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Preface

MATLAB® (short for MATrix LABoratory) is a special-purpose computer pro-
gram optimized to perform engineering and scientific calculations. It started life
as a program designed to perform matrix mathematics, but over the years it has
grown into a flexible computing system capable of solving essentially any tech-
nical problem.

The MATLAB program implements the MATLAB language and provides a
very extensive library of predefined functions to make technical programming
tasks easier and more efficient. This extremely wide variety of functions makes it
much easier to solve technical problems in MATLAB than in other languages
such as Fortran or C. This book introduces the MATLAB language and shows
how to use it to solve typical technical problems.

This book teaches MATLAB as a technical programming language, showing
students how to write clean, efficient, and documented programs. It makes no pre-
tense at being a complete description of all of MATLAB’s hundreds of functions.
Instead, it teaches the student how to use MATLAB as a computer language and how
to locate any desired function with MATLAB’s extensive on-line help facilities.

The first six chapters are designed to serve as the text for an “Introduction to
Programming/Problem Solving” course for freshman engineering students. This
material should fit comfortably into a 9-week, 3-hour course. The remaining
chapters cover advanced topics such as I/O and graphical user interfaces. These
chapters may be covered in a longer course or employed as a reference by engi-
neering students or practicing engineers who use MATLAB as a part of their
coursework or employment.

vii
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Changes in the Fourth Edition

The fourth edition of this book is specifically devoted to MATLAB 7.4. MAT-
LAB 7 and later versions contain many language and tool changes, and this book
had to be revised extensively for the new version. Some of the major changes are

Case-sensitive function and directory names on all platforms.

Function handles.

Nested functions.

Math operations with single and integer data types.

Major revision of the GUI code, including the addition of panels, button
groups, and toolbars. The code auto-generated by guide has been totally
changed. Frames have been deprecated.

Major revisions to programming tools, such as the addition of conditional
breakpoints and the m1int tool to check for poor programming practices
within an M-file.

In addition, this fourth edition adds coverage of solving differential equations
using the ode45 function, introduces the MATLAB compiler, and provides
numerous new or modified end-of-chapter exercises.

The Advantages of MATLAB for Technical Programming

MATLAB has many advantages compared with conventional computer languages
for technical problem solving. These include

1.

Ease of Use
MATLARB is an interpreted language, as are many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to execute
large prewritten programs. Programs may be easily written and modified
with the built-in integrated development environment, and debugged with
the MATLAB debugger. Because the language is so easy to use, it is ideal
for educational use and for the rapid prototyping of new programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, on-line docu-
mentation and manuals, a workspace browser, and extensive demos.

Platform Independence

MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the
language is supported on Windows 2000/XP/Vista, Linux, Unix, and the
Macintosh. Programs written on any platform will run on all of the other
platforms, and data files written on any platform may be read transpar-
ently on any other platform. As a result, programs written in MATLAB
can migrate to new platforms when the needs of the user change.
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3. Predefined Functions

MATLAB comes complete with an extensive library of predefined
functions that provide tested and prepackaged solutions to many basic
technical tasks. For example, suppose that you are writing a program
that must calculate the statistics associated with an input data set. In
most languages, you would need to write your own subroutines or
functions to implement calculations such as the arithmetic mean,
standard deviation, median, and the like. These and hundreds of other
functions are built right into the MATLAB language, making your job
much easier.

In addition to the large library of functions built into the basic
MATLAB language, there are many special-purpose toolboxes available
to help solve complex problems in specific areas. For example, a user can
buy standard toolboxes to solve problems in signal processing, control
systems, communications, image processing, and neural networks, among
many others.

4. Device-Independent Plotting
Unlike other computer languages, MATLAB has many integral plotting
and imaging commands. The plots and images can be displayed on any
graphical output device supported by the computer on which MATLAB is
running. This capability makes MATLAB an outstanding tool for visual-
izing technical data.

5. Graphical User Interface
MATLAB includes tools that allow a program to interactively construct a
graphical user interface (GUI) for his or her program. With this capability,
the programmer can design sophisticated data analysis programs that can
be operated by relatively inexperienced users.

6. MATLAB Compiler

MATLAB?s flexibility and platform independence is achieved by compil-
ing MATLAB programs into a device-independent pcode, and then inter-
preting the pcode instructions at run-time. This approach is similar to that
used by Microsoft’s Visual Basic language. Unfortunately, the resulting
programs can sometimes execute slowly because the MATLAB code is
interpreted rather than compiled. We will point out features that tend to
slow program execution when we encounter them, and suggest ways to
work around this limitation.

In addition MATLAB programs can be used only on computers that
have MATLAB installed. Since the program is expensive, that can be a
significant limitation.

A separate MATLAB compiler is available, which converts MATLAB
programs into ones that can be run on any computer without requiring a
MATLARB license. With the MATLAB compiler, a programmer can cre-
ate MATLAB programs and distribute then to anyone on any computer.
The MATLAB compiler is described in Chapter 11.
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Features of This Book

Many features of this book are designed to emphasize the proper way to write
reliable MATLAB programs. These features should serve a student well when he
or she is first learning MATLAB, and they should also be useful to the practi-
tioner on the job. They include

1. Emphasis on Top-Down Design Methodology

The book introduces a top-down design methodology in Chapter 3, and
uses it consistently throughout the rest of the book. This methodology
encourages a student to think about the proper design of a program before
beginning to code. It emphasizes the importance of clearly defining the
problem to be solved and the required inputs and outputs before any other
work is begun. Once the problem has been properly defined, it teaches the
student to employ stepwise refinement to break the task down into suc-
cessively smaller sub-tasks and to implement the subtasks as separate
subroutines or functions. Finally, it teaches the importance of testing at all
stages of the process—both unit testing of the component routines and
exhaustive testing of the final product.

The formal design process taught by the book may be summarized as
follows:

1. Clearly state the problem that you are trying to solve.

2. Define the inputs required by the program and the outputs to be
produced by the program.

3. Describe the algorithm that you intend to implement in the
program. This step involves top-down design and stepwise decom-
position, using pseudocode or flow charts.

4. Turn the algorithm into MATLAB statements.

5. Test the MATLAB program. This step includes unit testing of spe-
cific functions as well as exhaustive testing of the final program
with many different data sets.

. Emphasis on Functions

The book emphasizes the use of functions to logically decompose tasks
into smaller sub-tasks. It teaches the advantages of functions for data
hiding. It also emphasizes the importance of unit testing functions
before they are combined into the final program. In addition, the book
teaches about the common mistakes made with functions and how to
avoid them.

. Emphasis on MATLAB Tools

The book teaches the proper use of MATLAB’s built-in tools to make
programming and debugging easier. The tools covered include the Editor /
Debugger, the Workspace Browser, the Help Browser, and GUI design
tools.
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4. Good Programming Practice Boxes
These boxes highlight good programming practices when they are intro-
duced for the convenience of the student. In addition, the good program-
ming practices introduced in a chapter are summarized at the end of the
chapter. An example Good Programming Practice Box is shown here.

*

Always indent the body of an i f construct by two or more spaces to improve
the readability of the code.

5. Programming Pitfalls Boxes
These boxes highlight common errors so that they can be avoided. An
example Programming Pitfalls Box is shown here.

