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ABSTRACT OF THE DISSERTATION

Fast and Accurate Electronic Structure Methods for Predicting Two- and Three-Body
Noncovalent Interactions.

by

Yuanhang Huang

Doctor of Philosophy, Graduate Program in Chemistry
University of California, Riverside, June 2015
Professor Gregory J. O. Beran, Chairperson

Noncovalent interactions are ubiquitous in chemistry. As a source of stabiliza-

tion, they play an important role in many interesting chemical processes, such as protein

folding, molecular recognition, molecular self-assembly, physical adsorption, etc. Accurate

energy predictions from first principles on many-body systems like molecular crystals re-

quires electronic structure methods able to describe various types of noncovalent interactions

like hydrogen bonding, electrostatic, induction, and van der Waals dispersion across differ-

ent intramolecular conformations and intermolecular arrangements with high and uniform

accuracy. Besides accuracy, computational efficiency should be considered for practical ap-

plications. Here, fast and accurate electronic methods are developed to treat both two-body

and three-body noncovalent interactions.

For two-body interactions, the MP2C method developed by Pitonak and Hessel-

mann proves to be a reliable method with affordable computational cost. To improve the

computational efficiency of MP2C dispersion correction, we propose the use of monomer-
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centered basis sets instead of dimer-centered ones. For an individual dimer, this change

accelerates the dispersion correction several-fold. For molecular crystals, 100-fold speedups

for dispersion correction calculation are achieved by utilizing translational symmetry. To

improve the computational efficiency of the MP2 part in MP2C method, we demonstrate

that one can avoid calculating the unnecessary long-range MP2 correlations by attenuating

the Coulomb operator, allowing the dispersion correction to handle the long-range inter-

actions inexpensively. Utilizing excellent fortuitous cancellations between finite basis set

errors, attenuation errors and correlation errors, further computational savings could be

achieved by the use of small basis set to approach complete basis set limit quality results.

For three-body interactions, which are challenging for many widely-used, low-cost

electronic structure methods, we propose a straightforward model that corrects conventional

MP2 with a damped three-body Axilrod-Teller-Muto dispersion correction. The damping

function compensates for the absence of higher-order dispersion contributions and non-

additive short-range exchange terms not found in MP2. Examinations on trimer benchmark

set and benzene crystal demonstrate the reliability of this model for various applications.
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Chapter 1

Introduction

With tremendous progress in computer technology and quantum mechanical the-

ory, people are now able to study large and/or condensed-phase systems from first-principles

calculations, which seemed infeasible a few decades back. For chemical systems people are

interested in, energy is one of the most fundamental properties, from which thermal and

kinetic properties can be derived. Accurate energy prediction is always the main research

area in theoretical and computational chemistry, since it determines how reliable one can

apply the method to study other properties. Noncovalent interactions play an ubiquitous

role in chemical systems, they are the main stabilization source for molecular self-assembly,

biorecognition, physical adsorption, etc., for instance. Unlike the electronic energy of single

molecule where electrons are highly correlated to form chemical bond, noncovalent interac-

tions are weak correlations between two or more noncontact units. Because the interaction

energies are much weaker, even modest changes of the correlation model and basis set can

introduce errors that are comparable in magnitude to the energy itself. Accurate energy
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prediction of noncovalent interactions has become an important criteria for the quality of a

theoretical model [1, 2].

In addition to their importance in intermolecular interactions, noncovalent interac-

tions can also be found between different functional groups in large molecules, like different

domains in a protein, for instance. Molecular crystals represent another well-known many-

body systems involving a variety of noncovalent interactions. So they are good systems for

people to examine the performance of different theoretical methods. To predict molecular

crystal lattice energies, we first introduce an effective fragment-based QM/MM model. In

the QM part, reliable quantum mechanical methods are necessary for capturing the inter-

actions between different fragments accurately, and this thesis focuses on the development

of computationally practical quantum mechanical methods which can be used in such mod-

els. Accordingly, the next several sections also introduce the standard electronic structure

methods which provide the starting point for our developments here. These methods range

from the self-consistent field algorithm based on a single particle approximation to various

electron correlation approximations. To make robust energy predictions, the completeness

of the basis set used to expand electron densities or molecular orbitals is also a necessary

condition. Finally, we will introduce several commonly-used theoretical methods for ac-

curately predicting noncovalent interactions, from symmetry adapted perturbation theory

(SAPT) which gives physical picture in understanding different energy component contri-

butions quantitatively, to a multipole moment expanded force field model which can be

taken as simplified SAPT, and to supermolecular approach allowing the use of almost all

the current quantum chemistry methods.
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1.1 Motivation: molecular crystal lattice energy prediction

People often appreciate how magic the world is, that protein folding is directed by

an invisible “hand” (noncovalent interactions). This driven force engineers the polypeptide

chains into some unique and complex spatial structures. The similar phenomenon can also

be observed in molecular crystal growth that the well separated molecules condense into

periodic packing motifs, spontaneously at the first glance! Unlike gas and liquid phases,

molecular crystals are in solid state with more compact and stable structures, so they can be

stored and transported easily in practice. For example, pharmaceutical drugs are generally

made into crystals for convenience. However, a lot of molecular crystals have different

packing structures or polymorphs with different solubilities and bio-availabilities. There

have been several cases where commercial drugs (such as Ritonavir for HIV disease and

Rotigotine for Parkinson’s disease) were recalled from the market due to the occurrence of

insoluble polymorphs, causing a great financial loss.

Theoretical molecular crystal structure prediction from first principles is poten-

tially much cheaper than experimentally synthesizing, purifying drug molecules, and testing

polymorphs formed under different conditions, and thus it could be used to identify and

avoid polymorphism problems in advance. Under the constraints of current computational

affordability and theoretical capability, a great efforts have been made to develop theoretical

approaches that are promising to handle these large and complex systems. Among them,

fragment based methods provide a lower-cost alternative by partitioning the periodic system

into small fragments and dealing with each small fragments individually [3–5]. Compared

to traditional techniques which calculate the entire periodic crystal at the same level of
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theory, these divide-and-conquer models allow one to treat different fragments with differ-

ent levels of theory in order to satisfy different cost and accuracy requirements. Fragment

approaches also avoid the need to translate the expensive QM calculations into reciprocal

space. In other words, this approach leads to very flexible computational models, which

can be expressed as

Etotal = E1-body + ∆E2-body + ∆E3-body + ... (1.1)

where the 1-body and 2-body terms are comparatively small in both fragment size and

quantity, while they contribute to most of the total energy. On the contrary, the higher

order many-body interaction terms are generally cost-prohibitive to evaluate. To make the

lattice energy calculations feasible, many-body terms are usually truncated only with the

main contribution terms left in the model. However, these many-body terms cannot be

ignored if one wants to achieve high accuracy energy prediction. Instead, we use more

accurate and expensive quantum mechanical (QM) methods to deal with 1-body and short-

range 2-body interaction terms, while the long-range and many-body interaction terms are

approximated with much cheaper and less accurate molecular mechanical (MM) methods.

Based on this scheme, the hybrid QM/MM many-body interactions (HMBI) model [3,6–9]

to approximate crystal energy is

EHMBI
total = EMM

total +
∑

i

(EQM
i − EMM

i ) +
∑

ij

dij(R)(∆2EQM
ij −∆2EMM

ij ) (1.2)

where Ei and ∆2Eij are 1-body and 2-body interaction energies, respectively. The MM

total energy EMM
total can also be expanded as

EMM
total = EMM

1-body + ∆EMM
2-body + ∆EMM

many-body (1.3)

4



Figure 1.1: Schematic of the HMBI model. Centered on the original unit cell labeled as
0, the periodic crystal is divided into QM region, MM region, and QM/MM buffer region
(blue shadow).

In the HMBI model, a multipole expanded ab initio force field (AIFF), [3, 9–15]

which will be discussed in detail later, is used in MM part. The dij(R) term in Equation 1.2

ensures a smooth transition in potential energy surface between short-range QM and long-

range MM two-body interaction regimes. Its value decays from 1 to 0 as the intermolecular

distance R increases from the QM boundary to MM boundary in the buffer area (Figure 1.1).

Fragment methods like HMBI make it more practical to employ high-quality elec-

tronic structure methods toward the computation of molecular crystal lattice energies, but

accurate prediction of these energies remains challenging because it requires [16] methods

that can: (1) resolve ∼1-10 kJ/mol energy differences between polymorphs, (2) balance

inter- and intra-molecular interactions, (3) describe different types of intermolecular inter-

actions with high and uniform accuracy, meaning these methods are reliable for a wide

variety of systems, (4) be systematically improvable for both correlation methods and basis

5



sets, and (5) be computationally affordable to study interesting large-sized molecules. Be-

fore discussing theoretical methods for noncovalent interactions in detail, the next sections

review some basic concepts in electronic structure theory.

1.2 Theoretical background

The quantum mechanical theory developed in last century enables people to study

the physical world at the atom and electron levels. Applying the Schrödinger equation

to study chemical systems enriches people’s understanding of atomic and molecular prop-

erties. Limited by the correlation problem that only quite a few simple systems can be

solved accurately, most of the time the equation is solved more approximately. The very

basic approximations are the Born-Oppenheimer approximation to separate the electronic

and nuclear degrees of freedom, and the single particle approximation to partially decouple

electrons from each other, which will be discussed first. To improve the mean-field ap-

proximation, electron correlation effects should be included, which is the core problem of

modern quantum chemistry. Besides correlation, the completeness of the basis set expand-

ing the electron density or molecular orbitals cannot be ignored if one wants to achieve high

accuracy.

1.2.1 Single particle approximation

Start with the non-relativistic time-independent Schrödinger equation

ĤΨ(R, r) = EΨ(R, r) (1.4)
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where Ĥ is Hamiltonian, Ψ is wavefunction containing coordinates of nucleus (R) and

electron (r). The eigenvalue E obtained by solving the equation is the total energy of the

system. The expression of Hamiltonian in atomic unit is

Ĥ = −
∑

I

~
2

2MI
∇2

Ri
−

∑

i

~
2

2
∇2

ri
−

∑

iI

ZI

|RI − ri|
+

1

2

∑

ij,i6=j

1

|ri − rj |
+

1

2

∑

IJ,I 6=J

ZIZJ

|RI −RJ |

=
∑

I

T̂I +
∑

i

T̂i +
∑

iI

ÛiI +
1

2

∑

ij,i6=j

Ĵij +
1

2

∑

IJ,I 6=J

ĴIJ

(1.5)

where the operator of total energy is expressed as the sum of operators for different energy

components: kinetic energy of nuclei (
∑

I T̂I , first term on the right), kinetic energy of elec-

trons (
∑

i T̂i, second term on the right), Coulomb interaction between nuclei and electrons

(
∑

iI ÛiI , the third term on the right), Coulomb interaction between electrons (
1

2

∑

ij,i6=j Ĵij ,

the fourth), and the last term
1

2

∑

IJ,I 6=J ĴIJ for nucleus-nucleus Coulomb interaction. MI

is nuclear mass. RI and ri stand for nuclear and electronic position, respectively. ~ is h/2π

where h is Planck constant, and Z in the equation above is nuclear charge.

Electrons move several orders of magnitude faster than nuclei, which means they

can respond to changes in the nuclear positions almost instantaneously. Born-Oppenheimer

approximation assumes nuclear coordinates are fixed parameters, so only electronic mo-

tions are considered at some certain instant. So the nucleus-nucleus Coulomb interactions

∑

IJ,I 6=J JIJ become a constant that can be taken out from Hamiltonian (Equation 1.5).

This leaves only terms with related to electrons

Ĥ =
∑

i

T̂i +
∑

iI

ÛiI +
1

2

∑

ij,i6=j

Ĵij (1.6)

To further simplify the Schrödinger equation, the single particle Hartree-Fock the-
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ory is used to approximate the pair-wise Coulomb interaction as the interaction of a se-

lected electron in the mean field generated by all other electrons. Thus molecular orbitals

obtained are independent with each other (Hartree product). Since electrons are fermions

constrained by the Pauli exclusion principle, the wavefunction Ψ is expressed in form of

Slater determinant

ΨHF (r1, r2...rN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1) ψ1(r2) ... ψ1(rN )

ψ2(r1) ψ2(r2) ... ψ2(rN )

· · ... ·

ψN (r1) ψN (r2) ... ψN (rN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1.7)

in which ψi is molecular orbital (MO), and ri stands for electron position.
√
N ! ensures the

total wavefunction ΨHF to be normalized. The total Hartree-Fock energy can be expressed

as the expectation value of the Hamiltonian

EHF = 〈ΨHF |Ĥ|ΨHF 〉

=
∑

iI

〈ψi|T̂i + ÛiI |ψi〉+
1

2

∑

i,j

〈ψiψj |Ĵij(1− P̂ij)|ψiψj〉
(1.8)

where the operator P̂ij is permutation operator, which stems from expanding the Slater

determinant to exchange electrons P̂ij |ψjψi〉 = |ψiψj〉 and P̂ii = 1. In order to obtain

the Hartree-Fock energy, one should know each molecular orbital ψi first. The variational

principle is applied subject to the constraint that the MOs remain orthonormal,

δ

[

EHF −
∑

i

ǫi

(

〈ψi|ψj〉 − 1
)

]

= 0 (1.9)

where the Lagrange multiplier ǫi can be understand as orbital energy of electron i. After

replacing EHF with the expression in Equation 1.8, and differentiating bra orbital 〈ψi|, one
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will get

〈δψi|T̂i + Ûi +
∑

j

〈ψj |Ĵij − K̂ij |ψj〉 − ǫi|ψi〉 = 〈δψi|f̂i − ǫi|ψi〉 = 0 (1.10)

where f̂i is called Fock operator that
∑

i f̂i = ĤHF and Coulomb exchange operator is

defined as K̂ij = ĴijP̂ij . The variational principle holds true for any molecular orbitals 〈ψi|,

so one can obtain a set of orbital equations as

f̂i|ψi〉 = ǫi|ψi〉 (1.11)

with orbital index i ranges from 1 to N. A self-consistent field (SCF) iteration procedure

is applied to solve both orbital ψi and energy ǫi, starting from a full set of initial guess

orbitals ψ′
1, ψ

′
2...ψ

′
N built on linear superposition of basis functions {φi}.

Similar to Hartree-Fock theory in using single particle approximation and self-

consistent field iterations, density-functional theory (DFT) provides an alternative view

on the many-electron system based on the Hohenberg-Kohn theorem [17] and Kohn-Sham

equation [18]. The first Hohenberg-Kohn theorem proves that the ground state electron

density ni(r) is uniquely determined given an external potential Vext(r). The potential might

be the nuclear potential or some outer field from the environment. Instead of providing

rigorous proof, one can briefly imagine that electron densities nr fluctuate in the fixed

external potential (assume the system is isolated from the environment, the ionic potential

will be the only potential. Also, there is no structure vibration under B-O approximation)

due to the many-electron Coulomb interactions. The total electronic energy changes with

the electron fluctuations, and the energy will head toward to a minimum until the Coulomb

repulsions between electrons in the fixed attractive ionic potential are balanced at certain

9



state (variational principle). The system will not jump to other unstable states because it is

constrained within the potential well, unless the external potential changes to create a new

global minimum. So the ground state energy is the functional of electron density affected

only by the external potential

E[n(r)] = F [n(r)] +

∫

Vext(r)n(r)dr (1.12)

where F [n(r)] is an universal functional describing the behavior of electrons in a fixed field.

It includes kinetic energy of electrons and electron-electron Coulomb interaction that only

depends on electron density, which is common in all systems [19]. Because the complicated

electron correlation, the kinetic energy cannot be expressed unless one uses single particle

approximation to separate the selected electron from the others

T [n(r)] = −1

2

∑

i

∫

〈ψi(r)|∇2|ψi(r)〉dr (1.13)

Under this approximation, the correlation effect and exchange effect (as expressed

in Equation 1.8) also depend only on electron density n(r) that they are grouped into one

term EXC [n(r)]. The total energy expression could be further expanded as

E[n(r)] = T [n(r)] +
1

2

∫ ∫

n(r)n(r′)

|r − r′| drdr
′ + EXC [n(r)] +

∫

Vextn(r)dr (1.14)

Solving Kohn-Sham equation according to the variational principle,

δ

δn(r)

[

E[n(r)]− ǫi
∫

n(r)dr

]

= 0 (1.15)

where normalization constraint on electron density
∫

n(r)dr = N is applied. The final

Kohn-Sham equation for single electron becomes

[

−1

2
∇2

i + Vext(r) +

∫

n(r′)

|r − r′|dr
′ + VXC(r)

]

ψi(r) = ǫiψi(r) (1.16)
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Because the single particle approximation assumes electron densities are inde-

pendent with each other, exchange-correlation potential VXC(r) = δEXC [n(r)]/δn(r) only

depends on single electron density (coordinate of only one electron), which means it must

be localized as electron density. While this is not true for the real system, as one can see in

Equation 1.10 that the Coulomb exchange term Kij involves the coordinates of both electron

i and j, instead of single electron. Thus most of the approximated exchange functionals suf-

fer a deficiency of local exchange, introducing an error usually called self-interaction energy.

Though the correct form of the potential is currently unknown, some exchange-correlation

functionals like local-density approximations (LDA), generalized gradient approximations

(GGA), and hybrid functionals have been developed to study highly-correlated systems.

The great advantage of this approach with single particle approximation is the low O(N3)

scaling with system size to solve Kohn-Sham equation, making it an efficient and widely

used tool, especially for large systems.

1.2.2 Electron correlation

The electron correlation problem is probably one of the most important problems

in quantum chemistry. Many methods have been developed to treat electron correlations

in order to satisfy the increasing requirements for high accuracy and low computational

cost [20,21]. Like the classical many-body correlation problem (currently people still cannot

predict the exact trajectory of three interacting ideal particles in isolated systems), even

approximate treatments of electron-electron correlation can be computationally demanding.

