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CHAPTER 2  

2 - 1  We use  D e  M o r g a n ' s  l a w :  - - 
(a) X + 6 +  I+B = AB + A% = A ( B + % )  = A 

because = (01 BB = I01 

2-2 If A = { 2 < x ; 5 )  - B = { 3 < x < 6 1  - - S = {-=-<x<=-) then 

A + B  = { 2 < x < 6 )  - - AB = { 3 < x < 5 )  - - 
(A+B)(E) = { 2 < x < 6 1  - - [ { x < 3 1  + E x > 5 1 ]  

= { 2 < x < 3 )  - + { 5 < x < 6 1  - 

2 - 3  I f  AB = (0 1 then A c;; hence 

P  (A) - < P (i) 

2-4 (a) P ( A )  = P ( A B )  + P ( A ~ )  P(B) = P(AB) + P(XB) 
If, therefore,  P ( A )  = P ( B )  = P(AB)  then 

P(G) = 0 ~ ( h )  = 0 hence 

P(XB+AIB) = P(XB)  + P(A%) = o 
( b )  If P ( A )  = P (B)  = 1 then 1 = P (A) 5 P (A + B) hence 

1 = P ( A + B )  = P ( A )  + P ( B )  - P ( A B )  = 2  - P ( A B )  

This  v i e l d s  P ( A B )  = 1 

2-5  F r o m  (2-1 3) i t  f o l l o w s  t h a t  

P ( A + B + C )  = P(A) + P ( B + C )  - P [ A ( B + c ) ]  

P ( B + C )  = P ( B )  + P ( C )  - P ( B C )  

P  [ A ( B  + C )  ] = P (AB) + P(AC)  - P(ABC) 

b e c a u s e  ABAC = ABC. C o m b i n i n g ,  w e  obtain the  d e s i r e d  r e s u l t .  

U s i n g  induct ion,  w e  can s h o w  s i m i l a r l y  t h a t  

? (A + A 2 + * - + A  ) = P(A1) + P ( A 2 ) + * * *  + P ( A n )  
1 n 

- P ( A  A ) - ... - 
1 2  P 'An-lAn' 

+ P (A1A2A3) + + P (An-2An) 

* . . * . I . . . . . . . . . . . . . . . . * . , . *  

k P ( A  A * *  An) 
1 2  

___ _..__---I -. ---- - 



2-6 Any subse t  of S con ta ins  a countable  number of  elements,  hence, i t  

can be w r i t t e n  a s  a countable  union of elementary events .  It i s  

t h e r e f o r e  a n  event .  

2-7 Forming a l l  unions,  i n t e r s e c t i o n s ,  and complements of t h e  s e t s  E l )  

and {2,3) ,  we o b t a i n  t h e  fol lowing sets: 

(01, C11, (41, {2,31, {1,41, {1,2,31, {2,3,41, {1,2,3,41 

2-8 I f  ACB,P(A) = 114, and P(B) = 113, then  

2-10 We use induct ion .  The formula is  t r u e  f o r  n = 2  because 

P(A1A2) - P ( A ~ I A ~ ) P ( A ~ ) .  Suppose t h a t  i t  is  t r u e  f o r  n. Since 

we conclude t h a t  i t  must be t r u e  f o r n + l .  

2-11 F i r s t  s o l u t i o n .  The t o t a l  number of m element subse t s  equals  (") ( s ee  
m  

Probl .  2-26). The t o t a l  number of m element subse t s  conta in ing  5 equals  
0 

n- l 
(m-l) Hence 

Second s o l u t i o n .  Clear ly ,  P{C, I A ~ )  = mln is  t h e  p r o b a b i l i t y  t h a t  5 
0 

is i n  a s p e c i f i c  Am. Hence ( t o t a l  p r o b a b i l i t y )  

where t h e  summation is  over  a l l  sets A . 
m 



2 
2-12 (a)  P E 6 < t < 8 1 = -  - - 10 

P E 6 r t s 8 1  2 
(b) ~ { 6  - < t - < 81t > 51 = P ( t ,  51 = - 5 

2-13 From (2-27) it follows t h a t  

Equating t h e  two s ides  and s e t t i n g  t l= tO+  A t  w e  obta in  

f o r  every to. Hence, 

Di f fe ren t i a t ing  the  s e t t i n g  c = a ( O ) ,  we conclude t h a t  

2-14 I f  A and B a r e  independent, then P (AB) = P (A)P (B) . I f  they a r e  

mutually exclusive,  then P(AB) = 0 ,  Hence, A and B a r e  mutually 

exclusive and independent i f f  P(A)P(B) = 0. 



