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Abstract. Automatic protocol reverse engineering has recently received
significant attention due to its importance to many security applications.
However, previous methods are all limited in analyzing only plain-text
communications wherein the exchanged messages are not encrypted. In
this paper, we propose ReFormat, a system that aims at deriving the
message format even when the message is encrypted. Our approach is
based on the observation that an encrypted input message will typically
go through two phases: message decryption and normal protocol process-
ing. These two phases can be differentiated because the corresponding
instructions are significantly different. Further, with the help of data
lifetime analysis of run-time buffers, we can pinpoint the memory loca-
tions that contain the decrypted message generated from the first phase
and are later accessed in the second phase. We have developed a proto-
type and evaluated it with several real-world protocols. Our experiments
show that ReFormat can accurately identify decrypted message buffers
and then reveal the associated message structure.
Keywords: Security, Reverse Engineering, Network Protocols, Data Life-
time Analysis, Encryption

1 Introduction

With great potentials to many security applications, protocol reverse engineering
has recently received significant attention. For example, network-based firewalls
or filters [1, 2] require the knowledge of protocol specifications to understand the
context of a particular network communication session. Similarly, fuzz testing
[3] of unknown protocols can utilize the same knowledge to improve the fuzzing
process by generating interesting inputs more efficiently.

Traditionally, protocol reverse engineering was mostly a manual process that
is time-consuming and error-prone. To alleviate this situation, a number of sys-
tems [4–9] have been developed to allow for automatic protocol reverse engineer-
ing. The Protocol Informatics [4] project and Discoverer [6] take a network-based
approach and locate field boundaries from a large amount of network traces by
leveraging the sequence alignment algorithm that has been used in bioinformatics
for pattern discovery. Other systems, such as Polyglot [5], the work [9] by Won-
dracek et al., AutoFormat [8], Tupni [7], and Prospex [10], take a program-based



approach to find out the message format. While different in various regards, these
program-based systems all operate using the same insight: how a program parses
and processes a message reveals rich information about the message format.

Despite all the advances made by these systems, there still exists one major
common limitation: they are unable to analyze encrypted messages. Particu-
larly, network-based approaches are unable to identify the format of encrypted
messages because the collected network traces are in the form of cipher-text,
which completely destroys message field boundaries and thus unlikely exhibits
any common patterns at the network packet level. Existing program-based ap-
proaches are also unable to achieve their goals on encrypted messages because
it is not the input message whose format we try to discover, but the decrypted
one that is generated at run-time. Unfortunately, none of the existing program-
based approaches is able to accurately locate the run-time memory buffers that
contain the decrypted plain-text message. From another perspective, we need
to point out that, once the decrypted message is determined, we can still apply
the very same insight behind these program-based approaches to extract the
corresponding protocol format, i.e., by analyzing how the plain-text message is
parsed in the normal protocol processing phase.

In this paper, we propose ReFormat, a program-based system that can ac-
curately identify the run-time buffers that contain the decrypted message. Our
approach is based on the observation that an encrypted input message will typ-
ically go through two main processing phases: message decryption and normal
protocol processing. And the instructions used for decrypting an encrypted mes-
sage are significantly different from those used for processing a normal unen-
crypted protocol message. As such, we can identify and separate the message
decryption phase from the normal protocol processing phase based on the dis-
tribution of executed instructions. Further, we observe that decrypted messages
are first generated from the message decryption phase and then processed in the
normal protocol processing phase. Based on this observation, we can accordingly
perform data lifetime analysis of run-time buffers that are generated from the
message decryption phase to pinpoint the memory buffers that contain the de-
crypted message. Once the decrypted message is identified, we can take one of
previous approaches [5, 7–9] to analyze how it is being handled to discover its
format.

We have implemented a prototype of ReFormat and evaluated it with four
protocols that encrypt (or encode) their network communications: HTTPS, IRC,
MIME, and one unknown protocol used by a real-world malware. For all these
test cases, ReFormat can pinpoint with high accuracy the run-time buffers that
contain the decrypted message, and then identify its format.

The rest of the paper is organized as follows. In Section 2, we describe the
problem scope as well as associated challenges. We present the system design
and key techniques for identifying run-time buffers of the decrypted message
in Section 3. In Section 4, we show the evaluation results. After discussing the
related work in Section 5, we examine limitations of ReFormat and suggest
possible improvement in Section 6. Finally, we conclude this paper in Section 7.



