
DEIM Forum 2010 F3-3

方向に基づく空間スカイライン問合せ

郭 茜† 石川 佳治††

† 名古屋大学情報科学研究科，〒 464–8601 名古屋市千種区不老町
†† 名古屋大学情報基盤センター，〒 464–8601 名古屋市千種区不老町
E-mail: †guoxi@db.itc.nagoya-u.ac.jp, ††ishikawa@itc.nagoya-u.ac.jp

あらまし 位置に基づくサービスはモバイル技術の一種であり，典型的な応用としては，地理情報を分析・利用してモ

バイルユーザのためにアイテム（例：レストラン，駐車場）を推薦するものがある．本論文では，最も近いという観

点だけでなく，可能な移動方向を考えたときに近いと考えられるアイテムを推薦する位置ベースのサービスを提案す

る．よりよいアイテムを選ぶために，距離でなく方向の属性も考慮して比較を行う．この問題は，複数の要素を考え

て決定を行う，意思決定のために新たなタイプのスカイライン問合せである．本研究ではこの問題を位置に基づく空

間スカイライン（direction-based spatial skyline, DSS）問題と呼ぶ．あるアイテムが他のアイテムを支配するのは，

それらが同じ方向にあり，前者が後者よりもユーザに近い場合である．あるアイテムがどのアイテムにも支配されな

いとき，それは DSS 上にあることになる．本研究では，ユーザに対しすべての DSS オブジェクトを提示することを

目的としている．本稿では DSS を見つけるための効率的なアルゴリズムを示す．

キーワード 空間データベース，スカイライン問合せ，方向

DirectionBased Spatial Skyline Queries

Xi GUO† and Yoshiharu ISHIKAWA††

† Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601 Japan

†† Information Technology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601 Japan

E-mail: †guoxi@db.itc.nagoya-u.ac.jp, ††ishikawa@itc.nagoya-u.ac.jp

Abstract A location-based service is a kind of mobile technologies which suggests items (restaurants, car parks,

etc.) to the mobile device users by utilizing and analyzing the geographical information. In this paper, we propose

a new location-based service to suggest the user nearer items in all directions rather than only the nearest item. We

compare the items and find better ones considering both the distance and the direction attributes. This problem

is a new skyline problem which takes into account two or more attributes to make decisions. We name this new

problem the direction-based spatial skyline (DSS) problem. One item dominates another item if it is closer to the

user and they are in the same direction. If an item cannot be domianted by any other items, it is on the DSS.

The items on the DSS are the nearer ones around the user. We also propose efficient algorithms to find the objects

which are on the DSS.

Key words Spatial databases, skyline queries, directions

1. Introduction

A location-based service is a mobile technology which gives

the mobile device user suggestions by using the geographical

information. It is an application or a system running in the

user’s mobile device. It positions the user, analyzes the ge-

ographical information, and presents suggestions to help the

user make a reasonalbe decision. The automotive naviga-

tion system is a typical location-based service. This system

uses a GPS navigation device to position the user and guides

the user to his destination through analyzing the maps in its

database. The automotive navigation system has been stud-

ied for about twenty yeares. Recently, with the development

of mobile technologies, many new location-based services are

springing up. In this paper, we put forward a new location-

based service for helping the user to find nearer places or

objects all around.

Finding nearer places or objects in all directions is a fa-

miliar problem in our daily life. In most cases, we would

like to know the nearer surrounding targets rather than only

the nearest one. A tourist prefers acquiring the nearer sight

spots in all directions. Because it is not enough for her to

make a sightseeing plan if she only knows the nearest one.

A shopper would like to know all the nearby discount shops

around to make her shopping plan. Only the nearest one

seems too few for a shopper. A soldier has to be fully aware

of the nearby enemies in all directions. Because it will be

dangerous if she only notices the nearest enemie in a bat-

tle field. On the grounds of these practical requirements,

we develop a new location-based service to help people find

nearer targets in all directions by utilizing the mobile device

facilities.

In order to find the nearer objects in all directions, we de-

scribe the objects considering both their distances and their

directions. We assume the positions of the objects pi ∈ P

and the user q are points in the two-dimensional Euclidean

space R2. The object’s vector, which starts from the user

and ends in the object, indicates the distance and direction

of the object. The distance is the vector’s quantity which is

the Euclidean distance between the user and the object. The

direction is the vector’s direction pointing to the object from

the user’s position. We compare the distance of two objects

if they are in the same direction. And the nearer one is better

than the further one. However, whether two objects are in

the same direction or not is a matter of opinion. Intuitively

two objects are in the same direction if the included angle

between their vectors is smaller than an acceptable angle. In

our work, this acceptable angle is given by the user and we

denote it as θ.

