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Foreword

I first got to know Fabrizio when he became our lead developer a few years ago. It was
quickly apparent that he was one of those rare people who combine rigorous technical
expertise with a genuine care for the people around him and a true passion to mentor and
teach. Whether it was designing a system, pairing to write code, doing code reviews, or
even organizing team card games at lunch, Fab was always thinking not only about the best
way to do the job, but also about how to make sure that the entire team had the skills and
motivation to do their best.

You'll meet the same wise and caring guide in this book. Every chapter, every example,
every explanation has been carefully thought out, driven by a desire to impart the best and
most accurate understanding of the technology, and to do it with kindness. Fab takes you
under his wing to teach you both Python's syntax and its best practices.

I'm also impressed with the scope of this book. Python has grown and evolved over the
years, and it now spans an enormous ecosystem, being used for web development, routine
data handling, and ETL, and increasingly for data science. If you are new to the Python
ecosystem, it's often hard to know what to study to achieve your goals. In this book, you
will find useful examples exposing you to many different uses of Python, which will help
guide you as you move through the breadth that Python offers.

I hope you will enjoy learning Python and become a member of our global community. I'm
proud to have been asked to write this, but above all, I'm pleased that Fab will be your
guide.

Naomi Ceder

Python Software Foundation Fellow
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Preface

When [ started writing the first edition of this book, I knew very little about what was
expected. Gradually, I learned how to convert each topic into a story. I wanted to talk about
Python by offering useful, simple, easy-to-grasp examples, but, at the same time, I wanted
to pour my own experience into the pages, anything I've learned over the years that I
thought would be valuable for the reader—something to think about, reflect upon, and
hopefully assimilate. Readers may disagree and come up with a different way of doing
things, but hopefully a better way.

I wanted this book to not just be about the language but about programming. The art of
programming, in fact, comprises many aspects, and language is just one of them.

Another crucial aspect of programming is independence. The ability to unblock yourself
when you hit a wall and don't know what to do to solve the problem you're facing. There is
no book that can teach it, so I thought, instead of trying to teach that aspect, I will try and
train the reader in it. Therefore, I left comments, questions, and remarks scattered
throughout the whole book, hoping to inspire the reader.  hoped that they would take the
time to browse the Web or the official documentation, to dig deeper, learn more, and
discover the pleasure of finding things out by themselves.

Finally, I wanted to write a book that, even in its presentation, would be slightly different.
So, I decided, with my editor, to write the first part in a theoretical way, presenting topics
that would describe the characteristics of Python, and to have a second part made up of
various real-life projects, to show the reader how much can be achieved with this language.

With all these goals in mind, I then had to face the hardest challenge: take all the content I
wanted to write and make it fit in the amount of pages that were allowed. It has been
tough, and sacrifices were made.

My efforts have been rewarded though: to this day, after almost 3 years, I still receive
lovely messages from readers, every now and then, who thank me and tell me things like
your book has empowered me. To me, it is the most beautiful compliment. I know that the
language might change and pass, but I have managed to share some of my knowledge with
the reader, and that piece of knowledge will stick with them.



Preface

And now, I have written the second edition of this book, and this time, I had a little more
space. So I decided to add a chapter about IO, which was desperately needed, and I even
had the opportunity to add two more chapters, one about secrets and one about concurrent
execution. The latter is definitely the most challenging chapter in the whole book, and its
purpose is that of stimulating the reader to reach a level where they will be able to easily
digest the code in it and understand its concepts.

I have kept all the original chapters, except for the last one that was slightly redundant.
They have all been refreshed and updated to the latest version of Python, which is 3.7 at the
time of writing.

When I look at this book, I see a much more mature product. There are more chapters, and
the content has been reorganized to better fit the narrative, but the soul of the book is still
there. The main and most important point, empowering the reader, is still very much intact.

I hope that this edition will be even more successful than the previous one, and that it will
help the readers become great programmers. I hope to help them develop critical thinking,
great skills, and the ability to adapt over time, thanks to the solid foundation they have
acquired from the book.

Who this book is for

Python is the most popular introductory teaching language in the top computer science
universities in the US, so if you are new to software development, or if you have little
experience and would like to start off on the right foot, then this language and this book are
what you need. Its amazing design and portability will help you to become productive
regardless of the environment you choose to work with.

