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Preface 

When something can be read without effort, 

great effort has gone into its writing. 

Enrique Jardiel Poncela 

This edition of Digital Image Processing is a major revision of the book. As in 
the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992 and 2002 edi
tions by Gonzalez and Woods, this fifth-generation edition was prepared with 
students and instructors in mind. The principal objectives of the book continue 
to be to provide an introduction to basic concepts and methodologies for digi
tal image processing, and to develop a foundation that can be used as the basis 
for further study and research in this field. To achieve these objectives, we 
focused again on material that we believe is fundamental and whose scope of 
application is not limited to the solution of specialized problems. The mathe
matical complexity of the book remains at a level well within the grasp of 
college seniors and first-year graduate students who have introductory prepa
ration in mathematical analysis, vectors, matrices, probability, statistics; linear 
systems, and computer programming. The book Web site provides tutorials to 
support readers needing a review of this background material. 

One of the principal reasons this book has been the world leader in its field 
for more than 30 years is the level of attention we pay to the changing educa
tional needs of our readers. The present edition is based on the most extensive 
survey we have ever conducted. The survey involved faculty, students, and in
dependent readers of the book in 134 institutions from 32 countries. The major 
findings of the survey indicated a need for: 

• A more comprehensive introduction early in the book to the mathemati-
cal tools used in image processing. 

• An expanded explanation of histogram processing techniques. 
• Stating complex algorithms in step-by-step summaries. 
• An expanded explanation of spatial correlation and convolution. 
• An introduction to fuzzy set theory and its application to image processing. 
• A revision of the material dealing with the frequency domain, starting 

with basic principles and showing how the discrete Fourier transform fol
lows from data sampling. 

• Coverage of computed tomography (CT). 
• Clarification of basic concepts in the wavelets chapter. 
• A revision of the data compression chapter to include more video com

pression techniques, updated standards, and watermarking. 
• Expansion of the chapter on morphology to include morphological recon

struction and a revision of gray-scale morphology. 
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Filtering in the Frequency 
Domain 

Preview 

Filter: A device or material for suppressing 

or minimizing waves or oscillations of certain 

frequencies. 

Frequency: The number of times that a periodic 

function repeats the same sequence of values during 

a unit variation of the independent variable. 

Webster's New Collegiate Dictionary 

Although significant effort was devoted in the previous chapter to spatial fil
tering, a thorough understanding of this area is impossible without having at 
least a working knowledge of how the Fourier transform and the frequency 
domain can be used for image filtering. You can develop a solid understanding 
of this topic without having to become a signal processing expert. The key lies 
in focusing on the fundamentals and their relevance to digital image process
ing. The notation, usually a source of trouble for beginners, is clarified signifi
cantly in this chapter by emphasizing the connection between image 
characteristics and the mathematical tools used to represent them. This chap
ter is concerned primarily with establishing a foundation for the Fourier trans
form and how it is used in basic image filtering. Later, in Chapters 5, 8,10, and 
11, we discuss other applications of the Fourier transform. We begin the dis
cussion with a brief outline of the origins of the Fourier transform and its im
pact on countless branches of mathematics, science, and engineering. Next, we 
start from basic principles of function sampling and proceed step-by-step to 
derive the one- and two-dimensional discrete Fourier transforms, the basic sta
ples of frequency domain processing. During this development, we also touch 
upon several important aspects of sampling, such as aliasing, whose treatment 
requires an understanding of the frequency domain and thus are best covered 
in this chapter. This material is followed hy a formulation of filtering in the fre
quency domain and the of sections that parallel the spatial 
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222 CIIap.er 4 • Filtering in the Frequency Domain 

smoothing and sharpening filtering techniques discussed in Chapter 3. We con
clude the chapter with a discussion of issues related to implementing the 
Fourier transform in the context of image processing. Because the material in 
Sections 4.2 through 4.4 is basic background, readers familiar with the con
cepts of 1-D signal processing, including the Fourier transform, sampling, alias
ing, and the convolution theorem, can proceed to Section 4.5, where we begin 
a discussion of the 2-D Fourier transform and its application to digital image 
processing. 

HI Background 

4.1.1 A Brief History of the Fourier Series and Transform 
The French mathematician Jean Baptiste Joseph Fourier was born in 1768 in 
the town of Auxerre, about midway between Paris and Dijon. The contribution 
for which he is most remembered was outlined in a memoir in 1807 and pub
lished in 1822 in his book, La Theorie Analitique de la Chaleur (The Analytic 
Theory of Heat). This book was translated into English 55 years later by Free
man (see Freeman [1878]). Basically, Fourier's contribution in this field states 
that any periodic function can be expressed as the sum of sines and/or cosines 
of different frequencies, each multiplied by a different coefficient (we now call 
this sum a Fourier series). It does not matter how complicated the function is; 
if it is periodic and satisfies some mild mathematical conditions, it can be rep
resented by such a sum. This is now taken for granted but, at the time it first 
appeared, the concept that complicated functions could be represented as a 
sum of simple sines and cosines was not at all intuitive (Fig. 4.1), so it is not sur
prising that Fourier's ideas were met initially with skepticism. 

Even functions that are not periodic (but whose area under the curve is fi
nite) can be expressed as the integral of sines and/or cosines multiplied by a 
weighing function. The formulation in this case is the Fourier transform, and its 
utility is even greater than the Fourier series in many theoretical and applied 
disciplines. Both representations share the important characteristic that a 
function, expressed in either a Fourier series or transform, can be reconstruct
ed (recovered) completely via an inverse process, with no loss of information. 
This is one of the most important characteristics of these representations be
cause it allows us to work in the "Fourier domain" and then return to the orig
inal domain of the function without losing any information. Ultimately, it was 
the utility of the Fourier series and transform in solving practical problems 
that made them widely studied and used as fundamental tools. 

The initial application of Fourier's ideas was m the field of heat diffusion, 
where they allowed the formulation of differential equations representing heat 
flow in such a way that solutions could be obtained for the first time. During the 
past century. and especially in the past 50 years, entire industries and academic 
disciplines have flourished as a result of Fourier's ideas. The advent of digital 
computers and the "discovery" of a fast Fourier transform (FFf) algorithm in 
the early 1960s (more about this later) revolutionized the field of signal process
ing. These two core technologies allowed for the first time practical processing of 
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FIGURE 4.1 The function at the bottom is the sum of the four functions above it. 
Fourier's idea in 1807 that periodic functions could be represented as a weighted sum 
of sines and cosines was met with skepticism. 

a host of signals of exceptional importance, ranging from medical monitors and 
scanners to modern electronic communications. 

We will be dealing only with functions (images) of finite duration, so the 
Fourier transform is the tool in which we are interested. The material in the 
following section introduces the Fourier transform and the frequency domain. 
It is shown that Fourier techniques provide a meaningful and practical way to 
study and implement a host of image processing approaches. In some cases, 
these approaches are similar to the ones we developed in Chapter 3. 

4.1.'1 About the Examples in this Chapter 
As in Chapter 3, most of the image filtering examples in this chapter deal with 
image enhancement. For example, smoothing and sharpening are traditionally 
associated with image enhancement, as are techniques for contrast manipula
tion. By its very nature, beginners in digital image processing find enhance
ment to be interesting and relatively simple to understand. Therefore, using 
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examples from image enhancement in this chapter not only saves having an 
extra chapter in the book but, more importantly, is an effective tool for intro
ducing newcomers to filtering techniques in the frequency domain. We use 
frequency domain processing methods for other applications in Chapters 5,8, 
10, and 11. 

m Preliminary Concepts 

In order to simplify the progression of ideas presented in this chapter, we 
pause briefly to introduce several of the basic concepts that underlie the mate
rial that follows in later sections. 

4.2.1 Complex Numbers 

A complex number, C, is defined as 

C == R + jI (4.2-1) 

where R and I are real numbers, and j is an imaginary number equal to the 
square of -1; that is, j = v=r. Here, R denotes the real part of the complex 
number and 1 its imaginary part. Real numbers are a subset of complex 
numbers in which I = O. The conjugate of a complex number C, denoted C*, 
is defined as 

C· = R - j/ (4.2-2) 

Complex numbers can be viewed geometrically as points in a plane (called the 
complex plane) whose abscissa is the real axis (values of R) and whose ordi
nate is the imaginary axis (values of I). That is, the complex number R + jl is 
point (R, I) in the rectangular coordinate system of the complex plane. 

Sometimes, it is useful to represent complex numbers in polar coordinates, 

C = ICI(cos e + jsin 0) ( 4.2-3) 

where Ici = V R2 + 12 is the length of the vector extending from the origin of 
the complex plane to point (R, I), and 0 is the angle between the vector and the 
real axis. Drawing a simple diagram of the real and complex axes with the vec
tor in the first quadrant will reveal that tan 0 = (I I R) or 8 = arctan( I I R). The 
arctan function returns angles in the range [-n/2, n/2]. However, because 1 
and R can be positive and negative independently, we need to be able to obtain 
angles in the full range [-n, n]. This is accomplished simply by keeping track 
of the sign of 1 and R when computing 8. Many programming languages do this 
automatically via so called four-quadrant arctangent functions. For example, 
MATLAB provides the function atan2 (Imag, Rea 1) for this purpose. 

Using Euler's formula, 

e jO == cos 0 + j sin 0 (4.2-4) 

where e == 2.71828 ... , gives the following familiar representation of complex 
numbers in polar coordinates. 

( 4.2-5) 



4.2 • Preliminary Concepts 225 

where lei and (j are as defined above. For example, the polar representation of 
the complex number 1 + j2 is V3e j

O, where 0 = 64.40 or 1.1 radians. The pre
ceding equations are applicable also to complex functions. For example, a 
complex function, F(u), of a variable u, can be expressed as the sum 
F(u) = R(u) + j/(u), where R(u) and /(u) are the real and imaginary compo
nent functions. As previously noted, the complex conjugate is F*(u) 
= R(u) - j/(u), the magnitude is IF(u)1 = VR(u)2 + J(u)2, and the angle is 
O(u) = arctan[/(u)j R(u»). We return to complex functions several times in the 
course of this and the next chapter. 

4.2.2 Fourier Series 
As indicated in Section 4.1.1, a function f(t) of a continuous variable t that is pe
riodic with period, T, can be expressed as the sum of sines and cosines multiplied 
by appropriate coefficients. This sum, known as a Fourier series, has the form 

(4.2-6) 

where 

I1T/2 .]"" 
Cn = - f(t)e-1r( dt 

T -T/2 
forn = 0,±1,±2, ... (4.2-7) 

are the coefficients. The fact that Eq. (4.2-6) is an expansion of sines and 
cosines follows from Euler's formula, Eq. (4.2-4). We wil! return to the Fourier 
series later in this section. 

4.2.3 Impulses and Their Sifting Property 
Central to the study of linear systems and the Fourier transform is the concept 
of an impulse and its sifting property. A unit impulse of a continuous variable t 
located at I = 0, denoted D(l), is defined as 

D(t) = {: 
ift = 0 
if t#-O 

and is constrained also to satisfy the identity 

1:D(I) dt = 1 

(4.2-8a) 

(4.2-8b) 

Physically, if we interpret 1 as time, an impulse may be viewed as a spike of in
finity amplitude and zero duration, having unit area. An impulse has the so
called sifting property with respect to integration, 1:f (1)D(t) dt = f(O) (4.2-9) 

provided that f(t) is continuous at t = 0, a condition typically satisfied in prac
tice. Sifting simply yields the value of the function f(t) at the location of the im
pulse (i.e., the origin, ( = 0, in the previous equation). A more general statement 

An impulse is not a func
tion in the usual sense. A 
more accurate name is a 
distribution Of 

generalized function. 
However, one often finds 
in the literature the 
names impulse function, 
delta function, and Dirac 
delta Junctjon. despite the 
misnomer. 

To sifl means literally to 
separate. or to separate 
out by putting through a 
sieve. 
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FIGURE 4.2 
A unit discrete 
impulse located at 
x = Xo. Variable x 
is discrete, and 0 
is 0 everywhere 
except at x = Xo. 

of the sifting property involves an impulse located at an arbitrary point to, denot
ed by S(t - to). In this case, the sifting property becomes 1:f (t)8(t - to) dt = f(to) (4.2-10) 

which yields the value of the function at the impulse location, to. For instance, 
if f(t) = cos(t), using the impulse S(t - 7T) in Eq. (4.2-10) yields the result 
f(7T) = COS(7T) = -1. The power of the sifting concept will become quite evi
dent shortly. 

Let x represent a discrete variable. The unit discrete impulse, o(x), serves the 
same purposes in the context of discrete systems as the impulse Set) does when 
working with continuous variables. It is defined as 

Sex) = {~ x=o 
x=f.O 

(4.2-11a) 

Clearly, this definition also satisfies the discrete equivalent of Eq. (4.2-8b): 

00 

L 8(x) = 1 (4.2-11b) 
x=-oo 

The sifting property for discrete variables has the form 

00 

L f(x)8(x) = f(O) (4.2-12) 
X=-CiO 

or, more generally using a discrete impulse located at x = Xo, 

00 

L f(x)8(x - xo) = f(xo) (4.2-13) 
x=-OO 

As before, we see that the sifting property simply yields the value of the func
tion at the location of the impulse. Figure 4.2 shows the unit discrete impulse 
diagrammatically. Unlike its continuous counterpart, the discrete impulse is an 
ordinary function. 

Of particular interest later in this section is an impulse train, SilT(t), defined 
as the sum of infinitely many periodic impulses Ll T units apart: 

00 

su(t) = 2: oCt - nt:.T) (4.2-14) 
n:::::-(X) 

S(x - xo) 
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. .. -3t..T -2t..T -t..T 0 t..T 2t..T 3t..T··· 

Figure 4.3 shows an impulse train. The impulses can be continuous or discrete. 