By definition, the correlation energy can be expressed as the difference between the exact

11



energy and the Hartree-Fock energy

ECorr = EExact − EHF (1.17)

There are several main approaches to approximate correlation energy. The first one intro-

duced here is Møller-Plesset perturbation theory. As discussed in last section, the Hartree-

Fock Hamiltonian and Fock operator are related as

ĤHF =
∑

i

f̂i =
∑

i

(ĥi + V HF (i)) (1.18)

where core-hamiltonian operator ĥi is T̂i + Ûi, and Hartree-Fock potential V HF (i) includes

Coulomb and exchange interactions as
∑

j(Ĵij − K̂ij). Introducing perturbation operator

V̂ as the difference between the exact electron Hamiltonian and Hartree-Fock Hamiltonian

(based on single particle approximation)

V̂ = Ĥ − ĤHF

=
∑

i

(ĥi +
1

2

∑

ij,i6=j

Ĵij)−
∑

i

(ĥi + V HF (i))

=
∑

i





1

2

∑

ij,i6=j

Ĵij − V HF (i)





(1.19)

In Rayleigh-Schrödinger perturbation theory, the unperturbed energy is the ex-

pectation value of the unperturbed operator on unperturbed wavefunctions. Møller-Plesset

perturbation theory uses Hartree-Fock operator and wavefunctions

EMP0 = 〈ΨHF |ĤHF |ΨHF 〉 =
∑

i

ǫi (1.20)

where Hartree-Fock Hamiltonian is used instead of exact Hamiltonian as Equation 1.8. So

the energy obtained is just the sum of orbital energies. Then we consider the first order
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energy correction with perturbation operator

EMP1 = 〈ΨHF |V̂ |ΨHF 〉

= 〈ψiψj |
(1

2

∑

ij,i6=j

(Ĵij − K̂ij)−
∑

i,j

(Ĵij − K̂ij)
)

|ψiψj〉

= −1

2

∑

i,j

〈ψiψj |(Ĵij − K̂ij)|ψiψj〉

= −1

2

∑

i,j

〈ψiψj ||ψiψj〉

(1.21)

With the first order energy correction on the unperturbed energy, one will get the Hartree-

Fock energy of the whole system

EHF = EMP0 + EMP1 =
∑

i

ǫi −
1

2

∑

i,j

〈ψiψj ||ψiψj〉 (1.22)

where one should subtract from the total orbital energy with the double counting of Coulomb

and exchange interactions when index i and j traversing the molecular orbitals indepen-

dently. The first contribution to the correlation energy appears at second-order in the

perturbation series

EMP2 = −
∑

i,j→a,b

∣

∣〈ΨHF |V̂ |ΨHF
i,j→a,b〉

∣

∣

2

ǫa + ǫb − ǫi − ǫj

= −1

4

∑

i,j→a,b

∣

∣〈ψiψj ||ψaψb〉
∣

∣

2

ǫa + ǫb − ǫi − ǫj

(1.23)

where compared to the Equation 1.21, the numerator has electrons exciting from the ground

states i and j to excited states a and b. We can see that the Coulomb integration involves

four indices, leading to a growth rate of O(N4). While exchange operator K̂ = Ĵ P̂ involves

permutation between orbitals, thus it scales as O(N5).

Configuration interaction (CI) provides a way to approach exact correlation. The
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CI wavefunction can be expressed as a linear combination of the electronic configurations

|ΨCI〉 = c0|ΨHF
0 〉+

∑

ia

ci→a|ΨHF
i→a〉+

∑

i<j,a<b

ci,j→a,b|ΨHF
i,j→a,b〉+ . . . (1.24)

where one can obtain different configurations by exciting electrons from occupied orbitals

(i, j, . . . ) into virtual orbitals (a, b, . . . ), and the spatial correlations in the electron motions

will be included by coupling different configurations. Generally, full CI calculations are cost

prohibitive and can be performed only for a few small systems, while truncated CI suffers

a severe problem of size-consistency.

As a reliable approach for benchmarking reference, coupled cluster (CC) theory

allows for instantaneous Coulomb repulsion between electrons. Based on the exponential

ansatz, the CC wavefunction can be expressed as

|ΨCC〉 = eT̂ |ΨHF 〉

=
(

1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + . . .

)

|ΨHF 〉
(1.25)

where the excitation operator T̂ is expanded as different levels of electron excitation T̂1+T̂2+

T̂3 + . . . . In practice, the wavefunction expansion is also truncated to the lower excitation

levels,

|ΨCCS〉 = e(T̂1)|ΨHF 〉,

|ΨCCSD〉 = e(T̂1+T̂2)|ΨHF 〉,

|ΨCCSDT 〉 = e(T̂1+T̂2+T̂3)|ΨHF 〉

(1.26)

where for the wavefunction of coupled-cluster singles (CCS), all possible single excitations

are included in T̂1 operator. Double excitations T̂2 are also included in the coupled-cluster

singles and doubles (CCSD) wavefunction, and so on.
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1.2.3 Basis set

Molecular orbitals can be expanded in basis function space, which is also called the

linear combinations of atomic orbitals (LCAO-MO) method. Though the natural atomic

orbitals (AOs) provide an efficient basis for expanding the molecular orbitals, their com-

plicated functional forms are unfavorable for efficient numerical computations. Instead,

Slater-type orbitals (STOs) are more often used as basis functions than the real atomic

orbitals. STOs have the form

φSTO(r) = Nxiyjzke−ζ|r−R| (1.27)

where N is the normalization constant, r is position of electron with respect to the atomic

nucleus at R, ζ affects the spatial extent of the functions. A constraint i + j + k = l is

employed on the exponent, where l is the angular momentum. Though STOs have similar

behavior as atomic orbitals, they are still complicated for numerical computations, especially

for correlation calculation requiring many-orbital integrations.

A further approximation to atomic orbital is the use of Gaussian-type orbitals

(GTOs), which has the form

φGTO(r) = Nxiyjzke−ζ|r−R|2 (1.28)

where the main difference compared to STOs is in the exponent as r2. GTOs are more

favorable for effective numerical computations based on Gaussian product theorem that the

product of two GTOs on atom A (at RA) and atom B (at RB) can be represented with one

GTO centered on RP = (αRA + βRB)/(α+ β) as

e−α|r−RA|2e−β|r−RB |2 =
(

e−αβ/(α+β)|RA−RB |2
)

e−(α+β)|r−RP |2 (1.29)
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Figure 1.2: Comparison of STO, STO-1G, STO-2G and STO-3G for 1s function. Parameters
are taken from Ref. [20].

In practice, several GTOs are linearly combined to form contracted GTOs (or

CGTOs for short) to approximate STOs. Such basis sets are often called STO-nG (n is the

number of GTOs) as Figure 1.2 shows. If more than one CGTO is used for each atomic

orbitals, the basis is referred to as an X-tuple zeta basis. For example, if two basis functions

are used per CGTO, it is called a double zeta (DZ), triple zeta (TZ) means there are three

basis functions used for one CGTO, and so on. It is widely known that valence electrons

are more active than core electrons for chemical properties, like forming or breaking the

bond. Generally, fewer CGTOs are used to form core AOs while more CGTOs are used for

the valence orbitals, which is called split-valence approach.

In order to describe shifts in the electron density relative to the nuclei (as in polar

covalent bonds), one should increase the flexibility of basis functions by including higher

order angular momentum functions (they are called “polarization functions”). To describe
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delocalized orbital/interactions (like conjugate orbitals), “diffuse functions” with smaller

ζ value should be used. Diffuse basis functions exhibit broad spatial extent and saturate

the volume surrounding the molecule, which is very important for accurate noncovalent

interaction calculations. In the following discussions, Dunning type basis sets [22] are used,

which is often written as aug-cc-pVXZ (or aXZ for short). The “aug” prefix indicates that

diffuse functions are included, “cc” is the short for correlation consistent, “p” indicates

the presence of polarization functions, and “VXZ” describes the number of CGTO basis

functions used for each valence AO orbital.

1.3 Methods for noncovalent interactions

A brief introduction to electronic structure methods for noncovalent interactions

is necessary before proceeding to the detailed discussions. There are two main ways of

modeling intermolecular interactions: symmetry adapted perturbation theory (SAPT) and

the supermolecular approach. SAPT [23] is a perturbation approach that treats each iso-

lated molecule as a zeroth order wavefunction, and improves the inter- and intra-molecular

correlations with perturbation theory. It provides a physical description of different energy

components in noncovalent interactions. To make concept easily understood and compa-

rable to MP2 method, the discussion here is limited to methods which are second-order in

perturbation theory [24]. The molecular properties computed from SAPT can be multipole

expanded to build an ab initio force field in HMBI model.

The supermolecular approach, on the other hand, computes the intermolecular

interaction energy as the difference between the supermolecule (e.g. a dimer) and the
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constituent monomers. The simplicity of the supermolecular approach makes it adaptable

to almost all the existing quantum mechanical methods [1, 2, 25], thus it is popular for

practical applications. In order to achieve high accuracy, basis set completeness must be

considered as well. Finally, some benchmark test sets will be introduced which can help us

to evaluate the performance of different approaches and interpret the physics behind the

observations. The next several sections discuss these techniques in general.

1.3.1 Symmetry adapted perturbation theory

Start with polarization series for wavefunctions and energies based on polariza-

tion theory (inter-molecular Rayleigh-Schrödinger perturbation theory without exchange

effect included) [23]. For dimer AB composed with monomer A and B, the unperturbed

Schrödinger equation is

Ĥ
(0)
X Ψ

(0)
X = E

(0)
X Ψ

(0)
X (1.30)

where X represents either each monomer, or the dimer AB. 0 means there is no perturbation

correction (unperturbed). If X stands for dimer AB, the Hamiltonian without including

interactions between monomer A and B is Ĥ
(0)
AB = Ĥ

(0)
A +Ĥ

(0)
B , and the wavefunction without

intermolecular exchange effect is just Hartree product Ψ
(0)
AB = Ψ

(0)
A Ψ

(0)
B . Accordingly, the

total energy solved is just the sum of monomer energies E
(0)
AB = E

(0)
A +E

(0)
B . The molecular

orbitals and orbital energies can be computed from HF method or DFT method.

Next, the intermolecular perturbation operator V̂ pol
AB which does not consider elec-

tron exchange between monomers, is added to describe intermolecular polarization interac-
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tions. The polarization Schrödinger equation is expressed as

ĤpolΨ = (Ĥ
(0)
AB + V̂ pol

AB)Ψ = EpolΨ (1.31)

where Ψ and Epol are the polarization wavefunction and energy, respectively.

Based on R-S perturbation theory, the first-order perturbed polarization correction

is

E
(1)
pol = 〈Ψ(0)|V̂ pol

AB |Ψ(0)〉 = 〈Ψ(0)
A Ψ

(0)
B |V̂

pol
AB |Ψ

(0)
A Ψ

(0)
B 〉 (1.32)

where the physical interpretation is clear: Coulomb interaction between electrons in monomer

A and electrons in monomer B. So this term represents the electrostatic interaction E
(1)
elst.

The first order wavefunction correction is expressed as

|Ψ(1)〉 = −
∑

k 6=0

〈Ψ(0)
k |V̂

pol
AB |Ψ(0)〉

E
(0)
k − E(0)

|Ψ(0)
k 〉 (1.33)

where k is the exciting state computed from SCF procedure. With wavefunction correction,

the second order polarization correction can be expressed as

E
(2)
pol = 〈Ψ(0)|V̂ pol

AB |Ψ(1)〉 (1.34)

If one considers the electron excitation of monomer A and monomer B separately,

the first order wavefunction Ψ(1) correction represents the induction effect

|Ψ(1)
ind〉 =−

∑

a 6=0

〈ψA
a ψ

B
0 |V̂

pol
AB |ψA

0 ψ
B
0 〉

EA
a − EA

0

|ψA
a ψ

B
0 〉

−
∑

b 6=0

〈ψA
0 ψ

B
b |V̂

pol
AB |ψA

0 ψ
B
0 〉

EB
b − EB

0

|ψA
0 ψ

B
b 〉

(1.35)

that either monomer A or monomer B will be polarized. Replacing the wavefunction in
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Equation 1.34, one will get the corresponding energy correction

E
(2)
ind =−

∑

a 6=0

|〈ψA
0 ψ

B
0 |V̂

pol
AB |ψA

a ψ
B
0 〉|2

EA
a − EA

0

−
∑

b 6=0

|〈ψA
0 ψ

B
0 |V̂

pol
AB |ψA

0 ψ
B
b 〉|2

EB
b − EB

0

(1.36)

which can be interpreted as the induction on monomer A by polarizing monomer B as

E
(2)
ind(A ← B) and the induction on monomer B due to the polarization of monomer A as

E
(2)
ind(A→ B).

If one considers the electron excitations of monomer A and monomer B simulta-

neously, the wavefunction correction Ψ(1) represents the dispersion effect

|Ψ(1)
disp〉 = −

∑

a,b 6=0

〈ψA
a ψ

B
b |V̂

pol
AB |ψA

0 ψ
B
0 〉

EA
a + EB

b − EA
0 − EB

0

|ψA
a ψ

B
b 〉 (1.37)

where both monomer A and monomer B are polarized at the same time. The interaction

is called dispersion interaction interpreted as the polarization of one monomer due to the

polarization of the other. Similar to induction interactions, replacing the wavefunction

correction in Equation 1.34 with the above expression gives the corresponding dispersion

energy

E
(2)
disp = −

∑

a,b 6=0

|〈ψA
0 ψ

B
0 |V̂

pol
AB |ψA

a ψ
B
b 〉|2

EA
a + EB

b − EA
0 − EB

0

(1.38)

More detailed discussion of dispersion interaction is the main topic in the following chapters.

As mentioned earlier, the intermolecular perturbation operator V̂ pol
AB does not in-

clude intermolecular exchange. To get the correct interaction energy, one should take ac-

count of exchange components corresponding to each polarization term [26]. For first order

polarization, the exchange term corresponding to electrostatic interaction E
(1)
elst is

E
(1)
exch =

〈ψA
0 ψ

B
0 |V̂

pol
AB − E

(1)
polP̂ |ψA

0 ψ
B
0 〉

1 + 〈ψA
0 ψ

B
0 |P̂ |ψA

0 ψ
B
0 〉

(1.39)
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where P̂ is intermolecular permutation operator which exchanges electrons between monomer

A and monomer B. In practice, only single pair of electrons are exchanged at one time.

For second order perturbation, the exchange terms corresponding to E
(2)
ind and E

(2)
disp are

exchange-induction interaction (E
(2)
ex-ind) and exchange-dispersion interaction (E

(2)
ex-disp), re-

spectively

E
(2)
ex-ind = −〈Ψ(0)|(V̂ pol

AB − E
(1)
pol)(P̂ − P̄ )|Ψ(1)

ind〉 (1.40)

and

E
(2)
ex-disp = −〈Ψ(0)|(V̂ pol

AB − E
(1)
pol)(P̂ − P̄ )|Ψ(1)

disp〉 (1.41)

where P̄ is the expectation value as 〈Ψ(0)|P̂ |Ψ(0)〉, with the same first order corrected wave-

functions |Ψ(1)
ind〉 and |Ψ(1)

disp〉 have been given before. The total SAPT interaction energy (up

to second order) is the combination of polarization series and their corresponding exchange

contributions

E
(2)
SAPT = E

(2)
pol + E

(2)
exchange

=
(

E
(1)
elst + E

(2)
ind + E

(2)
disp

)

+
(

E
(1)
exch + E

(2)
ex-ind + E

(2)
ex-disp

)

(1.42)

To visualize the contributions from different energy components, the potential en-

ergy surface (PES) of stacked benzene dimer [27] is provided in Figure 1.3 as an example.

We can observe that all the energy components are zero when two molecules are well sep-

arated and their contributions increase as the molecules are approaching to each other.

Generally, energies of the polarization series are more attractive with negative sign. While

the corresponding exchange terms are repulsive. The sum of all these terms gives the total

interaction energy. Staring from infinite separation, the molecules attract each other as

they come closer. After reaching an equilibrium distance which is the energy minimum, the
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Figure 1.3: Potential energy components computed from symmetry adapted perturbation
theory for stacked benzene dimer. The energies change as the intermolecular distance.
Structures are taken from [27].

interaction energy becomes less favorable and eventually turns repulsive as the molecules

continue approaching. This repulsive effect stems from the fast increase of exchange con-

tributions, which can be interpreted as the strong Coulomb repulsion between electron

densities (or orbital overlapping) from the two molecules.

1.3.2 Polarizable multipole ab initio force field

As a simple approximation to SAPT, the ab initio force field [16] just includes the

cheaper polarization series computed from distributed polarizable multipoles. The exchange

effect is approximated by using damping functions which decay from 1 to 0 to turn off the

attractive terms as the atoms approach. The electrostatic interaction energy between atom
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A and B is given by

Eelst ←
∑

tu

QA
t TtuQ

B
u (1.43)

where the Ttu matrix includes the distance- and orientation-dependent contributions for the

interaction of two different spherical-tensor multipole moment components Qt and Qu. To

evaluate the induction contribution, one first finds the induced multipole moments according

to

∆QA
t = −

∑

t′u

αA
tt′Tt′u

(

QB
u + ∆QB

u

)

(1.44)

where αA
tt′ is the static polarizability tensor on atom A and ∆Q is an induced multipole mo-

ment. Clearly, the induced multipole moment on atom A depends on the induced multipole

moment on atom B, so this process is done self-consistently until the induced multipoles

converge. So the induction energy contribution between atoms A and B is

Eind ←
∑

tu

∆QA
t TtuQ

B
u +QA

t Ttu∆QB
u (1.45)

The force field dispersion is evaluated via Casimir-Polder integration over frequency-

dependent polarizabilities (FDPs):

Edisp ←
∑

tu

∑

t′u′

TtuTt′u′

∫ ∞

0
αA

tt′(ω)αB
uu′(ω)dω (1.46)

The integration is evaluated via numerical quadrature over imaginary frequency

ω. The above expression corresponds to an anisotropic model for atom-atom dispersion.

However, to a fairly good approximation, one can approximate this with a simple isotropic

dispersion model (i.e., the one only averages over the diagonal dipole-dipole and quadrupole-

quadrupole elements of the frequency-dependent polarizability). In that case, the dispersion
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model reduces to the standard C6, C8, etc., terms divided by the interatomic distance R to

the corresponding power,

Edisp ←
CAB

6

R6
AB

+
CAB

8

R8
AB

+ · · · (1.47)

The isotropic dispersion coefficients Cn are obtained from the Casimir-Polder inte-

gration over the appropriate elements of the isotropic frequency-dependent polarizabilities

ᾱ:

CAB
n ←

∫ ∞

0
ᾱA(ω)ᾱB(ω)dω (1.48)

1.3.3 Supermolecular approach

The supermolecular approach describes molecular interactions by calculating the

energy difference between the whole system and the constituent units. For example, the

interaction energy in a two-body system is given by

EAB
int = EAB − EA − EB (1.49)

where AB represents the dimer, and A, B stand for each monomer. This approach is

widely used for practical calculations, because almost all of the existing quantum chemical

methods can be applied on this model. Unlike SAPT, one does not need to take extra

efforts to describe the complicated exchange terms explicitly, since the exchange effect has

been naturally included in the supermolecular orbitals.

