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1. INTRODUCTION

1.1 OBJECT

The object of this report is to present the results of an
analysis of two types of gravity-gradlent damping systems which
were considered for use on the NASA GEOS geodetic satellites.
The purpose of the analysis was to derive the theoretical per-
formance characteristics of each system and to determine which
type of system is more suitable for application to the GEOS

satellites.
1.2 SCOPE

The first technique congidered was a magnetically anchored
eddy current damper similar to the one used successfully on the
GEOS-A satellite. This damper features a frictionless suspended
permanent magnet which is aligned by the earth's magnetic field.
Attitude motions of the satellite cause relative motion between
the magnet and a conducting shell. The induced eddy currents in

the shell dissipate kinetic energy in the form of heat.

The second technique is a new concept which uses a number
of long, ferromagnetic rods rigidly mounted in the satellite.
The rods are sheathed with copper to provide eddy current damping

of satellite attitude motions in the earth's magnetic field.

The analysis in this report proceeds from fundamental prin-
ciples to derive the torque generated by each type of damper.
Within certain limitations which must be imposed to facilitate

analysis, enough information can be derived to make possible a



comparison of the two damping techniques in relation to the GEOS
satellites. For a more precise evaluation of the absolute per-
formance, a computer. simulation of the damper and satellite equa-
tions of motion would be required. However, this is deemed to

be unnecessary for the purpose of the present study.
The analysis consists of three parts as follows:
Section 3: Analysis of Magnetically Anchored Damper
Section 4: Analysis of Eddy Current Rod Damping Concept
Section 5: Comparison of Damping Techniqgues

Equations and figures are numbered from (1) in each section,
and cross-references are indicated by the appropriate section
number preceding the equation or figure number; e.g., (3.1-1) is

the first equation of section 3.1.



2. CONCLUSIONS

Beginning from fundamental principles, the magnetically
anchored eddy current damper and the eddy current rod damper
have been studied individually to determine their major operating
characteristics. The characteristics of the two dampers have
been compared under conditions approprlate to GEOS satellites

such as operating altitude and size limitations.

Based on the results of the analyses and the comparison, the
following conclusions can be reached concerning the feasibility

of each damper for application to GEOS satellites:

1. Damping by eddy current rods 1s more than an order of
magnitude less than the amount obtained with the magnetically
anchored damper for a polar orbit of 600 n. mi. altitude. The
time required to damp transient librations would be correspond-

ingly longer.

2. For non-polar orbits or at higher altitudes, the perform-
ance of the eddy current rod damper deteriorates more rapidly than

the magnetically anchored damper performance.

3. Although damping performance could be improved by pro-
viding more rods than considered, a significant improvement would

require more rods than could be carried on the satellite.

As a possible technique for use on other satellites, the rods
should be kept in mind. Significant improvement in transient
damping could be obtained, if the satellite could accommodate
rods of twice the length which can be accommodated in GEOS

satellites.



It appears that the magnetically anchored damper is well-
suited for application to the GEOS satellites; however, there
are two effects which have not been adequately explained. First,
it is shown that the axis of relative rotation between the two
major components of the damper is, in general, not stationary
with respect to either part. Apparently, this behavior has not
been simulated in laboratory tests of the damper. It would be
useful to simulate the rotation more realistically to see if there
is any peculiarity associated with the more complex motion.
Second, it is shown that only a certain component of the damper
generated torque is effective in damping satellite librations.
There is another component of the generated torque that is di-
rected normal to the satellite rotation axis. The effect of this
component should be shown to be negligible or, otherwise, in-

cluded in computer simulations of the satellite attitude dynamics.



3. ANALYSIS OF THE MAGNETICALLY ANCHORED EDDY CURRENT DAMPER

3.1 DAMPER DESCRIPTION

A brief description of the magnetically anchored damper will
be given in.order to justify the nature of the theoretical model
that will be obtained. The damper consists basically of an
assembly of six cylindrical permanent magnets, arranged in the
shape of a three dimensional + sign or a cruciform, with opposite
poles at opposite ends of the cruciform. The magnet assembly is
contalned within a spherical copper shell for eddy current damp-
ing purposes. Another cuter shell made of pyrolytic graphite,
which is a diamagnetic substance, exerts a centering force on
the magnet assembly and provides a frictionless suspension mech-
anism in an orbital environment. Finally a third outer shell,
made of aluminum, provides a protective housing for the damper

and a means for attaching the damper to the satellite.

The operation of the damper is as follows: When the satel-
lite is in orbit, the magnet assembly is suspended by the diamag-
netic force and is free to rotate. The net magnetic dipole of
the cruciform magnet assembly tends to align itself in the direc-
tion of the local magnetic field of the earth. As the satellite
undergoes librations, there is relative motion between the con-
ducting shell and the magnet assembly. This induces an electric
field within the conductor which causes eddy currents to flow.
The magnetic field of the eddy currents interacts with that of
the cruciform to produce a retarding torque. An initial energy

of libration is gradually dissipated in heating the copper shell.
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3.2 THEORETICAL MODEL OF THE MAGNETICALLY ANCHORED DAMPER

Por the purpose of deriving the damping torque, a theoreti-
cal model of the maghetically anchored damper will be studied.
The theoretical model consists of an idealized cruciform magnet
suspended at the center of a single conducting spherical shell.
The center of the magnet is assumed to remain fixed at the center
of the shell, but otherwise the magnet is free to rotate about an
arbitrary axis through the center. The magnetic fileld of the
cruciform magnet assembly is assumed to be equivalent to super-
posing the three fields produced by a single cylindrical bar
magnet which occupies, in turn, the position of each arm of the
cruciform. The bar magnet 1s assumed to be uniformly magnetized

along its longitudinal axis.

With this model, the essential nature of the practical damper
is retained, but extraneous details of construction of a practi-
cal damper are omitted. The analysis wlll be considerably simp-
lified and, therefore, will be easier to interpret, but the re-
sults should nevertheless adequately indicate the performance of
the practical damper. There 1is experimental evidence to support
these assumptions. It 1s known that the pyrolytic graphite shell
between the two conducting shells does not contribute appreciably
to the torgue. The torque due to eddy currents induced in the
outer aluminum shell, according to laboratory tests, is about 12%
of the total torque; hence, a correction factor can be applied
to the results of the analysis to account for the presence of

the aluminum shell.



Concerning the magnet assembly, the i1dealized magnet may
not give an accurate representation of the field in the region
near the center; where the six magnets are mounted in a steel
fitting, however, the field in that region does not interact
very strongly with the magnetic field of the induced eddy cur-
rents in the shell. The error, therefore, should not be sig-

nificant.

Two further assumptions are made in the model. The resis-
tivity of the magnet alloy 1s assumed to be very much greater
than that of the shell, so that the flow of eddy currents in the
magnet induced by the magnetic field of the shell can be neg-
lected. PFinally, the conducting shell is assumed to have the

permeabllity of free space.



3,3 ANALYTICAL APPROACH

The torgque on the spherical conducting shell generated by
relative motion of the magnet is obtained from the distributed
forces due to the interaction of induced currents and the mag-
netic field. Specifically, the force T on an elemental volume
in which the current density in 3 (amp/m®) and the magnetic induc-
tion is B (wb/m®) given by [1]

T=TxB (at-w?®) (1)
In order to obtain the net torgue about a particular axis of the
damper, 1t 1s necessary, therefore, to first obtaln the eddy cur-
rent density and the magnhetic fleld induction at all points within
the shell. Basically, this is a problem in magnetostatics, since
it can be assumed that all field effects are propagated instan-
taneously, and, therefore, Maxwell's displacement current can be

neglected.

The required field relationships are given by Maxwell's field
equations, omitting the displacement current. A unified formu-
lation is obtained in terms of the magnetic vector potential A

which is defined in the following manner:

B=v x4, VA=0 (2)
Note that the above definition satisfies the requirement that
v+B = 0, since the divergence of the curl of any vector is zero.
The additional specification that the divergence of A is zero,
corresponds to the assumption that there is no free charge in

the region of interest.



It will be shown that A satisfies certain partial differen-
tial equations which depend on the nature of the medium. The
analysis of the damper, therefore, requires the simultaneous
solution of the appropriate equations for each region having
distinct electrical or magnetic properties in such a way that
certain boundary conditions are satisfied. The basic theory

will be outlined in the next section.



3.4 VECTOR POTENTIAL THEORY

As stated previously the fact that v*B = 0 permits B to be

obtalned as the curl of a vector potential A.

B=v x X (1)

v'E =0 (2)
Thus the vector potential A can be derived in turn from a higher
potential W; i.e.,

A=V X W (3)
with the auxiliary condition that

VeW = 0 (4)

This fact will be of considerable importance in the solution of
the boundary value problem for the vector potential A. ©Note that
the vector potential from which B is obtained is not unique,

because A¥ = A + Vo, where ©® 1s a scalar field also satisfiles (2).

The equations that A must satisfy are obtained from Maxwell's
equations. According to Faraday's law, a time varying magnhetic
induction B will produce an electric field E such that

T 3B (5)

VEETTRT

From the definition of &

=l
e,
G
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If the field is produced in a conductor of volume resistivity p,

then a current density, J = E/p, will flow. Thus,

&
]

(7)

|

pd =

2V
cH

The current in turn will produce a magnetic field, according to

Ampere's law
Vv x B=uJ (8)

where 4 is the permeability of the medium.

VPE = - uJ (9)
In rectangular coordinates, each component of A satisfies
Poisson's equation in which the inhomogeneous term 1s proportional
to a component of the current density. When the current density
is known, the above eguation can be solved for A. In the case

where J 1s an unknown current distribution arising from a time-

varying magnetic field, (7) and (9) can be combined to yield

oY,
=

(10)

|

27 - B
ve A o

&
s

Now the components of A in rectangular coordinates satisfy diffu-

sion or 'heat" equations.

When the medium is an insulator (p = ), then J = 0, and the
vector potential satisfies a vector form of Laplace's equation;

i.e.,

V¥A = 0 (11)

11



The nature of the boundary conditions which the vector
potential must satisfy are discussed by Panofsky and Phillips [2].
From the conservation of magnetic flux across the boundary, the
line integral of A along any arbitrary closed path in the boundary
surface must be zero; hence, on the interface between regions 1

and 2,
(A1) = (B2) (12)

where the subscript , denotes the tangential component. In the
absence of true surface currents, the tangential component of

magnetic field intensity H is conserved; thus,
Lvxh) =L (vx8) (23)

Each of these boundary conditions has two components, so that

altogether four boundary conditions are obtalned at each boundary.

12



3.5 MATHEMATICAL FORMULATION OF THE BOUNDARY VALUE PROBLEM FOR
THE VECTOR POTENTIAL

It is now possible to formulate the damper analysls as a
boundary value problem for the vector potential. Denote the
vector potential of the cruciform magnet by A’. This is the
potential of the field that would exist when the magnet is in
free gpace. Under the assumptlon that the field 1s equivalent
to superposing the fields of a single uniformly magnetized bar
magnet occupylng, in turn, the position of each arm of the crucl-
form, then A’ is the sum of the individual vector potentials of
each arm. Now a uniformly magnhetized bar magnet is equlvalent
to a current sheet around the surface of the cylinder, and the
interior may be regarded as a region of free spacéﬁ Thus, the
vector potential of the magnet can be derived from an equation

of the form (3.4-9).

The space surrounding the magnet when it is in the damper

shell is divided into three distinct regions as follows:

Region I: free space 1inside the spherical shell
Region II: the shell

Reglon II1I: free space outside the shell

In Region I, a perturbing potential A, must be added to A’ in
order to satlsfy the boundary condlftions at the ilnslide surface of
the shell. Slnce the magnet is equlvalent to free space, insofar

as external fields are concerned, the boundary of the magnet can

be lgnored, and the potential A, can be extended through the magnet.

* see [31 pp. La7-l2g.
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The net. potentials in Regions II and III will be denoted by Ez and

Az, respectively.

The appropriate equations for the vector potential in each

regilon are the followlng:

Region I: ve (A, +A") = 0O (1)

Region II: ViR, = P2 2 o (2)
p at

Region III: veA, = O (3)

In addition the boundary conditions at the surfaces of the shell

are the following:

Inside surface:

(-A1+Al)t = (Ae )+_ (4>
L rvx(E+R7)], = = (vxha),, Uy =Ha=u (5)
™ 1 t Uz 2 /¢ 1 2 o]

Outgide surface:

(Bz )y = (R3), (6)

 (vxs), =+ (9B, ), o =g =Ho (7)

Equation (2) is written with respect to a coordinate system fixed
in the shell. In this coordinate system A’ is a function of time
at a given point as the magnet rotates, so that A, i1s subject to
a time-varying boundary condition in (4).

Although the solution of the boundary value problem for the
vector potential can be carried out in principle, formidable
problems are encountered in deriving a suitable expression for

A’ with respect to a coordinate system fixed in the shell, and

14



also, from the fact that the Laplacian operator operates on the
unit vectors in all coordinate systems except rectangular systems.
Since the geometry is spherical, a spherical coordinate system
would simplify the task of obtailning separable solutions which

satisfy the boundary conditions.

These difficulties may be avoided by reformulating the pro-
blem in terms of two scalar potentials, W; and W,, from which
the vector potential A can be derived. The scalar potentials are

not nearly so troublesome to work with as will be seen.

15



3.6 GENERAL REMARKS ON THE SOLUTION OF VECTOR POTENTIAL PROBLEMS

At each point in space, a vector 1is specified by 1ts com-
ponents along three.orthogonal axes. Thus, a vector potential
is derivable from three scalar potentials. With the auxiliary
condition that v-A = O, one of the scalar potentials can be
expressed in terms of the other two, so that only two independent
potentials are needed. Earlier it was mentioned that since
v'A = 0, A = vxW, where W is a vector potential. For spherical

geometry it is convenient to express W as the sum of a radial
component and a tangential component in the form

W= TW, + vxIW, (1)
where W, and W are the two scalar potentials, and r is the

radius vector from the origin at the center to the field point.

The particular form of (1) is chosen on the following basis:

Since
v2E = v? (vxW) = vx(v®W) (2)
and W = v (oW, +rxvW, ) = rv2W, +2vW, +7xv (v® Wp ) (3)
then (I) v2wW, = 0, i=1,2 = v?A = O (4)
(II) v2W, =k;—‘g1-, 1=1,2 = v22\=k2—€‘ (5)

The significance of results (I) and (II) is that certaln boundary
value problems for vector potentials may be formulated as
analogous boundary value problems for scalar potentials. The
boundary conditions for W, and Wp; are chosen so that the boundary

conditions on A (or B and H) are identically satisfied. The

16



manner in which W; and Wy contribute to the boundary conditions

can be made clear by obtalning explicit formulas for & and B.

Let W,= rW, and W, = rxvW,. Also, let M = vx¥, and N =

vxW, . ‘Then & = M+N., Let the radial and tangential components

of A be A, and B,, respectively. Next, let T = vxM and V = vxN.

Then B = U+V. Finally, denote the radial and tangential components

of B by B, and B,, respectively.