4.2.4 The Fourier Transform of Functions of 
One Continuous Variable 

The Fourier transform of a continuous function f(t) of a continuous variable, t, 
denoted ;s {f(t) }, is defined by the equation t 

~{f(t)} = 1:f(t)e-j~1T/J-t dt (4.2-15) 

where J-t is also a continuous variable. Because t is integrated out, ~ {f(t)} is a 
function only of J-t. We denote this fact explicitly by writing the Fourier trans
form as ;:S{f(t)} = F(J-t); that is, the Fourier transform of f(t) may be written 
for convenience as 

F(J-t) = 1:f (t)e-j21T/J-1 dt (4.2-16) 

Conversely, given F(J-t), we can obtain f(t) back using the inverse Fourier 
transform,f(t) = ;:S-I{F(J-t)}, written as 

f(t) = 1: F(J-t)e j27T/J-1 dJ-t (4.2-17) 

where we made use of the fact that variable J-t is integrated out in the inverse 
transform and wrote simple f(t), rather than the more cumbersome notation 
f(t) = ~-l{F(J-t)}. Equations (4.2-16) and (4.2-17) comprise the so-called 
Fourier transform pair. They indicate the important fact mentioned III 

Section 4.1 that a function can be recovered from its transform. 
Using Euler's formula we can express Eq. (4.2-16) as 

F(J-t) = 1:f (t) [ COS(21TJ-tt) - jsin(21TJ-tt)] dt (4.2-18) 

tConditions for the existence of the Fourier transform are complicated to state in general (Champeney 
[1987]). but a sufficient condition for its existence is that the integral of the absolute value of f(O. or the 
integral of the square of f(t), be finite. Existence is seldom an issue in practice. except for idealized sig
nals. such as sinusoids that extend forever. These are handled using generalized impulse functions. OUT 
primary interest is in the discrete Fourier transform pair which. as you will see shortly, is guaranteed to 
exist for all finite functions. 

FIGURE 4.3 An 
impulse train . 
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For consistency in termi· 
nology used in the previ
ous two chapters, and to 
be used later in this 
chapter in connection 
with image~ we refer to 
the domain of variable I 
in general as the spatilll 
domain. 

EXAMPLE 4.1: 
Obtaining the 
Fourier transform 
of a simple 
function. 

[(I) 

A 

Wl2 0 wl2 

abc 

If f(t) is real, we see that its transform in general is complex. Note that the 
Fourier transform is an expansion of f{t) multiplied by sinusoidal terms whose 
frequencies are determined by the values of /L (variable t is integrated out, as 
mentioned earlier). Because the only variable left after integration is frequen
cy, we say that the domain of the Fourier transform is the frequency domain. 
We discuss the frequency domain and its properties in more detail later in this 
chapter. In our discussion, t can represent any continuous variable, and the 
units of the frequency variable j.t depend on the units of t. For example, if t rep
resents time in seconds, the units of /L are cycles/sec or Hertz (Hz). If t repre
sents distance in meters, then the units of j.t are cycles/meter, and so on. In 
other words, the units of the frequency domain are cycles per unit of the inde
pendent variable of the input function. 

.. The Fourier transform of the function in Fig. 4.4(a) follows from Eq. (4.2-16): 

100 lwI2 
F(/L) = f(t)e- j21T

/-L1 dt = Ae-j21T/-LI dt 
-00 -WI2 

= ~ [ei1TJ.LW _ e-i1T/-LW] 
J21T/L 

sin{1Tj.tW) 
= AW (1Tj.tW) 

where we used the trigonometric identity sin () = (ejlJ - e-jO)/2j. In this case 
the complex terms of the Fourier transform combined nicely into a real sine 

AW AW 

FIGURE 4.4 (a) A simple function; (b) its Fourier transform; and (c) the spectrum. All functions extend to 
infinity in both directions. 



4.2 • Preliminary Concepts 229 

function. The result in the last step of the preceding expression is known as the 
sinc function: 

. sin(1Tm) 
smc(m) == (1Tm) (4.2-19) 

where sinc(O) == 1, and sinc(m) == 0 for all other integer values of m. Figure 4.4(b) 
shows a plot of F(p.,). 

In general, the Fourier tNlnsform contains complex terms, and it is custom
ary for display purposes to work with the magnitude of the transform (a real 
quantity), which is called the Fourier spectrum or the frequency spectrum: 

1 )1 _ ISin(1Tp..W)I 
F(p.. - AT (1Tp..W) 

Figure 4.4(c) shows a plot of !F(p..)! as a function of frequency. The key prop
erties to note are that the locations of the zeros of both F(p..) and !F(p..)! are 
inversely proportional to the width, W, of the "box" function, that the height of 
the lobes decreases as a function of distance from the origin, and that the func
tion extends to infinity for both positive and negative values of p... As you will 
see later, these properties are quite helpful in interpreting the spectra of two
dimensional Fourier transforms of images. . • 

• The Fourier transform of a unit impulse located at the origin follows from 
Eq. (4.2-16): 

F(p..) = f:8(I)e-i27T!J-(dt 

= f:e-i27T!J-t8(t)dt 

= 1 

where the third step follows from the sifting property in Eq. (4.2-9). Thus, we 
see that the Fourier transform of an impulse located at the origin of the spatial 
domain is a constant in the frequency domain. Similarly, the Fourier transform 
of an impulse located at t = to is 

F(p..) = f:8(t - to)e-i27T!J-1dt 

EXAMPLE 4.2: 
Fourier transform 
of an impulse and 
of an impulse 
train. 



230 a.,ter 4 • Filtering in the Frequency Domain 

where the third line follows from the sifting property in Eq. (4.2-10) and the 
last line follows from Euler's formula. These last two lines are equivalent rep
resentations of a unit circle centered on the origin of the complex plane. 

In Section 4.3, we make use of the Fourier transform of a periodic im
pulse train. Obtaining this transform is not as straightforward as we just 
showed for individual impulses. However, understanding how to derive the 
transform of an impulse train is quite important, so we take the time to de
rive it in detail here. We start by noting that the only difference in the form 
of Eqs. (4.2-16) and (4.2-17) is the sign of the exponential. Thus, if a function 
f(t) has the Fourier transform F(J-L), then the latter function evaluated at t, 
that is, F(t), must have the transform f( -J-L). Using this symmetry property 
and given, as we showed above, that the Fourier transform of an impulse 
8(t - to) is e-j27r!-lIO, it follows that the function e-j21T1o ( has the transform 
8( - J-L - to). By letting -to = a, it follows that the transform of e j27Tat is 
8( -J-L + a) = 8(J-L - a), where the last step is true because 8 is not zero only 
when J.L = a, which is the same result for either 8( -J.L + a) or 8(J.L - a), so 
the two forms are equivalent. 

The impulse train SAT(t) in Eq. (4.2-14) is periodic with period I1T, so we 
know from Section 4.2.2 that it can be expressed as a Fourier series: 

where 

1 1/lT12 . 2m, 

en = - SAT(t)e-rs:r1dt 
I1.T -ATI2 

With reference to Fig. 4.3, we see that the integral in the interval 
[-I1.Tj2, I1Tj2] encompasses only the impulse of S/lT(t) that is located at the 
origin. Therefore, the preceding equation becomes 

1 1/lT12 ·hn 
Cn =- o(t)e-JjT1dt 

I1T -/lTI2 

1 
= -eo 

I1T 

1 

I1T 

The Fourier series expansion then becomes 

1 ~0cnl S.lT(t) = - ..::::... e i '7 

I1T n~-CXJ 

Our objective is to obtain the Fourier transform of this expression. Becaus( 
summation is a linear process, obtaining the Fourier transform of a sum i: 
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the same as obtaining the sum of the transforms of the individual compo
nents. These components are exponentials, and we established earlier in this 
example that 

So, S(f-t), the Fourier transfQrm of the periodic impulse train StlT(t), is 

= _1 :s{ ~ ej~;'I} 
AT n=-OO 

This fundamental result tells us that the Fourier transform of an impulse train 
with period AT is also an impulse train, whose period is 1/ AT. This inverse 
proportionality between the periods of SIlT(t) and S(f-t) is analogous to what 
we found in Fig. 4.4 in connection with a box function and its transform. This 
property plays a fundamental role in the remainder of this chapter. • 

4.2.5 Convolution 
We need one more building block before proceeding. We introduced the idea 
of convolution in Section 3.4.2. You learned in that section that convolution of 
two functions involves flipping (rotating by 180°) one function about its origin 
and sliding it past the other. At each displacement in the sliding process, we 
perform a computation, which in the case of Chapter 3 was a sum of products. 
In the present discussion, we are interested in the convolution of two continu
ous functions, f(t) and h(t), of one continuous variable, t, so we have to use in
tegration instead of a summation. The convolution of these two functions, 
denoted as before by the operator *, is defined as 

(4.2-20) 

where the minus sign accounts for the flipping just mentioned, t is the 
displacement needed to slide one function past the other, and T is a dummy 
variable that is integrated out. We assume for now that the functions extend 
from -00 to 00. 

We illustrated the basic mechanics of convolution in Section 3.4.2, and we 
will do so again later in this chapter and in Chapter 5. At the moment, we are 
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The same result would 
be obtained if the order 
of f(t) and /J(I) were 
reversed. so convolution 
is commutative. 

interested in finding the Fourier transform of Eq. (4.2-20). We start with 
Eq. (4.2-15): 

~ {J(t) * h(t)} 1:[I:J(T)h(t - T) ciT ]e-j21T1L1 dt 

= l:J(T{ 1: h(t - T)e-j21TILI dt] dT 

The term inside the brackets is the Fourier transform of h(t - T). We show 
later in this chapter that :J{h(t - T)} = H(IL)e- j21Tw, where H(IL) is the 
Fourier transform of h(t). Using this fact in the preceding equation gives us 

Recalling from Section 4.2.4 that we refer to the domain of t as the spatial do
main, and the domain of IL as the frequency domain, the preceding equation 
tells us that the Fourier transform of the convolution of two functions in the 
spatial domain is equal to the product in the frequency domain of the Fourier 
transforms of the two functions. Conversely, if we have the product of the two 
transforms, we can obtain the convolution in the spatial domain by computing 
the inverse Fourier transform. In other words, J(t) * h(t) and H(u) F(u) are a 
Fourier transform pair. This result is one-half of the convolution theorem and 
is written as 

(4.2-21) 

The double arrow is used to indicate that the expression on the right is ob
tained by taking the Fourier transform of the expression on the left, while the 
expression on the left is obtained by taking the inverse Fourier transform of 
the expression on the right. 

Following a similar development would result in the other half of the con-
volution theorem: ... 

J(t)h(t) ~ H(JL) * F(JL) (4.2-22) 

which states that convolution in the frequency domain is analogous to multi
plication in the spatial domain, the two being related by the forward and in
verse Fourier transforms, respectively. As you will see later in this chapter, the 
convolution theorem is the foundation for filtering in the frequency domain. 
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Ell Sampling and the Fourier Transform of Sampled 
Functions 

In this section, we use the concepts from Section 4.2 to formulate a basis for 
expressing sampling mathematically. This will lead us, starting from basic prin
ciples, to the Fourier transform of sampled functions. 

~ Sampling ... 
Continuous functions have to be converted into a sequence of discrete values 
before they can be processed in a computer. This is accomplished by using 
sampling and quantization, as introduced in Section 2.4. In the following dis
cussion, we examine sampling in more detail. 

With reference to Fig. 4.5, consider a continuous function, J(t), that we 
wish to sample at uniform intervals (11T) of the independent variable t. We 

!(t) 

... ~ ... 
o 

5.".,(1) 

• 1 

-----'---11 1-,----,-1 l----'---Ll 1---'---1-11---'---1-1 l-L.....-L.....I 1 --,----------I . , 

I 

• • • 

... -2!:!.T -!:!.T 0 t.T 2!:!.T 

I -; 
I 

... , 

!(I)S/;!(I) 

, , , 

... -2t.T -!:!.TO t.T2t.T 

h = !(kt.T) 

• • I • 
• 

• I I I I 
-2 -1 () 1 2 

• • • • 
• k 

a 
b 
c 
d 
fiGURE 4.5 
(a) A continuous 
function. (b) Train 
of impulses used 
to model the 
sampling process. 
(c) Sampled 
function formed 
as the product of 
(a) and (b). 
(d) Sample values 
obtained by 
integration and 
using the sifting 
prope.rty of the 
impulse. (The 
dashed line in (c) 
is shown for 
reference. It is not 
part of the data.) 
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Taking samples tlT units 
apart implies a sampling 
rate equal to 1/ tl T. If the 
units of tlT are seconds, 
then the sampling rate is 
in samples/s. If the units 
of tl T are meters, then 
the sampling rate is in 
samples/m. and so on. 

assume that the function extends from -00 to 00 with respect to t. One way 
to model sampling is to multiply f(t) by a sampling function equal to a train 
of impulses !:1T units apart, as discussed in Section 4.2.3. That is, 

00 

!(t) = f(t)StlT(t) = ~ f(t)8(t - n!:1T) (4.3-1) 
n=-oo 

where f(t) denotes the sampled function. Each component of this summation 
is an impulse weighted by the value of f(t) at the location of the impulse, as 
Fig. 4.5(c) shows. The value of each sample is then given by the "strength" of 
the weighted impulse, which we obtain by integration. That is, the value, f k, of 
an arbitrary sample in the sequence is given by 

h = 1:f (t)8(t - k!:1T) dt 

= f(k!:1T) 
(4.3-2) 

where we used the sifting property of 8 in Eq. (4.2-10). Equation (4.3-2) holds 
for any integer value k = ... , -2, -1,0,1,2, .... Figure 4.5(d) shows the re
sult, which consists of equally-spaced samples of the original function. 

4.3.2 The Fourier Transform of Sampled Functions 

Let F(IL) denote the Fourier transform of a continuous function f(t). As 
discussed in the previous section, the corresponding sampled function, f (t), is 
the product of f(t) and an impulse train. We know from the convolution theo
rem in Section 4.2.5 that the Fourier transform of the product of two functions 
in the spatial domain is the convolution of the transform§. of the two functions 
in the freguency domain. Thus, the Fourier transform, F(IL), of the sampled 
function f(t) is: 

where, from Example 4.2, 

F(IL) = ~{7(t)} 

= ~{J(t)StlT(t)} 

= F(IL) * S(~) 
( 4.3-3) 

( 4.3-4) 
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is the Fourier transform of the impulse train SilT(t). We obtain the convolution 
of F(IL) and S(IL) directly from the definition in Eg. (4.2-20): 

F(IL) = F(IL) * S(IL) 

= 1: F(r)S(1L - r) dr 

= _1 100 

F(r) ~ 8(1L - r -~) dr 
AT -00 n=-OO AT 

(4.3-5) 

= _1 ~ 100 

F(r)8(1L - r -~) dr 
AT n=-OO -00 AT 

1
00 

( n) =-~F IL--
ATn=-oo AT 

where the final step follows from the sifting property of the impulse, as given 
in Eg. (4.2-10). 

