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ABSTRACT
Correct identification of prescription pills based on their visual ap-
pearance is a key step required to assure patient safety and facil-
itate more effective patient care. With the availability of high-
quality cameras and computational power on smartphones, it is
possible and helpful to identify unknown prescription pills using
smartphones. Towards this goal, in 2016, the U.S. National Li-
brary of Medicine (NLM) of the National Institutes of Health (NIH)
announced a nationwide competition, calling for the creation of a
mobile vision system that can recognize pills automatically from
a mobile phone picture under unconstrained real-world settings.
In this paper, we present the design and evaluation of such mo-
bile pill image recognition system called MobileDeepPill. The de-
velopment of MobileDeepPill involves three key innovations: a
triplet loss function which attains invariances to real-world nois-
iness that deteriorates the quality of pill images taken by mobile
phones; a multi-CNNs model that collectively captures the shape,
color and imprints characteristics of the pills; and a Knowledge
Distillation-based deep model compression framework that signif-
icantly reduces the size of the multi-CNNs model without deteri-
orating its recognition performance. Our deep learning-based pill
image recognition algorithm wins the First Prize (champion) of the
NIH NLM Pill Image Recognition Challenge. Given its promis-
ing performance, we believe MobileDeepPill helps NIH tackle a
critical problem with significant societal impact and will benefit
millions of healthcare personnel and the general public.

CCS Concepts
•Human-centered computing → Ubiquitous and mobile com-
puting; •Computing methodologies→ Visual content-based in-
dexing and retrieval;
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Figure 1: Illustration of the unconstrained pill image recognition problem.

1. INTRODUCTION
Smartphones with built-in high-quality cameras are ubiquitous

today. These cameras coupled with advanced computer vision al-
gorithms are turning smartphones into powerful tools for people
to retrieve information from the physical world. In recent years, a
number of such mobile vision systems have become applicable for
daily-life tasks and have demonstrated impressive performance in
unconstrained real-world settings. For example, Google Translate
app can accurately translate texts on books, road signs, and menus
from one language into another [2]. As another example, Ama-
zon shopping app is capable of recognizing objects appeared in the
scene and labeling them with associated product information [1].

In 2016, the U.S. National Library of Medicine (NLM) of the
National Institutes of Health (NIH) announced a nationwide com-
petition, calling for the creation of a mobile vision system that can
recognize pills automatically from a mobile phone picture under
unconstrained real-world settings [4]. This competition is moti-
vated by the imperative need for a mobile pill recognition tool that
can provide a simple way to recognize mystery pills, prevent un-
necessary medication errors, and most importantly, save people’s
lives in urgent cases. Figure 1 illustrates this unconstrained pill
image recognition problem. As shown, a user takes an image of
a pill using his or her mobile phone. The pill image recognition
system takes the image as input, compares it against thousands of
high-quality pill images in the database, and returns a list of most
similar pills to the user. The images taken by mobile phones in the
unconstrained real-world settings are called consumer images. The
images stored in the database are called reference images, which
are taken by higher-resolution cameras in the controlled laboratory
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setting. However, developing such pill image recognition system is
challenging. This is because in mobile unconstrained scenarios, the
quality of photos taken by mobile phones can be easily deteriorated
by a variety of factors such as illumination, shading, background,
and phone orientation. Moreover, the number of types of prescrip-
tion pills manufactured by pharmaceutical companies is large. Ex-
isting solutions are not capable of handling such large number of
types and thus fail when the scale is increased considerably.

Over the past few years, deep learning has become the dominant
approach in machine learning due to its impressive capability of
handling large-scale learning problems [20]. Deep learning-based
approaches have achieved state-of-the-art performance in solving
a variety of computer vision problems such as object recognition
[18], face recognition [27], video classification [17], and scene un-
derstanding [28]. However, deep learning-based approaches are
very expensive in terms of computation, memory, and power con-
sumption. As such, given the resource constraints of mobile de-
vices, most of the existing deep learning-based mobile vision sys-
tems offload the workload to the cloud [9, 12]. Unfortunately,
cloud offloading becomes impossible when the Internet connection
is lost. It also suffers from unpredictable end-to-end network delay,
which can be affected by many factors such as distance between
mobile device and cloud, network bandwidth and data quantity.
More importantly, the medication an individual takes contains very
sensitive and private information about his or her medical record.
Uploading pill images onto the cloud constitutes a great danger to
an individual’s privacy [6].

In this paper, we present the design, implementation, and eval-
uation of MobileDeepPill, a small-footprint mobile deep learning
system that achieves state-of-the-art performance on recognizing
unconstrained pill images without cloud offloading. The devel-
opment of MobileDeepPill includes three key innovations. First,
MobileDeepPill employs a triplet loss function [24] to attain in-
variances to real-world noisiness that deteriorates the quality of pill
images taken by mobile phones. Second, MobileDeepPill involves
a novel pill image recognition algorithm based on deep Convolu-
tional Neural Network (CNN) [18]. Protected by patent laws, each
manufactured prescribed pill is uniquely characterized by the com-
bination of its shape, color and imprints. MobileDeepPill achieves
state-of-the-art pill image recognition performance by utilizing a
multi-CNNs architecture that collectively captures the shape, color
and imprints characteristics of the pills. Third, MobileDeepPill in-
corporates a novel deep model compression technique based on
Knowledge Distillation [15]. The model compression technique
significantly reduces the size of the multi-CNNs model without de-
teriorating its recognition performance by designing a much smaller
model and training it using the knowledge extracted from the multi-
CNNs model. As a result, MobileDeepPill is able to perform accu-
rate pill image recognition on commodity smartphones efficiently.

The innovations involved in MobileDeepPill are generic which
can be applied to the development of a wide range of mobile sens-
ing systems powered by on-device deep learning algorithms. First,
data collected by mobile sensing systems is likely to be noisy. The
triplet loss function can be leveraged to build mobile sensing sys-
tems that are resilient to noisiness in unconstrained mobile condi-
tions. Second, the proposed multi-CNNs architecture can be used
to build mobile sensing systems that perform inferences based on
fusing knowledge extracted from multiple sensing modalities. Fi-
nally, the proposed Knowledge Distillation-based model compres-
sion framework allows practitioners who want to adopt large off-
the-shelf deep convolutional models to generate small-footprint mod-
els for resource-limited mobile sensing systems without deteriorat-
ing its recognition performance.