Using spherical polar coordinates with unit vectors e,,
ée, and §$ in the directions of increasing r, 8, and ¢ at the

field point the following results are obtained:

M= vx(rW, ) = -rxvW, (6)
_S w5 oaw (7)
sinf Awp P Ab
N = vx(rxvW, ) = rv3W, - v(r.vW,) - vW, (8)
= Tv2W, - v [%;(Twai_ _ (9)
s S
where u, = éi%%&l . Combining terms in e,
A, = re, (vzwg - %%%2'\) = ?<V2W2 - %%) (11)
But oy - % aegrwg) +_%2 L [Wa (12)
where
Lw[wej = E%%% + cote%%1-+ csc® g E%%% (13)
A, =S [ (14)

17



Note that only We contributes anything to A.,. Combining ée and

éw terms from (7) and (10) yields

I - & % AW, 1 Aug
t B \sind A r a8
1

_ AW, Aly (15)
w 3B rsinf Ag
Both W, and Wp contribute terms to A,. Next
U = vx(vxrW, ) = -vx(rxvW, ) (16)
- 3
= —rv2w1+v[§i(rwlﬂ (17)
Note the similarity between (9) and (17).
Next from (9)
V = vx[vx(rxvW, )] = vxrg®Ws (18)

The second term in (9) is the gradient of a scalar and the result
of taking the curl is identically zero. In insulators, where W,
is a solution of v®W, = 0, V = O, and Wy, makes no contribution to

B; however, W, may be needed to satisfy boundary conditions. In

conductors, where W, 1s a solution of the diffusion equation,
T 5 AW, _ A o _ d (%
¥ = vxr k 2 = K gE(VXTWB) = -k §€(rwi2) (19)
e W. W,
S (AW o Al (20)
At \ sing Ap p B

Combining terms in e, from (17) yields

18



o= -F (P - d 3 et (2

where u, = a(rW,)/»r. Note the similarity between (11) and (21).
Also note that W makes no contribution to B.,. Finally, combining

terms in ée and éw from (17) and (20) yilelds

_ = 1 au.l k azwg

By = €a (E 38 5InB ataf

+ 1 Ay o 2%Wp (22)
e \rsing agp Atap

Sufficient conditions on W, and W, for the boundary conditions

(D1

on A, and H, to be satisfied can be determined from inspection of

(12) and (22). The results are as follows:

(a) (W), = (W, ), at r=a. 1i=1,2 (23)

(8) %1 [%(rwi )]1 = %2[%&% )L (2%)

at r=a. 1i=1,2. Outslde subscripts denote that the quantity is

evaluated on opposite sides of the boundary at r=a.

19



3.7 SYMMETRY CONSIDERATIONS

Under the assumption that the cruciform magnet remains
centered 1n the spherical shell whlle rotating, certain simpli-
fications in the analysis can be made on account of symmetry.
The essential point that will be made 1s that A’ has no radial
component, and therefore, one of the two scalar potentials, Wy,

will not be reguired.

As discussed in Stratton [ 1], the vector potential of a
permanent magnhet can be derived from the equivalent surface and
volume currents within the magnet. Since the field of the cruci-
form can be resolved into three component fields generated by
bar magnets, the nature of the vector pofential of a cylindrical
bar magnet which is uniformly magnetized in the axial direction
will be examined. For a magnetic moment per unit volume M, the
equivalent surface current density is

R = fxn (1)
where n is a unit vector normal to the surface®* The equivalent
volume current 1s

J = vxii (2)

0. The formula for A’ is, therefore,

and since M is constant, J
7 - U IVI.XI-:I (3)
A E% Uép T ds

where r is the distance from the elemental surface area dS to the
field point. At present only the symmetry properties of A’ are
of interest, and the evaluation of the integral will be postponed

until later when the results are needed.
*

M is also the loop magnetization (amp/m) of circulating cur-
rents or spinning electric charges within the magnet.

20



Let p, o, and z denote a set of cylindrical coordinates with
origin at the center of the bar magnhet. Denote the unit vectors
in the directions of increasing p, ®, and z by ép, éw, and k,
respectively. Clearly, the end surfacescontribute nothing to

the integral, because M = kM and n are collinear. For an element

of area on the curved surface, n

I

e , and kxe = e .
p p ©®

A’ = e A’
v Y

(4)

Because of axial symmetry Aé 1s iIndependent of ¢ and Aé = f(p,z).

Changing to spherical polar coordinates v, 6, ©

p = r sing (5)
Z = r cOsh (6)
obtain i3’ = € AQp (r,9) (7)

since ém is invariant under the transformation. Obviously &’ for
a single bar magnet has no radial component, and, therefore, the
net vector potential obtalned by superposing vector potentials of
each arm of the cruciform also has no radial component., With
respect to a set of gpherical polar coordinates referenced to rec-
tangular axes colnciding with the axes of the cruciform, it should
be apparent that the net vector potential can be described in the

following manner:

i = ém.Aé (r; e, o) + ée Aé (r, 8, o) (8)

The ée term is contributed by the x and y arms of the cruciform,

and Aé is now a function of ® to account for the contribution of

the x and y arms.
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In section (336) it was pointed out that the vector potential
is, in general, derivable from two scalar potential functions,
W, and W,, and furthermore, that only W, contributes a radial

component of A, Thus, a sufficient condition for A’ to have zero

radial component is that Wy = O. This might be expected, since
a vector which has zero radial part and zero divergence can be
specified by a single scalar quantity. Although Wa = O is not
a necessary condition for E; = 0, the only other possibility is
that W, must have a form that contributes nothing to either A’

or B’,

From (3.6-14)

QS S (9)
Hence, a necessary and sufficient condition that A/ = 0 is for

L,(Ww:] =0 (10)
Since v2A’ = 0 at all points outside of the magnet, W5 must

satisfy v®Wy = O. Thus, W; must be a spherical harmonic of

zero degree which has the form

_1
Wy = (A+Br )CScot“-% + Dtan”'%\ cos(mep + §,) (11)
/

where A,B,C,D and &, are arbitrary constants and m is an integer.
But this solution is singular for either 8=0 or 7 radians, unless

m=0. Although m=0 gives

-1
Wy = A + Br (12)
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ag a possible form of Wy which makes A zero, nothing is contri-

buted to A, either, since A, involves the partial derivatives

of WS with respect to 6 and ¢ as seen in (7—15);

It follows that when A/ = O, W; can be set equal to zero with-

out loss of generality. Then A’ is derivable from a single scalar

potential W’ in the following manner:

B = gxW = vxvw’ (13)

The relation between A’ and W' for a single bar magnet along

the z-axis will be of interest for later analysis. Since A=

émAé(r,e) and ACp is independent of @, W' is also independent of
p. Thus,
'
R = oxBW (r,0) = -8, = (14)
A’

so that Aql) = - 35 (15)
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3.8 FORMULATION OF THE BOUNDARY VALUE PROBLEM FOR THE SCALAR
POTENTIAL

The required scalar potential, from which the magnetic vector
potential is derived, is obtained as the solution of a boundary
value problem which will be posed in this section. The resulting
solution for the scalar potential at all points of interest willl
be obtained in terms of the scalar potential of the magnet. Al-
though the scalar potential of the magnet is unknown a priori,
the unknown parameters can be identified by taking the curl of
the scalar potential and comparing the result with the known

vector potential.

The scalar potential problem may be stated as follows: Let
W’ denote the scalar potential of the magnet in free space. The
perturbing potential which must be added to W’ in region I to
satisfy boundary conditions at the inner surface of the shell
is denoted by W;. The net scalar potentials in regions II and
IIT are denoted by W, and W;, respectively. The equations

appropriate to each region are the following:

Region I: v (W, +W’') = 0 (1)
; . _ Mo 3W (2)

Region II: VU, = o 3t

Region III: VW, = O (3)

The boundary conditions at the surfaces of the shell are as

follows:

2L




Inside surface:

WAW, = W, (4)
1 3 _ 1 3 (rwy) (5
e 37 [PTHI)] = oo 5 )
Outside surface:
Wy = W, (6)
1 3 _ 1 a(rW,) (7)
E;'gf(rwb) T —3r

Before solving this problem, it is necessary to see how the
scalar potential of the cruciform magnet can be obtained and how
the potential can be referenced to a set of axes fixed in the

shell,
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3.9 EXPANSION OF THE SCALAR POTENTIAL IN A SERIES OF SPHERICAL
HARMONICS

Since W’ is a solution of Laplace's equation in the region
outside of the magnet, it is possible to expand W’ in a series
of spherical harmonics with respect to a set of reference coordi-
nate axes. The coefficients of this expansion must be obtainable
from cthe known vector potential of the magnet. Also, the expan-
sion should be in a form which simplifies the transformation from
coordinates fixed in the magnet to coordinates fixed in the shell.

7

Let x’, y', 2z’ denote a set of rectangular coordinate axes
coinciding with the axes of the cruciform, and let the positive
axes correspond with the north magnetic poles. Consider first

the potential W, of the equivalent bar magnet along the z’ axis.
Let r, 8’, v’ denote the spherical polar coordinates of an arbi-
trary point P with respect to the x’, y’, z’ axes. Since W, is
independent of ©’ as discussed earlier, W, can be expanded in a
series of zonal harmonics P, (cosf’) on the surface, r = r,, co-

inciding with the inside surface of the shell. Thus, for w; =

W/(r,a’) and r = r,,

w o]

W= W (r,e) = ) a,p,(cose’) = ) &, (u) (1)

n=1 n=1

where u’ = cos8’. According to (3.7-14) and (3.7-15) W, ' is related

to the vector potential A, by

= -3 1% (2)

1 _ Ttavt
AZ = ewAZCD
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8o that

, ‘Awg
Azm Y

On the surface r = r,,

Afm(r1:el)

& —qu™ ds°’
n=1
o
i z : ap_(u’
= (1_u,2)~ an _3'1(3"——)"

n=1

where P1(u’) is an associated Legendre function of the first kind.

n=1

> e

(3)

(%)

The coefficients of the expansion can be obtained from the known

function, A{m(r,e) by means of the formula,

+1
2n+1\ (n-1)!
a, =(_za~§-n_+-l_)y7 / Az’cp(u')P},(u')du’
=1

where &7 (u’) A &7 (ry,8').
£o(37) & AL (r1,0")

(5)

The above forhula follows from the orthogonality properties

of associated Legendre functions; viz.

+1

P:(u)Pg/(u)du=O,'n #n’

-1

+1 |
/ [Pz (u)]? du =

2 n+m)!
2n+1 n-m)!
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Once the coefficients a, of the zonal harmonic expansion of
W, on the surface r = r, have been determined, the spherical
harmonic expansion of W, at all points in the space, b<r<r,, where
b is the length of each arm of the cruciform, must have the form,

W, =W, (r,8") =Z 2y ®_n—an(u') (8)

n=1

Note that the singularity is placed at the origin, because the

source of potential is enclosed by the shell.

Formula (5) provides the necessary link between the vector
boundary value problem and the corresponding scalar problem;
i.e. the results can be obtained in terms of known quantities.
The actual calculation of these coefficients appears in

Appendix A.

Similar expressions for the scalar potentials W, and W,/ of
the x’ and y’ bar magnets can be derived using new sets of polar
coordinates. By means of the biaxial expansion theorem for
zonal harmonics, which is stated in the next section, each
potential can be expressed in a common reference coordinate

system to obtain the net potential, W' = W, + W/ + W,.
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3.10 EXPANSION OF THE SCALAR POTENTIAL WITH RESPECT TO THE AXIS
OF ROTATION OF THE MAGNET

In the previous section the scalar potential of a cylindrical
bar magnet was expanded in a series of zonal hérmonics on the
surface r=r,. These harmonics are referenced to the axis of the
cylinder, By means of the biakial expansion theorem*, it is pos-
sible to obfain the expansion of the potential in general surface
harmonlcs referenced to an arbitrary axis passing through the
origin. The particular axis of interest is the axis of rotation
of the cruciform magnet relative to the shell. For the purpose
of this analysis, the location of the axis of rotation can be
specified by its direction cosines or by the corresponding angles
between the rotation axis and each of the axes of the cruciform.
The individualexpansions for each equivalent bar magnet in the
cruciform are readily combined to give the surface harmonic
expansion of the net potential W’ with respect to the axis of

rotation.

According to the bilaxial expansion theorem, a zonal harmonic
referred to a 8’ axis can be expanded in a series of surface
harmonics Sﬁ(e,w) referred to another 8 axis which passes through

the origin and makes an angle ® with the 8’ axis; i.e.
n

P,(cose’) = 3 (2-03 ){ErL P2 (cos@)P3 (cos6)oosm(v-8) (1)

where & is the azimuth angle of the 8’ axis relative to the 0 axis.

In the above formula 8§ = 1 and 63 = O if m%O.‘

%*Reference [3], pp. 154-155.
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To apply the biaxial expansion theorem, let &, 7, ¢ denote a
set of rectangular coordihate axes fixed with respect to the axes
of the cruciform magnet, and let the ¢ axls be the axis of relative
motion between the magnet and the spherical shell. Denote the
angles between the ¢ axis and the x', y', z’ axes by 8,, 0,, @,,
respectively. Also denote the azimuth angles of the x’, y', z’
axes in the €, n, { coordinate system by &,, 3%,, &,, respectively¥*.

Then the biaxial expanslon theorem gives for the scalar potential

W, on the surface r=ry,

o n _ '
W = ég% %Z% an(2—62)é%%%3f-P:(cos®z)P:(COSQ)cosm(m—Qz) (2)

Similar formulas hold for W, and W, with @, and &, replaced by
the appropriate angles with respect to the x’ and y’ axes.
Then the spherical harmonic expansion of W’ in region I

referred to the §, n, ( axes is

© N
: A n-m)! _,
W= 2;; g;% an(%) (2-83 5 i P (cosh)

xl%;(005®x)cosm(m—@x) + P2 (cos®, Jcosm{p-3, )

+ Pg(cos®z)cosm(m—¢zﬂ (3)

The terms within the bracket may be combined as follows: Let

Opg = P2(cos®,), Byn = P®(cos®y),and Yo, = P* (cos®,). Then

nn
aggcosm(p-8, ) + Bymcosm(p-8,) + yu,cosm(w-8,)
= (a”cosméx + Rypcosmd, + y, ,cosmd; Jcosmp

+ (o,psinmé, + B,,sinmd, + vy, ,sinmé, ) sinmep (4)

* .
The degenerate cases corresponding to 8,=0, etc., are excluded
from the present discussion.
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Let

Opp = QngpcOSMIx + By, cosmd, + y,,cOsmd, (5)

Tom = Qpp5inmd, + B8, ,sinmd, + vy, ,sinmg, (6)

€nl = ta‘n_l(Tnn/cnn) (7)
Then

a,xcosm(ep-3, ) + 8,,cosm(p-3,) + y,,cosm(p-&,)

= 4f02, + T2, cos{mp-¢,,) (8)

so that

*® n ~n ~1

= r oy (n-m)!

LD DD (%) (2-63) {204 ipe (c0s8) Vo3, 772, cos(mp-c,,) (9)

Finally, 1t is a simple matter to express W’ in a coordinate
system fixed in the shell. Let x, y, z be a set of rectangular
coordinate axes fixed in the shell, such that z = . If the
rotation of the magnet is measured by the angle { that the g axis

makes with the x axis, then the expression for W’ relative to the

X, V¥, Zz axes 1s obtained from (9) with o—pt+i.

n

o _n_l
/ § § : —_ 1
"o 1 2x Cgb (2-8§>§§+$%? i * Tum Pz (cosA)
n= :

m=0

x cos[m(eoty )€,y ] (10)
In (10) » 1is measured from the x axls. For steady rotatilon, y=0t.

