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I. Motivations 

There is a wide variety of areas where mat- 

ching and unification problems arise: 

(1.1) Databases 

The user of a (relational) database [22] 

may logically AND the" properties she wants 

to retrieve or else she may be interested 

in the NATURAL JOIN [17] of two stored re- 

lations. In neither case, she would appre- 

ciate if she constantly had to take into ac- 

count that AND is an associative and commu- 

tative operation, or that NATURAL JOIN obeys 

an associative axiom, which may distribute 

over some other operation [68]. 

(1.2) Algebra 

In algebra, a famous decidability problem, 

which inspite of many attacks remained open 

for over twenty-five years, has only recent- 

ly been solved: the monoid problem (also 

called Lab's Problem in Western Countries, 

Markov's Problem in Eastern Countries and 

the Stringunification Problem in Automatic 

Theorem Proving [33],[34],[35],[69],[60], 

[48],[73]) is the problem to decide whether 

or not an equation system over a free semi- 

group possesses a solution. Last year this 

problem has beeh shown to be decidable 

[51]. The monoid problem has important prac- 

tical applications inter alia for Automatic 

Theorem Proving (stringunification [69] and 

second order monadic unification [90],[38]) 

for Formal Language Theory (the crossrefe- 

rence problem for van Wijngaarden Grammars 

[88]), and for pattern directed invocation 

languages in artificial intelligence (see 

below). 

(1.3) Information retrieval 

A patent office may store all recorded el- 

ectric circuits [11] or all recorded che- 

mical compounds [79] as some graph struc- 

ture, and the problem of checking whether 

a given circuit or compound already exists 

is an instance of a test for graph isomor- 

phism [82],[83],[20]. More generally, if 

the nodes of such graphs are labelled with 

universally quantified variables ranging 

over subgraphs, these problems are practi- 

cal instances of a graph matching problem. 

(1.4) Computer vision 

In the field of computer vision it has be- 

come customary to store the internal repre- 

sentation of certain external scenes as 

some net structure [14],[89]. The problem 

to find a particular object - also repre- 

sented as some net - in a given scene is 

also an instance of the graph matching 

problem [61]. Here one of the main problems 

is to specify as to what constitutes a suc- 

cessfull match (since a strict test for 

endomorphism is too rigid for most applica- 

tions) although serious investigation of 

this problem is still pending. 

(1.5) Computer algebra 

In computer algebra (or symbol manipula- 

tion) [72] matching algorithms also play an 

important rSle: for example the integrand 

in a symbolic integration problem [55] may 

be matched against certain patterns in or- 
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der to detect the class of integration pro- 

blems it belongs to and to trig~r the ap- 

propriate action for a solution (which in 

turn may involve several quite complicated 

matching attempts [56],[52],[7],[13],[23], 

[29]. 

(1.6) Theorem proving 

All present day theorem provers have a pro- 

cedure to unify first order terms as their 

essential component: i.e. a procedure that 

substitutes terms for the universally quan- 

tified variables until the two given terms 

are symbolwise equal or the failure to uni- 

fy is detected. Unification algorithms for 

such first order terms have independently 

been discovered by [63],[4] and [44]. Re- 

cently this work has been extended to uni- 

fication problems involving additional 

axioms. As we shall argue that the theore- 

tical framework for these extended problems 

may provide a basis of investigation to all 

the matching problems mentioned in this in- 

troduction, a more detailed account is gi- 

ven below. 

(1.7) Programming languages 

An important contribution of artificial in- 

telligence to programming language design 

is the mechanism of pattern-directed invo- 

cation of procedures [31],[67],[9],[32], 

[86]. Procedures are identified by pat- 

terns instead of procedure identifiers as 

in traditional programming languages. In- 

vocation patterns are usually designed to 

express goals achieved by executing the 

procedure. Incoming messages are tried to 

be matched against the invocation patterns 

of procedures in a procedural data base, 

and a procedure is activated after having 

completed a successful match between mes- 

sage and pattern. So,matching is done (I) 

for looking up an appropriate procedure 

that helps to accomplish an intended goal, 

and (2) transmitting information to the in- 

volved procedure. 

For these applications it is particularly 

desirable to have methods for matching ob- 

jects belonging to high level data struc- 

tures such as strings, sets, multisets etc. 

