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Chapter 1

Introduction
Gravitational waves are ripples in spacetime and were �rst predicted by Albert

Einstein in 1916 [4]. After decades of technological development, they were �nally

observed on September 14th , 2015 [4]. Their signal came from the coalescence of two

black holes, where the tiny shift in spacetime was measured by the Laser Interfer-

ometer Gravitational Wave Observatory (LIGO). Since their initial detection there

have been 12 known signals and 56 potential candidates [7].

With more gravitational wave observatories, VIRGO in Europe, KAGRA in Japan,

and LIGO India, gravitational wave astronomy is providing a new way to study the

universe, and will continue to mature as a sophisticated �eld of physics. Unfortu-

nately, its seldom taught in early undergraduate physics/astronomy courses. Due

to the fact that LIGO is primarily a Michelson interferometer, the introduction of

gravitational wave astronomy can easily be paired with a lecture demonstration in-

volving such a device. It is with little doubt that physics demonstrations play an

important role in the teaching of science and can drastically improve the way stu-

dents learn [6][17][21][24][28][29]. However, gravitational waves are mathematically

complex for an early undergraduate student, so a simpli�ed method to the introduc-

tion of Einsteins equation must be considered. This thesis is a work-in-progress on

a pedagogical demonstration/lecture plan for the introduction of gravitational wave

astronomy for early undergraduates, but its highlighted that the essential aspects

on e�ective lecture demonstrations and the mathematics of gravitational wave as-

tronomy have been covered thoroughly, where the future work on this project would

include the re�nement of the device and lecture plan.
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Chapter 2

Physics Demonstrations as a Learn-

ing Tool

2.1 Failing to Learn from Demonstrations

There are a large quantity of factors that could prevent a student from learning

from a demonstration. As an educator its important to understand these aspects

before developing a demonstration to either avoid encountering these problems or to

address them as they arise.

There are �ve major dimensions that could play an in
uence in why a student may

fail to learn. The �rst is the idea that the student may lack the theoretical frame-

work to separate important information from unimportant information [17][24]. For

demonstrations to work at all, students must see the intended outcome in conjunc-

tion with the explanation. It frequently happens that the experiment may have

unintended side e�ects that could distract and confuse the observer. Scientists and

engineers are actively practicing the separation of signal and noise and have the

foresight to know how certain situations should occur, but its important to know

that this skill isn't as present in a young student.

The second, is the interference of discourse learned from other contexts of the

physics course or from outside experiences [24]. Its expected that students will draw

on experiences from both inside and outside the classroom in attempt to explain a

phenomena. If a demonstration has any surface level similarity to their experiences

then the students might speculate a common in
uence that is otherwise untrue.

The third aspect ties into the fact that students may mistakenly or have problems

with piecing together coherent representational frameworks from the information
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provided [17][24]. This may mean that the demonstration and explanation pro-

ceeded so quickly that the student couldn't put them together, or, that without the

theoretical background present the student may not understand what the experiment

is supposed to be representative of [8][30]. Another critical point to this is that there

might be more physical aspects to the demonstration that are left out or skimmed

over that require an additional explanation.

Not having the opportunity to practice scienti�c discussion and the di�erent

levels of scienti�c literacy between an educator and student is the fourth reason

why a student may fail to learn from a demonstration [24][26]. Its easy to explain a

concept and use the associated terminology, but this could come out as jargon and be

confusing. This is critical because students are being introduced to these concepts

for the �rst time and don't have these key vocabulary words down. If a student

doesn't feel comfortable with the terminology then they might fail to comprehend

the concept associated with the demonstration, but can also be discouraged from

continuing a physics education [26].

The �fth aspect comes from the idea that the demonstration plays no role in a

students grade and can be seen as entertainment [6][8][24]. Studies have shown that

if students don't actively participate/engage with the demonstration then a student

that didn't see the experiment will test as well as the student that did [6][17].

In general, a student may fail to learn from a physics demonstration because they

may not have the level of intuition needed to understand the demonstration and may

lack the opportunity or con�dence to actively engage with the physics concepts.

2.2 Promoting an Active Learning Environment

A common, but e�ective, way to help prevent these contingencies from occurring

or to address them as they arise is to create an active learning environment. On

the contrary to traditional demonstrations and lectures, where the teacher shows

and tells, which has shown to be less e�ective [1][6][10][17][24][29], an active learning
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environment is one that allows students to engage with the material, participate in

class, and collaborate with others [23].

Introduced here are three methods of creating an active learning environment for

a demonstration. The �rst is where students record their prediction, observe the

demonstration, and hear the explanation [6][24]. The second is where students make

a prediction, observe the demonstration, discuss it with fellow students, and �nally

hear the instructors explanation [1][6][24].

The discussion aspect serves to address the majority of concerns from the section

2.1 of this chapter. It allows the instructor to overhear what students may have

not understood, act as a check for students to see whether their own talk about the

phenomena was shared among others or was viable and fruitful, and to check if what

the students constructed as a phenomena was to be of interest or simply noise [24].

One particularly interesting outcome that could occur is that the demonstration

doesn't proceed successfully. This opens the door to high potential of learning by

discovering what went wrong, through the discussion of the di�erent variables and

how they in
uence the demonstration [1].

The third method to creating an active learning environment is to create a contex-

tual road map of the unitnchapter that is built around the demonstration [1][10][24].

What this entails is that the instructor shows the demonstration before the chapter

and has the students engage in discussion to make predictions regarding the under-

lying physics concepts and variables behind it [1][24]. As the necessary theoretical

framework is developed the instructor can then have the students discuss and predict

what exactly occurs within the demonstration. At the end of the unit the instructor

can demonstrate and thoroughly explain it, where the �nal discourse could look into

more advanced or present day experiments [1]. This sort of conceptual road map

discussion is consistent with scienti�c inquiry through observations and hypothesis,

the construction of variables to produce theoretical framework, and lastly, the veri-

�cation and future outlook of such work [1][24].

A more advanced version of the third method is to split the demonstration into

three distinct sections: observe, test, and apply [10]. As before, the demonstration
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will be done before the unit begins and students will make predictions/explanations.

Once the students have begun to build enough foundational knowledge and feel

comfortable with the terminology they can revisit their explanations, be introduced

to a new demonstration, but be asked to make a new prediction and convince their

neighbors that their prediction is correct, and then be shown the demonstration in

conjunction with the instructors explanation. Finally, when the students are more

than comfortable with their abilities they can apply it to explain another phenomena

or build a new device [10]. The last section plays more of a role in a lab setting, but

promotes high engagement and scienti�c thought by allowing students to explore

the physics concept in more depth and apply it in new forms, while simultaneously

building o� of the in class demonstration.

2.3 Forms of E�ective Lecture Demonstrations

There are two forms of e�ective lecture demonstrations that can be carried out,

interactive lecture demonstrations (ILD) [29] or interactive lecture experiments (ILE)

[21].