Finding the nearer objects in all directions is a new sky-

line problem. The skyline problem is selecting better objects

by comparing them in two or more attributes. If one object

is better than another object in all attributes, it dominates

another object. If one object cannot be dominated by any

other objects, it is on the skyline. So the objects on the

skyline are better objects considering all the attributes. In

our case, we compare objects in the distance and direction

attributes. One object can dominate another object if it is

nearer and they are in the same direction. Our direction-

based spatial skyline (DSS) is to find out the objects which

are not dominated by any other objects considering both the

distance and direction attributes.

Example 1 Figure. 1 and Figure. 2 shows an example of

finding neaer objects in all directions. There are 9 objects

(a to i) and the user q. The θ given by the user is π
4
. As

Figure. 1 shows, we describe objects a and b by using vector
−→
QA and vector

−−→
QB. The distances of a and b are |−→QA| and

|
−−→
QB|. And the directions of a and b are the directions of

vector
−→
QA and vector

−−→
QB. Objects a and b are in the same

direction because the included angle between
−→
QA and

−−→
QB is

smaller than θ. Figure. 2 shows the nearer objects around

the user (the red points). And they are the objects on the

direction-based spatial skyline. Objects b, h and f are dom-

inated by object a because they are in the same direction

with object a but further than a. Likewise, objects g and i is

dominated by objects c and e respectively. The objects a, c,

d and e cannot be dominated by any other objects and they

are on the direction-based spatial skyline.

�

�

�

�

�

�

�
�

	

��

�

�
��

Figure. 1 Describe objects by vectors(θ = π
4
)

�

�

�

�

�

�

�
�

	

�

�

�

�

Figure. 2 Direction-based spatial skyline(θ = π
4
)

2. Preliminaries

We define our problem in the two-dimensional Euclidean

space R2. The objects P = {pi|i ∈ [1, n]} and the user q are

all points with xy-coordinates in R2. For simple, we create

the xy-coordinates by using the user’s position as the origin

O(0, 0) and the direction of the vector
−−→
ON as the x-axis.

(N is the nearest neighbor of the user.) The vector from the

user q (O(0, 0)) to the object p (P (xp, yp)) indicates the

distance and the direction of this object.

Definition 1 (Distance) The quantity of the vector
−−→
OP

is the distance dp of the object p.

dp = |
−−→
OP | =

√
x2
p + y2

p (1)

. 2

Definition 2 (Direction) The direction of the object p is

the direction of vector
−−→
OP . We describe the direction by us-

ing the counter-clockwise angle from the x-axis to the vector
−−→
OP . And we denote this angle as αp.

αp =

arctan
yp
xp

, xp > 0, yp >= 0

arctan
yp
xp

+ π, xp < 0

arctan
yp
xp

+ 2π, xp > 0, yp <= 0

π
2
, xp = 0, yp >= 0

3π
2
, xp = 0, yp <= 0

(2)

2

where the arctangent value ranges in its usual principal value

[−π
2
, π

2
].

There are two objects pi (at the position Pi(xpi , ypi)) and

pj (at the position Pj(xpj , ypj)). If the included angle be-

tween the vector
−−→
OPi and the vector

−−→
OPj is smaller than θ

(given by the user), the two objects are in the same direction.

Definition 3 (Same Direction) For two objects pi and

pj , we denote their included angle ∠PiOPj as βpipj .

βpipj = arccos

−−→
OPi ·

−−→
OPj

|−−→OPi||
−−→
OPj |

= arccos
xpixpj + ypiypj

dpidpj
. (3)

If βpipj < θ, pi and pj are in the same direction. 2

�

�

�

�

�

�

�
�

	

��
�� �

�

��

��

��

��

Figure. 3 The directions of the objects (θ = π
4
)

Example 2 Figure. 3 shows an example. We create the xy-

coordinates by using the user’s position as the origin O(0, 0)

and the direction of the vector
−→
OA as the x-axis. The direc-

tion of the object b is the direction of the vector
−−→
OB. We use

the counter-clockwise angle αb which starts from the x-axis

and ends in
−−→
OB to denote this direction. Likewise, we can

also denote the directions of objects g and c. If θ = π
4
, the

objects c and g are in the same direction becasue ∠COG < θ.

On the contrary, the objects c and b are in the different di-

rection because ∠BOC > π
4
. .

We compare two objects considering both the distance at-

tribute and the direction attribute. If one object pi is nearer

than another object pj and they are in the same direction,

the object pi is better than pj . We also say that the object

pi dominates the object pj .

