prove that the sequences { a,} and {b,} converge and have the same limit.

7.6.12. 5, =loga, and S, = 372} log(a — §), # > 1. Show that

Jim s,=a-1.
(Hint: Note that 5, ,, = S, + log(a + ,).)
7.6.13. The sequence Q,(x} of polynomials is defined by
Q(x)=1+x, Ox(x)=1+2x,
and form > 1,
Qi+ 1(%) = Q1n(X) + (m + 1)xQ,,,_ (x),
Qim+2(%) = Qr e t(2X) + (m + 1)xQy0(x).

Let x, be the largest real soluti
I 3 olution of Q,(x)=0. Pr i
Increasing sequence and that lim,_, . x, =Q OF ) ove hat (x,) s an

7.6.14. Prove that if $%_ 42 converges, so does 3%_,(a,/n).
7.6.15. Prove that

2 2 2
lip - DXEXEX X O
e (TX3)BX5) - (@n = DEn+ 1)
PXEXEX - 2
= lim 5 X6 x X (2n) 1 1
e YN X(2n~l)z(2n+l)—§"'
(Hint: For 0< ¢ <}, [5/%sin?+ "
17, Jo%sin®" 040 < [/ %sin g df < [7/%sin?
Apply the result of 2.5.14 together with the squeeze principl/:) i 0.

Additional Examples

6.1.5, 6.37, 6.4.4, 6.6.2, Section 6.8,
biactionr 1 o 2. § -8, 6.94. Also, see examples of “repeated



Chapter 8. Geometry

In this chapter we will look at some of the most common techniques for
solving problems in Euclidean geometry. In addition to the classical syn-
thetic methods of Euclid, we will see how algebra, trigonometry, analysis,
vector algebra, and complex numbers can be useful tools in the study of

geometry.

8.1. Classical Plane Geometry

In this section we will review the ideas and methods characteristic of
classical plane geomeiry: namely, the study of those properties of triangles,
quadrilaterals, and circles that remain invariant under motion (e.g., transla-
tion, rotation, reflection). We will be concerned with synthetic geometry,
which builds on an understanding of the basic notations of congruency,
similarity, proportion, concurrency, ares and chords of circles, inscribed
angles, etc. In addition, we wish to draw attention to the importance of
\} and tri; ic i for proving results in traditional

Euclidean plane geometry.

8.1.1. Find the area of a convex octagon that is inscribed in a circle and
has four consecutive sides of length 3 units and the remaining four sides of
length 2 units. Give the answer in the form 7 + sV, with 7, 5, and ¢ positive
integers.

280
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Figure 8.1.

We will give several solutions to this probiem to illustrate the var tety of
methods that are at ones disposal in this subject.

S(})lluﬁo/rf1 ; Lel; the vertices be labeled ABCDEFGH as shown in Figure 8.1
where =BC=GH=HA=3 and CD=DE=EF= = :
denote the center of the circle, ot Lo
We first find the area of A OAB and A OD, is, i i '
the alties OF reac AODE. For ‘thls, it suffices to find
Noucg that 0{( =1 EB; this follows because O is the midpoint of E4
an;:. K is the midpoint of 4B, Similarly, O =1AD, and therefore, it
suf P . - . . N
EB'lces o find DI, IA, EI, and IB, where I is the intersection of AD and
By angle-side-angle, ADBC =
e, = ADBI, and therefore DI=2 and
iB =3 Furthermore, since AA4DE and AABE are each inscribed in a
ser:_xlc)llrcle, L ADE and £ ABE are right angles. Therefore, A7BA and
A are i 1 i i y
ety isosceles right triangles, and it follows that /4 =342 and
We can now find the area of the octagon:

Area=4[21><3(3—+22—'/5)J+4[%X2(¥)J=l3+12/5,

Solution 2. Perhaps the easiest solution is based on recognizing that the
area of the oc!agon is the same as either of those shown in Figure 8.2
having gll,ematmg sides of lengths 2 and 3. The area can be comg:led b ;
subtracting four triangular regions from a square, or by adding l.hepareas o};
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y 3 ’_
Mk 21y
3 3
i3 2 1Y
¥ 3 y

Figure 8.2.

a square, four rectangles, and four triangles. Thus, for the diagram on the
left, we have (x = 2v2)
octagon area = (2x + 2)°— 4(4x7)
—2x+8x +4
=2(1) +Bx I +4
=13+132.
Or, for working from the inside on the figure on the right (y = V2,
octagon area = 9 + 4(3y) + 4(1 7)
=9+ 12/2+2x2
=13+12/2.

Solution 3. Let R denote the radius of the circle. The area of the oclgon lxs
equal to four times the area in quadrilateral OABC (see Figure 8.3). Clearly

Area OABC = Area AOAC + Area AABC,

A

) R ¢
Figure 83,
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By Heron’s formula for the area of a triangle,

Area AABC =1s(s — 2)(s — 3)(s—VZR)

where s =42+ 3 +y2 R)=4 + {2 R. This leads to
Area O4BC

=%R2+,/(g+;ﬁk)(;+gﬁk)(-;+g¢2‘k)(g~gﬁk)

=iR%+ (% ERZ)(—H;R?).

By the law of cosines (using £ B in ANABC) we get
2R*=4+9-2X2x3cos 135°
=B+ 12x1i42,
and therefore,
R*=12+3/7,

The final result then follows after substituting this value for R? into the
preceding equation for Area OABC.

Solution 4. In Figure 8.4, D and E are the feet of perpendiculars drawn
from B to 04 and OC respectively. Let x = OF and y = OD, and let R be
the radius of the circle. Then

area of octagon = 4(area of quadrilateral 04 BC )
= 4(Area A OAB + Area A OCB)
= 4[ 1Rx + %R)’}
=2R(x +y).

