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Abstract—Given a distributed database system and a set of 
queries from each site, the objective of a data allocation 
algorithm is to locate the data fragments at different sites so as 
to minimize the total data transfer cost incurred in executing 
the queries. The data allocation problem, however, is NP-
complete, and thus requires fast heuristics and random 
approaches to generate efficient solutions. In this paper an 
approximate algorithm has been proposed. This algorithm is a 
hybrid evolutionary algorithm obtained from combining object 
migration learning automata and genetic algorithm. 
Experimental results show that proposed algorithm has 
significant superiority over the several well-known methods. 

Keywords-object migration learning automata;genetic 
algorithms;Distributed database system; Data fragment 
allocation; Evolutionary algorithm. 

I. INTRODUCTION 
Developments in database and networking technologies in 

the past two decades led to advances in distributed database 
systems. A DDS is a collection of sites connected by a 
communication network, in which each site is a database 
system in its own right, but the sites have agreed to work 
together, so that a user at any site can access data anywhere 
in the network exactly as if the data were all stored at the 
user’s own site. 

The primary concern of a DDS is to design the 
fragmentation and allocation of the underlying data. 
Fragmentation unit can be a file where allocation issue 
becomes the file allocation problem. A major cost in 
executing queries in a distributed database system is the data 
transfer cost incurred in transferring relations (fragments) 
accessed by a query from different sites to the site where the 
query is initiated [1]. The objective of a data allocation 
algorithm is to determine an assignment of fragments at 
different sites so as to minimize the total data transfer cost 
incurred in executing a set of queries. This is equivalent to 

minimizing the average query execution time, which is of 
primary importance in a wide class of distributed 
conventional as well as multimedia database systems. 

The data allocation problem, is NP-complete [2], and thus 
requires fast heuristics to generate efficient solutions. 
Furthermore, the optimal allocation of database objects 
highly depends on the query execution strategy employed 
by a distributed database system, and the given query 
execution strategy usually assumes an allocation of the 
fragments. 

File allocation problem is studied extensively in the 
literature started by Chu [2] and continued for non-
replicated and replicated models [3, 4]. 

Data allocation problem was introduced when Eswaran 
first proposed the data fragmentation [5]. Studies on vertical 
fragmentation and horizontal fragmentation and mixed were 
conducted. The allocation of the fragments is also studied 
extensively. Data allocation algorithms were studied in 
static and dynamic environments. In a static environment 
where the access probabilities of sites to the fragments never 
change, a static allocation of fragments provides the best 
solution. However, in a dynamic environment where these 
probabilities change over time, the static allocation solution 
would degrade the database performance. Different dynamic 
data allocation algorithms in distributed database systems 
were explained in [6, 7, and 8]. 

 Many reports on static environments have been published 
such as random neighborhood search algorithm [1]. The 
main idea in a neighborhood search algorithm is to generate 
an initial solution with moderate quality. Then, according to 
some pre-defined neighborhood, the algorithm 
probabilistically selects and tests whether a nearby solution 
in the search space is better or not. If the new solution is 
better, the algorithm adopts it and starts searching in the 
new neighborhood; otherwise, the algorithm selects another 
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solution point. Using evolutionary algorithms is an 
alternative method for solving such problems. Corcoran et al. 
were first pioneers who allocated data fragments in 
distributed data base systems by using genetic algorithms 
[9]. In this application, every gene in chromosome 
resembles a data fragment, so that the length of a 
chromosome represents the number of fragments. A similar 
algorithm suggested by Corcoran was used for file 
allocation in distributed systems as well [10]. 

Another genetic-based algorithm was used by Ishfaq 
Ahmad et al. [1]. In contrast to the approach used by 
Corcoran, a binary encoding approach was implemented in 
this work. Another posed evolutionary algorithm which tries 
to solve the above-mentioned problem is the simulated 
evolution algorithm. They differ mainly in style for which 
the first method is based on a crossover operator as a 
stochastic mechanism which in turn is proper for data 
exchange among solutions in order to find the most 
appropriate solution while the latter one applies a mutation 
operator as an initial search mechanism [11]. The mean field 
annealing technique combines the collective computation 
property of the famous Hopfield neural network with 
simulated annealing [12]. 

In this paper an approximate algorithm has been 
proposed. This algorithm is a hybrid evolutionary algorithm 
obtained from combining object migration learning automata 
and genetic algorithm. Experimental results imply the 
suggested algorithm has significant superiority over the 
several well-known methods. The rest of this paper is 
organized as follows: Section 2 elaborates the data fragment 
allocation problem in distributed database systems. Section 3 
is an introduction to learning automata and genetic 
algorithms. In section 4, we describe new hybrid algorithm 
for solving the problem. Section 5 and 6 is dedicated to 
describe experimental results and paper conclusion 
respectively. 