Make sure that your variable names are unique in the first 31 characters.
Otherwise, MATLAB will not be able to tell the difference between them.

6. Emphasis on Data Structures
Chapter 7 contains a detailed discussion of MATLAB data structures,
including sparse arrays, cell arrays, and structure arrays. The proper use
of these data structures is illustrated in the chapters on handle graphics
and graphical user interfaces.

Pedagogical Features

The first six chapters of this book are specifically designed to be used in a fresh-
man “Introduction to Program/Problem Solving” course. It should be possible to
cover this material comfortably in a 9-week, 3-hour-per-week course. If there is
insufficient time to cover all of the material in a particular Engineering program,
Chapter 6 may be bypassed, the remaining material will still teach the fundamen-
tals of programming and using MATLAB to solve problems. This feature should
appeal to harassed engineering educators trying to cram ever more material into
a finite curriculum.

The remaining chapters cover advanced material that will be useful to the
engineer and engineering students as they progress in their careers. This material
includes advanced I/O and the design of graphical user interfaces for programs.
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The book includes several features designed to aid student comprehension.
A total of 15 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix B. These quizzes can serve as a useful self-test
of comprehension. In addition, there are approximately 160 end-of-chapter
exercises. Answers to all exercises are included in the Instructor’s Manual. Good
programming practices are highlighted in all chapters with special Good
Programming Practice boxes, and common errors are highlighted in Programming
Pitfalls boxes. End-of-chapter materials include Summaries of Good Programming
Practice and Summaries of MATLAB Commands and Functions.

The book is accompanied by an Instructor’s Manual, containing the solu-
tions to all end-of-chapter exercises. The source code for all examples in the book
is available from the book’s Web site, and the source code for all solutions in the
Instructor’s Manual is available separately to instructors.

A Final Note to the User

No matter how hard I try to proofread a document like this book, it is inevitable
that some typographical errors will slip through and appear in print. If you should
spot any such errors, please drop me a note via the publisher, and I will do my
best to get them eliminated from subsequent printings and editions. Thank you
very much for your help in this matter.

I will maintain a complete list of errata and corrections at the book’s World
Wide Web site, which is http://academic.cengage.com/engineering. Please check
that site for any updates and/or corrections.
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CHAPTEHR

Introduction
to MATLAB

MATLAB (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a
program designed to perform matrix mathematics, but over the years it has
grown into a flexible computing system capable of solving essentially any techni-
cal problem.

The MATLAB program implements the MATLAB programming language and
provides a very extensive library of predefined functions to make technical pro-
gramming tasks easier and more efficient. This book introduces the MATLAB
language as it is implemented in MATLAB Version 7.4 (Release 2007a) and shows
how to use it to solve typical technical problems.

MATLAB is a huge program with an incredibly rich variety of functions. Even
the basic version of MATLAB without any toolkits is much richer than other tech-
nical programming languages. There are more than 1000 functions in the basic
MATLAB product alone, and the toolkits extend this capability with many more
functions in various specialties. This book makes no attempt to introduce the user
to all of MATLAB's functions. Instead, it teaches a user the basics of how to write,
debug, and optimize good MATLAB programs and presents a subset of the most
important functions. Just as importantly, it teaches the programmer how to use
MATLAB’s own tools to locate the right function for a specific purpose from the
enormous number of choices available.
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Introduction to MATLAB

The Advantages of MATLAB

MATLAB has many advantages compared with conventional computer languages
for technical problem solving. These include

1. Ease of Use

MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to exe-
cute large prewritten programs. Programs may be easily written and
modified with the built-in integrated development environment, and
debugged with the MATLAB debugger. Because the language is so easy
to use, it is ideal for the rapid prototyping of new programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, on-line docu-
mentation and manuals, a workspace browser, and extensive demos.

. Platform Independence

MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the lan-
guage is supported on Windows 2000/XP/Vista, Linux, several versions of
Unix, and the Macintosh. Programs written on any platform will run on all
of the other platforms, and data files written on any platform may be read
transparently on any other platform. As a result, programs written in MAT-
LAB can migrate to new platforms when the needs of the user change.

. Predefined Functions

MATLAB comes complete with an extensive library of predefined func-
tions that provide tested and prepackaged solutions to many basic techni-
cal tasks. For example, suppose that you are writing a program that must
calculate the statistics associated with an input data set. In most lan-
guages, you would need to write your own subroutines or functions to
implement calculations such as the arithmetic mean, standard deviation,
median, and so on. These and hundreds of other functions are built right
into the MATLAB language, making your job much easier.

In addition to the large library of functions built into the basic
MATLAB language, there are many special-purpose toolboxes available to
help solve complex problems in specific areas. For example, a user can buy
standard toolboxes to solve problems in signal processing, control systems,
communications, image processing, and neural networks, among many
others. There is also an extensive collection of free user-contributed MAT-
LAB programs that are shared through the MATLAB Web site.

. Device-Independent Plotting

Unlike most other computer languages, MATLAB has many integral plot-
ting and imaging commands. The plots and images can be displayed on any
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graphical output device supported by the computer on which MATLAB is
running. This capability makes MATLAB an outstanding tool for visual-
izing technical data.

5. Graphical User Interface
MATLAB includes tools that allow a programmer to interactively con-
struct a Graphical User Interface (GUI) for his or her program. With this
capability, the programmer can design sophisticated data-analysis pro-
grams that can be operated by relatively inexperienced users.

6. MATLAB Compiler

MATLAB?s flexibility and platform independence is achieved by compil-
ing MATLAB programs into a device-independent p-code and then inter-
preting the p-code instructions at runtime. This approach is similar to that
used by Microsoft’s Visual Basic language. Unfortunately, the resulting
programs can sometimes execute slowly because the MATLAB code is
interpreted rather than compiled. We will point out features that tend to
slow program execution when we encounter them.

A separate MATLAB compiler is available. This compiler can com-
pile a MATLAB program into a true executable that runs faster than the
interpreted code. It is a great way to convert a prototype MATLAB pro-
gram into an executable suitable for sale and distribution to users.

.2 Disadvantages of MATLAB

MATLAB has two principal disadvantages. The first is that it is an interpreted
language and therefore may execute more slowly than compiled languages. This
problem can be mitigated by properly structuring the MATLAB program.

The second disadvantage is cost: a full copy of MATLAB is five to ten times
more expensive than a conventional C or Fortran compiler. This relatively high
cost is more than offset by the reduced time required for an engineer or scientist
to create a working program, so MATLAB is cost-effective for businesses.
However, it is too expensive for most individuals to consider purchasing.
Fortunately, there is also an inexpensive Student Edition of MATLAB, which is a
great tool for students wishing to learn the language. The Student Edition of
MATLAB is essentially identical to the full edition.

1.3 The MATLAB Environment

The fundamental unit of data in any MATLAB program is the array. An
array is a collection of data values organized into rows and columns and known
by a single name. Individual data values within an array may be accessed
by including the name of the array, followed by subscripts in parentheses
that identify the row and column of the particular value. Even scalars are
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treated as arrays by MATLAB—they are simply arrays with only one row and
one column. We will learn how to create and manipulate MATLAB arrays in
Section 1.4.