Definition 4 (Dominate) For two objects pi and pj , if

dpi < dpj and βpipj < θ, the object pi dominates the object

pj . We denote the dominance relationship as pi ≺ pj (or

pj � pi). 2

Definition 5 (Direction-Based Spatial Skyline) If one

object pi cannot be dominated by any other objects, it is on

the direction-based spatial skyline (DSS) S.

S = {pi|pi � pj , ∀pj ∈ P − {pi}}. (4)

2

3. Direction-Based Spatial Skyline Query

Algorithms

A näıve solution to this problem is to compare every object

pi with all the other objects in both of the direction and dis-

tance attributes. If pi is closer than any other points which

are in the same direction with it, it is on the DSS S. The

time complexity of this solution is O(n2). Obviously, we can

improvement the procdure considering when an object has

already been dominated by another object, it is unseated to

be on the DSS. However, the cost is still quite large.

We propose an efficient method to answer the DSS query

efficiently. The method is based on nearest neighbor queries

in spatial databases and it can utilize spatial indexes such as

R-tree efficiently. The idea is simple. At first, we find the

nearest neighbor p1 for the user’s position O. p1 is on the

DSS because it is better than any other objects in the dis-

tance attribute. The object p1 dominates the objects which

are in the same direction with it. In other words, it becomes

the dominator of its 2θ area. Next we get the second nearest

neighbor p2. If it falls into the area dominated by p1, it is

not on the DSS. Otherwise, it becomes another object on the

DSS. No matter it is on the DSS or not, it can dominate a

certain area which are not dominated by p1. We repeat this

procedure for the remaining objects from the nearest one.

As the process goes, the area dominated by the observed ob-

jects enlarges. The process continues when all the angles are

covered.

Example 3 Fig. 4 shows an example of finding the DSS

based on the idea, where θ = π
4
. Fig. 4(a) shows the ini-

tial step. The object a is the nearest neighbor and is on the

DSS. It dominates a 2θ angle ∠A1OA2. Next we check the

��

��

�

�

� �

�

	

�

�

�

�

�

�

�

�

� �

�

�

�

�

	

�

�

��

��

��

��

�
�

��

��

��

��
��

��

�

�

	

�

�

�

�

�
�

�

��

��

��

��
��

��

��

��

��

��

�

	

�

�

�

�

�

�
�

�

�

�

� �

Figure. 4 Processing a DSS query (θ = π
4
)

second nearest neighbor b as in Fig. 4(b). It falls into the

dominated angle ∠A1OA2 of the object a and cannot be on

the DSS. Because the object b also dominates a 2θ angle, the

dominated area is enlarged as ∠A1OB2. Then we check the

third nearest neighbor c as in Fig. 4(c). It is outside of the

dominated area and becomes an another object on the DSS.

And the dominated angle is enlarged to the angle ∠A1OC2.

Likewise, we check the fourth nearest neighbor d and the

fifth nearest neighbor e as in Fig. 4(d). They do not fall into

the dominated angles and become the objects on the DSS.

And the full angles 2π are covered. The process terminates

and we have found the final DSS points set S = {a, c, d, e}.
Note that we do not have to access other objects g, h, i and

f in the query process.

The procedure is summarized in Algorithm 1. The algorithm

assumes that we can use the nearest neighbor query facility.

The symbol C represents a set of ranges of angles such as

C = {[10, 20], [30, 50]}, where 10, . . . , 50 are degrees. The

algorithm is fast because it does not check all the points.

Algorithm 1 DSS Query

1: procedure DSSQuery(Q, θ)

2: S ← ∅; . Set of DSS points

3: init NN query(Q); . Initialize the NN query

4: C ← ∅; . Initialize the covered angle set

5: repeat

6: p← get next(); . Get the next NN point

7: αp ← direction(p); . Caculate the direction of p

8: if αp /∈ C then . Object p is not dominated by S

9: S ← S ∪ {p}; . Object p is on the DSS

10: end if

11: C ← C ∪ {[αp − θ, αp + θ]}; . Update the covered

angles

12: until C = {[0, 360]} . all the 2π angles are covered

13: output S;

14: end procedure

3. 1 Discussion

Specially if every nearest neighbor is in the same direction

with its previous nearest neighbor, there is only the first

nearest neighbor on the DSS. Because every nearest neigh-

bor can be dominated by its previous nearest neighbor if

they are in the same direction. This is the worst case for

our direction-based spatial skyline. Intuitively, in this case

the user will not satisfy with the query results because the

objects suggested are too few but actually the nearer objects

in different directions exist.

Example 4 Figure. 5 shows an example of this worst case.