ILDs have been shown to increase learning gains between a control and experi-

mental classroom on standard tests by more than 15% when compared to traditional

methods [6][17][28][29]. The formalized procedure for an ILD is [17][29]:

1. Instructor describes the demonstration.

2. Students record their names and individual predictions on a Prediction Sheet,

which will be collected. (Predictions will not be graded, but class participation

points are usually awarded)

3. Students engage in small-group discussion with their one or two nearest neigh-

bors.

4. Students record their �nal predictions on the Prediction Sheet.

5. Instructor elicits common student predictions from the whole class.

6. Instructor carries out the demonstration with the use of displays, that give
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a more complete view of the experiment (multiple monitors, LCD, panel or

computer projector).

7. A few students describe the results and discuss them in the context of the

demonstration. Option: Students �ll out Results Sheet, identical to the Pre-

diction Sheet, to take with them.

8. Instructor discusses analogous physical situation(s) with di�erent "surface"

features - that is, di�erent physical situation(s) based on the same concept(s).

A couple key parts to understand is that after step three, the instructor must carefully

observe and pick an appropriate time to move on and steps seven and eight can

also be adjusted to the educators agenda, but must guide the discussion towards

the important points raised in the demonstration. This form is di�erent than the

general forms argued for in section 2.2, in that they collect prediction sheets to entice

students to engage through the use of class participation points and that they use

real-time displays to gives students the con�dence and trust in the apparatus and

measurement device(s) [29].

ILEs build on ILDs by requiring students to analyze data during and after lecture

demonstrations [21][22]. Due to the fact that this form of demonstrations is relatively

new and in progression, it has not been shown that ILEs improve understanding of

speci�c topics, potentially because of the fact that other interactive pedagogies were

employed in this study [22]. On the contrary, open-ended questions on the exam

showed di�erences on some topics between sections on topics that were addressed

by ILEs, giving strong evidence that ILEs have the potential to promote learning of

both of physics concepts and analytical skills [22][21]. The procedure for an ILE is

[21]:

1. Demonstration stage - Students are shown an experimental setup during lec-

ture. The instructor discusses physics concepts and phenomena illuminated by

it without going into speci�c details. Students are then asked to discuss and

make predictions about the experiment.

2. Data Collection and Sharing - The experiment is then demonstrated and the
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data from it is collected, uploaded, and shared with the students along with a

set of speci�c data analysis questions to help direct their investigations.

3. Data Analysis - Students are asked to work in small groups outside of class

to analyze the data and address the speci�c questions. These questions are

indicative of their conceptual understanding as well as their ability to sup-

port qualitative analysis with quantitative results, which is captivated in the

submission of a brief written report.

4. In-class Discussion - Students bring results of their analysis to class and share

their results through the use of clickers and discussion.

5. Problem Solving - As a follow up homework assignment, students will be asked

questions requiring application of the concepts learned in the ILE.

Although the �rst study found that 78% of students found ILE's to be helpful

or very helpful at the end of the semester [21], the second study found that only

32% of students found ILEs to be helpful in understanding laboratory experiments

on the same topic [22]. This discrepancy is alarming, but it's noted in the second

study that the ILEs were reported as too time intensive, contained major software

problems (Logger Pro), and the lack of feedback on their homework sets contributed

to this negative response.

If a more careful approach is taken and more research is done on ILE's, then

this form could be a strong candidate of creating an active learning environment and

addressing the issues on why students may fail to learn from a lecture demonstration.

ILDs, however, have been studied extensively and can be considered a very secure

way of presenting a physics demonstration.
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Chapter 3

Gravitational Wave Theory

The formalism presented here is based primarily based on [2] and [25].

Gravitational waves are one of the many predictions of Einstein's Theory of General

Relativity. The assumption is that the reader is familiar with basic concepts and

the mathematical tools of general relativity. More speci�cally this includes: the

coordinate distance,ds2; the Minkowski metric � �� ; the generalized metric,g�� ; the

Christo�el symbol, � �
�� ; the Riemann Tensor,R�

��� ; Ricci Scalar,R; and ultimately

has been introduced to Einsteins equation:

R�� +
1
2

g�� R =
8�G
c4

T�� (3.1)

A great and quick mathematical introduction to these concepts can be found in paper

[12] or more thoroughly in Carroll's text. The purpose of this chapter is to expose

the reader to gravitational waves, and use this math to supplement the simpli�ed

math for the lecture plan.

3.1 Linearized Gravity and Gravitational Waves

When Einstein's equation is typically introduced, is it usually veri�ed by considering

the Newtonian limit, thus providing the constants of Equation 3.1. This means that

the gravitational �eld can be expressed as a weak �eld, static (no time derivative),

and that the test particles are moving slowly (vÆc). Gravitational waves are di�cult

to consider in the weak �eld limit as sources of gravitational waves have strong

�elds, are highly energetic, and highly time dependent. Luckily, at a great distance

away from the source, the highly energetic gravitational waves have lost much of

their strength, which allows the weak �eld limit to be considered. Negating the

restrictions on the motion of test particles, and taking the time dependence into
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account, allows the phenomena of gravitational waves, that is otherwise absent or

ambiguous in Newtonian Theory, to emerge.

The weakness of the gravitation �eld allows the metric to be decomposed in the

Minkowski metric plus a small perturbation:

g�� = � �� + h�� ; jh�� j � 1 (3.2)

To linearize gravity, start with the Christo�el symbols, which will be given by:

� �
�� =

1
2

g�� (g��;� + g��;� � g��;� )

=
1
2

� �� (h��;� + h��;� � h��;� ):
(3.3)

The reason the second line in Equation 3.3 was carried out, is because we are only

considering Einsteins equation to the �rst order. Since the Christo�el symbols are

�rst-order quantities, the only contribution to the Riemann tensor will come from

the derivatives of the them. Lowering the index:

R���� = � �� � �
��;� � � ��;� � �

��;�

=
1
2

(h��;�� + h��;�� � h��;�� � h��;�� )
(3.4)

and contracting over� and � gives the Ricci tensor:

R�� =
1
2

(h�
�;�� + h�

�;�� � h;�� � � h�� ) (3.5)

contracting again gives the Ricci scalar:

R = h��
;�� � � h (3.6)

where:

h = � �� h�� = h�
� (3.7)

and � is the d'Alembertian operator where for any arbitraryf [12]:

� f = �
@2f
@t2

+ r 2f: (3.8)

Rearranging the terms in Equation 3.5 [12]:

R�� =
1
2

[� � h�� +
@

@x�
(h�

�;� �
1
2

h;� ) +
@

@x�
(h�

�;� �
1
2

h;� )]: (3.9)
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The choice of coordinates is completely arbitrary, which can allow us to make the

terms in the parentheses vanish if we choose coordinates in which:

h�
�;� �

1
2

h;� = 0 (3.10)

Fortunately, there are four degrees of freedom in Equation 3.9, and the choice of

coordinates to make Equation 3.10 true is called the Lorentz gauge [12]. A detailed

description of gauge transformations can be found in Chapter 7 of Carroll's text

or in paper [20]. Intuitively, the Lorentz gauge transformation describes the set of

perturbation metrics that leave the physical space, or curvature, unchanged [3]. The

Ricci tensor now takes the form:

R�� = �
1
2

� h�� : (3.11)

The linearized Einstein equation then becomes:

�
1
2

� h�� �
1
2

� �� R = �
16�G

c4
T�� (3.12)

while the vacuum solution assumesR = 0 and T�� = 0 to adjust Equation 3.12 to:

� h�� = 0 (3.13)

which is the simply the conventional relativistic wave equation. General Relativity

predicts the existence of traveling ripples in spacetime itself.