2 Problem Overview

To achieve the goal of automatic protocol reverse engineering, an important
step is to derive the protocol message structure. As mentioned earlier, existing
approaches have explored various solutions to uncover the structure of plain-
text messages. However, they cannot be applied to understand the structure of
encrypted messages. As a concrete example, Figure 1 shows an encrypted web
request message that is captured in a typical HTTPS session. Specifically, Figure
1(a) shows the raw data of the web request message and Figure 1(b) illustrates
the message fields decoded by Wireshark. These figures show that the request
message is encapsulated in the Transport Layer Security (TLS) record layer and
fragmented into two TLS encryption records. However, what we want to reverse
engineer is the HTTP request (shown in Figure 1(b)) encrypted in this message.
Recall that all previous protocol reverse engineering methods can only recover
the format of plain-text message. One gap in recovering the format of encrypted
message is how to recover the plain-text message from the cipher-text message.
The goal of ReFormat is to fill this gap so that all previous program-based
approaches can handle encrypted messages as well as plain-text ones.

(a) An encrypted web request message
captured by TCPDUMP

(b) The protocol format identified by Wire-
shark

Fig. 1. An encrypted web request message and its protocol format identified by Wire-
shark

To fill the gap, there are several challenges: First, the memory buffers that
contain the decrypted message are not known a priori as they can be dynamically
allocated from the heap or the stack. This is different from the previous cases
with plain-text messages where the memory buffers of the input message can be
easily identified and monitored — as they are typically associated with particular
system calls such as sys read. Second, even worse, the target buffers can be buried
in hundreds or thousands of other memory buffers inside the same memory space
of a running process. Intuitively, we can reduce the number of target buffers by
using taint analysis [11, 12] to locate only those tainted buffers from the input
messages. Our experience indicates that it is reasonably effective but we still
observe tens or even hundreds of tainted buffers (Table 2 in Section 4). In other
words, new heuristics still need to be developed to further prune tainted buffers.
Finally, the decrypted memory buffers may only exist for a short period of time
as they could be discarded or reclaimed back for other purposes right after the
processing.



3 System Design

3.1 Design Overview

Given an encrypted message and an application that can decrypt and process
it, our system aims to output the content and format of the decrypted message.
Since an encrypted input message will be first decrypted and then processed,
there is a need to delineate these two main phases, i.e., message decryption and
normal protocol processing. To achieve that, our approach is based on an intu-
itive observation: The instruction distribution of the message decryption phase
and the normal protocol processing phase are significantly different. Existing
cryptography algorithms such as Triple-DES, AES and RC4 typically contain
a large amount of arithmetic and bitwise operations and they will be applied
to all the bytes in the original messages. As an example, Figure 2 shows a code
snippet of the function AES decrypt() from a real-world AES-based decryption
implementation in the OpenSSL cryptographic library. When decrypting one
block of an input message, it involves at least nine rounds of calculation and
each round contains a large amount of arithmetic and bitwise operations such as
logical right shift and xor. In addition, this particular function will be applied
to every block of the encrypted message. In comparison, in the normal protocol
processing phase, we are likely to observe significantly less arithmetic and bitwise
instructions. To validate this observation, we have profiled the execution of rep-
resentative decryption algorithms that are implemented in the OpenSSL library
and compare the results with a number of existing applications that handle un-
encrypted messages of known protocols (or formats). The comparison (shown in
Table 1) demonstrates that there exists a significant difference in the percentage
of arithmetic and bitwise operations between message decryption and normal
protocol processing. On one hand, more than 80% of instructions are arithmetic
and bitwise operations when an encrypted input message is being decrypted.
On the other hand, less than 25% of instructions are arithmetic and bitwise
operations when a normal plain-text protocol message is being processed. This
empirically confirms our intuitive observation.

    /* round 2: */
    s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ 
         Td2[(t2 >>  8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[ 8];
    ...
    /* round 3: */
 
    ...
}

void AES_decrypt(...) 
{
    ...

    /* round 1: */
    t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff]  ^ 
         Td2[(s2 >>  8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[ 4];
    t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff]  ^ 
         Td2[(s3 >>  8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[ 5];
    t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff]  ^ 
         Td2[(s0 >>  8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[ 6];
    t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff]  ^ 
         Td2[(s1 >>  8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[ 7];

Fig. 2. Code snippet from the OpenSSL-based AES decryption implementation

To achieve our goal, our system takes four key steps as shown in Figure 3: (1)
Execution Monitor: We first monitor the application execution and collect an



Table 1. The percentages of arithmetic and bitwise operations in typical implementa-
tions of existing decryption algorithms and normal programs that handle known plain-
text protocol messages (†: As discussed in Section 3.2, we only count those instructions
that operate on the input message.)

