MATLAB for Network Analysis

APM 598

Professor Armbruster

16 October 2014

Peter Chotras
Brady Gilg
Jaime Lopez

Dan Magee

What does the program do well?

MATLAB is a 4th generation programming language meant for use in engineering and
applied mathematics. While it is not designed for network analysis or visualization, it has many
properties that make it a useful tool in such applications.

One of MATLAB’s strengths is the fact that a large number of people use it. As a result of
this, there are large amount of premade network analysis and visualization m-files available
online. Once an m-file is found, it takes little effort to put the file to use (usually just dragging and
dropping). This makes it very easy to aggregate a large amount of algorithms in MATLAB. Table
1 demonstrates this by comparing network analysis programs/libraries and a compilation of
m-files found in thirty minutes of googling.

Table 1: Comparing a compilation of easily found m.files with free network analysis programs
and libraries.

MATLAB Net Workbench BOOST MAVisto
Node/Degree Metrics X X X X
Basic Centrality Metrics X X X
PageRank X X
Motif Identification X
Random Graph Generation X X X X
Small-World Graph X X
Generation
Visualization X X X X
Diffusion/Flow on Networks X X

If an m-file needs to be modified or created, this can be done easily in MATLAB. Code in
MATLAB is simple to read and write; using the programs and creating new programs does not
require a large amount of programming knowledge. Since MATLAB was designed for linear
algebra, this is especially true for matrix-based calculations. The way matrices are handled is
fairly intuitive and hassle-free. This makes MATLAB a convenient platform for network analysis
since many network algorithms incorporate the adjacency matrix.

However, there are some potential disadvantages to using MATLAB. A major
disadvantage is cost. If one does not have access to MATLAB through a university license, an
individual license must be purchased for about $2000. In that case, MATLAB a terrible option
compared to free programs. MATLAB may also be a poor choice if one has concerns about the
efficiency or runtime of the program. Programs created in a less abstract language, like C++, will
likely have better runtimes.

How easy is it to adjust it for specific needs?

There are a number of specific toolboxes developed by programmers to address needs
of individuals attempting to analyze specific complex adaptive systems. The MathWorks, Inc.,
which created MATLAB, offers a number of toolboxes which users can download to use
MATLAB for specific needs. One example is their toolbar designed for the field of bioinformatics,
called Bioinformatics Toolbox™. Users can treat gene sequences as a network, where nodes
represent proteins and directed arrows represent an interaction between those proteins (the
nature of the interaction depends on the object of study). This toolbox can be used to perform a
number of field-specific tasks, such as next-generation sequencing, which identifies patterns in
protein sequences. Additionally, MathWorks recommends using this toolbox with its toolbox that
assists with the analysis of artificial neural networks (called Neural Network Toolbox™), which
trains neural networks to recognize patterns given a large enough amount of data [4*].

More generally, a number of third parties offer toolboxes which, while not designed for a
specific type of complex adaptive system, includes a number of helpful .m files for analysis. For
example, MIT Strategic Engineering has a toolbox for analyzing complex adaptive systems using
MATLAB [3*]. Downloading this toolbox helps adjust MATLAB for specific needs by allowing the
user to utilize programming that analyzes a variety of aspects of a complex adaptive system.
The toolbox includes multiple measures for centrality, allowing for a more appropriate analysis of
the specific system. For example, the toolbox’s ability to measure closeness centrality is useful
for the analysis of many social networks, whereas its ability to measure eigenvector centrality
could be more insightful for an analysis of the World Wide Web. The toolbox also measures a
network’s mean degree, node and edge betweenness, and clustering coefficients, and includes
other features, such as finding conversion and distance measures.

Flnally, MATLAB also has programs which can analyze dynamic networks [2*]. For
example, Lev Muchnik has created a package called Complex Network Package for MATLAB.
The tutorial for this package demonstrates how to use the program to analyze a random
dynamic network that models disease spread. In the example, nodes represent individuals and a
directed link from node j to node i represents individual / being infected by individual j. Using the
toolbox, somebody attempting to analyze disease spread under certain conditions can construct
programs in MATLAB to create randomly generated networks with certain pre-determined
properties, such as the number of nodes, the number of initially infected individuals, and the rate
at which an infection spreads. After generating the complex adaptive system, the toolbox can be
used to plot results, including the number of infected individuals over time, changes in the rate of
infection over time, and the average degree of the graph over time.

Can you extend the package and write additional code for it?

Matlab is a programming language, so in principle it can compute anything that any other
language can. As an example, let’s try to replicate the triad profiles seen in the paper
“Superfamilies of Evolved and Designed Networks”.[6*]

The program used to generate the profiles in the article is “mfinder”, a closed source
Windows executable written previously by some of the authors of the paper. To replicate this
program in Matlab, we start by looking at the methodology in the article.

The profile is defined as the normalized Z score of the number of triads of each type in
the target network compared to a random network of the same degree distribution. Specifically,
Z,= (Nreal, - <Nrand>)/std(Nrand,), where i indexes over the 13 possible triads, Z is a 13
dimensional vector, Nreal. is the number of triads of type i in the target network, and Nrand. is a
vector of the number of triads of type i for some number (not specified in the article, | chose 100)
of randomly chosen networks with the same degree distribution as the target. Then, Z is
normalized to produce the triad profile. These operations can be completed quickly with built in
Matlab commands.

fori=1:13

z(i) = (Nreal(i) - mean(Nrand(:,i)))/std(Nrand(:,i));
end

profile = z./(norm(z));

Now the question is how to generate Nreal,, which requires counting the number of triads
in a given network, and Nrand, which requires generating random networks with the same
degree distribution as the target network and also counting their triads. Luckily, Matlab has a
large number of functions already written, and using Google | was able to find a webpage from
Brown University[7*] with the file “gibbs.m” which outputs a random adjacency matrix with the
same degree distribution as an input matrix. The code was written in response to the paper in
question, so it seems appropriate.