Clear ly ,  A1 = A1A2 + ~ ~ i i ~  hence 

I f  t h e  events  A and a r e  independent,  then  1 2 

hence, t h e  events  A and A a r e  independent. Furthermore, S is  
1 2 

independent wi th  any A because SA = A. This  y i e l d s  

P(SA) = P(A) = P(S)P(A) 

Hence, t h e  theorem is  t r u e  f o r  n = 2 .  To prove i t  i n  genera l  we use 

induct ion:  Suppose t h a t  A is  independent of A1, ..., A . Clea r ly ,  - n+l n 
An+l and An+l a r e  independent of B1, ... ,B  . Therefore n 

2.16 The desired probabilit,ies are given by (a) 

(TI ;) 



2.17 Let Al I A2 and Ad represent tire events 

Al = "ball numbered less tha,n or equal to  rn is drawn? 
A2 = ('ball numbered rn i s  drawn" 
AS = ('ball numbered greater tillan rn is drawn" 

P ( A 1  occu,rs nl = k - 1, A2 occurs n2 = 1 and A3 occurs n3 = 0 )  

2.18 All cars are equally likely so that the first car is selected with 
probability p = 113. This gives the desired probability to be 

2.19 P{'drawing a whi te  bad1 " } = && 
P("atleat one whi te  ball i n  k triu,ls ") 

= 1 - P("al l  black balls in k trials") 

2.20 Let D = 2r represent the penny diameter. So long as the center 
of the penny is at a distance of r away from any side of the square, 
the penny will be entirely inside the square. This gives the desired 
probability to be 



2.21 Refer to Exanlple 3.14. 
(a )  Using (3.391, we get 

(h) 

P(" two  one-digit and four  two-digit numbers1') = 

n 
2-22 The number of equations of the form P(AiAk) = P(Ai)P(Ak) equals ( * I .  

The number of equations involving r sets equals (:). Hence the total 

number N of such equations equals 

And since 

we conclude that 

2-23 We denote by B1 and B2 respectively the balls in boxes 1 and 2 and 

by R the set of red balls. We have (assmption) 

P(B1) = P(BZ) '0.5 P(R\B~) - 0.999 ~ ( ~ 1 8 ~ )  = 0.001 

Hence (Bayes' theorem) 



2-24 We denote by B1 and B respect ively  the  b a l l  i n  boxes 1 and 2 and by 2 
D a l l  p a i r s  of defect ive pa r t s .  We have (assumption) 

To f ind P (D IB1) we proceed a s  i n  Example 2-10: 

F i r s t  so lut ion.  I n  box B1 the re  a r e  1000x999 pa i r s .  The number of 

p a i r s  with both elements defect ive  equals 100x99.  Hence, 

Second solut ion.  The p robab i l i ty  t h a t  the  f i r s t  bulb se lec ted  from 

B1 is defect ive  equals 100/1000. The p robab i l i ty  t h a t  the  second is  

defect ive  assuming the  f i r s t  was e f f e c t i v e  equals 99/999. Hence, 

We s imi la r ly  f ind  

(a) P(D)  = P ( D I B ~ ) P ( B ~ )  + P ( D ~ B ~ ) P ( B ~ )  - 0.0062 

e (D 1 B,)P (sl) 
(b) pml ID) = P (Dl 

= 0.80 

2-25 Reasoning a s  i n  Example 2-13, we conclude t h a t  t h e  probabi l i ty  tha t  the  

bus and the  t r a i n  meet equals 

Equating with 0.5, we f ind x = 60 - 1 0 6 1 .  

2-26 We wish t o  show t h a t  the  number N (k) of t h e  element subsets  of S n 
equals 

This is  t r u e  f o r  k = l  because the  number of l-element subsets  equals n. 