Encryption/Message Type Message Size (B) Arithmetic & Bitwise Instructions† Total Instructions† Percentage

DES 2K 68921 69112 99.72%

CAST 2K 18917 21225 89.13%

RC4 2K 2709 3042 89.05%

AES 2K 6892 8475 81.32%

HTTP request 107 429 3227 13.29%

FTP port 28 421 5898 7.14%

DNS response 46 223 1687 13.22%

RPC bind 164 186 2342 7.94%

JPEG 3224 1112 12898 8.62%

BMP 3126 229 956 23.95%

execution trace recording how the application decrypts and processes an input
message. (2) Phase Profiler: We then analyze the execution trace to identify the
two execution phases: message decryption and normal protocol processing. (3)
Data Lifetime Analyzer: After that, we perform data lifetime analysis to locate
buffers that contain the decrypted message. (4) Format Analyzer: Finally, we
conduct dynamic data flow analysis on the buffers located in the previous step
to uncover the format of the decrypted message. Since the last step has been
extensively studied in previous work [5, 7, 9, 8], we focus on the first three steps
in this paper. In our prototype, we use AutoFormat [8] as our format analyzer
but other systems [5, 7, 9] should be equally applicable for the same purpose.

Data Lifetime AnalyzerPhase ProfilerExecution Monitor Format Analyzer

Fig. 3. ReFormat System Architecture

In the rest of this section, we will describe the execution monitor, phase
profiler, and data lifetime analyzer in detail. To help illustrate our approach, we
will use a running example. In the running example, an shttpd web server [13]
processes an encrypted HTTP request issued by wget, an HTTP client. The raw
data of the encrypted request message is shown in Figure 1(a).

3.2 Execution Monitor

Similar to other program-based approaches, by monitoring a program’s execu-
tion, ReFormat aims to record how an input message is being processed by the
program. In particular, by intercepting system calls that are used to read from
and write to file descriptors and/or network sockets, ReFormat taints the input
message and applies the well-known taint analysis technique to keep track of the
instructions that access tainted memory space. By dynamically instrumenting
the program execution, the taint information can be properly propagated and a
trace of the instructions that operate on tainted data will be collected. We high-
light that the collected trace contains only the instructions that operate on the
marked data, rather than all executed instructions. Inside the trace, we record



the address of the instruction and the current call stack when the instruction
occurs. Note that the run-time call stack information is important for ReFormat.
As to be shown in the following subsection, such context information is used in
the phase profiler to determine the transition point between the message decryp-
tion phase and the normal protocol processing phase. In our system, to acquire
the run-time call stack, we mainly traverse the current stack frames and retrieve
the caller/callee information from the procedure-related activation record on the
stack. If the debug information is embedded in the binary, we will derive the re-
lated function names. This works well for the program or library built with stack
frame pointer support. For a binary compiled without stack frames, we can still
build a shadow call stack by instrumenting the call/return instructions. Similar
to previous work, we assume the boundaries of network messages can be identi-
fied, and therefore an execution trace contains the processing of a single input
message.

3.3 Phase Profiler

After collecting an execution trace, we divide it into different execution phases in
the phase profiler. An application usually processes an encrypted input message
and responds with an encrypted output message in four phases: (1) decrypt the
input message, (2) process the decrypted message, (3) generate the output mes-
sage, (4) encrypt the output message. Since our goal is to identify the decrypted
message (and then uncover its format), we only need to recognize the bound-
ary between the first two phases. For simplicity of presentation, we refer to the
first phase as the “message decryption” phase, and refer to the last three phases
aggregately as the “normal protocol processing” phase. To divide an execution
trace into these two phases, we search for the transition point between them,
i.e., the last instruction executed in the message decryption phase.