A lot of quantum mechanical methods have been developed in order to predict

noncovalent interactions accurately and effectively [25,28]. Some mainstream methods fre-

quently used today is listed below, and their performance on benchmark test set will be

provided in the following section.
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• CCSD(T): It is very accurate and is often considered as the “gold standard” for

benchmark calculations. However, its high computational cost that grows O(N7)

with system size N makes it impractical for many applications, especially for large

systems.

• MP2 [29]: It is accurate for polarization interactions but it often overestimates van

der Waals dispersion interactions. It exhibits more affordable O(N5) computational

cost.

• SCS-MP2: Spin-component scaled MP2 with empirical spin scaling factors for same-

spin (ss) energy component and opposite-spin (os) energy component. Some optimal

parameters are SCS-MP2(ss=0.33,os=1.20) [30], SOS-MP2(ss=0.00,os=1.30) [31] and

SCS(MI)-MP2(ss=1.75,os=0.17) [32]. These methods are much improved than the

conventional MP2, especially for dispersion interactions. Besides SOS-MP2 which

scales as O(N4) by ignoring the more expensive same-spin term (with Coulomb ex-

change scaling asO(N5)), the other methods have the same size scaling as conventional

MP2.

• MP2.5: MP2.5 [33] is an average of the MP2 and MP3 interaction energies. It

achieves a high accuracy by cancelling the overestimation error in MP2 and underes-

timation error in MP3. The size scaling rate is the same as MP3 with O(N6).

• MP2C: After recognizing the main error source in MP2 comes from the uncoupled

Hartree-Fock (UCHF) dispersion, “coupled” MP2 (MP2C) method [34, 35] replaces

the UCHF dispersion found in MP2 with more accurate dispersion based on cou-
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pled Kohn-Sham (CKS) theory, which substantially reduces the correlation errors.

This correction does not significantly change the computational cost relative to the

conventional MP2.

• DFT-D: In conventional Kohn-Sham DFT, the approximate density functionals de-

pend only on the local electron density, making them unable to describe long-range

correlation interactions like dispersion. DFT-D corrects this deficiency by including

the dispersion terms computed with multipole expansion model [36–39]. If one uses

empirical dispersion coefficients, the dispersion calculation is almost free and the whole

calculation has the same scaling rate as DFT with O(N3).

1.3.4 Finite basis set error

Theoretically, the basis space to expand molecular orbitals is infinite. In practice,

the angular momentum is truncated and a finite number of functions are used to approx-

imate molecular orbitals. Though finite-basis set errors cannot be avoided in practical

applications, several approaches have been developed to reduce such errors.

First, for interaction energies computed from supermolecular approach, one should

take care of the basis set superposition error (BSSE) which stems from the use of finite basis

set. Due to the basis set incompleteness, when building molecular orbitals for the super-

molecule, electrons in one monomer often “borrow” basis functions from the neighboring

molecules to compensate for basis set incompleteness and to achieve a lower energy. On

the other hand, these basis functions are not present for the isolated monomer calculations,

so no such basis set borrowing/energy lowering can occur. This leads to an artificial at-
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traction between the molecules, and this BSSE does not cancel out readily. Generally, the

counterpoise (CP) correction is used to reduce BSSE. The BSSE can be approximated by

comparing the difference in the monomer energies with and without the presence of the

basis functions from the neighboring molecule(s):

EA
BSSE = EA(AB)− EA(A) (1.50)

and

EB
BSSE = EB(AB)− EB(B) (1.51)

where the symbols in the bracket tells where the basis functions come from. For example,

EA(AB) uses basis functions from both monomer A and monomer B to build orbitals of

monomer A. While EA(A) only includes basis functions from monomer A. Subtracting

BSSEs from Equation 1.49, one will obtain the interaction energy with BSSE significantly

reduced

EAB
int (CP ) = EAB(AB)− EA(AB)− EB(AB) (1.52)

In the following chapters, we will use counterpoise correction as default unless otherwise

specified as “no-CP”.

Second, even after correcting for BSSE, finite basis set error still exists. As shown

in Figure 1.4, this error is significant relative to the magnitude of the interaction energies.

To reduce the finite basis set error, basis set extrapolation will be utilized to approximate

the complete basis set (CBS) limit. Since SCF and correlation energies have different basis

set convergence behaviors, they will be extrapolated separately. In the following chapters,

two point aTZ-aQZ extrapolation [40,41] is used to estimate energies in the CBS limit
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E∞
HF = EQ

HF +
EQ

HF − ET
HF

e1.54(4−3) − 1
(1.53)

and

E∞
Corr =

43EQ
Corr − 33ET

Corr

43 − 33
(1.54)

where E∞ means energy estimated in CBS limit. ET and EQ represent energies computed

with aug-cc-pVTZ and aug-cc-pVQZ basis set, respectively.

1.3.5 Benchmark sets for methods evaluations

An excellent theoretical method for noncovalent interactions should be both ef-

ficient and accurate enough for various type of interactions. The benchmark dimer test

sets like S22 [42, 43], S22x5 [44] (scaling S22 set into four non-equilibrium separations),

S66 [45], S66a8 [46] (rotating relative angles from S66 set into eight non-equilibrium ge-
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Figure 1.5: S22 dimer set with interaction energies computed from CCSD(T)/CBS [43].
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ometries), L7 [47] and S12L [48, 49] provide representative systems of various interactions,

which can help to evaluate the performance of different theoretical models. Meanwhile, the

reference results (usually computed from CCSD(T)/CBS) are provided for comparison and

error analysis. Here we just introduce the S22 test set, but some other benchmark sets

will also be used in the following chapters. The S22 test set is divided into three groups

based on different types of interactions as Figure 1.5 shows. The first group is hydrogen

bond dominant species, the second one is dispersion dominant and the last is mixed with

electrostatic and dispersion with similar magnitude.

To give a flavor on how the methods discussed previously perform on the S22

test set, root-mean-square (RMS) errors with respect to CCSD(T) results are provided in

Table 1.1 for comparison [1]. From the table, one can draw the conclusions that MP2

performs well on polarization interactions, but it has large error in predicting dispersion

interactions. SCS-MP2 decreases the overestimation error in dispersion by scaling the cor-

relation components with a smaller prefactor. The empirical parameters introduced for

correlation, however, disrupt the balance for describing other interactions. As we can see

from the table, the RMS error of the hydrogen bonded species increases to 0.54 kcal/mol.

Table 1.1: RMS error (kcal/mol) of different methods on S22 test set [1].

methods S22 H-bonded Dispersion-bonded mixed

MP2 0.94 0.27 1.24 0.37
SCS-MP2 0.58 0.54 0.60 0.17
SCS(MI)-MP2 0.26 0.31 0.28 0.22
MP2.5 0.22 0.07 0.32 0.14
MP2C 0.18 0.19 0.10 0.13
SAPT(DFT) 0.49 0.47 0.45 0.30
B3LYP-D 0.82 0.35 0.48 0.67
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MP2.5 depending on error cancellations reduces the RMS errors significantly. MP2C only

fixes the correlation problem in dispersion, so it is still accurate for polarization interac-

tions. SAPT(DFT) is affected by a lot of factors: the SCF model selected to compute MOs,

the type of exchange-correlation kernels (ALDAX, ADAX+CHF, and ALDA, for instance),

the level of perturbation correction to improve inter- and intra-molecular correlations, the

size basis set used, etc. Table 1.1 shows that this method performs uniformly well for dif-

ferent interactions. Corrected with empirical dispersion, DFT-D method performs well for

dispersion interactions, but there is still no improvement on induction interactions.

1.4 Outline of the Dissertation

In the next chapter, we will consider the computational efficiency of the MP2C

method which approaches near CCSD(T) accuracy with an affordable computational cost.

With fortuitous basis set error cancellations, it is possible to approach dimer-centered (DC)

MP2C dispersion correction using a smaller monomer-centered (MC) one. Applying the

MC algorithm to an individual dimer provides several-fold speed-ups. More significantly,

in the context of fragment-based molecular crystal studies, combining the new algorithm

and translational symmetry of these periodic systems reduces the computational cost of

dispersion corrections by two orders of magnitude, making the dispersion correction calcu-

lation almost free. Most contents of this chapter are reprinted from “Accelerating MP2C

dispersion corrections for dimers and molecular crystals”, J. Chem. Phys., 138, 224112

(2013).

In Chapter 3, we focus on the MP2 part of the MP2C method, which is the main
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computational bottleneck. Here, we demonstrate that one can avoid calculating the long-

range MP2 correlation by attenuating the Coulomb operator, allowing dispersion correction

to handle the long-range interactions inexpensively. With relatively modest Coulomb at-

tenuation, one obtains the results close enough to those computed from the conventional

MP2C method. In this case, the finite basis set error in the description of dispersion is

the main error source. One can reduce the finite-basis error by extrapolating dispersion

energy to the CBS limit. Alternatively, with more aggressive attenuation, one can remove

just enough short-range repulsive exchange-dispersion to compensate for the finite basis

set error. Accordingly, it is possible to approach complete basis set limit quality results

with only a small basis set, resulting in substantial computational savings. The existing

explicitly correlated MP2C (MP2C-F12) method is also discussed, which also approaches

CBS limit accuracy with small basis set. Reliabilities of these methods are examined on

different benchmark dimer sets and molecular crystals. Most contents of this chapter are

reprinted with the permission from “Achieving High-Accuracy Intermolecular Interactions

by Combining Coulomb-Attenuated Second-Order Møller-Plesset Perturbation Theory with

Coupled Kohn-Sham Dispersion”, J. Chem. Theory Comput., 10, 2054-2063 (2014).

Finally, in Chapter 4, we consider the three-body interactions, which are nonneg-

ligible contributions to the total lattice energy. However, most low scaling methods exhibit

problems in describing three-body interactions. Considering the correlation correction on

conventional three-body MP2 method, we utilize the short-range damped Axilrod-Teller-

Muto (ATM) dispersion. The damping compensates for the absence of higher-order disper-

sion contribution (MP4 and above) and non-additive short-range exchange terms not found
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in MP2. This model proves to be reliable from the examinations on benchmarking trimer

sets and molecular crystals. This work is a reprint of “Reliable prediction of three-body

intermolecular interactions using dispersion-corrected second-order Møller-Plesset pertur-

bation theory”, submitted.

To avoid confusion when making energy comparison, one should notice the different

energy units used in this thesis: Chapter 2 and Chapter 3 use kJ/mol (1 Hartree = 2625.5002

kJ/mol), while Chapter 4 uses kcal/mol (1 kcal/mol = 4.184 kJ/mol).
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Chapter 2

Improving computational efficiency

of MP2C dispersion correction for

two-body interactions

2.1 Introduction

Unlike most commonly used DFT functionals, MP2 naturally captures disper-

sion interactions at affordable computational cost. However, MP2 suffers the well-known

deficiency that it frequently overestimates dispersion energies. Furthermore, because the

strength of dispersion interactions depends strongly on the orientations and distances of

the molecules, errors in the MP2 interaction energies are often uneven across the potential

energy surface [44,45].

Instead of employing large-basis CCSD(T) calculations, which are cost-prohibitive
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for many chemically interesting systems, practical calculations are typically limited to meth-

ods which scale O(N5) or less with system size N. Inexpensive MP2 corrections that improve

the description of dispersion interactions are therefore particularly important.

Several such MP2 dispersion correction models exist. Spin-component scaling of

the MP2 correlation energy contributions can significantly improve MP2 interaction ener-

gies [30–32], but such simple empirical approaches sometimes perform poorly, as in oxalyl

dihydrazide crystals [50], for instance. Dispersion-weighted MP2 adjusts the scaling depend-

ing on the relative sizes of the HF and MP2 interaction energies [51]. Other empirically

corrected methods such as MP2.5 [33], spin-component-scaled CCSD [52,53], or dispersion-

weighted CCSD methods [54] provide more reliable intermolecular interaction energies, but

they scale with O(N6), which is too expensive for practical use.

Alternatively, since the main error source in MP2 comes from the uncoupled

Hartree-Fock (UCHF) treatment of dispersion [55,56], several methods have been proposed

to replace the UCHF dispersion energy with a more accurate one computed using coupled

Hartree-Fock (CHF) [57], coupled Kohn-Sham (CKS) [34, 35], or high-quality dispersion

coefficients obtained from other sources [58]. Of these later approaches, the MP2C method

of Pitonak and Hesselmann [34, 35], which corrects MP2 based on the difference between

the CKS and UCHF dispersion energies, has proved to be very successful. MP2C is non-

empirical (aside from any empiricism present in the density functional/kernels used in the

CKS calculation) and agrees well with high-level benchmark calculations for a wide variety

of intermolecular interactions [59–64].

Although the MP2C dispersion correction formally scales onlyO(N4) versusO(N5)
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for MP2, evaluating the dispersion correction still comprises a sizable fraction of the overall

computational time in practical calculations. For instance, the dispersion calculation needs

to be integrated over several imaginary frequencies (usually 10 grid points for numerical

integration), which increases the prefactor to the O(N4) scaling.

In this chapter, the cost of evaluating the MP2C dispersion correction is substan-

tially reduced by exploiting two features. First, for individual dimer calculation, density-

density response function (used for dispersion calculation) are computed in a monomer-

centered (MC) basis instead of the original dimer-centered (DC) one, which reduces the

computational cost several-fold. Although the accurate computation of the dispersion en-

ergy requires a very large basis set [65], the energy difference between the CKS and UCHF

dispersion energies proved to be much less sensitive to the basis set, and the MP2C correc-

tion obtained in MC basis is nearly identical to the one obtained in DC basis set. Second,

for fragment-based models to treat molecular crystals, additional larger savings are achieved

by recognizing that, in an MC basis, the UCHF and CKS response functions are molecular

properties that are transferable to all symmetry-equivalent molecules in such periodic sys-

tems. One simply computes the CKS/UCHF response functions with MC basis set for the

handful monomers in the asymmetric central unit cell, then the intermolecular dispersion

correction can be evaluated for each of the dozens or more dimer interactions in the crystal

at trivial cost. Overall, this approach reduces the cost of MP2C dispersion correction in a

molecular crystal by two orders of magnitude, making it virtually cost-free compared to the

underlying MP2 calculations, without sacrificing significant accuracy.
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2.2 Theory

2.2.1 MP2C dispersion correction

Start with the UCHF dispersion in MP2, which has the form as

EUCHF
disp = −

∑

a,b 6=0

|〈ψA
0 ψ

B
0 |r−1

AB|ψA
a ψ

B
b 〉|2

EA
a + EB

b − EA
0 − EB

0

(2.1)

where molecular orbitals and orbital energies are computed from Hartree-Fock theory. After

Casimir-Polder transformation, the dispersion expression can be represented with integra-

tion over imaginary frequencies ω

EUCHF
disp = − 1

2π

∫ ∞

0
dω

(

∫ ∫ ∫ ∫

αA(rA, r
′
A|ω)αB(rB, r

′
B|ω)

drAdrB
|rA − rB|

dr′Adr
′
B

|r′A − r′B|
)

(2.2)

where αA and αB represents molecular frequency-dependent density susceptibilities (FDDSs)

[66, 67] for monomer A and monomer B respectively. Then the uncoupled (UC) FDDS for

one molecule has the form

αX
0 (r, r′|ω) = 4

∑

ia

(ǫa − ǫi)
(ǫa − ǫi)2 − ω2

ψi(r)ψa(r)ψi(r
′)ψa(r′)

=
∑

ia

Cia
0 (ω)ψi(r)ψa(r)ψi(r

′)ψa(r′)

(2.3)

where i, j and a, b denote occupied and virtual orbitals, respectively. ψ and ǫ represent

molecular orbital and orbital energy of monomer X (either A or B). Cia
0 (ω) is the expansion

coefficient of uncoupled FDDS involving exciting states and imaginary frequencies. To

improve the computational efficiency, density fitting or resolution of the identity technique

is used by introducing auxiliary functions (represented with P and Q) to represent products

of molecular orbitals |ia〉,

ψi(r)ψa(r) = |ia〉 = Dia,P |P 〉 (2.4)
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where |P 〉 is an auxiliary basis function, and Dia,P is the density fitting coefficient indicating

the weight of auxiliary function |P 〉 in the expression of |ia〉. Multiplying the above equation

by S−1〈Q| on both sides, one obtains the density fitting coefficient

Dia,P =
∑

Q

(S−1)PQTia,Q (2.5)

in which, SPQ is two-index Coulomb integral 〈P |r−1
12 |Q〉, and Tia,Q is three-index Coulomb

integral 〈ia|r−1
12 |Q〉 coupling between AO basis functions and auxiliary functions. Applying

the density fitting algorithm, the new UCHF dispersion expression can be rewritten as

αX
0 (r, r′|ω) =

∑

PQ

(

∑

ia

Dia,PC
ia
0 (ω)Dia,Q

)

|P 〉|Q〉

=
∑

PQ

χX
0 (ω)|P 〉|Q〉

(2.6)

where χX
0 (ω) is called the uncoupled propagator (or response function) for monomer X,

and the dispersion energy with density fitting can be expressed by coupling the propagators

with intermolecular Coulomb operator

EUCHF
disp = − 1

2π

∫ ∞

0
Tr

[

χA
0 (ω)JAB(χB

0 (ω))T (JAB)T
]

dω (2.7)

where the Coulomb integral JAB = 〈P |r−1
12 |Q〉 couples χA

0 (ω) and χB
0 (ω). The trace of the

matrix resulting from the matrix multiplies is evaluated at each frequency grid point used

in the numerical integration by quadrature.

To obtain the CKS dispersion, one first calculates the uncoupled Kohn-Sham prop-

agators with orbitals computed from local Hartree-Fock (LHF). Then for each frequency ω,

the coupled Kohn-Sham propagator is obtained by solving Dyson typed equation iteratively

χcoup(ω) = χ0(ω) + χ0(ω)W
[

S − Sχ0(ω)W
]−1

Sχ0(ω) (2.8)
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where

WPQ = SPQ + 〈P |fxc|Q〉 (2.9)

and 〈P |fxc|Q〉 [66–68, 35] are integrals of the exchange-correlation kernel in the auxiliary

basis set. In MP2C, the adiabatic LDA exchange-only (ALDAX) kernel is used

fxc = −Cxρ
−2/3 (2.10)

where Cx is Slater-Dirac exchange for LDA with the value −4

3
(
3

π
)1/3, and ρ is for electron

density. With the CKS propagator computed, the CKS dispersion energy can be obtained

as

ECKS
disp = − 1

2π

∫ ∞

0
Tr

[

χA
coup(ω)JAB

(

χB
coup(ω)

)T (

JAB
)T

]

dω (2.11)

which has the similar form to UCHF dispersion except the propagators are computed from

CKS algorithm.