The summation in the last line of Eq. (4.3-5) shows that the Fourier transform 
F(IL) of the sampled function let) is an infinite, periodic sequence of copies of 
F(IL), the transform of the original, continuous function. The separation between 
copies is determined by the value of 1/ AT. Observe that although let) is a 
sampled function, its transform F(IL) is continuous because it consists of copies 
of F(IL) which is a continuous function. ' 

Figure 4.6 is a graphical summary of the preceding results. t Figure 4.6(a) is a 
sketch of the Fourier transform, F(IL), of a function J(t), and Fig. 4.6(b) shows 
the transform, F(IL), of the sampled function. As mentioned in the previous sec
tion, the quantity 1/ AT is the sampling rate used to generate the sampled func
tion. So, in Fig. 4.6(b) the sampling rate was high enough to provide sufficient 
separation between the periods and thus preserve the integrity of F(IL). In 
Fig. 4.6(c), the sampling rate was just enough to preserve F(IL), but in Fig. 
4.6( d), the sampling rate was below the minimum required to maintain dis
tinct copies of F(IL) and thus failed to preserve the original transform. Figure 
4.6(b) is the result of an over-sampled signal, while Figs. 4.6( c) and (d) are the 
results of critically-sampling and under-sampling the signal, respectively. 
These concepts are the basis for the material in the following section. 

4.3.3 The Sampling Theorem 
We introduced the idea of sampling intuitively in Section 2.4. Now we consid
er the sampling process formally and establish the conditions under which a 
continuous function can be recovered uniquely from a set of its samples. 

tPor the sake of clarity in illustrations, sketches of Pourier transforms in Fig. 4.6, and other similar figures 
in this chapter, ignore the fact that transforms typically are complex functions. 
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a 
b 
c 
d 
FIGURE 4.6 
(a) Fourier 
transform of a 
band-limited 
function. 
(b)-(d) 
Transforms of the 
corresponding 
sampled function 
under the 
conditions of 
over-sampling, 
critically
sampling, and 
under-sampling, 
respectively. 

F(f.L) 

_~Lh---.f.L 
o 

F(f.L) 

q66Lh66," 
-2//H -l/AT o l/AT 2/AT 

-2/AT -l/AT o l/AT 2/AT 

• f.L 
-3//.i.T -2/AT -l/AT o l/AT 2/tlT 3/tlT 

A function f(t) whose Fourier transform is zero for values of frequencies out
side a finite interval (band) [-J-Lmax, J-Lmax] about the origin is called a band-limited 
function. Figure 4.7(a), which is a magnified section of Fig. 4.6(a), is such a func
tion. Similarly, Fig. 4.7(b) is a more detailed view of the transform of a critically
sampled function shown in Fig. 4.6(c). A lower value of 1/ t:.T would cause the 
periods in F(J-L) to merge; a higher value would provide a clean separation 
between the periods. 

We can recover f(t) from its sampled version- if we can isolate a copy of 
F(J-L) from the periodic sequence of copies of this function contained in F(J-L), 
the transform of the sampled function f(t). Recall from the discussion in the 
previous section that F(J-L) is a continuous, periodic function with period 
1/ t:.T. Therefore, all we need is one complete period to characterize the entire 
transform. This implies that we can recover f(t) from that single period by 
using the inverse Fourier transform. 
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F(p.) 

-1 0 

2ilT 2ilT fj.T 

Extracting from F(IL) a single period that is equal to F(J-L) is possible if the 
separation between copies is sufficient (see Fig. 4.6). In terms of Fig. 4.7(b), 
sufficient separation is guaranteed if 1/2t:,.T > ILmax or 

1 
tl. T > 2J-Lmax (4.3-6) 

This equation indicates that a continuous, band-limited function can be re
covered completely from a set of its samples if the samples are acquired at a 
rate exceeding twice the highest frequency content of the function. This result 
is known as the sampling theorem.tWe can say based on this result that no in
formation is lost if a continuous, band-limited function is represented by sam
ples acquired at a rate greater than twice the highest frequency content of the 
function. Conversely, we can say that the maximum frequency that can be 
"captured" by sampling a signal at a rate 1/ t:,.T is J-Lmax = 1/2t:,.T. Sampling at 
the Nyquist rate sometimes is sufficient for perfect function recovery, but 
there are cases in which this leads to difficulties, as we illustrate later in 
Example 4.3. Thus, the sampling theorem specifies that sampling must exceed 
the Nyquist rate. 

tThe sampling theorem is a cornerstone of digital signal processing theory. It was first formulated in 1928 
by Harry Nyquist, a Bell Laboratories scientist and engineer. Claude E. Shannon, also from Bell Labs, 
proved the theorem formally in 1949. The renewed interest in the sampling theorem in the late 1940s 
was motivated by the emergence of early digital computing systems and modern communications, 
which created a need for methods dealing with digital (sampled) data. 

a 
b 
FIGURE 4.7 
(a) Transform of a 
band-limited 
function. 
(b) Transform 
resulting from 
critically sampling 
the same function. 

A sampling rate equal to 
exactly twice the highest 
frequency is called the 
Nyquisf rale. 
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.~ 

.C' 
FIGURE 4.8 
Extracting one 
period of the 
transform of a 
band-limited 
function using an 
ideallowpass 
filter. 

The AT in Eq. (4.3-7) 
cancels out the 1/ il Tin 
Eq. (4.3-5). 
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To see how the recovery of F(p-) from 'i(p-) is possible in principle, consider 
Fig. 4.8, which shows the Fourier transform of a function sampled at a rate slightly 
higher than the Nyquist rate. The function in Fig. 4.8(b) is defined by the equation 

H(J-t) == {~T - J-tmax :s; J-t :s; J-tmax 

otherwise 
(4.3-7) 

When multiplied by the periodic sequence in Fig. 4.8(a), this function isolates 
the period centered on the origin. Then, as Fig. 4.8( c) shows, we obtain F(p-) by 
multiplying 'i(p-) by H(p-): 

(4.3-8) 

Once we have F(J-t) we can recover J(t) by using the inverse Fourier trans
form: 

(4.3-9) 

Equations (4.3-7) through (4.3-9) prove that, theoretically, it is possible to 
recover a band-limited function from samples of the function obtained at a 
rate exceeding twice the highest frequency content of the function. As we 
discuss in the following section, the requirement that f(t) must be band
limited implies in general that f(t) must extend from 00 to 00, a condition 
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that cannot be met in practice. As you will see shortly, having to limit the du
ration of a function prevents perfect recovery of the function, except in some 
special cases. 

Function H(p,) is called a lowpass filter because it passes frequencies at the 
low end of the frequency range but it eliminates (filters out) all higher fre
quencies. It is calJed also an ideallowpass filter because of its infinitely rapid 
transitions in amplitude (between 0 and 6.T at location -P,max and the reverse 
at P,max), a characteristic that cannot be achieved with physical electronic com
ponents. We can simulate ideal filters in software, but even then there are lim
itations, as we explain in Section 4.7.2. We will have much more to say about 
filtering later in this chapter. Because they are instrumental in recovering (re
constructing) the original function from its samples, filters used for the pur
pose just discussed are called reconstruction filters. 

4.3.4 Aliasing 
A logical question at this point is: What happens if a band-limited function is 
sampled at a rate that is less than twice its highest frequency? This corresponds 
to the under-sampled case discussed in the previous section. Figure 4.9(a) is 
the same as Fig. 4.6( d), which illustrates this condition. The net effect of lower
ing the sampling rate below the Nyquist rate is that the periods now overlap, 
and it becomes impossible to isolate a single period of the transform, regard
less of the filter used. For instance, using the ideallowpass filter in Fig. 4.9(b) 
would result in a transform that is corrupted by frequencies from adjacent pe
riods, as Fig. 4.9(c) shows. The inverse transform would ,then yield a corrupted 
function of t. This effect, caused by under-sampling a function, is known as 
frequency aliasing or simply as aliasing. In words, aliasing is a process in which 
high frequency components of a continuous function "masquerade" as lower 
frequencies in the sampled function. This is consistent with the common use of 
the term alias, which means "a false identity." 

Unfortunately, except for some special cases mentioned below, aliasing is 
always present in sampled signals because, even if the original sampled func
tion is band-limited, infinite frequency components are introduced the mo
ment we limit the duration of the function, which we always have to do in 
practice. For example, suppose that we want to limit the duration of a band
limited function f(t) to an interval, say [0, T]. We can do this by mUltiplying 
f(t) by the function 

h(t) = {~ O:5t:5T 

otherwise 
(4.3-10) 

This function has the same basic shape as Fig. 4.4(a) whose transform, 
H(p,), has frequency components extending to infinity, as Fig. 4.4(b) shows. 
From the convolution theorem we know that the transform of the product 
of h(t)f(t) is the convolution of the transforms of the functions. Even if the 
transform of f(t) is band-limited, convolving it with H(p,), which involves 
sliding one function across the other, will yield a result with frequency 
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It 
b 
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F(JL) 
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-3/IlT -2/tlT -l/IlT: 0 : l/tlT 2/tlT 3/tlT 
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o 

F(JL) = H(JL)F(JL) 

~ --------------------~--~--~-----------------------. JL 
- JLmax 0 JLmax 

FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function. 
(Interference from adjacent periods is shown dashed in this figure). (b) The same ideal 
lowpass filter used in Fig. 4.8(b). (c) The product of (a) and (b). The interference from 
adjacent periods results in aliasing that prevents perfect recovery of F(J-L) and, 
therefore, of the original, band-limited continuous function. Compare with Fig. 4.8. 

components extending to infinity. Therefore, no function of finite duration 
can be band-limited. Conversely, a function that is band-limited must ex
tend from - 00 to 00. t 

We conclude that aliasing ism inevitable fact of working with sampled 
records of finite length for the reasons stated in the previous paragraph. In 
practice, the effects of aliasing can be reduced by smoothing the input function 
to attenuate its higher frequencies (e.g., by defocusing in the case of an image). 
This process, called anti-aliasing, has to be done berare the function is sampled 
because aliasing is a sampling issue that cannot be "undone after the fact" 
using computational techniques. 

t An important special case is when a function that extends from - 00 to 00 is band-limited and periodic. In 
this case, the function can he truncated and still be band-limited. provided that the truncation encompass
es exactly an integral number of periods. A single truncated period (and thus the function) can be repre
sented by a set of discrete samples satisfying the sampling theorem, taken over the truncated interval. 
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• Figure 4.10 shows a classic illustration of aliasing. A pure sine wave 
extending infinitely in both directions has a single frequency so, obviously, it is 
band-limited. Suppose that the sine wave in the figure (ignore the large dots 
for now) has the equation sine 1Tt), and that the horizontal axis corresponds to 
time, t, in seconds. The function crosses the axis at t = ... -1,0, 1,2,3 .... 

The period, P, of sine 1Tf) is 2 s, and its frequency is 1/ P, or 1/2 cycles/so 
According to the sampling theorem, we can recover this signal from a set of 
its samples if the sampling rate, ]/ /);'T, exceeds twice the highest frequency 
of the signal. This means that a sampling rate greater than 1 sample/s 
[2 x (1/2) = 1]. or /);. T < 1 s, is required to recover the signal. Observe that 
sampling this signal at exactly twice the frequency (1 sample/s), with sam
ples taken at t = ... -1,0,1,2,3 ... , results in ... sin(-1T),sin(O),sin(7T), 
sin(27T), ... , which are all O. This illustrates the reason why the sampling the
orem requires a sampling rate that exceeds twice the highest frequency, as 
mentioned earlier. 

The large dots in Fig. 4.10 are samples taken uniformly at a rate of less than 
1 sample/s (in fact, the separation between samples exceeds 2 s, which gives a 
sampling rate lower than 1/2 samples/s). The sampled signal looks like a sine 
wave, but its frequency is about one-tenth the frequency of the original. This 
sampled signal, having a frequency well below anything present in the original 
continuous function is an example of aliasing. Given just the samples in 
Fig. 4.10, the seriousness of aliasing in a case such as this is that we would have 
no way of knowing that these samples are not a true representation of the 
original function. As you will see in later in this chapter, aliasing in images can 
produce similarly misleading results. • 

4.3.5 Function Reconstruction (Recovery) from Sampled Data 

In this section, we show that reconstruction of a function from a set of its sam
ples reduces in practice to interpolating between the samples. Even the simple 
act of displaying an image requires reconstruction of the image from its samples 

FIGURE 4.10 Illustration of aliasing. The under-sampled function (black dots) looks 
like a sine wave having a frequency much lower than the frequency of the continuous 
signal. The period of the sine wave is 2 s, so the zero crossings of the horizontal axis 
occur every second. 11 T is the separation between samples. 

EXAMPLE 4.3: 
Aliasing. 

Recall that 1 cycle!s is 
defined as 1 Hz, 
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by the display medium. Therefore, it is important to understand the fundamen
tals of sampled data reconstruction. Convolution is central to developing this 
understanding, showing again the importance of this concept. 

The discussion of Fig. 4.8 and Eq. (4.3-8) outlines the procedure for perfect 
recovery of a band-limited function from its samples using frequency domain 
methods. Using the convolution theorem, we can obtain the equivalent result 
in the spatial domain. From Eq. (4.3-8), F(J-t) = H(J-t)F(J-t), so it follows that 

f(t) = ~-I{F(J-t)} 

= ~-l{H(J-t)F(J-t)} 

= h(t) * f(t) 

(4.3-11) 

where the last step follows from the convolution theorem, Eq. (4.2-21). It can 
be shown (Problem 4.6) that substituting Eq. (4.3-1) for 1 (t) into Eq. (4.3-11) 
and then using Eq. (4.2-20) leads to the following spatial domain expression 
for f(t): 

00 

f(t) = 2: f(nilT)sinc[(t - nilT)/nilT] 
n=-OO 

(4.3-12) 

where the sinc function is defined in Eq. (4.2-19). This result is not unexpected 
because the inverse Fourier transform of the box filter, H (J-t), is a sinc function 
(see Example 4.1). Equation (4.3-12) shows that the perfectly reconstructed 
function is an infinite sum of sinc functions weighted by the sample values, and 
has the important property that the reconstructed function is identically equal 
to the sample values at multiple integer increments of il T. That is, for any 
t = kilT, where k is an integer, f(t) is equal to the kth sample f(kilT). This 
follows from Eq. (4.3-12) because sinc(O) = 1 and sinc(m) = 0 for any other 
integer value of m. Between sample points, values of f(t) are interpolations 
formed by the sum of the sinc functions. 