We perform the search in two steps. Our first step is to use the cumulative
percentage of arithmetic and bitwise instructions to narrow down the search
range where the transition point is located. Here, the cumulative percentage
of arithmetic and bitwise instructions at the n-th instruction is defined to be
the percentage of arithmetic and bitwise instructions in the first n instructions.
Note that an application may still use a large amount of arithmetic and bitwise
operations to encrypt the output message at the end of an execution trace.
However, the cumulative percentage during encryption is likely to be lower than
the percentage in the message decryption phase. The reason is that, before the
output message is encrypted, the application, when processing the decrypted
message and then generating a plain-text output message, will likely introduce
a significant amount of instructions that are neither arithmetic nor bitwise. As
such, we expect the cumulative percentage to reach its peak value in the message
decryption phase and to drop to its lowest value in the normal protocol processing
phase. In other words, the transition point must be between the instruction with
the maximum cumulative percentage and the one with the minimum percentage.
After identifying these two instructions in the execution trace, we refer to them
as the maximum instruction and the minimum instruction.



After identifying the maximum and minimum instructions based on the cu-
mulative percentage, our second step is to compute the percentage of arithmetic
and bitwise instructions for each function fragment between them. Here, a func-
tion fragment is defined to contain contiguous instructions that belong to the
same function and are executed in the same context (or under the same run-
time stack frame). For instance, if a parent function A calls a child function
B and there is no function called in B, we will have three function fragments,
FA1, FB, and FA2, where FA1 contains all instructions in A executed before B
is called and FA2 contains all instructions in A executed after B returns. An
important property is that each instruction in the execution trace belongs to
one and only one function fragment. For the maximum and minimum instruc-
tions identified previously, we refer to their function fragments as the maximum
function fragment and the minimum function fragment.

We point out that our second step uses the fragment-wise percentage instead
of the cumulative percentage because the function fragments for actual message
decryption are likely to have high fragment-wise percentage. Therefore we iden-
tify the last function fragment whose percentage is above a given threshold as
the transition function. The last instruction executed in this fragment will be
used as the transition point. In our prototype, based on the percentages of arith-
metic and bitwise operations shown in Table 1, we set the threshold to be 50%4.
As to be shown in Section 4, this threshold works well in all test cases.

Meanwhile, we anticipate that, in certain applications, there may not ex-
ist a function boundary between the message decryption phase and the normal
protocol processing phase. For example, some protocol implementation may put
message decryption and processing into a single big function. In this case, we can
alternatively compute the percentage on a sliding window to determine the tran-
sition point. Specifically, we can have a sliding window on each instruction and
then treat each sliding window as a function fragment to compute the fragment-
wise percentage of arithmetic and bitwise instructions. However, since we do not
encounter such cases in the evaluation, we have not explored the selection of the
sliding window size in this paper.

In our running example, the cumulative percentage of arithmetic and bitwise
instructions is shown in Figure 4. The X-axis is the fragments in the tempo-
ral order, and the Y-axis is the cumulative percentage. At the very beginning,
there is a steady increase of the cumulative percentage of arithmetic and bitwise
instructions until it reaches the peak value at an instruction inside the func-
tion fragment sha1 block asm data order. After that, the cumulative percentage
keeps decreasing until it reaches the lowest value at an instruction inside the
function fragment HMAC Init ex. In Figure 5 we show the fragment-wise per-
centage of arithmetic and bitwise instructions for function fragment executed
between sha1 block asm data order and HMAC Init ex. Given our threshold, we
identify the last invocation of sha1 block asm data order as the transition func-
tion, which is consistent with our manual analysis of the shttpd source code.
Also, in this running example, we found that more than 99% of arithmetic in-

4 In fact, any value between 25% and 80% works the same way in our evaluation.
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Fig. 4. Phase Profiler (Step I): Calculating the cumulative percentage of arithmetic
and bitwise operations in the collected shttpd-based execution trace
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Fig. 5. Phase Profiler (Step II): Calculating the fragment-wise percentage of arithmetic
and bitwise operations within the search range

structions and more than 90% of bitwise instructions actually occurred in the
message decryption phase.

3.4 Data Lifetime Analyzer

After determining the message decryption phase and the normal protocol pro-
cessing phase, our next step is to locate the memory buffers that contain the
decrypted message. The basic idea is to identify the buffers (data) passed from
the message decryption phase to the normal protocol processing phase. Specif-
ically, the buffers must be written in the former phase and read in the latter
phase. To identify such buffers, we analyze the lifetime of memory buffers.