3.2 Gravitational Wave Solutions

The solutions to Equation 3.13 hold for small perturbationsh�� on a background

Minkowski metric. One such solution is the plane-wave solution [12]:

h�� = A �� exp(ik � x � ) (3.14)
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for some (complex) amplitudeA �� and wave numberk� , with k� = ( !=c; k x ; ky; kz).

If solution 3.14 is plugged into Equation 3.13 then:

0 = � h��

= � �� @� @� h��

= � �� @� (ik � h�� )

= � � �� k� k� h��

= � k� k� h��

(3.15)

One way for this to be true is ifk� k� = 0, which means thatk� is a null-vector, or in

other words, that its length is zero, implying that gravitational waves must travel at

the speed of light [12]. At this point the amplitudeA �� has been neglected, however

the Lorentz gauge condition (Equation 3.10) can be employed with our solution

(Equation 3.14) to derive properties for this tensor [12]. The choice of indices within

this is partially arbitrary, which allows the Lorentz gauge condition to be written as:

� �� h��;� �
1
2

� �� h��;� = 0 (3.16)

where the values within the exponent in the �rst perturbation metric isk� x � and

k� x � in the second. The �nal production of Equation 3.16 gives [12]:

k� A �
� �

1
2

k� A �
� = 0 (3.17)

Considering the case for� = 0:

k� A �
0 �

1
2

k0A �
� = 0 (3.18)

k0 6= 0, becausek is a null vector. This means that the only way to satisfy Equation

3.18 is ifA �
� = 0, or for A to be traceless. This simpli�es Equation 3.17:

k� A �
� = 0 (3.19)

This is the dot product of the propagation direction (k) with the wave amplitude

(A). This immediately means that these two are perpendicular, imposing that these

waves are transverse [12]. Sincek� A �
0 = 0, it must mean that A �

0 = 0 for all � . The

symmetry of h�
� , from the notion that linearized theory describes a symmetric tensor

on a 
at background [3], must also mean thatA is symmetric,A0
� = 0 for all � [12].
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To further reduce the solution, if the wave is traveling in thex3 direction then

k� = ( !; 0; 0; ! ), from its null vector properties. This then implies thatA3
� = A �

3 = 0

for all � (radiation in the x3 direction) [12]. Thus, the amplitudeA of the waves has

the simple form: A12 = A21 6= 0 and A11 = � A22 6= 0.

A =

0

B
B
B
B
B
B
B
B
@

0 0 0 0

0 A11 A12 0

0 A21 A22 0

0 0 0 0

1

C
C
C
C
C
C
C
C
A

(3.20)

In terms of the perturbation, h [12]:

hT T
�� =

0

B
B
B
B
B
B
B
B
@

0 0 0 0

0 1
2(hxx � hyy) hxy 0

0 hxy
1
2(hyy � hxx ) 0

0 0 0 0

1

C
C
C
C
C
C
C
C
A

(3.21)

This solution for the perturbation is called the transverse traceless gauge, hence the

TT.

Polarization

At this point it is important to understand how a passing gravitational wave

will a�ect two particles on nearby geodesics. Imagine two test particles that are

essentially at rest,U = (1 ; 0; 0; 0), and separated by a displacement vector� � . The

geodesic deviation equation for these particles is [20]:

r U r U � � = R�
��� U� U� � � (3.22)

The two covariant derivativesr U simplify to being regular derivatives in respect to

proper time, from the fact that its the only non-zero part ofU. Simplifying Equation

3.22 and lowering the �rst index:

d2� �

d� 2
= R���� U� U� � �

= R� 00� � �
(3.23)
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where only the non-vanishing terms ofU were considered in the �nal step. With the

use of Equation 3.4, the Riemann tensor written in terms of the transverse traceless

gauge (Equation 3.21) gives:

R� 00� =
1
2

(hT T
��; 00 + hT T

00;�� 0 � hT T
� 0;� 0 � hT T

� 0;� 0)

=
1
2

hT T
��; 00 =

1
2

@2

@t2
hT T

��

(3.24)

where the second line was carried out becausehT T
� 0 = 0 for all � . Substituting this

back into Equation 3.23:
d2� �

d� 2
=

1
2

� � @2

@t2
hT T

�� (3.25)

If the wave is traveling in thex3 direction, then hT T
�� will take on the form in Equation

3.21. It is then advisable to de�neh+ = A11 and h� = A21. There are two case that

still allow hT T
�� to be true, (1) h+ = 0 and (2) h� = 0.

For case (1), Equation 3.25 becomes:

d2� 1

d� 2
=

1
2

� 1 @2

@t2
[h+ exp(ik � x � )] (3.26)

d2� 2

d� 2
= �

1
2

� 2 @2

@t2
[h+ exp(ik � x � )] (3.27)

where solutions to these equations are [12]:

� 1 = � 1(0)[1 +
1
2

h+ exp(ik � x � )] (3.28)

� 2 = � 2(0)[1 �
1
2

h+ exp(ik � x � )] (3.29)

For case (2), Equation 3.25 becomes:

d2� 1

d� 2
=

1
2

� 1 @2

@t2
[h� exp(ik � x � )] (3.30)

d2� 2

d� 2
=

1
2

� 2 @2

@t2
[h� exp(ik � x � )] (3.31)

where solutions to these equations are [12]:

� 1 = � 1(0)[1 +
1
2

h� exp(ik � x � )] (3.32)

� 2 = � 2(0)[1 �
1
2

h� exp(ik � x � )] (3.33)

From these solutions, gravitational waves have two possible polarizations. One with

amplitude h+ that oscillates the two test bodies along the x and y axis, in a cross
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pattern, top of Figure 3.1. The other,h� , that oscillates 45� from the �rst, in a x

pattern, bottom of Figure 3.1.

Figure 3.1: Top: Gravitational wave that oscillates test bodies in a cross pattern.
Bottom: Gravitational wave that oscillates test bodies in a x pattern. [2]

3.3 Production of Gravitational Waves

Up to this point, plane wave solutions to the linearized vacuum equation have been

derived. For the purpose of the later classroom activity that discusses gravitational

wave sources, it is necessary to consider Einsteins equation when coupled to matter,

R�� + 1
2g�� R = 8�G

c4 T�� . The stress energy tensorT�� doesn't vanish, which will

cause the metric perturbation to be very complex, but imposing the restraint that

the metric perturbation at very large distance from the source will produce the

original metric perturbation which will simplify the calculation.