Using induction i n  k, w e  s h a l l  show t h a t  

n - k  
N ( k +  1 )  = Nn(k) Ir+l n 

We a t t ach  t o  each k-element subset  of S one of the  remaining n - k  elements 

of S. We, then, form Nn(k)(n-k) k+l-element subsets .  However, these 

subsets  a r e  not a l l  d i f f e r e n t .  They form groups each of which has k + l  

i d e n t i c a l  elements. We must, therefore ,  d iv ide  by k + l .  



2 - 2 7  In this experiment we have 8 outcomes. Each outcome is a selection of a particular coin 

and a specific sequence of heads or tails; for example fhh is the outcome "we selected the 

fair coin and we observed hh". The event F = (the selected coin is fair) consists of the 

four outcomes fhh, fht, fth and fhh. Its complement F is the selection of the two- 

headead coin. The event HH = (heads at both tosses) consists of two outcomes. Clearly, 

Our problem is to find P(F(HH). From (2-41) and (2-43) it follows that 



CHAPTER 3 

3.1 (a) P ( A  occurs atleast twice in n trials) 
= 1 - P ( A  never occurs in n trials) - P ( A  occurs once in n trials] 

= 1-(1-p)" - np(1 - p)"-l 

(b)  P ( A  occurs atleast thrice in n trials) 
= 1 - P ( A  never occurs in n trials) - P ( A  occurs once in n trials) 

-P(A occurs twice in n trials) 

- - 1 - ( I  - p)" - np(1 - p)"-l - E k p g ( l  - p)n-2 

P("doub1e six atleast three times in n trials") 

3-3 ~f A = {seven), then 

If the dice are tossed 10 times, then the probability that w i l l  occur 

10 them equals (5/6)1°. Hence, the probability p that {seven} w i l l  show 

at least once equals 

1 - (5/6)1° 



3-4 If k is the number of heads, then 

But 

= (q + q)n ' qn + (;:P qn-l +("2p2q*-2 + * * *  

(P - 9) ' = qn - (;lp qn-l + (p2 qne2 - 
Adding, we obtain 

1 + (p - q)" 5 2 ~{evenl 

N 
3-5 In this experiment, the total number of outcomes is the number ( , ) of ways of picking 

n out of N objects. The number of ways of picking k out of the K good components 
K 

equals ( ) and the number of ways of picking n-k out of the N-K defective 
N-K 

components equals ( ,-k ). Hence, the number of ways of picking k good components 
K N-K 

and n-k deafective components equals ( ) ( ,,-k ). From this and (2-25) it follows that 

K N-K N 
~ ' ( k ) ( n - k ) / ( n )  

3.6 (a) 

(b) 

(4 



3.7 (a) Let n represent the number of wins required in 50 games so that 
the net gain or loss does not exceed $1. This gives the net gain to  be 

50 17 3 33 
P(net gain does not exceed $1) = (17) (a) (a) = 0.432 

P(net gain or loss exceeds $1) = 1 - 0.432 = 0.568 

(b) Let n represent the number of wins required so that the net gain 
or loss does not exceed $5. This gives 

50-n 
P(net  gain does not exceed $5) = xn l9 = 14 (50) (a)" ($) = 0.349 

P(net gain or loss exceeds $5) = 1 - 0.349 = 0.651 



3.8 Define the events 
A=" r successes in n Bernoulli trials" 
B="success at the ith Bernoulli trial" 
C= "r - 1 successes in the remaining n - 1 Bernoulli trials excluding 

the ith trial" 

P(C) = (C 1 ;)p'-' qn-' 

We need 

3.9 There are ( )  ways of selecting 13 cards out of 52 cards. The 
number of ways to select 13 cards of any suit (out of 13 cards) equals 

( )  = 1 Four such (mutually exclusive) suits give the total number 
of favorable outcomes to be 4. Thus the desired probability is given by 



3.10 Using the hint, we obtain 

Let 

Mkfl = Nkfl  - Nk 

so that the above iteration gives 

This gives 

where we have used No = 0. Similarly Na+b = 0 gives 

Thus 

I a + b 1 - ( q / ~ ) "  -. p # q  P - q  1 - (q/p)a+b P -  q' 
Ni = 

i ( a+  b - i ) ,  P = q  



which gives for i = a 

Arguing as in (3.43), we get the corresponding iteration equation 

and proceed as in Example 3.15. 