Before describing our algorithm, we first define the liveness of a memory
buffer. Note that a buffer is a contiguous memory block, and we only care about
tainted buffers. When an application starts, we mark all buffers pre-allocated for
global variables as live. Then, in the message decryption phase, after a buffer
is allocated in the heap or the stack, we mark it as live; after a live buffer is
deallocated from the heap or the stack (i.e., when a stack frame is popped), we
clear the “live” mark associated with the buffer and it becomes invalid. After the
application enters the normal protocol processing phase, we handle the liveness
of memory buffers differently. Specifically, after a buffer is deallocated or accessed
(either read or write operations), it becomes invalid for the following reasons: A
deallocated buffer will become invalidated right after the deallocation operation.



   41748f8  97: GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive....

   417e0b5 133: .....GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive
                ......m...1.q..D.%....u............
   4197bc0  20: ......d...6T../.b.f.
   4197c58  20: .@].l...Y...7T...!.k
   4197cf0  20: O.#..31.r.^......T.
   4197d0c  20: .".Rxvj.Ns.1...‘".~W
   4197d88  20: ......d...6T../.b.f.
   4197e20  20: .@].l...Y...7T...!.k
   4197eb8  20: .m...1..D..q..%..u..
   4197ee0  52: TEGaH / /PTT.0.1esU.gA-r:tneegW .1/t2.01cA..tpec/* :
  bee82cfc  20: ..k..w....b......J.K
  bee82de0  16: ...V.31..|....$.
  bee832f0  20: ......\...}.....m...
  bee83348  56: ....TEGaH / /PTT.0.1esU.gA-r:tneegW .1/t2.01cA..tpec/* :
  bee833cc  20: m........CG.q..AX.G.
  bee83408  20: .....\...}.........m
  bee834d0  20: 1S....VY....-.M....T
  bee835dc  20: ..m...1.q..D.%....u.
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(a) The write set in the message decryption phase

41748f8 97: GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive....

4197f50 97: GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive....

(b) The read set in the normal protocol processing phase

Fig. 6. Data Lifetime Analyzer: Obtaining the write set and read set

If a buffer is being written to, it will be marked invalid as the buffer’s content is
not from the message decryption phase any more. For read operations, we only
need to care about the first read operation and will not consider further reads.

Based on the liveness definition, we identify the memory buffers that contain
the decrypted message in three steps. First, we search for all the buffers that were
written to in the message decryption phase and are still live when the application
enters the normal protocol processing phase. We refer to this set of buffers as
the write set. Second, we search for all the buffers that are live when they are
being first read from in the normal protocol processing phase. We refer to this
set of buffers as the read set. Finally, we identify the buffers in the intersection
of the two sets as those that contain the decrypted message.

If the intersection of the write and read sets has only a single buffer, this
buffer will be used as the decrypted input message for the format analysis. If
multiple buffers are found in the intersection, we first sort them based on the
temporal order of the first read operations on them. Then, we treat the sorted
buffers as a virtual single buffer that contains the whole decrypted message.

In our running example, the write and read sets we identified are shown in
Figure 6. After intersecting the two sets, we find only one common buffer that
starts at 0x041748f8 with the following content: GET/HTTP/1.0..
UserAgent : Wget/1.10.2..Accept : ∗/∗..Host : localhost..Connection : KeepAlive....
Based on the knowledge of the HTTP protocol, we know that it is the buffer
that contains the decrypted message. After identifying the decrypted message
buffer, we then apply the AutoFormat tool as the format analyzer and the result
is shown in Figure 7.

4 Implementation and Evaluation

We have implemented a ReFormat prototype based on the latest release of Val-
grind (version 3.2.3). Our execution monitor is built on top of some features
supported in Valgrind such as instruction translation, memory marking, and



ROOT

GET / HTTP/1.0\r\nUser−Agent: Wget/1.10.2\r\n

Accept: */*\r\nHost: localhost\r\nConnection: Keep−Alive\r\n
\r\n

GET / HTTP/1.0\r\n User−Agent: Wget/1.10.2\r\n Accept: */*\r\n Host: localhost\r\n Connection: Keep−Alive\r\n

GET  /  HTTP/ 1.0 \r\n User−Agent: Wget/1.10.2 \r\n Accept: */* \r\n Host: localhost \r\n Connection: Keep−Alive \r\n

Fig. 7. Format Analyzer: Revealing the HTTPS request message format

propagation capabilities. Our phase profiler and data lifetime analyzer are stan-
dalone python programs. Our format analyzer uses the AutoFormat tool [8].
We note that our system is not tightly coupled with Valgrind and AutoFormat
and can be implemented using other binary instrumentation tools such as Pin
and QEMU as well as other reverse engineering tools such as Polyglot [5], the
system [9] by Wondracek et al., and Tupni [7]. Excluding the AutoFormat code,
our ReFormat prototype has 4626 lines of C and 1392 lines of Python.