E
Figurc 8.4,
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Our plan is to express x +y in terms of R, and then use the fact that
213 4+ 3y2 (see the last solution). ) R s
R Thez Pymfgorean theorem applied to AfBDZymldg x S—f— nsill(arl ;}) P
or equivalently, 2R(R —y)=4 (note: x’ +y'=R ).R L iy =9, from
have y2 =9 — (R — x’, or equivalently, 2R( =2 Py
'AEBC—WL 4/(2R) and R — x=9/Q2R} yields 21.( —-(x +.y) =13/ 3
Iol:'geguiv:lently x +y =(4R? - 13)/(2R). Substituting, we find

4R =131 _4R2_ 13
areaofoctagon=2R[—-2—R—} 4R

=4(%+3ﬁ)—13=l3+llﬁ-

i e i ight triangular pieces
O o e gl 1 the i L“f'i’hi'iillumscibed_m:e)
ngl vi?l‘lllab:lseessli and 2. Let H and / denote the altitudes of these triangles
::shown in Figure 8.5. Then
area of octagon = 4(13- H) +4(42- h)
=6-H+4-h . .

With a and B as shown in Figure 8.5, we have){t}he_fo;;n:n;x/g;ela;:r;
ships: a + B=7/4 sine =3/(2R); cosa= H/R; sin H
= i/ R. From these, we find

1 _ 1
T B sn(ir-a)
e et
V2 cosa — 4{2sina {2 \cosa

]

2 ko) - £ (827)

il

1t follows that

1=—24 —,
VZ(2H-3)

Figure 8.5.
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or equivalently,

Using this,

h=Rcos = R[cos(}m — a)] = R[%ﬁcosn+%ﬁsina]
%ﬁk[%+%]=;‘ﬁ[2ﬂ+3]
=%ﬁ[z(g+\/§)+3]

=1+3V2.
Substituting,

area of octagon = 6(3 +2) + 4(1 +32)=13+13/7.

8.1.2. If A and B are fixed points on a given circle and XY is a variable
diameter of the same circle, determine the locus of the points of intersection
of lines AX and BY. (You may assume that AB is not a diameter.)

Solution. Consider Figure 8.6, where 4 and B are fixed points on the
circumference of a given circle. Let B’ be the point on the circle diametri-
cally opposite of B. Let P and P’ denote respectively the intersection of 4AX
and BY when this intersection lies inside or outside the circle (depending
upon which side of the line BB” the point X falls; see figure).

In the first case, Z APB = 90° + 3(Arc AB), and this is a constant value
for all diameters which result in an “inside” intersection point P. This
implies that P lies on the circle formed by. those points making a constant
angle (namely, 90° + 4(Arc A B)) with the constant base AB.

In the second case, £ AP'B =90° — J(Arc4B), and this is a constant
value for all diameters which result in an “outside” intersection point P’.
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Figure 8.7.

Thus, P’ lies on a circle which passes through 4 and B. Furthermore,
L APB and [ AP’'B are supplementary angles (LAPB+ LAP'B=
90° + L(ArcAB) + 90° — }(Arc 4B) = 180°), and therefore APBP’ is a
cyclic quadrilateral; that is to say, P and P’ lic on the same circle through
A and B.

8.1.3. P is an interior point of the angle whose sides are the rays O4 and
OB. Locate X on 04 and Y on OB so that the line segment XY contains 7
and so that the product of distances (PX X PY) is 2 minimum,

Solution. This problem was solved in 6.4.2 by using methods of analysis.
Here we will solve it geometrically.

Let OC be the line bisecting Z AOB, and let L denote the line through 7
which is perpendicular to OC. Let X and Y denote the intersections of L
with OA4 and OB respectively (see Figure 8.7).

Now, OX = 07, so there is a circle tangent to O4 at X and OB at Y.
Let X, Y, be any other segment containing P with X, on OA4 and ¥, on OB.
Let X, and Y, be the intersections of X, ¥, with the circle. Then (PX)(PY)
= (PX)(PY;) < (PX)(PY)), so (PXXPY) is the minimum.

8.1.4. Let P be an interior point of triangle ABC, and let x, y,z denote the
distances from P to BC, AC, and AB respectively. Where should P be
located to maximize the product xyz?

Solution. Let a,b,c denote the lengths of the sides BC, AC, and AB
respectively (Figure 8.8). By the arithmetic-mean-geometric-mean inequal-

ity,
Yianpyen < St
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B
Figure 8.8,

But we know that ax + by + ¢z =24, where A is the area of the triangle.
Thus, the maximum value of xpz is 84° /(27abc), and this occurs if and
only if ax = by = cz.

We will show that ax = by = ¢z if and only if P is located at the centroid
of AABC. For this, suppose that CP intersects 4B at D. Let a, B,v.8 be
the angles as shown in Figure 8.9. It is known that ”

bsin B _ 4p
asina DB’

(This relatiqnship is useful in many problems. To see that it is true, apply
the law of sines to AADC and to ACDB to get

AD _ b DB a

sin B siny sina  sng
Using these equations it follows that

asina  DBsin§ ~ DB’
since y and & are obviously supplementary.)
Using the above equation, we have

DB asina  ax/(CP) ~ ax’

and it follows that AD = DB if and only i = i
t L ly if by = ax. Thus, ax = by if
only if P is on the median line from C. ”  if and

Figure 89,
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Figure 8.10.

imi =czi if P i he median line from
In a similar manner, ax = ¢z if and only |_f P is on 1l d
B. Tt follows that ax = by = cz if and only if P is the centroid of AABC.

Problems

8.1.5. Show that a triangle must be equilateral if any pair of the following
centers coincide: incenter, ci centroid, or

8.1.6. An acute triangle is inscribed in a circle. Th‘e res»ulting three minor
arcs of the circle are reflected about the correspondmg_ sides of the triangle
(i.e., arc AB is reflected about side 4B, etc.; see Figure 8.10). Are the
reflected arcs concurrent?
8.1.7. Let C, and C, be circles of radius 1, tangent to each other and to lh:
x-axis, with the center of C, on the p-axis. Now construct a sequence o
circles C, such that C,, | is tanget to C,_;, C,, and the x-axis.
i radius r, of C,. )

E;)) g;n‘:ivuzﬁat the l;ngth of the common tangent in_cluﬂclepdI between its

contacts with two consecutive circles C,_, and C, is ().
(c) From part (b) and the geometry of the problem, show that

PIHREE

8.1.8. If a,b,c are the sides of a triangle ABC, 1,,2,,¢, are the angle
bisectors, and T,,T,, T, are the angle bisectors extended until they are
chords of the circle circumscribing the triangle ABC, prove that

abe =T, T, Tt tyt, .

(Hint: Prove that T,1, = be, etc))
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Figure 8.1,

8.19.