The last function required is one to compute the number of triads of each type of a given
network. Since | was unable to find a script to do this, | needed to write it myself. This was
accomplished simply by looping over the possible triads and using nested if statements to
determine which of the 13 triads they fit into if any. Combining the built in commands, the code
scavenged from the internet, and the code | wrote myself is very easy because they all become
functions in Matlab. After about 2 hours of research and searching, and another 2 hours of
coding, | was able to generate a triad profile for a given network. As an example, below is the
profile for a random network of 50 nodes.

0.4 T T T T T T

ol |

o1 |

oz |

0.3 —

0.4 |

o5 1 1 1 1 1 1

Choose one particular algorithm, find its code and explain the algorithm that is coded.
One useful algorithm provided by the MIT Strategic Engineering Research Group [1] is
the node betweenness centrality measure [5]. It takes in an adjacency matrix (n x n) of the
distances between nodes and outputs a betweenness vector (n x 1) for which lists the
betweenness for each node. It begins by counting the number of nodes, n, in the adjacency
matrix and then creating a matrix (n x n) of shortest paths spaths with each entry set to infinity.
With this action, the algorithm proceeds to determine the shortest path going through each node.

This step requires 3 nested loops: the first will create an adjacency matrix, adjk, for each
value of k from 1 to n - 1. The matrix adjk is set to the value of adj*k. This is done such that the
square matrix of distances, adj, has every combination of distances evaluated. The algorithm will
then instantiate two loops for i and j for each value from 1 to n. If adjk(i, j) of this matrix is greater
than 0 then spaths(i, j) is set to the smaller value of spaths(i, j) and adjk(i, j). During the first loop,
each entry of spaths is infinity so obviously each minimum will be set to the value of adj1(j, j).
After each value of i and j has been tested (each entry in the matrix adjk), the first loop will then
create a new adjacency matrix adj2, and then repeat the process for each entry. Essentially, for
each node in the set the algorithm checks every possible combination of distances to each other
node, including backtracking, to find the shortest path possible path between two nodes. At the
conclusion of these nested loops, the spaths matrix will consist of the shortest distance between

(i, J)-

At this point the algorithm creates btwn, a (n x 1) array and sets each value to zero. The
last main part of the algorithm is to adjust this btwn array to reflect accurate values of the
betweenness of each node. It does this by nesting two more loops; the first of which calls a
different MATLAB algorithm, shortest pathDP.m (also in the MIT package), and the second of
which adjusts the btwn vector. The first loop’s purpose is to call shortest_pathDP.m which
returns the optimal path from node j to each other node. The second loop adds to the
betweenness score of the node being analyzed. During the second loop, if i and j are at the
same value, the remainder of the second loop will be skipped since no shortest path exists,
obviously, between the same node. Otherwise, it creates the vector [J_ji, step_ind] where
step_ind is the number of independent steps taken to get from jto iand J ji is the path length
from jto i. It is set to the smallest value of any node to j from the shortest_pathDP.m function.

Then route_ji is created (the route from node j to the destination in i steps) and is
assigned to this vector. So for the first loop, it is looking for each node /=1 step away in the
network. The btwn array is then assigned to its current value plus 1/spaths(i, j). The repetition of
this loop results in the nth node of the btwn array being the sum of how many shortest paths run
through node n. This continues for each node in the set. Once the nested loops have concluded,
the final step is to divide each value of the btwn array by n-choose-2. This step is done because
we are looking at the betweenness of each node relative to the total possible shortest paths

which exist. The algorithm is complete and the btwn array is finalized. Each value in btwn is the
betweenness centrality of the corresponding node.

References

1.

Bounova, G., de Weck, O.L. "Overview of metrics and their correlation patterns for
multiple-metric topology analysis on heterogeneous graph ensembles", Phys. Rev. E 85,
016117 (2012).

Lev Muchnik (2013). Complex Networks Package for MatLab (Version 1.6).
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html

MIT Strategic Engineering (2011). “Matlab Tools for Network Analysis (2006-2011)”,
http://strategic.mit.edu/downloads.php?page=matlab_networks (last updated March 5,
2014)

MathWorks (2014). “Bioinformatics Toolbox™ User’'s Guide,”
http://www.mathworks.com/help/pdf_doc/bioinfo/bioinfo_ug.pdf

MIT Strategic Engineering (2011). “Matlab Tools for Network Analysis (2006-2011)”,
http://strategic.mit.edu/docs/matlab_networks/node_betweenness_slow.m (last updated
October 13, 2009)

“Superfamilies of Evolved and Designed Networks”, Milo et al, Science March 2004.
https://math.la.asu.edu/~dieter/courses/APM_598/Alon_science.pdf
https://wiki.brown.edu/confluence/pages/viewpage.action?pageld=71884521

http://www.google.com/url?q=http%3A%2F%2Fwww.mathworks.com%2Fhelp%2Fpdf_doc%2Fbioinfo%2Fbioinfo_ug.pdf&sa=D&sntz=1&usg=AFQjCNFsRUugvhzWWKFvDxhelfadvxUm1w
https://www.google.com/url?q=https%3A%2F%2Fmath.la.asu.edu%2F~dieter%2Fcourses%2FAPM_598%2FAlon_science.pdf&sa=D&sntz=1&usg=AFQjCNGci8v3cnBM1O2SBTK-iq_MwRF8jg

