## Analysis II: homework \# 5

Due day: Lecture, Monday April 25, 2016
NAME (print):
Circle the problems that you have solved:

## 474849505152535455

The solutions must be written in a legible form. The front page must be returned. All the papers must be stapled. If any of the conditions is not satisfied, the homework will burned and flushed away. The homework will not be returned so you better have a copy.

Problem 47. Prove that:
(a) If $K=\mathbb{R}$, then $\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$,
(b) If $K=\mathbb{C}$, then $\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)-\frac{i}{4}\left(\|i x+y\|^{2}-\|i x-y\|^{2}\right)$,

Problem 48. Let $(X,\|\cdot\|)$ be a normed space over $\mathbb{R}$ or $\mathbb{C}$. Prove that there is an inner product $\langle\cdot, \cdot\rangle$ such that $\|x\|=\sqrt{\langle x, x\rangle}$ if and only if $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$ for all $x, y \in X$. Hint: Use previous problem.

Problem 49. Prove that $L^{1}\left(\mathbb{R}^{n}\right)$ is not a Hilbert space. Hint: Use previous problem.
Problem 50. Show an example of a linear subspace of $\ell^{2}$ which is not closed.
Problem 51. Prove that $\ell^{\infty}$ is a Banach space. Then prove that $c_{0} \subset \ell^{\infty}$ is a closed subspace.
Problem 52. Prove that if $f$ is absolutely continuous on $S^{1}$ and $f^{\prime} \in L^{2}\left(S^{1}\right)$, then $s_{n}(f)$ converges uniformly to $f$. Hint: Modify the proof of Theorem 6.3 on p. 50 in my Functional Analysis notes.

Problem 53. Find an example of $f \in L^{1}\left(S^{1}\right) \backslash L^{2}\left(S^{1}\right)$.
Problem 54. Prove that for any $f \in L^{2}\left(S^{1}\right)$ the sequence of functions

$$
g_{n}(x)=\frac{1}{n} \sum_{k=0}^{n-1} f\left(x+\frac{k}{n}\right)
$$

converges in $L^{2}\left(S^{1}\right)$ to the constant function $g(x) \equiv \int_{0}^{1} f$. Hint: Compute the Fourier coefficients of the sum and use the Plancherel identity.

Problem 55. Use Fourier series to prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