(a) Given a point P inside an arbitrary angle XOY, let AB be a segment
through P such that AP = PB, and let MN be any other line through P
which intersects OX and OY at M and N respectively. Prove that the
area of AMON is greater than or equal the area of AAOB.

(b) Let AD and AE be tangent to a circle, and let P be an arbitrary point
on the minor arc. Let BPC be a tangent to the same circle. Show that
the perimeter of AABC is constant for all positions of P on the minor
arc.

(¢) In the setup of part (b), let MN be any other line through P which
intersects AE and AD in M and N respectively. Prove that the perime-
ter of AABC is smaller than the perimeter of AAMN.

8.1.10. A quadrilateral ABCD is inscribed in a circle (see Figure 8.11). Let

x=BD, y=AC, and a4,b,c,d be the lengths of the sides as indicated,

Construct 2 CDE equal 1o £ ABD. (o \nocces £ ADB

(a) Prove that ACDE~AADB and hence that EC - x = gc.

(b} Prove that AADE~ A BCD and hence AE - x = bd.

{c) From parts (a) and (b), prove Piolemy’s theorem (an important fact
about cyclic quadrilaterals): In a cyclic quadrilateral the product of the
diagonals is equal to the sum of products of the opposite sides.

8.1.11.

(@) A line from one vertex of an equilateral triangle ABC meets the
opposite side BC in a point P and the circumcircle in Q. Prove that
S A I
PQ  BQ CQ’
(b) Using the notation of part (a), prove that 4Q* + BO*+ CQ* is con-
sant for all positions of Q on the minor arc BC. (Hint: For a trigo-
nometric approach, let x = AQ, y = BQ, 2z = CQ, and = L BAQ.
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Figure 8.12.

Show that x = (2/3 )sin8, z = (1 /Y3 )cos8 —sinf], y = x + z. Also,
sec 8.4.6.)
8.1.12. In Figure 8.12 we are given an inscribed triangle ABC. Let R
denote the circumradius; let &, denote the altitude AD.
(a) Show that triangles ABD and ALC are similar, and hence that &, = 2R
= be.
(b) Show that the area of AABC is abc /4R.
8.1.13. The radius of the inscribed circle of a triangle is 4, and the
segments into which one side is divided by the point of contact are 6 and 8.
Determine the other two sides.
8.1.14. Triangles ABC and DEF are inscribed in the same circle. Prove
that
sind +sinB+sinC =sinD +sinE +sinF
if and only if the perimeters of the given triangles are equal.
8.1.15. In the following figure, CD is a half chord perpendicular to the

diameter AB of the semicircle with center 0. A circle with center P is
inscribed as shown in Figure 8.13, touching AB at E and arc BD at F.

D

A 0C E B
Figure 8.13.
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Prove that AAED is isosceles. (Hint: Label the figure and make good use
of the Pythagorean theorem.)

8.1.16. Find the length of a side of an equilateral triangle in which the
distances from its vertices to an interior point are 5, 7, and 8.

Additional Examples

1.2.1,1.3.14, 142, 1.6.1, 1.6.10, 1.8.3, 1.8.7.

8.2. Analytic Geometry

The introduction of a coordinate system makes it possible to attack many
geometry problems by way of algebra and analysis.

8. Let P be a point on an ellipse with foci | and F,, and let 4 be the
distance from the center of the ellipse to the line tangent to the ellipse at P
(Figure 8.14). Prove that (PF\}PF,)d® is constant as P moves on the
ellipse.

Solution. Place coordinates on the plane in such a way that the ellipse has
the equation :

E4+=1, O<b<a
a b
—
P
d
F! FZ
Figure 8.14.
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The technique is straightforward: compute PF,, PF,, and d (as functions of
the x-coordinate of P), and check to see if the required product is a
constant.

Let the coordinate of P be (a, 8). The focal points F, and F, have
coordinates (+ ¢,0), where ¢? = a® — b%. Therefore we have

PF,=,/,31+(n+c)1,
PF=yB*+(a—c).

To find 42, it is necessary to write the equation of the tangent to the
ellipse at P(a, B). To find the slope of the tangent at P, we compute the
derivative:

x Y
2t
5o that
. —x/d _ b
2y/b? aly

Tt follows that the equation of the tangent at P(a, 8) is
b
—B=-Z8(x-a),
y=B e (x = a)
or equivalently,
a*By + blax = b’ + a'B
But o/a’+ B2/ =1, since P(w, B) is a point on the ellipse, and

therefore a’b? + a’2 = a’*. Hence the equation of the tangent at P(a, 8)
is

ab®x + fa’y — a®b? =0.
Now recall the formula for the distance D from a point Q(c,d) to the
line Ax+ By + C=0:
D= |Ac + Bd+ C| )
VaZ+ B2
In our case, the distance d from the origin to the tangent line is
d= ”—2’72_ .
Ja?b* + B
We now need to examine the product d%(PF\)(PF,). We can eliminate
in each of these factors, since

p2= '’ — o’
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We have
- %
@’ + (@ — o8?)/a%)a’

- a'h?
a’* + a'h’ - a’a’?
a'h*
bz[azbz_ nzaz] ¥ ab?
= a'p?
bZ(_CZal) + aAbZ
__a%*
a’ — czaz ’
and
PFI=pB*+ (a+c)?
232 22
= % +a?+2ac+ c?
a
_ ah?— o’ + a%? + 2d%ac + a2
aZ
_ @B+ N+ o¥(a® = bY) + 2a%
aZ
_ a*+2d%a+ i’
a
2
(a*+ car)
' a :
Similarly,
2
%~
PF} = @y
Thus,

452 2 2
AYPF PF=( a'% (a +calfa®—ca
(PRIPR)= s )2 z
=a'b’.
This completes the proof.

822, Supfose that (xi, 1), (%2, 32), (x5, y3) are three points on the
Parabola »* = ax which have the property that their normal lines intersect
in a common point. Prove that y, + y, + y; = 0.
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(o, 3

Figure 8.15.

