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Recent Developments in Bootstrap
Methodology
A. C. Davison, D. V. Hinkley and G. A. Young

Abstract. Ever since its introduction, the bootstrap has provided both a
powerful set of solutions for practical statisticians, and a rich source of
theoretical and methodological problems for statistics. In this article, some
recent developments in bootstrap methodology are reviewed and discussed.
After a brief introduction to the bootstrap, we consider the following topics
at varying levels of detail: the use of bootstrapping for highly accurate
parametric inference; theoretical properties of nonparametric bootstrapping
with unequal probabilities; subsampling and the m out of n bootstrap;
bootstrap failures and remedies for superefficient estimators; recent topics
in significance testing; bootstrap improvements of unstable classifiers and
resampling for dependent data. The treatment is telegraphic rather than
exhaustive.
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1. INTRODUCTION

Since its introduction by Efron (1979), the boot-
strap has become a method of choice for assessing un-
certainty in a vast range of domains. So extensive is
the literature on the topic that even book-length treat-
ments such as Davison and Hinkley (1997), Shao and
Tu (1995), Efron and Tibshirani (1993) or Hall (1992)
treat only certain aspects. In this article, we attempt to
give a bird’s-eye overview of the current state of boot-
strap research, treating only sketchily topics that are
dealt with elsewhere in this issue and focusing on work
that strikes us as most promising for future develop-
ments.
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Section 2 outlines some basic ideas and in particu-
lar describes bootstrap approaches to the fundamental
statistical activities of confidence interval construc-
tion and testing hypotheses. Subsequent sections re-
view some of the extensions, focusing on theoretical
and methodological work that has appeared since pub-
lication of the above books. Inevitably, given the enor-
mous volume of published research, our selection of
topics is incomplete and of course it reflects our in-
terests. Section 3 describes how bootstrap simulation
can be used to provide highly accurate parametric in-
ference and Section 4 focuses on nonuniform nonpara-
metric sampling schemes. Section 5 outlines the topic
of subsampling, which generalizes the bootstrap and
can repair it when the usual bootstrap is inconsistent.
Aspects of bootstrap failure are also discussed in Sec-
tion 6, which assesses the usefulness of fixing the boot-
strap in one important situation where it fails, that is,
superefficient estimation at one point of the parame-
ter space. Section 7 gives a brief discussion of devel-
opments in bootstrap hypothesis testing and Section 8
outlines how the bootstrap provides a smoothing mech-
anism that can substantially reduce prediction and clas-
sification error in machine learning settings. The final
sections touch on dependent data and on further topics.
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Although much of our discussion generalizes to
more complex situations, for simplicity of exposition
we mostly suppose that the data available form a
random sample, that is, a set of independent identically
distributed random variables.

2. KEY IDEAS

One reason for the success of the bootstrap lies
in its simplicity, wherein theoretical understanding
can apparently be replaced by repeated computations
with random samples. And what a brilliantly chosen
name! The most pervasive idea is sometimes called the
substitution principle or, less loftily, the plug-in rule—
explicit recognition of the fact that frequentist
inference involves the replacement of an unknown
probability distribution F by an estimate F̃ . In the
simplest setting a random sample Y = (Y1, . . . , Yn) is
available and the nonparametric estimate is the empir-
ical distribution function F̂ , while a parametric model
F(y;ψ) with a parameter ψ of fixed dimension is re-
placed by its maximum likelihood estimate F(y; ψ̂).
The choice between parametric and nonparametric es-
timates depends on the setting, and semiparametric
estimates are also in common use, particularly in re-
gression problems. The estimate of F can be modified
by the imposition of constraints, as in hypothesis test-
ing problems, or for technical reasons—for instance, to
improve a rate of convergence.

Recognizing that the era of cheap computing just
around the corner would democratize data analysis,
the second idea was to replace analytical calculation
of properties of an estimator θ̂ of an unknown pa-
rameter θ = θ(F ) by simulation from F̃ . This gives
the familiar generation of R replicate bootstrap sam-
ples {Y ∗

1 , . . . , Y ∗
n } by independent sampling from the

fitted model F̃ and the use of the corresponding esti-
mates θ̂∗

1 , . . . , θ̂∗
R to estimate repeated sampling prop-

erties of θ̂ . Particularly in nonparametric settings, we
refer to such resampling as the ordinary bootstrap.
An important point is that, subject to mild conditions,
θ(·) can be the output of an algorithm of almost ar-
bitrary complexity, shattering the naive notion that a
parameter is a Greek letter appearing in a probability
distribution and showing the possibilities for uncer-
tainty analysis for the complex procedures now in daily
use, but at the frontiers of the imagination a quarter of
a century ago.

The combination of these two ideas makes the boot-
strap a highly flexible tool for inference that is appeal-
ing from various viewpoints. It is applicable by nonex-
pert practitioners in a vast range of applications and yet

susceptible to study by theoreticians because of its ob-
vious relationships to existing procedures. Bickel and
Freedman (1981) and others investigated conditions
under which bootstrap inference is consistent and, in
the process, put into place valuable mathematical ma-
chinery for studying it. A series of “smoking guns”
(e.g., Bretagnolle, 1983) pointing at instances of boot-
strap failure spurred researchers to broaden the applica-
bility of the original sampling scheme; we discuss two
related approaches to this in Section 5; further recent
theoretical discussions are given by Beran (1997) and
Putter and van Zwet (1996). An important step forward
was the realization (Singh, 1981) that the bootstrap
could deliver higher-order accuracy for confidence in-
tervals, equivalent to Edgeworth correction of classi-
cal normal intervals, but less painful and less liable to
error, and hence more reliable in practice. The subse-
quent entwining of classical asymptotics and the boot-
strap summarized by Hall (1992) owes much to Peter
Hall and his coauthors; Hall (1986) was particularly in-
fluential.

A good part of the theoretical bootstrap literature
concerns the construction of generally reliable non-
parametric confidence intervals. The two main ap-
proaches to this are based on the construction of Stu-
dentized pivots and on the direct use of quantiles of
the bootstrap replicates θ̂∗

1 , . . . , θ̂∗
R . The first approach

is inspired by the Student t statistic and requires an es-
timated variance V ∗ for θ̂∗ based on the same boot-
strap sample. Then an Edgeworth expansion argument
shows that the quantiles of Z∗ = (θ̂∗ − θ̂ )/V ∗1/2 pro-
vide consistent estimators of the quantiles of Z = (θ̂ −
θ)/V 1/2 for a wide class of estimators θ̂ that fall into
the “smooth function model” (Hall, 1992). This results
in so-called Studentized bootstrap or bootstrap t con-
fidence intervals for θ that are second-order accurate,
that is, the probability that a one-sided interval with
nominal level 1−α contains θ is 1−α+O(n−1). This
improves on the coverage error for the corresponding
normal confidence interval, which is only first-order
accurate, differing from the nominal probability by
O(n−1/2). One view of the second approach is that re-
sampling of θ̂∗ conditional on θ̂ is used to approximate
sampling from the posterior distribution of θ given θ̂ .
This yields two-sided confidence intervals of the form
(θ̂∗

(Rα1)
, θ̂∗

(R(1−α2))
), where θ̂∗

(r) is the r th ordered boot-
strap replicate. The simplest and crudest choice,
α1 = α2 = α, yields the percentile intervals, but the
corresponding one-sided intervals are only first-order
accurate, and improvements have been sought that de-
termine α1 and α2 empirically (Efron, 1987; DiCiccio
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and Efron, 1992, 1996). The resulting bias-corrected
and accelerated (BCa) intervals and their variants
are, like Studentized bootstrap intervals, second-order
accurate. Unlike the Studentized intervals, however,
BCa intervals are transformation-invariant. Numeri-
cal work has shown that both Studentized bootstrap
and BCa intervals typically show slight undercoverage,
although the former intervals perform somewhat bet-
ter, partly because occasional instability in the vari-
ance estimate V can lead to excessively long intervals.
Poor coverage of confidence intervals can be improved,
sometimes greatly, by a process known as prepivoting
(Beran, 1987, 1988), which involves bootstrap correc-
tion of bootstrap procedures and usually entails a dou-
ble or nested bootstrap computation; see Section 4.