Algorithms have been designed for some da- 

ta structures, but often completeness, mi- 

nimality or sometimes even correctness has 

not been shown. 

A little reflection will show that for very 

rich matching structures, as it has e.g. 

been proposed in MATCHLESS in PLANNER [31], 

the matching problem is undecidable. This 

presents a problem for the designer of such 

languages: on the one hand, very rich and 

expressive matching structures are desira- 

ble, since they form the basis for the in- 

vocation and deduction mechanism. On the 

other hand, drastic restrictions will be 

necessary if matching algorithms are to be 

found. The question is just how severe do 

these restrictions have to be. 

2. Matching Problems 

All the above applications share a problem, 

which in its most abstract form is as fol- 

lows: 

Suppose two expressions s and t are gi- 

ven, which by some convention denote a 

particular structure and let s and t con- 

tain some free variables. We say s and 

t match iff there are expressions to be 

substituted into the free variables of 

both terms such that s and t become 

equal. 

We write <s;t> for a matching problem. In 

addition we may want to denote the set of 

structures explicitely as S and also we may 

want to provide additional information on 

what we mean by two expressions in S being 

equal or not. Say this information is con- 

tained in a set of equations in K, then a 

general matching problem is denoted as the 

triple: 

:= <<s;t>,S,H> 

[71] contains the beginnings of a theoreti- 

cal framework within which such matching 

problems could be analyzed. 
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Since this framework is heavily based on the 

theory of unification problems in automatic 

theorem proving as developed by G. Plotkin 

[60] and G. Huet [40], we shall present a 

brief account of it below. 

3. The Current State of the Art 

For almost as long as attempts at proving 

theorems by machines have been made, a cri- 

tical problem has been well known [6],[19], 

[57]: Certain equational axioms, if left 

without precautions in the data base of an 

automatic theorem prover (ATP), will force 

the ATP to go astray. In 1967, Robinson 

[64] proposed that substantial progress 

("a new plateau") would be achieved by re- 

moving these troublesome axioms from the 

data base and building them into the deduc- 

tive machinery. 

Four approaches to cope with equational 

axioms have been proposed: 

(I) To write the axioms into the data base, 

and use an additional rule of inferen- 

ce, such as paramodulation [66]. 

(2) To use special "rewrite rules" [44], 

[I],[41],[59]. 

(3) To design special inference rules in- 

corporating these axioms [74]. 

(4) To develop special unification algo- 

rithms incorporating these axioms [60]. 

At least for equational axioms, the last 

approach (4) appears to be most promising, 

however it has the drawback that for every 

new set of axioms a new unification algo- 

rithm has to be found. Also recently there 

has been interesting work on combinations 

of approach (2) and (4) [59]. 

The theoretical basis for utilizing unifi- 

cation algorithms incorporating equatio- 

nal axioms has been developed by G. Plot- 

kin [60]. Plotkin has shown that whenever 

an ATP is to be refutation complete, its 

unification procedure must satisfy condi- 

tions given as follows: Assume ~ is the 

theory (set of axioms) considered, and 

tl,t 2 are terms to be unified; then, the 

following properties should hold for the 

set Z of unifiers of t I and t2: 

I. E is correct, i.e. for every OEE, 

ot I ~ ot 2. (~ denotes equality with res- 

pect to the theory H). 

2. Z is complete, i.e. for any substitution 

6 with ~t I =H 6t 2 there is some oeZ s.t. 

there exists a substitution I so that 

6 = I o o. 

3. E is minimal, i.e. no unifier ~I in Z is 

an instance of some other unifier ~2 in 

Minimality is a property that has often 

been overlooked in the literature: 

If minimality is completely ignored we ar- 

rive at simply enumerating all substitutions 

and removing all that do no unify as an al- 

gorithm satisfying our requirements. Gene- 

rating such a set of all unifiers, instead 

of a set of most general unifiers, essen- 

tially amounts to proving a theorem by the 

'British Museum Algorithm' (i.e. by enume- 

rating all Herbrand instances). Such proce- 

dures are called conservative in [66] and 

are distinctively different from proofs by 

the resolution principle at the 'lifted' 

most general level. However, minimality is 

more difficult to achieve than correctness 

and completeness. 