Solution. The solution falls out as a by-product of the following analysis.
Let (a, 8) be the coordinates of the intersection of the three normal lines
(Figure 8.15), and let (x, y} be an arbitrary point on the parabola. The
slope of the line through (x, y) and (e, B) is (¥ — B)/(x — a). The slope of
the tangent to the parabola at (x, y) is y’ = a/(2y), and therefore, the slope
of the normal line at (x, y) is —2p/a. It follows that (x;, y)), (2. y2)s
(x3, y5) satisfy the equation

Replacing x by y?/a, this equation is
Cpe (B2
o3 )
a(y — B)= -2y + 2aay.
Thus y,, y,. y; are the three roots of the cubic equation
2+ a(a-2)y—-a’=0.

Now, remembering how the coefficients of a cubic equation are related to
the roots (see Section 4.3), we see that y, + y, + y; = 0 (the coefficient of y*
is zero).

8.2.3. A straight line cuts the asymptotes of a hyperbola in points 4 and B
and the curve in points P and Q. Prove that AP = BQ.

Solution. We may assume the hyperbola and the straight fine have the
equations
xp=1 )

82. Analytic Geometry 295

NP
Q
A
Figure 8.16.
and
x4 2
a * b ! &)

rcsp_ectively. (The hyperbola can be taken to have this form by appropriate
sca]‘mg ff)llowed by a rotation, each of which takes straight lines into
str?’lﬁht lines and preserves ratios of line segments.)
e asymptotes of the hyperbola are the x and i

< r » axes (Figure 8.16); so
letdA(be the ;;)-mtercept of the line, and let B be the y-intercept. Let (x,) )
and (x,, e th i ituti into
il 20 ¥} e coordinates of P and Q. Substituting y = 1/x into (2)

x*—ax+a/b=0,
and since x, and x, are roots of this equation, we know that
xtx=a
Similarly, substituting x = 1/y into (2) yields
Y —by+b/a=0,
and this implies that ’

Yitn=b
It follows that

AP?=(x, - a)’+ 3}
=(a-x—ay+ (b
=x+ (b~ yy)
= BQ?,

and the result follows.

8.24. Determine all the straight lines lying in the surface z = xy.



296 8. Geometry

Solution. The parametric equation for the line through (a,,a,.4;) with
direction (d,,d,,d,) is given by

x=a,+d
y=ay+dyt,
z=ay+ dyt.

For such a line to lie in the surface z = xy it is necessary and sufficient that
for all 7,
ay+ dyt = (a; + dt)(a, + dy)t

= a8, + (ad, + a\dy)t + ddyt*.
1t follows that d,d, = 0, and d, and 4, cannot both be zero, since this would
imply that d, = d, = d; = 0, a contradiction.

If d, =0, then
ay + dyt = ay(a, + dyt),

or
Z=ax.
If d, =0, then
ay+ dyt = ay(ay + dy1),
or

z=ay.

Thus, the only straight lines in the surface z = xy are of the form z = ax,
y =aorof the form z = ay, x = a, where a is an arbitrary constant.

8.2.5. An equilateral triangle ABC is projected orthogonally from a given
plane P to another plane P’. Show that the sum of the squares of the sides
of the resulting triangle 4'B’C’ (Figure 8.17) is independent of the orienta-
tion of the triangle ABC in P.

Solution. First, some observations about how lengths are transformed under
this projection. Suppose that AB is a liné segment in P of length one, and
that it makes an angle ¢ with the line L of intersection of P and P’. Let #
denote the angle between the planes. Locate C so that AABC is a right
triangle, and AC is parallel to L (see figure). Triangle ABC will project into
a right triangle A’B’C’. Furthermore, AC and A’C’ have the same length,
and B’C’ = BCcos#. Since AC = cos¢ and BC = sin ¢, it follows that

A’B’ =+f(cosp)’ + (singcosf)’ .

Now, let ABC denote an arbitrary equilateral triangle in P. We may
suppose that the length of the side is one. Suppose that 4B makes an angle
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Figure 8.17.

¢ wilh. L. Then BC and CA4 will make angles of ¢+ {mand ¢ + 27 with L.
Applymg the result obtained above, we find that the sum of the squares of
the sides of triangle A'B'C’ is
[(cosg)? + (singcos)'] + [(cos(q: +4m)) + (sin(e + §w)coso)l]
+[(cos(s +4m))? + (sin(g + 4m)cosd r}
which reduces to
3cos¥ + 2sin’g,
which is independent of ¢.

Problems

8.2.6.lLel the triangle ABC be inscribed in a circle, let 7 denote the

centroid of the triangle, and let O denote the circumcenter. Suppose that

4, B, C have coordinales (0,0), (2,0), and (b, ¢) respectively.

(a) Express the coordinates of P and O in terms of a, b,c.

(b) Extend line segments AP, BP, and CP to meet the circle in points D, E,
and F respectively. Show that ,Y

AP L BP  CP
4L 58 L (P
P, PF 3
(Hint: One way to proceed is the following:
) g: Let x denote OP,

denote the radius of the circumcircle. Then mmdlet &

AP  BP _ CP _ AP?+ BP+ CpP?

+ 20 &8 _AP"+ BP*+ CP?
oY PET PF RE-2
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Now express each of the terms on the right side in terms of a, b, ¢ [using the
results of part (a)].)

8.2.7. Find the relation that must hold between the parameters a,b,c so
that the line x/a + y/b = 1 will be tangent to the circle x* +yt=ch

8.2.8. Equilateral triangles whose sides are 1,3,5,7, . . . are placed so that
the bases lie corner to corner along the straight line. Show that the vertices
lie on a parabola and are all at integral distances from its focus.

8.29.

(a) Tangents are drawn from two points {a,b) and (c,d) on the parabola
y = x” Find the coordinates of their intersection.

(b) Two tangent lines, L, and L,, are drawn from a point 7 to a parabola;
let P and Q denote the points of tangency of L, and L, respectively.
Let L be any other tangent to the parabola, and suppose L intersects L,
and L, at R and § respectively. Prove that

TR . TS _
mr1pTl

8.2.10. A parabola with equation y* = ax is cut in four points by the circle
(x—hP+(p— k= 12, Determine the product of the distances of the
four points of intersection from the axis of the parabola.

82.11. Let b and ¢ be fixed real numbers, and let the ten poinis (/, y)
j=1,2,...,10, lic on the parabola y = x? + bx + c. For j = 1,2,...,9
let £; be the point of intersection of the tangents to the given parabola at
(. y) and (j + L ye0): Determine the polynomial function y = g(x) of
leasi degree whose graph passes through all nine points /;.