In our evaluation, we performed two sets of experiments. The first set of
experiments involves input messages from three known protocols, HTTPS, IRC,
and MIME. The second set of experiments was conducted on an unknown proto-
col used by agobot [14], a real-world malware. Table 2 shows the list of protocols
we tested and the programs we used. These programs are obtained either directly
from the standard OS distribution or by compiling the source code with the de-
fault configuration. For each experiment, Table 2 lists the decrypted (plain-text)
message size, the total number of tainted buffers, and the size of write set, read
set and their intersection. Notice the number of tainted buffers is larger than
the total size of both the write set and the read set. This is because new tainted
buffers generated in normal protocol processing phase are not included in the
write set or the read set, but are counted in the tainted buffer set. In each ex-
periment, we ran our prototype to obtain the decrypted message and its format.
The format accuracy is dependent on two factors: the accuracy of the decrypted
message and the effectiveness of the format analyzer tool. Since we uses Aut-
oFormat in our prototype and its effectiveness was evaluated in [8], we focus
on the accuracy of the decrypted message in our experiments. By accuracy, we
measure whether the buffers we found after the data lifetime analysis contains
the complete decrypted input message and nothing else. For completeness, we
show the formats reverse engineered by AutoFormat. In all our experiments,
ReFormat accurately identified the decrypted message. In the rest of this sec-
tion, we describe our experimental results for IRC and agobot in detail. Due to
space constraint, we omit the detailed results for HTTPS and MIME. Interested
readers are referred to our technical report[15].

4.1 Experiments with Known Protocols

IRC: In this experiment, we evaluated ReFormat with a secure IRC server.
Specifically, we monitored the execution of the latest ircd-hybrid server[16] (ver-
sion: 7.2.3), and ran xchat, an IRC client, from another physical machine to



Table 2. Summary of experiments

Protocol Application Msg Type Size(B) Tainted set write set read set write set ∩ read set

Linux Wget 97 40 18 2 1
SHTTPD Linux Firefox 362 38 5 4 1

(version: 1.38) Windows IE 283 83 5 3 1

Google Chrome 431 112 6 3 1
HTTPS Linux Wget 102 57 13 9 1

Apache Linux Firefox 475 51 6 18 1
(version: 2.0.63) Windows IE 286 91 19 11 1

Google Chrome 431 96 6 13 1

JOIN message 16 59 8 2 1
IRC IRCD-Hybrid MODE message 16 42 8 2 1

(version: 7.2.3) WHO message 15 53 7 2 1

Metamail BASE64-encoded
MIME (version: 2.7) email message 1141 31 20 3 1

bot.status message 61 172 9 33 1

Unknown Agobot bot.execute message 68 144 10 36 1
(version: 3-0.2.1) bot.sysinfo message 62 174 9 33 1

establish a secure connection. After the connection is made, we executed the
IRC command /join #channel1 to log into a specific channel. This command
triggered three IRC messages to be sent: JOIN #channel1\r\n, MODE

#channel1\r\n, and WHO #channel1\r\n. Instead of showing our anal-
ysis on each message separately, we combine the traces and show the phase
profile analysis results collectively in Figure 8. For each message, the cumulative
percentage of arithmetic and bitwise instructions reaches the highest value when
the function sh1 block asm data order is executed and drops to the lowest value
when the function ssl3 read n is executed. For each message, we show at the
bottom the decrypted message identified by ReFormat. It is clear that ReFormat
identified all three decrypted messages accurately.
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Fig. 8. The cumulative percentage of arithmetic and bitwise operations in the collected
Ircd-Hybrid-based execution trace

Interestingly, for each message shown in Figure 8, there are two peaks (marked
as 1, and 2 in the figure) in the cumulative percentage of arithmetic and bitwise
operations. Further investigation reveals that an encrypted message such as the
one corresponding to WHO #channel1\r\n is encapsulated into two 32-byte
SSL record layers and each SSL record layer will be independently decrypted
before being combined together for normal protocol processing. In other words,
for each encrypted message, it will go through two rounds of decryption, hence



leading to two peak values in the corresponding portion of the curve in Figure
8.