When MATLAB executes, it can display several types of windows that
accept commands or display information. The three most important types of
windows are Command Windows, where commands may be entered; Figure Win-
dows, which display plots and graphs; and Edit Windows, which permit a user to
create and modify MATLAB programs. We will see examples of all three types
of windows in this section.

In addition, MATLAB can display other windows that provide help and that
allow the user to examine the values of variables defined in memory. We will
examine some of these additional windows here, examine the others when we
discuss how to debug MATLAB programs.

1.3.1 The MATLAB Desktop

When you start MATLAB Version 7.4, a special window called the MATLAB
desktop appears. The desktop is a window that contains other windows showing
MATLAB data, plus toolbars and a “Start” button similar to that used by
Windows XP. By default, most MATLAB tools are “docked” to the desktop so
that they appear inside the desktop window. However, the user can choose to
“undock” any or all tools, making them appear in windows separate from the
desktop.

The default configuration of the MATLAB desktop is shown in Figure 1.1.
It integrates many tools for managing files, variables, and applications within the
MATLAB environment.

The major tools within or accessible from the MATLAB desktop are

The Command Window

The Command History Window

The Start Button

The Documents Window, including the Editor/Debugger and the Array Editor
Figure Windows

Workspace Browser

Help Browser

Path Browser

We will discuss the functions of these tools in later sections of this chapter.

1.3.2 The Command Window

The right-hand side of the default MATLAB desktop contains the Command
Window. A user can enter interactive commands at the command prompt (») in
the Command Window, and they will be executed on the spot.
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Figure 1.1

The default MATLAB desktop. The exact appearance of the desktop may differ slightly
on different types of computers.

As an example of a simple interactive calculation, suppose that you want to
calculate the area of a circle with a radius of 2.5 m. This can be done in the
MATLAB Command Window by typing

» area = pi * 2.5%42
area =
19.6350

MATLAB calculates the answer as soon as the Enter key is pressed and stores the
answer in a variable (really a 1 X 1 array) called area . The contents of the vari-
able are displayed in the Command Window as shown in Figure 1.2, and the var-
iable can be used in further calculations. (Note that 7 is predefined in MATLAB,
so we can just use pi without first declaring it to be 3.141592 . . .).

If a statement is too long to type on a single line, it may be continued on
successive lines by typing an ellipsis ( . . . ) at the end of the first line and then
continuing on the next line. For example, the following two statements are
identical.
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1.3.

The Command Window appears on the right side of the desktop. Users enter commands
and see responses here.

x1

1+ 1/2 + 1/3 + 1/4 + 1/5 + 1/6

and

x1 1+ 1/2 + 1/3 + 1/4

+ 1/5 + 1/6

Instead of typing commands directly in the Command Window, a user can
place a series of commands into a file, and the entire file can be executed by
typing its name in the Command Window. Such files are called script files. Script
files (and functions, which we will see later) are also known as M-files, because

2

they have a file extension of “.m”.

3 The Command History Window

The Command History Window displays a list of the commands that a user has
entered in the Command Window. The list of previous commands can extend back
to previous executions of the program. Commands remain in the list until they are
deleted. To reexecute any command, simply double-click it with the left mouse
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Figure 1.3 The Command History Window, showing two commands being deleted.
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button. To delete one or more commands from the Command History window,
select the commands and right-click them with the mouse. A popup menu will be
displayed that allows the user to delete the items (see Figure 1.3).

1.3.4 The Start Button

The Start Button (see Figure 1.4) allows a user to access MATLAB tools, desk-
top tools, help files, and so on. It works just like the Start button on a Windows
desktop. To start a particular tool, just click on the Start Button and select the tool

from the appropriate submenu.

1.3.5 The Edit/Debug Window

An Edit Window is used to create new M-files, or to modify existing ones. An
Edit Window is created automatically when you create a new M-file or open an
existing one. You can create a new M-file by selecting “File/New/M-file” from
the desktop menu or by clicking the B toolbar icon. You can open an existing

M-file file by selecting “File/Open” from the desktop menu or by clicking the &

toolbar icon.
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Figure 1.4 The Start Button, which allows a user to select from a wide variety of MATLAB

and desktop tools.

An Edit Window displaying a simple M-file called calc_area.mis shown
in Figure 1.5. This file calculates the area of a circle, given its radius, and displays
the result. By default, the Edit Window is an independent window not docked to
the desktop, as shown in Figure 1.5(a). The Edit Window can also be docked to the
MATLAB desktop. In that case, it appears within a container called the
Documents Window, as shown in Figure 1.5(h). We will learn how to dock and
undock a window later in this chapter.

The Edit Window is essentially a programming text editor, with the
MATLAB languages features highlighted in different colors. Comments in an
M-file file appear in green, variables and numbers appear in black, complete
character strings appear in magenta, incomplete character strings appear in red,
and language keywords appear in blue.

After an M-file is saved, it may be executed by typing its name in the
Command Window. For the M-file in Figure 1.5, the results are

» calc_area

The area of the circle is 19.635

The Edit Window also doubles as a debugger, as we shall see in Chapter 2.

1.3.6 Figure Windows

A Figure Window is used to display MATLAB graphics. A figure can be a two-
or three-dimensional plot of data, an image, or a graphical user interface (GUI).
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Figure 1.5 (a) The MATLAB Editor, displayed as an independent window. (b) The MATLAB

Editor, docked to the MATLAB desktop.
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A simple script file that calculates and plots the function sin x is shown as
follows:

oe

sin_x.m: This M-file calculates and plots the
function sin(x) for 0 <= x<= 6.

oe

x = 0:0.1:6
vy = sin(x)
plot(x,y)

If this file is saved under the name sin_x.m, then a user can execute the file by
typing “sin_x" in the Command Window. When this script file is executed,
MATLAB opens a Figure Window and plots the function sin x in it. The resulting
plot is shown in Figure 1.6.

1.3.7 Docking and Undocking Windows

MATLAB windows such as the Command Window, the Edit Window, and Figure
Windows can either be docked to the desktop, or they can be undocked. When a
window is docked, it appears as a pane within the MATLAB desktop. When it is
undocked, it appears as an independent window on the computer screen separate
from the desktop. When a window is docked to the desktop, the upper right-hand
corner contains a small button with an arrow pointing up and to the right (ﬂ ).
If this button is clicked, the window will become an independent window. When

_lolx]
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Figure 1.6 MATLAB plot of sin x versus x.
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the window is an independent window, the upper right-hand corner contains a
small button with an arrow pointing down and to the right ('2). If this button is
clicked, the window will be re-docked with the desktop. Figure 1.5 shows the Edit
Window in both its docked and undocked state. Note the undock and dock arrows
in the upper right-hand corner.

1.3.8 The MATLAB Workspace

A statement such as
z = 10

creates a variable named z, stores the value 10 in it, and saves it in a part of com-
puter memory known as the workspace. A workspace is the collection of all the
variables and arrays that can be used by MATLAB when a particular command,
M-file, or function is executing. All commands executed in the Command
Window (as well as all script files executed from the Command Window) share a
common workspace, so they can all share variables. As we will see later, MAT-
LAB functions differ from script files in that each function has its own separate
workspace.