Summary of Experimental Results: We have conducted a rich
set of experiments to examine both the recognition and system
performance of MobileDeepPill. To examine the recognition per-
formance, we have evaluated MobileDeepPill on the official NIH
NLM Pill Image Recognition Challenge dataset under two evalua-
tion schemes [4]. To examine the system performance, we have im-
plemented MobileDeepPill on three platforms with different com-
puting power: 1) a desktop installed with an Intel i7-5930k CPU
and a Nvidia GTX 1080 GPU (cloud CPU and GPU), 2) a Nvidia
Jetson TX1 mobile development board equipped with a Nvidia Tegra
X1 GPU (high-end mobile GPU), and 3) a Samsung Galaxy S7
edge smartphone (mobile CPU). Our results show that:
• MobileDeepPill achieves state-of-the-art unconstrained pill im-

age recognition performance. Specifically, in the one-side pill
recognition scheme, MobileDeepPill achieves an average 52.7%
Top-1 accuracy and 81.7% Top-5 accuracy. In the two-side
pill recognition scheme, MobileDeepPill achieves an average
73.7% Top-1 accuracy and 95.6% Top-5 accuracy.
• Our Knowledge Distillation-based deep model compression tech-

nique significantly reduces the number of parameters (by 86.8%)
and floating-point operations per second (FLOPS) (by 62.8%)
of the multi-CNNs model without deteriorating the recognition
performance. As a result, MobileDeepPill only requires 34MB
runtime memory to run the multi-CNNs model and is able to
perform low-power (7665mJ), near real-time (1.58s) pill image
recognition on commodity smartphones without cloud offload-
ing. With the support of high-end mobile GPU, the runtime per-
formance of MobileDeepPill is significantly improved (270ms)
for real-time usage.

Summary of Contributions: In this work, we introduce the first
mobile vision system that achieves real-world applicable perfor-
mance for recognizing unconstrained pill images. Our deep learning-
based pill image recognition algorithm achieves the best recog-
nition performance among all the contestants and wins the First
Prize (champion) of the NIH NLM Pill Image Recognition Chal-
lenge. Moreover, our Knowledge Distillation-based deep model
compression technique is complementary to existing deep model
compression techniques developed for mobile devices [19, 7], thus
representing a unique contribution.

The need for a mobile pill recognition tool is more important to-
day than ever before. Given its great performance, we believe Mo-
bileDeepPill helps NIH tackle a critical problem with significant
societal impact and will benefit millions of healthcare personnel
and the general public.

2. CHALLENGES AND OUR SOLUTIONS
Accurately recognizing unconstrained pill images on mobile de-

vices without cloud offloading presents a number of challenges. In
this section, we describe these challenges followed by explaining
how MobileDeepPill addresses these challenges.

Differences between Reference and Consumer Images: The goal
of unconstrained pill image recognition is to match the consumer
image of a pill with its corresponding reference image. Figure 2
shows five pairs of consumer images and reference images of the
same pills. As shown, depending on how people take the pictures
using their phones, and due to the deterioration caused by a vari-
ety of real-world noisiness such as shading, blur, illumination and
background, consumer image and reference image of the same pill
look very different. As a consequence, the recognition accuracy
will suffer if we use the model trained on reference images to recog-
nize pills appeared in consumer images. To address this challenge,
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(e) Undistinguishable Background

(b) Illumination

Figure 2: Illustration of differences between reference and consumer im-
ages of the same pills under five different scenarios. For each scenario, the
image on the left is the consumer image; and the image on the right is the
reference image of the same pill.

we employ a triplet loss function [24] to learn features that attain
invariances to the noisiness illustrated in Figure 2 using CNNs. As
such, MobileDeepPill can accurately match consumer images and
reference images of the same pills even if they look different.

Unreliable Pill Characteristics: Although each prescribed pill
can be identified by its unique combination of color, shape and im-
prints, the characteristics of a pill may appear differently in con-
sumer images caused by real-world noisiness. For example, as
shown in Figure 2 (b), a white pill turns into a yellow pill when
the illumination in the environment is yellow. To address this chal-
lenge, we propose a multi-CNNs architecture. Specifically, we gen-
erate the gray and gradient images of the original color pill images
to train three independent CNNs. CNNs trained on gray and gradi-
ent images not only alleviate the dependency on color information
which can be deteriorated in unconstrained conditions, but also at-
tain enhanced shape and imprint information which is helpful in
distinguishing different pills. By combining the outputs of these
three CNNs, MobileDeepPill becomes more resilient to the unreli-
ability of pill characteristics.

Lack of Training Samples: A large volume of training images
that contain significant variations is needed to ensure the robust-
ness of our pill image recognition system in mobile settings. Un-
fortunately, collecting a large volume of diverse consumer images
for all types of pills is very challenging. To address this challenge,
we perform a number of data augmentation techniques to generate
new augmented images. The data augmentation techniques gen-
erate variations that mimic the variations occurred in mobile set-
tings. With the large amount of newly generated augmented im-
ages, CNNs are effectively trained. As a result, MobileDeepPill
becomes more robust to the diverse variations in mobile settings.

Resource Constraints of Mobile Devices: To best protect the pri-
vacy of the user, pill images need to be completely processed in-
side mobile devices without cloud offloading. However, CNNs
that achieve state-of-the-art accuracy in computer vision tasks usu-
ally consume hundreds of MB of memory and billions of FLOPS
[18, 27, 25, 14]. Although mobile devices today are equipped
with powerful computing resources, they are not designed for ef-
ficiently running such computation and memory intensive mod-
els. To address this challenge, we propose a novel deep neural
network model compression technique based on Knowledge Dis-
tillation [15], which significantly reduces the memory footprint

Knowledge	Distillation	
Model	Compression

Teacher	CNNs

Gradient	CNN

Student	CNNs
Color	CNN

Gray	CNN

Pill	Localization

Training

Data	
Augmentation

Data	
Preprocessing

Consumer	
+	

Reference	
Pill	Images

Pill	
Localization

Inference
Data	

Preprocessing

Reference	
Image

Student-CNNs
Features

Ranking

Gradient	CNN

Color	CNN

Gray	CNN

Similarity	
Measure

Pill	Retrieval

Figure 3: The system architecture of MobileDeepPill. Blue arrows repre-
sent flow in training stage. Green arrows represent flow in inference stage.

and FLOPS of CNNs without deteriorating the recognition accu-
racy. As such, MobileDeepPill can be efficiently running on to-
day’s commodity mobile phones while still achieving state-of-the-
art recognition accuracy.

To the best of our knowledge, MobileDeepPill is the first mo-
bile system that addresses these challenges and achieves real-world
applicable performance.

3. SYSTEM OVERVIEW
The system architecture of MobileDeepPill is illustrated in Fig-

ure 3. As shown, the training stage and the inference stage contain
different system components.

In the training stage, MobileDeepPill first localizes and segments
the pill in every consumer and reference image. It then performs
data augmentation on the segmented consumer and reference im-
ages to generate new augmented images to increase the number
of training samples. For every original and augmented image in
the training set, MobileDeepPill generates the gray and gradient
images of the original color pill images to train three independent
CNNs: Color CNN, Gray CNN, and Gradient CNN. Finally, these
three CNNs are imported as Teacher CNNs into the Knowledge
Distillation Model Compression framework to derive three small-
footprint Student CNNs.