If you have already worked with Python or any other language, this book can still be useful
to you, both as a reference to Python's fundamentals, and for providing a wide range of
considerations and suggestions collected over two decades of experience.

What this book covers

Chapter 1, A Gentle Introduction to Python, introduces you to fundamental programming
concepts. It guides you through getting Python up and running on your computer and
introduces you to some of its constructs.

[2]
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Chapter 2, Built-in Data Types, introduces you to Python built-in data types. Python has a
very rich set of native data types, and this chapter will give you a description and a short
example for each of them.

Chapter 3, Iterating and Making Decisions, teaches you how to control the flow of your code
by inspecting conditions, applying logic, and performing loops.

Chapter 4, Functions, the Building Blocks of Code, teaches you how to write functions.
Functions are the keys to reusing code, to reducing debugging time, and, in general, to
writing better code.

Chapter 5, Saving Time and Memory, introduces you to the functional aspects of Python
programming. This chapter teaches you how to write comprehensions and generators,
which are powerful tools that you can use to speed up your code and save memory.

Chapter 6, OOP, Decorators, and Iterators, teaches you the basics of object-oriented
programming with Python. It shows you the key concepts and all the potentials of this
paradigm. It also shows you one of the most beloved characteristics of Python: decorators.
Finally, it also covers the concept of iterators.

Chapter 7, Files and Data Persistence, teaches you how to deal with files, streams, data
interchange formats, and databases, among other things.

Chapter 8, Testing, Profiling, and Dealing with Exceptions, teaches you how to make your
code more robust, fast, and stable using techniques such as testing and profiling. It also
formally defines the concept of exceptions.

Chapter 9, Cryptography and Tokens, touches upon the concepts of security, hashes,
encryption, and tokens, which are part of day-to-day programming at present.

Chapter 10, Concurrent Execution, is a challenging chapter that describes how to do many
things at the same time. It provides an introduction to the theoretical aspects of this subject
and then presents three nice exercises that are developed with different techniques, thereby
enabling the reader to understand the differences between the paradigms presented.

Chapter 11, Debugging and Troubleshooting, shows you the main methods for debugging
your code and some examples on how to apply them.

Chapter 12, GUIs and Scripts, guides you through an example from two different points of
view. They are at opposite ends of the spectrum: one implementation is a script, and
another one is a proper graphical user interface application.

[3]
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Chapter 13, Data Science, introduces a few key concepts and a very special tool, the Jupyter
Notebook.

Chapter 14, Web Development, introduces the fundamentals of web development and
delivers a project using the Django web framework. The example will be based on regular
expressions.

To get the most out of this book

You are encouraged to follow the examples in this book. In order to do so, you will need a
computer, an internet connection, and a browser. The book is written in Python 3.7, but it
should also work, for the most part, with any recent Python 3.* version. I have given
guidelines on how to install Python on your operating system. The procedures to do that
change all the time, so you will need to refer to the most up-to-date guide on the Web to
find precise setup instructions. I have also explained how to install all the extra libraries
used in the various examples and provided suggestions if the reader finds any issues
during the installation of any of them. No particular editor is required to type the code;
however, I suggest that those who are interested in following the examples should consider
adopting a proper coding environment. I have given suggestions on this matter in the first
chapter.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll e

[4]
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Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn—Python—Programming—Second—Edition.hlcasethenfsarrupdate
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
tile extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Within the 1earn.pp folder, we will create a virtual environment

called learnpp."

A block of code is set as follows:

# we define a function, called local
def local():

m = 7

print (m)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

# key.points.mutable.assignment.py
x = [1, 2, 3]
def func(x):
x[1] = 42 # this changes the caller!
X = 'something else' # this points x to a new string object

Any command-line input or output is written as follows:

>>> import sys
>>> print (sys.version)

[5]
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Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To open the console in Windows, go to the Start menu, choose Run, and type cmd."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

[6]
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Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

[7]




A Gentle Introduction to Python

"Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a
lifetime.”

— Chinese proverb

According to Wikipedia, computer programming is:

”...a process that leads from an original formulation of a computing problem to executable
computer programs. Programming involves activities such as analysis, developing
understanding, generating algorithms, verification of requirements of algorithms
including their correctness and resources consumption, and implementation (commonly
referred to as coding) of algorithms in a target programming language.”