Looking at unification of terms in first- 

order predicate calculus with an equational 

theory H, unification problems may be clas- 

sified with respect to the cardinality of 

minimal and complete sets Z of unifiers. 

(i) Z may always be a singleton: e.g. for 

T = @, that is for ordinary first or- 

der unification as in [63],[44],[6]. 

Another (trivial) problem in this 

class is the string matching problem 

for constant strings only, as encoun- 

tered in string manipulation languages 

such as SNOBOL [24]. The nontrivial 

aspect of this problem is to find 

efficient algorithms [45],[25]. Ano- 

ther example is unification under 

homomorphism, isomorphism and auto- 

morphism [85]. 
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(ii) Z may have more than one element but 

at most finitely many: examples are 

the theory of idempotence as well as 

idempotence plus commutativity [62]. 

Other examples are unification under 

commutativity [70]; unification un- 

der associativity and commutativity 

[49],[78]; unification under asso- 

ciativity, commutativity and idem- 

potence [49] and the one way unifi- 

cation problem for strings. 

(iii) Z may sometimes be an infinite set: 

examples are unification under asso- 

ciativity [69],[48],[60]. 

This problem is equivalent to the 

problem of solving a set of equations 

over a free semigroup (the monoid 

problem) [53]. Other problems in this 

class are unification under distribu- 

tivity [81] and the unification prob- 

lem for second order monadic logic 

[90],[38]. 

(iv) Z may sometimes not exist at all,e.g. 

for unification in e-order predicate 

calculus. In such cases there exist 

infinite chains of unifiers (ordered 

by increasing generality) 

6j c @2 ~ @3 ~ "'" 

with no upper bound [27],[38],[42]. 

For unification problems where complete sets 

of unifiers are always finite, it is not ne- 

cessarily important that the unification 

procedure returns a minimal set of unifiers; 

since dependent unifiers can always be 

checked off. In this case, minimality of the 

unification procedure comes down to be a 

matter of computational efficiency. 

The significance of this work for other 

fields derives from the fact that certain 

axioms in the theory H define structures 

which closely resemble familiar datastruc- 

tures: if S is the set of first order pre- 

dicative terms and H is empty we have the 

usual tree structure. If ~ is as above and 

H contains the associativity axiom (~) we 

have strings. If ~ is as above and H con- 

tains A and the commutativity axiom (C) or 

~+C+I, where I is an idempotence axiom we 

have multisets (bags) or sets respectively. 

The following chart provides a quick sur- 

vey of the state of the art at the time of 

writing. 

The axioms are: 

A (associativity) f(f(x,y),z)=f(x,f(y,z)) 
C (commutativity) f(x,y)=f(y,x) 
D (distributivity) f(x,g(y,z))=g(f(x,y),f(x,z)) 

f(g(x,y) ,z)=g(f(x,z),f(y,z)) 
H (homomorphism) ~ (x,y) =~ (x), ~ (y) 
I (idempotence) f(x,x)=x 

Axioms Problem card(Z) rep. Data- Investiga- 
decida- Alg.is struc- tors 
ble? minimal ture 

yes co yes strings [33],[69], 
[48],[51] 

C yes fin. no unorde- [70] 
red 
trees 
(lists) 

I yes fin. no [62] 
A+C yes fin. yes finite [78],[49] 

multi- 
sets 

A+I ? ? ? in progress 

C+I yes fin. no [62] 

A+C+I yes fin. yes finite [49] 
sets 

D ? . . . .  ? ~81] 

D+A no ~ ? [80] 

D+I ? ? ? in progress 

D+C ? ~ ? in progress 

D+C+I ? ? ? in progress 

D+A+C no ~ ? [80] 

H,E yes 1 yes [85] 

H+A yes ~ yes [85] 

H+A+C yes fin. yes [85J 

e-order ~ ~ 3 doesn't no [39] 
terms no exist 

first yes 1 yes ordered [6],[63] 
order trees 
terms (lists) 

E+A+C ? ~ ? [85] 

where E is an endomorphism. 

It has also been shown that for Is (iso- 

morphism) the unification problem of Is+F, 

where F is any of the above theories, is 

equivalent to the unification problem of F 

alone. 
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