The essential elements of a hypothesis test are a null
hypothesis H0 which imposes contraints on the distri-
bution of the data, for example, fixing a mean value,
and a test statistic T , large values of which supply evi-
dence against H0. The degree of disagreement between
the data and H0 is measured by the significance prob-
ability or P -value pobs = Pr0(T ≥ tobs), where tobs is
the value of T actually observed, and the probability is
calculated under a null hypothesis distribution. Boot-
strap estimation of pobs involves computation under
the null hypothesis distribution, usually by simulation
from an estimate F̃0 that satisfies H0. In the nonpara-
metric case, the null hypothesis may entail changes to
the support of F̃ , changes to the resampling probabili-
ties attached to Y1, . . . , Yn or some other modification
of the empirical distribution function; for related dis-
cussion, see the early paragraphs of Section 4. In many
comparative test settings the resulting bootstrap tests
are almost equivalent to permutation tests, the essen-
tial difference being use of sampling with and without
replacement.

The need to modify the sampling plan can be
eliminated if the test is based on a pivot. Suppose,
for example, that H0 implies that θ equals some fixed
value θ0 and that (θ̂ − θ)/V 1/2 is the basis of the
test. Then under the null hypothesis tobs = (θ̂obs −
θ0)/V

1/2
obs is the observed value of a random variable

that has a distribution well approximated by that of
(θ̂∗ − θ̂ )/V ∗1/2 obtained by simulation from either F̃0
or F̃ , because of its pivotality. Thus simulation from
a specially constructed null distribution is not needed
in this rather special circumstance (Hall and Wilson,
1991). A simpler approach that is sometimes available
is to equate inclusion of a null hypothesis value θ0 in a
1 − α confidence interval for θ with pobs ≥ α (Beran,
1986). This coincides with the previous use of a pivot,

if that pivot were used for the confidence set. Note,
however, that for other than point null hypotheses, care
must be taken with the shape of the confidence set;
for example, one-sided tests correspond to one-sided
intervals with scalar parameters. See also Section 7.

When the data are independent but not identically
distributed, the key step in applying the bootstrap is
to identify exchangeable components to which resam-
pling can be applied. Often these components are resid-
uals of some sort: if, for instance, a regression model
sets Y1 = h1(ψ, ε1), . . . , Yn = hn(ψ, εn) where the εj

form a random sample with distribution function G,
then G is typically estimated using the empirical dis-
tribution function of residuals ε̂j found as the solu-
tions to Yj = hj (ψ̂, ε̂j ), where ψ̂ is an estimate of ψ .
A bootstrap data set can then be formed by indepen-
dent sampling of ε∗

1, . . . , ε∗
n from ε̂1, . . . , ε̂n and setting

Y ∗
j = hj (ψ̂, ε∗

j ). Such model-based bootstrapping may
be extended to dependent data situations where a spe-
cific parametric model is central to the investigation,
for example, in testing whether time series data fol-
low a particular autogressive moving average model.
Purely nonparametric bootstrapping is difficult in such
circumstances, and parametric or semiparametric mod-
els are generally needed. In some cases, stratified re-
sampling is needed, where the strata are empirically
chosen to have roughly homogeneous variation. Per-
haps the most extreme form of this is the “wild” boot-
strap (Wu, 1986; Härdle, 1989, 1990; Mammen, 1993),
in which each residual defines its own stratum.

Davison and Hinkley (1997) gave extensive cover-
age of the topics sketched above, with references to the
primary literature.

3. BOOTSTRAPS FOR PARAMETRIC
LIKELIHOOD INFERENCE

While the predominant focus in the bootstrap lit-
erature has been the development of procedures for
accurate nonparametric inference, it has been recog-
nized for some time (DiCiccio and Romano, 1995)
that commonly used bootstrap procedures such as the
BCa confidence limit method offer second-order ac-
curacy when applied in parametric models. For para-
metric inference, the “bootstrap era” has also been
a “likelihood era,” leading from Efron and Hinkley
(1978), Barndorff-Nielsen and Cox (1979) and several
articles in the 1980 volume of Biometrika (Barndorff-
Nielsen, 1980; Cox, 1980; Durbin, 1980; Hinkley,
1980) through Barndorff-Nielsen (1983) to a large lit-
erature on second-order accurate likelihood-based in-
ference, much of it synthesized in Barndorff-Nielsen
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and Cox (1994) and Severini (2000). More recently,
parametric bootstrap schemes have been developed
which capture this accuracy automatically.

Let Y = (Y1, . . . , Yn) be a continuous random vector
that has a probability density function fY (y; θ) that be-
longs to some specified parametric family, depending
on an unknown vector parameter θ = (γ, ξ) partitioned
into a scalar parameter γ of interest and a nuisance pa-
rameter ξ . In this setting, inference about γ is typically
based on the profile log-likelihood �p(γ ) = �(γ, ξ̂γ )

and the associated likelihood ratio statistic wp(γ ) =
2{�p(γ̂ ) − �p(γ )}; here �(γ, ξ) = log fY (y;γ, ξ) is
the log-likelihood function, θ̂ = (γ̂ , ξ̂ ) is the over-
all maximum likelihood estimator of θ and ξ̂γ is the
constrained maximum likelihood estimator of ξ for
given γ . Whereas the interest parameter is scalar, infer-
ence may be based on the signed root likelihood ratio
statistic rp(γ ) = sgn(γ̂ −γ )wp(γ )1/2. In regular cases,
wp has the chi-squared distribution χ2

1 to error of or-
der O(n−1) and rp has the standard normal distribution
N(0,1) to error of order O(n−1/2).

A substantial literature that originated with
Barndorff-Nielsen (1986) concerns analytically ad-
justed versions of rp that have the form

ra = rp + r−1
p log(up/rp)

and that are distributed as N(0,1) to error of order
O(n−3/2). The statistic up depends on specification of
an ancillary statistic, a function of the minimal suffi-
cient statistic which is approximately pivotal. The ac-
curacy of χ2

1 and N(0,1) approximations to the distri-
butions of wp and rp can be enhanced by parametric
bootstrapping. Let Y ∗ denote a random vector whose
density is the fitted parametric density fY (y; γ̂ , ξ̂ ) and
let w∗

p and r∗
p denote the versions of wp and rp based

on Y ∗. It was shown by Martin (1990) that the distri-
bution of w∗

p approximates the true distribution of wp

to error of order O(n−3/2), an improvement over the
O(n−1) accuracy offered by the χ2

1 approximation,
while Bickel and Ghosh (1990) found that this boot-
strap approximation automatically yields Bartlett cor-
rection of the likelihood ratio statistic. DiCiccio and
Romano (1995) established that the distribution of r∗

p
under this parametric bootstrap scheme approximates
the true distribution of rp to error of order O(n−1).
Simple parametric bootstrapping therefore provides
higher-order accuracy than asymptotic approximation.

EXAMPLE 1 (Exponential regression). Consider
an exponential regression model in which lifetimes

T1, . . . , Tn are independent and exponentially distrib-
uted, with means of the form E(Ti) = exp(β + ξzi),
where z1, . . . , zn are known covariates. Suppose that
inference is required for the mean lifetime for covari-
ate value z0, that is, exp(β + ξz0), and let the interest
parameter be γ = β + ξz0, with nuisance parameter ξ .
The signed root likelihood ratio statistic is

rp(γ ) = sgn(γ̂ − γ )

·
[

2n

{
(γ − γ̂ ) + (̂ξγ − ξ̂ )c̄

+ n−1e−γ
n∑

i=1

Tie
−ξ̂γ ci − 1

}]1/2

,

where c̄ is the average of ci = zi − z0, i = 1, . . . , n.
The analytic calculations leading to the adjusted ver-
sion ra of rp (Barndorff-Nielsen, 1986) are here read-
ily performed. A one-sided confidence set (γ̂l,∞)

of coverage 1 − α + O(n−1/2) is {γ : rp(γ ) ≤ z1−α},
with the lower confidence limit γ̂l obtained by solving

rp(γ ) = z1−α , where z1−α = 
−1(1 − α) and 
 is the
standard normal distribution function. The O(n−1/2)

coverage error of this confidence set is reduced to
O(n−3/2) for the corresponding set {γ : ra(γ ) ≤ z1−α}
based on the adjusted quantity ra. A bootstrap confi-
dence set of nominal coverage 1 − α is {γ : rp(γ ) ≤
ĉ1−α} where ĉ1−α denotes a bootstrap estimate of the
1 − α quantile of rp, obtained as the 1 − α quantile
of rp(γ̂ ), under sampling from the model with para-
meter value (γ̂ , ξ̂ ).