A list of the variables and arrays in the current workspace can be generated
with the whos command. For example, after M-files calc_area and sin_x
are executed, the whos command will display the following list of variables:

» whos
Name Size Bytes Class Attributes
area 1x1 8 double
radius 1x1 8 double
string 1x32 64 char
X 1x61 488 double
Yy 1x61 488 double

Script file calc_area created variables area, radius, and string, and
script file sin_x created variables x and y. Note that all of the variables are in
the same workspace, so if two script files are executed in succession, the second
script file can use variables created by the first script file.

The contents of any variable or array may be determined by typing the appro-
priate name in the Command Window. For example, the contents of string can
be found as follows:

» string
string =
The area of the circle is 19.635

A variable can be deleted from the workspace with the clear command.
The clear command takes the form

clear varl var2
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where varl and var2 are the names of the variables to be deleted. The
command clear variables orsimply clear deletes all variables from the
current workspace.

1.3.9 The Workspace Browser

The contents of the current workspace can also be examined with a GUI-based
Workspace Browser. The Workspace Browser appears by default in the upper left-
hand corner of the desktop. It provides a graphic display of the same information
as the whos command, and it also shows the actual contents of each array if the
information is short enough to fit within the display area. The Workspace
Browser is dynamically updated whenever the contents of the workspace change.

A typical Workspace Browser window is shown in Figure 1.7. As you can
see, it displays the same information as the whos command. Double-clicking on

Array Editor allows the user to
edit any variable or array selected
in the Workspace Browser.
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Figure 1.7 The Workspace Browser and the Array Editor. The Array Editor is invoked by double-
clicking a variable in the Workspace Browser. It allows a user to change the values
contained in a variable or array.
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to modify the information stored in the variable.

clicking with the mouse and selecting the delete option.

1.3.10

There are three ways to get help in MATLAB. The preferred method is to use the Help
Browser. The Help Browser can be started by selecting the 2 jcon from the desktop
toolbar or by typing helpdesk or helpwin in the Command Window. A user can
get help by browsing the MATLAB documentation, or he or she can search for the

Getting Help

The MATLAB Environment

One or more variables may be deleted from the workspace by selecting them
in the Workspace Browser with the mouse and pressing the delete key, or by right-

details of a particular command. The Help Browser is shown in Figure 1.8.

B Help
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@& MATLAB
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If You Are Upgrading from a Previous Release...

= Release Notes
Highlights new features, installation notes, bug fixes, and compatibility issues.

If You Are Using MATLAB for the First Time...

At the heart of MATLAB is a new language that you must learn before you can
fully exploit its power. This isn't as hard as it might sound; you can leamn the
basics of MATLAB very quickly. You will be rewarded with high-productivity,
high-creativity computing power that will change the way you work.

If you are a first-time user, the best way to get started is to read thoroughly the

Getting Started with MATLAB tutorial with MATLAB open so you can follow along.

The tutorial book comes with MATLAB and is available in PDF and for purchase
on the MathVWorks Veb site.

If you don't want to take the time to read it thoroughly, here are links to the most
important sections

= What Is MATLAB?
An overview of the main features of MATLAB

= Matrices and Arrays
Haowr to enter matrices, use the colon {:) operator, and invoke functions

= Graphics
How to plot data, annotate graphs, and work with images

= Programming

How to use flow control statements and create scripts and functions

Figure 1.8 The Help Browser.
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There are also two command-line—oriented ways to get help. The first way is
to type help or help followed by a function name in the Command Window. If
you just type help, MATLAB will display a list of possible help topics in the
Command Window. If a specific function or a toolbox name is included, help will
be provided for that particular function or toolbox.

The second way to get help is the lookfor command. The lookfor
command differs from the help command in that the help command searches
for an exact function name match, while the 1ookfor command searches the
quick summary information in each function for a match. This makes 1ook-
for slower than help, but it improves the chances of getting back useful
information. For example, suppose that you were looking for a function to take
the inverse of a matrix. Since MATLAB does not have a function named
inverse, the command “help inverse” will produce nothing. On the
other hand, the command “lookfor inverse” will produce the following
results:

» lookfor inverse

INVHILB
ACOS
ACOSH
ACOT
ACOTH
ACSC
ACSCH
ASEC
ASECH
ASIN
ASINH
ATAN
ATAN2
ATANH
ERFINV
INV
PINV
IFFT
IFFT2
IFFTN
IPERMUTE

1.3.1

Inverse Hilbert matrix.

Inverse cosine.

Inverse hyperbolic cosine.

Inverse cotangent.

Inverse hyperbolic cotangent.
Inverse cosecant.

Inverse hyperbolic cosecant.
Inverse secant.

Inverse hyperbolic secant.

Inverse sine.

Inverse hyperbolic sine.

Inverse tangent.

Four quadrant inverse tangent.
Inverse hyperbolic tangent.

Inverse error function.

Matrix inverse.

Pseudoinverse.

Inverse discrete Fourier transform.
Two-dimensional inverse discrete Fourier transform.
N-dimensional inverse discrete Fourier transform.
Inverse permute array dimensions.

From this list, we can see that the function being sought is named inv.

I A Few Important Commands

If you are new to MATLAB, a few demonstrations may help to give you a feel for
its capabilities. To run MATLAB’s built-in demonstrations, type demo in the
Command Window, or select “demos” from the Start Button.
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The contents of the Command Window can be cleared at any time using the
clc command, and the contents of the current Figure Window can be cleared at
any time using the c1f command. The variables in the workspace can be cleared
with the c1lear command. As we have seen, the contents of the workspace persist
between the executions of separate commands and M-files, so it is possible for
the results of one problem to have an effect on the next one that you may attempt
to solve. To avoid this possibility, it is a good idea to issue the clear command
at the start of each new independent calculation.

Another important command is the abort command. If an M-file appears to
be running for too long, it may contain an infinite loop and it will never termi-
nate. In this case, the user can regain control by typing control-c (abbreviated " c)
in the Command Window. This command is entered by holding down the control
key while typing a “c”. When MATLAB detects a "¢, it interrupts the running
program and returns a command prompt.

The exclamation point (!)is another important special character. Its special
purpose is to send a command to the computer’s operating system. Any characters
after the exclamation point will be sent to the operating system and executed as
though they had been typed at the operating system’s command prompt. This fea-
ture lets you embed operating system commands directly into MATLAB programs.

Finally, it is possible to keep track of everything done during a MATLAB
session with the diary command. The form of this command is

diary filename

After this command is typed, a copy of all input and most output typed in the
Command Window will be echoed in the diary file. This is a great tool for
recreating events when something goes wrong during a MATLAB session. The
command “diary off” suspends input into the diary file, and the command
“diary on” resumes input again.

1.3.12 The MATLAB Search Path

MATLAB has a search path that it uses to find M-files. MATLAB’s M-files are
organized in directories on your file system. Many of these directories of M-files
are provided along with MATLAB, and users may add others. If a user enters a
name at the MATLAB prompt, the MATLAB interpreter attempts to find the
name as follows:

1. It looks for the name as a variable. If it is a variable, MATLAB displays
the current contents of the variable.

2. It checks to see if the name is an M-file in the current directory. If it is,
MATLAB executes that function or command.

3. It checks to see if the name is an M-file in any directory in the search
path. If it is, MATLAB executes that function or command.

Note that MATLAB checks for variable names first, so if you define a vari-
able with the same name as a MATLAB function or command, that function or
command becomes inaccessible. This is a common mistake made by novice users.
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Never use a variable with the same name as a MATLAB function or command.
If you do so, that function or command will become inaccessible.