In a nutshell, coding is telling a computer to do something using a language it understands.

Computers are very powerful tools, but unfortunately, they can't think for themselves.
They need to be told everything: how to perform a task, how to evaluate a condition to
decide which path to follow, how to handle data that comes from a device, such as the
network or a disk, and how to react when something unforeseen happens, say, something
is broken or missing.

You can code in many different styles and languages. Is it hard? I would say yes and no. It's
a bit like writing. Everybody can learn how to write, and you can too. But, what if you
wanted to become a poet? Then writing alone is not enough. You have to acquire a whole
other set of skills and this will take a longer and greater effort.

In the end, it all comes down to how far you want to go down the road. Coding is not just
putting together some instructions that work. It is so much more!



A Gentle Introduction to Python Chapter 1

Good code is short, fast, elegant, easy to read and understand, simple, easy to modify and
extend, easy to scale and refactor, and easy to test. It takes time to be able to write code that
has all these qualities at the same time, but the good news is that you're taking the first step
towards it at this very moment by reading this book. And I have no doubt you can do it.
Anyone can; in fact, we all program all the time, only we aren't aware of it.

Would you like an example?

Say you want to make instant coffee. You have to get a mug, the instant coffee jar, a
teaspoon, water, and the kettle. Even if you're not aware of it, you're evaluating a lot of
data. You're making sure that there is water in the kettle and that the kettle is plugged in,
that the mug is clean, and that there is enough coffee in the jar. Then, you boil the water
and maybe, in the meantime, you put some coffee in the mug. When the water is ready, you
pour it into the cup, and stir.

So, how is this programming?

Well, we gathered resources (the kettle, coffee, water, teaspoon, and mug) and we verified
some conditions concerning them (the kettle is plugged in, the mug is clean, and there is
enough coffee). Then we started two actions (boiling the water and putting coffee in the
mug), and when both of them were completed, we finally ended the procedure by pouring
water in to the mug and stirring.

Can you see it? I have just described the high-level functionality of a coffee program. It
wasn't that hard because this is what the brain does all day long: evaluate conditions,
decide to take actions, carry out tasks, repeat some of them, and stop at some point. Clean
objects, put them back, and so on.

All you need now is to learn how to deconstruct all those actions you do automatically in
real life so that a computer can actually make some sense of them. And you need to learn a
language as well, to instruct it.

So this is what this book is for. I'll tell you how to do it and I'll try to do that by means of
many simple but focused examples (my favorite kind).

In this chapter, we are going to cover the following:

e Python's characteristics and ecosystem

¢ Guidelines on how to get up and running with Python and virtual environments
¢ How to run Python programs

e How to organize Python code and Python's execution model
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A proper introduction

I love to make references to the real world when I teach coding; I believe they help people
retain the concepts better. However, now is the time to be a bit more rigorous and see what
coding is from a more technical perspective.

When we write code, we're instructing a computer about the things it has to do. Where
does the action happen? In many places: the computer memory, hard drives, network
cables, the CPU, and so on. It's a whole world, which most of the time is the representation
of a subset of the real world.

If you write a piece of software that allows people to buy clothes online, you will have to
represent real people, real clothes, real brands, sizes, and so on and so forth, within the
boundaries of a program.

In order to do so, you will need to create and handle objects in the program you're writing.
A person can be an object. A car is an object. A pair of socks is an object. Luckily, Python
understands objects very well.

The two main features any object has are properties and methods. Let's take a person object
as an example. Typically in a computer program, you'll represent people as customers or
employees. The properties that you store against them are things like the name, the SSN,
the age, if they have a driving license, their email, gender, and so on. In a computer
program, you store all the data you need in order to use an object for the purpose you're
serving. If you are coding a website to sell clothes, you probably want to store the heights
and weights as well as other measures of your customers so that you can suggest the
appropriate clothes for them. So, properties are characteristics of an object. We use them all
the time: Could you pass me that pen?—Which one?—The black one. Here, we used the black
property of a pen to identify it (most likely among a blue and a red one).

Methods are things that an object can do. As a person, I have methods such as speak, walk,
sleep, wake up, eat, dream, write, read, and so on. All the things that I can do could be seen as
methods of the objects that represent me.