It 1s apparent that the above result is in a form that is
particularly convenient for further analysis. A set of coefflclents,
an,'which characterize the magnet is computed from (3.5-5). These

coefficlents depend only on the parameters of the magnet and &ne
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shell and are independent of the rotation. The quantities o ,,

Taps and e , are expressed in terms of the angles @,, @y, 0.,

¢,, 3y, and &;, which relate the axis of rotation to the axes
of the cruciform. The 8 coordinate is invariant under rotation
agbout the (¢ axis, and the angle | which describes the rotation
is contained in only one factor of each ferm in the summation.
Thus, when § is dependent upon t, 1t is a simple matter to com-
pute the time derivative. Further analysis to eliminate the

2

azimuth angles &,, &y, and &, from the quantity, o2, + 72, is

presented in Appendix B.
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3.11 STEADY-STATE SOLUTION OF THE BOUNDARY VALUE PROBLEM FOR
THE SCALAR POTENTIAL

Enough theory has now been developed to enable the boundary
value problem for the scalar potentlal to be solved for a specified
rotation of the cruciform magnet. Thls section wlll be devoted to
obtalining the steady-state solution for the'case, =0t 1n the
expression (3.10-10) for W'.

It will be convenient to use phasor quantities in the subse-
quent analysis. A phasor will be denoted by an inverted clrcumflex
v and the complex conjugate phasor will be denoted by the circum-

flex a.

The solution for a general term in the expansieon of (3.10-11)

will be derived, and the solution for the complete expansion of

!

W' can then be obtained by superposition.
Denote the general term in the expansion for W’ by
Y M2 im(p+0t)
7
W= Aa(E) Th(eose)ein(® (1)

where the phase angle ¢,, of (3.10-11) has been absorbed by the
v
complex coefficient A, ,. The above expression may be written in

the equlvalent forms

v v -0 -1V . v .

Wiy = An-(§1) 81 (R,0)et ™0 < vy, SN0 (2)

where

v .

s2(6,p) = P (cosn)e™® (3)
v v r -n =-1ly

and V!, = A,. (;1> st (9,0) (1)
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The problem 1s to solve

v
v
2 = Mo AW (5)
VEW, 5. 3t
in region II (r,<rsr,) subject to the inhomogeneous, time-varying

boundary conditlons at r=r,,
v v v

wt:m + wl = W, (6)
1 v, v 1
S [re W) = Se () (7)

and the homogeneous boundary condltions at r=r;,

v v
Wy = W, (8)
1 3 _ 1 A (9)
ﬁ;a—f(rwz) ”U;?r(ms)

A\ \'

The perturbing potentials W, and W, must satisfy Laplace's

equation in regions I and III, respectively; i.e.,

v
v2W, = O O<rs<r, (10)
v
V2, = O r=r, (11)
. v _ Y im0t
For the steady-state solution assume that W, = V,e
for j=1,2,3. The above equatlons reduce as follows:
v v
vEVz - AiV; = 0 , Iy sr<Tp (12)
where Ag= \jiugmn/p = \}uzmQ/p -elﬂ/q (13)
At r=r, v v v
an ~+ V]_ = Vg (l}ﬂl')
v v
1 3 1 3
E;"a?[r(vn' + V{)] =El—ﬁ(rve) (15)
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At r=r,,

v v
Vg =V3 . (16)
1 3,y 1 a7 (17)
ﬁz"g’f(rva) —Eﬁ(rva)
Also,
v
V2V, = O Osrs<r, (18)
v
vV, = O rar, (19)

v v
Consider first the equation (12) for V,. Assume that V, =
v v
R (r)Q (8,p). In spherical polar coordinates,

323 1 (20)
2 = =
ViR =35t v 3r +'Y?Lw
where
_ 3 O (21)
LuJ = 357 + cot 8 5@-+ csc? ¢ Y
v

Substiltution for V, in (12) yields the following two separated

equations for the radilal and angular factors:
v v

2 v
H 28 (e )R <o (22

and

o (23)

3

where K, 1s the separation constant. For K,

v v v

3 Q AQs og 2°Q .
—5p5 t cot 55 + csc®8 3ﬁﬁﬁl + K, Qg
= N(N+1), where N

v
is a posltive integer, equation (15) defines Q, to be a surface

harmonic of degree N and order M; 1.e.,

v v v v
% = Byy S1(8,0) = B, Py (coss)e (24)

35



where M is an integer less than or equal to N. For each palr of
integers N, M, the arbitrary constant ENM is evaluated from the
boundary conditions. Since the only inhomogeneous term in the
boundary conditions contains a surface harmonic, S®(A,wn),

as seen from (14) and (4), the appropriate values of N.and M are

N=n and M=m. Thus,

v vV v v im
Q = B,aS%(8,9) = B, P2 (cosg)e ¥ (25)
v
The equation for R, is now
v v v
2
Let z=\,r. Then (26) becomes
v v v
@R 2 dRy, _ n(n+1)] _ (27)
azz -t 7 az [l+ Z2 Ry = 0

This 1s a modified spherical Bessel equation in the complex

domaln (z=|xm|relﬂ/4). Two linearly independent solutions are

the modified spherical Bessel functions of the first kind

g, (2) =JE_Z—I“+1’2(Z) (28)

and the second kind,

k1)

M (2) = 2= T_,_ue (2) (29)

The singularities of g, (z) and n_(z) occur at z=0 and z=w,

A general solution of (27) which is regular in the interval

r,sr<r, 1s, therefore,

36



v v v - .
Re = C,E,(z2) + Dym (z) (30)

From (25) and (30) the solufion of (12) has the form

v v v - 1 m :
Vo = [Cha8a(2) + Dyumy(2)1P2(cosn)e™™® (31)
v V.V v v Vv

where C ., = C B, and D,, = D B, ..

v v
The solutions of Laplace's equation for V, and V, are spherical

harmonics. In the region O<r<r,, fthe harmonic has the form

v \" n n s

N s2)
1

This harmonic 1s regular at the origin, corresponding with

the fact that the source of potential is exterior to the region

O<r<r,. In region III, rzr,, the harmonic should be regular at
1 2

r=w, since the source of potential is within region II, r,<r<np.

v v -1 - o .
WV = an(%z) 1 P, (Cose)elmm (33)

v
Note that the radial part of V, is normalized with respect to r,.

v v v
There are now four arbitrary constants, C, ., D,,, E , and

v

B which must be evaluated. These can be determined from the

nn

four boundary conditions.

Substituting (4), (31), and (32) into (14) and canceling
P2 (cosh)e™™ yields for r=r,,

\ v v v
Anl + Enl = Cnlgn(zl) + Dnlnn(zl) (34)
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where z;=)\,r,. Since W,=us=lo, substituting (&), (31), and (32)
into (15) ylields for r=r,,

v v v \
~Ana (n+1) + Egy o= 23 7C,,.87(21) + Dyam,(zy)] (35)
where the primes denote the derivative with respect to z. The
boundary conditions (16) and (17) give the following two relations

between the constants:

\" v v
Cnngn(ZE) + Dnlnn(z2) = Fnl (36)
\' v A\

erCnmgr:(Z2) + Dnnnr:(ZE )]= -Fnl(n+1) (37)

Equations (34), (35), (36), and (37) can now be solved simultane-

ously for the four unknown constants.

v
First eliminate E_, from (34) and (35) by multiplying each

term in (34) by n and then subtracting (35). Thus,

A\ \ v
(2n+1)Anm = [ngn<zl )—Zlgll,(zl)]cnn + [l’l"r]n(Za )-Zln;(zl)]Dnl (38)

v
Next eliminate F_, from (36) and (37) in a similar manner.

v v
0 = [(n+1)8, (25 )+228, (22 )1C, + [(nH+1)m, (22 )+22m, (22)1D,w  (39)

v v
Before solving (38) and (41) for C,, and D ,, 1t is possible

to simplify the coefficients considerably by using the following

recurrence relations for the modifled spherical Bessel functions:

2le(z) + alz) o () (o)
2 or(n) » SalB g () (41)

where £, (z) = €,(z) or n,(z).
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Application of (40) and (41) to (38) and (39) ylelds

\ v v
(2n+1)Ann = —zl[gn+1(zl )Cn.+ﬂn+1(z1 )Dn.] (42)
v A
0 = za[§n~1(za )Cn.+ﬂn—1(za )Dnl] (43)

A necessary and sufflclent condltion for these two equatlons to

v v
have a unlque solution for C,, and D,, 1s that

An+1,n-1(z1,22) = §n+1(zl)nn—l(zz)‘ﬂn+1(z1)§n-1(ze) # 0 (44)

Assuming that this condition 1s satisfled*, the solutions for
v v
C,» and D,, are as follows:

S _fenr1\ mpes(z2) A (45)
nm Z Boyian-1(21,2) °°
D - 2o+l £._a(2e) n (46)
nE Z3 Dpyr,n-1(Z1522) ~°° '
v

The two remaining constants, E and F_,, can now be determined.

n

From (34)
: v
L ={(22:i>Amu,n}1(zl,ze)[-ﬂn_l(Zz)gn(zl)+ gn_l(zg)nn(zl)]_l}Ann
:{ —E(En"“l)gn (Zl )+Zl €n+1 (Zl )]nn_],(Zz)
v
+[(2n+l)nn(Zl)+Zlnn+1(Z1)]§n_1(Ze)} Q:Z ) (47)

This formula can be simplified by means of another recurrence

relation for g (z) or m,(z); viz.

(en+l)f,(z) = z[f,_,(2) - £,,.(2)] (48

*See (3.16-13)
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where £, (z) denotes either of the two functions, &, (z) or m (z).

:E T -J(Zl)ﬂﬂ_1(za)+nﬂ_1(21)§nr1fzalJA (49)

e An+1,n_1(z1:zz

Using the notation of (44)

E S U T 1(21:22) A, (50)
nE BDot1m-1(2y522

Finally from (36),

M v
_[2n+1 1 51
Fo _< Z, )An+1,n-1(21:22—7[—”"'1(22)'5" (25 )48, -1 (22 )M, (22) 1A, (51)
_ _(2n+1 Aryo-1(25,25) ¥
- (Zl )An+1:n—l(zlszz)Anm (52)

This completes the evaluation of the constants.

v
The potential of main interest is W,, since the eddy currents

are derived from it.

v \" v .
W, = [CouE,(2)+D,an, (2)]1P3 (cose)elm(®+OL) (53)
v
2n+1 A
- (Ef )ml 2Tt s (228, (2)48, <1 (22 )1, ()]

x Pr(cosh)e

v n . +
_ _fen+] ALLA;AXE%EELlﬂjA mPn(cose)elm(m+Q ) (55 )
21 A1.\.|_1’m_1 ZysZ3) "
- _fenrl Boyoa(2,22) a (2_60)§n—m;1\ﬁg—:;;-
21 An+1,n—1(ZlJzz) n = /{n+m) ! no

x.P:(cose)ei[m(®+gt)_en“] (56)

im(ep+Qt) (54 )
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_ _ v .
The solution for the complete expansion of W, is finally -

. n . . o _ _
Wo=- Z(Q“”\A s (B382) o, (2-00){nmm) 7L HTE,

n=1 m=0 Ay 41002 (ZIDZE)

1fm(pt+0t)-e,, ]

x P®(cosf)e (57)

for ry<rsr,.
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3.12 DERIVATION OF THE STEADY-STATE VECTOR POTENTIAL

The vector potentlal in reglon II corresponding to steady
rotation of the cruciform maghet relative to the shell is obtained
from Wy,. The coordinate system (x,y,z) 1s again fixed in the shell
such that the z axls is the axis of rotation of the magnet. The
required formula for A, is glven by (3.6-15) with appropriate changes

in notation; i.e.,

= = l BWE - HWZ
Az = €5 5Ing 3p  ~ Sy 38 (1)

It will be convenient to retaln the phasor represehtation of

quantities introduced in section 3.11. From (3.11-57) the basic
v
term 1n W, 1is

v v . '
im(ep+Qt
Wo = KophBy,no1(2,25 )P (cos8)e (v ) (2)
v v
where K = _ (2n+1\A (3)
m e < Zy ) Aut1,n-11021,22)

v

v .
g%i = imKnnAn,n-l(Z,Zg)P:(cosq)elm(m+0t) (1)

v .
v . im{ep+0t)
Next, :g@ - KnmAn’n_l(Z’ZE)deécose)e (5)

The derlvative can be expressed in terms of associated Legendre

functions of order m as follows:

dp= (cosn) _ dP®(u) du _ _(q_,2\5 dP=(u 6
a8 du  ds <1u)—i——d$) (&)

where u=cosA., Using fthe recurrence formula In m for assoclated

Legendre functions,



(1-ve) 38D~ nupa(u) + (min)P1o, (u) (7)

obtain
93(0098) _ (1 ) Frnups (u)-(min)Pr_y (u)] (8)
gso that
v
BWZ v L
$5% = Kpuby, a1 (2,25 ) (1-u ) "2 [nupy (u)- (m+n)PE_, (u)]

Xeim(cp-i-Qt) (9)

Using the notation

v v v
By = gphay + ecpAQcp (10)
v v

then the general terms for Aae and Ach are as follows:

v v im(p+Qt)

. P

Aze = 1mKnmAnJn-ﬂz,zg)_liggggle (11)
¥ 1

"= 1m t)

~ AT, A, g (2520 ) (1-02) TERg (w) et (240 (12)

v v N
By = Kigly n-1(2,22)(1-02 ) Elnupy (u)-(mn )Py _, (u)]
im(+Qt)

X €

(13)

It

v
_KnmAn’n_l(z,zz)[ncoteP;(cose)—(m+n)21§%%%9§§l]

v
The complete expresslon for A, 1s obtalned by substituting (12)

and (14) into (10) and summing over m and n; however, this step

wlll be deleted for the sake of brevity.
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3.13 DERIVATION OF THE STEADY-STATE EDDY CURRENT DENSITY

According to (3.4-7), the eddy current density J in the shell

is given by

o= gﬁg (1)

b=

where A, is the vector potential for r,<r<,, and p is the volume
resistivity. Contlnuing with the use of phasor quantitles and

v
substituting the general term of the series expansion of A into

(1) gives the following results:

v v v
T = BTy + BT, (2)
v 2 AV 2 ) im(ep+Qt)
Je = = O:KnmAn ao1 (2525 )P -(COS{9 € (3)
Y ’ sina
m? Qy 2 \-% im(p+Qt)
S IO a,, e (202 ) (1) Hpy (w)e (4)
v PR
Q
Jcp = l_[;l—-KnmAn,n—l(z}ZE)
x[ncoteP:(cose)-(m+n)2i:LLEEEQlJelm(w+Qt) (5)
sing
R
= EEQKnmAn 1 (z,22)
p 2

x (1-u? )~ETnups (u)- (mtn)pe_, (u)1eXm(2H2E) (g)

The summations over m and n are omitted.
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3.14 DERIVATION OF THE MAGNETIC FIELD INDUCTION

The next task i1s to derive the steady-state magnetic field
induction B, in region II, corresponding to steady rotation of
the magnet, from the known potential W,. This is accompllished
with the aid of formulas (3.6-21) and (3.6-22) for the radisl and
tangential components of B,, respectively. With appropriate

changes in notation, (3.6-21) becomes

= e P 2
By = - =1L [W]=-2% LW cotd é%a + e¢sc29 %Wy (1)
. r w r 2 9
06 dep®
The general term in the series expansion for the phasor
\"

potential W, is, from (3,12-2)