Also, if there is more than one function or command with the same name, the
first one found on the search path will be executed and all of the others will be
inaccessible. This is a common problem for novice users, since they sometimes
create M-files with the same names as standard MATLAB functions, making
them inaccessible.

Never create an M-file with the same name as a MATLAB function or command.

MATLAB includes a special command (which) to help you find out just
which version of a file is being executed and where it is located. This can be

) set Path (=13
All changes take effect immediately.
MATLAB search path:
& C\Program Files\MATLAB\R2007 a\toolboximatiab\general
i~ C\Program Files\WATLAB\R2007 a\toolboxdmatiab\ops
Add with Subfolders... | |'
| = C\Program Files\MATLABR2007 a\toolboxdmatiabilang
= C:\Program Files\WATLABR2007 a\toolboximatiabielmat
= C\Program Files\WMATLAB\R2007 a\toolboxdmatiablelfun
= C\Program Files\MATLAB\R2007 a\toolboximatlab\specfun
Move to Top I = C:\Program Files\MATLABR2007 attoolboxdmatiabimatfun
= C\Program Files\WMATLAB\R2007 a\toolboximatiabidatafun
- wovelipn | = C:\Program Files\MATLABIR2007a\toolboximatiabpolyfun
Maove Down | = C\Program Files\WATLABVR2007 a\toolboxdmatiab\funfun
= C\Program Files\WATLAB\R2007 a\toolboxdmatiabisparfun
Move to Bottom | s ) )
= C:\Program Files\WATLAB\R2007 a\toolboxdmatiabiscribe
= C:\Program Files\WWATLAB\R2007 a\toolboximatiabigraph2d
= C:\Program Files\MATLAB\R2007 a\toolboximatiabigraph3d
= C:\Program Files\MATLAB\R2007 a\toolboximatiab\specaraph
oo | :.—':I(‘.'\Prnﬂmm Files\MATI AR\R?Of]?a\fonlhm:\mﬁﬂﬂh\nrianhics .
save | close | revert | Defat N Hep |

Figure 1.9 The Path Tool.
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useful in finding filename conflicts. The format of this command is which
functionname, where functionname is the name of the function that you
are trying to locate. For example, the cross-product function cross.m can be
located as follows:

» which cross
C:\Program Files\MATLAB\R2007a\toolbox\matlab\specfun\cross.m

The MATLAB search path can be examined and modified at any time by
selecting “Desktop Tools/Path” from the Start Button, or by typing editpath
in the Command Window. The Path Tool is shown in Figure 1.9. It allows a user
to add, delete, or change the order of directories in the path.

Other path-related functions include

addpath—Add directory to MATLAB search path.
path—Display MATLAB search path.

path2rc—Add current directory to MATLAB search path.
rmpath—Remove directory from MATLAB search path.

1.4 Using MATLAB as a Scratch Pad

In its simplest form, MATLAB can be used as a scratch pad to perform mathemati-
cal calculations. The calculations to be performed are typed directly into the
Command Window, using the symbols +, —, *,/, and ” for addition, subtraction, mul-
tiplication, division, and exponentiation, respectively. After an expression is typed,
the results of the expression will be automatically calculated and displayed. For
example, suppose we would like to calculate the volume of a cylinder of radius » and
length /. The area of the circle at the base of the cylinder is given by the equation

A= nr? (1-1)
and the total volume of the cylinder will be
V= Al (1-2)

If the radius of the cylinder is 0.1 m and the length is 0.5 m, the volume of the
cylinder can be found using the MATLAB statements (user inputs are shown in
boldface):

» A=pi*0.142
A=

0.0314
» V=A*0.5
V=

0.0157

Note that pi is predefined to be the value 3.141592 . . . . Also, note that the value
stored in A was saved by MATLAB and reused when we calculated V.
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This quiz provides a quick check to see if you have understood the con-
cepts introduced in Chapter 1. If you have trouble with the quiz, reread
the sections, ask your instructor, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.

1. What is the purpose of the MATLAB Command Window? The Edit
Window? The Figure Window?

2. List the different ways that you get help in MATLAB.

3. What is a workspace? How can you determine what is stored in a
MATLAB workspace?

4. How can you clear the contents of a workspace?

5. The distance traveled by a ball falling in the air is given by the equation

1
x:xo-l—vot-f—gat

Use MATLAB to calculate the position of the ball at time ¢t = 5 s if
xo = 10m, vy = 15m/s,and a = —9.81 m/sec?.

6. Suppose that x = 3 and y = 4. Use MATLAB to evaluate the fol-
lowing expression:

x2y3
(x —y)?

The following questions are intended to help you become familiar
with MATLAB tools.

7. Execute the M-files calc_area.mand sin_x.min the Command
Window (these M-files are available from the book’s Web site). Then
use the Workspace Browser to determine which variables are defined
in the current workspace.

8. Use the Array Editor to examine and modify the contents of vari-
able x in the workspace. Then type the command plot (x,y) in
the Command Window. What happens to the data displayed in the
Figure Window?

1.5 Summary

In this chapter, we have learned about the basic types of MATLAB windows, the
workspace, and how to get on-line help. The MATLAB desktop appears when the
program is started. It integrates many of the MATLAB tools in a single location.
These tools include the Command Window, the Command History Window, the
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Start Button, the Workspace Browser, the Array Editor, and the Current Directory
Viewer. The Command Window is the most important of the windows. It is the
one in which all commands are typed and results are displayed.

The Edit/Debug window is used to create or modify M-files. It displays the
contents of the M-file with the contents of the file color-coded according to
function: comments, keywords, strings, and so forth. This window can be docked
to the desktop, but by default it is independent.

The Figure Window is used to display graphics.

A MATLAB user can get help by either using the Help Browser or the
command-line help functions help and lookfor. The Help Browser allows full
access to the entire MATLAB documentation set. The command-line function
help displays help about a specific function in the Command Window.
Unfortunately, you must know the name of the function in order to get help about
it. The function 1ook for searches for a given string in the first comment line of
every MATLAB function and displays any matches.

When a user types a command in the Command Window, MATLAB searches
for that command in the directories specified in the MATLAB path. It will exe-
cute the first M-file in the path that matches the command; any further M-files
with the same name will never be found. The Path Tool can be used to add, delete,
or modify directories in the MATLAB path.

1.5. MATLAB Summary

The following summary lists all of the MATLAB special symbols described in
this chapter, along with a brief description of each one.

Special Symbols

+ Addition

- Subtraction

* Multiplication
/ Division

~ Exponentiation

1.6 Exercises

1.1 The following MATLAB statements plot the function y(x) = 2e™%* for
the range 0 = x = 10.

x = 0:0.1:10;
v = 2 * exp(-0.2 * x);
plot(x,vy);
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Use the MATLAB Edit Window to create a new empty M-file, type these
statements into the file, and save the file with the name test1 .m. Then,
execute the program by typing the name testl in the Command Window.
What result do you get?

Get help on the MATLAB function exp using: (@) The “help exp” com-
mand typed in the Command Window and () the Help Browser.

Use the 1ookfor command to determine how to take the base-10 loga-
rithm of a number in MATLAB.