2.2.2 Monomer-Centered dispersion correction

In the conventional MP2C dispersion correction, a dimer-centered (DC) basis set

is used, which means that the basis functions of monomer B are present when doing the SCF

calculation for monomer A, and vice versa. Realizing that only the difference in the CKS

and UCHF dispersion energies, ∆EMP2C
disp = ECKS

disp − EUCHF
disp (rather than the individual

CKS or UCHF dispersion energies) are important in correcting MP2 interaction energies,

and the basis set errors in the CKS and UCHF dispersion are similar and will largely cancel,

we propose to improve the computational efficiency of the dispersion correction by using

a monomer-centered (MC) basis set. This means that when calculating the propagator of
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one molecule, only basis functions from that molecule will be used. With smaller number

of basis functions (for a single homo-dimer, the size of basis functions will be cut in half),

the cost of bottleneck steps can be reduced by a factor of ∼ 23 = 8.

The energy differences between using MC and DC basis set have been examined

extensively in the symmetry-adapted perturbation theory (SAPT) literature. For instance,

Williams and co-workers [65] found that the first-order polarization and exchange terms

are well-described in an MC basis set, while the second-order induction terms require a DC

basis, and the dispersion energy converges slowly with respect to basis set. The dispersion

energy in a given MC basis is typically much further from convergence than the dispersion

energy in the corresponding DC basis. However, better MC basis results can be obtained

if the basis set is enhanced by reoptimizing the basis function exponents for dispersion,

augmenting the basis with additional high-angular momentum basis functions, adding mid-

bond basis functions, and/or adding a few basis functions to the region of the interacting

partner molecule (but fewer than would be present in the full DC basis). All of these

strategies can provide MC dispersion energies that are very close to DC ones with fewer

overall basis functions [67,69].

The MP2C correction, however, is computed as the difference between CKS and

UCHF dispersion, which proves much less sensitive to the basis set than the absolute dis-

persion energy as Figure 2.1 shows. The fast convergence behavior stems from the finite

basis set error cancellation between CKS and UCHF dispersions.
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Figure 2.1: Comparison of EUCHF
disp , ECKS

disp and their difference ∆EMP2C as a function
of basis set for the parallel-displaced benzene dimer. Although the individual MC (red)
and DC (blue) dispersion energies converge slowly with basis set, the MC and DC MP2C
dispersion corrections are nearly identical.

2.2.3 Dispersion correction in HMBI model

As noted above, the largest computational savings from using the MC basis will

be obtained when exploiting the symmetry in a molecular crystal. The hybrid many-body

interaction (HMBI) model [7, 9, 16], for instance, decomposes the total energy of a crystal

using many-body expansion. It treats individual monomers in the unit cell and their short-

range pairwise interactions with other molecules using quantum mechanics (QM), while

the long-range pairwise and many-body interactions involving three or more molecules are

approximated using a polarizable MM force field whose parameters are determined on the

fly from ab initio [8, 9] calculations. The computational bottleneck in applying a fragment

approach like HMBI to a molecular crystal is the need to evaluate dozens or more dimer

interactions quantum mechanically.
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Figure 2.2: 9 unit cells of molecular crystal with 4 monomers (labeled as A,B,C and D)
in each, the central unit cell is 0. The propagators computed with MC basis set in image
unit cells 1-8 are the same as propagators of molecules with the same geometry and space
orientation in the central unit cell.

Figure 2.2 shows 9 unit cells in a molecular crystal where the two-body interac-

tions need to be treated quantum mechanically. When MP2C method is used, the dispersion

correction must be computed for each individual dimer. In the original DC MP2C algo-

rithm, for dimer 0A-2C (monomer A in unit cell 0 and monomer C in unit cell 2) as an

example, the propagator of monomer 0A needs basis functions in monomer 2C and vice

versa. So the propagators must be computed separately for each dimers as required in

MP2C method. In the MC algorithm, however, the propagator calculation just depends

on the individual molecule, irrespective of which other molecule they happen to be inter-

acting with in a given dimer system. The molecular property of propagator enables the

exploitation of crystal periodicity and symmetry to reduce the cost substantially. It means,
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one just needs to compute propagators in the central unit cell (0A, 0B, 0C and 0D), while

for other monomers in the image unit cells (1-8 as in the figure), they can always find the

corresponding monomers with the same geometry and orientation in the central unit cell.

When computing the dispersion for dimer 0A-2C, one can just use propagators of 0A and

0C already computed (since the propagator of 2C is identical to that of 0C). The only

effort is computing two-index Coulomb integration J0A-2C = 〈P 0A|r−1|Q2C〉, which has a

lower scaling rate O(N2). Finally, dispersion energies are obtained from Casimir-Polder

integration as Equation 2.7 and 2.11.

Similar ideas have been used previously when mapping out potential energy sur-

faces for the interaction between two rigid molecules using SAPT(CKS), for instance. In

that context, one can compute the molecular propagator once and then evaluate the in-

teraction energies at many different intermolecular distances and orientations cheaply [67].

In a molecular crystal, the application of periodic boundary conditions and/or space-group

symmetry imposes constraints that make the propagators transferable from one monomer

to other geometry-identical ones.

2.3 Results and discussion

To demonstrate the performance of the monomer-centered basis MP2C algorithm,

we first examine the basis set behavior for dimer interactions. Then we examine its perfor-

mance on benchmark data set for noncovalent interactions. Finally, we apply it to several

different molecular crystals and compare the timings.
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2.3.1 Comparison between MC and DC algorithms

To see how well MC approaches DC algorithm, MP2C dispersion correction with

different basis sets are tested on S22 benchmark test set [42, 43]. As Figure 2.3 shows, the

correlation is extremely good across a range of basis sets. The root-mean-square deviations

between the MC and DC algorithms are only 0.25 kJ/mol (aug-cc-pVDZ), 0.14 kJ/mol

(aug-cc-pVTZ), 0.13 kJ/mol (aug-cc-pVQZ), and 0.14 kJ/mol (CBS limit).

In Table 2.1, MP2 interaction energies are computed in the CBS limit to avoid

finite basis set error introduced in MP2 level. Therefore, one just need to focus on the

post-MP2 correlation compared to CCSD(T) benchmark. Without post-MP2 correlation

correction, the RMS error is 5.73 kJ/mol with the large errors mainly from the dispersion

dominant complexes. The conventional dimer centered MP2C dispersion correction sub-

stantially improves the performance of MP2 by replacing the inaccurate UCHF dispersion

lacking enough intramolecular correlation with the more accurate CKS dispersion. As dis-

cussed before, the finite basis set errors of MP2C dispersion correction converge fast due to

the error cancellations between CKS dispersion and UCHF dispersion, with similar RMS

errors that 0.87 kJ/mol for aug-cc-pVDZ, 0.73 kJ/mol for aug-cc-pVTZ, 0.71 kJ/mol for

aug-cc-pVQZ, and 0.71 kJ/mol for CBS limit. In the following tests, we will just use the

medium sized aug-cc-pVTZ basis set for dispersion correction, which will not lead to clear

difference.

The error cancellation can also be found between CKS and UCHF dispersions

when they are computed with MC basis set. For some of the complexes, errors with MC

algorithm are smaller than DC algorithm, while for others, MC results are slightly worse.
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Table 2.1: Interaction energies (kJ/mol) computed from MP2, MP2C/DC, MP2C/MC and CCSD(T) on S22 test set. For
MP2C method, dispersion correction with different basis set is added to MP2/CBS interaction energies.

MP2 +∆MP2C/DC +∆MP2C/MC CCSD(T)

structure CBS aDZ aTZ aQZ CBS aDZ aTZ aQZ CBS CBS

(NH3)2 -13.22 -13.43 -13.72 -13.81 -13.89 -13.32 -13.60 -13.72 -13.81 -13.26
(H2O)2 -20.84 -20.88 -21.17 -21.26 -21.34 -20.75 -21.09 -21.17 -21.22 -21.00
Formic acid dimer -77.70 -77.32 -77.99 -78.29 -78.49 -76.85 -77.71 -77.94 -78.11 -78.66
Formamide dimer -66.27 -66.35 -66.98 -67.19 -67.36 -65.88 -66.72 -66.93 -67.09 -67.45
Uracil dimer HB -85.40 -84.61 -85.19 -85.36 -85.48 -84.29 -85.13 -85.26 -85.35 -86.57
2-pyridoxine·2-aminopyridine -72.68 -71.42 -72.01 -72.22 -72.34 -70.91 -71.94 -72.04 -72.10 -71.13
Adenine·thymine WC -69.20 -68.45 -69.03 -69.24 -69.41 -68.08 -69.09 -69.14 -69.17 -70.04
(CH4)2 -2.05 -2.26 -2.30 -2.34 -2.38 -2.25 -2.27 -2.30 -2.32 -2.22
(C2H4)2 -6.61 -6.65 -6.78 -6.82 -6.86 -6.60 -6.72 -6.79 -6.84 -6.28
Benzene·CH4 -7.57 -6.31 -6.44 -6.48 -6.53 -6.15 -6.37 -6.46 -6.53 -6.07
PD benzene dimer -20.75 -11.04 -11.46 -11.55 -11.59 -11.03 -11.32 -11.54 -11.71 -10.96
Pyrazine dimer -28.91 -18.28 -18.37 -18.53 -18.66 -18.43 -18.47 -18.55 -18.60 -17.57
Stacked uracil dimer -46.44 -39.29 -39.58 -39.83 -40.00 -39.21 -39.36 -39.69 -39.93 -40.75
Stacked indole·benzene -33.85 -18.87 -19.33 -19.50 -19.62 -18.82 -19.24 -19.53 -19.74 -19.20
Stacked adenine·thymine -62.05 -47.28 -47.62 -47.91 -48.12 -47.15 -47.38 -47.73 -47.97 -48.79
Ethene·ethine -6.99 -6.66 -6.74 -6.74 -6.74 -6.57 -6.67 -6.71 -6.74 -6.32
Benzene·H2O -14.81 -13.60 -13.85 -13.89 -13.93 -13.47 -13.70 -13.80 -13.87 -13.77
Benzene·NH3 -11.13 -9.71 -9.83 -9.87 -9.92 -9.54 -9.75 -9.83 -9.88 -9.71
Benzene·HCN -21.59 -19.37 -19.58 -19.62 -19.66 -19.07 -19.45 -19.55 -19.63 -19.04
T-shaped benzene dimer -15.19 -11.93 -12.09 -12.09 -12.09 -11.65 -12.00 -12.09 -12.15 -11.34
T-shaped indole·benzene -29.16 -24.56 -24.81 -24.89 -24.94 -24.25 -24.70 -24.79 -24.86 -23.51
Phenol dimer -32.47 -29.96 -30.34 -30.46 -30.54 -29.78 -30.25 -30.36 -30.45 -29.66

RMS error 5.73 0.87 0.73 0.71 0.71 1.00 0.76 0.73 0.72
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Figure 2.3: Correlation between MC and DC MP2C correction for the S22 test set.

Statistically, the differences in the RMS error between the MC and DC algorithms are

almost negligible. Specifically, the RMS of MC MP2C is 0.13 kJ/mol worse than the RMS

error of DC approach when using aug-cc-pVDZ basis set, 0.03 kJ/mol worse in the aug-cc-

pVTZ case, 0.02 kJ/mol worse in aug-cc-pVQZ basis set, and only 0.01 kJ/mol difference

in CBS limit.

2.3.2 Performance on benchmark dimer sets

Molecular crystal packing is governed by a broad spectrum of intermolecular inter-

actions occurring at a variety of distances and orientations. Accordingly, accurate crystal

structure modeling requires small, uniform errors across the potential energy surface. MP2C

performs well in this regard [1, 44, 35], and the data presented below indicates that using

the MC basis MP2C algorithm does not negatively impact this behavior.
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Table 2.2: RMS error (kcal/mol) for MP2 and MP2C relative to CCSD(T)/CBS-limit
benchmarks on the S22x5 and S66a8 test sets.

MP2 MC MP2C DC MP2C

S22x5 set
0.9Re 8.76 1.53 1.51
1.0Re 5.69 0.80 0.73
1.2Re 2.21 0.48 0.52
1.5Re 0.77 0.28 0.25
2.0Re 0.22 0.17 0.13
Overall 4.79 0.81 0.79

S66a8 set 1.77 1.06

To test the distance and orientation behavior of MP2C, MC approach is used for

the S22x5 [44] and S66a8 [46] test suites. The S22x5 set scales the S22 dimers from the

equilibrium separation Re into shorter and longer intermolecular distances: 0.9Re, 1.0Re

(traditional S22), 1.2Re, 1.5Re and 2.0Re. The S66a8 set contains a mixture of 66 dimers

at 8 different relative angles generated by rotating either molecules by ±30 ◦ in the two

directions orthogonal to the principal plane of the dimer.

Table 2.2 lists the RMS errors for both test sets. As expected, the MP2C method

significantly improves upon the uncorrected MP2 results. For the S22x5 set, the improve-

ments are most dramatic for the separations in the vicinity of the equilibrium intermolecular

distance (0.9Re, 1.0Re and 1.2Re), where the dispersion interactions are strongest. Overall,

the MC MP2C correction reduces the S22x5 RMS errors from 4.79 kJ/mol to 0.81 kJ/mol,

which is just slightly worse than the DC correction with 0.79 kJ/mol. MP2 performs better

for the S66a8 test set, while MP2C dispersion correction is not as significantly as S22x5.

Because aug-cc-pVTZ basis set is used for MP2 level of calculation where the finite basis
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set errors are nonnegligible, otherwise the RMS error would be even smaller. The improve-

ment is fairly uniform across the eight different angular arrangements, so the results are not

decomposed further into different orientations. These benchmark dimer tests indicate that

the MC basis MP2C algorithm performs well across a variety of intermolecular separations

and orientations, making it well-suited for molecular crystal studies.

2.3.3 Performance on molecular crystals

While the MC algorithm provides appreciable computational savings in a single

dimer calculation, the savings in a molecular crystal are much greater. Therefore, it is

important to test how well this algorithm performs for molecular crystal systems.

First, the lattice energies of seven small-molecule molecular crystals are computed

with MP2C method in MC and DC basis set, and then compared against earlier estimated

complete-basis-set CCSD(T) benchmarks [7, 9] in Table 2.3. As discussed in the original

works, those benchmark lattice energies provide 1-2 kJ/mol agreement with experiment,

which is probably within the experimental errors. Compared to CCSD(T), MP2 performs

well for the hydrogen-bonded crystals, but it significantly overestimates the lattice energy

Table 2.3: Lattice energy for seven small-molecule molecular crystals (kJ/mol)

MP2 DC MP2C MC MP2C CCSD(T) Experiment

Ice 59.8 60.5 60.2 60.1 59
Formamide 78.7 79.5 79.0 80.5 82±0.3
Acetamide 80.6 80.6 80.8 80.4 86±2
Imidazole 102.0 92.6 92.9 88.6 91±4
Benzene 61.7 49.0 49.0 50.9 52±3
NH3 39.4 41.1 40.7 40.9 39
CO2 31.0 27.7 27.7 31.3 31
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in imidazole and benzene, both of which exhibit strong dispersion interactions.

Here, we find that MP2C also performs well relative to CCSD(T) for these crystals.

For the hydrogen-bonded crystals (ice, formamide, acetamide, and ammonia), the MP2C

correction is small and provides only a minor improvement to the already accurate MP2

lattice energies. For benzene and imidazole, where MP2 overestimates the lattice energies

by 10.8 kJ/mol (21%) and 13.4 kJ/mol (15%), respectively. MP2C reduces the errors

to about 1.9 kJ/mol (4%) and 4.0 kJ/mol (4%). Interestingly, for carbon dioxide, the

MP2 and CCSD(T) lattice energies differ by only 0.3 kJ/mol, and the MP2C correction

increases the error to 3.6 kJ/mol (12%). Symmetry adapted perturbation theory calculation

suggests that interactions between CO2 molecules at the shorter ranges found in the crystal

involve significant contributions from a variety of intermolecular interactions (electrostatic,

induction, exchange repulsion, and dispersion) [70]. Perhaps the close agreement between

MP2 and CCSD(T) in CO2 reflects a fortuitous cancellation of errors among these different

terms, and correcting the dispersion with MP2C disrupts this error cancellation. Again,

MC algorithm predicts the lattice energies close enough to those computed with DC basis

set, with minor difference within 5 kJ/mol.

Next, we examine the performance of the new MP2C algorithm for two poly-

Table 2.4: Lattice energies for the two known polymorphs of aspirin in the aug-cc-pVTZ
basis (kJ/mol).

MP2 SCS(MI)-MP2 MC MP2C Experiment

Form I 132.1 135.6 116.1 115
Form II 132.0 135.5 116.3
∆EI→II 0.1 0.1 -0.1
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morphic crystals: aspirin and oxalyl dihydrazide. For aspirin, the two polymorphs have

very similar crystal packing, and we previously showed that the two polymorphs are vir-

tually degenerate [71], which helps to explain the disordered mixtures of the two that

are often observed experimentally [72]. Both MP2 and SCS(MI)-MP2 predict that form

I is 0.1 kJ/mol more stable than form II. However, the lattice energies at both levels of

theory seem too large compared to the experimental value, as shown in Table 2.4. This

experimental lattice energy was obtained by extrapolating the experimental heat of subli-

mation (∆Hsub(298K)=109.7±0.5 kJ/mol [73]) to 0 K using the standard, simple model,

Elattice = ∆Hsub + 2RT [74].

Here, we apply MC MP2C/aug-cc-pVTZ to the same aspirin crystal structures and

aug-cc-pVTZ basis set as in the earlier work [71]. Similar to MP2 and SCS(MI)-MP2, MC

MP2C predicts that the two crystal polymorphs are virtually degenerate. It does nominally

reverse the stability ordering of the two (form II is now preferred by 0.1 kJ/mol instead

of form I by 0.1 kJ/mol), though such energy differences are within the expected error

bars of the calculations. More importantly, MP2C corrects the apparent overestimation of

the aspirin lattice energy. It predicts a value around 116 kJ/mol, compared to the 0 K

extrapolated experimental value of 115 kJ/mol [74].