\4 \" .
We = KnmAn,n—l(Z!Zz )P:(u)elm(c‘ﬂ_nt)
v \' .
= Kuoby, ue1(2:25)88 (0,0)e™ ™" (2)
v v v .
L,Wal = Ky8, o 1 (2,25)T,782(0, )16 (3)
v v
But Lw[Sg(a,@)] = -n(n+1)S= (A,m) (4)
according to (3.11-23) with X, = n(n+l)
v v \'
L (W2 = -n(n+1)K, 8, -1 (2,25 )58 (9,0)e™™F (5)
v
= -n(n+l)W, (6)
Substituting into (1)
v c v
Boy = == n(n+l)W; S (7)
E X im(@p+t) ,
= ?.L n(n+1)KnnAn, n—l(ZJZE )P‘:(u)e (8)
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Since the second scalar potential .discussed in Section 3.6 is

zero, (3.6-22) becomes

v _ 2 .o 2
th = ee }_H__EHZ_) 4+ e :.L o (rwz) (9)
r Afar  'S1nA  AmAr
_s 2 (AW Wa), g _ 1 A (AW, W
= € 37 (Ar Tt ecp sing »m\3r T (10)

Using phasor quantities,

v
AW, i +0t
e MKyab, amt (2,25 )R8 (u) MM (EHIE) (11)

where z = A, r, and the prime denotes the derivative wlth respect

to z. But
An’n‘l(z’ZQ) = En(z)nn—l(zz)‘ﬂn(z)gn—l(ze) (12)
Thus, A, ,-1(2522) = E,(2)n,-1(22)-ns(2)€,-1(22) (13)

Using (3.11-42),

8 aen (2,25) %n_uz)-(?;—l)a,xzﬂ Mae1 (22 )

Il

- ?q,.-mz)—(-“;‘—l)nn(z)] oz (2a)

L

Eno1 (2)Ma 1 (22 )Mo (2)8,-1 (22)

- Lmz'__l_) [gn(z)n,,_l(zz)-m(zﬂ Ea-1(2z)

- An_l’n_l(Z,ZZ) —(E_;)An,n—l(z.vzz) . (14)
R SN D
x P:(u)eim(cp‘i‘ﬂt) (15>

Combining (2) and (15) ylelds
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<
=<

v
W,
gr + ?'2- =)\-Kn-[An—1,n__1(Z’z2) - (%)An,n—l(z:zz)]

X P:(u)eim(wnt)

(16)
Next,
v v v
%a(g_lgz_ + [rf:—,,) = X,'Knl[An"l,'n"l(Z’Zz)_ (%)An,n_l(z,zaﬂ
. X (1—u2)'%[nuP;(u)—(m+n)P;_1(u)Zl eim(m"'Qt) (17)
Finally,
v v v
’2’5(%11.%' + %zimkanl [An-l,n—l (Z:ZE) _(%)An,n—l(zlze ):I
X P:(u)eim(m+ﬂt) (18)
Letting B, = éeBze + échch (19)
v n .
Bee =)‘-mKnn[An_l’n_l(Z,Z2) “\zZ An’n_l(z:zz):l
X (l—u2)_%Enng(u)r(m+n)P'_1(uﬂ eim(w+0t) (20)
v n
ng =imk,K“.[An_1,n_1(z,zz) - E—An,n_l(z,zzﬂ
X (1—u2)'%P;(u)eim<m+Qt) (21)

The complete expressions for the components of B, are obtained

by summing (8), (20) and (21) over m and n.
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3.15 DERIVATION OF THE TORQUE FOR A STEADY ROTATION.OF THE MAGNET

In section 3.3, it was stated that the force T exerted on an

elemental volume of a conductor in which the current densgity 1s

J and the magnetic induction is B 1s
F=J3x8B - (nt - m™®) (1)

Expressing J and B, in terms of their components in the r, 8, and

@ directions

T = 80y + 874 5 (2)

B, = 8B, + 8Bsgy + 8 Boy (3)
obtain

f, = JgBey = T Bag (4)

fg = T Ber (5)

f@ = 'JeBer . (6)

These forces on the elemental volume produce torques about the

X, ¥y, and z axes fixed in the shell,

The torgue about the z axis, due to the force fw acting on

the elemental volume dV 1is

n, = r sin 5 fCp = -7 sin 6 J B, (nt - m™®) (7)

Neither T, nor ¥, contribute any torque about the z axis. Now

9
v Y
in terms of the phasor quantities, Je and B,,., corresponding to

steady rotation of the magnet,
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v
Re{Je}

Je =
2 n 2q v )
- Z; ;: O Ky w by, n-1(2522)]
P2 (cos A) - )
X_n'_—_s:me cos[m(rQt Y %, 4 ] (8)
v
where Y, = arngnnAn,n—l(z:Za )] : ) (9)
Also,
v
Bz!‘ = RefBzr}
oo n v
_ Z‘ Z: n(§+1) K”An,n_l(z,zeﬂ
n—= =
x P2 (cosB)coslm(op+Qt)+X,p ) (10)
Thus,

Z] il 2 ﬁ;} (k+1>\%n.ﬁn,n-1(z,zz)l

XIK;&Ak r-1(2,25)] x P'(cose)Pk(cosq)
X{COS[(m-L)(w+Qt)+xn,—XkL] + cos[(m+&)(m+Qt)+Xn,+xk&]} (11)

The net torgue about the z axis due to the forces on all ele-
mental volumes 1s obtained by integrating (11) over the volume

of the shell:
r, m 2m

N, =f n, 4av =[/fn,r2s,inedcpdedr (nt - m) (12)
v , Y0 Y0

Consider first the integral over o.
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I, =/Q- {cosT(m-4) (@+Qt)+Xnu Xk 4 ]

+ cos(m+e) (@rOt )X, n+Xe , ] 10 : (13)

For m and 4 positive integers, the value of Ico is zero unless

m={. Then

ICD = QﬂCOS(Xnn—Xk.) (14)

Thus, terms in (11) for ¢#m are zero. Next consider the integral

over 6.
i
I, =/ Pe (cosB )PE(cosh)sinhde
0
+1
=f P2 (u)Pg (u)du (15)
-1
For k#n, Ie = 0. For k=n
+1 5 ( N
= m 2 = _c n+m) .
Ie ./; rP2 (w)12du 2n+1 (n-m)! (16)

Hence, only terms for which 4=m and k=n remain in (11), and (14)

ives I = 2w,
& ¥

The last integral to be evaluated 1is

T2
L =[ I.An,n"l(Z—'ZE’)l.2 r'edr
1

I‘g .
=f An,n-l(ZJZE)Ar’n—l(z;Zg )I’gdr (17)

ry

where z=), r, and where the asterisk denotes the complex con-

jugate. This integral can be evaluated by means of formula (21)
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derived in Appendix C, since A, ,_,(2z,2,) satisfies the conditions

on u_(Ar,r) and since v_(Xr,%) = u, (Ar,r). The reguired formula is

repeated below for convenient reference.

r, Za
1
r2u, u*dr = lz | Imzu*u, _) (18)
gt Z :

Thus,
1.
I, = W{‘Ze|1m[zzﬁn*,n-l(zz:zz )An—l’n—l(zszz)]
- lzlllm[zlA?f,n—l(zlxzz )An—l,n—l(zlJzz )]}

_lxzmla!‘ Im [21/3:1*, a1 (2152 )An"’-:"'l (21,2 )] (19)

since A -1,,-1(22,22) = O. Now substitute (14), (16), and (19)

into (11) and (12). The result 1s

2 (n+1) 4 n+m) E %
;; m 2nt+ 1 n-m nmnn

X IZ;, Im [Zl A?\e,n—l(zl’zz)An—l’n—l(zlyzg>] (20)

Using (3.12-3)
Zl Zl EH(——)D( n+l) s n+m (2n+1 la_, 12

x 1 Im [ZlA:.n—l(Z,l:ZZ)Am—lln—l(zlxzz)] (21)
P |3 mn+1,n-1(zl:zalz
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v
Since A,y = 2a, 2;3), 02, +T2, ehien', (m=1) . (22)
vV A
IA n Iz = Anm Anl
n-m)!|?®
= L('ai n+m)!] (G?\l""rﬁ-) . (23)
Il 2
N, =i Z 81-erahen(n+1)(2n+l) %@g_:_(oﬁm + 78,)
n=1 m=1 p n+m) .

X 1 Im [z, 0% __ (Zl,z )A 1 — (21:22)] (24)
Z1||hal’ I.An+1,n—1(21:22)

This formula expresses the torque in terms of the quantities,

a, which characterize the cruciform magnet; ciﬂ+Tim1 which depends
on the location of the axis of rotation; and the complex functions,
An,n—l(zl-'zz) 5 Ba-1,n-1(21,22) and An+1,n—1(21122) of the dimen-
sionless complex numbers z; and z,, which are proportional to the

inner and outer radii of the copper shell respectively.
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3.16 APPROXIMATE RESULTS FOR THE CASES OF SLOW DAMPER ROTATION AND
PHIN CONDUCTING SHELLS

Within the limitatlons of the theoretical model assumed for
the damper, the derivation of the formula for the damping torgque
was performed without approximations. For the purpose of evalu-
ating the damping torque produced under normal operating conditions
and practical damper configurations, it will now be convenilient to
introduce certain approximations in the exact formula (3.15-24). 1In
particular, certain approximations are valid when the rate of rela-
tive rotation is sufficiently slow, corresponding to satellite 1li-
bration periods of several hours, and for thin conducting shells

that are actually used in the fabricaticn of practical dampers.

Consider first the case of slow rotation rates (O<<l1)*. For
a fixed value of the summation index m, |Ml40 as O2*0; hence, z-0.
Thus, the asymptotic forms of the spherical Bessel functions for
small érgument can be used, if O is sufficlently small, To obtain an
idea of the numbers involved, it 1s instructive to calculate Mgl
for a rotation period of one hour, for example. From formula

(3.11-13)
el = /mua/p (1)

where m is a positive integer. Assuming rapid convergence of
the series in m, all terms for m>10, say, will be negligible.

If the conducting shell is pure copper,

*
For convenilence assume =0,
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U Mo = 1.26 x 107° (hy/m) (2)
o = 1.724 x 1078 (ohm-m) (3)

and for a perlod of relative rotation between damper parts of

one hour
Q= 1.74 x 1073 (rad/sec) (4)

Thus, for m < 10, M.l < 1.13 (m_l). For a practical sized damper
rs ~ .1{m), so that |zl s 0.113, and lz|<<l. Increasing the
shell resistivity or the period of damper rotation has the effect

of reducing I,! and lz| still further.

Consider the expansions of € _(z) and n_(z) in ascending

powers of z [4]; viz.

n 2 /2 2/2)
2, (2) - rﬁ?fw—[l - TThaay * FT(SERS ey * ] 7

on-1) 2 /o z2 /2)3
n,(z) = j?n‘ﬂ'—— I:l * 1'21 Zn) 21& 24)(3 9n)+_"] (©)

£, (2) ~ TomETyTT > ma(e) ~ R (1)

These asymptotic formulas yleld values of € _(z) and n,(z) accurate
to about 1% for lz| < 0.1, and the nature of the formulas is such
that a greatly simplified torque formula can be derived.

~ il ~
For z = Xxe and x<<1:
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Ay n—l(Z1:Za) = .E.n(zl )'ﬂn—:_(za)‘nn(zn.)an—l(za)

]
. (2n-3)!! 42" 7" "2
~(=1)m =2 %2n.+l%.'.’ (;}') - (1) (z n+1)
1

2

~(-1)n -2 X\ 2n-3)!! FAE . 1 (8)
%, en+l) i \z, %, %

et ()E) )] @

) 1 ’(2n—3).‘.‘ X, Yes 1 ’
* ~ =
..ZlAan_lAn_l, n =1 (:21']_ ) (2n+l).|.' (Xg ) - ~ ~

H
8
N
i
>
Bk
>
2
I
oy
>3
t=3
)
-
by
]
N
{
™
o]
i
}._l
TN
%
N4
R4 Ll
©
N—
MNZL)NE
\/m
!
s
1
'_l
| S |
=
'_J
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Next the asymptotic form of |A, 1, ,—; |® will be determined for

~ in/4

z = Xe and X<<1.
An+1:n_1(21:22) = gn+1(zl )nn—1<za) = Mp41 (z, )gn-—l (z2)

1 n +1 ' n =1
- 0 B (5) - o fER (%)
. Z

2 1

-i3nm/4

-1 [(en-3)00 X\ o = \"
~ ("'l)n ' 3 TT f xlelﬂ/Ll- - 2n+1 Xa e
2n+3)!1 \% = ~ =
® Xy Xy X3

Dot1, n- s o (-1)n-1 Gim/H f(2n-3)11fX " 2\ 1
wrisnmr (22, 22) (-1) © 2n+3)1!§’: Xy (2h+1)§c‘21_ X3 X

|Ba+1, 121,22 )12 (en+1)2 (Xl) Xxs Y

Note that |A_.+;,.-1(21,22)]|2>0 and the existence condition (3.11-44)

is satisfied when X<<1.

MZ Ai. n— An—- n— ) ~ 1 /;{ \N ~ i 2n =1
: : 1\’2 * (2n+1)-3(2n_1‘5\§:‘/?<? X3 §ﬁ— - 1] (14)

lAn+l, ne1

1 Im(zl .u--].A n—l) l r nel o
BYIE |An+1 n_lli' 7~ (En+l)F(2n-T)\r: ri

x [(22_) "] (15)

Now substitute this result in formula (3.15-24)

since x .= |, |r.
for the torque and also substitute the results of Appendices A,

‘B, and E in order to obtain the parametric relationships ex-

plicitly. The result 1s the followlng:
N,

N, ~ 8m <%> (poM)2<%‘fi> Z 32 n(g+3 [1 ) <%)zn—1]
(n oad)

Z n+m Fro(uwx ,uy ,uz )3 (a2+ce<rf) (16)
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(n—zlf/’a 5 | _ s (o)
. CORE T DY () J .y

S=0 K=0 (n-2s+2k) (17)

Fn(ux,uy,uz) = [P:(ux)]z + [P:<uv)]2 + [P:(uz)]a
+ 2P% (uy )P2 (uy Jcosme, + 2P* (u, )P*(u )cosmd,
+ 2P2 (uy )P (u; Jcosmé, (18)
-1 f+u (193)
%, = tan :Hfa:
oy (19b)
%, = tan “U, U,
3y = tan—1 Uy (19¢)
- ~Uy U
Uy = cosB,, uy = cos®y, u, = cos@, (20)

The indeterminate cases corresponding to two zero direction co-
sines are excluded. Note that the sums over n and m are terminated
at finite numbers which indicate the limits of the approximation.
In formulas (19a), (19b), and (19c), the appropriate quadrant

1s determined by the signs of the numerator and the denominator

of the fraction.

Finally, for the case of a thin conducting shell a slight

additional simplification is obtained. For Ar = r,-r,<<r,
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1 - (;%)Bn—l 1 - (l _ %f)zn_l ~ (2n-1) (%f) (21)

and

Q 2 fa*c?) [Ar E ~ n(n+l
N; = 8TT<—p—)(HoM) <_I'1_) (?2—> £ aq r%:fg‘

(n odd)
M .
. -m)! 22
X; e (R P2 (a0, ) (22)

Formulas (16) and (22) have the form, N; =~ K0, where Ko

i1s the damping coefficient.