In the inference stage, given a consumer image taken by the
smartphone, MobileDeepPill first localizes and segments the pill in
the consumer image. The segmented consumer image is then fed
into the Student CNNs to extract CNN features. These features will
be compared with the CNN features of all the reference images.
Finally, the ranking based on the similarity between the consumer
image and all the reference images in the CNN feature space is
generated in descending order. Based on the ranking, the reference
images of the top N pill candidates are returned to the user.

In the next two sections, we describe the design of MobileDeep-
Pill in details.

4. MULTI-CNNS BASED PILL IMAGE
PROCESSING

4.1 Data Preprocessing

4.1.1 Pill Localization
The backgrounds of pill images do not contain useful informa-

tion to help identify pills, and in real-world settings, can become
a source of noises that will affect recognition accuracy. Therefore,
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Figure 4: Illustration of pill localization approach for consumer images.

it is necessary to localize and segment the pills in the images in
the first place. Considering the differences between reference im-
ages and consumer images, we propose two different localization
schemes for reference images and consumer images, respectively.

Pill Localization for Reference Images: Since reference images
were taken by high-resolution professional cameras in controlled
settings, the backgrounds of reference images are uniform and only
contain plain texture. As such, we use a simple gradient detection
method to localize and segment pills in reference images. Specifi-
cally, the gradient detection method finds the image gradients that
exceed a given threshold. These gradients strongly imply the loca-
tion of the pill in a reference image. Using morphologically image
operations, the largest connected region, which is also the region of
the pill in the reference image is obtained.

Pill Localization for Consumer Images: Directly applying the
gradient detection method to consumer images does not achieve
good performance because consumer images contain diverse back-
grounds. To address this problem, we adopt a learning-based ap-
proach to train a pill detector using Support Vector Machine (SVM).
Figure 4 provides a graphical overview of our pill localization ap-
proach for consumer images. Specifically, we leverage the local-
ization results of reference images and use them as positive local-
ization samples. We manually extract backgrounds of consumer
images and use them as negative localization samples. We then
use these positive and negative samples as training data and com-
pute the histogram of oriented gradients (HOG) of each sample as
features to train the SVM-based pill detector. We localize and seg-
ment the pill in a consumer image by first using the gradient detec-
tion method to obtain the coarse location of the pill in the image. A
sliding window is then used to crop image patches inside the coarse
region. These patches are then fed into the trained SVM. The patch
with the highest probability is considered as the pill location.

4.1.2 Data Augmentation
We have applied three data augmentation techniques on the seg-
mented pill images. Specifically, we have applied Gaussian filter-
ing to simulate blur images; we have zoomed the images by a ran-
dom factor in the range of (0.8, 1.2) to ensure our system is robust
to pill size variation; and finally, we have applied random transla-
tion (in the range of (-5, 5) pixels) and rotation (in the range of (-6,
6) degrees) to the segmented pill images to ensure our system is
less sensitive to localization errors.

4.2 Feature Learning Using Triplet Loss and
Deep Convolutional Neural Networks

4.2.1 Triplet Loss
The goal of unconstrained pill image recognition is to match the

consumer image of a pill with its corresponding reference image.
However, as illustrated in Figure 2, due to the deterioration caused
in unconstrained conditions, consumer images and reference im-
ages of the same pills may look very different. To this end, we em-
ploy a triplet loss function (i.e., triplet loss) to address this problem.
Triplet loss has been successfully used for addressing variations in
expression, pose, and illumination in the problem of unconstrained
face recognition [24]. In the context of unconstrained pill recogni-
tion, we use triplet loss to guide the training of CNNs to create a
new feature space such that in this feature space, the distances be-
tween consumer and reference images of the same pills are small,
whereas the distances between consumer and reference images of
different pills are large.

Specifically, triplet loss takes a set of three images (i.e., triplet) as
its input: an anchor image Ia, a positive image Ip, and a negative
image In. Among them, the anchor image and the positive image
are from the same pill, while the negative image is from a different
pill. The objective of triplet loss is to find an embedding f(I), from
an image I into a d-dimensional feature space Rd, such that in the
feature space, the anchor image is closer to all positive images,
independent of the deterioration caused by real-world noisiness,
than to any negative image. This objective can be translated into
the following mathematical formulation:

‖f(Ia)− f(Ip)‖22 + α < ‖f(Ia)− f(In)‖22 (1)

and the corresponding triplet loss function is formulated as:

L = max(‖f(Ia)− f(Ip)‖22 − ‖f(I
a)− f(In)‖22 + α, 0) (2)

where α is a margin that controls the distance between the positive
pair (Ia, Ip) and negative pair (Ia, In).

Figure 5 illustrates the effect of triplet loss. As shown, in the
original image space, due to real-world noisiness, the anchor im-
age Ia is closer to the negative image In compared to the positive
image Ip. This leads to the consequence where the anchor image
Ia is misclassified to the same pill as the negative image In. By

𝐼"

𝐼#

𝐼$

Original	Image Space

𝑓(𝐼")
𝑓(𝐼$)

𝑓(𝐼#)

New	Feature	Space

Triplet Loss

Figure 5: Illustration of the effect of triplet loss. The colors of bounding
boxes indicate the classes of the pills.
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Figure 6: Illustration of the multi-CNNs architecture of MobileDeepPill.

employing triplet loss, the three pill images Ia, Ip, and In are pro-
jected into a new feature space where the anchor image Ia is closer
to the positive image Ip compared to the negative image In. As a
result, the anchor image Ia is correctly classified to the same pill
as the positive image Ip.

4.2.2 Triplet Generation
One critical issue of employing triplet loss is how to generate

the correct triplets. This is because triplets that are generated using
random combination method do not contain much useful informa-
tion. As a result, these randomly selected triplets do not contribute
to the CNN training and thus lead to slow convergence [24].

To address this problem, we have designed an online scheme that
generates informative triplets from intermediate results during the
training process. The key idea is to generate triplets based on cur-
rent pill ranking. Specifically, for an image in the training dataset,
we treat it as Ia and randomly select Ip from the same pill class.
We leverage the current ranking of Ia and choose its neighboring
pill class in the ranking as In. The rationale behind this strategy is
that we want the CNN to learn features that are distinctive among
different pill classes, especially among very similar pills. As an ex-
ample, assume we have Ia and its corresponding reference image
ranks 10th. We randomly select one pill that ranks close to 10th
as the negative image In. As we have observed in our experiments,
our online triplet generation scheme successfully generates infor-
mative triplets that contribute to improving the CNN model as well
as fast convergence during the training process.

4.2.3 Multi-CNNs Architecture
Figure 6 shows the multi-CNNs architecture of our MobileDeep-

Pill system. As illustrated, the multi-CNNs architecture consists
of three independent CNNs: Color CNN, Gray CNN, and Gradi-
ent CNN. These three CNNs play different roles and extract com-
plementary features that collectively capture the shape, color and
imprints characteristics of the pills. Specifically, Color CNN is re-
sponsible for extracting color information of the pills; and Gray
CNN and Gradient CNN are responsible for extracting shape and
imprints information of the pills.