Equation (4.3-12) requires an infinite number of terms for the interpola
tions between samples. In practice, this implies that we have to look for ap
proximations that are finite interpolations between samples. As we discussed 
in Section 2.4.4, the principal interpolation approaches used in image process
ing are nearest-neighbor, bilinear, and bicubic interpolation. We discuss the ef
fects of interpolation on images in Section 4.5.4. 

III The Discrete Fourier Transform (OFT) of One 
Variable 

One of the key goals of this chapter is the derivation of the discrete Fourier 
transform (DF!') starting from basic principles. The material up to this point 
may be viewed as the foundation of those basic principles, so now we have in 
place the necessary tools to derive the DFT. 
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4.4.1 Obtaining the OFT from the Continuous Transform 
of a Sampled Function 

As discussed in Section 4.3.2, the Fourier transform of a sampled, band-limited 
function extending from -00 to 00 is a continuous, periodic function that also 
extends from - 00 to 00. In practice, we work with a finite number of samples, 
and the objective of this section is to derive the DFT corresponding to such 
sample sets. 

Equation (4.3-5) gives tfie transform, F(p.) of sampled data in terms of the 
transform of the original function, but it does not give us an expression for 
F(p.) in terms of the sampled function l(t) itself. We find such an expression 

directly from the definition of the Fourier transform in Eq. (4.2-16): 

F(p.) = 1:1(t)e-j21Tp.( dt 

By substituting Eq. (4.3-1) for let), we obtain 

00 100 

n~oo -00 t(t)8(t - n6T)e-j2~p.( dt 

00 :L tn e-j21Tp.nAT 

n=-OO 

(4.4-1) 

(4.4-2) 

where the last step follows from Eq. (4.3-2). Although tn is a discrete function, 

its Fourier F(p.) is continuous and infinitely periodic with period 1/ !::.T, as we 

know from Eq. (4.3-5). Therefore, all we need to characterize F(J.I.) is one period, 

and sampling one period is the basis for the DFT. _ 
Suppose that we want to obtain M equally spaced samples of F(p.) taken 

over the period p. = 0 to P. = 1/ !::.T. This is accomplished by taking the sam
ples at the following frequencies: 

m 
J.I. = M!::.T m = 0,1,2, ... , M-1 (4.4-3) 

Substituting this result for J.I. into Eq. (4.4-2) and letting Fm denote the result 
yields 

M-j 

Fm = :L tne-j21Tmn/M 

n=O 
m = 0,1,2, ... ,lv! ~ 1 (4.4-4 ) 
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This expression is the discrete Fourier transform we are seeking. t Given a set 
{fn} consisting of M samples of f(t), Eq. (4.4-4) yields a sample set {F m} of M 
complex discrete values corresponding to the discrete Fourier transform of the 
input sample set. Conversely, given {F m}, we can recover the sample set {fn} 
by using the inverse discrete Fourier transform (10FT) 

n = 0,1,2, ... , M - 1 (4.4-5) 

It is not difficult to show (Problem 4.8) that substituting Eq. (4.4-5) for fn 
into Eq. (4.4-4) gives the identity F m == F m' Similarly, substituting Eq. (4.4-4) 
into Eq. (4.4-5) for Fm yields fn == fn- This implies that Eqs. (4.4-4) and (4.4-5) 
constitute a discrete Fourier transform pair. Furthermore, these identities in
dicate that the forward and inverse Fourier transforms exist for any set of 
samples whose values are finite. Note that neither expression depends ex
plicitly on the sampling interval IlT nor on the frequency intervals of Eq. 
(4.4-3). Therefore, the OFT pair is applicable to any finite set of discrete 
samples taken uniformly. 

We used m and n in the preceding development to denote discrete variables 
because it is typical to do so for derivations. However, it is more intuitive, es
pecially in two dimensions, to use the notation x and y for image coordinate 
variables and u and v for frequency variables, where these are understood to 
be integers.tThen, Eqs. (4.4-4) and (4.4-5) become 

and 

M-j 

F(u) 2:: f(x)e-j21TllX/M 
x=o 

1 M-j 
f(x) = - 2:: F(u)ej21Ttlx/M 

M u=o 

u = 0, 1,2, ... , M - 1 ( 4.4-6) 

x = 0, 1, 2, ... , M - 1 ( 4.4-7) 

where we used functional notation instead of subscripts for simplicity. Clearly, 
F(u) == F m and f(x) == fn. From this point on, we use Eqs. (4.4-6) and (4.4-7) 
to denote the 1-0 OFT pair. Some authors include the 1/ M term in Eq. (4.4-6) 
instead of the way we show it in Eq. (4.4-7). That does not affect the proof that 
the two equations form a Fourier transform pair. 

'Note from Fig. 4.6(b) that the interval [0, 1/.1 T] covers two back-fb-back half p~riods of the transform. 
This means that the data in Fm requires re-ordering to obtain samples that are ordered from the lowest 
the highest frequency of a period. This is the price paid for the notational convenience of taking the 
samples at m = 0,1, ... , M 1. instead of using samples on either side of the origin, which would re
quire the use of negative notation. The procedure to order the transform data is discussed in Section 
4.6.3. 

tWe have been careful in using I for cOnlinuous spatial variables and J.I. for the corresponding cOnlinuolls 
frequency variable. From this point on, we will use x and II to denote one-dimensional discrete spatial 
and frequency variables. respectivelv. When dealing with two-dimensional functions. we will use (I. z) 
and (/J.. v) to denote continuous spatial and frequency domain variables. respectively. Similarly. we will use 
(x,y) and (u. v) to denote their discrete counterparts. 
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It can be shown (Problem 4.9) that both the forward and inverse discrete 
transforms are infinitely periodic, with period M. That is, 

F(u) = F(u + kM) ( 4.4-8) 

and 

.. [(x) = [(x + kM) (4.4-9) 

where k is an integer. 
The discrete equivalent of the convolution in Eq. (4.2-20) is 

M-J 

[(x) * hex) = 2. [(m)h(x - m) (4.4-10) 
m=O 

for x = 0, 1,2, ... , M - 1. Because in the preceding formulations the functions 
are periodic, their convolution also is periodic. Equation (4.4-10) gives one 
period of the periodic convolution. For this reason, the process inherent in this 
equation often is referred to as circular convolution, and is a direct result of the 
periodicity of the DFT and its inverse. This is in contrast with the convolution 
you studied in Section 3.4.2, in which values of the displacement, x, were deter
mined by the requirement of sliding one function completely past the other, 
and were not fixed to the range [0, M - 1] as in circular convolution. We discuss 
this difference and its significance in Section 4.6.3 and in Fig. 4.28. 

Finally, we point out that the convolution theorem given in Eqs. (4.2-21) and 
(4.2-22) is applicable also to discrete variables (Problem 4.10). 

4.4,2 Relationship Between the Sampling and Frequency Intervals 

If [(x) consists of M samples of a function J(t) taken AT units apart, the 
duration of the record comprising the set V(x)}, x = 0,1,2, ... , M - 1, is 

T = MA.T (4.4-11) 

The corresponding spacing, Au, in the discrete frequency domain follows from 
Eq. (4.4-3): 

1 1 
Au = -- =-

MAT T 
(4.4-12) 

The entire frequency range spanned by the M components of the DFT is 

1 n = MAu =
AT 

(4.4-13) 

Thus, we see from Eqs. (4.4-12) and (4.4-13) that that the resolution in fre
quency, Au, of the DFT depends on the duration T over which the continuous 
function, J(r), is sampled, and the range of frequencies spanned by the DFT 
depends on the sampling interval I:!.T. Observe that both expressions exhibit 
inverse relationships with respect to T and AT. 

It is not obvious why the 
discrete function f(x) 
should be periodic, con· 
sidering that the continuo 
ous function from which 
it was sampled may not 
be. One informal way to 
reason this out is to keep 
in mind that sampling reo 
sults in a periodiC DFf. It 
is logical that f(x). which 
is the inverse DFf. has to 
be periodic also for the 
DFf pair to exist. 
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EXAMPLE 4.4: 
The mechanics of 
computing the 
DFf. 

.l b 
FIGURE 4.11 
(a) A function, 
and (b) samples in 
the x-domain. In 
(a),tisa 
continuous 
variable; in (b).x 
represents intc;ger 
values. 

• Figure 4.11(a) shows four samples of a continuous function, f(t), taken AT 
units apart. Figure 4.l1(b) shows the sampled values in the x-domain. Note 
that the values of x are 0, 1, 2, and 3, indicating that we could be referring to 
any four samples of f(t). 

From Eq. (4.4-6), . 

3 

F(O) = 2:f(x) = [f(O) + f(l) + f(2) + f(3)] 
x=O 

=1+2+4+4=11 

The next value of F(u) is 

3 
F(l) = 2:f(x)e-j21r(1)x/4 

x=O 

Similarly, F(2) ::::: -(1 + OJ) and F(3) = -(3 + 2j). Observe that all values of 
f(x) are used in computing each term of F(u). 

If instead we were given F(u) and were asked to compute its inverse, we 
would proceed in the same manner, but using the inverse transform. For instance, 

f(O) = ! ±F(u)ei21TU(0) 
4 u=O 

1 3 
= 2: F(u) 

4 u=o 

1 = - [11 - 3 + 2j - 1 - 3 - 2j] 
4 

1 = - [4] == 1 
4 

which agrees with Fig. 4.11(b). The other values of f(x) are obtained in a simi
lar manner. l!lfi 

fit) 

to to + 1 D. T to + 2.1 T to + 3.1 T 

, , , , , 
I , 
I , , 

'-----'-----''----',--- x 
2 3 
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m Extension to Functions of Two Variables 

In this section, we extend to two variables the concepts introduced in Sections 
4.2 through 4.4. 

4.5.1 The 2-D Impulse and Its Sifting Property 

The impulse, 8(t, z), of two continuous variables, t and z, is defined as in 
Eq. (4.2-8): .. 

8(t, z) = {: 

and 

ift=z=O 
otherwise 

1:1: 8(t, z) dt dz = 1 

(4.5-1a) 

(4.5-1b) 

As in the 1-D case, the 2-D impulse exhibits the sifting property under 
integration, 

1:1: f(t, z)8(t, z)dt dz = f(O,O) (4.5-2) 

or, more generally for an impulse located at coordinates (to, Zo), 

(4.5-3) 

As before, we see that the sifting property yields the value of the function 
f(t, z) at the location of the impulse. 

For discrete variables x and y, the 2-D discrete impulse is defined as 

8(x, y) = {~ 
and its sifting property is 

00 00 

if x = y = ° 
otherwise 

2: 2: f(x, y)8(x, y) = f(O, 0) 
x=-oo y=-oo 

(4.5-4) 

( 4.5-5) 

where f(x, y) is a function of discrete variables x and y. For an impulse located 
at coordinates (xo, Yo) (see Fig. 4.12) the sifting property is 

00 00 

2: 2: f(x, y)8(x - Xo, Y Yo) = f(xo, Yo) (4.5-6) 
x=-oo y=-oo 

As before, the sifting property of a discrete impulse yields the value of the dis
crete function f(x, y) at the location of the impulse. 

,'. 
'f: 
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FIGURE 4.12 
Two-dimensional 
unit discrete 
impulse. Variables 
x and yare 
discrete, and 8 is 
zero everywhere 
except at 
coordinates 
(xo. Yo)· 

EXAMPLE 4.5: 
Obtaining the 2-D 
Fourier transform 
of a simple 
function. 

8(x - Xo. Y - Yo) 

x 
Y 

The 2-D Continuous Fourier Transform Pair 

Let f(t, z) be a continuous function of two continuous variables, t and z. The 
two-dimensional, continuous Fourier transform pair is given by the expressions 

( 4.5-7) 

and 

( 4.5-8) 

where J-L and v are the frequency variables. When referring to images, t and z 
are interpreted to be continuous spatial variables. As in the I-D case, the do
main of the variables J-L and v defines the continuous frequency domain. 

Figure 4.13(a) shows a 2-D function analogous to the 1-D case in Example 4.1. 
Following a procedure similar to the one used in that example gives the result 

ITI212/2 
= .. Ae-j27r(/LI+vz) dt dz 

. -T/2 -2/2 

[ 
sine 1TJ-LT) J[ sine 1TVZ) ] = ATZ ----

(1TJ-LT) ,,(1TVZ) 

The magnitude (spectrum) is given by the expression 

I )1 _ jSin(1TJ-LT)ljsin(1TVZ)j 
IF(J-L, v - ATZ (1TJ-LT) 1 (1TVZ) 

Figure 4.13(b) shows a portion of the spectrum about the origin. As in the 1-D 
case, the locations of the zeros in the spectrum are inversely proportional to 
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a b 
fiGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The 
block is longer along the t-axis, so the spectrum is more "contracted" along the Waxis. 
Compare with Fig. 4.4. 

the values of T and Z. Thus, the larger T and Z are, the more "contracted" the 
spectrum will become, and vice versa. ~ 

4.),3 Two-Dimensional Sampling and the 2-D Sampling Theorem 
In a manner similar to the I-D case, sampling ih two dimensions can be mod
eled using the sampling function (2-D impulse train): 

00 00 

s!;TtJ.z(t, z) = 2: 2: o(t - mIJ.T, z - nIJ.Z) ( 4.5-9) 
m=-OC n=-OO 

where AT and IJ.Z are the separations between samples along the t- and z-axis 
of the continuous function f(t, z). Equation (4.5-9) describes a set of periodic 
impulses extending infinitely along the two axes (Fig. 4.14). As in the l-D case 
illustrated in Fig. 4.5, multiplying f(t, z) by s!;Tt;z(t, z) yields the sampled 
function. 