In this example, rp is exactly pivotal, so the boot-
strap yields the true sampling distribution. Thus the
bootstrap confidence set has coverage exactly 1 − α,
rather than a coverage error of order O(n−1), as is the
case generally. In practice, this set must be constructed
by Monte Carlo simulation; a few thousand bootstrap
samples are typically needed to make simulation vari-
ability negligible.

For numerical illustration we consider data extracted
from Example 6.3.2 of Lawless (1982). The n = 5
responses Tj are 156, 108, 143, 56 and 1, survival times
in weeks of patients suffering from leukaemia, and
the corresponding covariates are 2.88, 4.02, 3.85, 3.97
and 5.0, the base-10 logarithms of initial white blood
cell count. We take the parameter of interest to be the
mean lifetime for z0 = log10(50,000). For these data,
γ̂ = 2.399 and ξ̂ = −2.364. We consider the coverage
properties of the three confidence sets for samples
of size five from an exponential regression model
with these parameter values and the fixed covariate
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TABLE 1
Coverages (%) of confidence sets (γ̂l,∞) for mean γ = exp(β +
ξz0) at z0 = log10(50,000) in Example 1, estimated from 20,000
data sets of size n = 5 and using R = 1999 bootstrap replicates

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0


(rp) 1.5 3.6 6.7 12.8 93.3 96.8 98.6 99.4

(ra) 1.0 2.6 5.4 10.4 89.8 94.9 97.4 99.0
Bootstrap 1.0 2.5 5.1 10.0 89.9 94.8 97.4 98.9

values above. Table 1 compares actual and nominal
coverages provided by the three constructions based on
20,000 simulated data sets. Coverages based on normal
approximation to rp are quite inaccurate, but normal
approximation to ra provides much more accurate
confidence sets. Bootstrap confidence sets, here based
on 1999 bootstrap samples, have coverages close to
nominal levels.

Unless the signed root statistic is exactly pivotal,
the bootstrap procedure does not provide exact in-
ference. An important recent development is the ob-
servation that the accuracy of inferences based on rp
can be further increased by a simple modification of
the parametric bootstrap scheme, involving simulation
from the model corresponding to the constrained es-
timator (γ, ξ̂γ ) rather than (γ̂ , ξ̂ ). Let r†

p be the ver-

sion of rp based on a random vector Y † that has den-
sity fY (y;γ, ξ̂γ ). DiCiccio, Martin and Stern (2001)
showed that approximation of the distribution of rp

by that of r†
p is accurate to order O(n−3/2). Under

this approach, a confidence set of nominal coverage
1 − α for the parameter γ of interest is {γ : rp(γ ) ≤
c1−α(γ, ξ̂γ )}, where c1−α(γ, ξ̂γ ) denotes the 1 − α

quantile of the sampling distribution of r†
p , the 1 − α

quantile of the distribution of rp(γ ) when the true pa-
rameter value is (γ, ξ̂γ ). It might appear that such a
modified bootstrap confidence set requires a more elab-
orate Monte Carlo construction. In searching for the
endpoint of the set, a separate bootstrap simulation is
apparently required for each candidate value of γ .
However, this can be avoided by use of the Robbins–
Monro stochastic search algorithm (Garthwaite and
Buckland, 1992; Carpenter, 1999), under which a sin-
gle bootstrap sample is generated at each value of γ .
Full details of the search procedure in the context of
inverting tests to provide nonparametric confidence in-
tervals were given by Garthwaite and Buckland (1992);
see also Lee and Young (2003). In simple situations,
less sophisticated search procedures are feasible.

The modified parametric bootstrap approach offers
the same level of accuracy as provided by adjustments
to rp such as ra, while avoiding analytical calculation
and specification of ancillary statistics, which is diffi-
cult outside restricted parametric classes. The reduc-
tion of the order of error, from O(n−1/2) to O(n−3/2),
is a consequence of special properties of the signed root
statistic rp which are not enjoyed by inference quanti-
ties such as pivots based on Studentization of γ̂ − γ or
the profile score function. In parametric contexts there
is therefore a strong theoretical argument in favor of
bootstrapping rp.

EXAMPLE 2 (Normal distributions with common
mean). Consider inference for the mean, based on a
series of independent normal samples with the same
mean but different variances. In this example the
adjusted quantity ra is intractable, although various
messy analytical approximations to it are available.

Example 7.15 of Severini (2000) considered mea-
surements of the strength of six samples of cotton
yarn. We model these as Yij

ind∼ N(γ,σ 2
i ), i = 1, . . . ,6,

j = 1, . . . ,4, and take the common mean γ as the para-
meter of interest, with orthogonal nuisance parameter
ξ = (σ1, . . . , σ6). We consider the coverages of vari-
ous confidence sets for 20,000 data sets generated from
this model with the parameter values fixed as the max-
imum likelihood estimates (MLEs) (γ̂ , ξ̂ ) for the data.
Table 2 shows the coverages for confidence sets based
on normal approximation to rp, normal approximation
to an approximation r̃a to ra based on orthogonal para-
meters (Severini, 2000), the simple bootstrap scheme
which estimates the sampling distribution of rp by its
distribution at parameter value (γ̂ , ξ̂ ) and switching
the point of bootstrapping to the constrained maximum
likelihood estimator (γ, ξ̂γ ). Here the computational
burden of construction of the latter intervals is slight,
and a simple search procedure, involving drawing 1999
bootstrap samples at each of a set of values of γ , is
quite feasible.

Table 2 confirms that the simple bootstrap approach
is an improvement over asymptotic inference based
on rp. Further substantial gains are obtained by the
constrained bootstrap, which improves noticeably on
analytical approximation to the ra adjustment.

The analytic approach based on ra is typically highly
accurate when the dimensionality of the nuisance pa-
rameter is small and ra is easily constructed. The ar-
gument for using the modified bootstrap approach then
rests primarily on maintaining accuracy while avoiding
analytic calculation. In more complex situations, and
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TABLE 2
Coverages (%) of confidence intervals for common mean in Example 2, estimated from

20,000 data sets with bootstrap size R = 1999

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0


(rp) 3.7 6.7 10.6 16.5 83.2 89.0 93.0 96.1

(r̃a) 1.7 3.7 6.7 12.3 87.3 93.0 96.1 98.1
MLE bootstrap 0.8 2.1 4.4 9.3 90.5 95.5 97.8 99.1
Constrained MLE bootstrap 0.9 2.3 4.7 9.8 89.9 95.1 97.4 99.0

especially when the nuisance parameter is high dimen-
sional and ra must be approximated, the modified boot-
strap approach is typically preferable, both in terms of
ease of implementation and accuracy.

In addition to the goal of refined distributional
approximation, recent developments in parametric
likelihood theory are motivated by the Fisherian propo-
sition that inference should be conditional on an ap-
propriate ancillary statistic, when this exists; see, for
example, Chapter 2 of Barndorff-Nielsen and Cox
(1994) or Chapter 12 of Davison (2003). This means
restricting resampling to those samples drawn from a
fitted model with ancillary statistic values close to the
original sample value. This can be done in Example 1,
but numerical results support the view expressed by
DiCiccio, Martin and Stern (2001) that when ra is eas-
ily constructed, it is likely to be preferable to boot-
strapping in terms of conditional accuracy. However,
a full evaluation of parametric bootstrap methods in
terms of such considerations remains to be undertaken.
One approach to conditional parametric bootstrapping
in such cases is through the Metropolis–Hastings algo-
rithm (Brazzale, 2000).

