uil Number Sense contest

Shortcuts for the More Experienced

Larry White

UIL High School Number Sense Test Problem Sequencing
===
Problems 41-50 ***

1) Laws of Exponents
2) Right Triangle Problems
3) Coordinate Geometry Problems
4) Regular Polygon Problems
5) Inequalities

Problems $51-60$ ***

1) Applications of Theorems from Geometry
2) Direct and Inverse Variation
3) Sequences \& Series (Finite \& Infinite)

Problems $51-70$ ***

1) Complex Numbers
2) Logarithms \& Logarithmic Equations
3) Permutations \& Combinations
4) Probability
5) Conics
6) Binomial Theorem (Expansion)

Problems $61-70$ ***

1) Volume \& Surface Area
2) Greatest Integer
3) Application of Remainder Theorem
4) Trigonometry
5) Determinants
6) Matrices
7) Vectors
8) Composite Functions

Problems 71-80

1) Value of Domain of a Given Function
2) Bases Involving Decimal Fractions
3) Polar/Rectangular Coordinates
4) Modular Arithmetic
5) Limits
6) Derivative
7) Slopes of Tangent Lines
8) Horizontal \& Vertical Asymptotes
9) Determining Critical Values
10) Maximum \& Minimum Problems
11) Definite Integration
*** A type of problem from a particular section could appear later in the test. Example: A base problem could appear as problem \#55, but should not appear earlier than problem \#21.

Special Numbers -- What Pops into Your Mind?

1728

1331
1.732...
3.141...
2.718...
1.618

720
0.08333...
0.0625

1,1,2,3,5,8, ...

1,3,6,10,15,21, ...
7,24,25

Notes:
page 2

Mental Math -- How fast can you work these?

1. 6.25% of $48=$
2. $144 \div 0.08333 \ldots=$
3. $6!\times 5!=$
4. Truncate $\sqrt{7}$ to a whole number
5. The $10^{\text {th }}$ term of $1,1,2,3,5,8, \ldots$ is
6. The $9^{\text {th }}$ triangular number is

Notes:

Math Magic (Number Sense Tricks)

A. Memorize the first 35 squares, the first 15 cubes, and the square roots of $2,3,5,6,7,8, \& 10$.
B. Know the "One-sies" equivalents.
(Fractions-Decimals-Percents)
C. $\frac{12}{17}+\frac{17}{12}=$? (Is it a trick? Is it magic? See proof)

\[

\]

Any questions on any of these?

(41) $16_{7}+25_{7}+34_{7}=$ \qquad
(42) $\sqrt{16 \times 18+1}=$ \qquad
(43) $96 \times 0.3125=$ \qquad
(44) The leg opposite the 45° angle in a right triangle is $\sqrt{18}$. The hypotenuse is \qquad
(45) The sum of the product of the roots taken two at a time of $3 x^{3}+4 x^{2}-17 x-6=0$ is \qquad
(46) If $x y=-1$ and $x+y=5$ then $x^{3}+y^{3}=$ \qquad
(47) If $9^{(x)}=2187$ then $9^{(x-1)}=$ \qquad
(48) Find k, so that 917 k 55 is the smallest 6-digit number divisible by 11. \qquad
(49) The slope of a line containing the points $(3,2)$ and $(-4,5)$ is \qquad
*(50) $41 \frac{2}{3} \%$ of $3690-58.7=$ \qquad
(51) If $\log _{x} 108-\log _{x} 4=3$ then $x=$ \qquad
(52) Let $(10+5 i)(8-4 i)=a+b i$. Find $a+b$. \qquad
(53) If A is $\mathbf{2 4 \%}$ more than B and B is $\mathbf{2 5 \%}$ more than C, then A is \qquad \% more than C.
(54) $48^{2}+76^{2}=$ \qquad
(55) $11^{4} \div 14$ has a remainder of \qquad
(56) If $\frac{x}{8}$ has a remainder of 7 and $\frac{y}{8}$ has a remainder of 5 then $\frac{x y}{8}$ has a remainder of \qquad
(57) $422 \times 311=$ \qquad
(58) How many different sets of 5 books can be made from 8 different books? \qquad
(59) The Cartesian product of the sets $\{f, i, v, e\}$ and
$\{f, \mathbf{o}, \mathrm{u}, \mathrm{r}\}$ contain how many ordered pairs? \qquad
*(60) $8^{4} \times 6^{3} \div 4^{2}=$ \qquad

Any questions on any of these?

(61) $405 \times 111=$ \qquad
(62) $\left(234_{7}+432_{7}\right) \div 6$ has a remainder of \qquad
(63) $\sin \left(\arccos \left(\frac{24}{25}\right)\right)=$ \qquad
(64) A bag contains 12 white and k yellow golf balls. Find k if the probability of randomly drawing a yellow ball is $\mathbf{2 5 \%}$.
(65) If $g(x)=3 x^{2}-4 x+2$, then $g(g(1))=$ \qquad
(66) $1+3+8+21+\ldots+144=$ \qquad
(67) $A=\left[\begin{array}{rr}-1 & 3 \\ 5 & 7\end{array}\right]$ and $B=\left[\begin{array}{rr}7 & 3 \\ 5 & -1\end{array}\right] \cdot|A B|=$ \qquad
(68) The Greatest Integer Function is written as $f(x)=[x]$. Find $\left[\tan \frac{2 \pi}{3}\right]$.
(69) $\sin \left(\frac{5 \pi}{6}\right)-\cos \left(\frac{4 \pi}{3}\right)+\tan (3 \pi)=$ \qquad
*(70) $14 \times 24 \times 34 \times 44=$ \qquad
(71) $6!\div 5!+4!\div 3!-2!\div 1!=$ \qquad
(72) $\sqrt{103041}=$ \qquad
(73) $\frac{1}{6}+\frac{1}{15}+\frac{1}{20}+\frac{1}{24}=$ \qquad
(74) The next term of $2,3,4,6,9,14, \ldots$ is \qquad
(75) The horizontal asymptote for $f(x)=\frac{3-4 x}{x-5}$
is $y=$ \qquad
(76) If $f(x)=3 x^{2}-4 x+2$, then $f^{\prime}(-1)=$
(77) If the rectangular coordinates of the polar coordinates $\left(2, \frac{\pi}{4}\right)$ are (x, y), then $x \times y=$ \qquad
(78) $\int_{2}^{4}(\mathrm{x}+3) d x=$ \qquad
(79) Change $\frac{11}{36}$ to a base 6 decimal. \qquad
*(80) $428.571 \times 349=$ \qquad