8.2.12. Prove or disprove: there is at least one straight line normal to the
graph of y = coshx at a point (a,cosha) and also normal to the graph of
y=sinhxata point (c,sinh¢).

8.2.13.

(a) Show that the tangent lines to ellipse x?/a? + y*/b? = 1 have the form
y=oax* (aa’ + bz)l/z,

and vary in position with different values of a. (Because of the great
utility of this form, particularly in problems of tangency which do not
involve the consideration of the point of contact, this is called the
magical equation of the tangent.)

(b) Find the equation of the tangents to the ellipse Ix?+ y? =3 which
have slope of one.

(c) Find the area of the triangle formed by a tangent to the ellipse (say of
slope m) and the two coordinate axes.
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8.2.14.

(a) Let D be the disk x? + y2 < 1. Let the point A have coordinates (r,0),
“{here 0 < r < 1. Describe the set of points P in D such that the Oper;
disk whose center is the midpoint of 4P and whose radius is 4P/2 is a
subset of D.

(b) Let D be the disk x>+ p? < 1. Let points 4 and B be selected at
random in D. Find the probability that the open disk whose center is
the midpoint of 48 and whose radius is 4B/2 is a subset of D.

8.2.15. Given an ellipse x2/a*+ y*/b?=1, a# b, find the equation of
the set of ail points from which there are two tangents to the ellipse whose
slopes are reciprocals.

8.2..16. If two chords of a conic are mutually bisecting, prove that the
conic cannot be a parabola.

8.2.17. l_’rove fhat the graph of a cubic equation is symmetric about its
point of inflection. (Note: If the conic equation is f(x) = ax® + bx? + cx +
d, the x-coordinate of the inflection point is — b/3a.)

Additional Examples

1.3.11,1.53, 1.5.8, 1.6.4, 3.1.4, 43.6, 4.3.7.

8.3. Vector Geometry

In lhis section we will think of vectors as quantities which have both

! de and directi E: les of vector ities include force,

vilocuy. and acceleration. We shall see that vectors can also be usec{
ly in geometry problems.

We will represent vectors by arrows (i.e., directed line segments) in the
Euclidean plane. The direction of the arrow indicates the direction of the
vector, and the length of the arrow indicates the magnitude of the vector.

VTw_o vectors are equal if they have the same length and the same
direction. It is important to realize that two vectors may be equal without
being collinear.

__If P and Q are two points, the vector from P to Q will be denoted by
PQ. The length, or magnitude, of PQ will be denoted by |i’§}

The' sum, A + B, of vectors 4 and B is given by the parallelogram law
(see Figure 8.18), or gquiv‘alentlz, by completing the triangle as in Figure
g;g The difference, 4 — B, of B from A, , is shown geometrically in Figure
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Figure 8.18.
X+3
B
F s
Figure 8.19.
x
-8
B
Figure 820,

Place coordinates on the plane and denote the origin by O.Each pt:ml I;
in the plane determines a unique vector, OP, gal}ed the position vector of
P we will often denote this vector sim]?ly by P (instead of OP). P and 0

Suppose that P and @ are the position _vectors pi two pomtsP aWhiCh
(Figure 8.21). Let R be a point on the directed line segment Q0 wbich
divides PQ in the ratio m: n. (Figure 8.22). Then the position vector of

Figure 821,

P R Q

—_—~

Figure 8.22.
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given by

R=P+m':n(QAP)
_(m+ n)i+m(é—i)
m+n
() (AR e
It is instructive to think of & in physical terms in the following way.
Imagine a weightless bar PQ with a mass of #/(m + ) at P and a mass of

m/(m + n) at Q. The center of mass of the resulting system will be at a
point X on PQ where “the seesaw balances,” that is, at the point X where

(w430 = (555 Jre

But this is the same as

Thus, X divides PQ into the ratio m : n; in other words, X=R= (n/(m+
)P + (m/(m + n))Q. The coefficients n/(m + n) and m/(m + n) can be
thought of as “weighting factors.” Increasing the proportion of “weight” at
P moves the point R toward P and decreases the ratio m : n, etc.

83.1. In a triangle 4BC the points D,E,F trisect the sides so that
BC=3BD, CA =3CE, and 4B = 3AF (Figure 8.23). Show that triangles
ABC and DEF have the same centroid. ’

Solution. We will first show that the position vector of the centroid of an
arbilrary triangle PQR is given by § P+ 10 + 1 K. To see this, remember
that the centroid of triangle PQR is located at a point % of the way from P
to the midpoint of QR. From the discussion preceding the problem, we
know that the position vector for the midpoint of QR is %é + %ﬁ, and

o

©

F
Figure 8.23.
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therefore, the position vector of the centroid of PQR is § P+ 2(}Q +1R),
and this is equal to 1 P +1Q +{R, as claimed.
Because of the way D, E, and F are defined, we have

D=16+1C,
E=1C+144,
F=24+18
and therefore
cenlmidofADEF=§5+%E+§[-“
=4[3B +4C] +4[3C+ 4] +4[34 + 15]
=§1+§E+ §é=cenlroid of AABC.

8.3.2. Prove that it is possible to construct a triangle with sides equal and
parallel to the medians of a given triangle.

Solution. Consider a triangle ABC, and let D, £, F be the midpoints of sides
BC, AC, and AB respectively (see Figure 8.24). Then

E=ﬁ+;l‘TC,

BE = BC + }CA4,

CF=CA +}4B.
Adding these, we find that AD + BE + CD = (ﬁ+;€+_§7)_+: %(EE:'
CA+A4B)=0+(1)-0 = 0. This implies that the vectors 4D, BE, and CF

form a triangle. But E, BE, and CF are equal in magnitude and direction
to the medians of triangle ABC.

Before considering the next examples we will develop the following basic
principle. Suppose that P, Q, and R are points which are not collinear

C

F
Figure 8.24.
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Figure 8.25.

(Figure 8.25). If aPQ + bPR = cPQ + dPR, then a = ¢ and b = d. For if
the condition holds and if a # ¢, then

o= (d—b\sm

o= ( a-c¢ )PR’
and this implies that P, Q, R are collinear (vectors @ and PR have the
point P in common), which is a contradiction. Therefore @ = c. In a similar
manner b = d.