Suppose that # = 1 and v = 3. Evaluate the following expressions using
MATLAB:

4u
(a) I
2v2
(u + v)?
3

v3—u3

®)

(c)
4 5
CE

Use the MATLAB Help Browser to find the command required to show
MATLAB?’s current directory. What is the current directory when MATLAB
starts up?

Use the MATLAB Help Browser to find out how to create a new directory
from within MATLAB. Then, create a new directory called mynewdir
under the current directory. Add the new directory to the top of MATLAB’s
path.

Change the current directory to mynewdir. Then open an Edit Window
and add the following lines:

% Create an input array from -2*pi to 2*pi
= -2*%*pil:pi/10:2*pi;

o

o

Calculate |sin(t) |
= abs(sin(t));

X

% Plot result
plot(t,x);

Save the file with the name test?2 .m and execute it by typing test2 in
the Command Window. What happens?

Close the Figure Window and change back to the original directory that
MATLAB started up in. Next type “test2” in the Command Window.
What happens, and why?
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MATLAB Basics

In this chapter, we will introduce some basic elements of the MATLAB language.
By the end of the chapter, you will be able to write simple but functional
MATLAB programs.

2.1 Variables and Arrays

The fundamental unit of data in any MATLAB program is the array. An array is
a collection of data values organized into rows and columns, and known by a sin-
gle name (see Figure 2.1). Individual data values within an array are accessed by
including the name of the array followed by subscripts in parentheses that identi-
fy the row and column of the particular value. Even scalars are treated as arrays
by MATLAB—they are simply arrays with only one row and one column.

Arrays can be classified as either vectors or matrices. The term “vector” is
usually used to describe an array with only one dimension, while the term
“matrix” is usually used to describe an array with two or more dimensions. In this
text, we will use the term “vector” when discussing one-dimensional arrays, and
the term “matrix” when discussing arrays with two or more dimensions. If a par-
ticular discussion applies to both types of arrays, we will use the generic term
“array”’.

The size of an array is specified by the number of rows and the number of
columns in the array, with the number of rows mentioned first. The total number
of elements in the array will be the product of the number of rows and the num-
ber of columns. For example, the sizes of the following arrays are

21
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Array Size
12

a=1|3 4 This is 3 X 2 matrix, containing 6 elements.
L5 6

b=[1 2 3 4] Thisis a 1 X 4 array containing 4 elements,
1 known as a row vector.

c=12 This is a 3 X 1 array containing 3 elements,
13 known as a column vector.

Individual elements in an array are addressed by the array name followed by the
row and column of the particular element. If the array is a row or column vector, then
only one subscript is required. For example, in the preceding arrays a (2,1) is 3
and c(2) = 2.

A MATLAB variable is a region of memory containing an array, which is
known by a user-specified name. The contents of the array may be used or mod-
ified at any time by including its name in an appropriate MATLAB command.

MATLAB variable names must begin with a letter, followed by any combi-
nation of letters, numbers, and the underscore (_) character. Only the first

Row 1

Row 2

ad

Row

—p
—p
—p
—>

Row 4

1 I

Coll Col2 Col3 Col4 Col5

array arr

Figure 2.1 An array is a collection of data values organized into rows and columns.
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63 characters are significant; if more than 63 are used, the remaining characters
will be ignored. If two variables are declared with names that only differ in the
64th character, MATLAB will treat them as the same variable. MATLAB will
issue a warning if it has to truncate a long variable name to 63 characters.

Make sure that your variable names are unique in the first 63 characters.
Otherwise, MATLAB will not be able to tell the difference between them.

When writing a program, it is important to pick meaningful names for the
variables. Meaningful names make a program much easier to read and to main-
tain. Names such as day, month, and year are quite clear even to a person
seeing a program for the first time. Since spaces cannot be used in MATLAB
variable names, underscore characters can be substituted to create meaningful
names. For example, exchange rate might become exchange_rate.

Always give your variables descriptive and easy-to-remember names. For exam-
ple, a currency exchange rate could be given the name exchange_rate. This
practice will make your programs clearer and easier to understand.

It is also important to include a data dictionary in the header of any program
that you write. A data dictionary lists the definition of each variable used in a pro-
gram. The definition should include both a description of the contents of the item
and the units in which it is measured. A data dictionary may seem unnecessary
while the program is being written, but it is invaluable when you or another per-
son have to go back and modify the program at a later time.

*

Create a data dictionary for each program to make program maintenance easier.

The MATLAB language is case sensitive, which means that uppercase and
lowercase letters are not the same. Thus the variables name, NAME, and Name are
all different in MATLAB. You must be careful to use the same capitalization every
time that variable name is used. While it is not required, it is customary to use all
lowercase letters for ordinary variable names.
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Be sure to capitalize a variable exactly the same way each time that it is used.
It is good practice to use only lowercase letters in variable names.

The most common types of MATLAB variables are double and char.
Variables of type double consist of scalars or arrays of 64-bit double-precision
floating-point numbers. They can hold real, imaginary, or complex values. The
real and imaginary components of each variable can be positive or negative num-
bers in the range 10 % to 10°%, with 15 to 16 significant decimal digits of accu-
racy. Type double is the principal numerical data type in MATLAB.

A variable of type double is automatically created whenever a numerical
value is assigned to a variable name. The numerical values assigned to double
variables can be real, imaginary, or complex. A real value is just a number. For
example, the following statement assigns the real value 10.5 to the double
variable var:

var = 10.5

An imaginary number is defined by appending the letter i or j to a number'. For
example, 101 and —47j are both imaginary values. The following statement
assigns the imaginary value 4i to the double variable var:

var = 41

A complex value has both a real and an imaginary component. It is created by
adding a real and an imaginary number together. For example, the following state-
ment assigns the complex value 10 + 10i to variable var:

var = 10 + 101

Variables of type char consist of scalars or arrays of 16-bit values, each
representing a single character. Arrays of this type are used to hold character
strings. They are automatically created whenever a single character or a charac-
ter string is assigned to a variable name. For example, the following statement
creates a variable of type char whose name is comment, and stores the speci-
fied string in it. After the statement is executed, comment will be a 1 X 26
character array.

comment = 'This is a character string'

In a language such as C, the type of every variable must be explicitly declared
in a program before it is used. These languages are said to be strongly typed. In
contrast, MATLAB is a weakly typed language. Variables may be created at any

' An imaginary number is a number multiplied by V — 1. The letter i is the symbol for V' —1 used by
most mathematicians and scientists. The letter j is the symbol for V' —1 used by electrical engineers,
because the letter i is usually reserved for currents in that discipline.
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time by simply assigning values to them, and the type of data assigned to the vari-
able determines the type of variable that is created.

2.2 Creating and Initializing Variables in MATLAB

MATLAB variables are automatically created when they are initialized. There are
three common ways to initialize a variable in MATLAB:

1. Assign data to the variable in an assignment statement.
2. Input data into the variable from the keyboard.
3. Read data from a file.

The first two ways will be discussed here, and the third will be discussed in
Section 2.6.