4. WEIGHTED NONPARAMETRIC
BOOTSTRAPPING

The ordinary nonparametric bootstrap uses uniform
resampling from a data sample to mimic the mecha-
nism that originally produced that sample. As noted in
Section 2, an exception to this occurs with significance
tests, because critical values or significance levels for
a test statistic T are determined by its null distribution.
For a null hypothesis H0 : θ = θ0, say, the correspond-
ing null distribution F0 of Y must satisfy θ(F0) = θ0,
and in the nonparametric case an appropriate estimate
of F0 is the nonuniform distribution F̃0 with the same
support as F̃ but with the constraint that θ(F̃0) = θ0.
Resampling from F̃0 is referred to as weighted non-
parametric bootstrapping.

Closer attention has recently been paid to resam-
pling with nonuniform probabilities. These weighted
nonparametric bootstrap schemes involve a range of
bootstrap distributions that depend on a parameter
of interest, rather than a single bootstrap distribution,
and have much in common with the parametric pro-
cedures discussed in Section 3. They encompass a
variety of statistical procedures and are related to
empirical and other forms of nonparametric likeli-
hood (Owen, 1988; DiCiccio and Romano, 1990). In
addition to hypothesis testing, applications include
confidence set construction, variance stabilization, non-
parametric curve estimation, nonparametric sensitivity
analysis and robustification of nonparametric inference
through outlier trimming; see Hall and Presnell (1999a,
b, c). A general theory which elucidates the effective-
ness of weighted bootstrapping in error reduction was
given by Lee and Young (2003).

Suppose that θ = θ(F ) is one parameter of interest
and that we wish to estimate F nonparametrically
under the constraint θ(F ) = θ0, where θ0 may not be
the true value of θ . For an arbitrary probability vector
p = (p1, . . . , pn), let F̂p be the distribution which
attaches probability weight pi to Yi . Given θ0 and
a data set Y , we choose p ≡ p(θ0) to minimize the
Kullback–Leibler distance between F̂p and F̂ ,∫

log
{
dF̂ (x)/dF̂p(x)

}
dF̃ (x) = −n−1

n∑
j=1

log(npj ),

subject to the constraint θ(F̂p) = θ0. The weighted
bootstrap uses the resulting F̂p as the resampling
distribution. We denote samples from this by Y † to
distinguish them from Y ∗ which is generated from the
uniform resampling distribution pj ≡ n−1. Any other
parameter ψ = ψ(F ) has weighted nonparametric
estimator ψ̂0 under the constraint θ = θ0.

Hall and Presnell (1999a) showed theoretical ad-
vantages of weighted bootstrapping in specific exam-
ples. Here we sketch a general theory due to Lee and
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Young (2003) which details the accuracy advantages of
weighted over uniform bootstrapping. Consider the ef-
fectiveness of bootstrapping in transforming a function
U = u(Y, θ) of the data sample Y and the unknown pa-
rameter θ into an approximate pivot, more specifically,
an approximately uniform random variable on (0,1).
The error properties of different bootstrap schemes can
be assessed by measuring closeness to uniformity, the
fundamental goal of bootstrapping being viewed as a
transformation of U to a function U1 = u1(Y, θ) say,
which is exactly uniformly distributed and so provides
exact inference. This process, termed prepivoting by
Beran (1987), can be applied in particular with U a
confidence set root or a test statistic.

Let a one-sided confidence set for θ of nominal
coverage 1 − α be {θ :u(Y, θ) ≤ 1 − α}. An exam-
ple is the percentile method, for which u(Y, θ) =
Pr∗(θ̂∗ > θ), where the asterisk indicates uniform boot-
strapping from Y . Other initial roots included in this
formulation are those based on normal approximation
to the distribution of θ̂ , in which case a confidence
set of asymptotic coverage 1 − α can be defined by
u(Y, θ) = 
{(θ̂ − θ)/V 1/2}.

If the sampling distribution of u(Y, θ) were exactly
U(0,1), then the confidence set would have cover-
age exactly equal to the nominal coverage 1 − α. If
the distribution is not uniform, there is a discrepancy
between the nominal and actual coverages under re-
peated sampling. By bootstrapping, we hope to pro-
duce a new root U1 so that the associated confidence
set {θ : u1(Y, θ) ≤ 1 − α} has lower coverage error.

The uniform bootstrap estimates the distribution
function G(x|θ) of u(Y, θ) by

Ĝ(x) = Pr∗
{
u(Y ∗, θ̂ ) ≤ x

}
,

from which we can define the prepivoted root
û1(Y, θ) = Ĝ{u(Y, θ)} for each possible value θ . How-
ever, this assumes u(Y, θ) is exactly pivotal, albeit not
exactly U(0,1). By contrast, the weighted bootstrap
with samples Y † generated from the distribution F̂p

closest to F̃ in terms of Kullback–Leibler distance,
subject to θ(F̂p) = θ , gives the estimate

G̃(x|θ) = Pr†{
u(Y †, θ) ≤ x

}
,(1)

leading to the weighted prepivoted root ũ1(Y, θ) =
G̃{u(Y, θ)|θ}.

Lee and Young (2003) showed that if u(Y, θ) is
uniform to order O(n−j/2), that is,

Pr{u(Y, θ) ≤ u} = u + O(n−j/2),

then under mild conditions the uniform bootstrap root
û1(Y, θ) is uniform to order O(n−(j+1)/2), while the
weighted bootstrap root ũ1(Y, θ) is uniform to order
O(n−(j+2)/2). Thus uniform bootstrapping reduces er-
ror by an order of O(n−1/2), but weighted bootstrap-
ping is more effective, the error being reduced by
O(n−1).

EXAMPLE 3 (Folded normal mean). We undertook
a simulation study to compare the coverage proper-
ties of bootstrap confidence sets for the mean µ when
F is folded standard normal, for which µ = 0.798. For
20,000 data sets with n = 20, we compared the cover-
age properties of one-sided confidence sets of nominal
coverage 1 − α based on the root u(Y,µ) = 
{(µ̂ −
µ)/V 1/2}, where µ̂ is the sample mean and V = σ̂ 2/n,
with σ̂ 2 being the sample variance, and its unweighted
and weighted prepivoted forms û1(Y,µ) and ũ1(Y,µ),
respectively. Intervals constructed from Û1 were based
on 1999 bootstrap samples. A simple search algo-
rithm was used to construct confidence sets derived
from Ũ1, with 1999 weighted bootstrap samples be-
ing drawn for each of a set of values of µ, to solve
the equation ũ1(Y,µ) = 1 − α which identifies the
confidence set limit. Computational efficiency can be
improved through the Robbins–Monro procedure; see
Section 3. Table 3 displays the coverages of the three
intervals: those based on u(Y,µ) are quite inaccurate,
and substantial improvement is given by both conven-
tional and weighted bootstrapping. However, whether
the weighted bootstrapping does, as asymptotic the-
ory suggests, outperform conventional bootstrapping
depends on the required nominal level 1 − α.

Lee and Young (2003) showed that this general con-
clusion applies to regression settings and robust infer-
ence, as well as to more conventional problems within
the smooth function model. They showed also how it-
eration of weighted bootstrap prepivoting accelerates
the rate of convergence of the error of the bootstrap
inference relative to conventional bootstrapping. Such

TABLE 3
Coverages (%) of bootstrap confidence sets for the mean µ of the
folded standard normal distribution, estimated from 20,000 data

sets of size n = 20 and using R = 1999 bootstrap replicates;
the root taken is u(Y,µ) = 
{(µ̂ − µ)/V 1/2} with µ̂ = Ȳ

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

u(Y,µ) 4.7 7.6 11.3 17.5 94.5 97.8 99.1 99.7
û1(Y,µ) 1.8 3.5 6.6 12.9 93.8 97.4 99.0 99.7
ũ1(Y,µ) 3.2 5.3 8.6 14.6 93.3 97.0 98.7 99.5
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conclusions hold for a whole class of distance mea-
sures which generalize the Kullback–Leibler distance
(Corcoran, 1998; Baggerly, 1998), allowing the con-
struction of weighted bootstrap distributions F̂p that
use well-developed algorithms (Owen, 2001) to reduce
the added computational burden of weighted bootstrap-
ping.