We design the network architecture of the three CNNs based on
AlexNet [18]. All the three CNNs have the same network architec-
ture except the first convolutional layer. This is because for Color
CNN, the input is the RGB color images and thus the number of
input channels is three; whereas for Gray CNN and Gradient CNN,
the input is the gray and gradient images respectively and thus the
number of input channels is one. Table 1 provides the details of the
network architecture of Color CNN. As shown, the network con-
sists of five convolutional layers (conv1 to conv5), three pooling

Layer Size In Size Out Kernel
conv1 227× 227× 3 55× 55× 96 11× 11, 4

pool1 55× 55× 96 27× 27× 96 3× 3, 2

conv2 27× 27× 96 27× 27× 256 5× 5, 1

pool2 27× 27× 256 13× 13× 256 3× 3, 2

conv3 13× 13× 256 13× 13× 384 3× 3, 1

conv4 13× 13× 384 13× 13× 384 3× 3, 1

conv5 13× 13× 384 13× 13× 256 3× 3, 1

pool5 13× 13× 256 6× 6× 256 3× 3, 2

fc1 6× 6× 256 1024
fc2 1024 128
L2 128 128

Table 1: The network architecture of Color CNN. The parameters in the
Size In and Size Out columns follow the format of height × width ×
#kernels. The parameters in the Kernel column follow the format of
height×width, stride. The network architecture of Gray CNN and Gra-
dient CNN are the same except the Size In of conv1 is 227× 227× 1.

layers (pool1, pool2, and pool5), and two fully connected layers
(fc1 and fc2). Finally, on top of the fc2 layer, a L2 normalization
layer is added to output the feature representation f(I).

4.3 Pill Retrieval
Given a query consumer image taken by a smartphone, the ob-

jective of pill retrieval is to compare the query consumer image to
the reference images of all pill classes and then output a similar-
ity ranking in a descending order. MobileDeepPill achieves this by
measuring the similarity between consumer and reference images
in the learned CNN feature space. Specifically, we use the cosine
distance as the metric to calculate a similarity score:

S = f(Iq)
T f(Iref ) (3)

where Iq is the query consumer image and Iref is the reference im-
age that Iq is compared to. Since we have three independent CNNs,
three similarity scores Scolor , Sgray and Sgradient are calculated
respectively. Finally, since color, shape and imprints information
is complementary for identifying pills, a final similarity score is
calculated as the unweighted sum of Scolor , Sgray and Sgradient.

Sfinal = Scolor + Sgray + Sgradient (4)

5. KNOWLEDGE DISTILLATION-BASED
MODEL COMPRESSION

Although our multi-CNNs model is able to extract complemen-
tary features that collectively capture the color, shape, and imprints
characteristics of pills, it contains about 40 million parameters and
consumes over 3.2 billion FLOPS (see Table 3 for breakdown de-
tails). The large number of parameters makes the model memory
intensive; and the high FLOPS makes the model computation inten-
sive. Although mobile devices today are equipped with powerful
computing resources, they are not designed for efficiently running
such memory and computation intensive model.

To address this problem, MobileDeepPill adopts a novel deep
neural network model compression technique based on Knowledge
Distillation [15]. It compresses the large multi-CNNs model into
a small network with much smaller numbers of parameters and
FLOPS, and can be efficiently running on mobile devices without
deteriorating the recognition accuracy. The Knowledge Distilla-
tion model compression framework involves two networks: a stu-
dent network which is the original large network to be compressed;
and a student network which is the desired small network to be de-
signed. By training the student network to imitate the outputs of
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the teacher network, the knowledge of the teacher network is trans-
ferred to the student network. Although there are a few existing
model compression techniques developed for mobile devices, they
focus on compressing pretrained large networks [19, 7]. In contrast,
by following a number of optimization strategies, our compression
technique focuses on designing and training a new network archi-
tecture with a much smaller footprint.

In this section, we first provide the background knowledge of
Knowledge Distillation. We then describe the strategies that guide
the design of the student network. By following these strategies, we
describe the architecture of the newly designed student network,
and compare it with the original network (i.e., teacher network).
Finally, we describe how to use the teacher network to train the
student network.

5.1 A Primer on Knowledge Distillation
Knowledge Distillation was first introduced by Hinton et al. as a

framework for model compression [15]. It aims to train a small net-
work (i.e., student network) using the outputs of the original large
network (i.e., teacher network). By doing it, the teacher network
transfers its knowledge learned from data to the student network.

In [15], this framework is applied to the object recognition prob-
lem where the outputs of both teacher and student networks are
softmax outputs Pt = softmax(aLt ) and Ps = softmax(aLs ):

P τt = softmax(
aLt
τ
) (5)

P τs = softmax(
aLs
τ
) (6)

where aL is the activation of the last layer L and τ > 1 is the re-
laxation to soften the outputs of both teacher and student networks.
Based on the softmax outputs, the student network is trained to op-
timize the following loss function:

L = H(y, Ps) + λH(P τt , P τs ) (7)

whereH is the cross-entropy, y are true labels, and λ controls how
much knowledge should be transferred from the teacher network.

In our work, since our goal is to compress the large multi-CNNs
model without deteriorating its recognition performance, we use
the following simplified loss function instead to only enforce the
student network to imitate the outputs of the teacher network.

L =
∥∥∥(aLt − aLs )

∥∥∥2
2

(8)

5.2 Student Network Design Strategies
The overarching goal of the student network design is to mini-

mize the computational cost (i.e., the number of FLOPS) and mem-
ory footprint (i.e., the numbers of model parameters) while main-
taining the recognition performance. As such, the design of the
student network involves the examination of the trade-offs between
recognition performance and a number of factors of the deep neu-
ral network architecture including depth, width, filter numbers, and
filter sizes. However, this is a very complicated problem due to the
complexity of the deep neural network architecture. To simplify the
problem, we adopt the layer replacement scheme proposed in [13].
The core of the layer replacement scheme is that, at each time, one
or a few layers are replaced by some other layers that preserve the
recognition performance, without changing the other layers. Based
on this scheme, we use the teacher network as the starting point,
and progressively modify the teacher network architecture by ex-
amining the trade-offs between the recognition performance and

the network architecture factors through a series of controlled ex-
periments. This process not only leads to a small-footprint student
network that maintains the recognition performance as its teacher
network, but also helps formulate a number of strategies that can
guide model compression.

In the following, we describe these strategies one by one. It
is worthwhile to note that many similar strategies have been vali-
dated by other researchers in building compressed models for other
tasks such as object recognition [13, 16]. Therefore, we expect
our student network design strategies are helpful to building small-
footprint deep neural network models on resource limited platforms
like mobile phones and wearables for many other applications.