II. THE DATA FRAGMENT ALLOCATION PROBLEM 
We now present a formal description of the problem. A 

distributed database is composed of a collection 
},...,,,{ 321 mccccS =  of m sites, where each site i is 

characterized by its capacity ci and a set },...,,{ 21 nsssF =  of 
n fragments, where each fragment j is characterized by its 
size sj. Each fragment is required by at least one of the sites. 
The site requirements for each fragment are indicated by the 
requirements Matrix. 
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Where ri,j indicates the requirement by site i for fragment 

j. In general, this requirement is represented by a real value, 
that is, a weight. A variation of this is to use a Boolean value 

to indicate that fragment j is either required or not required 
by site i. Transmission cost is given by the transmission cost 
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Where ti,j indicates the cost for site i to access a fragment 

located on site j. 
Given the above definitions, the distributed database 

allocation problem is one of finding the optimal placement of 
the fragments at the sites. That is, we wish to find the 
placement },...,,...,,{ 21 nj ppppP = (where pj =i indicates 
fragment j is located at site i) for the n fragments so that the 
capacity of any site is not 
exceeded. ∑

=
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  is minimized [9]. 

By restricting the use of the requirements matrix and 
having zero transmission cost, the distributed database 
allocation problem can be transformed to the bin packing 
problem, which is known to be NP-complete. 

 

III. LEARNING AUTOMATA AND GENETIC ALGORITHMS 
Learning automata are adaptive decision-making devices 

operating on unknown random environments. The learning 
automaton has a finite set of actions and each action has a 
certain probability (unknown for the automaton) of getting 
rewarded by the environment of the automaton. The aim is to 
learn to choose the optimal action (i.e. the action with the 
highest probability of being rewarded) through repeated 
interaction on the system. If the learning algorithm is chosen 
properly, then the iterative process of interacting on the 
environment can be made to result in selection of the optimal 
action [13]. Figure 1 illustrates how a stochastic automaton 
works in feedback connection with a random environment. 

 

 
Figure 1.  The interaction between learning automata and environment 

The automaton chooses one of the offered actions 
according to a probability vector which at any time instant 
contains the probability of choosing each action. The chosen 
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action triggers the environment, which responds with an 
answer (reward or penalty), according to the reward 
probability of the chosen action. The automaton takes into 
account this answer and modifies the probability vector by 
means of a learning algorithm. A learning automaton is one 
that learns the action that has the maximum probability to be 
rewarded and that ultimately chooses this action more 
frequently than other actions. 

Genetic algorithm (GA) based search methods are 
inspired by the mechanisms of natural genetic leading to the 
survival of the fittest individuals. Genetic algorithms 
manipulate a population of potential solutions to an 
optimization problem [16]. Specifically, they operate on 
encoded representations of the solutions, equivalent to the 
genetic material of individuals in nature, and not directly on 
the solutions themselves. In the simplest form, solutions in 
the population are encoded as binary strings. As in nature, 
the selection mechanism provides the necessary driving force 
for better solutions to survive. Each solution is associated 
with a fitness value that reflects how good it is, compared 
with other solutions in the population. The higher the fitness 
value of an individual, the higher the chance of survival in 
the subsequent generation. Recombination of genetic 
material in genetic algorithms is simulated through a 
crossover mechanism that exchanges portions between 
strings. Another operation, called mutation, causes sporadic 
and random alternation of the bits of strings. Mutation also 
has a direct analogy with nature and plays the role of 
regenerating lost genetic material. 

 

IV. THE PROPOSED HYBRID ALGORITHM  
Speed for reaching to solution in search process get high 

if genetic algorithms, learning automata, integration of 
concepts of gene, action and depth are combined .This 
approach is prevented from being trapped into the local 
minima. The suggested algorithm in this section is an 
attempt in this direction. Self-remedy, reproduction and 
penalty and reward (guidance) are some of the characteristics 
of hybrid algorithm. For more information, refer simply to 
the reference [14, 15]. 

Chromosome and gene: in spite of classic genetic 
algorithms, in the suggested algorithm, we don't use binary 
encoding for chromosomes. Chromosomes are shown by an 
object migration learning automata so that any gene of 
chromosomes is associated to one of the automata actions 
and is located in a specific depth of that action. We show 
object migration automata as >< GFV ,,,,, βϕα .In this 
Automaton },...,,{ 321 nααααα =  is set of allowed actions of 
automaton. This automaton has n actions (the number of 
actions equals with the number of data fragments). 

