Brainstorming discussion for a possible biomedical facility at CERN – June 25, 2012

Problems and Solutions

Bleddyn Jones
1. Gray Institute for Radiation Oncology & Biology
2. 21 Century School Particle Therapy Cancer
Research Institute

Particle therapy has intrinsic uncertainties

They include:

 Physics (dose and its correct position in the body

Biology – how do different cells/ tissues & tumours respond to these treatments compared with photons/ x-rays?

Prolonged Air and Space travel also has uncertainties

Solar flares, Cosmic rays, high energy γ, protons & heavier ions, all pose health threats from acute and late [cancer, circulatory/organ failure] tissue effects.

urney to Mars could be a one way ticket'.

Relative Biological Effect -a simple ratio?

Changes with dose per

 $RBE = \frac{Dose_{[LowLET]}}{Dose_{[HighLET]}}$

Little or no changes in required dose with dose per fraction and cell cycling Relationship between total dose and number of fractions for the same bio-effect for different qualities of radiation: *non-linearity!*

RBE converts x-ray dose to particle dose

- Relative Biological Effect is used to divide the 'equivalent' x-ray dose to provide dose given to patient.
- Uncertainties in physical dose compounded with RBE uncertainty can lead to significant patient effects: combined error can be 5-50%++.
- Dose –Effect relationship is non-linear

RBE depends on

- Particle [Z], Energy & Depth
- Target Volume [mix of high LET Bragg peaks + low LET entry beams]
- Dose per treatment ..RBE varies inversely with dose. A treatment plan contains many dose levels.
- Facility: neutron & γ-ray contamination
- Cell & Tissue type: slow growing cells have highest RBEs.

The problems: past research

- Various physics labs: USA, Holland, UK, Germany, France, Belgium, Japan etc.
- Variation in physical beam parameters, dose , LET
- Limited beam availability
- Cells.....variable, often rapidly growing
- Few tumour-bearing animal model expts.
- Very limited normal tissue expts. on relevant 'late' end points, such a spinal/brain/kidney /gut etc.
- Clinical facilities also have limited beam time

RBE depends on Atomic number [Z] and Neutron number [N]

- RBE maximum is shifted to higher LET for heavier particles
- The shift corresponds to a shift to higher energies

Heterogenous Data Mining: Acta Oncol 2011, Sorensen, Overgaard and Bassler....V79 cells

LET, RBE and OER.....some hypotheses

Solution:

Build International Facility at CERN

- Cost sharing between governments & other sources.
- Standardisation of experimental conditions
- Aim for <2% tolerance for Dose and RBE !!!</p>
- Physical (z, mass, energy, fragmentation products, high & low LET fields, ballistics & dose distributions in humanoid phantoms) -> biomedical experiments
- Proof of principle expts. in panel of human cell lines
- Then tissue expts.+drug modifiers etc. → clinical aps.

Particle - Drug Interactions

L=low LET
H=High LET
D=Drug

Why normal tissue?

- Just as particle physics experiments on isolated atoms/subatomic particles will not predict aggregate behaviour, e.g. superconductivity etc.
- So, need <u>vascularity</u> and complete tissue <u>architecture</u> to assess bio-effects as a <u>function</u> of time.
- Pre or Post exposure Drug modification (sensitisation and protection) of tissue radiation effects inc. carcinogenesis, vascular
- At CERN/or with other facilities?

Obtaining RBE at any dose per fraction, use:

$$BED = D_L \left(1 + \frac{d_L}{\left(\frac{\alpha}{\beta} \right)_L} \right) = D_H \left(RBEmax + \frac{RBEmin^2 d_H}{\left(\frac{\alpha}{\beta} \right)_L} \right)$$

Replace RBEmax & RBEmin by functions of α/β , then solve as:

$$RBE = \frac{0.5}{d_H} \left[-\left(\frac{\alpha}{\beta}\right)_L + \sqrt{\left(\frac{\alpha}{\beta}\right)_L^2 + 4d_H\left(\frac{\alpha}{\beta}\right)_L} \left(C + \frac{A}{\left(\frac{\alpha}{\beta}\right)_L}\right) + 4d_H^2 \cdot \left(K + B\sqrt{\left(\frac{\alpha}{\beta}\right)_L}\right) \right]$$

Jones, Underwood, Timlin & Dale, Brit J Radiol, 2011

If relationship scaled down for protons as:

RBEmax=1.0+1.2/ $(\alpha/\beta)_L$ RBEmin=1.0+Sqrt[0.0005. $(\alpha/\beta)_L$]

Jones, Underwood, Timlin and Dale (Brit J Radiol –2011)

Mathematical modelling

- Scaling of cellular micro-dosimetry predictions to complex tissues
- Unification of present dose-time-fractionation models for megavoltage photons[x-rays] with high LET particles
- Sensitivity to dose per fraction for each tissue
- Influence of biological modifiers/drugs
- Low dose threshold effects previously thought to be stochastic [carcinogenesis, circulatory disorders]

CERN is ideal place for definitive comprehensive biomedical experiments, and their analysis, to better inform Clinical Oncology & Radioprotection

Barber Institute of

University of Birmingham UK