2
K. = 8nm LE%Ml rs S(a/c,c/ry ,r1/Te 3Ux LUy ,Uz ) (nt-m-sec) (23)

Q v
where
. N
3\ ¥ [r; VP ‘~ n(n+l
S(a/c,c/rl,rl/rz;ux,uy,uz) =<E) (FJ (E?) ay 'i;;—%
n=1 ( -1)

M
-T2 e ) (24)
m=1

1s a dimensionless function of certain geometrical ratios and

the direction cosines of the axis of relative rotation. Note
that KQ 1s proportional to the square of the magnetization M and
1s inversely proportional to the reslistivity p. Also KQ is pro-
portional to the fifth power of the damper radius, ry;, for fixed
geometrical ratics. Sample calculations have shown that, 1in gen-

eral, the value of S varies considerably when uy, uy, Uz are

varied; however, in the next section it will be shown that, for
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orbital operation, the axis of relative rotation is confined
to a certain plane which is fixed relative to the axes of the
magnet assembly. In that particular plane, the value of S is

apparently constant.
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3.17 KINEMATICS OF MAGNETICALLY ANGCHORED EDDY CURRENT DAMPER

The previous analysis obtained the torque corresponding to
a specified relative rotation between the magnet assembly and the
conducting shell. When the damper 1s functioning on an orbiting
satellite, the orientation of the magnet assembly depends on the
direction of the earth's magnetic field and the rotation of the
shell. The axis and rate of relative rotation are unknown a
priori. The purpose of this section is to investigate the kine-
matics of the magnet assembly and the torque corresponding to a
specified rotatlon of the shell in inertial space and a specified

earth's magnetic fleld vector.

The following assumptions are made 1in the analysis of this

sectlon:
1. A viscous damping torque is obtained

2. Deflectlion of the net magnetic dipole from the direction

of the earth's magnetic field is less than 900.

3. The magnet inertial torque is negligible compared with

the magnetic restoring torque and the damping torque.

Under the last assumption the magnet is always in a position

such that the applied torques are 1n equillibrium.

Denote the torque exerted on the magnet due to the relative

rotation of the shell by N, .

N, = K (ws-w, ) (nt-m-sec) (1)

of
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where KQ is the damping coefficient, w, is the absolute rotation
vector of the shell, and w, is the absolute rotation vector of
the magnet. The restoring torque ﬁ,, due to the magnetic field
of the earth 1s given by |

N, =mx H (2)

where m is the net dipole moment of the magnet assembly, and H
i1s the intensity of the earth's field at the location of the
satellite. The dipole moment m is directed along a line which
has equal dilrection cosines with the three N poles of the magnet
assembly. For equilibrium,

Ko(We-0, ) = Kodd = - x H (3)
Clearly the relative rotation vector, Aw, is normal to the plane
of the magnet dipole vector and the earth's magnetic field vector.
It will be assumed that w, and H are known stationary vectors
for the purpose of the present analysis. From (3) it follows
that

ws *H = w, -H (4)
and

W "M = W, -1 (5)

Now take the time derivative of both sides of (3) with respect

to a rotating reference coordinate frame fixed in the shell*

dwg) _ dwy _  fam - - _f[am (6)
KQ(dt , KQ(dt | = '(a-) x H -m X(@
8 8

*Reference [5], pp. 132-133.
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For w, stationary in the shell and a fixed rate of rotation,

(dw, /dt),

dw dw - - dw.\ , fmxH -
(dt : (jt T AW X =(?j-_€l)“T<KQ )X ve

=(§‘§ A -[(&,,-n"l)ﬁ—(fu.-ﬁ)rﬁ] ()

0. Also,

where the subseript m denotes that the derivative is tgken in

a coordinate frame fixed in the magnet assembly. Next,

dm\ _ fdm - - - -
(a?)s <ﬁ>m - AW XM= ~Awp X M

= + T]%K; [meﬁ - (Tﬁﬁ)ﬁ] (8)

since m is fixed with respect to the magnet axes. Finally,

di\ _ [aB - = _ _ = o 9
(ﬁ>s_<a€)i—wst = wg, x H ()

Substitution of (7), (8), and (9) into (6) gives

x, (g% (5, @)@ B - - L [PR-(RE)R | x B

+ mx{w, xH) (10)
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== x (mxw, ) (11)

Formulas (5) and (1) were used in the derivation of (11). Now

take the inner product of (dw,/dt), with H.

- KQ@‘E A o=-(a, -B)(A-7) + (m-8) (&, -H) = 0 (12)

Thus, either (dw,/dt), = O or (dw,/dt), is orthogonal to H.

Suppose (dw, /dt), = 0. According to (11) and (4),

a)ﬂ — Q(I)gﬁ) m (13)

(m-H)
i.e., w, and m are collinear vectors.

Fnough information is now available to permit a geometrical

interpretation of the analysis. The following polnts are noted.

1. The relative rotation vector Aw i1s perpendicular to the

plane of H and m.

2. The projections of w, and w, on m or H are equal.

3. wy, is collinear with m
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Figure 1 shows the above relationships for w,- >0 and w, + H<0.
Although Aw and o are yet unknown, elementary geometry indicates
that the tip of @5 must lie on a semi-circle which intersects
the tips of @s and the projection of w, on H. The component of

ws normal to H coincides with the diameter of the semi-circle.

The location of m on the semi-circle is determined from

formula (1). With reference to Figure 1,

a= (w,*ey), b = lw,-ae,!, ¢ = a tan a (14)

and (aw)® = b® - c? (15)

From (3) Aw = %E sin @ = T sin a (16)
Q

where e, is a unit vector along H and 7 = mH/KQ.

But
b = i, -ad |2 = w2+a® - 2aw,-e, = uf-a? (17)

(AUJ)Q = U)? - a® - aftan®aq = wi - a®seciq (18>

Squaring Aw in (16) and equating the result with (18) gives

T2 (1-cos®q) = 0¥ - a®sec?a (19)

or cos*aq + (w2 - l)cos®a - 8% =0 (20)

where W, = w,/T and @ = a/T = W, cosRB. (21)
1 ~. 1

cos?a = 3 {1_w§+[<1-w§ >2+4m§c032812} (22)

The posiltive square root is taken so that w,=0=>0=0. After

further manipulation,
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a = 005—13 /% [1 - w2 + (1 + 28%cos28 + &f)%]%s (23)

This formula gives a in terms of known'quantities. The normalized

relative angular velocity is from (3)

Ll
AT = %9.= (1-cos®a)?® = sin a (24)

Figure 2 is a graph of o vs. ®, with 8 as a parameter. It
is seen that the maghetic dipole remalns captured (a<9OO) by the
earth's magnetic field for all angles 8 except B=9OO, regardless
of the absolute rate of rotation of the shell. For 8=90°, the
dipole deflection angle a 1s less than 90O for Gs<l. The case,
$5>l and B=90o, will not be considered in the present analysis.

In this case (dw, /dt), # O, but (dw, /dt),-A = O.

Figure 3 shows the value of Aw as a function of w, with B
as a parameter. For g = 90°, Ay = Ws » 1f W, < 1. TFor g # 90°,
the value of AW increases rapidly with @, for w, < 1 and then

approaches the value, sin B8, asymptotically for large W, .

The normal behavior can now be explained in greater detail.
For a fixed value of B, an increase in w, causes ®, to move away
from H and towards w,. With allowance for the change in scale,
due to the increased length of w,, the tip of w, lies on a new

semi-circle of larger radius which intersects the tips of Es and

the projection of w, on H, Thus both a and Aw are increased,
although Aw is not proportional to w,. It 1is clear from elther

Figure 1 or 2 that as w,=*=, a=8 (B<90°) or a-+180°-8 (90°<g<180°).
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Filgure 1 shows that the magnetic dipole is fixed relative to
the magnetic field of the earth and to the absolute rotation
vector of the shell. Since the absolute rotation vector of the
magnet coincides wilth the dipole axis, the arms of the cruciform
rotate about the dipole axis at a rate w, corresponding to the
projection of w, on m. The axls of relative rotation between
damper parts is stationary relative to w, and H, but appears to
rotate relative to the axes of the magnet in a plane normal to
the dipole axis. With respect to axes fixed in the shell, the

axis of relative rotation appears to precess around &s.

The motion just described 1s obtained if the damping torque
is given by (1). Unless R=0°, 90°, or 180°, the motion is
complicated by the fact that the axes of absolute rotation of
the magnet assembly and the shell do not coincide, so that the
axis of relative rotation precesses in the damper. If the rate
of precession is large, it is not clear that a viscous law
accurately describes the true nature of the damper. Also, it
is guestionable to use the value of KQ corregponding to rotation
about a fixed axis, particularly since KQ is, in general, a

function of the direction cosines of the axis.

From conslderation of PFigure 1, 1t 1is apparent that pre-

cesslon of the axis of relative rotation is most rapid for 8

o} o
near O~ or 180, but on the other hand, Aw=0 as 840 or 1800, and
in the limit, the magnet swivels about the dipole axis, which

coincides with the earth's magnetic field vector, at the same
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rate as the shell. Thus, no steady-state damping is obtained

when 8 = 0° or 180°.

The value of the shape factor S, which determines KQ accord-
ing to (3.16-24), has been investigated as a function of the axis
location in the plane normal t0 m. It was first necessary to ob-
tain a sequence of direction cosines, uy and uy, which rotated
the axis through sampling intervals of 150 in the plane. It was
found that the value of S is apparently constant in the plane for
a fixed geometry. This result is remarkable, because sample

calculations show that, for points outside of the particular

plane, the value of S varies considerably.

Based on these considerations, it seems reasonable to

assume g constant value for K. in the plane normal to m and to

Q
assume that a viscous law holds true provided that the absolute
rotation vector of the shell does not approach the direction of

the earth's magnetic field.

Some useful design criteria can be derived from considera-
tion of Pigure 2. First, capture of the magnetic dipole 1s en-

sured for all B (O<B<m) provided that

w, = %?—==C%§(ns <1 (25)

(26)

or
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This criterion sets a lower limit on m, for specified KQ.

Since a large deflection angle of the dipole tends to reduce
the component of shell rotation that is damped, it is desirable
to restrict the deflection to small angles; e.g., a<45o. From
Figure 2, o = 45° corresponds to ®, = 1/4/2. The appropriate
criterion is, therefore,

K o
0 _ _H (a<d5™) (27)
mo /2w,
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3.18. EFFECTIVE DAMPING TORQUE FOR SATELLITE LIBRATIONS

According to Figure (3.17-1), the torque, N = K AW, exerted

_ Q
by the damper on the satellite (shell) is not directed along

the axls of absolute rotation (ws; axis) of the satellite unless
B = 90°, The object of this section is to obtain the effective
damping torque N,, which is the component of N along ws.

The effective damping torque 1s
N, = (N-eg)es = (KQA&-éS)és = (K,bw sin v)es (1)

where e, is a unit vector along ws and y is defined in Figure

(3.17-1). But

sin vy Aw/w (2)

~

S Ws Ws

N = KQ (AUU}e = K’QT (.AE_LQ = mH _(_._)__.Aa; ? (3)
w

where AW 1s gilven by (3.17-24). In terms of ¥, and B.

1
2 2 R 4 2
LEEQ—- (1 + @y - (1 + 2w cos 28 + Ts ) ]

N =
e QKQUJS
_ TH [1 + W - (1 + 2ws cos 2B + Ws ) ] (&)
2wg

In general, N, 1s a non-linear function of ws, unless B = 90°.

o]
For g = 90 and wg < 1,

N - mHGJ’s = KQUJS (5)

e
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Ideal viscous (rate) damping 1is obtained only when the absolute
rotation vector of the satellite is normal to the earth's magnetic
field vector. The effective damping coefficient then equals the

damping coefficient for relative rotation.

For B # 90° and W, << 1:

K
N, ~ 2 T, (1-cos 28) = o (1-cos 28)u, (6)
~~ K.‘3 Wg (7)
where
K
K, = 29 (1-cos 28) (8)

For Wy << 1, the effective damping 1s approximately proportional
to the absolute rotation rate, w,, but the damping coefficlent
depends upon the value of 8. The effectiveness ratio, KQ/KQ, is
plotted versus ]900—8\ in Figure 1. Note that for )900—8\3363,
the effectiveness ratio is 0.75 or better. For |90°—B[ = 45°,

the ratio is 0.5.

Figure 2 shows the non-linear relationship between N, and w,
for O<ws<l on a linear scale. The same function is plotted for
0.1sws<10 on a log scale in Figure 3. Figure 3 shows that the
effectlive torque increases with W, to a maximum value at w; = 1

and then decreases for w, > 1 (8#90° ).

The percent non-linearity of the effective torque (4) relative

to the linearized torque (6) is plotted versus ws with B as a
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parameter in Figure 4. The percent non-linearity is found to be

less than 5%, if [90°-g|s45° and §4<0.3.

Since the damper torque N is not directed along wg, there exists
a component torque normal to wg, unless B = 90°. This torque tends
to perturb the attitude of the satellite and must be consldered

when assessing the steady-state pointing accuracy.
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3.19 DAMPING OF TRANSIENT LIBRATIONS

The object of this section is to iInvestigate damping of
transient librations of a gravity-gradient stabilized satellite
which uses a magnetically anchored eddy current damper. Several
restrictions and assumptions will be needed to facillitate the

analysis:
1. Librations occur only about pitch axis,
2. Circular orbit,
3. Small libration angles,

4. Neglect perturbing torgues including damper induced

perturbation,

5. Effective damping torque 1s proportional to instantaneous

rate of pitch motion,
6. Earth's magnetic field is described by dipole model.

The equation for pitch motion of a gravity-gradlent stabilized

satellite is the following:
Iy § +K, & + 3w3 (I,-I,) 8 =0 (1)
where

8 = pitch angle from local vertical

I, = moment of inertia about pltch axis

Iy = moment of inertia about roll axis
I, = moment of inertia about yaw axis
K, = effective damping coefficient

we = orbital angular rate
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According to (3.18-8), the effective damping coefficient depends

upon the angle 8 between the axis of absolute rotation (pitch

axis) and the earth's magnetic field intensity vector.

K, = gﬁ (1-cos28) (2)

where KQ is the damping coefficient for relative motion between
damper parts. Although (1) is linear by virtue of the small
angle assumption, K, depends upon R which, in general, varles
during an orbit. Thus, the effective damping'coefficient is a
time-varying quantity. For the present analysis, an average

damping coefficient will be assumed, which depends on the orbital

inclination.

Assuming a dipole model for the earth's magnetic field, the
vertical and horizontal components of the field intensity vector
are given by

) om

v - - 17,;!)_&_ Sil’lcom (3)

H, = —rlg—g— Cosmp, (4)

where m, 1s the dipole moment of the earth's field, r, is the
orbital radius, and o, 1s the magnetic latitude. With respect
to orbital reference axes, x°, y°, z°, in the direction of the
orbital motion, the normal to the orbltal plane, and the local

vertical, the field components are

Hyo = Hy, cosa (5)
Hy, = +H, sina (6)
H;o = Hy (7)
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where a is the angle beftween the orbital plane and the magnetic
meridian passing through the satellite position. For the present
analysis, the effect of a pltch angle on the field components
along the roll and yaw axes can be neglected, so that the com-

ponents are

Hy, ~ H, cosa _ (8)
H, = +H, sina ' (9)
H, = H, (10)

The components can be expressed in terms of the orbital inclina-
tion angle i, with respect to the magnetic equator and the angle

8, of the satellite from the ascending node as follows:

Hy ~ p& sin i, cos 8, (11)
o]
m N
H, =-+?§ cos i, (12)
H, w g%g sin i, sin 8, . (13)
(o]

Denoting a set of unit vectors along the roll, pitch, and yaw
axes by I, j, and k respectively,

BE.3 =H, = H cos 8 (14)
where

H=1IH, +JH +kH,

cos B8 = %L = + %g 99%—5L (15)
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From (11), (12), and (13)

1
H=(H +H + H})®

ol

A~ %g (sin®i, cos®p, + cos®l, + Usin?i sing,)

e ms s £ m 3 . i
~ %% (1 + 3sin®i,sin®6,)% ~ = [l + 5 s1n21_(1—cosgam)]
1 L
~ T (1 + 3 Sinaim>° (1 - 6cos2p, ) (16)
]
_ 3sin®1i
where © = Zisorndi; (17)

Note that & ranges from zero to 3/5 as i, varies from 0° to 90°,

-1 _1
CosS 8 ~ - CcOs 1, <1 + % sinai_> 2 (1 - 8 cosgg-) £ (18)
But
KQ
K, = 5 (1-cos2g) = KQ sin® g (19)
From (18),
sin®g8 = 1 - cos®3B

= 1 - cos®i, <1 + % sin21_>‘l (1 -5 cosEQm)—l (20)

Ke = K, [1 - cos®i, (1 +-g— sinai,)"l (1 -3 coszem)"l] (21)

The average damping coefficient will be computed over half an
orbit, assuming that i, 1s filxed. Actually i, varies from orbit
to orbit, because the magnetic dipole does not coincide with the
earth's rotation axis; however, for Low and medium altitude
orbilts, fthe period of variation is long compared with the orbital

period.
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-t [ -
o
K iU
_ EQ_~/ﬂ [1 - k(l—écosEG.)_l} de, (23)
o)
where
k = cos?i, (l + % sinein>—1 (24)
Let
[ as
T —fl—-a—a?ss—e'e‘, =)

According to formula 213, page T4, of [6],

o1 -1 /T=5% sin2a_ ). /.2
I =5/ tan \cosE‘em—é ; (82<1) (26)

To evaluate the definite integral, it 1s necessary to account
for the multi-valued nature of the inverse tangent function.
Let v = tan™ 1 u, where

_ /I-8"sin28,
~ co0s28,-6 (27)

Table 1 shows a sequence of points as A, ranges from O to .