The distribution of the objects is like a spire. Considering

the distance attribute, da < db < dc < dg < dh < dd <

di < de < df . Considering the direction attribute, βab < θ,

βbc < θ, βcg < θ, βgh < θ, βhd < θ, βdi < θ, βie < θ and

βef < θ. Therefore, a ≺ b, b ≺ c, c ≺ g, g ≺ h, h ≺ d,

d ≺ i, i ≺ e and e ≺ f . So all the objects are dominated

by their previous nearest neighbor except the object a. In

this case there is only one object a on the skyline. However,

intuitively the other objects also seem to be good choices for

the user.

�

�

� �

�

�

�

� 	

�

�

Figure. 5 The worst case (θ = π
4
)

In order to solve this problem, we extend our original defini-

tions of the DSS and propose the comparable scope DSS.

4. Comparable Scope DSS

In the worst case of our DSS definition, if every nearest

neighbor is in the same direction with its previous nearest

neighbor, there is only the first nearest neighbor on the DSS.

In order to solve this problem, we extend our original defini-

tions of the DSS and propose the comparable scope DSS.

Definition 6 (Comparable Scope) The comparable scope

of the object p is its 2θ angles [αp − θ, αp + θ]. We denote

the comparable scope as λp. 2

If another object pj falls into the comparable scope λpi of

the object pi, their included angle βpipj is smaller than θ. If

dpi < dpj , strictly speaking, the object pi is better than the

object pj only in their common comparable scopes.

Definition 7 (Scope Dominate) If dpi < dpj , pi scope

dominates pj in their common comparable scopes γpipj =

λpi ∩λpj . We denote this dominant relationship as pi ≺γpipj

pj (or pj �γpipj
pi). 2

Definition 8 (Fully Dominate) The object pi is scope

dominated by objects {p′j |j ∈ 1..k, p′j ∈ P − {pi}}.

pi �γpip
′
1
p′1;

pi �γpip
′
2
p′2;

...

pi �γpip
′
k
p′k,

If γpip′1 ∪ γpip′2 ∪ ...∪ γpip′k = λpi , the object pi is fully dom-

inated. 2

Then we can define the Comparable Scope DSS based on the

definition of the fully dominate.

Definition 9 (Comparable Scope DSS) If the object

pi cannot be fully dominated, it is on the Comparable Scope

DSS (CDSS). We denote the skyline as CS.

CS = {pi|pi �ηpi
pj , ∀pj ∈ P − {pi}, ηpi⊂=λpi} (5)

. 2

�

�

� �

�

�
���

��	

��

�

�

� �

�

�

���

���

Figure. 6 Comparable Scope DSS (θ = π
4
)

Example 5 Figure. 6 shows an example of the CDSS. The

comparable scope of the object a is the λa = [αa−θ, αa+θ].

Fig. 6 (a) shows the object a dominates the object b in their

common comparable scope γab = λa ∩ λb. And the object b

cannot be fully dominated because it cannot be dominated

by neither the object a nor the object c in the scopes ηb1 and

ηb2 . Fig. 6 (b) shows the object c is dominated by the object

a in γca and is dominated by the object b in γcb. And the

object c is fully dominated because γca∪γcb = λc. Therefore,

the objects a and b cannot be fully dominated and they are

on the CDSS. .

We can process the CDSS queries by using the basic idea

of the DSS query’s solution. At first, we find the nearest

object p1 for the user’s position O. The object p1 is on the

CDSS because it is closer to the user than any other objects

in its comparable scope λp1 . Next we get the second nearest

neighbor p2. If it falls into λp1 , it is dominated by p1 in

their common comparable scope γp1p2 . It is on the CDSS if

γp1p2 |= λp2 . Otherwise, it is not on the CDSS. We repeat

this procedure for the remaining objects from the nearest one

until the scope covered by the observed objects enlarges to

all angles 2π. The procedure is summarized in Algorithm 2

which has some small changes of Algorithm 1.

Algorithm 2 CDSS Query

1: procedure CDSSQuery(Q, θ)

2: CS ← ∅; . Set of CDSS points

3: init NN query(Q); . Initialize the NN query

4: C ← ∅; . Initialize the covered angle set

5: repeat

6: p← get next(); . Get the next NN point

7: αp ← direction(p); . Caculate the direction of p

8: λp ← [αp − θ, αp + θ]; . Set the comparable scope of p

9: ηp ← λp − λp ∩ C; . Set the undominated scope ηp

10: if ηp |= ∅ then . Scope ηp exists

11: CS ← CS ∪ {p}; . Object p is on the CDSS

12: C ← C ∪ ηp; . Update the covered angles

13: end if

14: until C = {[0, 360]} . all the 2π angles are covered

15: output CS;

16: end procedure

5. Experiments

The experiments were implemented by using a PC with an

Intel Pentium CPU (3.00 GHz), 2GB of memory, and Fedora

11 OS. The dataset was made by extracting the midpoints for

each line segment of the LBeach dataset. (LBeach datasets

are road line segments of Long Beach from the TIGER

database http://tiger.census.gov/.) This dataset consisted

of 50747 points and was normalized in [0, 1000]2 space.