Strategy 1: Late downsampling. Late downsampling refers to
maintaining large activation maps (i.e., the outputs of convolutional
layers) at early layers and downsampling activation maps at later
layers. It has been shown that late downsampling not only helps
reduce the number of model parameters but also leads to higher
recognition performance by keeping activation maps at early layers
large to preserve information contained in images [16]. As such,
when designing the student network, we propose to perform late
downsampling to enhance recognition performance while reducing
the number of model parameters.

Strategy 2: Use 1× 1 filters for channel reduction. The concept
of 1 × 1 filter was first introduced in [22]. It has been shown in
GoogLeNet [26] that the 1 × 1 filter can significantly reduce the
channel dimensions without sacrificing recognition accuracy. As
such, when designing the student network, we propose to insert a
new convolutional layer that uses 1× 1 filter before the first fully-
connected layer. By doing so, the number of parameters of the first
fully-connected layer can be significantly reduced.

Strategy 3: Split one convolutional layer into multiple convo-
lutional layers with filter number trade-off. Increasing network
depth by adding extra layers has been demonstrated to be the key to
improving accuracy [25, 26, 13]. However, adding extra layers also
increases the number of model parameters. As such, when design-
ing the student network, we propose to split one convolutional layer
into two sub convolutional layers to increase depth. We also pro-
pose to adjust the filter number of the two sub convolutional layers
such that the number of parameters is reduced or remains roughly
the same. By doing this, the student network becomes deeper with-
out increasing the number of model parameters.

Strategy 4: Split one convolutional layer into multiple convo-
lutional layers with filter size trade-off. The receptive field of a
convolutional layer determines how much information is preserved
in that layer and thus plays a key role on recognition performance.
It has been shown that the receptive field of one convolutional layer
with large filter size (e.g., 5 × 5, 7 × 7) is equivalent to stacking
multiple 3 × 3 convolutional layers [26]. This finding shows a
way to increase the network depth by trading off filter size. As
such, when designing the student network, we propose to split one
convolutional layer that uses larger filter size into multiple 3 × 3
convolutional layers. By doing this, the student network becomes
deeper without loosing the receptive field.

Strategy 5: Reduce filter number without splitting. Keeping in-
creasing the network depth does not necessarily lead to accuracy
improvement. This is because deeper networks are more difficult
to train due to the degradation problem [14]. As such, when design-
ing the student network, we propose to reduce the number of filters
when increasing the depth does not help to improve the recognition
accuracy. By doing this, it reduces the numbers of model parame-
ters and FLOPS.
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Figure 7: Illustration of the student network design process with the anno-
tated strategy numbers and model symbols. Syntax: model symbol (strategy
number).

5.3 Student Network Architecture
By following the above design strategies step by step, we grad-

ually transform the teacher network into the student network. In
this section, we go through the models generated at each step. The
model to be generated at the next step is built on top of the current
model. To help illustrate the whole process, Figure 7 is plotted with
the annotated strategy numbers and model symbols. In addition, to
illustrate the progress we have made at each step towards building a
small-footprint student network, Table 2 lists the numbers of model
parameters and FLOPS for each model.

Model A: We have followed Strategy 1 to derive this model.
Specifically, we perform late downsampling at conv5 by chang-
ing its stride from 1 to 2. As a result, the number of parameters
in fc1 is reduced by 75%, dropping from 1024 × 6 × 6 × 256 to
1024× 3× 3× 256.

Model B: We have followed Strategy 2 to derive this model.
Specifically, we add a new layer conv6 comprised of 64 1 × 1 fil-
ters after conv5. As a result, the network depth increases one; the
channels of activation maps after conv6 are reduced to 64; and the
number of parameters in fc1 is reduced by 75%, dropping from
1024× 3× 3× 256 to 1024× 3× 3× 64.

Model C: We have followed Strategy 3 to derive this model.
Specifically, we split conv3 and conv4 into two sub convolutional
layers conv3a, conv3b and conv4a, conv4b, respectively. As a re-
sult, the network depth increases two; and the filter number is re-
duced to 256.

Model D: We have followed Strategy 4 to derive this model.
Specifically, we split conv2 into two sub convolutional layers conv2a
and conv2b. As a result, the network depth increases one; and the
filter size is reduced to 3× 3.

Model E (Student Network): We have followed Strategy 5 to
derive this model. As a result, the numbers of filters in conv3a,
conv3b, conv4a, conv4b, and conv5 are further reduced to 128.

Model T A B C D E
# params (m) 13.32 6.24 4.49 4.34 3.69 1.76
FLOPS (m) 1093 984 973 985 676 407

Table 2: The numbers of parameters and FLOPS for each model during the
student network design process (T = teacher network, m = million).

Table 3 and Table 4 show the details of the architecture of the
teacher network and the student network of Color CNN, respec-
tively. For Gray CNN and Gradient CNN, the architecture is the
same as Color CNN except for the first layer where the number of
parameters is 12k and the number of FLOPS is 37.4m. As shown
in the tables, the generated student network only has 1.76m param-
eters and 407m FLOPS. Compared to the original teacher network,
the corresponding compression ratio is 7.6 (13.32m / 1.76m) for
the number of parameters, and 2.7 (1093m / 407m) for FLOPS.

.

Layer Size Out Kernel # params FLOPS
conv1 55× 55× 96 11× 11, 4 35k 112.2m
pool1 27× 27× 96 3× 3, 2
conv2 27× 27× 256 5× 5, 1 615k 447.9m
pool2 13× 13× 256 3× 3, 2
conv3 13× 13× 384 3× 3, 1 885k 149.5m
conv4 13× 13× 384 3× 3, 1 1330k 224.3m
conv5 13× 13× 256 3× 3, 1 885k 149.5m
pool5 6× 6× 256 3× 3, 2

fc1 1024 9440k 9.4m
fc2 128 131k 0.1m

Total 13.32m 1093m

Table 3: The architecture of the Color CNN teacher network (Model T).

Layer Size Out Kernel # params FLOPS
conv1 55× 55× 96 11× 11, 4 35k 112.2m
pool1 27× 27× 96 3× 3, 2

conv2a 27× 27× 128 3× 3, 1 111k 80.6m
conv2b 27× 27× 128 3× 3, 1 147k 107.5m
pool2 13× 13× 128 3× 3, 2

conv3a 13× 13× 128 3× 3, 1 148k 24.9m
conv3b 13× 13× 128 3× 3, 1 148k 24.9m
conv4a 13× 13× 128 3× 3, 1 148k 24.9m
conv4b 13× 13× 128 3× 3, 1 148k 24.9m
conv5 7× 7× 128 3× 3, 2 148k 6.2m
conv6 7× 7× 64 1× 1, 1 8k 0.4m
pool6 3× 3× 64 3× 3, 2

fc1 1024 591k 0.6m
fc2 128 131k 0.1m

Total 1.76m 407m

Table 4: The architecture of the Color CNN student network (Model E).