Finally, the five polymorphs of oxalyl dihydrazide provide a particularly chal-

lenging example of polymorphism. The polymorphs differ in the degree of intra- versus

inter-molecular hydrogen bonding and require a careful electronic structure treatment to

obtain reasonable results. Earlier results obtained using force fields and various density

functionals were implausible [75]. However, a combination of MP2C, large basis set, and
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Figure 2.4: Relative polymorph energies for oxalyl dihydrazide. The MP2 ordering is incor-
rect, while both the MC and DC MP2C algorithms produce identical orderings with very
similar energies.

zero-point energy leads to predictions that are consistent with the available experimental

data [50]. Experimentally, the α, δ and ǫ polymorphs are thought to be the most stable,

while the γ polymorph is less stable and β is the least stable form [76]. Conventional MP2

does not properly order the β and γ polymorphs, but MP2C does.

Here, we compare the results of the MC and DC MP2C algorithms using the same

structures and procedures as in the earlier work [50]. Specifically, MP2/CBS-limit lattice

energies are combined with the MP2C correction computed in the aug-cc-pVTZ basis. The

overall MC lattice energies turn out to be about 1 kJ/mol (∼0.5%) smaller than the DC

ones. As shown in Figure 2.4, the differences in the relative polymorph energies are even

smaller: the largest difference between the MC and DC relative energies is 0.3 kJ/mol for

the α polymorph, while the other MC and DC relative energies differ by only 0.1 kJ/mol.

All these examples highlight the value of using MP2C for predicting molecular
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crystal energetics. Although the MC basis algorithm can lead to minor error accumulation

in a crystal (e.g., 1 kJ/mol difference between MC and DC lattice energies in the oxalyl

dihydrazide versus 0.1-0.2 kJ/mol in the S22 set), the relative energies remain in excel-

lent agreement with the DC algorithm. Overall, MC basis MP2C reliably describes the

intermolecular interactions that occur in molecular crystals.

2.3.4 Timings

Having demonstrated the accuracy of the new MP2C algorithm, we now compare

timings between the MC and DC algorithms. For an individual dimer MP2C correction, the

computational savings are non-trivial. Because one typically computes the MP2C correction

in conjunction with a counterpoise-corrected MP2 calculation, the converged HF orbitals

used in computing the UCHF and CKS response functions for either an MC or DC basis

are already available. Therefore, the MP2C correction timings here exclude the HF times.

For a single dimer of oxalyl dihydrazide in the aug-cc-pVTZ basis, for example,

the counterpoise-corrected dual basis RI-MP2 calculation requires ∼6 hours on a single core

of an Intel Xeon W3520 2.66 GHz processor with 2 GB of RAM. The DC MP2C correction

adds another ∼1.8 h to the calculation time. By contrast, the MC MP2C correction is

roughly five times faster at only 20 min.

The computational savings magnify in molecular crystal calculations because the

UCHF and CKS response functions only need to be computed once for each symmetry-

unique monomer in the unit cell in the MC basis approach. For the α polymorph of oxalyl

dihydrazide, one must perform one monomer and 41 symmetry-unique dimer calculations.
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Table 2.5: Approximate counterpoise-corrected MP2C single-point energy timings in hours
for crystalline oxalyl dihydrazide (α form) and aspirin (form I). The ∆MP2C timings rep-
resent the time for the dispersion correction only; total job times are obtained by adding
∆MP2C and RI-MP2 timings.

Oxalyl dihydrazide Aspirin

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVDZ aug-cc-pVTZ

Number of monomers 1 1 1 1
Number of dimers 41 41 47 47
RI-MP2 48 h 250 h 425 h 2450 h
DC ∆EMP2C 23 h 72 h 135 h 390 h
MC ∆EMP2C 0.2 h 0.6 h 0.8 h 2.8 h

Performing the counterpoise-corrected, dual-basis RI-MP2/aug-cc-pVTZ calculations re-

quires ∼250 h, and the DC MP2C correction adds an additional 72 h. By contrast, the

MC-based MP2C correction for the entire crystal requires less than 40 min, making it two

orders of magnitude faster than the DC correction and a trivial expense compared to the

underlying RI-MP2 calculations. Of those nearly 40 min, about 10 min are required to cal-

culate the response functions for the one unique monomer, while the remaining almost 30

min are spent computing the dispersion correction for the 41 dimers (at ∼40 s per dimer).

For aspirin form I, one monomer and 47 dimers must be computed with HMBI

(again exploiting space-group symmetry). The counterpoise-corrected dual-basis RI-MP2/aug-

cc-pVTZ calculation requires around ∼2450 h. With the DC algorithm, the MP2C correc-

tion for the entire crystal requires an additional 390 h. By contrast, with the new MC

algorithm, the MP2C correction can be computed for all the dimers in the crystal in less

than 3 h. In all cases shown in Table 2.5, the MC basis algorithm reduces the MP2C cor-

rection cost from ∼15%-35% to less than 1% of the overall job time. Clearly, any further
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computational savings in MP2C must be achieved by reducing the cost of the underlying

MP2 calculations.

2.4 Conclusions

In conclusion, the MP2C dispersion correction can be computed using a monomer-

centered basis instead of a dimer-centered one with virtually no loss in accuracy, thanks to

excellent basis set error cancellation. This error cancellation also works for other dispersion

energies with different propagators, for example the (CHF - UCHF) dispersion correction

in our test also proves that the difference between MC algorithm and DC algorithm is

negligible. For simple dimer calculations, this change reduces the costs of evaluating the

dispersion correction by several-fold. For fragment-based molecular crystal calculations,

however, one can exploit the translational symmetry to reduce the MP2C correction cost

by two orders of magnitude, reducing the cost of the dispersion correction from a significant

expense to virtually free. Overall, monomer-centered basis MP2C provides an excellent

balance between accuracy and efficiency that makes reliable electronic structure calculations

feasible for many systems, including chemically interesting molecular crystals. Of course,

the approach described here does not alter the costs of the underlying MP2 calculation

and the next chapter will address the problem by improving the computational efficiency

of MP2 part in the MP2C model.
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Chapter 3

Improving computational efficiency

of MP2 correlation for two-body

interactions

3.1 Introduction

As discussed in last chapter, evaluating the MP2C dispersion correction with a

monomer-centered (MC) basis set instead of a dimer-centered (DC) one substantially im-

proves the computational efficiency without compromising accuracy [77]. For a single dimer

interaction energy calculation, this simple change reduces the computational time by a fac-

tor up to ∼8. On the other hand, one can achieve ∼100-fold speedups in a fragment-based

molecular crystal calculation by utilizing translational symmetry in such periodic systems.

Although the MC basis MP2C dispersion correction offers significant speedups, it
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is in some sense computationally absurd. When considering the cost of both the RI-MP2

calculation (including Hartree-Fock) and the dispersion correction, the RI-MP2 calculation

dominates the computational cost. The RI-MP2 calculation consumes 65-85% of the time

when a DC basis correction is used, and more than 90% when the MC basis correction is

used. A sizable fraction of that RI-MP2 time is spent computing the UCHF dispersion,

only to discard that contribution and replace it with an inexpensive O(N4) CKS dispersion

energy. Could we simply avoid computing those long-range MP2 correlation effects in the

first place and thereby drastically reduce the necessary computational effort?

One can analyze the composition of the MP2 interaction energies using the related

SAPT2 method. As the potential energy curve of the benzene dimer in Figure 1.3 shows,

for example, the dispersion is dominant at larger intermolecular separations and it still

contributes strongly at shorter distances where the total molecular interaction increases.

Generally, the nonnegligible but comparatively weaker short-range correlation energies re-

quire more effort to compute (e.g. exchange-dispersion scales O(N5) with system size N,

versus O(N4) for the dispersion). Is there any way to handle the cheaper dispersion accu-

rately while treating the expensive short-range correlation more efficiently?

To answer the first question, we utilize Coulomb attenuation to eliminate long-

range correlation at the MP2 level. Coulomb attenuation/range-separation provides an

effective means for separating short- and long-range Coulomb interactions, which has been

used to increase algorithmic efficiency or develop physically improved density functionals,

for instance [78–104]. Then, we apply a modified MP2C dispersion correction that removes

any residual UCHF dispersion remaining in the attenuated MP2 model and adds the full-
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range CKS dispersion energy to capture the long-range electron correlation. This model

enables aggressive Coulomb attenuation at the MP2 level, which allows for both substantial

computational savings and higher accuracy than that provided by conventional finite basis

MP2C. Specifically, benchmark tests indicate that attenuation reduces the MP2C/aug-cc-

pVTZ errors roughly in half and gives results approaching complete basis set (CBS) quality

at drastically lower cost. We also provide new physical insights into how attenuated MP2

approximations are able to achieve such good performance.

As for the second question, one should first notice that most of the finite basis set

errors stem from correlation interaction, instead of Hartree-Fock interaction energy. Dis-

persion energy is dominant in long-range correlation, which can be seen when two molecules

are well separated that the total correlation is almost dispersion, or from the attenuation

curve as we will discuss later. To reduce errors in the correlation energy, one should treat

dispersion energy as accurately as possible. In the context of MP2C model, the CKS dis-

persion energy should be computed in the CBS limit to reduce most of the finite basis set

errors. While for the more complicated short-range correlation which exhibits less sensi-

tivity to basis set incompleteness, there is a chance to sacrifice a little accuracy for greater

efficiency. Under this consideration, one can achieve speedups for the most steeply scaling

O(N5) portion of the calculation by reducing the number of basis functions N . Generally,

the finite basis set error varies with the strength of the intermolecular interactions. To

ensure the general applicability of the models developed here, we will across a variety of

systems. A conflict emerges with this scheme, however. To obtain accurate dispersion with-

out significant basis set errors, one cannot continue utilizing the MC algorithm developed
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in last chapter, so we use the DC algorithm in that case instead.

In addition to the methods described above, we also test the performance of ex-

plicitly correlated MP2 (MP2-F12) [51, 105] algorithm, which is an alternative method for

approaching the CBS limit with small basis sets. In particular, we compare the performance

of the new methods developed here to results from MP2C-F12/aDZ and MP2C-F12/aTZ.

3.2 Theory

3.2.1 Attenuated MP2C

In the attenuated MP2 approach of Goldey and Head-Gordon [102,103], one range

separates the Coulomb operator according to

1

r
=

terf(r; r0)

r
+

terfc(r; r0)

r
(3.1)

where [106]

terf(r; r0) =
1

2

{

erf

[

r − r0√
2r0

]

+ erf

[

r + r0√
2r0

]}

(3.2)

and

terfc(r; r0) = 1− terf(r; r0) (3.3)

The function terfc(r; r0)/r describes the short-range Coulomb interaction, while

terf(r; r0)/r describes the long-range contribution, as Figure 3.1 shows. The user-defined

parameter r0 controls the relative length-scales of the two components, with smaller values

of r0 corresponding to a more rapid decay of the short-range terfc(r; r0)/r term. While many

different forms of the attenuation function are possible, the terfc(r; r0)/r form maintains
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Figure 3.1: Partitioning of Coulomb operator 1/r into short-range interaction terfc(r; r0)/r
and long-range interaction terf(r; r0)/r. The parameter r0 adjusts the partitioning length-
scale.

the correct curvature of the Coulomb operator at short-range [106]. This helps ensure

that the short-range correlation is minimally affected by the elimination of the long-range

correlation.

Applying this Coulomb partitioning to MP2 correlation, one discards the long-

range correlation by neglecting terf(r; r0)/r and replacing the Coulomb operator 1/r with

terfc(r; r0)/r when evaluating the two-electron integrals for the MP2 correlation energy.

In the context of a typical resolution of the identity (RI) MP2 implementation (i.e., one

that does not fully exploit the sparsity introduced by Coulomb attenuation) [107], this

corresponds to constructing the key intermediate BP
ia tensors according to

BP
ia =

∑

Q

(

ia

∣

∣

∣

∣
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) (
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∣

∣

∣

∣

terfc(r; r0)

r

∣

∣

∣

∣

P

)−1/2

(3.4)

In other words, the attenuated Coulomb operator is employed both as the density-fitting

metric and for the Coulomb interaction between the pair of electrons. The MP2 correlation
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energy is then computed as usual by taking products of such B tensors and dividing by the

appropriate energy denominator.

The MP2C correction, as discussed in last chapter, works by replacing the UCHF

treatment of dispersion found in MP2 with an improved one computed at the CKS level. The

Coulomb attenuation algorithm removes some, but not all, of the intermolecular dispersion

from MP2. Therefore, when restoring the long-range dispersion at the CKS level, one

must take care to avoid double-counting the intermediate-range dispersion contribution.

Accordingly, in attenuated MP2C, we subtract out whatever residual dispersion remains in

attenuated MP2 by computing the UCHF contribution with the same attenuated Coulomb

operator, and then we add the full CKS dispersion (without any attenuation)

EMP2C(atten) = EMP2(atten)− EUCHF
disp (atten) + ECKS

disp (full) (3.5)

In this scheme, the CKS dispersion can be evaluated using the same algorithm as in the

conventional MP2C model. However, the UCHF dispersion algorithm must be modified to

incorporate Coulomb attenuation so it will be consistent with attenuated MP2. First, we

replace the standard 1/r Coulomb operator with terfc(r; r0)/r when computing the UCHF

propagators

[χ0(ω)]PQ = −4
∑

ia

Dia,PC
ia
0 (ω)Dia,Q

= −4
∑

ia

S−1

[

(P |terfc(r; r0)/r|ia)ǫia(ia|terfc(r; r0)/r|Q)

ǫ2ia + ω2

]

S−1

(3.6)

where i and a are occupied and virtual molecular orbitals, and P and Q are auxiliary basis

functions for density fitting. Dia,P is the attenuated density fitting coefficient. Cia
0 is

the expansion coefficient for uncoupled FDDS as discussed in last chapter. The quantity
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ǫia = ǫi − ǫa is the energy difference between occupied and virtual orbitals computed at

the Hartree-Fock level. The S matrix also utilizes the attenuated Coulomb operator, S =

〈P |terfc(r; r0)/r|Q〉. Also, the intermolecular Coulomb integrals should be attenuated as

JAB = (P |terfc(r; r0)/r|Q), which appears in the Casimir-Polder integration

EUCHF
disp = − 1

2π

∫ ∞

0
Tr

[

χA
0 (ω)JAB(χB

0 (ω))T (JAB)T
]

dω (3.7)

Note that all of the necessary MP2C integrals can be performed using either a dimer-

centered [35] or monomer-centered basis [77], which we will discuss later.

The final step requires choosing the parameter r0 to determine how aggressively

the Coulomb operator will be attenuated. In the limit as r0 → 0, terfc(r; r0)/r → 0, and

one attenuates the MP2 correlation energy completely, leaving only the Hartree-Fock energy

plus CKS dispersion. In the limit where r0 → ∞, terfc(r; r0)/r → 1/r, however, restoring

back to the full Coulomb operator and conventional MP2C. For small molecule dimers like

those in the S66 test set, as long as one does not choose a very small r0 parameter (i.e.

aggressive attenuation), attenuating the propagators will not significantly affect the disper-

sion energies. For example, attenuating the propagators with r0 = 0.9 Å gives results that

are very identical to the nonattenuated dispersion. This means the short-range Coulomb

operator can still capture the whole correlation effect regarding these small sized molecules.

In practice, the parameter r0 is chosen empirically, as described in later sections.

3.2.2 Small basis set for short-range correlation

For high accuracy calculations, both complicated correlation methods and large

basis sets are required. Both lead to high computational costs that grow steeply with
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system size. Coulomb operator partitioning improves the computational efficiency for the

correlation calculation, as we will demonstrate below. As for the basis set, further speedups

can be achieved by treating the more steeply scaling O(N5) short-range correlation with a

small basis set. While we need to describe the relatively cheaper scaling O(N4) long-range

correlation accurately, since it is more sensitive to basis set. Accordingly, an alternative

MP2C model can be expressed as

E
MP2C/SR−aXZ
int = EHF

int (CBS) +
[

EMP2
int (aXZ)− EUCHF

disp (DC, aXZ)
]

+ECKS
disp (DC,CBS)

(3.8)

where the short-range correlation (MP2 correlation without dispersion) is computed with

small basis set, and long-range correlation (CKS dispersion) is computed in CBS limit. One

should notice that monomer-centered dispersion does not converge to the dimer-centered

result, even in the CBS limit (as shown in Figure 2.1). Compared to UCHF dispersion,

the CKS algorithm requires extra time to transform from Hartree-Fock orbitals into local

Hartree-Fock (LHF) orbitals and to integrate the exchange-correlation kernel. It would be

more efficient if the cheaper UCHF dispersion is used to correct for the finite basis set error

in correlation, and the MC dispersion correction is used to reduce the correlation error.

Then the improved model is

E
MP2C/SR−aXZ
int = EHF

int (CBS) + EMP2
int (aXZ)

+
[

EUCHF
disp (DC,CBS)− EUCHF

disp (DC, aXZ)
]

+
[

ECKS
disp (MC,CBS)− EUCHF

disp (MC,CBS)
]

(3.9)

Compared to MC MP2C/CBS method, the only difference is the finite basis set for short-

range correlation. Of course, the terms EMP2
int (aXZ), EUCHF

disp (DC,CBS) and EUCHF
disp (DC, aXZ)

62



can be attenuated to exploit sparsity as attenuated MP2C.

3.3 Results and discussion

3.3.1 Understanding attenuated MP2

First, we examine the behavior of Coulomb attenuation by performing an error

analysis of attenuated MP2 model on the S66 dimer test set [45]. To do so, we decompose

the attenuated MP2 errors relative to the estimated CBS limit CCSD(T) benchmarks [45],

EattMP2(aTZ, no-CP ) − ECCSD(T )(CBS,CP ) into contributions arising from the finite

basis set, the post-MP2 correlation error, and the error introduced by attenuating the

Coulomb operator. For attenuated MP2/aug-cc-pVTZ without CP-correction, for instance,

these errors are defined as

Finite basis set error:

EMP2(aTZ, no-CP )− EMP2(CBS,CP ) (3.10)

Correlation error:

EMP2(CBS,CP )− ECCSD(T )(CBS,CP ) (3.11)

Attenuation error:

EattMP2(aTZ, no-CP )− EMP2(aTZ, no-CP ) (3.12)

The total error is the sum of these three contributions. Counterpoise-corrected attenuated

MP2/aug-cc-pVTZ can be partitioned analogously, except the counterpoise correction is

applied to all terms in the expressions above. For attenuated MP2/aug-cc-pVTZ without
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counterpoise correction (Figure 3.2a), basis set superposition error leads to overbinding of

the dimer. The inadequate treatment of electron correlation in MP2 also frequently leads

to overbinding the dimers, particularly for the dimers where dispersion interactions are

important. Figure 3.2a shows that these errors range from a few kJ/mol up to nearly 10

kJ/mol in π-stacking cases like benzene dimer. Together, these two error sources lead to

systematic overbinding of the dimers. On the other hand, applying Coulomb attenuation

reduces the long-range intermolecular correlation (i.e., attractive long-range dispersion in-

teractions) and weakens the binding. Attenuated MP2 works, therefore, by choosing an

appropriate value of r0 (e.g., r0 = 1.35 Å for the aug-cc-pVTZ basis [103]) such that one

attenuates enough of the long-range correlation to cancel out the large errors arising from

the finite basis set and the MP2-level treatment of correlation.