Function f(t, z) is said to be band-limited if its Fourier transform is 0 out
side a rectangle established by the intervals [-J-tmax, J-tmax] and [-vmax• vIllax]: 

that is, 

F(J-t, v) = 0 for I/LI ;::: J-tmax and Ivi ;::: V max (4.5-10) 

The two-dimensional sampling theorem states that a continuous, band-limited 
function f(t, z) can be recovered with no error from a set of its samples if the 
sampling intervals are 

and 

1 
AT<--

2/Lmax 

1 
IJ.Z<-~-

2vmax 
or, expressed in terms of the sampling rate, if 

(4.5-11) 

2) 
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FIGURE 4.14 
1Wo-dimensional 
impulse train. 

a b 

FIGURE 4.15 
Two-dimensional 
Fourier transforms 
of (a) an over
sampled, and 
(b) under-sampled 
band-limited 
function. 

SIl.T.l.z(t, z) 

z 

1 
!::.T > 2/-Lrnax (4.5-13) 

and 

1 
!::.Z > 2vrnax (4.5-14) 

Stated another way, we say that no information is lost if a 2-D, band-limited, con
tinuous function is represented by samples acquired at rates greater than twice 
the highest frequency content of the function in both the wand v-directions. 

Figure 4.15 shows the 2-D equivalents of Figs. 4.6(b) and (d). A 2-D ideal box 
filter has the form illustrated in Fig. 4.B(a). The dashed portion of Fig. 4.15(a) 
shows the location of the filter to achieve the necessary isolation of a single pe
riod of the transform for reconstruction of a band-limited function from its sam
ples, as in Section 4.3.3. From Section 4.3.4, we know that if the function is 
under-sampled the periods overlap, and it becomes impossible to isolate a single 
period, as Fig. 4.l5(b) shows. Aliasing would result under such conditions. 

4.5.4 Aliasing in Images 
In this section, we extend the concept of aliasing to images and discuss several 
aspects related to image sampling and resampiing. 

fLmax 

Footprint of an 

r ideallowpass 
(box) filter 

-.... . .. 
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Extension from I-D aliasing 

As in the I-D case, a continuous function f(t, z) of two continuous variables,t and 
Z, can be band-limited in general only if it extends infinitely in both coordinate di
rections. The very act of limiting the duration of the function introduces corrupting 
frequency components extending to infinity in the frequency domain, as explained 
in Section 4.3.4. Because we cannot sample a function infinitely, aliasing is always 
present in digital images, j'tst as it is present in sampled I-D functions. There are 
two principal manifestations of aliasing in images: spatial aliasing and temporal 
aliasing. Spatial aliasing is due to under-sampling, as discussed in Section 4.3.4. 
Temporal aliasing is related to time intervals between images in a sequence of im
ages. One of the most common examples of temporal aliasing is the "wagon 
wheel" effect, in which wheels with spokes in a sequence of images (for example, 
in a movie) appear to be rotating backwards. This is caused by the frame rate being 
too low with respect to the speed of wheel rotation in the sequence. 

Our focus in this chapter is on spatial aliasing. The key concerns with spatial 
aliasing in images are the introduction of artifacts such as jaggedness in line 
features, spurious highlights, and the appearance of frequency patterns not pre
sent in the original image. The following example illustrates aliasing in images . 

• Suppose that we have an imaging system that is perfect, in the sense that it 
is noiseless and produces an exact digital image of what it sees, but the number 
of samples it can take is fixed at 96 X 96 pixels. If we use this system to digitize 
checkerboard patterns, it will be able to resolve patterns that are up to 
96 X 96 squares, in which the size of each square is 1 ~ 1 pixels. In this limit
ing case, each pixel in the resulting image will correspond to one square in the 
pattern. We are interested in examining what happens when the detail (the 
size of the checkerboard squares) is less than one camera pixel; that is, when 
the imaging system is asked to digitize checkerboard patterns that have more 
than 96 X 96 squares in the field of view. 

Figures 4.l6(a) and (b) show the result of sampling checkerboards whose 
squares are of size 16 and 6 pixels on the side, respectively. These results are as 
expected. However, when the size of th~ squares is reduced to slightly less than 
one camera pixel a severely aliased image results, as Fig. 4.16(c) shows, Finally, 
reducing the size of the squares to slightly less than 0.5 pixels on the side yielded 
the image in Fig. 4.16(d). In this case, the aliased result looks like a normal 
checkerboard pattern. In fact, this image would result from sampling a checker
board image whose squares were 12 pixels on the side. This last image is a good 
reminder that aliasing can create results that may be quite misleading. 1£ 

The effects of aliasing can be reduced by slightly defocusing the scene to be 
digitized so that high frequencies are attenuated. As explained in Section 4.3.4, 
anti-aliasing filtering has to be done at the "front-end," before the image is 
sampled. There are no such things as after-the-fact software anti-aliasing filters 
that can be used to reduce the effects of aliasing caused by violations of the 
sampling theorem. Most commercial digital image manipulation packages do 
have a feature called "anti-aliasing." However. as illustrated in Examples 4.7 

EXAMPLE 4.6: 
Aliasing in 
images. 

This example shOUld not 
be construed as being un
realistic. Sampling a 
"perfect" scene under 
noiseless, distortion-free 
conditions is common 
when converting computer
generated models and 
vector drawings to digital 
images. 

" i' 
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~: . 

FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares 
are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c) and (d). the 
sides of the squares are 0.9174 and 0.4798 pixels, respectively, and the results show 
significant aliasing. Note that (d) masquerades as a "normal" image. 

and 4.8, this term is related to blurring a digital image to reduce additional 
aliasing artifacts caused by resampling. The term does not apply to reducing 
aliasing in the original sampled image. A significant number of commercial 
digital cameras have true anti-aliasing filtering built in, either in the lens or on 
the surface of the sensor itself. For this reason, it is difficult to illustrate alias
ing using images obtained with such cameras. 

Image interpolation and resampling 

As in the I-D case, perfect reconstruction of a band-limited image function 
from a set ofits samples requires 2-D convolution in the spatial domain with a 
sinc function. As explained in Section 4.3.5, this theoretically perfect recon
struction requires interpolation using infinite summations which, in practice, 
forces us to look for approximations. One of the most common applications of 
2-D interpolation in image processing is in image resizing (zooming and 
shrinking). Zooming may be viewed as over-sampling, while shrinking may be 
viewed as under-sampling. The key difference between these two operations 
and the sampling concepts discussed in previouss.ections is that zooming and 
shrinking are applied to digital images. 

Interpolation was explained in Section 2.4.4. Our interest there was to illus-
trate the performance of nearest and bicubic 
In this section, we some additional examples with a focus on sampling and 
anti-aliasing issues. A. special case or nearest interpolation that ties in 
nicely with over-sampling is which is 
when we want to 
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instance, to double the size of an we duplicate each column. This dou
bles the image size in the horizontal direction. Then, we duplicate each row of 
the enlarged image to double the size in the vertical direction. The same pro
cedure is used to enlarge the image any integer number of times. TI1e intensity
level assignment of each pixel is predetermined by the fact that new locations 
are exact duplicates of old locations. 

Image shrinking is done in a manner similar to zooming. Under-sampling is 
achieved by row-column geletion (e.g .. to shrink an image by one-half, we 
delete every other row and column). We can use the zooming grid analogy in 
Section 2.4.4 to visualize the concept of shrinking by a non-integer factor, ex
cept that we now expand the grid to fit over the original image, do intensity
level interpolation, and then shrink the grid back to its specified size. To reduce 
aliasing, it is a good idea to blur an image slightly before shrinking it (we discuss 
frequency domain blurring in Section 4.8). An alternate technique is to super
sample the original scene and then reduce (resample) its size by row and col
umn deletion. This can yield sharper results than with smoothing, hut it clearly 
requires access to the original scene. Clearly, if we have no access to the original 
scene (as typically is the case in practice) super-sampling is not an option . 

• The effects of aliasing generally are worsened when the size of a digital 
image is reduced. Figure 4.17(a) is an image purposely created to illustrate the 
effects of aliasing (note the thinly-spaced parallel lines in all garments worn by 
the subject). There are no objectionable artifacts in Fig. 4.17( a), indicating that 

'i~.:i" 
FIGURE 4.17 Illustration of aliasing on 
(b) Result of resizing the image to 5()Lfc of 
(c) Result of blurring the in (a) \vith a 
more blurred than (b). hut 
Compression Lahorator\_ I 

Tl1t process of rcsam~ 
piing an image \vithout 
using band-limiting blur
ring is cailed tit'cimalion. 

EXAMP},E 4.7: 
Illustration of 
aliasing in 
resampJed 
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EXAMPLE 4.8: 
Illustration of 
jaggies in image 
shrinking. 

'iii.rei: 

the sampling rate used initially was sufficient to avoid visible aliasing. In 
Fig. 4.17(b), the image was reduced to 50% of its original size using row
column deletion. The effects of aliasing are quite visible in this image (see, 
for example the areas around the subject's knees). The digital "equivalent" 
of anti-aliasing filtering of continuous images is to attenuate the high fre
quencies of a digital image by smoothing it before resampling. Figure 
4.17(c) shows the result of smoothing the image in Fig. 4.17(a) with a 3 x 3 
averaging filter (see Section 3.5) before reducing its size. The improvement 
over Fig. 4.l7(b) is evident. Images (b) and (c) were resized up to their orig
inal dimension by pixel replication to simplify comparisons. 1'\ 

When you work with images that have strong edge content, the effects of 
aliasing are seen as block-like image components, called jaggies. The following 
example illustrates this phenomenon . 

• Figure 4.18(a) shows a 1024 X 1024 digital image of a computer-generated 
scene in which aliasing is negligible. Figure 4.18(b) is the result of reducing 
the size of (a) by 75% to 256 X 256 pixels using bilinear interpolation and 
then using pixel replication to bring the image back to its original size in 
order to make the effects of aliasing (jaggies in this case) more visible. As in 
Example 4.7, the effects of aliasing can be made less objectionable by 
smoothing the image before resampling. Figure 4.18(c) is the result of using a 
5 X 5 averaging filter prior to reducing the size of the image. As this figure 
shows, jaggies were reduced significantly. The size reduction and increase h) 

the original size in Fig. 4.18(c) were done using the same approach used to 
generate Fig. 4.18(b). 

FIGURE 4.18 Illustration of jaggies. (a) 1024 x 1024 ,",'n""q'0" scene with 
negligible visible aliasing. (b) Result of (a) to 
(c) Result of blurring the image in (a) with a 5 .A. 

interpolation. (Original image eoul'esy of n 

interpolation. 
bilinear 
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• In the previous two examples, we used pixel replication to zoom the small 
resampled images. This is not a preferred approach in general, as Fig. 4.19 il
lustrates. Figure 4.19(a) shows a 1024 X 1024 zoomed image generated by 
pixel replication from a 256 X 256 section out of the center of the image in 
Fig. 4.18(a). Note the "blocky" edges. The zoomed image in Fig. 4.19(b) was 
generated from the same 256 X 256 section, but using bilinear interpolation. 
The edges in this result are considerably smoother. For example, the edges of 
the bottle neck and the lal'ge checkerboard squares are not nearly as blocky 
in (b) as they are in (a). III 

Moire patterns 

Before leaving this section, we examine another type of artifact, called moire 
patterns,t that sometimes result from sampling scenes with periodic or nearly 
periodic components. In optics, moire patterns refer to beat patterns pro
duced between two gratings of approximately equal spacing. These patterns 
are a common everyday occurrence. We see them, for example, in overlapping 
insect window screens and on the interference between TV raster lines and 
striped materials. In digital image processing, the problem arises routinely 
when scanning media print, such as newspapers and magazines, or in images 
with periodic components whose spacing is comparable to the spacing be
tween samples. It is important to note that moire patterns are more general 
than sampling artifacts. For instance, Fig. 4.20 shows the moire effect using ink 
drawings that have not been digitized. Separately, the patterns are clean and 
void of interference. However, superimposing one pattern on the other creates 

a b 

FIGURE 4.19 Image zooming. (a) A 1024 x 1024 digital 
replication from a 256 X 256 image extracted from 
(b) Image generated using bi-linear interpolation, 
jaggies. 

tThe term moire is a French word (nol the name of it person) that appear, to ilave originated witb 
weavers who first noticed interference patterns visihle on some tahrics: the term reloted on the word 
mohair. a cloth made from Angola goat 

EXAMPLE 4.9: 
Illustration of 
jaggies in image 
zooming. 
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.1;'i: 
~l;;l 

FIGURE 4.20 
Examples of the 
moire effect. 
These are ink 
drawings, not 
digitized patterns. 
Superimposing 
one pattern on 
the other is 
equivalent 
mathematically to 
multiplying the 
patterns. 

Color printing uses red. 
green. and blue dots to 
produce the sensation in 
the eye of continuous 
color. 

fiGURE 4.21 
A newspaper 
image of size 
246 X 168 pixels 
sampled at 75 dpi 
showing a moire 
pattern. The 
moire pattern in 
this image is the 
interference 
pattern created 
between the ±45° 
orientation of the 
halftone dots and 
the north-south 
orientation of the 
sampling grid 
used to digitize 
the image. 

........... ..... ..... . .. .. ~.... .. ........ .. ........... .. ...... .. ..... ..... . ..... ..... . ........... ..... ..... . ..... ..... . ..... ...... . ........... ..... ..... . ..... ..... . . ......... . .. ...... . ..... ..... . ..... ..... . ..... ..... . ..... ..... . ..... ..... . ..... ..... . .. ...... . ..... ..... . ..... ..... . ..... ..... . .. ...... . ..... ..... . .. ...... . ..... ..... . .. ...... . ..... ..... . ..... ..... . .. ...... . ..... ..... . .. ...... . ..... ..... . ..... ..... . 

a beat pattern that has frequencies not present in either of the original pat~ 
terns. Note in particular the moire effect produced by two patterns of dots, as 
this is the effect of interest in the following discussion. 

Newspapers and other printed materials make use of so called halftone 
dots, which are black dots or ellipses whose sizes and various joining schemes 
are used to simulate gray tones. As a rule, the following numbers are typical: 
newspapers are printed using 75 halftone dots per inch (dpi for short), maga~ 
zines use 133 dpi, and high-quality brochures use 175 dpi. Figure 4.21 shows 
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what happens when a newspaper image is sampled at 75 dpi. The sampling lat
tice (which is oriented vertically and horizontally) and dot patterns on the 
newspaper image (oriented at ±45C

) interact to create a uniform moire pat
tern that makes the image look blotchy. (We discuss a technique in Section 
4.10.2 for reducing moire interference patterns.) 