The same theory applies to testing. For example,
when testing a null hypothesis H0 : θ = θ0, a one-
sided test of nominal size α rejects the hypothesis if
u(Y, θ0) ≤ α. If u(Y, θ0) were exactly U(0,1) when
θ = θ0, then the null rejection probability would be
exactly α. To increase the accuracy of an initial root,
(1) applied with θ = θ0 reduces error by O(n−1). In
this case, weighted bootstrapping need only be done
with the single value θ0, so computation is no more
expensive than uniform bootstrapping. The situation is
more complicated for a set null hypothesis.

5. SUBSAMPLING AND THE m OUT OF n

BOOTSTRAP

Bootstrap procedures possess compelling second-
order accuracy properties in many settings, but in
others they are inconsistent unless problem-specific
regularity conditions hold. Thus the development of
a subsampling methodology that provides asymptotic
consistency under extremely weak conditions, espe-
cially where the conventional bootstrap fails, is an im-
portant contribution, of which Politis, Romano and
Wolf (1999) gave a full account. Its basis is the cal-
culation of a statistic for subsamples of the available
data, selected without replacement, and use of these
subsample values to construct an approximation to an
appropriate sampling distribution. The m out of n boot-
strap draws samples of size m < n, often m � n, with
replacement from the original data, and can offer a sim-
ilar repair for inconsistency.

Let Y = (Y1, . . . , Yn) be a random sample of size n

from an unknown distribution F and suppose we wish
to construct a confidence region for a scalar parame-
ter θ ≡ θ(F ). The confidence set is constructed by
estimating the sampling distribution of a statistic
θ̂n ≡ θ̂n(Y ) that converges weakly to θ at a rate τn.
Suppose also that σ̂n ≡ σ̂n(Y ) converges in probabil-
ity to a constant σ > 0. Usually σ 2 ≡ σ 2(F ) is the
asymptotic variance of τnθ̂n, corresponding to Studen-
tization, but this formulation also covers other possibil-
ities; in particular, the un-Studentized case arises with
σ̂n = 1. Let Jn(F ) denote the sampling distribution of

τnσ̂
−1
n (θ̂n − θ) and suppose there exists a nondegen-

erate limiting distribution J (F ), continuous in x and
such that for all real x,

Jn(x,F ) ≡ PF

{
τnσ̂

−1
n (θ̂n − θ) ≤ x

}
→ J (x,F ) as n → ∞;

that is, Jn(F ) converges weakly to J (F ).
Let W1, . . . ,WS be the S = (n

m

)
subsets of (Y1, . . . ,

Yn) of size m, and let θ̂n,m,s and σ̂n,m,s be the values
of θ̂n and σ̂n calculated from Ws . The subsampling
distribution of τnσ̂

−1
n (θ̂n − θ), based on subsample

size m, is

Ln,m(x) = S−1
S∑

s=1

I
{
τmσ̂−1

n,m,s(θ̂n,m,s − θ̂n) ≤ x
}
,

where I (·) denotes the indicator function. Then it may
be shown that if m → ∞ and max(m/n, τm/τn) → 0
as n → ∞, then

sup
x

|Ln,m(x) − J (x,F )| = op(1),

so that confidence sets for θ of asymptotically cor-
rect coverage can be constructed using the quantiles
of Ln,m as approximations to those of τnσ̂

−1
n (θ̂n−θ). If

S is too large for exact computation of Ln,m, a stochas-
tic approximation is found by random sampling from
W1, . . . ,WS .

If the data (Y1, . . . , Yn) are a time series, subsam-
pling remains valid under a strong mixing
assumption (Politis, Romano and Wolf, 1999, Appen-
dix A), now with Ws representing the subsequence
(Ys, Ys+1, . . . , Ys+m−1), where s = 1, . . . , S and S =
n − m + 1.

The bootstrap approximation to Jn(x,F ) is Jn(x,

F̂n), where F̂n is often taken to be the empirical distri-
bution F̃ . Bootstrap consistency and coverage results
analogous to those described above have been proved
for many situations in a series of articles initiated by
Bickel and Freedman (1981), but under stronger con-
ditions. Typically these results are proved by taking
a metric d on the space of probability measures and
showing that d(Fn,F ) → 0 implies weak convergence
of Jn(Fn) to J (F ). Thus the previous assumptions are
strengthened so that convergence of Jn(F ) to J (F )

is locally uniform in F . Moreover, the estimator F̂n

must be shown to satisfy d(F̂n,F ) → 0 almost surely
or in probability under F . No such extra condition is
required for validity of the subsampling approach. In
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counterexamples to asymptotic validity of the boot-
strap, failure stems precisely from nonuniformity in the
convergence.

Subsampling can often be used to remedy boot-
strap inconsistency, leading to the so-called m out of n

bootstrap; see Bickel, Götze and van Zwet (1997).
Instead of approximating Jn(F ) by Jn(F̂n), we use
Jm(F̂n) for some m, usually satisfying m/n → 0 and
m → ∞ as n → ∞. The resulting distribution func-
tion estimator is very similar to Ln,m(x), the key
difference being between sampling with and with-
out replacement. The additional assumption that m2/

n → 0 ensures that conclusions about asymptotic va-
lidity of the subsampling estimator are true also for
the m out of n bootstrap.

Although they provide methodologies that are gener-
ally valid under minimal and easily verifiable assump-
tions, subsampling and the m out of n bootstrap share a
number of awkward features. The most important is the
optimal choice of the subsample size, which depends in
a delicate way on the inference being performed. Em-
pirical choice is often difficult, although methods that
perform satisfactorily in practice have been developed
(Politis, Romano and Wolf, 1999, Chapter 9).

A further theoretical cause for concern relates to the
level of accuracy derived from the subsampling ap-
proach, specifically the rate of convergence of Ln,m(x)

to J (x,F ). This can be illustrated by letting θ̂n

represent the sample mean, for which a normal approx-
imation to J (x,F ) is in error by Op(n−1/2). If Studen-
tization is performed using the usual unbiased variance
estimator, then the best rate of approximation achiev-
able by the subsampling estimator Ln,m(x) is obtained
for m ∝ n2/3, but the constant of proportionality de-
pends on the underlying population and the approxi-
mation error cannot be made smaller than Op(n−1/3)

(Politis, Romano and Wolf, 1999, Section 10.3.2).
Thus in this case the usual normal approximation
is better than subsampling. Chapter 10 of Politis,
Romano and Wolf (1999) described techniques by
which higher-order accuracy can be squeezed from
subsampling estimators; see also Bickel, Götze and van
Zwet (1997), who suggested that although the m out
of n bootstrap shares the same efficiency losses when
a conventional bootstrap is valid, it may be more accu-
rate than subsampling.

In summary, subsampling is valid more widely than
the bootstrap and so may be regarded as superior to
it in terms of first-order asymptotics. Subsampling is
valid under minimal conditions both for random sam-
ples and with more complicated data structures, in par-
ticular time series, marked point processes and random

fields, and it can be extended to situations where the
convergence rate τn of the estimator is unknown. When
the usual bootstrap is valid, however, its higher-order
accuracy makes it preferable. Subsampling is strongly
indicated only when the validity of the bootstrap is un-
clear but that of subsampling can be verified; see, for
instance, Example 2.2.1 of Politis, Romano and Wolf
(1999). When the m out of n bootstrap is valid, it seems
to be preferable to subsampling, but has the same prac-
tical problems.