5.4 Student Network Training
In our proposed system, the teacher networks are our original

color, gray and gradient CNNs described in section 4.2.3. Given
the newly designed student network architecture in section 5.3, we
apply the Knowledge Distillation framework described in section
5.1 to train the student network.

The training process consists of two stages. In the first stage, we
let the student network learn by itself by training the student net-
work using triplet loss. In the second stage, we let the pretrained
teacher network train and transfer knowledge to the student net-
work using Knowledge Distillation. By doing this, the student net-
work learns the low-level features better and achieves much better
generalization performance.
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6. EVALUATION
6.1 Experimental Setup
6.1.1 Dataset

We conduct our experiments using the official NIH NLM Pill Im-
age Recognition Challenge dataset [4]. The dataset contains 1000
distinct pills and has two categories of pill images:
Reference Images: This category contains 2000 reference images
of the 1000 pills, with one image for the front side of the pill and
one image for the back side of the pill. These images were taken un-
der the same controlled laboratory settings using a high-resolution
camera directly above the front and back sides of the pills.
Consumer Images: This category contains 5000 consumer images
of the 1000 pills. These images were taken by digital cameras in
mobile phones in real-world settings. For each of the 1000 pills,
there are five consumer images taken under different conditions
with variations in camera angle, illumination, and background.

6.1.2 Evaluation Metrics
To evaluate the pill recognition performance of MobileDeepPill,

we use the Mean Average Precision (MAP) and Top-K accuracy as
the evaluation metrics.
Mean Average Precision (MAP): MAP is the evaluation metric
used in the official NIH NLM Pill Image Recognition Challenge. It
is defined as:

MAP =
1

N

N∑
i=1

(
1

Ni

Ni∑
j=1

j

MT (i, j)

)
(9)

where N denotes the number of query images used for evaluation,
Ni is the number of genuine images which is always 2 because
there are two sides for each pill, and MT (i, j) are the rankings of
two genuine images.
Top-K Accuracy: In practice, users are usually only interested
in the top K pill candidates (e.g., K equal to 1, 5) retrieved by
the system. Thus we employ Top-K accuracy as another metric to
assess the recognition performance, which is defined as the ratio of
the number of query images whose true mates are within the top K
candidates retrieved by the system to the number of query images.

Besides the pill recognition performance, we also evaluate the
system performance of MobileDeepPill including runtime, runtime
memory, and energy consumption.

6.1.3 Evaluation Schemes and Protocol
Evaluation Schemes: We evaluate the recognition performance
under the following two schemes:
• One-Side Pill Recognition: In this scheme, the system takes

one consumer image, either front side or back side of a pill, as
the input. The goal is to retrieve the reference image of either
side of the same pill.
• Two-Side Pill Recognition: In this scheme, the system takes

two consumer images, both front and back side of the same pill,
as the input. The goal is to retrieve the reference images of both
sides of the same pill.

Evaluation Protocol: For each evaluation scheme, we use 5-fold
cross validation as the evaluation protocol. Specifically, we evenly
split the 1000 pills into 5 folds of mutually exclusive pill sets, with
the front side and back side of the same pill in the same fold. As
such, each fold contains 200 distinct pills with 400 reference im-
ages (two reference images for each pill) and their corresponding

1000 consumer images. During training, we use all the images in
four folds. During testing, we use the consumer images in the re-
maining fold as query images and all the reference images in 5 folds
as gallery images.

6.2 Pill Image Recognition Performance

6.2.1 Superiority of Multi-CNNs over Single-CNN
Table 5 lists the recognition performance of the Single-CNN

model (i.e., Color CNN) and the Multi-CNNs model in terms of
MAP and Top-K accuracy (K = 1, 5) under both one-side and
two-side pill recognition schemes. As shown, in both schemes,
the Multi-CNNs model outperforms the Single-CNN model by a
large margin across all three metrics. Specifically, in the one-side
pill recognition scheme, MAP score increases 0.14 (from 0.242 to
0.382); Top-1 accuracy increases 27.1% (from 26.0% to 53.1%);
and Top-5 accuracy increases 29.9% (from 53.2% to 83.1%). In
the two-side pill recognition scheme, MAP score increases 0.27
(from 0.567 to 0.837); Top-1 accuracy increases 31% (from 43.1%
to 74.1%); and Top-5 accuracy increases 22.9% (from 73.5% to
96.4%). This result demonstrates the significant superiority of the
Multi-CNNs model over the Single-CNN model. This is because
for the Single-CNN model (i.e., Color CNN), its recognition perfor-
mance suffers when the color of the pill is changed in unconstrained
conditions. In contrast, even if the color of the pill is changed, the
Multi-CNNs model can still count on the shape and imprints infor-
mation extracted from the Gray CNN and Gradient CNN to retrieve
the correct pill. It is also worthwhile to note that both Single-CNN
and Multi-CNNs achieve much better recognition performance in
the two-side scheme than in the one-side scheme. This result in-
dicates that providing both front and end side images of the query
pill can significantly enhance the recognition performance.

6.2.2 Capability of the Student Network
Table 5 also compares the recognition performance between the

teacher network and the student network. Two types of student
network are considered: 1) student network with KD, which is the
compressed Multi-CNNs model trained with Knowledge Distilla-
tion; and 2) student network without KD, which is the compressed
Multi-CNNs model trained without Knowledge Distillation. As
shown, for student network with KD, even if the student network
has much fewer parameters, with the knowledge passed from the
teacher network, it achieves almost equivalent recognition perfor-
mance as the teacher network. For example, in the two-side pill
recognition scheme, student network with KD achieves 95.6% Top-
5 accuracy, which is only 0.8% less than the teacher network. This
result indicates that the student network, though small in size, is
able to absorb the knowledge passed from the teacher network,
which demonstrates the effectiveness of our Knowledge Distillation-
based model compression technique. In contrast, for student net-
work without KD, by learning from the training dataset by itself
with no knowledge passed from the teacher network, it has a sig-
nificant performance drop across all three metrics in both schemes
compared to the teacher network.