As a related point of interest. Fig. 4.22 shows a newspaper image sam
pled at 400 dpi to avoid moire effects. The enlargement of the region sur
rounding the subject's lett eye illustrates how halftone dots are used to 
create shades of gray. The dot size is inversely proportional to image inten
sity. In light areas, the dots are small or totally absent (see, for example, the 
white part of the eye). In light gray areas, the dots are larger, as shown 
below the eye. In darker areas, when dot size exceeds a specified value (typ
ically 50%), dots are allowed to join along two specified directions to form 
an interconnected mesh (see, for example, the left part of the eye). In some 
cases the dots join along only one direction, as in the top right area below 
the eyebrow. 

The 2-D Discrete Fourier Transform and Its Inverse 

A development similar to the material in Sections 4.3 and 4.4 would yield the 
following 2-D discrete Fourier fram/urm (DFT): 

M--1 N-J 

F(u, v) = 2: 2: lex, y)e- j2rr(lix/M+l'V!!\) (4.5-15) 
x=O r=() 

where f(x, y) is a digital image of size M x N. As in the 'J -D case, Eq. (4.5-15) 
must be evaluated for values of the discrete variables 1I and v in the ranges 
u = 0, 1, 2, ... , M - 1 and v = 0, I, 2, . , .. N - 1 .f 

lAs mentioned in Section 4.4.1. keep in mind thai in Ihis l'hapln we the (I, ) and (v' 1,1 In denoie '}D 
cOlltilluous spatial and frequency-uomain variables, III the 2-D diltTi'lC C;"e, we us,' (\ It for spiltiai 
variables and (u. v) for frequency-domain variable" 

Somclime~ you wiil find 
in the lilcrnlure the 
lIMN cnnSlnnt in front of 
DFf instead of the 
IDf-TAt timeS,lhe COil· 

stant i?_~xrrcsscd as 
J/\IMN and is included 
in front of the forward 
£.lnd Inverse transforms, 
thus crcMing a more 
symmetric pair. Any oj 

thc:-;e formula1ions b. cor
recL provided t ha I ~ ou 
are consistent. 

FIGURE 4.22 
A newspaper 
image and all 
enlargement 
showing how 
halftone dots are 
arranged to 
render shades of 
gray. 
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Given the transform F(u, v), we can obtain f(x, y) by using the inverse dis
crete Fourier transform (IDFT): 

1 M-] N-] 

f(x, y) = -- ~ ~ F(u, v)e j21r(lIx/M+lJy/N) 

MN u=o v=o 
(4.5-16) 

for x =' 0,1,2, ... , M - 1 and y = 0,1,2, ... , N -1. Equations (4.5-15) and 
(4.5-16) constitute the 2-D discrete Fourier transform pair. The rest of this 
chapter is based on properties of these two equations and their use for image 
filtering in the frequency domain. 

III Some Properties of the 2-D Discrete Fourier 
Transform 

In this section, we introduce several properties of the 2-D discrete Fourier 
transform and its inverse. 

4.6.1 Relationships Between Spatial and Frequency Intervals 
The relationships between spatial sampling and the corresponding frequency
domain intervals are as explained in Section 4.4.2. Suppose that a continuous 
function f(t, z) is sampled to form a digital image, f(x, y), consisting of 
M x N samples taken in the (- and z-directions, respectively. Let tlT and tlZ 
denote the separations between samples (see Fig. 4.14). Then, the separations 
between the corresponding discrete, frequency domain variables are given by 

1 
(4.6-1) tlu = ----

MtlT 

and 

1 
tlv= NtlZ (4.6-2) 

respectively. Note that the separations between samples in the frequency do
main are inversely proportional both to the spacing between spatial samples 
and the number of samples. 

4.6.2 Translation and Rotation 
It can be shown by direct substitution into E~. (4.5-15) and (4.5-16) that 
the Fourier transform pair satisfies the following translation properties 
(Problem 4. J 6): 

( 4.6-3) 

and 

(4.6-4 ) 
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That is, multiplying f(x, y) by the exponential shown shifts the origin of the 
OFT to (uo, vo) and, conversely, mUltiplying F(u, v) by the negative of that 
exponential shifts the origin of f(x, y) to (xo, Yo). As we illustrate in 
Example 4.13, translation has no effect on the magnitude (spectrum) of 
F(u, v). 

Using the polar coordinates 

x = r cos 0 ., = r sin 0 u = w cos!.p v == w sin !.p 

results in the following transform pair: 

f(r,O + 00) ¢=> F(w,!.p + 00) (4.6-5) 

which indicates that rotating f(x, y) by an angle 00 rotates F(u, v) by the same 
angle. Conversely, rotating F(u, v) rotates f(x, y) by the same angle. 

4.6.3 Periodicity 
As in the 1-0 case, the 2-0 Fourier transform and its inverse are infinitely pe
riodic in the u and v directions; that is, 

and 

f(x, y) = f(x + kjM, y) = f(x, y + k2N) = f(x + kIM, y + k 2N) (4.6-7) 

where k j and k2 are integers. 
The periodicities of the transform and its inverse are important issues in 

the implementation of OFT-based algorithms. Consider the 1-0 spectrum in 
Fig. 4.23(a). As explained in Section 4.4.1, the transform data in the interval 
from 0 to M 1 consists of two back-to-back half periods meeting at point 
M12. For display and filtering purposes, it is more convenient to have in this 
interval a complete period of the transform in which the data are contiguous, 
as in Fig. 4.23(b). It follows from Eq. (4.6-3) that 

f(x)e j27r(lInXIM) ¢=> F(u - uo) 

In other words, multiplying f(x) by the exponential term shown shifts the data 
so that the origin, F(O), is located at uo. If we let Uo = M12, the exponential 
term becomes e j7Tx which is equal to (-1)"' because x is an integer. In this case, 

That is, multiplying f(x) by (-1)-' shifts the data so that F(O) is at the center of 
the interval [0, M - 1], which corresponds to Fig. 4.23(b), as desired. 

In 2-D the situation is more difficult to graph, but the principle is the same, 
as Fig. 4.23( c) shows. Instead of two half periods, there are now four quarter 
periods meeting at the point (M /2, N /2). The dashed rectangles correspond to 
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a 
b 
c d 

FIGURE 4.23 
Centering the 
Fourier transform. 
(a) A I-D DFf 
showing an infinite 
number of periods. 
(b) Shifted DFf 
obtained by 
multiplying I(x) 
by (-lY before 
computing F(u). 
(c) A 2-D DFf 
showing an infinite 
number of periods. 
The solid area is 
the M X N data 
array, F(u, v), 
obtained with Eq. 
(4.5-15). This array 
consists of four 
quarter periods. 
(d) A Shifted DFT 
obtained by 
mUltiplying I(x, y) 
by (-1)x+y 
before computing 
F(u, v). The data 
now contains one 
complete, centered 
period, as in (b). 

F(u) 

'. Two back-to-back 
periods meet here. 

.' . 