},...,,{ 21 nVVVV =  is set of objects. These objects are sites 
number that allocated to data fragments. The objects have 
values 1, 2… m. The objects move on different states of 
automata and create new allocations. 

},...,,{ 21 nNφφφφ =  is set of states and N is memory depth 
for automata . The set of automata states are divided to k 

subsets },...,,{ 21 Nφφφ , },...,,{ 221 NNN φφφ ++  
… },...,,{

2)1(1)1( kNNkNk φφφ +−+−
, so objects are classified in 

terms of their states. If object u is situated in the set of 
states },...,,{ 2)1(1)1( jNNjNj φφφ +−+−

, in this case, data fragment j 

will be on uth site. In the set of states of action j, states 
`

1)1( +− Njφ and jNφ  are referred as internal state and 
boundary states respectively. The objects lying in 

1)1( +− Njφ and jNφ  are referred as more and less certainty 
objects respectively. 

B = {0, 1} is the set of inputs of automata. In this set, 1 
and 0 stand for failure and success respectively. 

F: φ  × β →φ stands for state mapping function. This 
function produces the next state in terms of current state and 
the input of automata. This function determines the 
movement of objects in states of automata. The function F is 
different for diverse automata. 

G: φ →α  is output mapping function. This function 
decides what action to do in exchange for any automata state. 
If object u is in the set of states },...,,{ 2)1(1)1( jNNjNj φφφ +−+−  

, action j is selected (therefore, data fragment j will be on uth 
site). 

For example, if we have 6 data fragments and 4 sites in 
distributed database, we represent allocation p={2,3,4,1,2,1} 
as object migration learning automata is shown in figure 2 
(where pj =i indicates fragment j is located at site i ). 

 

 
Figure 2.  Allocation  p={2,3,4,1,2,1} as object migration learning 

automata based on Tsetlin automata connections. 

Operations: Since every chromosome is represented as a 
learning automaton in hybrid algorithm, crossover and 
mutation operators are not similar to classic genetic 
operators. Also this hybrid algorithm has penalty and reward 
operation. 

Penalty and reward operator: In the chromosome, an 
object is chosen randomly, then, it takes penalty or reward. If 
data fragment location cost (corresponding action with 
object) goes beyond threshold (the threshold amount is 
calculated as average total transition cost of data fragments), 
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this object will get reward and moves toward the more 
internal states of this action. Otherwise, the object gets 
penalty. Having taken reward or penalty, the state of object 
in relevant set states change. If an object is located in 
boundary state of an action, its getting penalty leads to the 
change of action and creating a new solution. The condition 
of penalizing or rewarding an object is as follows: 

The amount of cost for data fragment transition to the 
given site is calculated from the following relationship:           

                      

∑
=

×=
m

i
pintdatafragmei entdataffragm

trntdatafragmet
1

,,)(cos  

Then, the threshold amount is calculated as average total 
transition cost of data fragments. If the amount of data 
fragments transition cost is less then or equal to the amount 
of threshold, this object is given reward, otherwise, and it 
can be penalized. Figure 3 shows the pseudo code of reward 
operator. 

Procedure Reward( LA, u ) 
If (LA.State(u)-1) mod N <> 0 then 
                Dec (LA.State(u)); 
End If 

End Reward 
Figure 3.  Pseudo code of reward operator. 

And Figure 4 shows the pseudo code of penalty operator. 
Procedure Penalize( LA, u ) 

repeat 
     For U = 1 to n do 
           If (LA.State(U)) mod N <> 0 then 
                    Inc(LA.State(U)); 
           End If 
     End for 
Until at least one object appears in the boundary state 
bestcost = ∞ ; 
for U = 1 to n do 
          Create Allocation LA′ from LA by swapping u and U 
           If costi( LA′) < bestcost then 
                   bestcost = costi( LA′); 
                   bestfragment = U; 
           End If 
End for 
LA.State(bestfragment) = LA.Action(bestfragment)*N; 
LA.State(u) = LA.Action(u)*N; 
Swap(LA.State(u),LA.State(bestfragment)); 

End Penalize 

Figure 4.  Pseudo code of penalty operator 

Selection operator: Roulette wheel is used for selecting 
learning automaton (chromosome) for mutation or crossover. 

Crossover operator: In order to do this operation, we 
can use k-point crossover. 

Mutation operator: When mutation occurred, a 
randomly selected gene was replaced with a randomly 
selected choice from the range of valid site numbers.  

Now regarding pervious descriptions, we can show the 
hybrid algorithm applied for solving the problem. Pseudo 
code of this algorithm is shown in figure 5. 