3.12 Suppose one bet on k = 1,2, - - - ,6.  
Then 

3 2 
pl = P(k appears on one dice) = (A) (I) 

3 l 2  p2 = P(k appear on two dice) = (2) (6) (I) 
3 

p3 = P(k appear on all the tree dice) = (A) 
5 po = P(k appear none) = (6) 

Thus, we get 

Net gain = 2p1+ 3p2 + 4p3 - po = 0.343. 



CHAPTER Q 

4-1 From the evenness of f(x): 1 - F(x) = F(-x). 

From the definition of xu: u = F(xu), I - u = F(xl-,). Hence 

4-2 From the symmetry of f(x): 1 - F(q+a) = F(q-a). Hence [see (4-8)] 

This yields 

I-a = 2F(q+a) - 1 F(q+a) = 1 - 4 2  'I+a =  XI-^/^ 

4-3 (a) In a linear interpolation: 

From Table 4-1 page 106 

Proceeding simiplarly, we obtain 

(b) If z is such that x = q + az then z is N(O, 1)  and G(z) = Fx(q+az). Hence, - - - - 



4-4 pk - 2G(k) = 1 = 2 erfk 

(a) From Table 4- 1 

(b) From Table 3-1 with linear interpolation: 

(c) P(q-zuo < x ... < q + zuo) = 2G(z,) - I = 7 

Hence, G(zu) = (l+7)/2 u = (l+7)/2 

.............................................................................. 

4-5 (a) F(x) = x for 0 I x 5 1; hence, u = F(xu) = xu 

(b) F(x) = 1 -e-2X for x 2 0; hence, u = I -e-2Xu 

4-6 Percentage of units between 96 and 104 ohms equals lOOp where p = P(96 < R < 104) = - 
F(104) - F(96) 

(a) F(R) = O.l(R-95) for 95 I R I 105. Hence, 

p = 0.1(104-95) - 0.1(96-95) = 0.8 

(b) p = G(2.5) - G(-2.5) = 0.9876 

.............................................................................. 

4-7 From (4-34), with a = 2 and P= l/h we get f(x) = c2 ~ e ' ~ ~ U ( x )  



for  8 < x c 12 and zero otherwise 

-ax -a c F(x) (1 - e )U (x-c) f (x) 5 (1 - e ) 6 (x-c) + e-aX~(x-c)  

2 1 4-10 (a) P{l  - < x - < 2)  = G(?) - G(?) - 0.1499 

because ( 1  5 x 2,  2 1.) = ( 1  < x < 2)  - - -  

If x ( t l )  ... 5 x 

then 

ti 5 y = G(x) 

Hence, 



4-12 (a) P{z < 1024) = ~ ( ~ ~ ~ ~ ~ 0  'OoO) = G(1.2) = 0.8849 

(b) P{X < 1024 1x > 961) = 
- 

P{x -. > 961) 

1 4-14 (a) 1. f x ( x ) = -  900 1 ( )s(x-k) 
zgoO k = ~  

10 15 
(b) Pi435 < x < 4601 = G(T5) - G(- 5) a 0.5888 - - 

4-15 If x > b then { z  2 x )  = S F(x) = 1 

If x < a  then {xcx)=($41 F ( x ) = O  

4-16 If y(ci)  2 w, then x (c  ) < w because x(; ) < y ( i i ) .  - - i -  - i - -  
Hence, 

Theref ore F (w) 5 Fx(w> 
Y 



4-17 From (4-80) 

4-18 It follows frnn (2-41) with 

A1 = {X 5 X) A2 = {x > x) 
" " 

4-19 It follows from 

4-20 We replace in (4-80) all probabilities with conditional probabilities 

assuming {x i x o I .  This yields 

But f ( x l x < x ) = O  _ - for x > x  and 
0 0 

{ x = x ,  5 2 x 1  = { x = = x )  for X < X .  Hence, 
0 - 0 

Writing a similar equation for P(B~X < x ) we conclude that, if P(A~X = x) = P ( B ~ ?  = r )  - - G 

for x 5 x then P(A(X I xo) = P(B/X 5 xo) 
0' 



4-21 (a) Clearly, f(p) = 1 for 0 I p 5 1 and 0 otherwise; hence 

(b) We wish to find the conditional probability P(0.3 5 p 5 0.71A) where A = (6 heads in - 
10 tosses). Clearly P(A)p=p) = ~ ' ( l - ~ ) l .  Hence, [see (4-81)] ,.. 