2.2.1 Initializing Variables in Assignment Statements

The simplest way to initialize a variable is to assign it one or more values in an
assignment statement. An assignment statement has the general form

var = expression;

where var is the name of a variable, and expression is a scalar constant, an
array, or a combination of constants, other variables, and mathematical operations
(+, —, etc.). The value of the expression is calculated using the normal rules of
mathematics, and the resulting values are stored in named variable. The semicolon
at the end of the statement is optional. If the semicolon is absent, the value assigned
to var will be echoed in the Command Window. If it is present, nothing will be
displayed in the Command Window even though the assignment has occurred.

Simple examples of initializing variables with assignment statements include

var = 401;

var2 = var/5;
x=1; v = 2;

array = [1 2 3 47;

The first example creates a scalar variable of type double and stores the imag-
inary number 40i in it. The second example creates a scalar variable and stores
the result of the expression var/5 in it. The third example shows that multiple
assignment statements can be placed on a single line, provided that they are sep-
arated by semicolons or commas. Note that if any of the variables had already
existed when the statements were executed, then their old contents would have
been lost.

The last example shows that variables can also be initialized with arrays of data.
Such arrays are constructed using brackets ( [ 1) and semicolons. All of the elements
of an array are listed in row order. In other words, the values in each row are listed
from left to right, with the topmost row first and the bottommost row last. Individual
values within a row are separated by blank spaces or commas, and the rows them-
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selves are separated by semicolons or new lines. The following expressions are all
legal arrays that can be used to initialize a variable:

[3.4] This expression creates a 1 X 1 array (a scalar) containing
the value 3.4. The brackets are not required in this case.
[1.0 2.0 3.0] This expression creates a 1 X 3 array containing the row
vector [1 2 3]
[1.0; 2.0; 3.0] This expression creates a 3 X 1 array containing the column
.
vector | 2 |.
3_
(1, 2, 3; 4, 5, 6] This expression creates a 2 X 3 array containing
the matri 12 3
e matrix .
L4 5 6
(1, 2, 3 This expression creates a 2 X 3 array containing the matrix
1 2 3 . . . .
4, 5, 6] |: 4 5 6:|' The end of the first line terminates the first row.
[1 This expression creates an empty array, which contains no

rows and no columns. (Note that this is not the same
as an array containing zeros.)

The number of elements in every row of an array must be the same, and the num-
ber of elements in every column must be the same. An expression such as

[1 2 3; 4 51;

is illegal because row 1 has three elements while row 2 has only two elements.

The number of elements in every row of an array must be the same, and the
number of elements in every column must be the same. Attempts to define an
array with different numbers of elements in its rows or different numbers of ele-
ments in its columns will produce an error when the statement is executed.

The expressions used to initialize arrays can include algebraic operations and all
of or portions of previously defined arrays. For example, the assignment statements

[0 1+77;
[a(2) 7 al;

a
b

will define an array a = [0 8] and anarrayb =[8 7 0 8].
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Also, not all of the elements in an array must be defined when it is created.
If a specific array element is defined and one or more of the elements before it
are not, then the earlier elements will automatically be created and initialized to
zero. For example, if ¢ is not previously defined, the statement

c(2,3) =5;

00
0 0 5:|. Similarly, an array can be extended by

specifying a value for an element beyond the currently defined size. For example,
suppose that array d = [1 2]. Then the statement

d(4) = 4;

will produce the matrix ¢ = |:

will produce the array d = [1 2 0 4].

The semicolon at the end of each assignment statement shown above has a
special purpose: it suppresses the automatic echoing of values that normally
occurs whenever an expression is evaluated in an assignment statement. If an
assignment statement is typed without the semicolon, the result of the statement
is automatically displayed in the Command Window:

»> e = [1, 2, 3; 4, 5, 6]
e =

1 2 3

4 5 6

If a semicolon is added at the end of the statement, the echoing disappears.
Echoing is an excellent way to quickly check your work, but it seriously slows
down the execution of MATLAB programs. For that reason, we normally sup-
press echoing at all times by ending each line with a semicolon.

However, echoing the results of calculations makes a great quick-and-dirty
debugging tool. If you are not certain what the results of a specific assignment
statement are, just leave off the semicolon from that statement, and the results will
be displayed in the Command Window as the statement is executed.

I

Use a semicolon at the end of all MATLAB assignment statements to suppress
echoing of assigned values in the Command Window. This greatly speeds pro-
gram execution.

If you need to examine the results of a statement during program debugging,
you may remove the semicolon from that statement only so that its results are
echoed in the Command Window.
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2.2.2 Initializing with Shortcut Expressions

It is easy to create small arrays by explicitly listing each term in the array,
but what happens when the array contains hundreds or even thousands of
elements? It is just not practical to write out each element in the array
separately!

MATLAB provides a special shortcut notation for these circumstances using
the colon operator. The colon operator specifies a whole series of values by
specifying the first value in the series, the stepping increment, and the last value
in the series. The general form of a colon operator is

first:incr:last

where first is the first value in the series, incr is the stepping increment, and
last is the last value in the series. If the increment is one, it may be omitted.This
operator will generate an array containing the values first, first+incr,
first+2*incr, first+3*incr, and so forth as long as the values are less
than or equal to last. The list stops when the next value in the series is greater than
the value of last.

For example, the expression 1:2:10 is a shortcut for a 1 X 5 row vector con-
taining the values 1, 3, 5, 7, and 9. The next value in the series would be 11, which
is greater than 10, so the series terminates at 9.

» x = 1:2:10

. . C . Y
With colon notation, an array can be initialized to have the hundred values —,
2r 3m 100

100" 1007 7 as follows:
angles = (0.01:0.01:1.00) * pi;

Shortcut expressions can be combined with the transpose operator (')
to initialize column vectors and more complex matrices. The transpose opera-
tor swaps the row and columns of any array that it is applied to. Thus the
expression

f = [1:4]1";

generates a 4-clement row vector [1 2 3 4], and then transposes it into the

4-element column vector £ = . Similarly, the expressions

N S
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g = 1:4;
[g" g'l;

ag
Il

will produce the matrix h =

AW N~
AW N ==

2.2.3 Initializing with Built-ln Functions

Arrays can also be initialized using built-in MATLAB functions. For example,
the function zeros can be used to create an all-zero array of any desired size.
There are several forms of the zeros function. If the function has a single
scalar argument, it will produce a square array using the single argument as both
the number of rows and the number of columns. If the function has two scalar
arguments, the first argument will be the number of rows, and the second argu-
ment will be the number of columns. Since the size function returns two val-
ues containing the number of rows and columns in an array, it can be combined
with the zeros function to generate an array of zeros that is the same size as
another array. Some examples using the zeros function follow:

a = zeros(2);

b = zeros(2,3);

c = 1[12; 3 4];

d = zeros(size(c));

These statements generate the following arrays:
10 0 b= 0 00
“7lo o 0 0 0
12 q- 0 0
T34 0 0

Similarly, the ones function can be used to generate arrays containing all
ones, and the eye function can be used to generate arrays containing identity
matrices, in which all on-diagonal elements are one, while all off-diagonal ele-
ments are zero. Table 2.1 contains list of common MATLAB functions useful for
initializing variables.

2.2.4 Initializing Variables with Keyboard Input

It is also possible to prompt a user and initialize a variable with data that he or she
types directly at the keyboard. This option allows a script file to prompt a user for
input data values while it is executing. The input function displays a prompt
string in the Command Window and then waits for the user to type in a response.
For example, consider the following statement:

my_val = input ('Enter an input value:');
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Table 2.1 MATLAB Functions Useful for Initializing Variables

Function

Purpose

zeros (n)

zeros (m,n)

Generates an n X n matrix of zeros.