Procedure  DDA_Hybrid (problem); 
Begin 
     n=number of fragments in the system; 
     m= number of sites in the system; 
     sp = Size of Population; 
     Create the initial population LA1 … LAsp; 

    EvalFitness();
     Iteration=1; 
Repeat 
NewLA1 = NewLA2 = LA with min Value of  fitness; 
for i = 2 to sp do 
        Select LA1; Select LA2 ; 
        if (Random ≤ CrossoverRate) then 
                    Crossover ( LA1, LA2 ); 
       if (Random ≤MutationRate) then 
                   Mutation ( LA1 ); Mutation ( LA2 ); 
      NewLAi+1 = LA1; 
      NewLAi+2 = LA2 ; 
      i=i+2; 
end for 
for i = 1 to sp do 
LAi = NewLAi; 
u = Random *n;   // nu ≤≤1  
        If   cost(u) ≤ threshold   then  Reward(LAi , u );                

//threshold=∑∑
= =

×
m

i

n

j
piji j
tr

1 1
,, /n                                                                   

//cost(data fragment)= ∑
=

×
m

i
pifragmentdatai fragmentdataf
tr
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,_, _

  

        Else penalize(LAi , u);  
end for 
EvalFitness(); 
Inc(iteration); 
Until(iteration=maxiteration) 

End  DDA_Hybrid;

Figure 5.  The hybrid algorithm for solving data fragment allocation 
Problem. 

V. EXPERIMENTAL RESULTS  EVALUATION 
In this section the results of the implementation of the 

new algorithm and the comparison of that with some existing 
algorithms is shown. The algorithms applied to be compared 
with this new algorithm are as follows: the neighborhood 
random search algorithm (RS), Corcoran Genetic Algorithm 
, the Ishfaq Genetic Algorithm and object migration learning 
automata (OMA). 

The comparison was made from solution quality view 
that generated by different algorithm. Before the new 
algorithm compared to existing algorithms, Test on the new 
hybrid algorithm with various learning automata connections 
such as Krinsky, Krylov and Tsetline was made. So, 
different cases in number of sites and data fragments were 
rendered. As an example, a test on a sample with 20 data 
fragments and sites numbering from 10 to 100 was 
accomplished. Binary values, i.e. 0 or 1, were assigned to the 
entries of   requirements matrix according to the case. In 
addition, a value from 0 to 100 is assigned to the transfer 
cost and size of any given fragment as well. The results are 
shown in figure 6. 

The results indicate that solutions are generated by new 
hybrid algorithm based on Tsetline connections have less 
Transmission cost than other connections. So we used the 
hybrid algorithm based on Tsetline connections as 
representative for hybrid algorithm in experiments.
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Figure 6.  The impact of increasing site numbers over data fragment transfer cost among different learning automata connections. 

In the next stage, we compare new algorithm with other 
existing algorithms such as the neighborhood random search 
algorithm (RS), Corcoran Genetic Algorithm and the Ishfaq 
Genetic Algorithm and object migration learning automata 
(OMA). The results are shown in figure 7. 

The point is implied by this figure is that first by increasing 
the number of existing sites in the distributed system, the data 

fragment transfer cost during the query execution increases. 
Second the quality of yielded solutions by the hybrid algorithm 
(LAGA) in an analogy is higher than those of other algorithms 
because of the fact that transition cost that obtained by 
allocating data in this algorithm is lower than other algorithms. 

 

Figure 7.  The impact of increasing site numbers over data fragment transfer cost among different algorithms. 

 

In order to render the third test with a constant given 
number of sites (say 15 sites) we increase the number of 
fragments from 10 to 100. The outcome results are showed 
in figure 8. In this figure the comparison of algorithms is 
shown based on the views of data transfer cost. Figure 8 
gives out two points for consideration, first by increasing the 
number of current data fragments the cost of data fragment 
transition during the query execution is increased as well. 
Second notification focuses on quality of generated solution 
which shows that new algorithm is an effective approach. 
 

VI. CONCLUSIONS 
In this paper, a hybrid evolutionary algorithm has been 

proposed for static data fragment allocation in distributed 
database systems. This algorithm uses two methods of 
genetic algorithm and learning automata synchronically for 
searching the states space of problem. It has been showed in 
this paper that by synchronic use of learning automata and 
genetic algorithms in searching process, the quality of 
generated solutions has been accelerated. The results of 
experiments show that hybrid algorithm has dominance over 
the methods of genetic and learning automata-based and 
neighborhood random search algorithms.
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Figure 8.  The impact of increasing the number of data fragments over the transfer cost among different algorithms. 
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