8.3.3. Prove that the line joining one vertex of a paralielogram to the
midpoint of an opposite side trisects a diagonat of the parallelogram.

Solution. Label the parallelogram by 4, B, C, D as shown in Figure 8.26, let
F be the midpoint of DC, and let £ be the intersection of 4F and BD. Note
that AB= DC and AD = BC, because as vectors they have the same
de and the same directi !
The point £ is at the intersection of two lines. We can express this
algebraically by saying that there exist constants a and b such that

AE = adF,

AE=4B +bBD.
Therefore,

AE + bBD = aAF.
The idea is to express each of the vectors in this last equation in terms of
AB and AD, and then we will make use of the principle discussed prior to

D F c

A
Figure 8.26.
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G
Figure 8.27.
the statement of the problem. Thus we have
AB +b(AD — AB) = a(AD + {4E),
(1= b)AB +bAD = 1aAB +adD.

1t follows that
1-b=1a,

b=a.
These equations imply that a = 5 =3, and the result follows.
8.34. In triangle 4 BC (Figure 8.27), let D and £ be the lrisecti_on points of
sides BC with D between B and E, let F be the midpoint of side AC, and

let G be the midpoint of side AB. Let H be the intersection of segments EG
and DF. Find the ratio EH : HG.

Solution. The plan is exactly as in the preceding problem. There are
constants @ and & such that
AG+aGE=AF+I@. R
Now express each of the vectors in terms of AB and AC:
4G =148,
GE~= GB + BE = 145 + 15C
=}AB +3(AC —A4B)= — 148 + 14C,
AF =14C,
FD=FA+AB+BD= —4AC+AB + {BC
= —4AC +AB + {(AC ~AB)= ~ }AC + 3 4B.
Substituting these into the previous equation, we have
4AB +a[ — 448 + }4C] = {4C +b[ — }AC + }4E),
(4— 1a)AB +3aAC = 3bAB + (3 — {b)AC.
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Figure 8.28.
It follows that
f-la=3b
fa=i-ip,
or equivalently,
a+4b=3,
da+b=3

The solution to this system is a = b=1, and it follows that EH: HG
=2:5.

83.5. Given a triangle ABC, construct similar isosceles triangles ABC’ and
ACB’ outwards on the respective bases 4B and AC, and BCA’ inwards on
the base BC (Figure 8.28). Show that AB’A’C" isa parallelogram.

Solution. In vector language, our problem is to show that 48" + AC’ =
AA’.
Let D, E, F be the midpoints of sides 4B, BC, AC respectively. Then

AB' = AF+FB’

1AC + FB’

AC'= 4D +DC" =} 4B + DC’

A4'= 4B+ BE +EA" .
=AB+{(AC~AB)+ EA'= {48 + JAC + EA".

To put FB’, DC’, and EA" into terms of 4B and AC, we introduce the
followmg notation (useful in other problems as well). Given points P and
Q, let ]PQ denote the vector obtained by rotating PQ with unchanged
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Figure 8.29.

magnitude, through a right angle in the positive direction, as in Figure 8.29.
Now, suppose the isosceles triangles erected on the sides of 4BC have
height-to-base ratio equal to k; that is, FB'/AC = DC’'/AB = EA’/ BC
= k. Then,

4B’ =}AC + FB' =14C +k|4C,
AC’ = }AB + DC' = {AB —k|A4B,
A4 =4AB + L AC+EA

2AB+‘AC+k|BC

(Note that [(F +0) =| £ +| §, and |a = a|P for an arbitrary constant a.)
These expressions for AB AC' and A4’ show that AB+AC’ = AA’ and
thus the solution is complete.

Given vectors 7’5 and RS, the dot product P_Q'~R—§ is defined by the
formula

PQ - RS = | PG| |RS|cos8,
where # is the angle between the vectors, 0 < § < 180°.
It can be shown that for arbitrary vectors 4, B, C,
A-B=B-A
and
A-(B+Cy=4 B+4-C.
Nouce that if 4 and B are perpendlcular, then 4-B=0. Conversely, if
A-B=0, then gither A=00r B=0,or A and B are perpendicular. Also,
notice that 4 -4 = |A\

8.3.6. In triangle ABC (Figure 8.30), AB = AC, D is the midpoint of BC,
E is the foot of the perpendicular drawn D to AC, and F is the midpoint of
DE. Prove that AF is perpendicular to BE.
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D
Figure 8.30,

Solution. This is the same problem as 1.5.3, but here we will give a proof
using vector notation. We have
AF -BE = (4E + EF) - (BD + DE)
=4E -BD +EF-BD + EF-DE
=(AD +DE)- BD + EF - BD + EF - DE

y= DE -BD + EF - BD + EF - DE
- DE-bC_ DE-DC _ DE-DE
3

The concept of vector makes sense in Euclidean 3-space just as it does in
the Euclidean plane. Just as in the case of the plane, vectors have length
and direction and are represented as arrows or directed line segments (but
now in 3-space). They are added by the parallelogram law, and can be
manipulated to prove results in solid geometry.

8.3.7. If two altitudes of a tetrahedron are coplanar, the edge joining the
two vertices from which these altitudes issue is orthogonal to the opposite
edge of the tetrahedron.

Solution. Suppose that AP and BZ are altitudes from 4 and B respectively,
and suppose they intersect in a point H (Figure 8.31).
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Figure 8.31.

ji H is orthogonal to each of BC, (,iand BD, and BH  is orthogonal to
CD, AD, AC. We wish to show that AB is orthogonal to CD. For this, we
compute the dot product:

A5 -CD = (1B - HA)- CD = HB -CD ~ A -Th =0-0=0.
This completes the proof.
8.3.8. Prove that if the opposite sides of a skew (nonplanar) quadrilateral

have the same lengths, then the lme )ommg the midpoints of the two
di Is is pes dicular to these d

Solution. Let 4, B,C, D denote the vertices of the quadrilateral, and let P
and @ be the midpoints of AC and BD respectively (Figure 8.32). We are
given that |4D| = |BC| and |4B|=|CD|. Squaring, and translating into
dot-product language, we have

4D -4D = BC - BC,

or equivalently,

]

Figure 8.32,
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We wish to prove that @ is perpendicular to AC and BD; in vector
language we wish to show that
PG-AC=0,
PGB =0,
or equivalently,
(6-F)-(E-dy=0,

(¢- 1‘) (D=B)=0.