To begin, the trace reversed perturbation is de�ned as:

�h�� = h�� �
1
2

h� �� (3.34)

where no information has been lost from the original perturbation in Equation 3.2

because:

�h = � �� �h�� = � h (3.35)
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where the property� �� � �� = 4 has been used. It is noted that in a vacuum far away

from any source the transverse traceless gauge and trace reversed perturbation will

be equal:

�hT T
�� = hT T

�� (3.36)

By following the same steps in section 3.1, the trace reversed perturbation can be

introduced in the expression for the Ricci tensor (Equation 3.9) and the Ricci scalar

(Equation 3.6), in which the Lorentz gauge coordinate choice can be utilized to

produce the following linearized Einstein equation:

� �h�� = �
16�G

c4
T�� (3.37)

The generalized solution has the generic form [12]:

�h�� =
4�G
c4

Z T�� (x' ; t ret )
jx � yj

d3y (3.38)

where the integral is taken over all space, but its e�ects at positionx are only

taken at the retarded time, t ret = t � j x � x' j=c. The retarded time is the e�ect

that the gravitational �eld isn't instantaneously changed when the source,T�� (x' ; t),

undergoes some change [12]. The derivation of this solution is obtained through the

use of a Green function and its identity with the d'Alembertian operator� :

� xG(x � � y� ) = � 4(x � � y� ) (3.39)

where� x denotes the d'Alembertian with respect to coordinatesx � . Equation 3.37

can be expressed as:

� x
�h�� (x � ) = �

16�G
c4

T�� (x � )

= �
16�G

c4

Z
� xG(x � � y� )T�� (y� )d4y

(3.40)

Since� x only acts on thex � coordinates on the right hand side of the equation it

can be pulled out leaving:

�h�� (x � ) = �
16�G

c4

Z
G(x � � y� )T�� (y� )d4y (3.41)

The solutions to the Green function (Equation 3.40) have been worked out to produce

waves traveling forward or backward (retarded) in time. In the case of gravitational

waves only the retarded solution matters, as it explains the accumulated e�ect of
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signals to the past of the points under consideration. The retarded solution returns

Equation 3.38.

This integral now needs to be evaluated to �gure out the value of�h�� . Under

the assumption that the gravitational waves are being evaluated at a great distance

away from the size of the source Equation 3.38 reduces to:

�h�� =
4�G
rc4

Z
T�� (y; t ret )d3y (3.42)

where jx � yj has been replaced by r and pulled out, essentially implying that (r =

x) � y, which isn't being integrated over.

If the conversation of mass energy is employed then the right hand side of the

equation can be rewritten. It is known:

T��;� = 0 (3.43)

and from this:

T00;0 = � T0l;l (3.44)

Di�erentiating with respect to time, using the symmetry of T�� , and the commut-

ativity of partial derivatives gives:

T00;00 = � T0l;l 0 = � Tl0;0l (3.45)

The conservation of mass energy can again be used to give:

Tm0;0m = ( Tm0;0);m = � Tml;lm (3.46)

Substituing this into Equation 3.45:

(T00);00 = Tml;lm (3.47)

If Equation 3.47 is multiplied by xkx j :

(T00xkx j );00 = Tml;lm xkx j (3.48)

wherexkx j are taken inside the derivative because they don't depend on time, and

integrated by parts over all space makes the right hand side equal to:
Z

(Tml xkx j );ml d3x = Tml;m xkx j j �
Z

Tml;m (� k
l x j + � j

l xk)d3x (3.49)
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The �rst term on the right hand side vanishes because a closed system,Tlm , is being

evaluated at a far distance. Integrating by parts again:

(Tml xkx j );ml d3x = � (Tmk x j j + Tmj xk j) + 2
Z

Tjk d3x (3.50)

Ignoring surface terms again, leaves only the �nal term on the right. The integrated

Equation 3.48 is now reduced to:

2
Z

Tjk d3x =
Z @2

@t2
T00xkx j =

@2

@t2

Z
T00xkx j (3.51)

The term inside the integral on the far right is called the quadrupole moment tensor,

I jk , of the mass distribution of the source. This equation then becomes:

1
2

•I jk =
Z

Tjk d3x (3.52)

Finally, substituting this expression back into Equation 3.42 gives:

�hjk =
2�G
rc4

1
2

•I jk (3.53)

So the lowest order multipole contributing to gravitational waves is the quadrupole,

and only if the source has a time varying moment would it be expected to emit

gravitational waves [12]. This is equivalent to electromagnetic radiation only being

emitted by the change in dipole movement of the charge density.

Binary System

Consider a system of two (neutron) stars of approximately the same mass, in a

circular orbit around the x1 � x2 plane. For simplicity, the Newtonian approximation,

where each star has massM and the radius of orbit isR, the frequency of the orbital

motion is:

! =
2�
�

=
v
R

= (
GM
4R3

)1=2 (3.54)

At a time t, the two stars are at the positions:

(x1; x2; x3) = ( R cos(!t ); R sin(!t ); 0) and (� R cos(!t ); � R sin(!t ); 0) (3.55)

The basic de�nition for the momentum of this binary system will be:

I jk (t) = �
a
maxaj (t)xak (t) = 2 Mx j (t)xk(t) (3.56)
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where the compenents of the second momentI jk are:

I jk (t) = MR 2

0

B
B
B
B
B
@

1 + cos(2!t ) sin(2!t ) 0

sin(2!t ) 1 � cos(2!t ) 0

0 0 0

1

C
C
C
C
C
A

(3.57)

and hence:

•I jk (t) = � 4!MR 2

0

B
B
B
B
B
@

cos(2!t ) sin(2!t ) 0

sin(2!t ) � cos(2!t ) 0

0 0 0

1

C
C
C
C
C
A

(3.58)

and �nally, plugging this back into Equation 3.53, reverting to a 4� 4 form, will give

a transverse traceless perturbation for radiation in thex3 direction :

hjk (t; r ) =
8MGR 2! 2

c4r

0

B
B
B
B
B
B
B
B
@

0 0 0 0

0 � cos(2!t ) � sin(2!t ) 0

0 � sin(2!t ) cos(2!t ) 0

0 0 0 0

1

C
C
C
C
C
C
C
C
A

(3.59)
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Chapter 4

Detection of Gravitational Waves

4.1 Indirect Detection

Its clear that since the binary system emits radiation in the form of gravitational

waves that it will lose energy. This loss of energy must have observable consequences.