By u \

0 0 0

(3)cos™ s ® n/2

/4 -/T-8%/% n/2<v<m Table 1
/2 0 m

3n/4 +/T=8% /6 w<v<3m/2

($)cos™'s| 3n/2

™ 0 21

76



The total change in v is, therefore, 2.

/N = k |
\® /s = %a ( 1_62) (28)

But

- 2-
1-82 = 1 - 3 Sin~ 1, - 2 - 1 (29)
2+ 3sin®i, 2+ 3sin®i, 1+(3/2) sin®i,

k

(1-8% )cos®1i, (30)

k V1-82 - &k :
1- = =1 ~V1-8% cos®i, (31)
V1-82 vV1-82

-1
<K>§ = Ko [1 - (1 + % sir12'1m> cos2i,] (32)

A graph of <K32 KQ versus i, 1is plotted in Figure 1. The ratio

varies from zero for i, = 0° to unlty at i, = 90°,

Assuming that the instantaneous damping coefficient in (1)
can be replaced by the averaged value given by (31), then in

terms of the dimensionless guantitlies,

(,U% - 37(3”0 (Ix]—:fz> (33)

1 /3K°>Q 4

and ¢ = 5 77 (34)
(1) becomes

B+ 2Cw,B + 036 = O (35)

The transient solution for (<<l is

0 ~ eoe_gwpt cos w, t (36)
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where g, 1s the initial pitch angle. The time constant for

decay of pitch oscillations to 8,/¢ (e ~ 2.718) is

2T,

by = 1/, = 2R (57)
(K. ),
(&) =21, (38)

o] tp

Formula (38) gives the effective damping coefficient corresponding

to a specified pitch axis moment of inertia and time constant.

Although the effective damping coefficient 1s independent
of orbital radius, for a specified value of KQ, according to (32),
the formula is valid only when the linearity criterion, w,<<l, is
satisfied. To see how the damper design depends upon orbital
radius, recall that o, = KQ/mH, where m is the dipole moment of
the damper magnet and H 1s the intensity of the earth's magnetic

field. For (W,)msax = k (k<<l),

> k-l (39)
(H)min
Q

For pitch motion and light damping ({<<1).

_Vﬂa

(WS)mnx = (e)m&x =W, %,
< fg (U8 90 T Q L'Uo (LI'O)
2

since 9 < n/2 radians for a captured satellite. But.
1
re"@é (ro>"%é (41)

_ 2 -3/2 _
W, = Mg T / = Mg

wf-

Ty

where y, = 3.986 x 102° cnf /sec? and r, = 6.378 x 10® cm. Also,
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W o= H,2 o+ H2 = (“—’°—3> (4 - 3 cos® 9) (42)

Lo
m r. \° o)
. Hmin = —Ls (E‘) at Py = 0 (43)
rO
where m, = 8.1 x 102% pole-cm.
m_ > 10.72 x 1072 (r,\*/= (L)
v KQ K Te

Figure 2 is a curve showing the ratio, m/K_, versus orbital
altitude for 1% meximum non-linearity when |i,| > 15°, corre-
sponding to k = 0.1 and dipole deflection angle, a < 6°. Thus,
the minimum dipole moment needed for a specified orbital alti-

tude and damping coefficient can be determined.

As an example, the GEOS-A design parameters are as follows:

m

il

25,000 pole-cm
KQ = 70,000 dyne-cm-sec

h

600 n. mi. (orbital altitude)
- m/Ky = 0.358

According to Figure 2, linear (rate) damping is assured for an
orbital altitude up to about 4250 n. mi. for orbital inclina-

tions in excess of 150 from the magnetic equator.
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3.20 SELECTION OF DAMPER PARAMETERS

Since the size and weight of the damper are governed by the
choice of the dimensional ratios, a/c, c¢/r,, r/r,, the magneti-
zation M, and the desired value of KQJ it is of interest to con-

sider how these parameters might be selected.

The a/c ratio and the magnetization M are mainly determined
from magnet design considerations. Once a particular alloy
(typically Alnico 5) has been selected, the operating flux den-
sity, in the case of a bar magnet, depends upon the length-to-
diameter ratio,,g/d.* For an efficlent magnet, 1n terms of
strength per unit volume, the l/d ratio is chosen to obtain an
operating point on the demagnetization curve (that part of the
B-H hysteresis loop lying in the second quadrant) near the peak
energy point (maximum B-H product). It is not easy to predict
the optimum shape and the operating point by analytical means,
since the air gap of a cylindrical magnet is not well defined.
Therefore, the GEOS-A magnhet design parameters will be used as
a basls for calculations in this section. Since detailed design
information is of a proprietary nature, only the results of cal-

culations using design data will be included in thils report.

For efficient use of the damper volume and to obtain the
maximum centering force from the diamagnetic shell, the c/r,

ratio should be near unity with the constraint, a® + c® < r§, or
_1
c/ry < [1 + (a/c)®]° % (1)

The exact choice of c¢/r, would depend upon dimensional tolerances

* l/d ~ 2a/c
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and the amount of deflection of the magnet assembly from center

that would be expected in practice.

With r, fixed and a/c and c/r, specified, there is an opti-
mum shell thickness ratio r,/rz, for which KQ is a maximum, since
in (3.16-24), 3 » 0O as r, » O or as r, » r,. The optimum ratio,
(ri/r2)s, is independent of r,. The value of S has been plotted
versus Ar/r; (Ar = r; - ry;) in Figure 1 based on values of a/c
and c¢/r, used in the design of the GEOS-A damper. The optimum
value of Ar/ry, is about 0.12, corresponding to (ry/rz), = 0.88.
The value of Ar/rz used in the GEOS-~-A damper is less than the
theoretical optimum, corresponding to a reduction in damping

coefficient of about 25%.

For specified values of a/c, c/r;, and KQJ choosgsing r,/r; =
(ri/rs ), yields a minimum volume damper. A small damper is de-
sirable, because the effect of solar radiation pressure on the
satellite attitude is minimized. Figure 2 is a graph showing
diameter (copper shell) of a minimum volume damper versus K-
A graph for a damper having the same dimensional ratios as the
GEOS-A damper is shown for comparison. At the nominal damping
coefficient of 60,600 dyne-cm-sec.¥*, the minimum volume damper

diameter is only 0.2 inch less than the actual design value for
the GEOS-A damper.
Assuming fixed dimensional ratios, the damper weight is pro-

portional to overall volume. For reference the weight of the

GEOS~A damper is 7 pounds and the overall diameter, including

* This figure does not include the effect of the aluminum shell,
which is about 12% of the total damping coefficient of 70,000

dyne-cm-sec,
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the aluminum shell is 5". Figure 3 is a curve showing total
weight versus dp, based on dimensional ratios of the GEOS-A
damper. The damper weight is given as a function of KQ, assum-

ing GEOS-A damper dimensional ratios, in Figure 4.
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4L, ANALYSIS OF EDDY CURRENT ROD DAMPING CONCEPT

4.1 LIBRATION DAMPING BY MEANS OF EDDY CURRENT RODS

Several péssive techniques which require no moving parts for
libration damping have been described by R.E. Fischell of APL r7l.
These techniques use ferromagnetic rods which are magnetized by
the earth's magnetic field. The rods are rigidly attached to the
main body of the satellite so that attitude motions move the rods
with respect to the earth's magnetic field. The changes in magneti-
zation generate power losses by hysteresis and eddy currents, and
the result is a damping torque applied to the satellite.

The specific technique which is considered for use on the
GEOS B satellite uses equal volumes of rods mounted parallel to the
three principal axes of the satellite. The rods are made of a
moderate hysteresis loss material which has a high permeabllity
at the earth's magnetic field intensity. Eddy current damping is
obtained by means of power losses in a copper sheath around each
rod. Since the remanence of the magnetic material is low, the
magnetic inductlon along each axis is approximately proportional
to the component of the applied magnetic field. The induced
dipole is, therefore, nearly parallel wlth the applied fileld,
and the perturbing effect of the induced dipole is much less than

for other types of magnetic rod dampers.
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4.2 DERIVATION OF THE BASIC TORQUE FORMULA

The torque required to rotate a ferromagnetic rod clad with
a conducting sheath in a magnetic field can be derived in a man-
ner similar to the analysis for shorted coil damping by Fischell,
Consider a long, cylindrical rod rotating about an axis normal

to the longitudinal axis in a magnetic field of intensity H.

With long rods, the effect of induced poles is to prevent
the rod from being magnetized except along the longitudinal axis;
hence, only the longitudinal component of the applied field need
be considered. The intensity of the internal field differs from
the applied field intensity, due to the demagnetization effect
of induced poles, by an amount that depends on the length-to-
diameter ratio (ﬂ/d) of the rod.

H, = H, - ﬁ%— B (oersteds) (1)

where B, 1s the internal flux density in gauss, and N is the de-

magnetizing factor. According to Bozorth and Chapin [8],

No- h.02 logio (f/d) - .92 (4 = =) (2)
" 2(£/d)?
for a long cylindrical rod with f/d > 10. The demagnetization
effect can be accounted for by defining an "apparent" permeabil-
1ty, u', as the ratio of the internal flux density to the applied
field intensity. The apparent permeability can be obtained in
terms of the true permeability and the £/d ratio by means of a

graph which appears in [8].

If H, is the magnitude of the applied field intensity, then
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for a constant rate of rotation w, the component of H along the

longitudinal axis of the rod is

H = H, sin wt (3)

n

To evaluate the effectiveness of eddy current damping with
a conducting sheath, core losses will be neglected. By hypothesis,

the flux density in the rod is also sinusoildal, and

B =B, sin wt = u'H, sin wt (4)

Y

where B is the flux density averaged over the rod and u' in the
apparent permeability. The copper sheath is equivalent to a
single turn colil around the bar, and the voltage induced around

the sheath 1s

v o= - %%—x 107° (volts) (5)

Neglecting leakage flux and assuming a constant flux density in
the rod, then

aB -8

v=-Agp x10° = -Aw B, cos wt x 107% (volts) (6)

where A = Tr,? is the cross-sectional area of the rod, which has
radius r, cm. The power dissipated in a strip of copper of thick-

ness dr at a radius of r and length { cm. is

_ v [ dar

dP = —5= 5 (watts) (7)

where p is the resistivity of the copper in ohm-cm. The total

power dissipated 1n the sheath is, therefore,
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1

Tp
_Fh dr _ v® T,
P =50 T Er% o (Y’?f) (®)
1

_ T—Aeﬁ‘;’e 1o (ra/r1) Be® (1 + cos 2wt) (107%°)  (9)

P = A%ﬂﬁa In (re/r1) u'® H? (1 + cos 2wt) (107*°) (watts) (10)

The average power dissipated over a complete rotation cycle is

<?>/= Aenﬁ In (re/r1) W'® H,2 x 107%*®  (watts) (11)

The power loss given by (9) corresponds to a viscous damping

torque, NUU = me dyne-cm, where

K = ﬁ%% In (ra/r;) u'® Hy2 x 107° (dyne-cm-sec)  (12)

When several rods are mounted parallel to each other, addi-
tional damping is obtained, but not in proportion to their number,
because of a proximity effect which reduces the flux density in
each rod. The effect can be accounted for by means of a separa-
tlon coefficient, o.. For two rods, the separation coefficient
varies from about one-half for adjacent rods to unity.for an in-

finite separation. The damping coefficient for n rods has the

form, therefore,

2
K = %%l In (re/r1) 4® H? x 10°° (dyne-cm-sec) (13)
W

It should be emphasized that the above formula involves
parameters, T and u', that cannot be accurately predicted by

ordinary analysis and which require careful laboratory measure-
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ment for a particular material and geometry. For a given mate-
rial and shape, the data can be obtalned by experiment, and the
results can then be substituted to obtain %»' FPor the purpose

of this report, a rough estimate of these parameters will suffice,
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4.3 ANALYSIS OF LIBRATION DAMPING

The object of this section 1s to obtalin rough estimates of
the effectiveness of the eddy current rod damping
device on a gravitationally stabilized satellite. In order to
obtain any results analytically, it becomes necessary to make
some gross assumptions and approximations which may not be too
realistic; however, the results should at least make possible a
comparison 1n the performance of the alternate damping methods
under idealized conditions. A more accurate performance evalua-
tion requires a complete simulation of the non-linear equations
of motion, but this task is beyond the scope of the present

investigation.

The configuration which will be studied has three equal
volumes of rods rigidly mounted along the roll, pitch, and yaw
axes of the satellite. With gravity-gradient stabilization, the
reference positions for the roll, pitch, and yaw axes are the
orbital velocity vector, the normal to the orbit plane, and the

local vertical. Only circular orbits will be considered.

Two sets of coordinate systems will be needed., Let x,, X5,
X5 denote the roll, pitch, and yaw axes, respectively, of the
satellite, and let x9, xJ, x5 denote the corresponding orbital
reference axes. For an arbitrary rotation of the satellite, the
components of vector in one coordinate system can be obtalned
in the other by an orthogonal transformation; i.e.,

x=Ax° (1)
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where x = (Xy, Xz, X5)7 and x° = (x?, x§, x3)7 are column vectors

and A = [313] i1s a 3x3 orthogonal matrix, where
ay,, = cos 6 cos | (2a)
a,, = cos 6 sin ¢ (2b)
a;5 = -sin @ (2¢)
a,, = -cosepsiny + sinpsingcosy (24d)
ass = coswpcosl + sinesinAsiny (2e)
a5 = sin ¢ cos A (2f)
g, = sinesiny + cosesinfcosy (2g)
azz = -sinpcosiy + cosepsingsing (2h)
g5 = COS @ COS 0 (21)

The components of the earth's magnetic field along the
satellite axes wlll be needed. Assuming a dipole model, the
vertical and horizontal components of the field intensity vector

are gilven by:

H, = - is__inn— Sin@m (3)
H, = %? cosey, (4)

where m, is the dipole moment of the earth's field, r, is the
orbital radius, and m, 1s the magnetic latitude. The components

of the field along the orbital reference axes are

Hy,o = H, cos a (5)

HYO :+Hh sin o4 (6)

H,o = Hy ' (7)
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where a 1s the angle between the orbital plane and the magnetic

meridian p

five to the magnetic equator and the argument,

lite position measured from the ascending node

juss
>
[o]
il

In terms o
Hy, =

Hy =

—+

The damping for roll,

separately,

angles,

= —% sin 1,

lane.