Substituting # = {(4 + ¢) and @ = {(B + D), these equations yield
(B+D-A-C)-(C-d)=0,

Lo @
(B+D-A-C)-(D~B)=0.

Our problem then is equivalent to showing that the equations (1) imply
the equations (2).
Expanding (1), we have

(B+D-C—A)-(C—A)=0,
This is the first of the two equations in (2). To get the second of the
equations in (2), take the difference of the equations (1). The details are Jjust
as in the previous computation.

In a similar way, adding and subtracting the equations in (2) yield the
equations in (1), which means that the converse theorem is also true:
namely, if the line joining the midpoints of the two diagonals of a skew
quadrilateral is perpendicular to these diagonals, then the opposite sides of
the quadrilateral are of equal length.

Problems

83.9. In a triangle 4BC the points D, E, and F trisect the sides so that
BC =3BD, CA =3CE, and AB = 3AF. Similarly, the points G, H, and
trisect the sides of triangle DEF so that EF =3EG, FD = 3FH, and
DE =3DI. Prove that the sides of AGHI are parallel to the sides of
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Figure 8.33.

AABC and that each side of the smaller triangle is  as long as its parallel
side in the larger triangle.

8.3.10. The sides of AD,AB,CB,CD of the quadrilateral ABCD are di-
vided by the points E,F,G,H so that AE: ED = AF: FB=CG:GB
= CH: HD. Prove that EFGH is a parallelogram.

83.11.

(a) In triangle ABC (Figure 8.33), points D and E divide sides BC and AC
in such a way that BD/DC =3 and AE/EC =3. Let P denote the
intersection of 4D and BE. Find the ratio BP: PE.

(b) In triangle A8 (Figure 8.34), points E and F divide sides AC and AB
respectively so that AE/EC = 4 and AF/FB = 1. Suppose D is a point
on side BC, let G be the intersection of EF and 4D, and suppose D is
situated so that AG/GD = }. Find the ratio 8D/ DC.

8.3.12. On the sides of an arbitrary parallelogram ABCD, squares are
constructed lying exterior to it. Prove that their centers M,, M,, M,, M, are
themselves the vertices of a square.

8.3.13. On the sides of an arbitrary convex quadrilateral 4BCD, equilat-
eral triangles ABM,, BCM,, CDM,, and DAM are constrycted so that the
first and third of them are exterior to the quadrilateral, while the second
and fourth are on the same side of sides BC and DA as in the quadrilateral
itself. Prove that the quadrilateral M,M,M,M, is a parallelogram.

8.3.14. On the sides of an arbitrary convex quadrilateral A BCD, squares
are constructed, all lying external to the quadrilateral, with centers M, M,,

Figure 8.34.
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My, M,. Show that M,M,= M,M, and that M,M, is perpendicular to
MM,

8.3.15. I_sosceles triangles BCX, CAY, and ABZ are constructed externally
on the sides of a triangle ABC. Show that the centroids of AABC and
AXYZ coincide,

8.3.16. The altitudes of a triangle ABC are extended externally to points
A, B” and C’ respectively, where A4’ =k/h,, BB'=k/h,, and CC’
= k/h.. Here, k is a constant and 4, denotes the length of the altitude of
ABC from vertex A, etc. Prove that the centroid of the triangle 4"B°C’
coincides with the centroid of ABC.

8.3.17. Let ABC be an acute angled triangle. Construct squares externally
on the three sides. Extend the altitudes from the three vertices until they
meet the far sides of the squares on the opposite sides. Then the squares are
cut into two rectangles. Prove that “adjacent rectangles” from different
squares are equal in area. That is, prove that areai = area for i = 1,2,3
(see Figure 8.35). (Use the dot product to give a one-line proof.) What
happens as ABC becomes a right triangle?

8.3.18. In a tetrahedron, two pairs of opposite edges are orthogonal. Prove
that the third pair of opposite edges must also be orthogonal.

8.3.19. Let O be a given point, let P\, P,, .. ., P, be vertices of a regular
n-gon, n > 7,andlet Q, @, .. ., Q, be given by

00,=0P+F P, i=12....n

(Poer="P, Pyy=P) Prove that 0, Q,, .. ., Q, are vertices of a regu-
lar n-gon.

3

3
>
v
2 1
Figure 8.35,
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8.4. Complex Numbers in Geometry

Tn this section we will build on the geometry of complex numbers intro-
duced in Section 3.5.

84.1. A, 4, ..., A, is a regular polygon inscribed in a circle of radius r
and center O. P is a point on O4, extended beyond A;. Show that

n
II PA,= OP" = r".
k=l

Solution. Consider Figure 8.36 as representing the complex plane with the
center of the circle at the origin, and with the vertices 4, at the n roots of
27 — r" = 0. Specifically, we set the affix of 4, to be z, = re?™*~ /" (The
affix of a point  in the plane is the complex number which conequnds to
Q.) With these coordinates, P corresponds to a real number, which we
will denote by z. Then

. n
11 P4e= T1 1=- =
k=1 k=1

.

T (- 2)
k=l

=z"—r (z and r are real)

=0oP"-r".

8.4.2. Given a point P on the circumference of a unit circle and the
vertices A, A, . .., A, of an inscribed regular polygon of # sides, prove
that PA} + PA3+ - - - + PA is a constant.

Figure 8.36.
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Solution. Again, let 4,,4,,..., 4, correspond to the # roots of unity;
specifically, let the affix of 4, be z, = e*™/" k= 1,2, ..., n. Let the affix
of P be z. Then

" »
S PAi= 3 |z- z)
= =

= z,.: (- z)E-%) (wi=wm)
k=1

= kzl (22 — 2,2 = 25, + 2, 3,)

e (élzk)z —z(

But 3%z, =0, since the z,’s are the roots of z” — 1 =0 and the coeffi-
cient of z"~! is zero. Therefore,

" n "
S PAl= D 2+ I 55,
k=1 k=1 k=1

n

" n
=3 |2+ 3 izl

k=1 k=1
=n+n  (zl=1and|z|=1)

=2n.