Applying a counterpoise correction to attenuated MP2 greatly reduces the ba-

sis set error, as shown in Figure 3.2b. It also changes the sign of the basis set error.

Counterpoise-corrected aug-cc-pVTZ interaction energies are generally underbound, unlike

their noncounterpoise-corrected counterparts. However, MP2 correlation still often overes-

timates the interaction energies, and the sum of the basis set and correlation errors leads

to overbinding for many of the S66 dimers. Once again, one can choose an appropriate

degree of Coulomb attenuation to reduce this overbinding. Because the errors that need to

be cancelled in this case are generally smaller, one attenuates less aggressively to keep a

larger fraction of the long-range correlation. Hence, the optimal r0 value for counterpoise-

corrected MP2/aug-cc-pVTZ is 1.75 Å instead of 1.35 Å for the noncounterpoise-corrected

case [103]. There are notable cases like the acetamide dimer, however, where the combined
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Figure 3.2: Error contributions for each dimer in the S66 set and aug-cc-pVTZ basis set
for (a) attenuated MP2 without counterpoise correction (r0 = 1.35 Å), (b) attenuated MP2
with counterpoise correction (r0 = 1.75 Å), and (c) attenuated MP2C with counterpoise
correction (r0 = 0.9 Å). The energy-decomposition of the errors is described in the main
text.
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basis set and MP2 correlation errors lead to underbinding when a counterpoise correction is

employed. In such cases, attenuating the long-range attraction actually increases the errors.

This explains the earlier finding that attenuated-MP2 actually performs better without a

counterpoise correction for the S66 test set [103].

To summarize, attenuated MP2 works for intermolecular interactions by cancelling

several different source of errors with opposite signs. One attenuates away enough of the

attractive dispersion interaction from MP2 to cancel the overbinding of intermolecular in-

teractions that typically occurs with MP2 in finite basis sets. Because attenuated MP2

relies on the cancellation of the large individual error terms, it can be very sensitive to the

choice of r0, as seen previously.

3.3.2 Attenuated MP2C and the optimal r0 parameter

Next, we consider attenuated MP2C to reduce the correlation error. A similar

energy decomposition can be performed for counterpoise-corrected MP2C in the aug-cc-

pVTZ basis.

Finite basis set error:

EMP2C(aTZ,CP )− EMP2C(CBS,CP ) (3.13)

Correlation error:

EMP2C(CBS,CP )− ECCSD(T )(CBS,CP ) (3.14)

Attenuation error:

EattMP2C(aTZ,CP )− EMP2C(aTZ,CP ) (3.15)
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Figure 3.3: Root-mean-square errors (in kJ/mol) for attenuated MP2, attenuated MP2C,
standard MP2, and standard MP2C relative to the CCSD(T) benchmarks for the S66 test
set. Compared to attenuated MP2, attenuated MP2C achieves higher accuracy, is less
sensitive to the value of r0, and allows for more aggressive attenuation (a smaller r0 value).
Note that attenuated MP2 error does asymptote to the conventional MP2 result for large
r0 values beyond the range plotted here.

as shown in Figure 3.2c. The MP2C dispersion correction is already fairly well converged

in the aug-cc-pVTZ basis [77], so the basis set error here is nearly identical to the basis

set error for counterpoise-corrected attenuated MP2 (Figure 3.2b). However, the dispersion

correction dramatically reduces the correlation error. The MP2C correlation error has no

systematic bias and it is typically smaller than the basis set error. Because the basis set

error dominates, the sum of these two contributions leads to systematic underbinding of

the dimers, which is the opposite of the overbinding seen in the MP2 case.

We now seek an appropriate attenuation parameter r0 to compensate for these

errors in MP2C. Figure 3.3 plots RMS errors for the S66 test set (the same set was used

to parameterize attenuated MP2) as a function of r0. For values of r0 > 1.5 Å, attenuated
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Figure 3.4: Attenuation with the optimal r0 values for attenuated MP2 (no-CP), attenuated
MP2 (CP) and attenuated MP2C dramatically reduces the range of the Coulomb operator,
but the more aggressive attenuation (r0 = 0.9 Å) possible for attenuated MP2C leads to a
modified Coulomb operator that dies off completely by 7-8 Å.

MP2C results are very close to their nonattenuated counterparts. Decreasing r0 further

reduces the RMS errors until a minimum is reached around r0 = 0.9 Å, with an RMS error

of only 0.8 kJ/mol. For r0 values smaller than 0.9 Å, the RMS errors increase once again.

The 0.8 kJ/mol RMS error for attenuated MP2C/aug-cc-pVTZ at the optimal r0

value is roughly half the error of conventional MP2C in the same basis, and it approaches

the 0.6 kJ/mol accuracy of CBS limit MP2C. The attenuated MP2C accuracy is somewhat

higher than the smallest errors achieved by attenuated MP2. Moreover, the attenuated

MP2C results are much less sensitive to the choice of the r0 parameter than attenuated

MP2.

Attenuated MP2C also allows for more aggressive Coulomb attenuation than at-

tenuated MP2 (r0 = 0.9 Å versus r0 = 1.35 Å), which should lead to additional computa-
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tional savings in an efficient implementation that exploits the sparsity of the two-electron

integrals. As shown in Figure 3.4, the attenuated Coulomb operator dies off completely

within 7-8 Å when r0 = 0.9 Å, which will significantly increase the sparsity of the elec-

tron repulsion integrals compared to using larger r0 values or the conventional Coulomb

operator. Generally speaking, the number of electron repulsion integrals grows quartically

with system size. Accounting for overlap sparsity reduces that growth to quadratic, while

attenuation of the sort used here will reduce that growth to linear over rather short length

scales. Some numerical investigations of this behavior have been reported previously using

a slightly different (erfc(ωr)/r) form of Coulomb attenuation [108].

Returning to Figure 3.2c, we observe that the error introduced by attenuating

MP2C with r0 = 0.9 Å does indeed largely cancel the finite basis and correlation errors

to produce the overall high accuracy. However, the sign of the MP2C attenuation error is

opposite to that of the MP2 attenuation error, indicating that different physics are involved.

To understand this difference, Figure 3.5 plots the RMS energy change between

the attenuated and nonattenuated versions of MP2, MP2C and the UCHF dispersion com-

ponent for the S66 set as a function of the attenuation parameter. The changes in the

attenuated UCHF dispersion energies overlap with the changes in the attenuated MP2 re-

sults almost perfectly. In other words, for intermolecular interactions, attenuating medium-

and long-range MP2 correlation is essentially equivalent to attenuating the UCHF disper-

sion. Only at shorter r0 values, where exchange-dispersion effects become important, do the

attenuated UCHF dispersion and attenuated MP2 curves diverge. Note that contributions

like intermolecular polarization are handled at the HF level.
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the MP2/aug-cc-pVTZ counterpoise correction due to attenuation is also shown (“attenu-
ated BSSE”). The dashed vertical line indicates r0 = 0.9 Å.

Subtracting the UCHF dispersion energy from the MP2 energy in MP2C, EMP2−

EUCHF
disp , produces an intermolecular “dispersion-free” MP2 model, to which the CKS dis-

persion is subsequently added. With the UCHF dispersion removed, the intermolecular

interactions are nearly independent of the attenuation parameter for r0 > 1.5 Å, as indi-

cated by the attenuated MP2C curve in Figure 3.5 (because the CKS dispersion contribution

is not attenuated, it cancels when taking the difference between the attenuated and stan-

dard models in Figure 3.5). In other words, Coulomb attenuation eliminates interactions

that are discarded anyway when computing the MP2C dispersion correction, which explains

why attenuated MP2C gives virtually identical results to conventional MP2C for r0 > 1.5 Å

in Figure 3.3.

If one chooses to attenuate more aggressively using r0 values below 1.5 Å, however,
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short-range exchange-dispersion energy begins to be attenuated, as indicated by the rapid

increase in the MP2C energy change for small r0 (Figure 3.5). Unlike dispersion energies,

exchange-dispersion interactions are repulsive, and attenuating them increases the strength

of the intermolecular binding. This allows one to compensate for the finite basis errors in

MP2C/aug-cc-pVTZ and achieve near CBS limit accuracy (Figure 3.3). It explains why the

MP2C attenuation error has the opposite sign of the MP2 attenuation error in Figure 3.2,

and this difference in sign is exactly what is needed to cancel the basis set error.

It is also important to recognize that one must use a counterpoise correction to ob-

tain accurate results with attenuated MP2C. As shown in Figure 3.5, Coulomb attenuation

does not significantly reduce the BSSE (as measured by the size of the counterpoise correc-

tion) until r0 < 0.5 Å, which is well below the r0 range for which accurate attenuated MP2

or MP2C results are obtained. If one omits the counterpoise correction, the combined basis

set and correlation errors cause overbinding. One cannot compensate for this overbinding by

attenuating the repulsive exchange-dispersion interaction — attenuating MP2C only binds

the dimers more strongly. On the one hand, the need for a counterpoise correction does

make attenuated MP2C more expensive than attenuated MP2, for which the counterpoise

correction is neither necessary nor desirable. On the other hand, the magnitudes of the error

cancellations involved in attenuated MP2C are much smaller, which reduces its sensitivity

to the value of the parameter r0 and makes the model more transferable to other systems.

In Chapter 2, we demonstrated that one can obtain significant computational

savings by using a monomer-centered basis set to evaluate the dispersion correction instead

of a dimer-centered basis set. The same idea also applies for attenuated MP2C. As shown
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in Figure 3.6, using an MC basis instead of a DC one has only a small effect on the overall

errors. Switching from a DC to an MC basis increases the RMS error for attenuated MP2C

by only 0.1-0.2 kJ/mol on the S66 test set, which is comparable to what is observed for

conventional MP2C. The optimal r0 value for the MC case does shift slightly lower to 0.82 Å,

but the difference in RMS error is small. Together, these results suggest that one can still

use either an MC or DC basis set when computing the dispersion correction in attenuated

MP2C.

3.3.3 Small basis set for short-range correlation

As we have observed in Figure 3.5, that the correlations energies are dominated by

dispersion energy when r0 > 1.5 Å. For attenuated MP2C, the minimum of RMS curve in

Figure 3.3 is somewhat sensitive to the r0 parameter (though it is less sensitive to r0 than
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attenuated MP2), and at large r0 the curve converges to the RMS error of MP2C/aTZ,

which exhibits undesirably large finite basis set error. Is it possible to reduce the sensitivity

of the attenuated MP2C model to r0 even further, without sacrificing accuracy? This would

increase confidence in applying the method for systems beyond those used to parameterize

r0.

Accordingly, we consider the attenuation behavior of the MP2C/SR-aXZ model

in which the short-range (SR) correlation is computed with a small basis set while the HF

interaction energy and long-range correlation (dispersion) are extrapolated to CBS limit to

reduce most of the finite basis set error. Figure 3.7 compares the RMS errors of these models

as a function of the attenuation length-scale parameter r0. As discussed in the previous

section, when the r0 value is greater than 1.3 Å, the attenuation error is small (see Figure 3.5)

and attenuated MP2C gives results that closely match conventional MP2C/aTZ with sizable
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finite basis set error. In contrast, the MP2C/SR-aDZ and MP2C/SR-aTZ models give

results which are very close to those from MP2C/CBS. These models use a large basis where

needed (for the long-range correlation), and a smaller basis where it is less important (short-

range correlation). At r0 ≈ 1.4 Å, MP2C/SR-aTZ has an even smaller RMS error than

MP2C/CBS because of some fortuitous cancellations. MP2C/SR-aDZ performs only ∼0.1

kJ/mol worse than the SR-aTZ case. Note that for the MP2C/SR-aXZ models, attenuating

more aggressively (r0 < 1.4 Å) increases the errors, unlike for attenuated MP2C/aTZ.

Recall that more aggressive attenuation improves attenuated MP2C/aTZ by removing some

exchange-dispersion to compensate for finite basis set errors. In the MP2C/SR-aXZ models,

computing HF and the dispersion at the CBS limit eliminates most of the basis set errors,

so no such cancellation can occur.

The fact that MP2/SR-aXZ models give excellent results that are insensitive to

the r0 parameters as long as r0 > 1.3 Å has a couple advantages. First, this suggests that

the optimal parameter should be transferable to other systems. Second, while our focus

is mostly on intermolecular correlation, previous work has shown that intramolecular MP2

correlation behaves best with an attenuation parameter around 1.35 Å [103]. In other words,

one can choose a value of r0 that behaves well for intra- and intermolecular interactions

simultaneously. Treating both types of interactions well at the same time is problematic

for many affordable electronic structure methods, so the value of this feature should not be

overlooked. On the other hand, computing the HF and long-range dispersion corrections in

the CBS limit is substantially more expensive than the attenuated MP2C/aTZ model, as

will be discussed later.
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3.3.4 Error analysis of MP2C-F12/aDZ

The MP2C/SR-aXZ method discussed in the previous section improves the com-

putational efficiency for short-range correlation calculation by using small basis set while

introducing only small errors. On the other hand, it requires one to compute accurate

dispersion in the CBS limit. Explicitly correlated MP2 (MP2-F12) provides yet another

method for approaching the CBS limit with small basis sets [51, 105]. Explicit correlation

improves the treatment of the electron-electron cusp condition, which means that fewer

basis functions are needed to describe the wavefunctions and allows even relatively small

basis sets to approximate the CBS limit. As in the case of conventional MP2, an MP2C-

style dispersion correction can also be applied to MP2-F12 to improve the description of

long-range correlations,

E
MP2C-F12/aXZ
int = E

MP2-F12/aXZ
int + E∆MP2C

disp (3.16)

where the MP2-F12 is computed with finite basis set aXZ, and MC algorithm for dispersion

correction E∆MP2C
disp can also be applied.

To understand the behavior of MP2C-F12, we first decompose the errors for the

S66 benchmark set dimers into different sources analogously to what was done for the

attenuated MP2C models in Section 3.3.2. The results are plotted in Figure 3.8. Note that

the y-axis range in Figure 3.8 is significantly smaller than that in Figure 3.2. First, we

consider the finite basis set error in MP2-F12/aDZ — both the HF energy and correlation

energy are computed in the aDZ basis set. In Figure 3.8a, we can observe that these errors

are cancelled out to some extent, particularly for the dimers (i.e. No.17 and No.20-No.24)
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Figure 3.8: (a). HF basis error is the difference between HF/aDZ and HF/CBS, ∆MP2-
F12 basis set error is the difference between MP2-F12/aDZ and MP2/CBS, and the overall
basis error is the sum these two. (b). With the same overall basis error in (a), ∆MP2C
correlation error is the difference between MP2C/CBS and CCSD(T)/CBS.
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that exhibit large interaction energies. The net finite basis set errors lead to a modest

underbinding. This underbinding will cancel some of the post-MP2C correlation errors

(MP2C/CBS - CCSD(T)/CBS) which tend toward overbinding for most species in S66 test

set (Figure 3.8b), producing further overall reduction in the RMS error.

Explicitly correlated models are somewhat more expensive than conventional algo-

rithms. Indeed, these models were impractical until relatively recently, when density-fitting

techniques which drastically reduce the cost of the integral evaluation became available.

Even with density fitting techniques, MP2-F12 calculations are much slower than conven-

tional RI-MP2.

To summarize, the RMS errors of different methods on S66 test set [45] are listed

in the Table 3.1. Basis set superposition error (BSSE) is generally large but can be reduced

by using a counterpoise correction. The RMS of MP2/aTZ is close to MP2/CBS due to

some cancellations between underbinding finite basis set error and overbinding correlation

error in UCHF dispersion. Attenuated MP2 without counterpoise correction balances be-

tween finite basis set error, attenuation error, and correlation error. The balance breaks and

the RMS increases if BSSE is reduced with counterpoise correction. MP2C/CBS corrects

most of the correlation errors in MP2/CBS and provides a promising method to approach

CCSD(T) accuracy. If smaller basis set aTZ is used, nonnegligible finite basis set error

will be introduced. With the attenuation approach, however, one can choose a suitable

attenuation parameter that allows the finite basis set error be cancelled by the attractive

attenuation error. MP2C/SR-aXZ only introduces finite basis set error in short-range cor-

relation and the error is small enough to be ignored. MP2C-F12/aDZ offers an alternative
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Table 3.1: Root-mean-square errors of different methods relative to CCSD(T)/CBS on S66
test set. The optimal r0 values are used for attenuated methods.

optimal r0 RMS error
method basis BSSE (Å) (kJ/mol)

MP2 aTZ no CP — 6.4
MP2 aTZ CP — 2.9
attMP2 aTZ CP 1.75 2.0
attMP2 aTZ no CP 1.35 1.1
MP2 CBS limit CP — 3.1
MP2C aTZ no CP — 4.1
MP2C aTZ CP — 1.5
attMP2C aTZ CP 0.9 0.8
MP2C CBS limit CP — 0.6
MP2C CBS limit/SR-aTZ CP ≥ 1.3 0.6
MP2C CBS limit/SR-aDZ CP ≥ 1.3 0.7
MP2C-F12 aTZ CP — 0.6
MP2C-F12 aDZ CP — 0.6

way to reduce finite basis set error with complicated algorithms and excellent error cancel-

lations. One should note, however, that the computational expense of explicitly correlated

MP2C-F12 grows somewhat more rapidly as a function of system size (in terms of both

CPU time and RAM requirements) than non-F12 methods.

