Unit 4 QUADRILATERALS A polygon with 4 sides

In this unit we will extensively study the properties of **quadrilaterals**, any figure with exactly four sides.

Lesson 1 Objective: We will begin unit 4 by first studying a very broad category known as a **trapezoid**.

U4 L1 Trapezoids and Parallelograms

There are many special types of quadrilaterals, including parallelograms, rectangles, squares, and kites (yes even that is a shape).

TRAPEZOID

Any quadrilateral with at least one pair of parallel sides. This means it could have either one pair of parallel sides or two pairs of parallel sides.

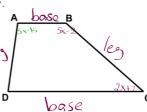
Exercise #1: In the diagram below, *ABCD* is a trapezoid with $\overline{AB} \parallel \overline{DC}$

(a) What must be true of angle pair $\angle A$ and $\angle D$ and angle pair $\angle B$

Supplementary

(b) If $m\angle A = 5x - 15$, $m\angle B = 5x - 2$, and $m\angle C = 2x + 7$, then find the

degree measure of $\angle D$. Show the work you used.



$$5x-2+2x+7=180^{\circ}$$

$$7x + 5 = 180$$

 $7x = 175$
 $x = 25$

$$m2A = 5(25) - 15$$

= 125 - 15

$$\left(\text{m} \angle \Omega = 70^{\circ} \right)$$

Trapezoid is a very broad category of figure in geometry. Since they have only a single defining property (i.e. at least one pair of parallel sides), they do not give rise to many extra properties besides the one noted in Exercise #1. Still, it is important to know their basic definition should they arise in proof.

Exercise #2: In the diagram shown below it is known that $\angle 1 \cong \angle 2$. Explain why quadrilateral *RTUS* must be a trapezoid.

> = alternate interior xs Prove RT 11 SU.

> > A guad w/@ least 1 pair of 11 sides is trapezoid

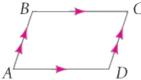
PARALLELOGRAM Any quadrilateral with both pairs of opposite sides being parallel. Exercise #3: Explain why all parallelograms are also trapezoid Exercise #4: Given that ABCD is a parallelogram, answer the following questions:

LBELC LAELB LAELD LDE/C

(b) Prove below that $m\angle A = m\angle C$ (and thus opposite angles of a parallelogram are equal). Supplements the Same are $\angle C$

Consecutive Angles of a Parallelogram Are Supplementary

(based on what we know about parallel lines cut by a transversal!)

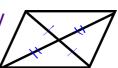


Angles of a polygon that share a side are consecutive (Same Sides angles. A parallelogram has opposite sides parallel. Its consecutive angles are same-side interior angles so they are supplementary. In $\square ABCD$, consecutive angles B and C are supplementary, as are consecutive angles C and D.

<u>Definition of Parallelogram</u>: A quadrilateral with both pairs of opposite sides parallel.

Properties of a Parallelogram

- Both pairs of opposite sides are
- Both pairs of opposite angles are
- Consecutive angles are supplementary
 - Diagonals bisect each other -



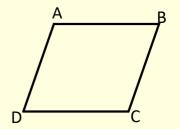
All of these properties can be proven using transformations & Congruent Triangles!

Here's another proof of the property

• Both pairs of opposite angles are

Given: □ABCD

Prove: $\angle A \cong \angle C$, $\angle B \cong \angle D$



	Statement	Reason
1.		1.
2.		2.
3.		3.

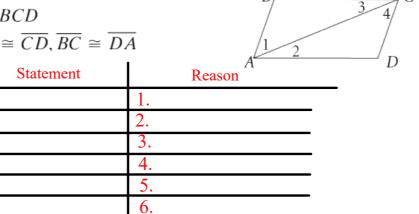
Let's prove this properties now!

• Both pairs of opposite sides are

7. 8.

Given: $\Box ABCD$

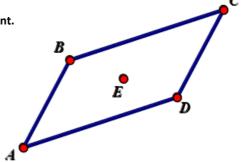
Prove: $\overline{AB} \cong \overline{CD}, \overline{BC} \cong \overline{DA}$



Proof by Symmetry (Informal – Transformational Approach)

Given: Parallelogram ABCD

Prove that opposite sides of a parallelogram are congruent.



A parallelogram has 180 degree rotational symmetry. This means that if I rotate it 180 degrees about the center point E, then

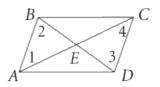
Rotations preserve

Here's another proof of the property

• Diagonals bisect each other

Given: $\square ABCD$

Prove: \overline{AC} and \overline{BD} bisect each other at E.



Statements	Reasons
1. ABCD is a parallelogram.	1. Given

Now that this has been proven you may use it in a proof!!

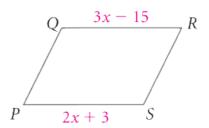
Using these property algebraically:

1) Find the value of y in $\square EFGH$. Then find $m \angle E$, $m \angle G$, $m \angle F$, and $m \angle H$.

$$F \underbrace{(3y+37)^{\circ}}_{G}G$$

$$E \underbrace{(6y+4)^{\circ}}_{H}H$$

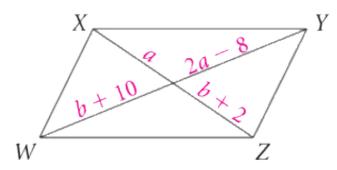
2) Find the value of x in $\square PQRS$. Then find QR and PS.



Using these property algebraically:

3) Find $m \angle S$ in $\square RSTW$.

4) Find the values of a and b.



Homework

U4 L1

Definitions	Special Quadrilaterals	
A parallelogram pairs of opposite	is a quadrilateral with both sides parallel.	1
A rhombus is a	parallelogram with four congruent sides.	£ + F
A <mark>rectangle</mark> is a	parallelogram with four right angles.	
A square is a pa four right angles.	rallelogram with four congruent sides and	
	ilateral with two pairs of adjacent sides opposite sides congruent.	
parallel sides. The	quadrilateral with exactly one pair of sisosceles trapezoid at the right is a nonparallel opposite sides are congruent.	