
A Novel Evolutionary Algorithm for Solving Static Data Allocation Problem in
Distributed Database Systems

Ali Safari Mamaghani
Young Researcher Club, Islamic Azad University

Bonab Branch
Bonab, Iran

Safari_m_61@yahoo.com

Mohammad Reza Meybodi
Computer Engineering Department

 Amir Kabir University of Technology
Tehran, Iran

mmeybodi@aut.ac.ir

Mostafa Mahi
Computer Engineering Department

Islamic Azad University, Bonab Branch
Bonab, Iran

mostafamahi@gmail.com

Mohammad Hosseinzadeh Moghaddam
Islamic Azad University, Hashtrood Branch

Hashtrood, Iran
mh.moghaddam@yahoo.com

Abstract—Given a distributed database system and a set of
queries from each site, the objective of a data allocation
algorithm is to locate the data fragments at different sites so as
to minimize the total data transfer cost incurred in executing
the queries. The data allocation problem, however, is NP-
complete, and thus requires fast heuristics and random
approaches to generate efficient solutions. In this paper an
approximate algorithm has been proposed. This algorithm is a
hybrid evolutionary algorithm obtained from combining object
migration learning automata and genetic algorithm.
Experimental results show that proposed algorithm has
significant superiority over the several well-known methods.

Keywords-object migration learning automata;genetic
algorithms;Distributed database system; Data fragment
allocation; Evolutionary algorithm.

I. INTRODUCTION
Developments in database and networking technologies in

the past two decades led to advances in distributed database
systems. A DDS is a collection of sites connected by a
communication network, in which each site is a database
system in its own right, but the sites have agreed to work
together, so that a user at any site can access data anywhere
in the network exactly as if the data were all stored at the
user’s own site.

The primary concern of a DDS is to design the
fragmentation and allocation of the underlying data.
Fragmentation unit can be a file where allocation issue
becomes the file allocation problem. A major cost in
executing queries in a distributed database system is the data
transfer cost incurred in transferring relations (fragments)
accessed by a query from different sites to the site where the
query is initiated [1]. The objective of a data allocation
algorithm is to determine an assignment of fragments at
different sites so as to minimize the total data transfer cost
incurred in executing a set of queries. This is equivalent to

minimizing the average query execution time, which is of
primary importance in a wide class of distributed
conventional as well as multimedia database systems.

The data allocation problem, is NP-complete [2], and thus
requires fast heuristics to generate efficient solutions.
Furthermore, the optimal allocation of database objects
highly depends on the query execution strategy employed
by a distributed database system, and the given query
execution strategy usually assumes an allocation of the
fragments.

File allocation problem is studied extensively in the
literature started by Chu [2] and continued for non-
replicated and replicated models [3, 4].

Data allocation problem was introduced when Eswaran
first proposed the data fragmentation [5]. Studies on vertical
fragmentation and horizontal fragmentation and mixed were
conducted. The allocation of the fragments is also studied
extensively. Data allocation algorithms were studied in
static and dynamic environments. In a static environment
where the access probabilities of sites to the fragments never
change, a static allocation of fragments provides the best
solution. However, in a dynamic environment where these
probabilities change over time, the static allocation solution
would degrade the database performance. Different dynamic
data allocation algorithms in distributed database systems
were explained in [6, 7, and 8].

 Many reports on static environments have been published
such as random neighborhood search algorithm [1]. The
main idea in a neighborhood search algorithm is to generate
an initial solution with moderate quality. Then, according to
some pre-defined neighborhood, the algorithm
probabilistically selects and tests whether a nearby solution
in the search space is better or not. If the new solution is
better, the algorithm adopts it and starts searching in the
new neighborhood; otherwise, the algorithm selects another

2010 Second International Conference on Network Applications, Protocols and Services

978-0-7695-4177-8/10 $26.00 © 2010 IEEE

DOI 10.1109/NETAPPS.2010.10

14

solution point. Using evolutionary algorithms is an
alternative method for solving such problems. Corcoran et al.
were first pioneers who allocated data fragments in
distributed data base systems by using genetic algorithms
[9]. In this application, every gene in chromosome
resembles a data fragment, so that the length of a
chromosome represents the number of fragments. A similar
algorithm suggested by Corcoran was used for file
allocation in distributed systems as well [10].