Having understood the basic features of these models and their performance on

the S66 benchmark set of dimers, the next sections assess the transferability of these models

by examining their performance on other systems. This is particularly important for the

models involving an empirical r0 attenuation parameter, since one wishes to confirm that

this parameter is not overly dependent on the chemical system.
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3.3.5 Transferability to other dimer interactions: Performance on the

S22x5 benchmark set

For the methods involving basis set error or attenuation error in short-range corre-

lation, their performance at different intermolecular separations should be examined because

exchange-dispersion strongly depends on intermolecular distance, as shown in the potential

energy curve (Figure 1.3). Moreover, the attenuated models are optimized on S66 test set,

which means that their performance on other systems and for non-equilibrium geometries

is unclear. Thus it is necessary to examine the reliability of different models across the

potential energy surface.

The S22x5 test set [44] is created by scaling the equilibrium intermolecular sepa-

ration 1.0Re to four additional intermolecular distances 0.9Re, 1.2Re, 1.5Re and 2.0Re. In

Table 3.2, we can see MP2/CBS gives large errors across the potential energy surface because

of the large correlation errors in UCHF dispersion. MP2C/aTZ improves the correlation

error but still performs relatively poorly due to the finite basis set error. For attenuated

MP2, the one without counterpoise correction performs better than the counterpoise cor-

rected model at the equilibrium distance 1.0Re due to fortuitous error cancellations. On the

other hand, it produces much larger errors at 0.9Re. The physics of the non-CP attenuated

MP2 model is wrong because it completely omits long-range correlation. Moving toward

shorter separations than it was parameterized for exposes its limited transferability due to

its strong dependence on the value of attenuation parameter r0.

The attenuated MP2C models properly restore the long-range correlation, which

substantially improves their transferability. Attenuated MP2C/aTZ performs just slightly
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Table 3.2: RMS error (kJ/mol) of different methods on S22x5 test set. Re represents the
equilibrium molecular separation.

methods basis 0.9Re 1.0Re 1.2Re 1.5Re 2.0Re

MP2 CBS 8.81 5.72 2.24 0.79 0.23
attMP2 aTZ, no CP 4.17 1.98 1.04 0.94 0.46
attMP2 aTZ 3.95 3.01 1.72 1.50 0.83
MP2C aTZ 3.87 2.24 0.94 0.39 0.19
attMP2C aTZ 1.81 1.03 0.56 0.31 0.11
MP2C CBS 1.51 0.73 0.52 0.25 0.13
MP2C CBS/SR-aTZ 1.44 0.95 0.53 0.31 0.19
MP2C CBS/SR-aDZ 1.37 1.02 0.59 0.33 0.19
MP2C-F12 aTZ 1.57 0.69 0.51 0.23 0.12
MP2C-F12 aDZ 1.76 1.01 0.55 0.29 0.14

worse than MP2C/CBS. It improves a lot on conventional MP2C/aTZ by cancelling the

basis set errors, especially for 0.9Re geometries where the basis set error is larger than the

other separations. For MP2C/SR-aXZ model, the basis set error in short-range correlation is

comparatively small across the potential energy surface that the RMS errors are just slightly

higher except for 0.9R0 distance, surprisingly. This could be explained with some accident

cancellations between basis set error (in short-range correlation) and correlation error in

MP2C (MP2C- CCSD(T)). The MP2C-F12/aDZ method which exhibits good performance

on S66 test set, seems to be not as good as MP2C/CBS on S22x5 set. But still, it reduces

most finite basis set errors compared to MP2C/aTZ, systematically. When aTZ basis set

is for MP2C-F12, the RMS errors are further reduced to approaching MP2C/CBS.

After this round of examination, attenuated MP2C/aTZ, MP2C/SR-aXZ and

MP2C-F12/aXZ methods stand out from the candidates. To further test the reliabili-

ties of these promising methods, molecular crystals will be used as the touchstone because

they contains a variety of molecular separations and orientations. In the next section, the
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methods will be used to predict lattice energies of seven small molecule crystals. A chal-

lenging “final exam” will be taken on ordering the lattice energies of five polymorphs of

oxalyl dihydrazide.

3.3.6 Reliability of the models for molecular crystal lattice energies

Table 3.3 reports the lattice energies for the seven molecular crystals [7, 9], which

were computed using the hybrid many-body interaction (HMBI) approach with the same

geometries used in last chapter. The ab initio force field (AIFF) parameters were computed

in the aug-cc-pVTZ basis. All the methods listed in the table were used to evaluate the

interaction energies between pairs of molecules (two-body terms) in the fragment approach.

One-body energy terms were computed uniformly in the CBS limit so that we can just

focus on the performance of different treatments of the two-body contributions to the lattice

energy.

Conventional MP2 in the CBS limit predicts lattice energies within a few kJ/mol of

benchmark CCSD(T) results for crystals where dispersion is not important [9]. In crystals

such as benzene or imidazole where dispersion interactions play a significant role, how-

ever, MP2 overestimates the lattice energy by 10-15 kJ/mol (∼15-20%). For the seven

crystals considered here, it exhibits a root-mean-square error of 6.6 kJ/mol with respect

to CCSD(T). Attenuated MP2 with optimal parameter r0 cancels the correlation error to

some extent, especially for benzene and imidazole crystals. Similar to the benchmark dimer

case, the RMS error (3.6 kJ/mol) of lattice energies computed with attenuated MP2 is also

smaller than the RMS with conventional MP2, although the results for some induction dom-
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Table 3.3: Lattice energies (kJ/mol) of seven small-molecule crystals computed with fragment-based hybrid many-body
interaction (HMBI) approach. QM one-body energies are computed in the CBS limit, and two-body interactions are computed
with the methods listed.

MP2 attMP2 MP2C attMP2C MP2C-F12 MP2C MP2C CCSD(T) Experiment
CBS aTZ CBS aTZ aDZ SR-aTZ SR-aDZ CBS

Ice 59.8 61.5 60.5 58.1 59.4 59.7 60.0 60.1 59
Formamide 78.7 75.0 79.5 78.7 78.4 78.5 78.4 80.5 82±0.3
Acetamide 80.6 76.4 80.6 79.4 79.9 81.4 81.2 80.4 86±2
Imidazole 102.0 89.0 92.6 92.3 92.0 91.7 92.0 88.6 91±4
Benzene 61.7 45.9 49.0 48.6 47.9 48.7 48.0 50.9 52±3
NH3 39.4 38.9 41.1 41.7 40.8 40.8 40.8 40.9 39
CO2 31.0 27.9 27.7 27.0 28.4 27.4 27.7 31.3 31

RMS error 6.6 3.6 2.2 2.6 2.2 2.2 2.3
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inant crystals become worse. As demonstrated in last chapter, CBS limit MP2C performs

much better in predicting the lattice energies of these crystals, with an RMS error of 2.2

kJ/mol.

The fast MP2C methods (attMP2C/aTZ, MP2C-F12/aDZ and MP2C/SR-aXZ)

seek to approach the MP2C/CBS accuracy by reducing the finite basis set errors in different

ways. Compared to CCSD(T), they have almost the same RMS errors ( 2.2-2.6 kJ/mol) as

MP2C/CBS (2.2 kJ/mol). If we compare the methods to MP2C/CBS to see how well they

reduce the finite basis set error, much smaller RMS errors are obtained, with 1.1 kJ/mol

for attMP2C/aTZ, 0.8 kJ/mol for MP2C-F12/aDZ, and 0.7 kJ/mol for MP2C/SR-aXZ.

Unlike other fast MP2C methods, attenuated MP2C/aTZ has two error sources (finite basis

set error and attenuation error), and the error cancellations are more difficult to control.

Comparatively, attMP2C/aTZ is less reliable than the others, with a slightly larger RMS

error. Overall, the lattice energy predictions prove that all these three models reduce most

of the basis set error, and the main error source left is the post-MP2C correlation error.

Finally, we apply these methods to order the lattice energies of five polymorphs

from oxalyl dihydrazide, which have proved challenging for density functional methods and

many inexpensive wavefunctional methods [50]. MP2C/CBS predicts the relative energy

order successfully, as discussed in last chapter. All five polymorphs are predicted to lie

within a 4 kJ/mol range. The other fast MP2C methods also predict the same energy

ordering as MP2C/CBS, with some tiny difference in energy gaps as shown in Figure 3.9.

For the energy gaps between different phases, all the methods predict similar gaps for

ǫ → α and δ → γ. While for α → δ and γ → β, energy gaps predicted by different
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Figure 3.9: Relative polymorph energies for oxalyl dihydrazide computed with MP2C/CBS,
attenuated MP2C/aTZ, MP2C-F12/aDZ and MP2C/SR-aDZ methods. All the fast MP2C
methods are able to predict the same relative ordering as MP2C/CBS.

methods are not in consistent. Among them, MP2C-F12 and MP2C/SR-aTZ are close

enough to MP2C/CBS, indicating only a minor and controllable basis set error introduced.

For the whole energy gap, MP2C-F12 predicts the smallest gap, then is MP2C/SR-aTZ

which has smaller basis set errors than MP2C/SR-aDZ, and attMP2C/aTZ predicts the

largest gap up to 5 kJ/mol. The absolute lattice energy of the reference ǫ phase also shows

that attMP2C/aTZ is worse with 190 kJ/mol, far from the others with 181 kJ/mol. From

the test, we can conclude that although attMP2C/aTZ predicts the same order of relative

energy, it is not as reliable as the other methods because it depends on the cancellations

between uncontrollable errors.
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3.4 Conclusions

In this chapter, several methods to reduce the finite basis set error and improve

the computational efficiency of MP2C interaction energies have been evaluated on different

test sets. First, we extended the idea of Coulomb attenuation of the correlation energy

using a double error function to MP2C for the treatment of intermolecular interactions.

Second, we use a small basis set for short-range correlation and a complete basis set limit

for the other energy components. Third, we compare these new models against the existing

MP2C-F12 method.

For the attenuated methods, the attenuation strength parameter r0 was optimized

on the S66 test set. The models were then tested on the S22x5 benchmark set and on

molecular crystal lattice energies. Several key conclusions regarding the methods have

emerged in the process:

(1) Attenuated MP2 compensates for intermolecular overbinding that typically

arises from the combination of finite-basis error and missing higher-order correlation ef-

fects in MP2 by eliminating an appropriate fraction of the attractive UCHF dispersion.

The magnitude of error cancellation involved is fairly large relative to the strengths of the

interactions involved.

(2) MP2C eliminates the UCHF dispersion and replaces it with more accurate

CKS dispersion. One can therefore attenuate away the long- and medium-range Coulomb

interactions in MP2 (i.e, r0 ∼ 1.5 Å) with only a small impact on the MP2C interaction

energies.

(3) Counterpoise-corrected MP2C/aug-cc-pVTZ typically underbinds dimers due
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to the finite-basis set error. Aggressive Coulomb attenuation (r0 = 0.9 Å) allows one to ap-

proximately compensate for this underbinding by removing some of the repulsive exchange-

dispersion. This enables one to approach CBS limit results using only an aug-cc-pVTZ

basis. What is more, one can use either a monomer-centered or dimer-centered basis set for

the dispersion correction, with dimer-centered basis set providing marginally better perfor-

mance. Even though the current implementation of attenuated MP2C does not exploit the

increased integral sparsity, it still achieves substantial speed-ups by avoiding the need for

larger basis sets. For example, for a conventional two-point TZ-QZ basis set extrapolation

to the CBS limit, performing counterpoise-corrected attenuated MP2C interaction energy

calculations for the stacked benzene dimer from the S22 test set required about 11 hours

(aug-cc-pVTZ) and 43 hours (aug-cc-pVQZ) on a single core of a 2.3 Ghz Intel Xeon E5-2630

processor with 4GB of RAM. For the attenuated version, one can avoid the aug-cc-pVQZ

basis calculation entirely, thereby reducing the computational time by 80%.

(4) MP2C/SR-aXZ requires complete-basis set for long-range correlation (disper-

sion) which contributes to most of the correlation energy, while allows one to compute

short-range correlation in small basis set. With finite basis set error in dispersion sub-

stantially reduced, this model is more reliable than attenuated MP2C and more flexible in

choosing an attenuation strength only if r0 ≥ 1.3 Å. MP2C/SR-aXZ needs dimer-centered

dispersion computed with TZ-QZ extrapolation to CBS limit, requiring molecular orbitals

computed in the aug-cc-pVQZ basis set. Practical timing reveals that although Hartree-

Fock scales as only O(N3), the large pre-factor means that it forms the main computational

bottleneck in the sorts of systems considered here. To make this approach more practi-
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cal, one needs to improve the computational efficiency of the Hartree-Fock portion of the

calculation.

(5) MP2C-F12/aDZ uses an explicitly correlated algorithm for MP2 correlation

calculation. Due to excellent fortuitous cancellations between basis set errors in the Hartree-

Fock and correlation contributions, even the small aug-cc-pVDZ basis set can be used to

approach the accuracy of CBS limit. Consider the same benzene dimer and computational

environment as before, it only needs 1.7 hours for MP2-F12/aDZ calculation. However,

although MP2-F12 scales O(N5) like MP2 and MP2C, it has a much larger prefactor and

will become more computationally expensive in terms of both CPU time and RAM space.

(6) All of these fast MP2C methods reduce correlation errors and basis set errors

significantly. They perform uniformly well across large regions of the potential energy sur-

face, predict lattice energies of molecular crystals fairly close to conventional MP2C/CBS,

and order relative lattice energies of polymorphs from oxalyl dihydrazide successfully. Among

them, attenuated MP2C/aTZ gives the largest errors due to its reliance on imperfect error

cancellations between finite basis set errors and short-range exchange dispersion. However,

it is also much less computationally demanding than the MP2C/SR-aXZ models.
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Chapter 4

MP2+ATM model for three body

interactions

4.1 Introduction

In recent years, our ability to compute the intermolecular interactions occurring

between a pair of molecules has improved dramatically, with major advances in density

functional theory (DFT), wave function models, and symmetry adapted perturbation the-

ory (SAPT) [1,2,24,25,28]. The approaches discussed in previous two chapters significantly

improves the computational efficiency without sacrificing high accuracy for two-body inter-

action energy prediction. The treatment of many-body intermolecular interactions, however,

remains challenging, since it requires a balanced treatment of polarization, exchange, and

dispersion interactions. While fragment-based electronic structure methods facilitate the

treatment of complex systems [4,5], computationally efficient approaches for the many-body
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intermolecular interactions in individual fragments are needed to make accurate ab initio

calculations in condensed-phase systems routine.

DFT is often used to model condensed-phase systems, but tests on our 3B-69

benchmark set for three-body intermolecular interactions exposed weaknesses in widely used

dispersion-corrected DFT approximations — many density functionals poorly reproduce

benchmark coupled cluster singles, doubles, and perturbative triples (CCSD(T)) three-body

intermolecular interaction energies [109]. The problem largely stems from delocalization

error [110] and exchange error, which is not corrected by adding an Axilrod-Teller-Muto

(ATM) three-body dispersion term [111,112,109,113].

Wavefunction methods provide a potential alternative to DFT for modeling these

many-body interactions. Natural inclusion of three-body intermolecular dispersion occurs at

third order in the supermolecular Møller-Plesset perturbation series [114], and methods like

MP2.5 (the average of MP2 and MP3) [33, 115] and spin-component-scaled CCSD [52] for

molecular interactions (SCS(MI)-CCSD) provide balanced descriptions of both polarization

and dispersion and reproduce CCSD(T) benchmarks faithfully. Unfortunately, their rela-

tively high O(N6) computational cost with system size N can be prohibitive in condensed-

phase applications because the large amount of three-body interactions need to be included.

On the other hand, MP2 provides an excellent description of polarization with

only O(N5) computational cost [109], albeit with no intermolecular three-body dispersion

terms [116]. Here, we show that the combination of MP2 with an ATM dispersion term

provides an excellent balance between computational cost and accuracy across a range

of chemical systems. The dispersion coefficients used to parameterize the ATM dispersion
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energies here are non-empirical, though short-range empirical damping is required to obtain

good results. We are not the first to propose adding a three-body dispersion correction to

MP2 [117–119] but we demonstrate that the O(N5) cost MP2 + damped ATM approach

gives accurate results that are only moderately worse than those from the much more

expensive MP2.5 or SCS(MI)-CCSD models.

4.2 Theory

4.2.1 MP2+ATM model for three body interactions

The three-body interaction energies ∆E3 in supermolecular approach are defined

as a difference between the total energy of the trimer and a sum of both monomer energies

and all two-body interaction energies ∆E2 between them. For a trimer consisting of units

A, B and C, the three-body energy is:

∆E3(ABC) = E(ABC)−E(A)−E(B)−E(C)−∆E2(AB)−∆E2(BC)−∆E2(CA) (4.1)

Expanding the interaction energies in terms of monomer and dimer energies, e.g.

∆E2(AB) = E(AB) − E(A) − E(B), the three-body energy can be expressed in terms of

monomer, dimer, and trimer energies as:

∆E3(ABC) = E(ABC)− E(AB)− E(BC)− E(AC) + E(A) + E(B) + E(C) (4.2)

To eliminate the basis set superposition error (BSSE) in trimer calculations, an appropriate

counterpoise correction should be used. Different methods like DFT, MP2 and CCSD(T)

can be applied to the expression above to obtain the corresponding three-body interaction

energies.
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To improve the correlation in three-body interaction energies computed with MP2,

we propose an intermolecular Axilrod-Teller-Muto (ATM) triple-dipole dispersion [111,112]

contribution for molecular trimer ABC, which is computed as:

EATM =
∑

a∈A

∑

b∈B

∑

c∈C

fabc
9 Cabc

9

(

1 + 3cosâcosb̂cosĉ
)

R3
abR

3
bcR

3
ac

(4.3)

where Cabc
9 is the dispersion coefficient for atom triplet abc, Rij is the distance between

atoms i and j. â, b̂, ĉ are the angles of the triangle formed by the three atoms, and f9 is a

distance-dependent damping function that turns off the 3-body dispersion at short-range.

The isotropic C9 dispersion coefficients are obtained from distributed frequency-dependent

dipole-dipole polarizabilities α11(ω) which are calculated from coupled Kohn-Sham (CKS)

theory via Casimir-Polder integration [14,120],

Cabc
9 =

3

π

∫ ∞

0
dωαa

11(ω)αb
11(ω)αc

11(ω) (4.4)

The frequency-dependent polarizabilities were calculated using asymptotically corrected

PBE0 [121] with the hybrid ALDAX/coupled Hartree-Fock kernel and the aug-cc-pVTZ

basis, as implemented in CamCASP [122]. This approach provides accurate dispersion

coefficients [9, 120], but a variety of other approaches for obtaining C9 coefficients also

exist [123–128].