Finally, Figure 8 plots the Cumulative Match Characteristic (CMC)
curves for both one-side and two-side pill recognition schemes to
illustrate the trend of the Top-K accuracy across different models.
As shown, in both one-side and two-side schemes, student network
with KD is closely aligned with the teacher network from Top-1 to
Top-20 accuracy. It also consistently outperforms student network
without KD and the Single-CNN model from Top-1 to Top-20 ac-
curacy. These results demonstrate once again the effectiveness of
our Knowledge Distillation-based model compression technique.
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One-Side Pill Recognition Two-Side Pill Recognition
Model MAP Top-1 Top-5 MAP Top-1 Top-5

Single-CNN 0.242± 0.008 26.0± 1.2% 53.2± 1.9 0.567± 0.007 43.1± 1.2% 73.5± 1.0%
Multi-CNNs (Teacher Network) 0.382± 0.008 53.1± 1.0% 83.1± 0.9% 0.837± 0.007 74.1± 0.8% 96.4± 0.8%

Student Network with KD 0.375± 0.009 52.7± 1.1% 81.7± 1.1% 0.829± 0.007 73.7± 1.0% 95.6± 0.5%
Student Network without KD 0.353± 0.008 47.1± 1.0% 76.6± 1.1% 0.779± 0.007 67.5± 0.9% 90.6± 0.7%

Table 5: Summary of unconstrained pill image recognition results (KD = Knowledge Distillation).
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(a) The CMC curve of the One-Side Pill Recognition scheme.
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(b) The CMC curve of the Two-Side Pill Recognition scheme.

Figure 8: The Cumulative Match Characteristic (CMC) curves of two eval-
uation schemes. The horizontal axis is the rank K; and the vertical axis is
the corresponding Top-K accuracy.

6.3 System Performance
To evaluate the system performance of MobileDeepPill, we have

implemented MobileDeepPill end-to-end on three hardware plat-
forms. Our goal is to profile the system performance of MobileDeep-
Pill across platforms with different computing power. Specifically,
we use a desktop installed with an Intel i7-5930k CPU and a Nvidia
GTX 1080 GPU to simulate a cloud server; we use a Nvidia Jet-
son TX1 mobile development board that contains a Nvidia Tegra
X1 GPU to simulate the next-generation smartphone with built-in
high-end mobile GPU; and we use the Samsung Galaxy S7 edge
as the commodity smartphone platform and run MobileDeepPill on
its CPU. Figure 9 shows the three hardware platforms. The specs
of those three hardware platforms are summarized in Table 6.

To provide a comprehensive evaluation, we have evaluated the
system performance of all the six models listed in Table 2 (i.e.,
Model T, A, B, C, D, and E) in terms of runtime performance, run-
time memory performance, and energy consumption. In the fol-
lowing, we report their system performance respectively.

(a) Desktop	with	Intel	i7-5930k	CPU	
and	Nvidia GTX	1080	GPU

(b)	Nvidia Jetson TX1 (c)	Samsung	Galaxy	
S7	edge

Figure 9: Hardware platforms.

Platform CPU RAM GPU
Cores Speed Cores GFLOPS Speed

Desktop 6 3.7 GHz 32 GB 2560 8228 1.67 GHz
Jetson TX1 4 1.9GHz 4GB 256 512 1 GHz

Galaxy S7 edge 8 2.3 GHz 4 GB - - -

Table 6: The specs of the three hardware platforms.

6.3.1 Runtime Performance
To evaluate the runtime performance of MobileDeepPill, we mea-

sure the average processing time consumed at each computing stage
during inference. An inference carried out by MobileDeepPill con-
sists of four computing stages: 1) coarse-grained localization, 2)
fine-grained localization, 3) CNN feature extraction, and 4) pill re-
trieval. We run 2000 inferences and report the average runtime
at each stage. Specifically, since the computations at stages 1),
2) and 4) only involve CPU, we first examine the runtime perfor-
mance of these three stages. Table 7 lists the CPU runtime of these
three stages on the three hardware platforms. As shown, among the
three hardware platforms, the Galaxy S7 edge has the worst runtime
performance. Among the three computing stages, fine-grained lo-
calization has the worst runtime performance. This is because it
involves extracting HOG features which is computation intensive.

Platform Coarse-Grained Fine-Grained Pill Retrieval
Localization Localization

Desktop 0.2 6.1 1.2
Jetson TX1 0.5 39.8 2.7

Galaxy S7 edge 47.2 165.1 39.4

Table 7: CPU runtime of coarse-grained localization, fine-grained localiza-
tion, and pill retrieval computing stages during inference (unit: ms).

Next we evaluate the runtime performance of stage 3) of all the
six CNN models listed in Table 2 on the three platforms. Figure
10 illustrates the results and we have three observations. First, the
CNN runtime on GPU is significantly lower than the CNN runtime
on CPU across all six CNN models, demonstrating the significant
superiority of GPU over CPU for running CNN models. For each
CNN model, GPU achieves at least 30X speedup over CPU on the
desktop platform; and at least 58X speedup on the mobile platforms
(i.e., TX1 and S7 edge). Second, our model compression technique
effectively reduces CNN runtime on both desktop and mobile plat-
forms. Specifically, on the desktop platform, the student network
(i.e., Model E) achieves 1.43X (163ms / 114ms) speedup on CPU
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Figure 10: CNN runtime performance on three platforms (T = teacher network, E = student network).
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Figure 11: CNN runtime memory usage on three platforms (T = teacher network, E = student network).

and 1.1X (4.2ms / 3.8ms) speedup on GPU over the teacher net-
work (i.e., Model T); on the mobile platforms, the student net-
work achieves 1.8X (2407ms / 1335ms) speedup on CPU and 2.1X
(40ms / 19ms) speedup on GPU over the teacher network. Finally,
the reduction in runtime is not as significant as the reduction in
FLOPS listed in Table 2. This is due to the parallel operations in
the CNN inference implementations. As an example, on the desk-
top platform, the GPU runtime barely changes as the CNN model
size decreases. This is because the operations on the GTX 1080
GPU are highly parallel.

6.3.2 Runtime Memory Usage
We evaluate the runtime memory usage of all six CNN models

on the three platforms. To accurately measure the CNN runtime
memory usage, for Galaxy S7 edge, garbage collection operation is
invoked each time before we measure the runtime memory usage.
For the desktop and Jetson TX1, we subtract the memory usage
before the CNN model is loaded and only report the memory us-
age that is allocated to the CNN model only. Figure 11 illustrates
the results. As shown, our model compression technique effec-
tively reduces the CNN runtime memory usage on both desktop
and mobile platforms. In particular, the student network only re-
quires 34MB runtime memory to run on the commodity Samsung
Galaxy S7 edge smartphone, achieving a reduction of 139MB run-
time memory compared to its teacher network (173MB).

6.3.3 Energy Consumption
To evaluate the energy consumption of MobileDeepPill, we mea-

sure the average energy consumption at each computing stage dur-
ing inference on two mobile platforms: Galaxy S7 edge and Jet-
son TX1. We use the Monsoon power monitor [3] to measure the
power consumption of Galaxy S7 edge and the PWRcheck power
analyzer [5] to measure the power consumption of Jetson TX1. We
run 2000 inferences and report the average energy consumption

Stage Power (mW) Time (ms) Energy (mJ)
Sleep 39.7 - -

Screen-On 567.6 - -
App-On 1180.9 - -

Coarse-Grained Localization 2895.1 47.2 137
Fine-Grained Localization 2473.5 165.1 408
Teacher Network (CPU) 5546.2 2407 13350
Student Network (CPU) 5243.8 1335 7000

Pill Retrieval 3042.7 39.4 120
Total (Teacher) - - 14015
Total (Student) - - 7665

Table 8: Energy consumption on Samsung Galaxy S7 edge smartphone.