" ....... : ..... '. ~ ". .... ..". 
~~~~~~--~~~~~~~~~~+--~·--~··~·-·~·~··~-u 

'--M/2 0 M/2-1 J '--M/2 J '--M 
M-I 

F(u) 

. '. •• [.. Two back-to-back 
.... .... periods meet here. .: 

....... " ........... : ............. t ............. : 
+-------~~~--~~~-*--~~--~~~~--~----u 

o '-M /2 '- M - 1 
1- One period (M samples) --I 

_~ _________ L _________ ~_ 
I I I 

I I I 
-~---------~---------~-

I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

I I I 
I I I 
I I I 
I I I 
I I 
I I I 
I I I 
I I I 
I I I I (0,0) --.....IN/2-..... N - 1,1 -i--------- I v -~---- ----~---- ----~-
I I I 
I I I 

: : F(u, v) : 
I I 

: :Four back-to-back: 
: : periods meet here.: 

-~---------~---------~-
I I I 

I 
I 
I M/2--..... 
I -
I 
I 
I 
I M - 1 --..... F(u, v) 

- i - ---- -F~::ba:k-to-back )1 
periods meet here. 

lJ = Periods of the DFT. 

D = M x N data array, F(II, v). 

the infinite number of periods of the 2-D DFT. As in the I-D case, visualization 
is simplified if we shift the data so that F(O, 0) is at (MI2, NI2). Letting 
(uo, vol = (MI2, N12) in Eq. (4.6-3) results in the expression 

f(x,y)(-ly+V<:=>F(u - M12,v N12) ( 4.6-8) 

Using this equation shifts the data so that F(O, 0) is at the center of the 
frequency rectangle defined by the intervals [0, M -- 1] and [0, N - 1], as 
desired. Figure 4.23(d) shows the result. We illustrate these concepts later in 
this section as part of Example 4.11 and Fig. 4.24. 
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4.6.4 Symmetry Properties 
An important result from functional analysis is that any real or complex func
tion, w(x, y), can be expressed as the sum of an even and an odd part (each of 
which can be real or complex): 

W(x, y) = we(x, y) + wo(x, y) (4.6-9) 

where the even and odd parts are defined as 

( ) 
A. w(x,y) + we-x, -y) 

We x, y - 2 (4.6-10a) 

and 

( ) 
A. w(x, y) - we-x, -y) 

Wo x, y - 2 (4.6-lOb) 

Substituting Eqs. (4.6-1Oa) and (4.6-lOb) into Eq. (4.6-9) gives the identity 
w(x, y) == w(x, y), thus proving the validity of the latter equation. It follows 
from the preceding definitions that 

(4.6-11a) 

and that 

(4.6-11b) 

Even functions are said to be symmetric and odd functions are antisymmetric. 
Because all indices in the DFT and IDFT are positive, when we talk about 
symmetry (antisymmetry) we are referring to symmetry (antisymmetry) about 
the center point of a sequence. In terms of Eq. (4.6-11), indices to the right of 
the center point of a 1-D array are considered positive, and those to the left 
are considered negative (similarly in 2-D). In our work, it is more convenient 
to think only in terms of nonnegative indices, in which case the definitions of 
evenness and oddness become: 

weCx, y) = weCM - x, N - y) (4.6-12a) 

and 

(4.6-12b) 

where, as usual, M and N are the number of rows and columns of a 2-D array. 
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To convince yourself that 
the samples of an odd 
function sum to zero, 

sketch one period of a 
1-0 sine wave about the 
origin or any other inter
val spanning one period. 

EXAMPLE 4.10: 
Even and odd 
functions. 

We know from elementary mathematical analysis that the product of two 
even or two odd functions is even, and that the product of an even and an 
odd function is odd. In addition, the only way that a discrete function can be 
odd is if all its samples sum to zero. These properties lead to the important 
result that 

M-j N-l 

~ ~ wix, y)w,,(x, y) = 0 (4.6-13) 
x=o y=O 

for any two discrete even and odd functions We and woo In other words, be
cause the argument of Eq. (4.6-13) is odd, the result of the summations is O. 
The functions can be real or complex. 

II Although evenness and oddness are visualized easily for continuous func
tions,lhese concepts are not as intuitive when dealing with discrete sequences. 
The following illustrations will help clarify the preceding ideas. Consider the 
1-D sequence 

[ = {J(O) [(I) [(2) f(3)} 

={211l} 

in which M = 4. To test for evenness, the condition f(x) = f(4 - x) must be 
satisfied; that is, we require that 

f(O) = [(4), f(2) = f(2), f(l) = f(3), f(3) = f(l) 

Because f(4) is outside the range being examined, and it can be any value, 
the value of f(O) is immaterial in the test for evenness. We see that the next 
three conditions are satisfied by the values in the array, so the sequence is 
even. In fact, we conclude that any 4-point even sequence has to have the 
form 

{a b c b} 

That is, only the second and last points must be equal in a 4-point even se
quence. 

An odd sequence has the interesting property !-hat its first term, welO, 0), is 
always 0, a fact that follows directly from Eq. (4.6-lOb). Consider the 1-0 se
quence 

g = {g(O) g(1) g(2) g(3)} 

{O -1 0 I} 
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We easily can confirm that this is an odd sequence by noting that the terms in 
the sequence satisfy the condition g(x) = - g( 4 - x). For example, 
g(l) = -g(3). Any 4-point odd sequence has the form 

{O -b 0 b} 

That is, when M is an even number, a 1-D odd sequence has the property that 
the points at locations 0 and MI2 always are zero. When M is odd, the first 
term still has to be 0, but the remaining terms form pairs with equal value but 
opposite sign. 

The preceding discussion indicates that evenness and oddness of sequences 
depend also on the length of the sequences. For example, we already showed 
that the sequence {O -1 0 I} is odd. However, the sequence 
{O -1 0 1 O} is neither odd nor even, although the "basic" structure ap
pears to be odd. This is an important issue in interpreting DFf results. We 
show later in this section that the DFTs of even and odd functions have some 
very important characteristics. Thus, it often is the case that understanding 
when a function is odd or even plays a key role in our ability to interpret image 
results based on DFTs. 

The same basic considerations hold in 2-D. For example, the 6 x 6 2-D se-
quence 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 -1 0 1 0 

0 0 -2 0 2 0 

0 0 -1 0 1 0 
0 0 0 0 0 0 

is odd. However, adding another row and column of Os would give a result 
that is neither odd nor even. Note that the inner structure of this array is a 
Sobel mask, as discussed in Section 3.6.4. We return to this mask in 
Example 4.15. II 

Armed with the preceding concepts, we can establish a number of important 
symmetry properties of the DFT and its inverse. A property used frequently is 
that the Fourier transform of a real function, I(x, y), is conjugate symmetric: 

F*(u, v) = F(-u, -v) (4.6-14) 

If I(x, y) is imaginary, its Fourier transform is conjugate antisymmetric: 
F*( -u, -v) = - F(u, v). The proof of Eq. (4.6-14) is as follows: 

[ J
* M-J N-J 

F*(u, v) =~ ~) I(x, y)e-j21T(lIx/M+ll
y
/N) 

As an exercise. you 
should use Eq. (4.6-12b) 
to convince yourself that 
this 2-D sequence is odd. 

Conjugate symmetry also 
is called hermitian sym
metry, The term 
antihermitian is used 
sometimes to refer to 
conjugate antisymmctry. 
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TABLE 4.1 
Some symmetry 
properties of the 
2-D Off and its 
inverse. R(ll. u) 
and J(II, 11) are the 
real and imaginary 
parts of F(u, v), 
respectively. The 
term complex 
indicates that a 
function has 
nonzero real and 
imaginary parts. 

M-j N-I 

2: 2: {'(x, y)e j27T(IIX/M+uy /N) 

x~O y=O 

M·-I N-i 2: 2: f(x, y)e-j27T([-u]x/M+[-I']y/Nl 

x~O v=O 

= F( -u, -v) 

where the third step follows from the fact that f(x, y) is real. A similar ap
proach can be used to prove the conjugate antisymmetry exhibited by the 
transform of imaginary functions. 

Table 4.1 lists symmetries and related properties of the DFT that are useful 
in digital image processing. Recall that the double arrows indicate Fourier 
transfmm pairs; that is, for any row in the table, the properties on the right are 
satisfied by the Fourier transform of the function having the properties listed 
on the left, and vice versa. For example, entry 5 reads: The DFT of a real 
function f(x, y), in which (x, y) is replaced by (-x, -y), is F*(u, v), where 
F(u, 1J), the DFT of f(x, y). is a complex function, and vice versa. 

Spatial Domain t Frequency Domain t 

1) f(x. y) real <=> F'(lI, v) = F( -11, -v) 

2) [(x. y) imagi nary <=> F'(-u, -v) = -F(u, l!) 

3) [(x,y) real <=> R(Il. v) even; J(II, v) odd 

4) [(x,y) imaginary <=> R(u. v) odd; 1(11. v) even 

5) fe-x, -y) real <=> F*(u. v) complex 

6) f( - x. - y) complex <=> F(-lt, v) complex 

7) {(x, y) complex <=> F'(-u - v) complex 

8) [(x, y) real and even <=> F(ll. 11) real and even 

9) [(x, y) real and odd <=> F(II. v) imaginary and odd 

10) lex. y) imaginary and even <=> F(u, v~ imaginary and even 

11) f(x, y) imaginary and odd <=> F(lI. v) real and odd 

12) f(x. y) complex and ewn <=> F(II. v) complex and even 

13) f(x, y) complex and odd <=> F(II. v) complex and odd 

'Recall that X.y.ll. and IJ arc "ilcrete (II1tegcrJ vanables. wlth.r and 1/ m the range [0. M - IJ. and v. and 
I' in the range [0. ,'II I j. 'Ib ~ay that a complex function is evell means that ih real alld imaginary parts 
arc even. and similarlv for an odd complex function. 
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~ With reference to the even and odd concepts discussed earlier and illustrat
ed in Example 4.10, the following J -D sequences and their transforms are 
short examples of the properties listed in Table 4.1. The numbers in parenthe
ses on the right are the individual elements of F(u), and similarly for I(x) in 
the last two properties. 

Property fIx) 1"(11) 

3 'II 2 3 4} = {(10)(-2 + 2j)(-2) (-2 - 2j)} 
4 }{I 2 3 4} = {(2.5}) (.5 - .5}) (-.5}) (-.5 -.. 5})} 

8 {2 1 I 1 } = {(5) (1)(1) (1)} 

9 {O -I () I} = {(OJ (2j) (0) (-2j)) 

10 j{2 I I 1 } = {(5}) (j) (j) U)} 
11 j{O -I o I} = {(O) (-2) (0) (2)} . 

12 { (4 + 4j) (3 + 2j) (0 + 2j) (3 + 2})} = {flO + JOj)(4 + 2j) (-2 + 2j) (4 + 2j)} 
13 {to + OJ) (1 + Ij) (0 + OJ) (-1 - j)} = {(O + OJ) (2 - 2j) (0 + OJ) (-2 + 2j)} 

For example, in property 3 we see that a real function with elements 
{ 1 2 3 4} has Fourier transform whose real part, {] (} - 2 - 2 - 2 }, is 
even and whose imaginary part, {O 2 0 -2}, is odd. Property 8 tells us that 
a real even function has a transform that is real and even also. Property 12 
shows that an even complex function has a transform that is also complex and 
even. The other property examples are analyzed in a similar manner. 

~i In this example, we prove several of the properties in Table 4.1 to develop 
familiarity with manipulating these important properties, and to establish a 
basis for solving some of the problems at the end of the chapter. We prove only 
the properties on the right given the properties on the left. The converse is 
proved in a manner similar to the proofs we give here. 

Consider..property 3, which reads: If I(x, y) is a real function. the real part of 
its DFT is even and the odd part is odd; similarly, if a DFT has real and 
imaginary parts that are even and odd, respectively, then its IDFT is a real 
function. We prove this property formally as follows. F(u, v) is complex in 
general, so it can be expressed as the sum of a real and an imaginary part: 
F(u, v) = R(u, v) + jl(u, v). Then, F'(u. v) = R(ll, v) - jl(u, v). Also, 
F( -If, -v) = R( -II, -v) + jl( -u, -v). But, as proved earlier. if I(x, y) is real 
then F*(u, v) = F( -u, -v), which, based on the preceding two equations, means 
that R(u, v) = R( -u, --v) and I(ll, v) = -/(-11. -v). In vjew of Eqs. (4.6-11a) 
and (4.6-11 b), this proves that R is an even function and I is an odd function. 

Next, we prove property 8. If [(x, y) is real we know from property 3 that 
the real part of F(I/, v) is even, so to prove property 8 all we have to do is show 
that if I(x, y) is real and even then the imaginary part of F(lI. v) is 0 (i.e., F is 
real). The steps are as follows: 

M-] N-I 

F(u. v) = 2: 2:I(x, v)e- i2rr (flx/M+I'\/N) 

x=o \'=(} 

which we can write as 

EXAMPLE 4.11: 
1-0 ill ustra tions 
of properties from 
Table 4.1. 

EXAMPLE 4.12: 
Proving several 
symmetry 
properties of the 
DFT from Tahle 
4.1. 
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Note that we are not 
making a change of 
variable here. We are 
evaluating the DFT of 
f( - x, - y), so we simply 
insert this function into 
the equation, as we would 
any other function. 

M-] N-] 

F(u, V) = ~ ~ [fr(X, y)]e-j217'(llx/M+vy/N) 

x=O y=O 

M-J N-J 
= ~ ~ [fr(X, y)]e-j217'(ux/M)e-j2rr(vy/N) 

x=O y=O 

M-J N-l 

= ~ ~ [even][even - jodd][even - jodd] 
x=O y=O 

M-1N-l 

= ~ ~ [even][ even' even - 2jeven' odd - odd· odd] 
x=O y=O 

M-J N-l M-J N-l 

~ ~ [even' even] - 2j ~ ~ [even· odd] 
x=O y=O x=o y=O 

M-I N-] 

~ ~ [even· even] 
x=O y=O 

== real 

The fourth step follows from Euler's equation and the fact that the cos and sin 
are even and odd functions, respectively. We also know from property 8 that, in 
addition to being real,! is an even function. The only term in the penultimate 
line containing imaginary components is the second term, which is 0 according 
to Eg. (4.6-14). Thus, if [is real and even then F is real. As noted earlier, F is 
also even because fis real. This concludes the proof. 

Finally, we prove the validity of property 6. From the definition of the DFT, 

M-] N-l 

~{f(-x, -y)} ~ "'2.f( -x, _y)e-j217'(llX/M+vy/N) 

x=O y=O 

Because of periodicity, fe-x, -y) == f(M - x,N y). If we now define 
m = M x and n = N - y, then 

M-l N-l 
~{!(-x, -y)} == ~ ~ f(m, n)e-j2rr(u[M-mj/M-rv[N-nJ/N) 

m=O n=O 

(To convince yourself that the summations are correct, try a I-D transform 
and expand a few terms by hand.) Because exp[ - j27T(integer)] = 1, it 
follows that 
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M-J N-J 

~{f( -x, -y)} := L L f(m, n)e j21T(lIm/M+vn/N) 

m=O n=O 

= F(-u,-v) 

This concludes the proof. 

Fourier Spectrum.llnd Phase Angle 

Because the 2-D DFT is complex in general, it can be expressed in polar 
form: 

F(u, v) = /F(u, v)/e j q,(1I·1I) (4.6-15) 

where the magnitude 

[ 
') 2 J1

/
2 

/F(u, v)1 = R~(u, v) + I (u, v) (4.6-16) 

is called the Fourier (or frequency) spectrum, and 

[ 
J(u, v) ] 

cf>(u, v) = arctan R(u, v) (4.6-17) 

is the phase angle. Recall from the discussion in Section 4.2.1 that the arctan 
must be computed using a four-quadrant arctangent, such as MATLAB's 
atan2 (Imag, Real) function. 

Finally, the power spectrum is defined as 

P(u, v) = /F(u, v)12 

= R2(u, v) + J2(U, v) 
(4.6-18) 

As before, Rand J are the real and imaginary parts of F(u, v) and all compu
tations are carried out for the discrete variables u = 0, 1, 2, ... , M - 1 and 
v = 0,1,2, ... , N 1. Therefore, IF(u, v)l, cfJ(u, v), and P(u, v) are arrays of 
size M X N. 

The Fourier transform of a real function is conjugate symmetric [Eq. (4.6-14)], 
which implies that the spectrum has even symmetry about the origin: 

IF(u, v)1 = IF( -u, -v)1 (4.6-19) 

The phase angle exhibits the following odd symmetry about the origin: 

cfJ(u, v) = -cfJ( -u, -v) 

It follows from Eg. (4.5-15) that 

M-j N-j 

F(O, 0) = L Lf(x, y) 
x=O y=O 

(4.6-20) 
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a b 
c d 

FIGURE 4.24 
(a) Image. 
(b) Spectrum 
showing bright spots 
in the four corners. 
(c) Centered 
spectrum. (d) Result 
showing increased 
detail after a log 
transformation. The 
zero crossings of the 
spectrum are closer in 
the vertical direction 
because the rectangle 
in (a) is longer in that 
direction. The 
coordinate 
convention used 
throughout the book 
places the origin of 
the spatial and 
frequency domains at 
the top left. 

x 

u 

which indicates that the 
value of f(x, y). That is. 

F(O,O) 

Ii 

11 

term is 

Jf - ) .'11 J 

\:) 

where 1 denotes the a\crage value ofr rhen. 

0) 

Because the proportionality cOllStant 
the largest component of the 
magnitude larger than other terms. 

v) 

are zero at the ori,Jin. F(O. 0) sometimes is called (lh" 

EXAMPLE 4.13: 
The 2-D Fourier 
spectrum of a 
simple function. 

transform. This 
direct current (i 

~ Figure 4.24( a) sho\\ 
whose values \'.crc scaled 1() JhL 

origins of both 
are a pparen t i 

to the uverag.c 

1) 
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transform contains the highest values (and thus appears brighter in the image). 
However, note that the four corners of the spectrum contain similarly high 
values. The reason is the periodicity discussed in the previous section. 
To center the spectrum, we simply multiply the image in (a) by (~1 y+\ before 
computing the DFT, as indicated in Eg. (4.6-8). Figure 4.22( c) shows the result, 
which clearly is much easier to visualize (note the symmetry about the center 
point). Because the de term dominates the values of the spectrum, the dynamic 