If the total energy of the binary system is given by:

E =
GM 2

4R
�

GM 2

2R
+ 2Mc2 = �

GM 2

4R
+ 2Mc2 (4.1)

where energy from rest masses has been included. As the system emits energyE,

R must also decrease (assumingM is una�ected). This system will spin up and

eventually the stars coalesce. The frequency of the emitted radiation is [2][25]:

L =
2
5

� GM
Rc2

� 5 c5

G
: (4.2)

As R decreases the frequency of radiation increases, and this is known as a chirp

[25]. This equation is more thoroughly derived in [2] and [25], but the frequency

of emission is found by solving for the energy density (T00) component of the �eld

equation in terms of the transverse traceless perturbation metric (Equation 3.59).

Both sides of the equation can then be integrated through a spherical surface of

radius r , which gives an expression for rate of energy loss, Equation 4.2.

A measurable quantity that is a result of a shrinking orbit, is the change in the

period of an orbit, from Equation 3.54:

� = 4� (
R3

GM
)1=2 / R3=2 (4.3)

as R changes� will also,
d�
�

=
3
2

dR
R

(4.4)
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from Equation 4.1dE=E = � dR=R so:

d�
�

= �
3
2

dE
E

(4.5)

The rate of change of the period is given byd�=dt, and from the equations above:

d�=dt
�

= �
3
2

dE=dt
E

= �
3
2

L
E

= �
12
5

G3M 3

R4c5
(4.6)

hence:
d�
dt

= �
48�
5

(
GM
Rc2

)5=2 (4.7)

If M = 1:4M � and R = 106km, then d�=dt = � 1:84 � 10� 13, in which this pre-

diction was veri�ed in 1974 by Russell Hulse and Joseph Taylor, who observed

the decrease in the period of the pulsar PSR 1913+16 in a binary system to be

d�=dt = � (2:422� 0:006)� 10� 12. Which is in agreement with the general relativ-

istic prediction (Equation 4.7 when adjusted for eccentricity) to an accuracy of 0.3%,

as seen in the �gure below [25].

Figure 4.1: The evidence that Binary Pulsar B1913+16 emits gravitational radiation.
As gravitational radiation carries energy away from the binary system, the orbit
decreases [32].

4.2 Direct Detection with Interferometry

In contrast to the indirect e�ect of gravitation wave radiation, its even more im-

portant to explore how they act on test bodies. An important realization to make

is that gravitational radiation is produced by the bulk motion of a large mass [2].
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In order to put this into context, consider the binary system metric perturbation in

Equation 3.59 and the frequency of Equation 3.54 to get an approximation of:

h =
2G2M 2

c4rR
(4.8)

where h is called the strain, which describes the spacetime distorting e�ects of the

gravitational wave. If the binary system consists of two black holes of 10 solar masses

each, separated by ten times their Schwarzchild radius, and at a distance of 100 Mpc,

then:

h � 10� 21 (4.9)

The hope of directly detecting the coalescence of a binary system would take an

instrument sensitive enough to measure a strain of order 10� 21 or less [2]. For

example, if there's a bar with a length of 10 m, the change of length would be 10� 20

m, that's approximately one one-hundred-thousandth the size of a nucleus [25]. It

takes a very sensitive instrument to detect such minute changes.

Michelson Interferometer

Figure 4.2: Michelson interferometer. [16]

Laser interferometers provide a way to overcome the di�culty of measuring the

minuscule perturbations. Interferometers work by merging together two or more

sources of light to create an interference pattern. This pattern can be measured and

analyzed to give insight on the object or phenomenon being studied.
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The interference pattern is a very simple concept. Light waves consists of electric

�elds. If two waves of the same frequency were to propagate in the same region of

space then the resultant electric �eld at any point in that region is the vector sum of

the electric �eld of each wave. If the phase di�erence �� between the two waves is

� � = 2�m; m = 0; � 1; � 2; � 3:::, their interaction is said to be in phase resulting

in constructive interference and a bright spot. If the phase di�erence between the

two waves is � � = � (2m +1) �; m = 0; 1; 2; 3:::, their interaction is said to be out

of phase resulting in destructive interference and a dark spot. Another key point to

make is that the phase di�erence can be characterized by wavelength� and optical

path di�erence � L by:

� � =
2�
�

� L (4.10)

The most basic interferometer set up is a Michelson interferometer, seen in Figure

4.2. The basic elements are a beam splitter, a monochromatic laser, and two mirrors.

Light enters from the left, E. It hits the beam splitter, which transmits and re
ects

half of the beam in two perpendicular paths,E1 = E2 = (1 =
p

2)Emich . These light

waves transverse the arms lengths,L1 and L2, where they are re
ected back by the

mirrors, with re
ectively r1 and r2, to recombine at the beam splitter to form the

�elds [5]:

Esymm =
1
2

E[r2 exp(� i2kL 2) + r1 exp(� i2kL 1)] (4.11)

and

Eanti =
1
2

Emich [r2 exp(� i2kL 2) � r1 exp(� i2kL 1)] (4.12)

where exp(� 2ikL ) is the phase shift after the re
ection, Esymm is the light going

back towards the laser andEanti is the light being outputted on the viewing screen.

With �L = 1
2(L1 + L2) and � L = L1 � L2, the e�ective re
ectively (symm part) and

transmissivity (anti part) for the Michelson interferometer can be written as [5]:

r =
Esymm

Emich
=

1
2

exp(� 2ik �L)[r2 exp(ik � L) + r1 exp(� ik � L)] (4.13)

and

t =
Eanti

Emich
=

1
2

exp(� 2ik �L)[r2 exp(ik � L) � r1 exp(� ik � L)] (4.14)
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if r1 = r2 = 1 (perfect mirrors), then [5]:

r = exp( � 2ik �L) cos(k� L) (4.15)

and

t = i exp(� 2ik �L) sin(k� L) (4.16)

If the arms are the same length thenjr j = 1 and t = 0, which means that there is

no light transmitted to the viewing screen. This type of precision is very di�cult to

achieve, so its more common to see an interference pattern on the viewing screen.

An example of this pattern can be seen in Figure 6.9a. The fringing e�ect is due

to the wavelike properties of light, or assuming that light is an expanding spherical

waveform.

At this point it's partially clear that an interferometer can be used to detect gravit-

ational waves. The intensity of the light measured by a photodiode on the viewing

screen depends on how in phase the two beams/�elds are,I / j Eanti j2 [5]. The strain

h is related to t, Equation 4.14, because if there is no gravitational wave present then

� L = 0, but when a wave passes the strain causes the length of each arm to change

(� L 6= 0), see Subsection 3.2, which then allows light to pass to the photodiode and

produce a photocurrent. Strain is then related to the change in length by �L=L = h.

4.3 LIGO

At its heart, LIGO is a well aligned large scale Michelson interferometer where

L = 4km. However, it's a little more complicated than that. For example, the

length L is still not sensitive enough to detect micro changes caused by the strain,

the intensity of light has a large range of uncertainty because the photons of light

that make up the beam are randomly distributed, and the laser doesn't emit perfectly

coherent light at a single phase [19].
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Fabry Perot Cavity

Simplistically, there are two additional aspects to the Michelson interferometer that

help negate those complications. The �rst and main addition are the use of Fabry

Perot cavities, shown in Figure 4.3.