Short-range damping proves critical to the model. The damping function f9 is

written as a product of three 2-body Tang-Toennies damping functions [124,129–131],

fabc
9 = fab

6 (Rab)f
bc
6 (Rbc)f

ac
6 (Rac) (4.5)

f6(R, β) = 1−
n

∑

k=0

(

(βR)k

k!

)

e−βR (4.6)
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where β depends linearly on the sum of typical CCSD atomic van der Waals radii rvdW of

atoms a and b [124],

β = −0.31(rvdW
a + rvdW

b ) + 3.43 Bohr−1 (4.7)

Representative CCSD van der Waals radii of 2.63, 3.34, 3.18, and 3.07 Bohr [124] are used

for hydrogen, carbon, nitrogen, and oxygen, respectively. No effort was made to optimize

for these parameters the systems considered here.

Alternatively, one might use the non-expanded form of this third-order disper-

sion energy calculated directly from the molecular SAPT CKS propagators, as in the

MP2+SDFT model [117] for example. Here, the density-fitted 3-body CKS dispersion

is evaluated as,

E
(3)
CKS = − 1

π

∫ ∞

0
dωTr

[

χA(ω)JABχB(ω)JBCχC(ω)JCA
]

(4.8)

where the χ are the CKS propagators and the integrals JAB = 〈PA|r−1
AB|QB〉 are computed

between auxiliary basis functions on each monomer as we discussed in last two chapters.

The response functions χ(ω) were computed in a monomer-centered aug-cc-pVTZ basis at

ten frequencies using CamCASP.

4.3 Results and discussion

4.3.1 Performance on 3B-69 benchmark trimer set

We first test these models on the recently developed 3B-69 benchmark test set for

three-body intermolecular interactions. This set consists of three trimers extracted from

each of 23 different molecular crystals. The 69 trimers in this set exhibit a wide variety
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Figure 4.1: Error distribution for various methods on the 3B-69 trimer benchmark test set.

of intermolecular interactions [109], both within the three different geometric arrangements

of a given species and across the 23 different species. One trimer might involve favorable

three-body polarization, another unfavorable three-body polarization, and the third with

polarization and a strongly repulsive three-body dispersion. To perform well across the

entire benchmark set, a model must describe each of the various individual types of physical

interactions correctly.

Many popular density functional approaches, like B3LYP [109] perform poorly on

this test set, even when three-body ATM dispersion corrections like D3 or XDM are applied

as Figure 4.1 shows. This poor performance reflects problems with both the treatment of

many-body polarization in these functionals and apparent underestimation of the dispersion

corrections. MP2 performs moderately better than the DFT models, but it lacks three-

body dispersion. Models like MP2.5 and especially SCS(MI)-CCSD perform much better,
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reproducing the CCSD(T) benchmark results with high, uniform accuracy.

Figure 4.2 plots the three-body error for each trimer against the estimated three-

body dispersion, as computed using the damped ATM model described above. If (1) the

ATM model provided a perfect description for the three-body dispersion and (2) that was

the only error in the calculations, the errors in these plots would exhibit a slope of -1 and

a root-mean-square residual error (RMSE) from the best fit line of 0. Obviously neither

criteria is precisely met, but comparison of the MP2 and SCS(MI)-CCSD models indicates

that these assumptions are approximately correct. MP2 exhibits a good fit to a line with

slope of -0.95, indicating that it describes polarization well but omits three-body dispersion.

In contrast, a model correctly describing three-body dispersion would ideally exhibit zero

slope and RMSE. Indeed, SCS(MI)-CCSD performs very well on the test set and exhibits

slopes and RMS very near to zero in Figure 4.2.

Accordingly, one can improve MP2 by adding the damped ATM three-body dis-

persion to the model. The slope of the MP2+ATM dispersion in Figure 4.2 is nearly zero

(by construction), just as for SCS(MI)-CCSD, though it retains the moderately large RMS

residual error of MP2. Figure 4.1 demonstrates that the overall error distribution in the

MP2+ATM model is very similar to that of MP2.5, despite its lower N5 cost. In contrast,

both MP3 and SAPT CKS 3-body dispersion overestimate the post-MP2 correlation, pro-

ducing results that are somewhat worse than the MP2+ATM model. The overestimation

is worst in the cases where the dispersion energy is largest, as reflected in the positive slope

of +0.37 in Figure 4.2.

Comparison between SAPT and supermolecular MPn models provide valuable in-
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Figure 4.2: Errors in the 3B-69 trimer 3-body energies plotted against the damped ATM
3-body dispersion. The slope of the best-fit line and the RMS residual errors (kJ/mol) from
the best fit are given in gray. Red, blue, and green symbols refer to low, medium, and high
dispersion structures, respectively.
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Figure 4.3: 3-body energy for a pyrazole trimer versus the trimer separation

sight [114,117,130]. MP2 lacks not only the (usually repulsive) three-body dispersion which

first appears in MP3, but it also neglects a variety of short-range non-additive exchange

terms and fourth-order and higher contributions to the non-additive dispersion that are

net attractive. Augmenting MP2 with the CKS dispersion term captures one important

post-MP2 correction, but neglecting the other 3-body correlation terms causes the model

to overestimate the net 3-body contribution, particularly at shorter distance.

Figure 4.3 plots the 3-body energy for a pyrazole trimer (3B-69 structure 12b) as

the center-of-mass intermolecular separation is scaled isotropically. At equilibrium distances

and beyond, the MP2+CKS model tracks MP3 closely. At shorter separations, however,

MP2+CKS lacks the attractive non-additive exchange terms found in MP3, causing it to be

too repulsive. An undamped version of MP2+ATM dispersion behaves similarly, though it

underestimates the CKS dispersion somewhat. This underestimation likely stems from the
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neglect of higher multipolar contributions beyond the triple-dipole dispersion in the ATM

model. Applying short-range damping then brings MP2+ATM much closer to CCSD(T) or

MP2.5.

4.3.2 Performance on benzene crystal

To test the efficacy of the MP2+ATM model further, we consider the 65 symmetry-

unique trimers from the benzene crystal for which benchmark CCSD(T) energies exist [119].

Figure 4.4 demonstrates once again that MP2 exhibits significant errors due to the lack of

3-body dispersion. However, correcting the MP2 dispersion leads to results that approach

SCS(MI)-CCSD accuracy. As before, the damped ATM dispersion correction performs much

better than the undamped CKS dispersion correction, particularly for the densely packed

trimers which have the largest 3-body dispersion, reiterating the importance of short-range

damping.

Finally, to put these results in perspective, we consider how accurately one can

predict the crystal lattice energy of benzene. State-of-the-art coupled cluster calculations

can achieve sub-kJ/mol accuracy [132], but such high-level calculations are infeasible for

more complex organic crystals. More practically, what can one achieve using relatively

inexpensive MP2-like methods instead of CCSD(T)?

Table 4.1 compares the lattice energy contributions obtained by combining com-

plete basis set (CBS) limit dispersion-corrected MP2C 2-body dimer calculations and the

3-body MP2+ATM dispersion model discussed here against estimated CBS-limit CCSD(T)

benchmarks using the structures reported by the Sherrill group [119,133]. Four-body effects
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Figure 4.4: Errors in the benzene trimer 3-body energies plotted against the size of the
damped ATM dispersion correction

contribute only ∼0.1 kcal/mol in benzene [132] and are neglected here.

MP2C reproduces the sum of the CCSD(T) pairwise interactions to within half

a kcal/mol (4%). Replacing the CCSD(T) treatment of short-range trimers with the

MP2+ATM model introduces a proportionately large error of 0.18 kcal/mol (20%), but

it provides massive computational savings. The two- and three-body errors fortuitously

cancel here, producing a net error of only 3%. In contrast, conventional MP2 errors are

several-fold larger. In other words, one can model the important intermolecular interac-

Table 4.1: Contributions to the benzene lattice energy (kcal/mol), using the geometry from
[117]. In order to be consistent with the convention of a positive lattice energy, the signs
of energy contributions are opposite (i.e. positive sign means attractive contribution and
negative sign represents repulsive contribution).

MP2 MP2C/MP2+ATM CCSD(T)

2-body 16.15 13.64 13.15
3-body -0.13 -1.07 -0.89
Sum 16.02 12.57 12.26
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tions in molecular crystals and other systems very effectively using dispersion-corrected

MP2 models at only O(N5) computational cost.

4.4 Conclusions

To conclude, three-body interactions are more complicated than two-body interac-

tions because one needs to consider the perturbation from a third molecule on the two-body

system. DFT-D methods generally have difficulty describing this complicated level of long-

range correlation. MP2 lacks enough correlation description on the associative many-body

density fluctuation response. Propagators associated three-body CKS dispersion can be

used to describe such response effect. This MP2+CKS dispersion (or MP2+SDFT) model

slightly improves the conventional MP2, but still not accurate enough due to the miss-

ing short-range exchange and higher level of correlation terms. Using multipole expansion

(Axilrod-Teller-Muto) model with Tang-Toennies damping function to approximate three-

body CKS dispersion proves to be an improved correlation correction on MP2. The ex-

aminations on 3B-69 benchmark trimer set, pyrazole potential energy surface and benzene

crystal shows that MP2+ATM model is reliable enough for widely application. This simple

model with excellent performance stems from the use of damping function that dramatically

reduces the correlation errors.

Not just accuracy, efficiency is also achieved at the same time. Three-body inter-

actions with MP2 have been proved to be insensitive to basis set that even aug-cc-pVDZ

basis set could be able to achieve the accuracy of CBS limit [119,134]. What is more, if we

consider Coulomb attenuation in the three-body MP2 correlation, in the long-range correla-
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tion, the attenuation error is small and changes slowly when r0 increases. For example, the

attenuation RMS error on 3B-69 benchmark trimer set is 0.003 kJ/mol when r0 = 4.0 Å, it

increases to 0.005 kJ/mol when r0 = 3.0 Å, 0.010 kJ/mol when r0 = 2.0 Å, and reaches to

0.03 kJ/mol with more aggressive attenuation r0 = 1.5 Å. This attenuation behavior allows

us to utilize Coulomb attenuation for MP2 correlation calculation and exploit sparsity to

further improve the computational speed.
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Chapter 5

Conclusions

In molecular crystal lattice energy predictions with fragment based approach, two-

and three-body terms are the main contributions to the total lattice energy. They should

be treated with reliable quantum mechanical methods if high accuracy is required. On the

other hand, the number of QM terms computed in fragment based models (HMBI model,

for example) is generally large, and evaluating these terms is the computational bottleneck.

One must improve the efficiency and accuracy with which two- and three-body interactions

can be described in order to study chemically interesting molecular crystals.

A conflict exists in that to achieve high accuracy, one should use more complicated

model chemistries like CCSD(T) to describe the electron correlation, but such methods are

usually cost prohibitive for practical applications. Accordingly, finding new ways to improve

the accuracy of less computationally demanding methods has received much attention.

DFT-D methods are widely used because of their low O(N3) scaling with system size and

their reliability in describing long-range correlations. If even higher accuracy is required,
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one should turn to MP2 based methods with dispersion interaction naturally included and

they are also affordable with O(N5).

It is well known that MP2 typically overestimates dispersion interactions. Decom-

posing the MP2 interaction energy into different energy contributions with the analogous

symmetry adapted perturbation theory model reveals that the main MP2 error source stems

from the inaccuracy of uncoupled Hartree-Fock (UCHF) dispersion which lacks enough de-

scription of the intra-molecular correlation. Hesselmann and his collaborator developed

“coupled” MP2 (MP2C) by replacing UCHF dispersion with more accurate CKS dispersion

based on TDDFT (or coupled Kohn-Sham) theory [34, 35]. The applications on a variety

of systems prove that MP2C is a reliable method for two-body interactions with the near

CCSD(T) accuracy. Our work on this method has focusing on improving the computational

efficiency of MP2C without sacrificing its accuracy. Our efforts focused on decreasing the

costs by reducing the need for large basis sets.

Our first effort is to consider MP2C dispersion corrections (i.e. ∆EMP2C
disp =

ECKS
disp − EUCHF

disp ). Generally, the accurate dispersion energy is computed with dimer-

centered basis set which needs to include basis functions from the partner molecule when

computing molecular orbitals. However, for MP2C dispersion correction, we just require

the accuracy in the difference between CKS and UCHF dispersions, instead of the accuracy

for each term individually. Fortunately, the basis set errors introduced by using a smaller

monomer-centered basis set for CKS and UCHF dispersion cancel each other very well, giv-

ing a dispersion correction fairly close to the dimer-centered one. With this scheme, ∼ 10

fold speed-up is achieved for the calculation of the dispersion correction in an individual
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dimer. More significantly, in the context of fragment-based molecular crystal studies, taking

advantage of the translational symmetry in such periodic systems enables one to accelerate

the dispersion correction calculation by two orders of magnitude, without compromising

accuracy.

Though the dispersion correction is almost free in MC basis set, this step does

not form the main computational bottleneck in MP2C method. Our next effort focused on

accelerating MP2 calculations. After recognizing that the much effort consumed for UCHF

dispersion calculation in MP2 will be discarded and replaced by CKS dispersion, the first

scheme utilizes Coulomb attenuation in the calculation of the correlation energy. Accord-

ingly, the short-range attenuated correlation enables one to exploit sparsity in numerical

integration. More significantly, with proper choice of the attenuation strength (r0 = 0.9 Å),

the attractive attenuation error introduced by short-range correlation cancels the typically

repulsive finite basis set error to some extent. It means only with aug-cc-pVTZ basis set, one

can avoid the TZ-QZ extrapolation and achieve the accuracy in CBS limit, which realizes

several fold speed-ups compared to the conventional MP2C/CBS.

To make attenuated MP2C/aTZ model more flexible for attenuation strength in-

stead of being restricted at only one optimal point r0 = 0.9 Å, dispersion energy can also

be computed in the CBS limit. The short-range correlation turns out to be insensitive

to basis set, allowing the use of small basis set to improve the computational speed. This

MP2C/SR-aXZ models require the dimer-centered dispersion energies computed in the CBS

limit. In that case, one cannot take advantage of the monomer-centered algorithm for dis-

persion correction. As an alternative method, explicitly correlated MP2C (MP2C-F12)
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enables one to approach CBS limit with small basis set, depending on the finite basis set

error cancellations between HF and correlation. All these methods are proved to be reliable

by examinations on a variety of two-body interactions and molecular crystal lattice energy

predictions. Thus they can be widely applied for other interesting many-body systems. One

should note, however, that in conventional MP2C/CBS, Hartree-Fock energy with large ba-

sis set is the main bottleneck, and in MP2-F12 algorithm, correlation calculation requires

more CPU time and RAM space even with density-fitting technique implemented. Future

efforts should be spent on dealing with these two problems.

For three-body interactions where almost all computationally practical methods

exhibit problems for the 3B-69 benchmark trimer set, a new approach for describing these

interactions was needed. To account for the associative electron density fluctuation correla-

tion, Axilrod-Teller-Muto triple-dipole dispersion contribution is used for three-body MP2

interaction energy correction. Meanwhile, Tang-Toennis damping function is necessary to

cancel out errors in missing higher order correlations. This MP2+ATM method is fast

and provides substantial accuracy improvements over MP2. Tests on the 3B-69 benchmark

trimer set, pyrazole potential energy surface, and benzene crystal lattice energy demonstrate

that the MP2+ATM model is reliable for three-body interactions.

For the future work on noncovalent interactions, there are several problems we are

particularly interested in:

• Intramolecular interactions: Develop fast and accurate electronic structure meth-

ods for intra-molecular interactions. It is challenging for the current low-cost methods

to predict exactly the same relative energy order as CCSD(T) on P76 test set [135].
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Intra-molecular dispersion correction seems to be a promising starting point, but the

question is how to define the correct form of intra-molecular dispersion, i.e. isolating

the noncovalent correlations with the covalent correlations.

• MP2C/CBS for two-body interactions: We have recognized that the main com-

putational bottleneck in MP2C/CBS approach is the requirement of large basis set

for Hartree-Fock calculation. How to improve the computational efficiency for large

basis set SCF calculation is our consideration in the future.

• Multipole expansion of the electrostatic interaction: AIFF electrostatic inter-

action has large error in the short-range molecular separations, due to the penetration

errors. There are several approaches proposed to reduce such error [136, 137]. We

want to examine the reliability of these methods for molecular crystal lattice energy

prediction.

• HMBI model for large systems: Having achieved significant speedups for MP2C

dispersion correction makes us wondering whether there is an efficient way to fully ex-

ploit the periodicity of molecular crystals, with most of the effort computing properties

of symmetry-unique monomers in the central unit cell. The polarization terms (i.e.

electrostatics, induction, and dispersion) for several dozen dimers can be evaluated

almost on the fly. The question left is how to include the exchange effect efficiently.

One possible way we think is to use damping functions or Coulomb attenuations for

the polarization terms.
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Hobza. The accuracy of quantum chemical methods for large noncovalent complexes.
J. Chem. Theory Comput., 9(8):3364–3374, August 2013.

109



[48] Stefan Grimme. Supramolecular binding thermodynamics by dispersion-corrected
density functional theory. Chemistry, 18(32):9955–64, August 2012.

[49] Tobias Risthaus and Stefan Grimme. Benchmarking of London Dispersion-Accounting
Density Functional Theory Methods on Very Large Molecular Complexes. J. Chem.
Theory Comput., 9(3):1580–1591, March 2013.

[50] Shuhao Wen and Gregory J. O. Beran. Crystal Polymorphism in Oxalyl Dihydrazide:
Is Empirical DFT-D Accurate Enough? J. Chem. Theory Comput., 8(8):2698–2705,
August 2012.

[51] Oliver Marchetti and Hans-Joachim Werner. Accurate calculations of intermolecular
interaction energies using explicitly correlated coupled cluster wave functions and a
dispersion-weighted MP2 method. J. Phys. Chem. A, 113(43):11580–5, October 2009.

[52] Michal Pitonák, Jan Rezác, and Pavel Hobza. Spin-component scaled coupled-clusters
singles and doubles optimized towards calculation of noncovalent interactions. Phys.
Chem. Chem. Phys., 12(33):9611–4, September 2010.

[53] Tait Takatani, Edward G Hohenstein, and C David Sherrill. Improvement of the
coupled-cluster singles and doubles method via scaling same- and opposite-spin com-
ponents of the double excitation correlation energy. J. Chem. Phys., 128(12):124111,
March 2008.

[54] Michael S. Marshall and C. David Sherrill. Dispersion-Weighted Explicitly Corre-
lated Coupled-Cluster Theory [DW-CCSD(T**)-F12]. J. Chem. Theory Comput.,
7(12):3978–3982, December 2011.
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