Another genetic-based algorithm was used by Ishfaq
Ahmad et al. [1]. In contrast to the approach used by
Corcoran, a binary encoding approach was implemented in
this work. Another posed evolutionary algorithm which tries
to solve the above-mentioned problem is the simulated
evolution algorithm. They differ mainly in style for which
the first method is based on a crossover operator as a
stochastic mechanism which in turn is proper for data
exchange among solutions in order to find the most
appropriate solution while the latter one applies a mutation
operator as an initial search mechanism [11]. The mean field
annealing technique combines the collective computation
property of the famous Hopfield neural network with
simulated annealing [12].

In this paper an approximate algorithm has been
proposed. This algorithm is a hybrid evolutionary algorithm
obtained from combining object migration learning automata
and genetic algorithm. Experimental results imply the
suggested algorithm has significant superiority over the
several well-known methods. The rest of this paper is
organized as follows: Section 2 elaborates the data fragment
allocation problem in distributed database systems. Section 3
is an introduction to learning automata and genetic
algorithms. In section 4, we describe new hybrid algorithm
for solving the problem. Section 5 and 6 is dedicated to
describe experimental results and paper conclusion
respectively.

II. THE DATA FRAGMENT ALLOCATION PROBLEM
We now present a formal description of the problem. A

distributed database is composed of a collection
},...,,,{ 321 mccccS = of m sites, where each site i is

characterized by its capacity ci and a set },...,,{ 21 nsssF = of
n fragments, where each fragment j is characterized by its
size sj. Each fragment is required by at least one of the sites.
The site requirements for each fragment are indicated by the
requirements Matrix.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nmmm

n

n

rrr

rrr
rrr

R

,2,1,

,22,21,2

,12,11,1

...
....
....
....

...

...

Where ri,j indicates the requirement by site i for fragment

j. In general, this requirement is represented by a real value,
that is, a weight. A variation of this is to use a Boolean value

to indicate that fragment j is either required or not required
by site i. Transmission cost is given by the transmission cost

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

mmmm

m

m

rrr

ttt
ttt

T

,2,1,

,22,21,2

,12,11,1

...
....
....
....

...

...

Where ti,j indicates the cost for site i to access a fragment

located on site j.
Given the above definitions, the distributed database

allocation problem is one of finding the optimal placement of
the fragments at the sites. That is, we wish to find the
placement },...,,...,,{ 21 nj ppppP = (where pj =i indicates
fragment j is located at site i) for the n fragments so that the
capacity of any site is not
exceeded. ∑

=

≤≤∀≤×
n

j
ijji miicsr

1
, 1 And the total

transmission cost, ∑∑
= =

×
m

i

n

j
piji j
tr

1 1
,,

 is minimized [9].

By restricting the use of the requirements matrix and
having zero transmission cost, the distributed database
allocation problem can be transformed to the bin packing
problem, which is known to be NP-complete.

III. LEARNING AUTOMATA AND GENETIC ALGORITHMS
Learning automata are adaptive decision-making devices

operating on unknown random environments. The learning
automaton has a finite set of actions and each action has a
certain probability (unknown for the automaton) of getting
rewarded by the environment of the automaton. The aim is to
learn to choose the optimal action (i.e. the action with the
highest probability of being rewarded) through repeated
interaction on the system. If the learning algorithm is chosen
properly, then the iterative process of interacting on the
environment can be made to result in selection of the optimal
action [13]. Figure 1 illustrates how a stochastic automaton
works in feedback connection with a random environment.

Figure 1. The interaction between learning automata and environment

The automaton chooses one of the offered actions
according to a probability vector which at any time instant
contains the probability of choosing each action. The chosen

15

action triggers the environment, which responds with an
answer (reward or penalty), according to the reward
probability of the chosen action. The automaton takes into
account this answer and modifies the probability vector by
means of a learning algorithm. A learning automaton is one
that learns the action that has the maximum probability to be
rewarded and that ultimately chooses this action more
frequently than other actions.