Figure 4.3: LIGO includes two Fabry-Perit cavities in each arm [19]

An additional mirror is placed in each arm near the beam splitter, where the distance

of this cavity is 4 km. After entering the cavity from the beam splitter, the laser in

each arm bounces between the two mirrors about 300 times before being combined

with the other beam [33]. These cavities help increase the distance traveled by each

laser to 1200 km, which makes the instrument more sensitive. This addition also

boosts the power of the beam. Consider the cavity in Figure 4.4:

Figure 4.4: Optical con�guration of Fabry Perot cavity [31]

Light from the beam splitter is labeled asE inc . From this diagram the equations for

the electric �elds Ecir and E tran are [31]:

Ecir = t1E inc + r1r2 exp(� 2ikL )Ecir

=
t1

1 � r1r2 exp(� 2ikL )
E inc

(4.17)
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and

E tran = t2 exp(� 2ikL )Ecir

=
t1t2 exp(� 2ikL )

1 � r1r2 exp(� 2ikL )
E inc

(4.18)

when 2kL = n(2� ), ie, L = n�= 2, and r2 � 1, Ecir is then maximized andE tran = 0

which creates a resonating circulating �eld, and through Poissonian statistics, a more

intense beam reduces the random light distribution 
uctuations [31]. The re
ective

�eld that gets sent back to the beam splitter can now be computed:

Eref = r1E inc � t1r2 exp(� 2ikL )Ecir ;res

=

"
r1 � exp(� 2ikL )

1 � r1 exp(� 2ikL )

#

E inc

(4.19)

The e�ective re
ectively of the Fabry Perot cavity is de�ned as r fp = Eref =Einc , and

if the cavity, in resonanceL res, is perturbed by a small amount � L [5]:

r fp(L res + � L) ' r fp(L res) +
dr fp

dL
jL = L res � L

= � 1 + (2ik � L)

"
exp(� 2ikL )(1 � r 2

1)
(1 � r1 exp(� 2ikL ))2

#

L = L res

= � 1 � (2ik � L)
1 + r1

1 � r1

= � exp
�

2ik
� 1 + r1

1 � r1

�

� L
�

(4.20)

This shows that a small change in the cavity length �L will cause a large change

in the phase of this re
ected light due to the arm cavity gainG, which is hidden in

the parenthesis in the �nal line of Equation 4.20. For LIGO,G � 130 [31], which

means that the Fabry Perot Cavities makes LIGO 130 times more sensitive than if it

only transversed the arm once [5]. This con�guration also only allows a very narrow

range of frequencies where power can be built up, limiting the incoherent property

of light.

Fabry Perot Michelson interferometer

Although the length of the arms have been treated as equal, LIGO actually has them

at an imbalance [5],L1 and L2. The addition of the cavities also changes the e�ective
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re
ection and transmission coe�cients of the Michelson interferometer in Equations

4.13 and 4.14 [5]:

r fpmi (L1; L2) =
Esymm

Emich

=
1
2

exp(� 2ik �L)[r fp (L2) exp(ik � L) + r fp (L1) exp(� ik � L)]
(4.21)

and

t fpmi (L1; L2) =
Eanti

Emich

=
1
2

exp(� 2ik �L)[r fp (L2) exp(ik � L) � r fp (L1) exp(� ik � L)]
(4.22)

When the light is at resonance in both respective cavities:

r fpmi ; res = � exp(� 2ik �L) cos(k� L) (4.23)

and

t fpmi ; res = � i exp(� 2ik �L) sin(k� L) (4.24)

When they are slightly displaced from resonance:

r fpmi (L1; res + � L1; L2; res + � L2) =

r fpmi ; res +
1
2

exp(� 2ik �L)G[2ik � L2 exp(� 2ik �L)+

2ik � L1 exp(� 2ik �L)]

(4.25)

and

t fpmi (L1; res + � L1; L2; res + � L2) =

t fpmi ; res +
1
2

exp(� 2ik �L)G[2ik � L2 exp(� 2ik �L)�

2ik � L1 exp(� 2ik �L)]

(4.26)

These re
ective and transmission coe�cients are thus the result of the compound

connection between the Michelson interferometer and Fabry Perot cavities.

Power Recycling

The next addition is the use of a power recycling mirror (prm). This is used to further

increase the light power and increase sensitivity. The mirror is placed between the

laser and beam splitter, which e�ectively creates another cavity between it and the

compound mirror of the Fabry Perot Michelson interferometer,r fpmi and t fpmi . In
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this set, E inc is now entering the power recycling cavity,Eref is the light re
ecting

o� of the mirror and back to the laser, andEmich and Esymm are the same ideas from

Equation 4.11. The following relations then hold [5]:

Emich = tprm E inc � rprm Esymm (4.27)

Eref = rprm E inc + tprm Esymm (4.28)

Esymm = r fpmi Emich (4.29)

Eanti = t fpmi Emich (4.30)

It can then be shown that:

Emich

E inc
=

tprm

1 + rprm r fpmi
(4.31)

The e�ective re
ectively and transmissivity are then:

rprfpmi =
Eref

E inc
=

rprm + r fpmi

1 + rprm r fpmi
(4.32)

and

tprfpmi =
Eanti

E inc
=

rprm t fpmi

1 + rprm r fpmi
(4.33)

To achieve a power build up within the recycling cavity,Emich =Einc needs to be

maximized. The gain is then de�ned as [5]:

Gprm =
�
�
�
�
Emich

E inc

�
�
�
�

2

(4.34)

where for LIGO, G � 50.

Signal Readout

The antisymmetric port of the power recycled Fabry Perot Michelson interferometer

is dark when the light is in resonance. When there is a signal present the photodiode

measures the intensity of light, which produces a photocurrent [5]:

I / j Eanti j2 (4.35)

where:

Eanti = E incG1=2
prm t fpmi (L1; L2) (4.36)
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For the choice of�L and � L, wheret fpmi ; res = 0, exp(� 2k �L) = 1, and cos(k� L) = 1,

Equation 4.26 becomes:

t fpmi (L1; res + � L1; L2; res + � L2) = � iGk � L0 (4.37)

and

Eanti = � iE incG1=2
prm Gk� L0 (4.38)

where � L0 = � L1 � � L2. This is the displacement of the arms from their resonant

length. The photocurrent can then be expressed as:

I = I 0Gprm G2(k� L0)2 (4.39)

whereI 0 is the power of the laser light from its original source,jE inc j2. The change

in length by a gravitational wave will then produce a detectable signal.

Extraction of Signal

However, there is a lot of noise that is measured by LIGO. These are due to funda-

mentals noises, like quantum and Brownian noise, but also from seismic and elec-

tronic noise [18]. These noises drown out the signal caused by the gravitational wave,

which makes it very di�cult to pull the signal out. In order to pull signals from the

noisy data, LIGO has created templates of the types of sources that are expected to

produce gravitational waves which can then be compared to the experimental data.