6. BOOTSTRAPPING SUPEREFFICIENT
ESTIMATORS

More subtle considerations than those of the pre-
vious section come into play in circumstances where
consistency of the conventional bootstrap depends on
the true value of the parameter of interest. In impor-
tant theoretical work, Beran (1997) demonstrated that
in a rich class of parametric models, asymptotic super-
efficiency of a sequence of estimators is a sufficient
condition for bootstrap failure: a conventional para-
metric bootstrap distribution estimator is inconsistent
at any point of superefficiency, while converging to the
correct limiting distribution at any other point in the
parameter space. He gave a detailed analysis within
the locally asymptotically normal model and cited the
Hodges and Stein estimators as examples. Here we dis-
cuss the issues that arise in the context of a particular
version of the Stein estimator. The lessons we learn are
broader, however, because the Stein estimator is proto-
typical of many nonparametric smoothers.

Let Y1, . . . , Yn be independent k-dimensional ran-
dom vectors, distributed according to the multivariate
normal distribution Nk(θ, I ), and define the Stein esti-
mator by

T =
(

1 − k − 2

n‖Ȳ‖2

)
Ȳ , where Ȳ = n−1

n∑
i=1

Yi

and ‖ · ‖ denotes the usual Euclidean norm. A conven-
tional parametric bootstrap approximates the distribu-
tion H(·, θ) of n1/2(T − θ) by the conditional distribu-
tion H(·, Ȳ ) of n1/2(T ∗ − Ȳ ), given Ȳ ; here a bootstrap
sample Y ∗

1 , . . . , Y ∗
n is a random sample from Nk(Ȳ , I )

and T ∗ is the Stein estimator computed from the boot-
strap sample. The bootstrap estimator H(·, Ȳ ) is then
consistent for H(·, θ) for any θ �= 0, but inconsistent
when θ = 0; in this case, it converges to a random prob-
ability measure (Beran, 1997).

The regime considered here is one in which the
dimension k is fixed and asymptotics refer to n → ∞.
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Beran (1995) considered an alternative regime in
which the dimension k → ∞. There too bootstrap
asymptotics are subtle, with theoretical and numerical
results differing substantially from the current regime.

In the present setting there are two natural ways to
repair the bootstrap. First, we can attempt to develop
diagnostics that aid us to decide whether θ = 0 or
not, and then use the standard estimator H(·, Ȳ ) only
if those diagnostics indicate that it is safe to do so.
Empirical diagnostics were discussed by Beran (1997)
and Canty, Davison, Hinkley and Ventura (2002) and
were examined critically by Samworth (2003). Second,
we can use a different bootstrap procedure which
yields consistency for all θ . Two approaches to this are
to use the m out of n bootstrap, and to define a new
estimator θ̂ and approximate H(·, θ) by H(·, θ̂ ), for
example, taking

θ̂ =
{

0, if ‖Ȳ‖ ≤ cn−1/4,
Ȳ , otherwise,

(2)

for appropriate c > 0.
Both approaches lead to consistent bootstrap esti-

mation throughout the parameter space, but both are
problematic in practice. As mentioned in Section 5,
the choice of m for the m out of n bootstrap is diffi-
cult but crucial, while taking m < n may reduce effi-
ciency if the ordinary bootstrap is valid. The second
approach requires precise specification of the new esti-
mator θ̂ and does not guarantee improved finite sample
performance at θ = 0 unless c is chosen carefully. Fur-
ther, both approaches can give estimators which behave
poorly in neighborhoods of θ = 0 compared to the con-
ventional bootstrap (Samworth, 2003). Although these
neighborhoods vanish in the limit as n increases, the
practitioner is confronted with the possibility of an im-
paired inference compared to naive use of the standard
bootstrap estimator.

As an example, consider constructing a confidence
set for θ , centered at the Stein estimator. A confi-
dence set of exact coverage 1 − α is {θ :‖T − θ‖2 ≤
wk(α, θ)}, where wk(α, θ) is the upper α point of the
distribution of ‖T − θ‖2 under Nk(θ, I ). We consider
bootstrap confidence sets of nominal coverage 1 − α.
Under the conventional approach these are obtained by
replacing the unknown wk(α, θ) by a bootstrap esti-
mator wk(α, Ȳ ); here asymptotic correctness depends
on θ . Under the modified approach, wk(α, θ) is re-
placed by wk(α, θ̂ ), with θ̂ defined at (2); this is always
asymptotically justified.

EXAMPLE 4 (Stein estimator). We performed a
simulation study for n = 1, 5 and 10, k = 5 and
θ = √

λ/2 × (−1,1,0,0,0) for a range of λ. For
each n and λ, 50,000 confidence sets of both kinds
were constructed, with bootstrap quantiles estimated
by drawing 999 parametric bootstrap samples. Figure 1
displays the coverages of confidence sets of nominal
coverage 95%. In the definition of the estimator θ̂

we took c = k; we found that smaller values give
much less improvement in coverage accuracy at the
point of inconsistency of the conventional approach,
θ = 0. Although the modified bootstrap procedure has
satisfactory coverage at θ = 0, it performs extremely
poorly near that point, giving much worse coverage
accuracy than does the usual bootstrap. The coverage
error of the usual bootstrap at θ = 0 is less than the
error of the modified procedure at neighboring values.
Thus the price paid to eliminate the unsatisfactory
asymptotic performance of the conventional bootstrap
at θ = 0 is an even greater finite sample error at other
parameter values.

Both these results and similar analysis performed by
Samworth (2003) for the m out of n bootstrap sug-

FIG. 1. Empirical coverages of confidence sets with nominal coverage 0.95 in the Stein estimator example, based on 50,000 parametric
bootstrap samples with conventional (×) and modified (+) bootstraps, with k = 5 dimensions, sample size n = 1,5,10 and c = k.
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gest that the conventional bootstrap, though asymptot-
ically invalid for certain parameter values, might be
preferable in small sample contexts to adjusted pro-
cedures that are asymptotically valid but perform in-
adequately in finite samples. Thus the usual bootstrap
seems preferable for use in most circumstances.

7. MORE ON SIGNIFICANCE TESTS

Statistical methodology has developed to accom-
modate increasingly complex and large data analysis
problems, and part of this methodology is significance
testing. The optimistic view is that bootstrapping can
always provide a solution. One area of recent interest
is significance tests related to nonparametric model fits,
either comparing these to parametric (or semiparamet-
ric) model fits or comparing nonparametric fits from
several data sets. In many cases the asymptotic theory
is both difficult and practically unhelpful, so that boot-
strap resampling schemes do play an important role.
Relevant references include Stute, González Manteiga
and Presedo Quindimil (1998), Fan and Lin (1998),
Delgado and González Manteiga (2001) and Wang and
Wahba (1995). Much of the research extends the basic
model-based resampling described in Chapters 6 and 7
of Davison and Hinkley (1997), for example, but it
seems clear that broader theoretical development is
needed to provide flexible methods.

Below we review one recent contribution by Liu and
Singh (1997), the basis of which is the well-known
connection between significance tests and confidence
sets in parametric problems—crudely that a 1 −α con-
fidence set for a parameter θ contains parameter values
that would not be rejected in a level α significance test
against an appropriate alternative. Some bootstrap pro-
cedures for calculating confidence sets were described
in Section 2, where we mentioned that they can be used
to avoid resampling from null hypothesis models in
tests of significance.

Suppose first that Y1, . . . , Yn are a random sam-
ple from a distribution F , with a parameter θ =
θ(F ) estimated by θ̃ . If we generate R conventional
bootstrap samples and calculate the corresponding es-
timates θ̃∗

1 , . . . , θ̃∗
R , then the empirical strength prob-

ability (ESP) for a set null hypothesis H0 : θ ∈ �0 is
defined to be

ESP = proportion of θ̃∗
r ∈ �0;(3)

it is assumed that �0 has nonzero measure and a
suitably smooth boundary. The ESP behaves much like
a P -value, asymptotically as n → ∞, if after a suitable

common standardization both θ̃∗ − θ̃ and θ̃ − θ have
the same limiting distribution as n → ∞.

One might think of the ESP as analogous to a pos-
terior probability for �0, the distribution of θ̃∗ given
Y1, . . . , Yn being an approximate posterior density.
However, this is only likely to be accurate to the ex-
tent that a normal approximation for θ̂ is accurate and
generally is not second-order correct.