E& sin 1
3 m

+ cos i

= SHF

2 sin
s

£ Hyo, Hyo, and
Hyo cos® cosy +
Hyo, (-Cosp siny
Hyo ( cose cosy
H;, o sine cos#8
Hyo ( sing siny
Hyo (-sing cosy

H,0 cosp cosb

In terms of the orbital inclination, i,,

COSs em

Ox

HZOJ

Hyo cos® siny -H,, sing
+ sinm sin® cosy)
+ sing sing siny)
+ cosy sing cosy)
sint )

+ cosyp sing

piteh,

assuming small angular displacements.

HX =] on + HYOw - HZOQ

Hy =

H, ~

-Hyo¥ + Hyo + Hyow

Hyod - Hyo® + Hzo

30

04 5

rela-

of the satel-

of the orbit

(8)
(9)

(10)

(11)

(13)

and yaw motlons will be obtained

For small

(14)
(15)
(16)



For roll, pitch, or yaw motion the components are given by

Table 1.
Field
Component Roll Pitch Yaw
Hy Hyo Hyo-Hzo 6 HyotHyo ¥
Hy Hyo+Hz00 Hyo -Hyo¥+Hvo
H, -Hy optH; 0 Hyo®+H; o Hio

TABLE 1 - Components of Magnetic Intensity Vector Along
Roll, Pitch, and Yaw Axes

The instantaneous power 1loss in each rod 1is proportional to
the square of the rate of change of the component of H along the
rod. The rate of change consists of two components, one contri-
buted by the attitude motion and another by the orbital motion
of the satellite through the magnetic field of the earth. Be-
cause the square 1s taken, the principle of superposition does
not apply, and it 1s not possible to separate the damping of atti-
tude motiong from the perturbing effect of orbital motion. For a
preliminary estimate of the effectiveness of transient damping,
the effect of orbital motion will simply be ignored. This proce-
dure will yield a "best case" estimate of transient damping. The
net torque generated about a particular axis is obtained by com-
bining the torques contributed by the rods normal to the axis.
The resulting damping coefficients for roll, pitch, and yaw rates

of motion are as follows.
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Roll: Ke = K (Hyo + H3Q (17)

Pitch: K k (Hf, + Hi,) (18)

I

Yaw:, Kj = k (Ho + Hio) (19)

where k 1s a coefficient depending upon the rod and sheath

parameters; viz.

no, A2fu’?

k = 21p

1n (rg/ry) x 10°° (cgs) (20)

'Clearly the damping coefficient for a particular axis of rota-
tion 1s distinct and varies with the location of the satellite

in the earth's magnetic field.

Thé pitch axis damping coefficient will be investigated in

further detail. From (8), (10) and (18)

2
Kg = K(%L) sin® i, (cos® 6, + 4 sin® 6,)
r, S
_k&_z s 2 s L 2
= ) st i, (4 - 3 cos® 6,) (21)
I-.0

The average damping coefficient over an orbit is

/ .\ _ / 2 2 \
\Ke/ —\on + HZo/
2
=%k(&) sin? i, (22)
T, 2
The variation of <Ké> with i, as shown in Figure 1. The
maximumﬁ(ké>;occurs at i, = 900, and at i, = O,‘< é> is zero.
(o}
At i, = 450, the ratio of,(Ké> to the maximum value 1s 0.5.
Figure 2 shows the effect of orbital altitude h on <ké>
o]
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for h/r, ranging from zero to 0.7, where r, is the radlus of

the earth. Note that /Ké\ varies inversely as the sixth power
0
of the orbital radius. The graph shows that doubling altitude

from 600 n., mi. to 1200 n. mi. reduces the average damping co-

efficient by 56.5%.
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L.,4 SELECTION OF DAMPER ROD PARAMETERS

Formula (4.3-18) for the pitch axis damping coefficient has

the form
<Ke> = ——=— (£/4, )'4 £° 1n(d,/d; Yu'? /He/ x 1079
(dyne-cm-sec) (1)
where ¢, = 2r, (1 = 1,2) and
2
(a2 = (2, + 82, - %(‘—;%) 310’1, (2)

It is interesting to see how the various rod parameters might
be selected in order to calculate the size and weight corresponding
to a specified torque coefficient. A practical design basis would

be to maximize the ratio of /K to volume for a single rod. The

\"e/

volume of each rod including the sheath, 1s

V= (n/4) d2 4 = (n/B)(d./d,)% (a,/8)% 43 (3)

< 9>/V * [(da/dl)_2 1n(d2/d1)] (ﬂ/dl)—2 72 2 (4)

The independent design parvameters are dp/d,, [/d,, and [.
The apparent permeability uw’ is a function of ﬂ/d1 and the true
permeability p of the rod core material.

For maximum < 9 /V, the rod should be as long as possible

for the available space; 1i.e. L = ﬂm,x. The shortest dimension

of the GEOS satellite is about 30", along the z-axis.
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By partial differentiation, it is found that <Ké>/V is

maximum as a function of dp/d; for dz/d; =ye =~ 1.65.

Because the total space is limited in GEOS, 1t may be beneficial
to use fewer rods while increasing the sheath thickness of each
rod. Because no quantitative information is avallable on the
separation coefficlent for parallel rods, it 1s necessary to
neglect the proximity effect in the present study.

The choice of l/dl presents an interesting problem, because
of the gomplicated way in which u' depends upon ﬁ/dl. There are
two effects to consider. First, the demagnetizing effect of
induced poles becomes less as the l/ﬁl ratio is made larger, so
that the internal field intensity approaches the applied field
intensity. TFor large ,ﬁ/d1 the ratioc of apparent permeabllity to
true permeabllity is, therefore, close to unity. Second, the
true permeability varies with the internal field intensity. For
a strong, constant external fleld, the true permeabilify rises
from an initial value to a maximum value as l/dl is increased,
and then drops off rapidly as the material beginsg to saturate.

Because of its high permeability and low hysteresis loss,
4-79 Molybdenum Permalloy is the best available material for
the present application; however, it should be noted that Permalloy

saturates at about 0.2 oersteds, while the earth's maghetic field

at low altitude may be much stronger. Thus, some demagnetization
appears to be necessary at low altitudes. Moreover, Bozorth's

and Chapin's graph shows that demagnetization has a stabilizing
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effect on the apparent permeability, 1f the true permeability

is sufficiently large and l/dl is not too large.

These relationships are clarified in Figures 1 and 2. The
graphs are based upon published magnetization curves for 4-79
Molybdenum Permalloy [9] and Bozorth's and Chapin's graph [8].
Figure 1 shows the apparent permeability as a function of applied
field intensity for several values of Z/ﬁl. The stabllizing
effect of demagnetization on yu for smaller l/d1 1s apparent;
however, stabilization is obtained at conslderable reduction in
p' within the range of practical applied field intensities.
Figure 2 1s a graph of UI versus Z/dl with true permeability pu
as a parameter. This graph shows clearly the increase in p’
wlth l/dl. The curve for u = 1O5 will be used as a design basis.

The optimization of <Ké>/V can now be completed. Figure 3

)_2 u’g versus f£/d;, based upon data presented

is a graph of (£/d4,
in Figure 2. The curve reaches a maximum value at about.ﬂ/d1 = 300;
however, as previously noted, u' is more sensitive to applied

fleld strength at,ﬂ/ﬂl = 300, so that a somewhat lower value may

be preferable.

1l

The damping coefficient for a single rod (n = 1, o, 1) with

g= 29", 4, = 1/8" and d; = 3/8" has been calculated for a hypo-

thetical polar orbit at earth radius (r,=6.378x10® cm, 1,=90°) to be

(x:) = 1338 dyne-cm-sec. For four rods spaced well apart, <Ké>,=

\"8/,

5352 dyne-cm-sec. At orbital altitudes and for lower orbital in-

clinations, the damping coefficient will be reduced according to
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Figures 4,3-1 and 4.3-2. For example, if a 600 n. mi. polar

orbit is chosen, the correction factor is 0.38, so that for four

rods, <ké> = 1980 dyne-cm-sec.

Each rod weighs about 1.5 1lb., so that the total weight of
the three sets of four rods is about 18 1b. Assuming that enough
space were available, and the resulting payload could be orbited,
to get a damping coefficient of 70,000 dyne-cm-sec., about 140

rods along each axis would be needed for a total weight of 636 1b.
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5. COMPARISON OF THE TWO DAMPING TECHNIQUES

Enough information has been derived on the performance of
the magnetically anchored and the eddy current rod dampers to
provide a basis for comparative evaluation. The results of the
comparison will enable certain conclusions to be reached con-
cerning the relative merits of the two dampers for use on GEOS

satellites.

5.1 OPERATING PRINCIPLE

The same basic operating principle applies to each damper:
satellite attitude motions vary the magnetic flux linking a con-
ducting element, and the induced eddy currents dissipate rota-
tional kinetic energy in the form of heat. The implementation
of the basic concept is quite different for the two dampers, and
this fact leads to significant differences in operation and per-

formance.

With the magnetically anchored damper, damping results from
relative motion between a strong permanent magnet, which is
oriented by the earth's magnetic field, and a conducting shell
attached to the satellite. Since the magnet is free to swivel
about its dipole axis, only the component of the satellite rota-
tion that 1s normal to the dipole axis actually produces a torque.
Furthermore, since the torque is generated along the axis of rela-
tive motion, only the component of torque along the satellite
rotation axis is effective for motion damping. The effect of
the component normal to the satellite rotation axis has not been

explained for lack of sufficient time to pursue the investigation;
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however, it would be interesting to examine thig point at a later
time,

Although the eddy current rod damper has no moving parts,
satellite attitude motions with respect to the earth's magnetic
field cause flux variations in high permeabllity magnetic rods
mounted along each principal axis of the satellite. For simple
yaw, pitch or roll motiocn, the torque 1is directed along the axis
of motion; however, the degree of effectiveness with which a par-
ticular motion is damped depends on the direction of the earth's
magnetic field with respect to the axis of the satellite. The
level of flux which is produced in the rods depends not only on
the intensity of the applied field and the true permeability of
the rod material but also on the shape of the rods, which governs

the apparent permeability.

5.2 TORQUE COEFFICIENT

Because the same baslic operating principle 1s used, elther
damper generates a torque that, to a good approximation 1is pro-
portional to the rate of rotation about the axls of sensiltivity.
It is interesting to compare the respective formulas for the

basic torque coefficients, since they are analogous:

Magnetically anchored damper:

K, = §pﬂ (LM)? r3 S(ase, o/ry, vy/rs) (1)*
Eddy current rod damper:
Kw = EEEE (UIH)Q £5 Sl(dl/l: d, /d) (2)**

*¥Rotation of shell about axis normal to magnet dipole axis.

¥*¥Rotation of n parallel rods about transverse axis normal to
magnetic field H,
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In each case the torque coefficient is proportional to the
square of a magnetic flux density (u’H or U,M) and is inversely
proportional to the electrical resistivity p of a conducting
element. Also, both formulas contain length raised to the fifth

5

power (r; or E5) and a dimensionless shape factor (S or 8').

The torque coefficient for the magnetically anchored damper
is a function of intrinsic parameters only, since the inducing
magnhetic field 1s obtained from a strong permanent magnet. On
the other hand, the torque coefficient for the eddy current rod
damper is dependent upon an extrinsic quantity, the intensity H

of the earth's magnetic field.

5.3 EFFECT OF ORBITAL ALTITUDE

Because the intensity of the earth's magnetic field varies
inversely as the cube of distance from the geocenter, the damp-
ing coefficient of the eddy current rod damper varies inversely
as the sixth power of the distance. Figure 4.3-2 shows the sen-
sitivity of the damping coefficient to orbital altitude. For a
change in altitude from 600 to 1200 n. mi. the damping coefficient

is reduced by 56.5%.

£1lthough the torque coefficient for the magnetically anchored
damper is not affected by orbital altitude, the effective damping
torque is constant only so long as the magnet dipole axis 1s
aligned with the magnetic field of the earth. At high altitudes
a problem develops, because the magnetic field is not strong
enough to maintain the dipole axis in proper alignment. When the

dipole axis deflection angle becomes too large, two effects take
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place. First, the effective damping torque becomes smaller, and
second, the relationship between torque and satellite rotation
rate becomes increasingly non-linear. Ultimately, the damper
becomes ineffective as shown in Figures 3.18-2 and 3.18-3.

These problems are easily elimlnated by using a stronger maghet.
The resulting welght increase usually does not count as a
penalty, because the damper is used as a tip weight at the end
of a gravity-gradient stabilization boom. Calculations show
that the GEO0S-A damper functions properly for altitudes up to

several thousand miles,

5.4 FEFFECT OF ORBITAL INCLINATION

With both dampers, the effective damping of pitch librations
varies with the latitude of the satellite, because the direction
of the magnetic field changes with respect to the pitch axis.

The average damping over a complete orbit was computed for both
dampers. 1In each case, the average damping is maximum for
magnetic polar orbits and is zero for a magnetic equatorial orbit.
At intermediate orbital inclinations, comparison of Figures 3.18-1
and 4.3-1 shows that a larger fraction of the maximum average

torque is obtained with the magnetically anchored damper.

5.5 SI1IZE AND WEIGHT

The size and weight of both dampers for a specified damping
coefficient has been investigated. Since the damping coefficient
for each damper is a function of certain intrinsic parameters,
which determine size and weight, it was first necessary to pro-

vide a rationale for specifyling the parameters.

101



Since the magnetically anchored damper is used as a boom tip
weight, a small damper is desirable to keep the torgue caused by
solar pressure small. The analysis of Section 3.20 shows that
there is an optimum ratio of shell thickness to outside radius,
which for a specifiled torque coefficient, yields a minimum volume
damper. The GEOS-A damper design is only slightly larger than
the minimum volume design. It turns out that wide range of torque
coefficients can be obtained with minor changes in damper size.
This is shown in Figure 3.20-2.

If all dimensional ratios are fixed, the magnetically anchored
damper weight is proportional to the three-halves power of the
torque coefficient. Using GEOS-A damper dimensions and weight as
& guide, a graph of welght versus torque coefficient was plotted

in Figure 3.20-4.

Analysis of the eddy current rod damper rods in Section 4.4
shows that the ratio of damping coefficient to volume per rod is
maximized by making the rod as long as possible., The limiting
dimension for the GEOS satellite is about 30" along the vertical
axis. There is also an optimum ratio of sheath diameter to core
diameter for the rod. The theoretical optimum ratio of sheath
diameter to core diameter is smaller than the design figure pro-
posed by the satellite manufacturer by a factor of 1.8. A pos-
sible reason for this 1s that the proximity effect caused by
spacing parallel rods closely together was neglected in the anal-

ysis for lack of specific information. Analysis based on availlable

data for 4-79 Molybdenum Permalloy and experimental curves on the

demagnetizing effect of induced poles in magnetic rods 1ndicates
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that a large ratio of length to diameter (~250) should be used

for the ferromagnetic cores.

The weight of the proposed rod configuration is about 18 1b.
which exceeds the magnetically anchored damper weight by 11 1b.
The damping coefficient for a 600 n. mi. polar orbit is only 1980
dyne-cm-sec, compared with 70,000 dyne-cm-sec for the magnetically
anchored damper. It 1s clearly impractical to achieve a damping
level of the same order as that easily obtained with the magnetic-
ally anchored damper, since over 600 1lb. of rods would be needed.