Stage Power (mW) Time (ms) Energy (mJ)
Idle 3564.9 - -

Coarse-Grained Localization 5711.3 0.5 3
Fine-Grained Localization 5849.5 39.8 233
Teacher Network (GPU) 11763.4 40 471
Student Network (GPU) 9378.7 19 178

Pill Retrieval 6533.1 2.7 18
Total (Teacher) - - 725
Total (Student) - - 432

Table 9: Energy consumption on Nvidia Jetson TX1.

at each stage. Table 8 and Table 9 show the energy consumption
of Galaxy S7 edge and Jetson TX1 at each computing stage, re-
spectively. As shown, the most power hungry stage is the CNN
feature extraction. This is expected because CNN contains much
more computing operations than any other stage. More interest-
ingly, although the difference in power consumption between the
teacher network and the student network is not large, due to the
significant runtime reduction, the student network consumes much
less energy than the teacher network, reducing energy consumption
by 47.6% (from 13350mJ to 7000mJ) on Galaxy S7 edge and by
62.2% (from 471mJ to 178mJ) on Jetson TX1.
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Platform Model CPU GPU

Galaxy S7 edge Teacher Network 3560 -
Student Network 6509 -

Jetson TX1 Teacher Network - 68822
Student Network - 115500

Table 10: Estimated numbers of inferences with a 3600mAh battery.

Finally, we report the estimated number of inferences that can
be performed with a fully charged 3600mAh battery, assuming an
ideal discharge curve. As listed in Table 10, when the teacher net-
work is used, S7 edge can process a total number of 3560 infer-
ences. In comparison, when the student network is used, the total
number of inferences can be processed is increased to 6509.

7. DISCUSSION AND FUTURE WORK
Impact on Pill Image Recognition Technology: MobileDeepPill
represents the state-of-the-art mobile vision system for pill image
recognition in unconstrained real-world settings. It demonstrates
the superiority of deep learning-based approaches which learn fea-
tures automatically over traditional approaches which use hand-
crafted features designed based on domain knowledge. Given its
promising performance and the prevalence of mobile phones, we
envision that MobileDeepPill can become a widely used tool that
provides people with a simple and convenient way to identify mys-
tery pills and fetch pill information when needed.
Generality of MobileDeepPill: Although MobileDeepPill is de-
signed for solving unconstrained pill image recognition problem
using mobile phones, many techniques involved in MobileDeepPill
can be generalized to the development of other mobile sensing sys-
tems with on-device deep learning algorithms. First, the quality of
the sensor data collected by mobile sensing systems can be easily
deteriorated by a variety of noises in unconstrained mobile condi-
tions. The employment of triplet loss can enhance the resilience of
mobile sensing systems to those noises. Second, modern mobile
sensing systems normally utilize more than one sensing modalities
to capture information from users and their surrounding environ-
ment. The multi-CNNs architecture can be applied to building mo-
bile sensing systems that need to combine information from mul-
tiple sensor data sources. Finally, the general trend on developing
new deep neural networks has been to make the networks larger
and more complicated to maximize the recognition performance
without considering model size and computational complexity. The
Knowledge Distillation-based model compression technique can be
applied to any large deep convolutional models to reduce their num-
bers of parameters and FLOPS so that the compressed models can
efficiently run on the resource-limited mobile sensing systems.
Opportunities for Improvement: There are opportunities to make
MobileDeepPill better. As an example, MobileDeepPill currently
does not support recognizing multiple pills appeared in one image.
To solve this issue, as the first step, algorithms that can accurately
detect and localize multiple pills need to be developed. After the
pills are localized and segmented, the orientation of each individual
pill must be determined, and each pill must be oriented correctly
before sending to the pill recognition system for identification. We
leave it as our future work.

8. RELATED WORK
Our work is related to two research areas: 1) pill image recognition;
and 2) deep neural network model compression. In this section, we
provide a brief review of the most relevant work within each area.

Pill Image Recognition: Due to the lack of large openly available
datasets, there are only a few works on pill image recognition, and
most of them focus on pill images taken in well-controlled con-
ditions. Lee et al. [21] developed a system called Pill-ID to rec-
ognize illicit pills using Hu moment and Grid intensity, where the
illicit pills are of high quality and manually cropped. Caban et al.
[8] proposed a pill recognition scheme using shape, imprint and
color features. However, they used augmented images which were
generated by random perturbation of the reference images to eval-
uate the system. All of these methods used hand-crafted features
designed based on domain knowledge for recognition. In contrast,
MobileDeepPill is the first work on developing deep learning-based
approach to automatically learn the features for recognizing uncon-
strained pill images.
Deep Neural Network Model Compression: Model compression
for deep neural networks has attracted significant attention in re-
cent years due to the imperative demand on running deep learning
models on resource limited platforms. In general, deep neural net-
work model compression techniques can be grouped into two cat-
egories. The first category is focused on compressing pretrained
large networks. For example, Han et al. [11] proposed a network
pruning method that identifies important connections in the deep
neural network and removes all the unimportant connections whose
weights are lower than a threshold. Rastegari et al. [23] developed
Binary-Weight-Networks and XNOR-Networks that compress net-
works by approximating standard convolutional operations using
binary operations. Denton et al. [10] exploited the redundancy
present within the convolutional filters to derive approximations
using Singular Vector Decomposition (SVD) that significantly re-
duce the computation and memory footprint. The second category
is focused on designing and training small networks directly. For
example, Iandola et al. [16] proposed a squeeze layer that only has
1 × 1 filters to re-design the network architecture. The generated
smart network achieves AlexNet-level accuracy with 50x fewer pa-
rameters. MobileDeepPill follows the idea of the second category.
It uses a number of strategies to design a new network architec-
ture with a much smaller footprint and learns the parameters of the
smart network via the knowledge distillation framework [15].

9. CONCLUSION
In this paper, we presented the design, implementation and evalua-
tion of MobileDeepPill, a small-footprint mobile vision system for
recognizing unconstrained pill images. Based on a novel multi-
CNNs architecture, MobileDeepPill achieves state-of-the-art pill
image recognition performance with 52.7% Top-1 accuracy and
81.7% Top-5 accuracy in one-side pill recognition scheme as well
as 73.7% Top-1 accuracy and 95.6% Top-5 accuracy in two-side
pill recognition scheme. By leveraging a novel Knowledge Distillation-
based deep model compression framework, MobileDeepPill only
requires 34MB runtime memory to run the multi-CNNs model and
is able to perform low-power, near real-time pill image recogni-
tion on commodity smartphones without cloud offloading. With
the support of high-end mobile GPU, the runtime performance is
significantly improved from 1.58s to 270ms.
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