Genetic algorithm (GA) based search methods are
inspired by the mechanisms of natural genetic leading to the
survival of the fittest individuals. Genetic algorithms
manipulate a population of potential solutions to an
optimization problem [16]. Specifically, they operate on
encoded representations of the solutions, equivalent to the
genetic material of individuals in nature, and not directly on
the solutions themselves. In the simplest form, solutions in
the population are encoded as binary strings. As in nature,
the selection mechanism provides the necessary driving force
for better solutions to survive. Each solution is associated
with a fitness value that reflects how good it is, compared
with other solutions in the population. The higher the fitness
value of an individual, the higher the chance of survival in
the subsequent generation. Recombination of genetic
material in genetic algorithms is simulated through a
crossover mechanism that exchanges portions between
strings. Another operation, called mutation, causes sporadic
and random alternation of the bits of strings. Mutation also
has a direct analogy with nature and plays the role of
regenerating lost genetic material.

IV. THE PROPOSED HYBRID ALGORITHM
Speed for reaching to solution in search process get high

if genetic algorithms, learning automata, integration of
concepts of gene, action and depth are combined .This
approach is prevented from being trapped into the local
minima. The suggested algorithm in this section is an
attempt in this direction. Self-remedy, reproduction and
penalty and reward (guidance) are some of the characteristics
of hybrid algorithm. For more information, refer simply to
the reference [14, 15].

Chromosome and gene: in spite of classic genetic
algorithms, in the suggested algorithm, we don't use binary
encoding for chromosomes. Chromosomes are shown by an
object migration learning automata so that any gene of
chromosomes is associated to one of the automata actions
and is located in a specific depth of that action. We show
object migration automata as >< GFV ,,,,, βϕα .In this
Automaton },...,,{ 321 nααααα = is set of allowed actions of
automaton. This automaton has n actions (the number of
actions equals with the number of data fragments).

},...,,{ 21 nVVVV = is set of objects. These objects are sites
number that allocated to data fragments. The objects have
values 1, 2… m. The objects move on different states of
automata and create new allocations.

},...,,{ 21 nNφφφφ = is set of states and N is memory depth
for automata . The set of automata states are divided to k

subsets },...,,{ 21 Nφφφ , },...,,{ 221 NNN φφφ ++
… },...,,{

2)1(1)1(kNNkNk φφφ +−+−
, so objects are classified in

terms of their states. If object u is situated in the set of
states },...,,{ 2)1(1)1(jNNjNj φφφ +−+−

, in this case, data fragment j

will be on uth site. In the set of states of action j, states
`

1)1(+− Njφ and jNφ are referred as internal state and
boundary states respectively. The objects lying in

1)1(+− Njφ and jNφ are referred as more and less certainty
objects respectively.

B = {0, 1} is the set of inputs of automata. In this set, 1
and 0 stand for failure and success respectively.

F: φ × β →φ stands for state mapping function. This
function produces the next state in terms of current state and
the input of automata. This function determines the
movement of objects in states of automata. The function F is
different for diverse automata.

G: φ →α is output mapping function. This function
decides what action to do in exchange for any automata state.
If object u is in the set of states },...,,{ 2)1(1)1(jNNjNj φφφ +−+−

, action j is selected (therefore, data fragment j will be on uth
site).

For example, if we have 6 data fragments and 4 sites in
distributed database, we represent allocation p={2,3,4,1,2,1}
as object migration learning automata is shown in figure 2
(where pj =i indicates fragment j is located at site i).

Figure 2. Allocation p={2,3,4,1,2,1} as object migration learning

automata based on Tsetlin automata connections.

Operations: Since every chromosome is represented as a
learning automaton in hybrid algorithm, crossover and
mutation operators are not similar to classic genetic
operators. Also this hybrid algorithm has penalty and reward
operation.

Penalty and reward operator: In the chromosome, an
object is chosen randomly, then, it takes penalty or reward. If
data fragment location cost (corresponding action with
object) goes beyond threshold (the threshold amount is
calculated as average total transition cost of data fragments),

16

this object will get reward and moves toward the more
internal states of this action. Otherwise, the object gets
penalty. Having taken reward or penalty, the state of object
in relevant set states change. If an object is located in
boundary state of an action, its getting penalty leads to the
change of action and creating a new solution. The condition
of penalizing or rewarding an object is as follows:

The amount of cost for data fragment transition to the
given site is calculated from the following relationship:

∑
=

×=
m

i
pintdatafragmei entdataffragm

trntdatafragmet
1

,,)(cos

Then, the threshold amount is calculated as average total
transition cost of data fragments. If the amount of data
fragments transition cost is less then or equal to the amount
of threshold, this object is given reward, otherwise, and it
can be penalized. Figure 3 shows the pseudo code of reward
operator.