EXAMPLE 5 (Exponential mean). As a simple
example where performance can be measured ex-
actly, suppose that the Yi are independent exponen-
tial variables with common mean θ = µ and that we
wish to test the null hypothesis H0 :µ ≤ µ0 versus
H1 :µ > µ0. An exact test is possible in this problem,
giving a P -value with a uniform distribution.

A bootstrap approach would use the fully efficient
estimator θ̃ = Ȳ , and so

ESP = Pr∗(Ȳ ∗ ≤ µ0|Y1, . . . , Yn).

Here Ȳ ∗ is the average of a random sample of n expo-
nential variables with mean Ȳ if a parametric bootstrap
is used, or the average of a sample of n drawn randomly
with replacement from Y1, . . . , Yn if a nonparametric
bootstrap is used. Table 4 shows how these perform
for n = 10, 25 and 100. For the parametric bootstrap,
the ESP is calculated exactly. The ESP does not work
very well for small n with the parametric bootstrap, but
works reasonably well for the nonparametric bootstrap.

EXAMPLE 6 (Poisson dispersion). Suppose that
Y1, . . . , Yn is a random sample with common mean
µ and variance σ 2, and that we wish to test the null
hypothesis H0 : θ = µ/σ 2 ≥ 1 versus the alternative
hypothesis H1 : θ < 1. This might be taken as a test for

TABLE 4
Percentage of times (in 500 data sets) that ESP is less
than or equal to α in one-sided tests of mean µ0 = 1
based on exponential samples of sizes n = 10,25 and
100, using R = 100 replicates for the nonparametric
bootstrap and the exact proportion for the parametric

bootstrap

100α(%)

n Model 1 5 10 25 50

10 Nonparametric 1 9 14 33 59
Parametric 5 12 18 36 60

25 Nonparametric 2 7 14 26 55
Parametric 3 10 16 30 55

100 Nonparametric 1 7 12 28 51
Parametric 1 8 13 28 53
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TABLE 5
Percentage of times (in 500 data sets) that nonparametric

ESP is less than or equal to α in one-sided tests of
dispersion, when data are a Poisson sample of size n

with mean µ; R = 100 bootstrap replicates are used

100α(%)

n µ 1 5 10 25 50

50 1 2 7 13 24 59
50 10 3 9 15 27 59
10 5 4 15 24 34 68

Poisson dispersion versus overdispersion. We calculate
the ESP as in (3), with θ̃ = Ȳ /S2 the ratio of sample
mean to sample variance. Then ESP = Pr∗(Ȳ ∗ ≥
S∗2). Table 5 illustrates how ESP performs for fairly
large n (50) when µ is small (1) and not (10), and for
small n (10) with moderate µ (5).

In the case of a point null hypothesis H0 : θ = θ0

with two-sided alternative H1 : θ �= θ0, the previous
approach cannot work. Instead, the ESP can be defined
in terms of a confidence set for θ ,

ESP = max{p : 1 − p confidence set

for θ includes θ0}.
(4)

The simplest implementation of this uses the percentile
method (Section 2), in which an equitailed (1 − 2α)

confidence set is the interval (θ̃∗
(αR), θ̃

∗
((1−α)R)). Then

ESP = 2 min(k,R − k)/R if θ̃∗
(k) ≤ θ0 ≤ θ̃∗

(k+1),

where we define θ̃∗
(0) = −∞ and θ̃∗

(R+1) = +∞.
Of course other confidence set methods can also

be used, including those based on distances. This
becomes particularly relevant in more complex testing
situations, such as H0 :F ∈ F0 versus H1 : F /∈ F0,
which includes the special cases F0 = {F : θ(F ) =
θ0} and F0 = {F0}, a single specific distribution. If
we define a distance d(F,F0) between distributions
F and F0, and use d(F̃ ,F0) as the test statistic for a
specific F0, then the analog of (3) is

ESP = Pr∗
{
F̃ ∗ :d(F̃ , F̃ ∗) ≥ d(F̃ ,F0)

};
this would be approximated simply by the proportion
of resamples for which d(F̃ , F̃ ∗) ≥ d(F̃ ,F0). For gen-
eral F0 this calculation is generalized with d(F̃ ,F0) =
minF∈F0 d(F̃ ,F )

We can define distances in terms of empirical likeli-
hood (Owen, 2001). Thus for a simple null hypothesis
θ = θ0 a possible test statistic is T = L(θ̃ |F̃ )/L(θ0|F̃ ),
where L(θ) is the empirical likelihood. This leads to

ESP = Pr∗
{
F̃ ∗ :L{θ(F̃ ∗)|F̃ } ≤ L(θ0|F̃ )

}
,

which corresponds to 1 minus the smallest confidence
level at which the empirical likelihood confidence
set includes θ0. Extensions to composite hypothesis
problems should also be possible. In principle, the
asymptotic theory developed for empirical likelihood
can be used to investigate properties of ESP here.

In general, ESPs fail to behave as P -values to
the extent that θ̃∗ or F̃ ∗ fails to have a symmetric
distribution. For this reason it seems best to use the
ESP only when more specific, direct testing methods
are not available for a particular problem.

8. BAGGING AND CLASSIFICATION

Since 1980 there has been an enormous amount
of research on nonparametric procedures for pre-
diction and nonparametric classification, much of it
originated by computer scientists and algorithmic in
approach. Some of the basic algorithms have been im-
proved considerably using resampling as a smoothing
device, which is beneficial when the basic algo-
rithm is unstable with respect to small data per-
turbations. The acronym “bagging” was coined for
this bootstrap aggregation. A key theoretical develop-
ment in this area is the important recent discussion
by Bühlmann and Yu (2002), which builds on refer-
ences cited there dating back to the pioneering work
by Breiman (1996a, b) and others. For data d =
{(xj , yj ), j = 1, . . . , n} with response y and predic-
tor variables x ≡ (x(1), . . . , x(p)), imagine that a basic
predictor formula m0(x|dn) has been formed—a few
examples are mentioned below. If R resampled data
sets d∗

1 , . . . , d∗
R are constructed and the corresponding

resample predictor formulae m0(x|d∗
1 ), . . . ,m0(x|d∗

R)

are formed, then the empirical bagged predictor for-
mula is

m̂B(x|d) = R−1
R∑

r=1

m0(x|d∗
r );

this is an approximation to

mB(x|d) = E∗{m0(x|D∗)}.
Typically this acts as a smoother, if smoothing is
needed, and may be comparable to calculating a
Bayesian posterior expectation, to the extent that the
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distributions of resampled estimates of parameters in
the predictor behave like posterior distributions of
those parameters; see the discussion of the percentile
method in Section 2. A related use of the bootstrap
as an averaging device to reduce variance arises in
the context of estimation, rather than reduction, of
prediction and classification error (Efron, 1983, 1986;
Efron and Tibshirani, 1997).

If the basic predictor m0 is linear in the yj , then
either mB(x|d) = m0(x|d) exactly or they are asymp-
totically equivalent as n → ∞, under appropriate con-
ditions on the xj ’s. This happens for a linear regression
formula, for example. A more practically useful variant
of the linear regression formula, with screening of pre-
dictor variables, is

m0(x|d) =
p∑

i=1

β̂iI
(|β̂i| > ci

)
x(i),

where the ci are critical levels for the estimated
coefficients β̂i and I (·) is the indicator function. This
is called hard thresholding. The corresponding bagged
predictor,

mB(x|dn) =
p∑

i=1

E∗{
β̂∗

i I
(|β̂∗

i | > cn,i

)}
x(i),(5)

corresponds to “soft thresholding.” Bühlmann and Yu
(2002) showed that for coefficients comparable in mag-
nitude to the critical levels, bagging can reduce mean
squared error for the predictor by up to 50%. Simi-
lar gains can be achieved for other unstable predictors,
such as adaptive-split tree algorithms. For classifica-
tion algorithms based on estimates of class member-
ship probabilities P̂r(class j |x, d), bagging can work
by voting—that is, choosing that class which is chosen
most often in R resample versions P̂r(class j |x, d∗).
Whether bagging in this context has a close parallel
with Bayesian smoothing is unclear, but certainly un-
stable classifiers, such as tree algorithms, can be con-
siderably improved by bagging.