84.3. Prove that if the points in the complex plané corresponding to two
distinct complex numbers z, and z, are two vertices of an equilateral
triangle, then the third vertex corresponds to - wz, — w%,, where w is an
imaginary cube root of unity.

Solution. Poi:us Z1,73,2; form an equilateral triangle if and only if z; — 2,
= (2~ z))¢*™/% Thus, given z, and z,, 23 must have the form
2= (1= ="z, + e*/z,
= [+ e Pz —[ e/ ]z,

We can see from the geometrical interpretation of these quantities (Figure
837) that — 1+ ¢*"/3 and — e*"/? are the imaginary cube roots of unity.
Alternatively, we can verify this algebraically:

=14 e*™% = —1+ cos( }m) + isin(+ }x)
=-1+i%4y3
=-1x143,
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1 43 i3 i3
- -1
_enid JEp—— i3
Figure 8.37.
and
—e*™? = —[cos( £ {m) + isin(+ {m)]
=—1F130
Conversely, suppose z, = —wz, — w’z,, where w is an imaginary cube
root of unity. Then
w=—1+¢e"? and '=-e"/?
or
w=—1+e ™3 and wl=—e "/

and the previous arguments show that z,,z,, z; form an equilateral triangle.

8.4.4. Equilateral triangles are erected externally on the sides of an arbi-
trary triangle 4 BC. Prove that the centers (centroids) of these three equilat-
eral triangles form an equilateral triangle.

Solution. Let a,b,c be the affixes of A, B, C respectively (in the complex
plane), with x, y,z the affixes of the centers of the equilateral triangles as
shown in Figure 8.38. Let w= />, Then w?+w+1=0 (w is a cube
roots of unity, so 0=w®— 1= (w— 1}w?+ w + 1)). Also, note that e™/3
=-w’ande "= —q.

The centroid of AA4BC has affix }(a+ b+ ¢). In a similar way, x, p,
and z are given by

x={[a+c+[a-wHe-a)]]=4[@+e)a+ (1 - )]

y=i[a+b+[a-wb-a)]]=i{Q@+w)a+ (-]

z=4[b+ct+[b=w(c=b)]]=4[@+w)b + (I - w)c].
To show that x, y,z forms an equilateral triangle, it suffices to show that

z—x=—w¥(y—x),
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Figure 8.38.

We have
Hz—x)=-(2+w)a+ 2+ wb+(—w+w)c
=36y = x) = Jd(x ~ y) = (©* - 0¥)a ~ (@ — )b + (P - w¥)e.
But

W o=

(-l-eY)-1=-2+ud),
—(@ - = —t =140+ =240,
W—et=w?- g,
and therefore, the coefficients of a,5,¢ in the above expressions for z — x

and —wz(y— x) are equal. It follows that x, .z forms an equilateral
triangle.

Problems

84.5. Let 4,4, 4,,4;, 4, divide a unit circle (circle of radius 1) into five
equal parts. Prove that the chords A4y4,, Ay, satisfy

(AoA |~ Agdy)’=5.
8.4._6. Given a point P on the circumference of a unit circle and the
vertices A,4,, ..., A, of an inscribed regular polygon of # sides, prove

that PA}+ PA3+ - - + PA} is a constant (i.e., independent of the posi-
tion of P on the circumference).

8.4.7. Let G denote the centroid of triangle ABC. Prove that
3(GA* + GB*+ GC¥) + AB* + BC* + CA>.
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8.4.8. Let ABCDEF be a hexagon in a circle of radius r. Show that if
AB=CD = EF=r, then the midpoints of BC, DE, and FA are the
vertices of an equilateral triangle.

849. If z,, z,, z; are such that |z =)zy| =|z5| =1 and z, + 2z, + z; =0,
show that z,, z,, z, are the vertices of an equilateral triangle inscribed in a
unit circle.

8.4.10. Show that z,, z,, z, form an equilateral triangle if and only if
2+ B+ 2d =2z, + 2y2 4 252,
8.4.11. The three points in the complex plane which correspond to the
roots of the equation
22 —3pzi+3gz - r=0
are the vertices of a triangle.

(a) Prove that the centroid of the triangle is the point corresponding to P
(b) Prove that ABC is an equilateral triangle if and only if p* = q.

Glossary of Symbols and Definitions

Centroid (of a
triangle)

Circumcenter (of
a triangle)

Convex hult

Convex set

Fibonacci sequence

Function
even

odd

convex

The point where the medians of a triangle inter-
sect. (A median of a triangle is a line joining a
vertex to the midpoint of the opposite side.)

The center of the circumscribed circle (the circle
passing through the three vertices of the trian-
gle). The point where the perpendicular bisec-
tors of the sides of the triangle intersect.

The smallest convex set which contains all the
points of the set.

A set that contains the line segment joining any
two of its points.

The sequence of numbers defined as F, =1,
Fy=1, and F,=F, |+ F,_, for n>2. The
sequence begins 1, 1, 2, 3, 5, 8, 13, 21, 34,

A function f with the property that f(— x) = f(x)
for all x.

A function f with the property that f(—x)=
— f(x) for all x.

A real-valued function defined in the interval
(a,b) such that for each x, p,zwitha<x<y
<z < b, f(x) € L(x), where L(x) is the linear
function coinciding with f(x) at x and z,
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concave

Incenter (of a
triangle)

Lattice point
Orthocenter (of
a triangle)

Pascal’s triangle

Pythagorean triple

Set
S§-T

k-subset

Triangular numbers

Glossary of Symbols and Definitions

A function which is the negative of a convex
function.

The greatest integer function; for each real num-
ber x, [x]is the largest integer less than or
equal to x.

The center of the incircle of a triangle. The in-
circle, or inscribed circle, is the circle tangent to
the sides of the triangle. The incenter is the
point where the bisectors of the angles of the
triangle intersect.

A point in the Euclidean plane (or R") whose
coordinates are integers.

The point of intersection of the three altitudes of a
triangle.

A triangular array of numbers whose nth row
(n=0,1,2,...)is composed of the coefficients
of the expansion of (a + b)".

A set of three integers which satisfy the equation
x4 yt=22

The subset consisting of those elements in the set
S that are not in the set 7.
A subset of k elements.

The numbers in the sequence 1,3,6,10, ...
whose nth term is n(n + 1)/2.
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