4.2 Experiments with Unknown Protocols

We now present our second set of experiments to show that ReFormat is able to
uncover the format of encrypted protocol messages used by a real world bot pro-
gram. Specifically, we monitored the execution of a bot software called agobot [14]
and this particular bot contains its own (proprietary) SSL implementation. When
the bot runs, it persistently attempts to connect to a pre-specified IRC server
and log into a hard-coded channel. To confine potential damage, we performed
a controlled experiment where the bot’s connection request was redirected to
a local IRC server under our control. In addition, we used the xchat program
to connect to the IRC server, join the secure channel, and issue commands to
the bot. In the meantime, we collected the execution trace of the agobot. We
learned about the channel name and control commands from our own manual
analysis and other reverse engineering efforts [14]. We want to point out that
such manual efforts are simply for our controlled experiments and ReFormat is
used to demonstrate the capability in automatically uncovering the command
format.

By analyzing the execution trace, we found that the agobot received 15 mes-
sages in total: two messages for the SSL handshake, seven messages for estab-
lishing the secure connection to the IRC server and logging into a specified IRC
channel, and six messages for the commands received from our own botmas-
ter. In our experiment, we focused on a single command message: .bot.execute
/bin/ps.

Figure 9 shows the cumulative percentage of arithmetic and bitwise in-
structions. According to the cumulative percentage, we identified the functions
sha1 block asm data order and CBot::HandleCommand as the maximum and
minimum functions. Further, based on the fragment-wise percentage of arith-
metic and bit instructions, we identified that sha1 block asm data order is the
transition function. The write set and the read set are shown in Figure 10(a)
and 10(b), respectively. The intersection of the two sets has only one buffer at
the address 0x04285b8d. We find its content is the same as the command issued
by our xchat program, We then applied AutoFormat to uncover the format of
this decrypted message and the result is shown in Figure 11.

5 Related Work

In this section, we describe the related work and compare it with ReFormat.
Note that the execution monitor in ReFormat leverages generic techniques of
dynamic taint analysis, which has been widely investigated. In this section, we
omit detailed discussion on this area. Interested readers are referred to a number
of recent efforts on taint analysis [11, 12].

As mentioned earlier, automatic protocol reverse engineering has recently re-
ceived significant attention due to its importance to many security applications.
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Fig. 9. The cumulative percentage of arithmetic and bitwise operations in the collected
trace when agobot handles the .bot.execute /bin/ps command

   4285b88  5: ....‘
   4285b8d 96: :BotMstr!~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps...8.C@...M.3....2...2..B...
   4b6edcc 20: _.[........._..._.[.
   429aeb0 16: ........_..._.[.
   42c50d8 60: :F..MtoB!rtstoB~rtsM271@.61..732RP 1SMVIA# Genog.: t.tobcexe
   4b6ed24 60: :F..MtoB!rtstoB~rtsM271@.61..732RP 1SMVIA# Genog.: t.tobcexe
   42c50d4 16: ....4...f...;.&9
   4b6ed20 16: ....4...f...;.&9
   42c50b8 20: C.8....@.3.M2...2...
   4b6ee90 20: .8.C@...M.3....2...2

(a) The write set in the message decryption phase

   ... ...
   4285b8d 68: :BotMstr!~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps
   42c51c8 32: :BotMstr!~BotMstr@172.16.237.1 
   ... ...
   42c6228  9: BotMstr!~
   42c6230 21: ~BotMstr@172.16.237.1
   42c6440 59: ~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps
   ... ...
   42c677d 15: :.bot.execute /
   42c68c8 12: 172.16.237.1
   42c6908 12: 172.16.237.1
   42c6948 32: :BotMstr!~BotMstr@172.16.237.1 P
   ... ...
   42c6fc8 14: .bot.execute /
   42c70b8 14: .bot.execute /
   4b6afca 68: :BotMstr!~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