range of other intensities in the displayed image are compressed. To bring out 
those details, we perform a log transformation, as described in Section 3.2.2. 
Figure 4.24(d) shows the display of (1 + log/Feu, [:)1). I11C increased rendition 
of detail is evident. Most spectra shown in this and subsequcnt chapters are 
scaled in this manner. 

It follows from Eqs. (4.6-4) and (4.6-5) thai the spectrum is insensitive to 
image translation (the absolute value of the exponential term is 1), but it rotates 
by the same angle of a rotated image. Figure 4.25 illustrates these properties. 
The spectrum in Fig. 4.25(b) is identical 10 the spectrum in Fig. 4.24( d). Clearly, 
the images in Figs. 4.24(a) and 4.25(a) are different, so if their Fourier spectra 
are the same then, based on Eg. (4.6-1 their phase angles must he different. 
Figure 4.26 confirms this. Figures 4.26( a) and (b) are thc phase angle arrays 
(shown as images) of the DFTs of Figs. and 4.25(a). Note the lack of 
similarity between the phase images, in spite of the fact that the only differences 
between their corresponding images is simple translation. In general, visual 
analysis of phase angle images yields little intuitive information. For 
due to its 45° orientation, one would expect intuitively that the phase 

a b 
c d 

FIGURE 4.25 

and (b) the 

spectrum. Tne 
spectrum 

to 

identical to the 
spectrurn 
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EXAMPLE 4.14: 
Further 
illustration of the 
properties of the 
Fourier spectrum 
and phase angle. 

abc 
FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle 
in Fig. 4.24(a). (b) to the translated image in Fig. 4.25(a), and (c) to the rotated image in 
Fig.4.25(c). 

Fig.4.26(a) should correspond to the rotated image in Fig. 4.25(c). rather than to 
the image in Fig. 4.24(a). In fact. as Fig. 4.26(c) shows, the phase angle of the ro
tated image has a strong orientation that is much less than 45". 

The components of the spectrum of the OFT determine the amplitudes of 
the sinusoids that combine to form the resulting image. At any given frequen
cy in the DFT of an image. a large amplitude implies a greater prominence of 
a sinusoid of that frequency in the image. Conversely. a small amplitude im
plies that less of that sinusoid is present in the image. Although. as Fig. 4.26 
shows, the contribution of the phase components is less intuitive, it is just as 
important. The phase is a measure of displacement of the various sinusoids 
with respect to their origin. Thus, while the magnitude of the 2-D DFT is an 
array whose components determine the intensities in the image, the com> 
sponding phase is an array of angles that carry much of the information about 
where discern able objects are located in the image. Inc following example 
clarifies these concepts further. 

'l!ll Figure 4.27(b) is the phase angle of the DFT of Fig. There is no de~ 
tail in this array that would lead us by visual analysis to associate it with fea
tures in its corresponding image (not even the symmetry of the IS 

visible). However, the importance of the phase in determining shape charac
teristics is evident in Fig. 4.27(c), which was obtained by computing the inverse 
DFT of Eq. (4.6-15) using only phase information with IF(u, u)i= I in 
the equation). Although the has been lost 
that information is carried by the features in this 
image are unmistakably from 

Figure 4.27 (d) was obtained 
puting the inverse DFT. This means the 
turn implies setting the phase to O.'1ne result is not It contain~ 
only intensity information. with the de term !\ 

no shape information in the was set to zero. 
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• 'aVe 
~4'~;t 

FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed only the 
phase angle. (d) Woman reconstructed using only the speetrum. (e) Reeonstruetion 
using the phase angle corresponding to the woman and the spectrum corresponding to 
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase, of the rectangle and the 
spectrum of the woman. 

Finally, Figs. 4.27 (e) and (f) show 
termining the feature content of an 
puting the IDFT of Eg. (4.6~ J 5) using the 
and the phase angle corresponding to the woman. The 
clearly dominates this result. the dominates 
which was computed using the of the woman and the 
the rectangle. 

4.6.6 The 2-D Convolution 

Extending Eg. (4.4~ 10) 10 two variables results in the 
2-D circular convolution: 

[(x, y) * /z(x. 

for x = 0, 1,2, ... , 1\1 
Eq. (4.6-23) gives one 
theorem is gIven bv the 

and, conversely, 

for 
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We discuss efficient ways 
to compute the I? IT in 
Section 4.11. 

f(x, y)h(x, y) ¢=> F(u, V) * H(u, V) (4.6-25) 

where F and H are obtained using Eq. (4.5-15) and, as before, the double 
arrow is used to indicate that the left and right sides of the expressions consti
tute a Fourier transform pair. Our interest in the remainder of this chapter is in 
Eq. (4.6-24), which states that the inverse DFT of the product F(u, v)H(u, v) 
yields f(x, y) * hex, y), the 2-D spatial convolution of f and h. Similarly, the 
OFf of the spatial convolution yields the product of the transforms in the fre
quency domain. Equation (4.6-24) is the foundation of linear filtering and, as 
explained in Section 4.7, is the basis for all the filtering techniques discussed in 
this chapter. 

Because we are dealing here with discrete quantities, computation of the 
Fourier transforms is carried out with a Off algorithm. If we elect to compute 
the spatial convolution using the IOFf of the product of the two transforms, 
then the periodicity issues discussed in Section 4.6.3 must be taken into ac
count. We give a I-D example of this and then extend the conclusions to two 
variables. The left column of Fig. 4.28 implements convolution of two functions, 
f and h, using the I-D equivalent of Eq. (3.4-2) which, because the two func
tions are of same size, is written as 

399 

f(x) * hex) = '2J(x)h(x - m) 
111=0 

This equation is identical to Eq. (4.4-10), but the requirement on the displace
ment x is that it be sufficiently large to cause the flipped (rotated) version of h 
to slide completely past f In other words, the procedure consists of (1) mirror
ing h about the origin (i.e., rotating it by 180°) [Fig. 4.28( c) j, (2) translating the 
mirrored function by an amount x [Fig. 4.28(d)], and (3) for each value x of 
translation, computing the entire sum of products in the right side of the pre
ceding equation. In terms of Fig. 4.28 this means multiplying the function in 
Fig. 4.28(a) by the function in Fig.4.28(d) for each value of x. The displacement 
x ranges over all values required to completely slide h across f Figure 4.28( e) 
shows the convolution of these two functions. Note that convolution is a func
tion of the displacement variable, x, and that the range of x required in this ex
ample to completely slide h past fis from 0 to 799. 

If we use the OFT and the convolution theorem to obtain the same result as 
in the left column of Fig. 4.28, we must take into account the periodicity inher
ent in the expression for the DFT. This is equivalent to convolving the two pe
riodic functions in Figs. 4.28(f) and (g). The convolution procedure is the same 
as we just discussed, but the two functions now art periodic. Proceeding with 
these two functions as in the previous paragraph would yield the result in 
Fig. 4.28(j) which obviously is incorrect. Because we are convolv;'lg two peri
odic functions, the convolution itself is periodic. The closeness of the periods in 
Fig. 4.28 is such that they interfere with each other to cause what is commonly 
referred to as wraparound error. According to the convolution theorem, if we 
had computed the OFT of the two 400-point functions,f and 11, multiplied the 
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f(m) f(m) 

rrb 1'1 
........... 

III . m •••••• "'0' 

31---.., 

o 200 400 0 200 400 
h(m) h(m) 

... ,-, '6 ~""""'. .. ......... 

1 1 I l . m ...... • ....... u . m 

2 

o 200 400 0 200 400 
h(-m) h(-m) 

A-I--+--I I _. m 

j""""'j ..... ,,'" 
L--/_-+ __ ;,- ; .. 111 

o 200 400 o 200 400 
h(x - m) h(x ~ 111) 

Jx,_. -L;. ,% 

JD"f!-+i ---t-I -+1 -----. m LIO_+1 ~i_t-I .i"l_-<-i --.:1 __ . m 
o 200 400 0 200 400 

f(x). g(x) f(x). g(x) 

1200 1200+ r-\ 

600 I£......HHH-4-+-+-+- x \/~~ii\.,/. x 

o 200 400 600 SOO o 200 400 
--I Range of 1-
Fourier transform 

computation 

two transforms, and then computed the inverse DFT, we would have obtained 
the erroneous 400-point segment of the convolution shown in Fig. 4.28(j). 

Fortunately, the solution to the wraparound error problem is simple. Consider 
two functions,f(x) and h(x) composed of A and B samples, respectively. It can be 
shown (Brigham [1988]) that if we append zeros to both functions so that they 
have the same length, denoted by P, then wraparound is avoided by choosing 

P?:A+B-l (4.6-26) 

In our example, each function has 400 points, so the minimum value we could 
use is P = 799, which implies that we would append 399 zeros to the trailing 
edge of each function. This process is called zero padding. As an exercise, you 

a f 
b g 
c h 
d j 
e j 

fiGURE 4.28 Left 
column: 
convolution of 
two discrete 
functions 
obtained using the 
approach 
discussed in 
Section 3.4.2. The 
result in (e) is 
correct. Right 
column: 
Convolution of 
the same 
functions. but 
taking into 
account the 
periodicity 
implied by the 
OFT. Note in (j) 
how data from 
adjacent periods 
produce 
wraparound error, 
yielding an 
incorrect 
convolution 
result. To obtain 
the correct result, 
function padding 
must be used. 

Th'c zeros c{)ulJ he 
appt'nueJ also to the 
hcginning of the func
tions. or they could he 
divided helwccn the 
heginning anu end 01 the 
functions. Jt is simpler 
10 append them <It the 
cnd. 
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should convince yourself that if the periods of the functions in Figs. 4.28(f) and 
(g) were lengthened by appending to each period at least 399 zeros, the result 
would be a periodic convolution in which each period is identical to the correct 
result in Fig. 4.28( e). Using the DFf via the convolution theorem would result 
in a 799-point spatial function identical to Fig. 4.28(e). The conclusion, then, is 
that to obtain the same convolution result between the "straight" representa
tion of the convolution equation approach in Chapter 3, and the DFf ap
proach, functions in the latter must be padded prior to computing their 
transforms. 

Visualizing a similar example in 2-D would be more difficult, but we would 
arrive at the same conclusion regarding wraparound error and the need for ap
pending zeros to the functions. Let I(x, y) and hex, y) be two image arrays of 
sizes A x Band C x D pixels, respectively. Wraparound error in their circular 
convolution can be avoided by padding these functions with zeros, as follows: 

I (. ) = {/(X,Y) 
p x,y 0 

and 

h ( ) = .{h(X,Y) 
p x, y 0 

with 

and 

o s x s A-I and 0 s y s B-1 

A s X :s P or B:s y :S Q 

o s X :S C - 1 and O:s y :S D - 1 

C :S X :S P or D s y :S Q 

P2:A+C-} 

Q2:B+D-l 

(4.6-27) 

(4.6-28) 

(4.6-29) 

(4.6-30) 

The resulting padded images are of size P x Q. If both arrays are of the same 
size, M x N, then we require that 

P 2: 2M-1 (4.6-31) 

and 

Q 2: 2N-1 (4.6-32) 

We give an example in Section 4.7.2 showing the effects of wraparound error 
on images. As rule, DFf algorithms tend to execute faster with arrays of even 
size, so it is good practice to select P and Q as the smallest even integers that 
satisfy the preceding equations. If the two arrays are of the same size, this 
means that P and Q are selected as twice the array size. 

The two functions in Figs. 4.28(a) and (b) conveniently become zero before 
the end of the sampling interval. If one or both of the functions were not zero at 
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the end of the interval, then a discontinuity would be created when zeros were 
appended to the function to eliminate wraparound error. This is analogous to 
mUltiplying a function by a box, which in the frequency domain would imply 
convolution of the original transform with a sinc function (see Example 4.1). 
This, in turn, would create so-called frequency leakage, caused by the high
frequency components of the sinc function. Leakage produces a blocky effect 
on images. Although leakage never can be totally eliminated. it can be reduced 
significantly by mUltiplying the sampled function by another function that ta
pers smoothly to near zero at both ends of the sampled record to dampen the 
sharp transitions (and thus the high frequency components) of the box. This ap
proach, called windowing or apodizing, is an important consideration when fi
delity in image reconstruction (as in high-definition graphics) is desired. If you 
are faced with the need for windowing, a good approach is to use a 2-D Gaussian 
function (see Section 4.8.3). One advantage of this function is that its Fourier 
transform is Gaussian also, thus producing low leakage. 

4.6.7 Summary of 2-D Discrete Fourier Transform Properties 
Table 4.2 summarizes the principal DFT definitions introduced in this chapter. 
Separability is discussed in Section 4.11.1 and obtaining the inverse using a 
forward transform algorithm is discussed in Section 4.11.2. Correlation is dis
cussed in Chapter 12. 

Name 

1) Discrete Fourier 
transform (DFT) 
of f(x, y) 

2) Inverse discrete 
Fourier transform 
(10FT) of F(u, v) 

3) Polar representation 

4) Spectrum 

5) Phase angle 

6) Power spectrum 

7) Average value 

Expression(s) 

M-I N-J 

F(u, v) = 2: 2:f(x, y)e-j2tr(IIX/M+vy/N) 

x=o y=o 

1 M-J N-J 
f(x, y) = N 2: 2: F(u, v)e j27r(lIx/M+l'y/N) 

M u=O 1.'=0 

F(u, v) = IF(u, v) I ef4>(II. lJ) 

]

1/2 
IF (u, v)1 = [R2(u, v) + [2(u, v) 

R = Real(F); J = Imag(F) 

-I[ leu, v) J 
4>(11, v) = tan R(u, v) 

P(u, v) = IF(u, v)12 

1 M-] N-] 

J(x, y) = MN 2: 2: [(x, y) 
x=O 1,=0 

I 
MN F(O, 0) 

( Continued) 

A simple apodizing func
tion is a triangle. cen
tered on the data record, 
which tapers to 0 at both 
ends of the record, This is 
called the Bartlell win
dow, Other common win~ 
dows are the Hamming 
and the Hann windows, 
We can even use a 
Gaussian function. We 
return to the issue of 
windowing in Section 
5.11.5. 

TABLE 4.2 
Summary of DFT 
definitions and 
corresponding 
expressions. 
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TABLE 4.2 
( Continued) 

TABLE 4.3 
Summary of DFf 
pairs. The closed
form expressions 
in 12 and 13 are 
valid only for 
continuous 
variables. They 
can be used with 
discrete variables 
by sampling the 
closed-form, 
continuous 
expressions. 

Name Expression(s) 

8) Periodicity (k l and 
k2 are integers) 

F(u, v) = F(u + kiM, v) = F(u, v + k2N) 
= F(u + kiM, v + kzN) 

9) Convolution 

10) Correlation 

11) Separability 

f(x, y) = f(x + kiM, y) = f(x, y + kzN) 

= f(x + kiM, y + k2N) 
M-I N-J 

f(x, y)*h(x, y) = L Lf(m,n)h(x - m,Y - n) 
m~O n~O 

M-I N-I 

f(x,y)1:.h(x,y) = L Lf(m,n)h(x + m,y + n) 
m=O n=O 

The 2-D DFf can be computed by computing 1-D 
DFf transforms along the rows (columns) of the 
image, followed by 1-D transforms along the columns 
(rows) of the result. See Section 4.11.1. 

M-I N-I 

12) Obtaining the inverse 
Fourier transform 
using a forward 
transform algorithm. 

MNf*(x, y) = L LF*(u, v)e-j2Tr(ux/M+vy/N) 

u=O t.=o 
This equation indicates that inputting F*(u, v) into an 
algorithm that computes the forward transform 
(right side of above equation) yields MNj*(x, y). 
Taking the complex conjugate and dividing by MN 
gives the desired inverse. See Section 4.11.2. 

Table 4.3 summarizes some important DFT pairs. Although our focus is on 
discrete functions, the last two entries in the table are Fourier transform pairs 
that can be derived only for continuous variables (note the use of continuous 
variable notation). We include them here because, with proper interpretation, 
they are quite useful in digital image processing. The differentiation pair can 

Name 

1) Symmetry 
properties 

2) Linearity 

3) Translation 
(general) 

4) Translation 

to center of 
the frequency 
rectangle, 
(MI2. NI2) 

5) Rotation 

I
! 6) Convolution 

theorem t 

DFf Pairs 

See Table 4.1 

a/J(x, y) + bh(x, y) = aF1(u, v) + bFiu, v) 

f(x, y)ej27T(UoX/M+uOy/N) = F(u - /la, v - vo) 

f(x - Xo, Y - Yo) = F(u, v)e-j2rr(uxoIM+vY,IN) 

f(x, y)( -1)x+ y = F(u M /2, v- N /2) 

f(x M/2, y - N /2) = F(u . .JJ)( _l)u+v 

fer, e + eo) = F(w, 'P + eo) 
x = r cos e y = r sin () u = w cos 'P v = w sin 'P 

f(x, y) * hex. v) = F(u, v)H(u, v) 

f(x, y)h(x, y) = F(u, v) * H(u, v) 

( Continued) 


























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