It should be mentioned that the magnetically anchored damper
welght 1is useful, because 1t also serves as a necessary boom tip

welght, while the eddy current rods are essentially dead weight.

5.6 DAMPING OF INITIAL LIBRATIONS

Because the equations of motlon for large angle motion are
non-linear, and because of certain complexities in the way either
damper functions that are difficult to take into account, an
accurate prediction of transient damping time is not possible
without computer simulation.

The analysis does show, however, that either damper may
be characterized in terms of a certain damping coefficient. It
was found that the eddy current rod damper coefficient is more
than an order of magnhitude smaller than that of the magnetically
anchored damper. Computer simulations performed by GE indicate
a damping time of about six days for the GEOS-A satellite at 600
nautical mile altitude. Consequently, a damping time on the

order of 100 days would be expected with the eddy current rod.
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It does not appear to be feasible to improve upon the eddy
current rod design, and a significantly higher damping level

could be obtained only with an unacceptable weight penalty.
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APPENDIX A

THE VECTOR POTENTIAL OF A CYLINDRICAL BAR MAGNET

Consider a cylindrical bar magnet, of radius a and length
2¢, which is uniformly magnetized in the longitudinal direction.
If M is the constant magnetic moment per unit volume (amp/m) the

magnetic vector potential is given by the formula
K - ko [Mxn 4o (wb/m) (1)

where yy is the permeability of free space, R 1s the distance from
an elemental surface area ds at point P’ on the cylinder to the
field point P,and n is the unit outward normal vector at ds.
Obviously no contribution to the_integral is obtained from the
end surfaces, because M and n are there collinear, and, hence,
Mxn = O.

=

In terms of unit vectors, é;, € k’, in the directions of

increasing g, ®, and z at the point P’

Mxn = M(kxe’) = Me’ 2
(Rx!) = W& (2)
where M = |M|. 1In rectangular coordinates

éé = -Isiny’ + jcosop’ (3)

where I and J are unit vectors along the x and y axes, respectively.

Since ds = adm'dz'

C ul
ry . 7 i 7
T = quaf [ (-isinew’ + jcosp’) dop ‘dz (4)
~c Jom R

™
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Denote the spherlcal polar coordinatesof P by r, 8, ¢ and those

of P/ by r’, 8’, @w’. Then

1
R={r® + r'2 - 2rr’ [cosBcosd’ + sinfsind’cos(w-9’)]1}* (5)

(r® + r'® - 2rr'cosa)% (6)

or R

where a is the angle between r and r’. By axial symmetry, |&| =
Acp is independent of g, so for convenience, set o = 0. Now the

i component of the integrand in (4) is an odd function of o’,
while the J component is an even function of o’. The 1 component

of A is, therefore, zero, and

c I
= _ MoMa cosy’ y ,. -0 (7)
Acp = lAy] = E%_—:[; .[; —5= do’ dz'; cosyp

The inverse dilstance can be expanded in a series of Legendre

polynomials (zonal harmonics), P_(cosa).

Rt = 2: f (r,r’)P, (cosa) (8)
n=90
where r'a/pad+l | plcp
£ (r,r') = (9)

rn/rlﬂ+1 5 ey

According to the biaxial theorem for zonal harmonics,

—_ 1
P, (cosa) = io(e—as) S PR (cos8) B2 (cost’) (10)
m= ‘
Thus,
2 U n-m)! /
Rl = Z ‘; (2-5° )—Emg-—rfn(r,r’)P:(cose)P:(cose )
n=0 =90 :
X cosmep’ (11)
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After substituting this expression for R-! in (7), interchanging
the order of summation and integration, and integrating over o’,

only the m=1 term remains.

. n-1).
D {ooHh P (coso)
C

x:/. £ (r,r")Pt(cosp’)dz’ (12)
-c

of

To evaluate the integral, substitute r’ = (a® + z’2)%, cosp’ =

-

z'(a2+z'2)" Since the expansion will actually be needed only
in the region, r>r’, the integral will be evaluated for that case

only. Thus, fn(r',l’") = p’n /yo+l gng
[}

./~ f (r,r’)Pl(cosh’)dz’
-c

a~+z

C
e [ b e 09
-C

By definition,

PL(u) = (1-w2)¥ 9B lu (14)
in/27 1
o et = (o ptanm =
S=

where [n/2] denotes the integer part of n/2. Thus,

[(n=1 /2] 1
[(g=2) 1) (2n-25)! 42 s—1 (16)

dar, Lu o5 sT(n=5) (n=25-1)"

L (a)
du

S:
-1
Substitution of (14) and (16) into (13) with u = z’'(a®+z'2?)"%,

and interchanging the order of summation and integration gives
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C

f £f,(r,v’)Pl(cosp’)dz’
-¢ [ (n-1)/2]

s 2n-2s ).
=r—f'+-1— Z ('1) ou gl (I’]_ES?.’ (51223—1).'

/ (a2+z'2)s z'n"2571 gz (17)

For n an even integer, the integrand is an odd function of z’, and

the value of the integral is zero. For n an odd integer:

e C
/ (a2+z'2)s z'n=2s"1 gz’ = 2 [ (a+z'2)%zr—2371gz’ (18)
_c O
The binomial theorem gives
S
(a®+z'2)s = E (S) a2 (s—x) z'2x (19)
k=0 \§
c S C
0 k=0 0

Zo() by (=)

C

/ £ (r,r") Pl (cosh’)dz’
-c

(n-1)/2 s
_ a (-1)s(2n-2s)! S a2 (s—x ) cn -2s +2k
= TaFT 2" TgT(n-s) ! (n-25-1)" 2 k) (n-2s+2k)

s=0 k=0

(21)
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Finally,

@

Aco = Z a, (r)Pl(coss) (22)

n=1

where, for n even, a_(r) = 0, and for n odd,

a (r) - Lo Ma ) Sn-i-l
? gnnin-klj

R0 (oneee) - (s=)
-1)s(2 -2 ! 2(s—k )41
* ZO Sl(n—s)rll(rT?Qs—l)! ;}(ﬁ)’n%s-@ﬂ (%)
S= = 7
(23)
At r=r,,
8y = an(rl) =U-0Ma c\r+! 1
on (?,) n(n+l)
(2 (-1)3(2n-2s) > 1 (s-x )+1
- n-2s)! s 25—k
X Sz:; st(n-g) I (n-2s-1)! & <k> mf(%)
(24)

The expansion of Acp in a series of associated Legendre func-

tions P} (cose) has now been accomplished in a manner that does

not require the use of formula ({'3.9—5) for the coefficients of

the expansion.
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Intultively,

potential,

APPENDIX B

EVALUATION OF o2, + 72,

it may be expected that the magnitude of the

W', and of the net torque, N,, is independent of the

azimuth angles, &y, &y, %;,

slnce the choice of the azimuth

reference axis (g) is arbitrary. 1In fact an expression for the

quantity, o2, + T2

nm?

can be derived which depends only on the

polar angles, @, 8y, ®,, of the rotation axis, ¢, relative to

the positive magnet axes,

ns

an

The

’
X

, v, z', respectively. From (3.10-5)

2 2 2 2
a2 cos®md, + B2,cos®md, + y2 cos®m3,

+ 2a

nu

+ 28

ne Ynm

BancOsmd, cosmdy, + 2a,,Y,,c0smd, cosmd,

cosmg, cosm@, (1)

2 aine 2 oinR 2 oin®
oG 8in"mé, + 8 ,sin®*md, + yI,sln*mg,

+ 2a,,8,,5inm®, sinmd, + 2a,, Y., sinmé, sinmg,

+ 28,p Y, Sinmd, sinmg, (2)
£, = 02, 4 B2, + ¥3. + 20,,8,,c08m(By - 8,)

+ 20,5 YyecOsm( &, - &, )+ 2Ry, vy,.cosm(®, - &) (3)
angles, &y - &,, %, - &, and &, - iy can be expressed

in terms of @,, ®,, ®, with the aid of spherical trigonometry.

With reference to Figure 1,

consider the right spherical tri-

angles ABC and ADE formed by great circles in the x’, y’ and

E,n planes and the meridian lines through the x’ and y’ axes from

the ¢ axis. Note that the £ axls has been placed arbitrarily
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along the line of intersection of the £,n and the x’,y’ planes,
so that ®,>0, 0<@,<m/2 and 0<@y<m/2 =>§,=-1/2 radians. From

spherical trigonometry,

sin &, = cot®,cot8, (4)

sin %, = cot®,cot®, (5)
1

cos & = (l-cot®8,cot28, )%

1 - 2 2 o 1
= —0—————— {(gin in°@®, ~cos IS} 2
Sln@x Sln@z ( @XS 7 @xco ®, )

1 i
= m [(1—0082®x )(l—COSg®Z )—COSQ®X COSQ®Z:| 2

_ cos®y
~ 8in@®, sin®, (0<@x<m/2) (6)
since cos®®, + cos®*®, + cos?®, = 1. Likewise,
1
= _ _ 2 2 z _ -cosBy
cos @y (1-cot®0@ycot?O; ) STIe 500, (m/2<@y<m) (7)
Hence,
cos(dy~%,) = cosd,cosd, + sing,sindg,
_ _cot®, cot® 2
= Sint e, + cote, cot®ycot?e,
= -cot@,cot®, (8)

1 1
sin(8,-3,) = [}-cosB(@y-@xﬂ ® = (1-cot?@,cot?0, )Z

- cos®, (9)
sIn®, sin®,
£ _ +COS®Z (lo)
an(8y-g,) = -cosB, cosby
or -8, = tan" +cos®;  \  fm_e |5 oo (11)
~cosby cosPy 277 =
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Next,

cos(%,-%,) = cosd,cosd, + sind; sind = -sind, (12)
since %, = -n/2.
sin(g,-3,) = sing, cosd, - sin¥,cosd, = ~-cosd (13)
tan(&, -8, ) cotd, -ESE@:E%E@; (14)
_ -1 -c0osBy
or &,-%, = tan (_COS@XCOS@Z), (=8, - 8,<3m/2) (15)
Finally,
cos(%,-%, ) = -sind, , sin(8%,~3,) = -cosd,, (1/2<&y<m) (16)
3,-3, = san~t (+c0s8y ) (n/2<8, - &,sm) (17)

\—cos@Y cos@z/’

Formulas (11), (15), and (17) give &,-%; , &, -& , and &; -3y
in terms of the polar angles 0y, Oy, and 8; . The gquantity, Onm +
T2,, can then be computed from (3). The three direction cosines
appearing in (10), (15), and (17) are, of course, not independent

but must satisfy the relation, cos®@y + cos?@®, + cos®®, = 1.

The results of this appendix apply without restriction on
the angles, @ , @, ® , provided that in formulas (11), (15), and
the quadrant is defined by the sighs of the numerator and denomi-

nator in each fraction.
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APPENDIX C

EVALUATION OF A CERTAIN INTEGRAL

Denote the modified spherical Bessel functions of the first
and second kinds by &_(Ar) and n,(Ar), respectively, where arg \ =

n/4, and let

Il

u, (Ar,2) = a(r)g, (Ar) + 8(X)n, (rr) (1)

1l

v (Ar,A) = y(A)E (Ar) + 8(A)n, (Ar) (2)

where o*(LA) = a(A¥*), B*(X) B(A¥*), yv*¥(n) = v(A*), and &%(n) =

§(A*). It is required to evaluate the integral
2
r?u, (Ar,\)v¥(Ar,\)dr; O<r, <r; (3)

1
By definition, &,(Ar) and n,(Ar) are solutions of the modified

spherical Bessel equation

%'%;2 (rR)-—[x2 + EL%;LQR =0 (4)

In terms of the modified (cylindrical) Bessel function Iv(z),

g, (2) = 453 I, 11(2) (5)

n(2) = 4Bz Toa-i(2) (6)

Since Iﬁ(z) = Iv(z*), E*¥(z) = € (z*) and n¥(z) = n, (z*). Conse-

and

quently, v*(Ar,A) = v_(A*r,A*), and u, and v* satisfy, respectively,

the following two equations:

%%(ruﬂ)-[x2+ﬂ%}l_lj, u, =0 (7)
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% g;z-(rvf) - [k*a + Ei%;}l] v¥ = 0 (8)

since )\2* = \*?, Now multiply (7) by r®v¥ and (8) by r2u, and

subtract to get

rvt S (ru,) - ru, EEED) o (2@ e v (9)

since the terms in n{n+l) cancel. Integrate (9) once with respect

to r, using integration by parts on the left-hand-side.

or

r Tz

I :
evd L (ru,) - ru, %; (r'vzf} = (xa-x*z)[ r2u, v¥dr (10)

_ s}
du dvx
rvn*(r ﬁLwn) - ru, (r a T V:j = ()\2_)\*2)[ r?u, v¥dr (11)

1

1

- Tz T

*
r? (vgf " %)] = (xa-x*a‘)/ r?u_v*dr (12)
- r T,

Let =z = Ar and denote differentiation with respect to z by a prime.

du du, (Ar,A 1
oo - ) o) - 03
av¥* av¥(ar, 14
dl"“ = “(gr ) = XV:GI(Z:)\) = >\V?16, ( )
Thus (12) becomes
T T2
[r(v;ezu; - unzvf')] = (xe_x*a)/ r2u, v¥dr (15)
Ty ry

or

Both u,(z) and v,(z) satisfy the elementary recursion formula,

z dfdzz =z £,_,(z) - (n+tl)f_(z) (16)

T dfdrxr = xrf__, (Ar) - (n+l)f,(Ar) (17)

r dfzﬁer = A¥pf¥_, (Ar) - (n+l)f¥(Ar) (18)
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daf* ; y
or z —d—z—(—%-)—: z¥f¥_,(z) - (n+l)f*(z)

Using (16) and (19) in (15) gives

s
<l°fvf[zun_1 - (n+l)u, 1 - ulz*vE, - (n+1)V?f]})

I
= (A2 -)%? )[ r®u, v¥dr
1

Iz
Tz
or 'E.’*a()\vjfun_l - )\*unvgf_l)] = ()\z—x*z)l' r®y, v¥dr
1
1

ry

r

z

ey _v¥dr = L lz1Im(zv*u ) °
n’'n A Tm( n—-1

Z

Zp

= 1 |
—l—r—- lem(zv*un_l)]
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(a) ﬂ < 90°

(b) 90°<B<180°

Figure 3.17-1. Diagram Showing Vector Relationships for
Magnetically Anchored Damper Kinematics
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Figure 3.17.2. Dipole Deflection Angle as a Function of
Satellite Rotation Rate and Magnetic Fileld Direction
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118



Ko = EFFECTIVE DAMPING
9 L COEFFICIENT
Ko, = TORQUE COEFFICIENT
8 = ANGLE BETWEEN MAGNETIC
.8 L FIELD DIRECTION AND
SATELLITE ROTATION VECTOR
Tr
o a
= 6 |
—
a O
N
gp— .5 =
=
(S in}
:-—a
jrapt 4
Wk
[Ti g TS
[TRFY )
LS 3 L
-2 F
1 L
0 i I 1 L ] I 1 )
0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

]90°-8]
MAGNETIC FIELD DIRECTION
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Figure 3.19-1. Average Effective Damping Torgue as a Function
of Orbital Inclination from Magnetic Equator
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Figure 3.19-2. Minimum Allowable Dipole Strength
as a PFunction of Altitude
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Figure 4.3-1. Average Damping Coefficient as a Function
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