(b) The read set in the normal protocol processing phase

Fig. 10. Locating the decrypted message for the .bot.execute command

ROOT

:BotMstr ! ~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

~BotMstr @ 172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

~ BotMstr 172.16.237.1 PRIVMSG # Agonet :.bot.execute /bin/ps

172.16.237.1  PRIVMSG  # : .bot.execute  /bin/ps

Fig. 11. Revealing the .bot.execute command message format



The Protocol Informatics (PI) project [4] and Discoverer [6] aim at extract-
ing protocol format from collected network traces. They have the advantage of
conveniently collecting network traces when a parsing program is unavailable.
However, they become less effective in the face of encrypted network traffic.
Unlike the PI and Discoverer projects, several systems such as Polyglot [5], the
system in [9], AutoFormat [8], and Tupni [7] share the key insight that how a pro-
gram parses and processes a message reveals rich information about the message
format. Based on this insight, they reverse engineer input message formats by
using dynamic data flow analysis to understand how a program consumes an in-
put message. Prospex [10] makes a step further to uncover protocol specification.
In comparison, these systems are mainly designed to work with plain-text input
messages. ReFormat complements these systems by providing an effective scheme
to discern the protocol processing phase from the message decryption phase and
then pinpoint the run-time memory buffers that contain the decrypted message.
And naturally, the above program-based systems can be integrated in ReFormat
to reverse engineer the format of the decrypted message.

In addition, there has been related work that studies reverse engineering
for specific applications such as application-level replay. For example, Role-
Player [17] and ScriptGen [18] replay a recorded network protocol session with
another entity by identifying and updating certain input fields that are em-
bedded in the recorded session. None of these systems can handle encrypted
application-level communications. Protocol analyzers such as Wireshark have
the capability of properly formatting a protocol message, but they require prior
knowledge about those protocols and are of less use when analyzing unknown or
encrypted protocols.

ReFormat relies on another general technique, i.e., data lifetime analysis, to
locate the decrypted memory buffers. Along with dynamic taint analysis, this
technique has been proposed in another different problem context [11, 19] that
aims to detect potential leakage of sensitive data such as passwords and social
security numbers in the memory. ReFormat differs from them by focusing on the
identification of the run-time memory buffers of the decrypted message.

6 Limitations and Future Work

In this section, we discuss the limitations in ReFormat and suggest possible
improvements for future work.

First, ReFormat relies on the observation that the instruction distribution
for message decryption is significantly different from normal protocol processing.
While this observation holds true for many applications as we have shown in
previous sections, it may not be the case when the normal protocol processing
would be essentially doing some intensive decryption-like operations. In other
words, when the processing of a message content involves significant arithmetic
and bitwise operations, our system may not work properly. One possible way to
solve these problems is to uncover other characteristics of the message decryption
phase and use such characteristics to differentiate it from the normal protocol
processing phase.



Second, ReFormat is designed to handle benign programs and malware that
do not intentionally obfuscate their executions to thwart program analysis. In
other words, the analysis of ReFormat can be potentially evaded if a program de-
liberately introduces redundant instructions to manipulate the distribution, e.g.,
embedding unnecessary arithmetic or bitwise operations in normal protocol pro-
cessing or injecting unnecessary non-arithmetic or non-bitwise instructions into
message decryption. How to make ReFormat applicable to obfuscated programs
still remains a technical challenge.

Third, ReFormat assumes an application first decrypts an encrypted mes-
sage and then processes the decrypted message. If an application does not follow
this assumption, e.g., it decrypts part of the message and processes it before
decrypting and processing the rest, ReFormat may not identify the whole de-
crypted message correctly. To handle such applications, we would need to divide
an execution trace into multiple decryption and processing phases. We leave this
to future work.

Finally, ReFormat analyzes one input message at a time and does not cor-
relate multiple messages in the same protocol session. Extending ReFormat to
further reconstruct the entire protocol state machine is part of our future work.

7 Conclusion

We have presented ReFormat, a system that enables existing automatic protocol
reverse engineering tools to handle encrypted messages. ReFormat is based on
the insight that the instructions used for message decryption is substantially dif-
ferent from those for normal protocol processing. By analyzing the percentage of
arithmetic and bitwise instructions, ReFormat can discern the message decryp-
tion phase and the normal protocol phase. Furthermore, with the insight that the
decrypted message is generated in the message decryption phase and handled in
the normal protocol processing phase, ReFormat can analyze the data lifetime
of run-time buffers to accurately pinpoint the memory buffers that contain the
decrypted message. We have implemented a prototype of ReFormat and evalu-
ated it with a variety of protocol messages from real-world (known or unknown)
protocols. Our experimental results show that ReFormat achieves high accuracy
in locating the decrypted message buffers and extracting the related message
structure.
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