So, now that you know what objects are and that they expose methods that you can run and
properties that you can inspect, you're ready to start coding. Coding in fact is simply about
managing those objects that live in the subset of the world that we're reproducing in our
software. You can create, use, reuse, and delete objects as you please.
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According to the Data Model chapter on the official Python documentation (https://docs.
python.org/3/reference/datamodel. html):

"Objects are Python’s abstraction for data. All data in a Python program is represented by
objects or by relations between objects.”

We'll take a closer look at Python objects in chapter 6, OOP, Decorators, and Iterators. For
now, all we need to know is that every object in Python has an ID (or identity), a type, and
a value.

Once created, the ID of an object is never changed. It's a unique identifier for it, and it's
used behind the scenes by Python to retrieve the object when we want to use it.

The type, as well, never changes. The type tells what operations are supported by the object
and the possible values that can be assigned to it.

We'll see Python's most important data types in Chapter 2, Built-in Data Types.

The value can either change or not. If it can, the object is said to be mutable, while when it
cannot, the object is said to be immutable.

How do we use an object? We give it a name, of course! When you give an object a name,
then you can use the name to retrieve the object and use it.

In a more generic sense, objects such as numbers, strings (text), collections, and so on are
associated with a name. Usually, we say that this name is the name of a variable. You can
see the variable as being like a box, which you can use to hold data.

So, you have all the objects you need; what now? Well, we need to use them, right? We may
want to send them over a network connection or store them in a database. Maybe display
them on a web page or write them into a file. In order to do so, we need to react to a user
filling in a form, or pressing a button, or opening a web page and performing a search. We
react by running our code, evaluating conditions to choose which parts to execute, how
many times, and under which circumstances.

And to do all this, basically we need a language. That's what Python is for. Python is the
language we'll use together throughout this book to instruct the computer to do something
for us.

Now, enough of this theoretical stuff; let's get started.
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Enter the Python

Python is the marvelous creation of Guido Van Rossum, a Dutch computer scientist and

mathematician who decided to gift the world with a project he was playing around with
over Christmas 1989. The language appeared to the public somewhere around 1991, and

since then has evolved to be one of the leading programming languages used worldwide
today.

I started programming when I was 7 years old, on a Commodore VIC-20, which was later
replaced by its bigger brother, the Commodore 64. Its language was BASIC. Later on, I
landed on Pascal, Assembly, C, C++, Java, JavaScript, Visual Basic, PHP, ASP, ASP .NET,
C#, and other minor languages I cannot even remember, but only when I landed on Python
did I finally have that feeling that you have when you find the right couch in the shop.
When all of your body parts are yelling, Buy this one! This one is perfect for us!

It took me about a day to get used to it. Its syntax is a bit different from what I was used to,
but after getting past that initial feeling of discomfort (like having new shoes), I just fell in
love with it. Deeply. Let's see why.

About Python

Before we get into the gory details, let's get a sense of why someone would want to use
Python (I would recommend you to read the Python page on Wikipedia to get a more
detailed introduction).

To my mind, Python epitomizes the following qualities.

Portability

Python runs everywhere, and porting a program from Linux to Windows or Mac is usually
just a matter of fixing paths and settings. Python is designed for portability and it takes care
of specific operating system (OS) quirks behind interfaces that shield you from the pain of

having to write code tailored to a specific platform.
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Coherence

Python is extremely logical and coherent. You can see it was designed by a brilliant
computer scientist. Most of the time, you can just guess how a method is called, if you don't
know it.

You may not realize how important this is right now, especially if you are at the beginning,
but this is a major feature. It means less cluttering in your head, as well as less skimming
through the documentation, and less need for mappings in your brain when you code.

Developer productivity

According to Mark Lutz (Learning Python, 5th Edition, O'Reilly Media), a Python program is
typically one-fifth to one-third the size of equivalent Java or C++ code. This means the job
gets done faster. And faster is good. Faster means a faster response on the market. Less
code not only means less code to write, but also less code to read (and professional coders
read much more than they write), less code to maintain, to debug, and to refactor.

Another important aspect is that Python runs without the need for lengthy and time-
consuming compilation and linkage steps, so you don't have to wait to see the results of
your work.

An extensive library

Python has an incredibly wide standard library (it's said to come with batteries included). 1f
that wasn't enough, the Python community all over the world maintains a body of third-
party libraries, tailored to specific needs, which you can access freely at the Python Package
Index (PyPI). When you code Python and you realize that you need a certain feature, in
most cases, there is at least one library where that feature has already been implemented for
you.