We evaluated the performance of the intantaneous DSS

query by the number of the processed nearest neighbors and

the number of the DSS points. Fig. 7 shows the average

number of the processed nearest neighbors. The number de-

creases with the increase of θ and is far smaller than the total

number of points. When the θ is larger, the nearest neighbor

can dominate larger angle ranges and the algorithm termi-

nates quickly. Fig. 8 shows the number of DSS points with

repect to the different θs. The number also decreases with

the increase of θ because when the θ is larger, one DSS point

can cover larger area and dominate much more points.

We also captured some images of the DSS points with dif-

ferent θs and different user positions. As Fig. 9 shows, the

larger point is the user’s position, the solid points are the

DSS points and the hollow points are the other points.

6. Related Work

Traditionally, the skyline query problem is known as the

maximum vector problem [2] in mathmatical field. Skyline

query has attracted more and more attentions in database

 80

 60

 40

 20

 90 75 60 45 30 15

th
e

nu
m

be
r o

f p
ro

ce
ss

ed
 N

N
 p

oi
nt

s

θ (degree)

Figure. 7 The Number of Processed Nearest Neighbors

 16

 12

 8

 4

 90 75 60 45 30 15

th
e

nu
m

be
r o

f D
S

S
 p

oi
nt

s

θ (degree)

Figure. 8 The Number of DSS Points

Figure. 9 The Images of DSS Points

area since 2001 when the first paper [1] considering skyline

queries in relational databases appeared. Afterwards, many

subsequent algorithms [3] [5] [6] appeared to optimize it.

Moreover, skyline queries in spatial database becomes a

hot issue accompanied with the development of mobile tech-

nology. Most spatial skyline queries [7] [8] are based on the

distance aspect. [7] considers how to find out better targets

with regard to several possible locations of the query. [8] pro-

posed the method to find out the skyline considering distance

aspect and non-spatial aspects.

7. Conclusion

In this paper, we propose the definiton of the direction-

based spatial skyline(DSS). And we design an efficient algo-

rithm to answer the DSS query. Then we extend our basic

definition to the comparable scope DSS and we also design

an algorithm to answer the CDSS query.

Acknowledgments

This research was partly supported by a Grant-in-Aid for

Scientific Research (#19300027, #21013023) from the Japan

Society for the Promotion of Science (JSPS).

文 献
[1] Stephan Börzsönyi and Donald Kossmann and Kon-

rad Stocker, The Skyline Operator, ICDE, 2001.

[2] F. P. Preparata and M. I. Shamos, Computational Geome-

try: An Introduction, New York: Springer-Verlag, 1985.

[3] Dimitris Padadias and Yufei Tao and Greg Fu and Bern-

hard Seeger, An Optimal and Progressive Algorithm for

Skyline Queries, SIGMOD, 2003.

[4] Chee-Yong Chan and Pin-Kwang Eng and Kian-Lee Tan,

Stratified Computation of Skylines with Partially-Ordered

Domains, SIGMOD, 2005.

[5] J. Chomicki and P. Godfrey and J. Gryz and D. Liang, Sky-

line with presorting, ICDE, 2003.

[6] Parke Godfrey Ryan and Ryan Shipley and Jarek Gryz,

Maximal Vector Computation in Large Data Sets, VLDB,

2005.

[7] Mehdi Sharifzadeh and Cyrus Shahabi, The Spatial Skyline

Queries, VLDB, 2006.

[8] Baihua Zhang and Ken C. K. Lee and Wang-Chien Lee,

Location-Dependent Skyline Query, MDM, 2008.

[9] Zhiyong Huang and Hua Lu and Beng Chin Ooi and An-

thony K. H. Tung, Continuous Skyline Queries for Moving

Objects, TKDE, 2006.

[10] Katerina Raptopoulou and Apostolos Papadopoulos and

Yannis Manolopoulos, Fast Nearest-Neighbor Query Pro-

cessing in Moving-Object Databases, GeoInformatica, 2003.

[11] YuFei Tao and Dimitris Papadias and Qiongmao Shen, Con-

tinuous Nearest Neighbor Search, VLDB, 2002.

[12] http:en.wikipedia.orgwikiQuartic function