This yields 

4-22 (a) In this problem, f(p) = 5 for 0.4 I p I 0.6 and zero otherwise; hence [see(4-82)] 
,.. 

P(H) = 5 1''' pdp = 0.5 
0.4 

(b) With A = (60 heads in 100 tosses) it follows from (4-82) that 

for 0.4 I p 5 0.6 and 0 otherwise. Replacing f(p) by f(p)A) in (4-82), we obtain 



4-24  For a f a i r  co in  6 = &/2. If 

kl = 0.49n and k = 0.52n then 
2 

P{kl 2 k 5 k2} = ~(0.04G) + ~(0.02&) - 1 - > 0 . 9  

From Table 4-1 ( p a g e l 0 6 ) i t  fo l lows  that 

0 . 0 2 6  > 1 . 3  n > 65 
2 



4-25 

(a) Assume n = 1,000 (Note correction to the problem) 

P(A) = 0.6 np = 600 npq = 240 k2 = 650 k1 = 550 

0 Oln 
(b) ~(0.59n 5 k 2 0.61nl - ZG(-) - 1 

m 
- 2 6 ( / % )  - 1 - 0.476 
Hence, (Table 3-1) n = 9220 

- - - . - . . 

4-26 With a = 0, b = T I 4  it follows that 

p = 1-e = 0.22 np = 220 npq = 171.6 k2 = 100 

k2 - "P 
= - 9.16 and (4-100) yields 

6 

4 - 2 7 The event 

A = {k heads show at the first n tossings but not earlier) 

occurs iff the following two events occur 

B = {k-1 heads show at the first n-1 tossing) 

C = {heads show at the nth tossing3 

And since these two events are independent and 

we conclude that 

n-1 k n-k 
P(A) = P(B)P(C) = (k-l)~ q 



Multiplying by l / t / 2 n  and i n t e g r a t i n g  from x t o  =, we o b t a i n  

because 

The f i r s t  i n e q u a l i t y  fo l lows  s i m i l a r l y  because 

4 -29 I f  P(A) - p then  P(X) = 1-p. C lea r ly  P1 = 1-Q1 where Q1 equa l s  t h e  p robab i l i t y  

t h a t  A does n o t  occur  a t  a l l .  If pn << 1, then  q1 3 ( I . - ~ ) ~  = 1 - np p1 = p 

4-30 With p  = 0.02, n  = 100, k  = 3, i t  fol lows from (4-107) that the unknown 

probability equals 

- 4-31 W i t h n Z 3 ,  r = 3 ,  k l = 2 ,  k 2 = 2 ,  k j = l , p l - p 2 - p j  = 116, i t  fol lows 

from ( 4 - 102) that the unknown probability equals 

4-32 W i t h r . 2 ,  k l = k ,  k 2 = n - k ,  p l S 3 ,  p2 = 1-p = q ,  we ob ta in  

kl - npl = k - np k2 - nP2 = n-k-nq = np - k 

Hence, t h e  b racke t  i n  (4 - 103 equals 



4-33  P(M) = 2/36 P($ = 34/35. The events M and form a p a r t i t i o n ,  

hence, [see (2- 41)l 

Clearly, P(A]M) = 1 because, i f  M occurs a t  f i r s t  t r y ,  X wins. The p robab i l i ty  

t h a t  X wins a f t e r  the  f i r s t  t r y  equals  P ( A I ~ ) .  But i n  the  ejrperiment t h a t  

s t a r t s  at t h e  second r o l l i n g ,  t h e  f i r s t  player is Y and t h e  p robab i l i ty  t h a t  

he wins equals  P(X) = 1-p. Hence, P ( A I ~ )  = P ( x )  = 1-p. And s ince  P (M) = 1/18 

P@) = 17/18 ( i )  y i e l d s  

4-34  

(a) Each of the  n p a r t i c l e s  can be placed i n  any one of t h e  m boxes. There a r e  
n n p a r t i c l e s ,  hence, t h e  number of p o s s i b i l i t i e s  equals  N - m . I n  t h e  m 

preselected boxes, t h e  p a r t i c l e s  can be placed i n  NA - n! ways ( a l l  per- 
n mutations of n objects) .  Hence p = n!/m . 