A related approach known as “boosting” involves
attaching weights to each datum, followed by iterative
improvement of a base classifier by increasing the
weights for those data that are hardest to classify with
certainty. In some cases this yields dramatic reductions
in classification error even relative to bagging (Freund
and Schapire, 1997; Schapire, Freund, Bartlett and
Lee, 1998).

9. BOOTSTRAPPING DEPENDENT DATA

It is almost self-evident that the original bootstrap
is not applicable to dependent data. There has been a
considerable effort to generalize the methodology to
work for time series problems, but limited effort to deal
with other types of stochastic process data.

Excellent surveys exist of the current state of time
series bootstrap methods, including Bühlmann (2002a)
and Politis (2003) in this volume. Major contribu-
tions have been various block resampling procedures,
including matched-block schemes; autoregressive and
other sieve schemes based on fitting models in which
the number of parameters grows with the data size, but
more slowly; variable length Markov chain schemes
for categorical data (Bühlmann, 2002b); and nearest-
neighbor resampling schemes for continuous data
(Rajagopalan and Lall, 1999; Huang, 2002), which
to some extent mimic variable length Markov chain
schemes.

The many types of spatial data include:

1. n points t1, . . . , tn generated from a stochastic point
process in a set R.

2. The same as item 1 but with responses y(ti)

observed at ti , i = 1, . . . , n, corresponding to a
stochastic process Y (t), t ∈ R.

3. Responses y(t) observed on a regular lattice of
points.

To maintain the relevant spatial correlation in nonpara-
metric resampling, most research in this area discusses
extensions of the block resampling idea, at least for
“nice” shaped regions R. For example, a rectangular
region R can be partitioned into a set of b similarly
shaped subrectangles (analagous to blocks), which can
be randomly sampled from b times and the results
pasted together to form a resample rectangle of data.
Theoretical aspects of this were discussed first by Hall
(1985) and most recently by Politis, Paparoditis and
Romano (1999). A key difficulty is the presence of
edge effects introduced by pasting independently re-
sampled subrectangles together; no natural analogy
with the matched-block or sieve approaches mentioned
above has yet been identified. Lee and Lahiri (2002)
discussed the application of subsampling to variogram
estimation; other applications are mentioned in Sec-
tion 8.3 of Davison and Hinkley (1997).

However, most of this work assumes stationarity of
both the point process that generates the t’s and the
process for Y (t) if a response y is observed as in
items 2 and 3 above. This affects both the estimator
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and the resampling scheme. For example, suppose that
we have data of type 2 above, where the process
Y (t), t ∈ R, is stationary, and that we wish to estimate
the mean µ = ∫

R Y (t) dt . If the points t1, . . . , tn are
generated from a homogeneous point process, then the
estimate Y = n−1 ∑n

j=1 Y (tj ) is sensible and simple
block resampling schemes such as outlined above may
represent a good approach for large n. However, strong
heterogeneity of the points t1, . . . , tn may make Y a
poor estimate, depending on the covariance structure
for Y (t), and, furthermore, the relevant distribution of
any estimator should condition appropriately on the
point pattern—which would be an ancillary statistic in
many settings—and this in turn affects the choice of
an appropriate resampling scheme. At a minimum, the
variable resample size n∗ should be held close to n,
explicitly or implicitly. Evidently this area is ripe for
further research.

10. OTHER TOPICS

A common use of the bootstrap is in model se-
lection, where it is necessary to compare empirical
support for different models. About the simplest exam-
ple is in straight-line regression, where the two models
correspond to including the single covariate or not
depending on the estimated regression coefficient. One
approach to the general problem is to determine the
chosen model by an estimator θ̂ that falls into dif-
ferent regions of R

d . That is, we suppose that R
d =

R1 ∪ · · · ∪ Rk and that model i is chosen if θ̂ ∈ Ri .
One natural approach to assessing the uncertainty of
this selection is to use the probability Pr∗(θ̂∗ ∈ Ri ) ob-
tained in bootstrap resampling from the original data.
This, however, is neither a frequentist nor a Bayesian
solution: a frequentist would aim to compute a confi-
dence level for the true parameter θ ∈ Ri by inverting
a significance test, taking 1 − infθ /∈Ri

Pr{u(Y, θ) /∈ R′
i}

for some suitable pivot u(Y, θ), perhaps approximate,
while a Bayesian would place a prior on θ and aim to
compute the posterior probability Pr(θ ∈ Ri |Y ). In an
ingenious article, Efron and Tibshirani (1998) showed
how confidence interval arguments can be modified
to produce solutions to this so-called problem of re-
gions that match the “ideal” solutions more closely.
There seems to be a link to the discussion of empiri-
cal strength probabilities in Section 7.

The cost of computing has declined vertiginously
since the bootstrap was introduced, but the amount
of data available for analysis and the complexity of
the procedures needing to be bootstrapped have risen

equally dramatically. Thus, although computational
issues matter less than they did, they remain impor-
tant in some settings. One setting is iterated bootstrap-
ping, which has become more widespread in recent
years, not only for improving confidence interval algo-
rithms as outlined in earlier sections, but also, and more
fundamentally, for basic consistency checks: does the
bootstrap produce reasonable solutions in my problem?
One way to reduce the computational cost of a dou-
ble bootstrap is through recycling, a version of im-
portance sampling. Ventura (2002) showed how the
original parametric simulation idea of Newton and
Geyer (1994) can be adapted to the nonparametric
bootstrap and gave a careful discussion of the difficul-
ties that can arise. This and related work by Hesterberg
(1999) seem to have strong links with the tilted boot-
strap procedures described in Sections 3 and 4.

Recent years have seen widespread application of
hierarchical and other random effects models. In para-
metric settings, it is often most natural to take a
Bayesian point of view and to fit the parameters us-
ing Markov chain Monte Carlo algorithms, and then
uncertainty analysis for both parameters and random
effects is straightforwardly tackled using simulation
output, at least in principle. In practice this may be un-
satisfactory, either because standard parametric mod-
els fit poorly or because of concerns about the impact
of the assumed priors on inferences. The specification
of prior distributions can be avoided by taking a fre-
quentist approach, under which fitting is typically per-
formed using an expectation–maximization algorithm,
possibly stochastic, and it would then seem natural
to try and use the bootstrap for uncertainty analysis.
Although applied in practice by Brumback and Rice
(1998), Booth and Hobert (1998) and others, there
seems to be no general understanding of how the boot-
strap can be applied safely in this setting. McCullagh
(2000) pointed out the impossibility of satisfying nat-
ural invariance conditions on sums of squares in one
of the simplest random effects settings: perhaps this
“smoking gun” will spur bootstrappers to take a closer
look at these models. It seems possible that bootstrap
methods for sample surveys, where dependence is not
less real for being induced by the sampling plan, can be
adapted to this setting; see the articles by Lahiri (2003)
and Shao (2003) in this issue.

11. FINAL REMARKS

The simple yet powerful idea of the original boot-
strap has led to an explosion of research, for reasons
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that Beran (2003) mentions in this issue. That research
has shown great inventiveness on several fronts, espe-
cially the theoretical. The most challenging areas are
always those where current resampling technology ei-
ther fails completely or gives inaccurate results. Con-
sistency is an asymptotic property that is never strong
enough for reliable data analysis, but its failure is im-
portant to discovering where new methodology needs
to be developed, and an understanding of it will con-
tinue to be helpful to making theoretical progress, just
as empirical procedures for assessing bootstrap suc-
cess are essential tools for reliable data analysis (Canty
et al., 2002).

Among the complex problems to which resampling
has been applied, time series problems seem to be
nearly under control because interaction between the-
ory and methodology has paid off. Complex modelling
that uses thresholding techniques needs further devel-
opment, but work by Beran, Bühlmann and others has
given a strong boost in this area. However, non- and
semiparametric bootstrapping for spatial and hierarchi-
cal data are relatively underdeveloped.
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