The models that are created are built by solving the Einstein �eld equation through

numerical simulations. There are a large number of solutions of interest, and the

production of them on supercomputers is expensive [18], which makes it not possible

to simulate every solution. Instead, a small number of models are made where freely

adjustable parameters that links the models are used to match all available numerical

simulations.

To get a feel of how much data analysis and template matching it takes, its

important to understand the sheer amount of data that's produced by LIGO. The

nominal sampling rate of the data is 16.384 kHz, which produces 16,384 samples

per second [18]. Its then resampled at 2048 kHz, thus reducing the amount of data

by 8, where its then compared to approximately 250,00 template waveforms, which
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produces around 500 million samples of signal to noise ration (SNR) for every second

of data collected [18]. The signal extraction process then passes through various

thresholds of SNR �lters to quickly reduce the amount of data. This data is then

veri�ed with the partner instrument to further reduces the sample.

The log likelihood ratio (LLR) for each candidate is then calculated by taking

the log of the ratio of the probability that a true signal will produce a candidate

with some exact set of properties to the probability that noise alone would produce

a candidate with the exact same properties [18]. The larger the LLR the stronger

the candidate. When a real signal is present, the data is usually surrounded by a

large number of candidates. A sort of Monte Carlo method is then used to reduce

the sample to have only very high LLRs. In the most recent run this reduced the

amount to 10,000 [18]. Each candidate is then modeled as a trial in the noise. This

allows the determination of how many candidates would be expected above some

certain LLR value [18]. The criterion that LIGO uses to determine if the signal is

real is that if it takes 1 million repetitions of the same experiment to obtain the

results just due to chance and noise, then the signal is real and a gravitational wave

has been detected [18].
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Chapter 5

Related Work
Up to this point there are a couple factors that are essential in bringing gravitational

wave astronomy into the undergraduate classroom. These include: the e�ective

procedures of a successful classroom demonstration, the understanding of what a

gravitational wave is and how it warps spacetime, the associated strain, and the

process it takes to detect them. These factors can be scaled to various age ranges,

with each range becoming increasingly more mathematically complex. There are a

few resources that are already published, which will be analyzed to address their age

range, relative time frame for conducting the activity, e�ectiveness in addressing the

factors essential for gravitational wave astronomy, costs, and how well they follow

the procedures of a classroom demonstration.

5.1 LIGOs Build an Interferometer

LIGO currently has two "build your own interferometer" projects, one with glue

[15], the other with magnets [9]. The only functional di�erence between the two

being that the magnetic project is designed to be taken apart and rebuilt by new

sets of students, compared to permanent setup of the glue one. It is also implied

in the introduction paragraph of [9] that the overview and learning objectives can

be found in [15]. Beyond that, the magnetic one copies the student handout of [15]

directly.

At the top of paper [15], it states that the target age group is from 9th to 12th

graders. The learning objectives then proceeded to only cover the skill it takes to

build a precision device, the basic explanation of a Michelson interferometer, and the

relationship between moving a mirror and the fringing patterns. Both papers then

dive into the construction of each device, each model costing roughly $150, which is

30



primarily due to the use of expensive optics (beam splitter, mirror mounts, mirrors).

It was stated that expensive optics were needed to have quality fringing patterns.

Both papers then explain various demonstrations to do: create vibrations, heat the

air on one arm, or heat the surface of one arm. They then conclude with a handout

that states that the use of outside resources is necessary in order to answer questions

about interferometers. Two questions for example were [15]:

1. Use the concept of interference to explain how the interferometer works.

2. Interferometers can be used to measure movements that are much, much smal-

ler that you would measure with tools such as rulers. Using your experience of

pulling on the mirror, explain how this is possible.

Its obvious that these "build your own interferometers" are geared towards a high

school classroom setting because no mathematical theory was introduced or tested

and a handout that might take about an hour to complete wouldn't be a reasonable

use of time in a college classroom setting. These papers also don't sell the demon-

stration device as an aspect that can be used to supplement mathematical theory.

This automatically rules out analysis that can be taken on its use as an e�ective

demonstration device. These papers also fail to mention anywhere that the Michel-

son interferometer is the foundational element to gravitational wave detection, and

only ask students to search for what a Michelson interferometer is used for in real

life.

The basis of the work in this thesis imitates these devices, however these devices

are fairly expensive, aren't formatted to support mathematical theory in the form

of a demonstration, and, surprisingly, doesn't mention any use on how its used to

detect gravitational waves.

5.2 Gravitational Wave Open Science Center

The LIGO and Virgo collaboration has a very sophisticated website, the Gravita-

tional Wave Open Science Center [13], that provides access to their data and hands

on tutorials on how to use software tools to analyze the data sets.
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On the website it clearly states that the tutorials are geared towards graduate

students or senior scientists that wish to learn about this data and software in order

to conduct research in the �eld of gravitational-wave astronomy [13]. It also states

that there are approximately 5 hours of lectures and roughly 10-30 hours of data

analysis programming exercises, where the prerequisites are a working knowledge

of python, Fourier transforms, the fundamentals of what a gravitational wave is in

terms of the strain, the theory behind templates or models that can be tested against

the experimental data, and how the device measures the signal. The tutorials very

nicely provide access to the 25 cases of a gravitational wave signals, 11 of which are

con�rmed, and essentially walks the learner through each process of �rst looking at

the signal, second, the creation of a template, third, template matching, and �nally

the parameter estimation of compact object mergers.

This project is not geared towards early undergraduates. Although it's free and

would be nice to show to undergraduate students what working with actual data is

like, this project assumes a wide range of knowledge. This project provides the idea

to include a more sensor driven approach to the demonstration device in order to

give a live data stream, that might be used to quickly calculate factors associated

with gravitational wave astronomy.

5.3 Penn State - Searching for Gravitational Waves

in Noisy Data

Pennsylvania State University has created two hands on on classroom activities,

that are used in conjunction with the video titled "Einstein's Messengers" [11]. This

is a 20 minute long video that explains what gravitational waves are and the various

challenges on how they are detected. The video is very basic and only requires an

understanding of what a black hole and laser are.

One of these classroom activities is called "Searching for Gravitational Waves in

Noisy Data" [27]. This is a website that contains: an introduction about LIGO's

data, learning objectives, connections to science themes and concepts, connections
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to the video, a materials list, a student handout, and a teaching guide. This activity

includes a set of four simulated noisy data sets, and 24 gravitational wave templates.

The students are then asked to complete a worksheet where they �nd the correct

wave form template for the noisy data and then answer questions related to the

activity.