A l l  p o s s i b i l i t i e s  a r e  obtained by permuting the&-1 objects  consis t ing  

of the  m-1 i n t e r i o r  wal ls  with and n p a r t i c l e s .  The (m-l)! permutations 

of the  wal ls  and t h e  n! permutations of t h e  p a r t i c l e s  must count a s  one. 

Hence 

(b) ' 
I 
I 
I 

(c) Suppose t h a t  S is  a set consis t ing  of t h e  m boxes. Each placing of t h e  

p a r t i c l e s  s p e c i f i e s  a subset  of S consis t ing  of n elements (box). The 

number of such subsets  equals  (m) (see Probe 2-26). Hence, 
n 

X 
$ , 1 : x n p a r t i c l e s  I I I I i m-1 i n t e r i o r  wal ls  



4 -35  If k1 + k, << n, then k,, -- nand 

Hence, 

n ! 
kl 

kl k2 k3 
k2 

-nPl (up1) -np2 ("pi) 

k1!k2!t3: PI P2 P3 ' e 
kl! k2! 

4 - 36  The probability p that a particular point is in the interval (0,2) equals 2/100. (a) From 

(3-13) it follows that the probability pl that only one out of the 200 points is in the 

interval (0,2) equals 

(b) With np = 200 x 0.02 = 4 and k = 1, (3-41) yields p, 1: ee4 x 4 = 0.073 

.............................................................................. 



CHAPTER J 

5- 1 9 = 2qx+4 = 14 uy2 = 4uX2 = 16 

5-2 {y I y) = (-4x + 3 I y)  (x I (y-3)/4). Hence - - - - 

Since F,(x) = ( I  -e-2x)~(x) ,  this yields 

F (y) = e ( ~ - S ) / 2 ~  
I 

Y fy(y) = e ( ~ - S ) 1 2 ~  

5-3 From Example 5-3 with F, = G(x/c): 



5-4 If y = x2 and F,(x) = (xt2c)/4c for Ixli2c, then (see Example 5-2) Fy(y) = f i / 2 c  and - - 
fy(y) = 1/4f i fo r  0 < y < 2c. 

5-5 From Example 5-4 with F,(x) = G(x/b): For ~ X I S ~  F,(y) = G(y/b) and 

5-6 The equation y = -Lnx has a single solution x = e-"-for y > 0 and no solutions for y < 0. 

Furthermore, g8(x) = -I /x = -ey. Hence 



5-7 Clearly, z I z iff the number n(0,z) of the points in the interval (0,z) is at feast one. 
#., - 

Hence, 

The probability p that a particular point is in the integral (0,z) equals zf 100. With n = 

200, k = 0, and p = z/100, (3-21) yields P(n(0,z) = 0) = (1 Hence, -. 

(b) From (4-107) it follows thata F,(z) = 1 - eW2' for z << 100. 

d y -  - 1 - 1 - - - 
dx: 2&- 2y 

Thus 
fu(9) = *fX(x:l) = 2Yfx(Y2) 

1,' 
7 Y > O  

otherwise 

which represents Rayleigh density function (with X = 2cr2). 

5-9 For both cases,  fy(y)  = 0 f o r  y < 0. 

(a)  I f  y.0 and 1x1 = y, then x l S y ,  x 2 - - y .  Hence 

fy(y)  = l fx(y)  + fx(-y) IU(Y) 

(b) I f  y > O  and e - X ~ ( x ) = y ,  t h e n x = - a n y .  

Furthermore, P{z=O) = P{x<O} = Fx(0). Hence - - 
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