Software quality

Python is heavily focused on readability, coherence, and quality. The language uniformity
allows for high readability and this is crucial nowadays where coding is more of a collective
effort than a solo endeavor. Another important aspect of Python is its intrinsic
multiparadigm nature. You can use it as a scripting language, but you also can exploit
object-oriented, imperative, and functional programming styles. It is versatile.
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Software integration

Another important aspect is that Python can be extended and integrated with many other
languages, which means that even when a company is using a different language as their
mainstream tool, Python can come in and act as a glue agent between complex applications
that need to talk to each other in some way. This is kind of an advanced topic, but in the
real world, this feature is very important.

Satisfaction and enjoyment

Last, but not least, there is the fun of it! Working with Python is fun. I can code for 8 hours
and leave the office happy and satisfied, alien to the struggle other coders have to endure
because they use languages that don't provide them with the same amount of well-
designed data structures and constructs. Python makes coding fun, no doubt about it. And
fun promotes motivation and productivity.

These are the major aspects of why I would recommend Python to everyone. Of course,
there are many other technical and advanced features that I could have talked about, but
they don't really pertain to an introductory section like this one. They will come up
naturally, chapter after chapter, in this book.

What are the drawbacks?

Probably, the only drawback that one could find in Python, which is not due to personal
preferences, is its execution speed. Typically, Python is slower than its compiled brothers.
The standard implementation of Python produces, when you run an application, a
compiled version of the source code called byte code (with the extension . pyc), which is
then run by the Python interpreter. The advantage of this approach is portability, which we
pay for with a slowdown due to the fact that Python is not compiled down to machine level
as are other languages.

However, Python speed is rarely a problem today, hence its wide use regardless of this
suboptimal feature. What happens is that, in real life, hardware cost is no longer a problem,
and usually it's easy enough to gain speed by parallelizing tasks. Moreover, many
programs spend a great proportion of the time waiting for IO operations to complete;
therefore, the raw execution speed is often a secondary factor to the overall performance.
When it comes to number crunching though, one can switch to faster Python
implementations, such as PyPy, which provides an average five-fold speedup by
implementing advanced compilation techniques (check http://pypy.org/ for reference).

[14]



A Gentle Introduction to Python Chapter 1

When doing data science, you'll most likely find that the libraries that you use with Python,
such as Pandas and NumPy, achieve native speed due to the way they are implemented.

If that wasn't a good-enough argument, you can always consider that Python has been used
to drive the backend of services such as Spotify and Instagram, where performance is a
concern. Nonetheless, Python has done its job perfectly adequately.

Who is using Python today?

Not yet convinced? Let's take a very brief look at the companies that are using Python
today: Google, YouTube, Dropbox, Yahoo!, Zope Corporation, Industrial Light & Magic,
Walt Disney Feature Animation, Blender 3D, Pixar, NASA, the NSA, Red Hat, Nokia, IBM,
Netflix, Yelp, Intel, Cisco, HP, Qualcomm, and JPMorgan Chase, to name just a few.

Even games such as Battlefield 2, Civilization IV, and QuArK are implemented using Python.

Python is used in many different contexts, such as system programming, web
programming, GUI applications, gaming and robotics, rapid prototyping, system
integration, data science, database applications, and much more. Several prestigious
universities have also adopted Python as their main language in computer science courses.

Setting up the environment

Before we talk about installing Python on your system, let me tell you about which Python
version I'll be using in this book.

Python 2 versus Python 3

Python comes in two main versions: Python 2, which is the past, and Python 3, which is the
present. The two versions, though very similar, are incompatible in some respects.

In the real world, Python 2 is actually quite far from being the past. In short, even though
Python 3 has been out since 2008, the transition phase from Version 2 is still far from being
over. This is mostly due to the fact that Python 2 is widely used in the industry, and of
course, companies aren't so keen on updating their systems just for the sake of updating
them, following the if it ain’t broke, don't fix it philosophy. You can read all about the
transition between the two versions on the web.
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Another issue that has hindered the transition is the availability of third-party libraries.
Usually, a Python project relies on tens of external libraries, and of course, when you start a
new project, you need to be sure that there is already a Version-3-compatible library for any
business requirement th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>