Procedure Reward(LA, u)
If (LA.State(u)-1) mod N <> 0 then
 Dec (LA.State(u));
End If

End Reward
Figure 3. Pseudo code of reward operator.

And Figure 4 shows the pseudo code of penalty operator.
Procedure Penalize(LA, u)

repeat
 For U = 1 to n do
 If (LA.State(U)) mod N <> 0 then
 Inc(LA.State(U));
 End If
 End for
Until at least one object appears in the boundary state
bestcost = ∞ ;
for U = 1 to n do
 Create Allocation LA′ from LA by swapping u and U
 If costi(LA′) < bestcost then
 bestcost = costi(LA′);
 bestfragment = U;
 End If
End for
LA.State(bestfragment) = LA.Action(bestfragment)*N;
LA.State(u) = LA.Action(u)*N;
Swap(LA.State(u),LA.State(bestfragment));

End Penalize

Figure 4. Pseudo code of penalty operator

Selection operator: Roulette wheel is used for selecting
learning automaton (chromosome) for mutation or crossover.

Crossover operator: In order to do this operation, we
can use k-point crossover.

Mutation operator: When mutation occurred, a
randomly selected gene was replaced with a randomly
selected choice from the range of valid site numbers.

Now regarding pervious descriptions, we can show the
hybrid algorithm applied for solving the problem. Pseudo
code of this algorithm is shown in figure 5.

Procedure DDA_Hybrid (problem);
Begin
 n=number of fragments in the system;
 m= number of sites in the system;
 sp = Size of Population;
 Create the initial population LA1 … LAsp;

 EvalFitness();
 Iteration=1;
Repeat
NewLA1 = NewLA2 = LA with min Value of fitness;
for i = 2 to sp do
 Select LA1; Select LA2 ;
 if (Random ≤ CrossoverRate) then
 Crossover (LA1, LA2);
 if (Random ≤MutationRate) then
 Mutation (LA1); Mutation (LA2);
 NewLAi+1 = LA1;
 NewLAi+2 = LA2 ;
 i=i+2;
end for
for i = 1 to sp do
LAi = NewLAi;
u = Random *n; // nu ≤≤1
 If cost(u) ≤ threshold then Reward(LAi , u);

//threshold=∑∑
= =

×
m

i

n

j
piji j
tr

1 1
,, /n

//cost(data fragment)= ∑
=

×
m

i
pifragmentdatai fragmentdataf
tr

1
,_, _

 Else penalize(LAi , u);
end for
EvalFitness();
Inc(iteration);
Until(iteration=maxiteration)

End DDA_Hybrid;

Figure 5. The hybrid algorithm for solving data fragment allocation
Problem.

V. EXPERIMENTAL RESULTS EVALUATION
In this section the results of the implementation of the

new algorithm and the comparison of that with some existing
algorithms is shown. The algorithms applied to be compared
with this new algorithm are as follows: the neighborhood
random search algorithm (RS), Corcoran Genetic Algorithm
, the Ishfaq Genetic Algorithm and object migration learning
automata (OMA).

The comparison was made from solution quality view
that generated by different algorithm. Before the new
algorithm compared to existing algorithms, Test on the new
hybrid algorithm with various learning automata connections
such as Krinsky, Krylov and Tsetline was made. So,
different cases in number of sites and data fragments were
rendered. As an example, a test on a sample with 20 data
fragments and sites numbering from 10 to 100 was
accomplished. Binary values, i.e. 0 or 1, were assigned to the
entries of requirements matrix according to the case. In
addition, a value from 0 to 100 is assigned to the transfer
cost and size of any given fragment as well. The results are
shown in figure 6.

The results indicate that solutions are generated by new
hybrid algorithm based on Tsetline connections have less
Transmission cost than other connections. So we used the
hybrid algorithm based on Tsetline connections as
representative for hybrid algorithm in experiments.

17

Figure 6. The impact of increasing site numbers over data fragment transfer cost among different learning automata connections.

In the next stage, we compare new algorithm with other
existing algorithms such as the neighborhood random search
algorithm (RS), Corcoran Genetic Algorithm and the Ishfaq
Genetic Algorithm and object migration learning automata
(OMA). The results are shown in figure 7.