This activity wasn't speci�c for any age group, but its simplicity makes it suitable

for an hour to an hour and half classroom activity for late elementary to middle

school students (not including the movie). The great part to this activity is that it

ensures that the students understand what gravitational waves are and the di�erent

signals they produce, and how the activity is a representation of what gravitational

wave astronomers are doing. Its structure as a hands on classroom activity helps

promotes active engagement.

5.4 Penn State - Hands-on Gravitational Wave

Astronomy

The other activity is called "Hands-on Gravitational Wave Astronomy: Extraction

of Astrophysical Information from Simulated Signals" [14]. The website contains the

exact same topics as before, except the introduction is more geared towards what

gravitational waves are and how they change in a coalescing binary system.

The activity passes out four di�erent data plots of strain vs time for four di�erent

time frames before coalescing (far, the total last second, at 1 second, and at 0.1

second). It then has the students measure the period, frequency, and strain. It then

gives the students the formulas for the orbital period of the system at any time in

terms of the mass of the system [14]:

Porb(t) =
�

P3=8
0 �

8
3

kt
� 3=8

(5.1)

where

k =
96
5c5

(2� )3=5(GM tot )5=3 (5.2)
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and

M tot = ( M 1M 2)3=5(M 1M 2)� 1=5 (5.3)

They state that for a circular system the period of orbit is twice the period of orbit

of the gravitational wave Porb (t) = 2 Pgw(t) [14]. It then has the students calculate

the orbital separation with Kepler's third law, the tangential velocity, and �nally

the total mass from Equation 5.3, givenM 1 and M 2. The activity then gives the

gravitational waveform formula for a circular binary system ash(t) = A(t)cos(� (t)).

where A(t) is de�ned as the time varying amplitude and� (t) is the phase of the

wave:

A(t) =
2(GM tot )5=3

c4r

 
�

Pgw(t)

! 2=3

(5.4)

It then has the students calculate the distancer from the amplitude when the system

is far from coalescence, by just looking at the height on the graph and the fact that

its period is Pgw(0) = 2 P0, and P0 is from the very �rst part. It then has the student

calculate the constantk given the time and period Equation 5.1, and then the total

mass from Equation 5.2.

Mathematically, this free worksheet only requires an understanding of algebra,

cosine waves, and fractional exponents. This math level is typical of early to middle

high school students, and could take an hour to an hour and half to complete (not

including the movie). This isn't typical of a college level classroom activity because

each question tells the student what formulas to use, which becomes an non-intuitive

algebra problem. The worksheet also just throws formulas onto the paper without

any derivation, but on the basis that the students at least know what the formulas

are associated with from the movie. This activity does a good job at showing what

signals are produced as a binary system coalesces, and how that can lead to the

determination of various parameters.

Both of these activities rely on the movie as the \demonstratio" of gravitational

astronomy, which isn't engaging and is mathematically lacking for a early under-

graduate student, but serves to show how templates are used to extract signal, and

then how these templates then tell us about the physical parameters of the system,

which could be a good idea to use in the classroom activity.

34



Chapter 6

Construction of Michelson Interfer-

ometer

Figure 6.1: Interferometer in Action

The construction of this interferometer (Fig 6.1) is relatively cheap (115$) compared

to the ones discussed in section 5.1. The lower cost is due to the use of 3D printed

parts and a laser diode. As before, to obtain decent looking fringes the use of

expensive extremely high quality optical pieces for the two end mirrors and the

beam splitter were used.

6.1 Materials

1. Edmund Optics - Enhanced Aluminum Mirror 25 mm - 2 x $20.50

2. Edmund Optics - 50:50 Plate Beam Splitter 25 mm - 1 x $42.00
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3. MakerBeam T-Slot Aluminum Beams 4 Pack - 300 x 10 x 10 mm - 1 x $12.56

4. GeeBat Laser Dot Diode - 10 pack, 650 nm, 5 mW - 1 x $5.29

5. Arduino - Elegoo UNO R3 - 1 x $11.98

6. M2.5x6 or M3x6 Screws* - 10 x $0.00

7. M2.5x20 or M3x20 Screws* and Associated Bolts - 6 x $0.00

8. 3D Printed Connector/Beam Splitter Mount - Part �le can be found in Ap-

pendix A: 3D Parts - 1 x $0.00

9. 3D Printed Mirror Mount - Part �le can be found in Appendix A: 3D Parts -

2 x $0.00

10. 3D Printed Laser Diode Mount - Part �le can be found in Appendix A: 3D

Parts - 1 x $0.00

* Either Screw diameter will work, but the M3 will take a little more e�ort to screw

into the hole. The holes in the CAD �le are 2.75 mm but the 3D printer that was

used in this build was a Makerbot Replciator+ which doesn't have the capacity for

this precision, but its production was suitable for M2.5. In this build, M2.5x8 screws

were used which limited the use of the screws in the Connector/Beam Splitter Mount,

which was not as secure, but still functional. Screws longer than M2.5x20 can be

used.

6.2 Construction Procedures

SAFETY WARNING: Take precaution when working with the laser and arduino.

Avoid eye contact with the laser when building and using the interferometer.

Steps:

1. In order to initiate the process all parts must be 3D printed (Fig 6.2). The

location of these �les can be found in Appendix A. These parts were printed

with a 0.1 mm layer height, 10% in�ll, and 2 shells. A lot of post production
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work is needed to ensure all parts are clean, smooth, and are able to house the

necessary components.Note: It is recommended to test the mirror mounts

with an object of similar size to ensure proper �tment, otherwise one might

risk scratching the surface.

Figure 6.2: 3D parts after post production work

2. Attach each t-slot aluminum beams to the connector/beam splitter with 8

M2.5X6 screws (Fig 6.3).Note : This construction uses 4 M2.5X8 screws.

Figure 6.3: T-slot aluminum beams attached to connector/beam splitter mount

3. Feed a laser diode through the laser diode mount and attach it on the end of one

of the aluminum beams with two M2.5x6 screws (Fig 6.4). The distance from

the end is arbitrary, but in this model its approximately 1 1/2 inch. Attach the

red/hot wire to the 13 port on the digital side of arduino and the blue/ground

wire to the GND port next to it. Plug the arduino into a computer, and the
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code to send to the arduino to power the laser can be found in Appendix A:

Code. Note: It's highly recommended to test each laser to �nd the laser with

the least amount of defects. This is done by powering it on, unfocusing it by

unscrewing the cap some, and seeing which laser has the least amount of spots,

seen in �gure 6.9b and 6.9a, or by purchasing higher quality optics.

Figure 6.4: Laser diode mount attached and wired

4. Take 6 small springs from the laser diodes by unscrewing the cap entirely. The

front to back order list on how to set up the mirror mount is seen in �gure

6.5a. First take the mirror and place into the holder (fourth from left in Fig

6.5a). Take the cover (second from left in Fig 6.5a) and place that on top, and

then screw the M2.5x20 screws through. With this object in place 
ip it over

and place a spring on each prong. Feed this into the �nal piece and screw the

bolts onto the ends, as seen in �gure 6.5b.
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