The point is implied by this figure is that first by increasing
the number of existing sites in the distributed system, the data

fragment transfer cost during the query execution increases.
Second the quality of yielded solutions by the hybrid algorithm
(LAGA) in an analogy is higher than those of other algorithms
because of the fact that transition cost that obtained by
allocating data in this algorithm is lower than other algorithms.

Figure 7. The impact of increasing site numbers over data fragment transfer cost among different algorithms.

In order to render the third test with a constant given
number of sites (say 15 sites) we increase the number of
fragments from 10 to 100. The outcome results are showed
in figure 8. In this figure the comparison of algorithms is
shown based on the views of data transfer cost. Figure 8
gives out two points for consideration, first by increasing the
number of current data fragments the cost of data fragment
transition during the query execution is increased as well.
Second notification focuses on quality of generated solution
which shows that new algorithm is an effective approach.

VI. CONCLUSIONS
In this paper, a hybrid evolutionary algorithm has been

proposed for static data fragment allocation in distributed
database systems. This algorithm uses two methods of
genetic algorithm and learning automata synchronically for
searching the states space of problem. It has been showed in
this paper that by synchronic use of learning automata and
genetic algorithms in searching process, the quality of
generated solutions has been accelerated. The results of
experiments show that hybrid algorithm has dominance over
the methods of genetic and learning automata-based and
neighborhood random search algorithms.

18

Figure 8. The impact of increasing the number of data fragments over the transfer cost among different algorithms.

REFERENCES
[1] I. Ahmed, K. KARLAPALEM, and Y. K. Kowok, “Evolutionary

Algorithms for Allocating Data in Distributed Database Systems,”
International Journal of Distributed and Parallel Databases, vol. 11,
no. 1, pp. 5-32, 2002.

[2] W.W. Chu, “Optimal file allocation in a multiple computer
system,” IEEE Transactions on Computers, vol. C-18, no. 10, pp.
885–889, 1969.

[3] H. L. Morgan and K. D. Levin, “Optimal program and data
locations in computer networks,” Communications of the ACM,
vol. 20, no. 5, pp.315–322, 1977.

[4] R. A. Schwartz and S. Kraus, “Negotiation on data allocation in
multi-agent environments,” Autonomous Agents and Multi-Agent
Systems, vol. 5, no. 2, pp. 123–172, 2002.

[5] K. P. Eswaran, “Placement of records in a file and file allocation in
a computer network,” Information Processing,, pp. 304–307, 1974.

[6] A. G. Chin, “Incremental Data Allocation and ReAllocation in
Distributed Database Systems,” Journal of Database Management,
vol.12, no. 1, pp. 35–45, 2001.

[7] T. Ulus and M. Uysal, “Heuristic approach to dynamic data
allocation in distributed database systems,” Pakistan Journal of
Information and Technology, vol. 2, pp. 1682–6027, 2003.

[8] Y. F. Huang and J. H. Chen, “Fragment allocation in distributed
database design,” Journal of Information Science and Engineering,
vol. 17, no. 3, pp. 491–506, 2001.

[9] A. Corcoran and J. Hale, “ A Genetic Algorithm For Fragment
Allocation In a Distributed Database System,” ACM, pp.247-250,
1994.

[10] A. Corcoran and D. L. Schoenefeld, “A Genetic Algorithm For
File and Task Allocation In a Distributed System,” IEEE, pp.247-
250, 1994.

[11] Y.K. Kwok, K. Karlapalem, I. Ahmad, and N. M. Pun, “Design
and evaluation of data allocation algorithms for distributed
multimedia database systems,” IEEE Journal on Selected Areas in
Communications, vol 14, no. 7, pp 1332–1348, 1996.

[12] T. Bultan and C. Aykanat, “A new mapping heuristic based on
mean field annealing,” Journal of Parallel and Distributed
Computing, vol. 16, pp. 292–305, 1992.

[13] K. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Prentice Hall, 1989.

[14] B. J. Oommen, and D. C .Y. Ma, “Deterministic Learning
Automata Solutions to the equipartitioning problem,” IEEE Trans.
on Computers, Vol. 37 , pp. 2-13, 1998.

[15] A. Safari Mamaghani and M.R. Meybodi, “Clustering of Software
Systems using New Hybrid Algorithms,” Proc. Int. Conf. on
Computer and Information Technology (CIT 2009), Xiamen,
China, pp. 20-25, 2009.

[16] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison Wesley, 1989.

19