Generates an m X n matrix of zeros.

zeros (size(arr)) Generates a matrix of zeros of the same size as arr.

ones (n)

ones (m, n)

ones (size(arr))
eye (n)

eye (m,n)
length(arr)

size(arr)

Generates an n X n matrix of ones.

Generates an m X n matrix of ones.

Generates a matrix of ones of the same size as arr.

Generates an n X n identity matrix.

Generates an m X n identity matrix.

Returns the length of a vector, or the longest dimension of a 2-D array.

Returns two values specifying the number of rows and columns in arr.

When this statement is executed, MATLAB prints out the string 'Enter an
input value: ', and then waits for the user to respond. If the user enters a sin-
gle number, it may just be typed in. If the user enters an array, it must be enclosed
in brackets. In either case, whatever is typed will be stored in variable my_val
when the return key is entered. If only the return key is entered, then an empty
matrix will be created and stored in the variable.

Ifthe input function includes the character ' s ' as a second argument, then
the input data is returned to the user as a character string. Thus, the statement

» inl = input ('Enter data: '):;
Enter data: 1.23

stores the value 1.23 into in1, while the statement

» in2 = input ('Enter data: ','s'):
Enter data: 1.23

stores the character string '1.23 "' into in2.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 2.1 and 2.2. If you have trouble with the
quiz, reread the sections, ask your instructor, or discuss the material with
a fellow student. The answers to this quiz are found in the back of the
book.

1. What is the difference between an array, a matrix, and a vector?

2. Answer the following questions for the array shown below.
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1.1 =32 34 0.6
c=]06 11 -06 3.1
1.3 0.6 55 0.0

(a) What is the size of ¢?
(b) What is the value of c (2,3)?
(c) List the subscripts of all elements containing the value 0.6.

3. Determine the size of the following arrays. Check your answers by
entering the arrays into MATLAB and using the whos command or
the Workspace Browser. Note that the later arrays may depend on the
definitions of arrays defined earlier in this exercise.

(@ u = [10 20*i 10+20];

b)v = [-1; 20; 31;

(c)w=1[10-9; 2 -20; 12 3];

d)x = [u' vl;

() v(3,3) = -7;

(f)z = [zeros(4,1) ones(4,1) zeros(1l,4)'];

(@ v(4) = x(2,1);

4. What is the value of w(2, 1) above?

5. What is the value of x (2, 1) above?

6. What is the value of v (2, 1) above?

7. What is the value of v (3) after statement (g) is executed?

2.3 Multidimensional Arrays

As we have seen, MATLAB arrays can have one or more dimensions. One-
dimensional arrays can be visualized as a series of values laid out in a row or
column, with a single subscript used to select the individual array elements
(Figure 2.2a). Such arrays are useful to describe data that is a function of one
independent variable, such as a series of temperature measurements made at
fixed intervals of time.

Some types of data are functions of more than one independent variable. For
example, we might wish to measure the temperature at five different locations at
four different times. In this case, our 20 measurements could logically be grouped
into five different columns of four measurements each, with a separate column
for each location (Figure 2.25). In this case, we will use two subscripts to access
a given element in the array—the first one to select the row and the second one
to select the column. Such arrays are called two-dimensional arrays. The num-
ber of elements in a two-dimensional array will be the product of the number of
rows and the number of columns in the array.
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Figure 2.2 Representations of one- and two-dimensional arrays.

MATLAB allows us to create arrays with as many dimensions as necessary
for any given problem. These arrays have one subscript for each dimension, and an
individual element is selected by specifying a value for each subscript. The total
number of elements in the array will be the product of the maximum value of each
subscript. For example, the following two statements create a 2 X 3 X 2 array c:

» c(:,:,1)=[1 2 3; 4 5 6];
» c(:,:,2)=[7 8 9; 10 11 12];
» whos c

Name Size Bytes Class Attributes

e 2x3x%x2 96 double

This array contains 12 elements (2 X 3 X 2). Its contents can be displayed just
like any other array.

» c
c(:,:,1) =
1 2 3
4 5 6
c(:,:,2) =
7 8 9
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2.3.1 Storing Multidimensional Arrays in Memory

A two-dimensional array with m rows and n columns will contain m X n ele-
ments, and these elements will occupy m X n successive locations in the com-
puter’s memory. How are the elements of the array arranged in the computer’s
memory? MATLAB always allocates array elements in column major order.
That is, MATLAB allocates the first column in memory, then the second, then
the third, and so on., until all of the columns have been allocated. Figure 2.3
illustrates this memory allocation scheme for a 4 X 3 array a. As we can see,
element a (1, 2) is really the fifth element allocated in memory. The order in
which elements are allocated in memory will become important when we dis-
cuss single-subscript addressing in the following section, and low-level 1/0
functions in Chapter 8.

This same allocation scheme applies to arrays with more than two dimen-
sions. The first array subscript is incremented most rapidly, the second
subscript is incremented less rapidly, and so on, and the last subscript in incre-
mented most slowly. For example, ina 2 X 2 X 2 array, the elements would be
allocated in the following order: (1,1,1), (2,1,1), (1,2,1), (2,2,1), (1,1,2), (2,1,2),
(1,2,2), (2,2,2).

2.3.2 Accessing Multidimensional Arrays with One Dimension

One of MATLAB’s peculiarities is that it will permit a user or programmer to treat
a multidimensional array as though it were a one-dimensional array whose length
is equal to the number of elements in the multidimensional array. If a multidi-
mensional array is addressed with a single dimension, then the elements will be
accessed in the order in which they were allocated in memory.

For example, suppose that we declare the 4 X 3 element array a as follows:

»a=[123; 456; 7 8 9; 10 11 12]
1 2 3
4 5 6
7 8 9
10 11 12

Then the value of a (5) will be 2, which is the value of element a (1, 2), because
a (1, 2) was allocated fifth in memory.

Under normal circumstances, you should never use this feature of MATLAB.
Addressing multidimensional arrays with a single subscript is a recipe for confusion.

Always use the proper number of dimensions when addressing a multidimen-
sional array.
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Figure 2.3 (a) Data values for array a. () Layout of values in memory for array a.
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2.4 Subarrays

It is possible to select and use subsets of MATLAB arrays as though they were
separate arrays. To select a portion of an array, just include a list of all of the ele-
ments to be selected in the parentheses after the array name. For example, sup-
pose array arrl is defined as follows:

arrl = [1.1 -2.2 3.3 -4.4 5.5];

Then arrl(3) is just 3, arrl([1 4]) is the array [1.1 -4.4], and
arrl(1:2:5) isthearray [1.1 3.3 5.5].

For a two-dimensional array, a colon can be used in a subscript to select all
of the values of that subscript. For example, suppose

arr2 = [1 2 3; -2 -3 -4; 3 4 5];

This statement would create an array arr?2 containing the values

1 2 3
—2 —3 —4 |. With this definition, the subarray arr2 (1, :) would be
3 4 5
1 3
[1 2 31, and the subarray arr2 (:,1:2:3) wouldbe |—2 —4
3 5

2.4.1 The end Function

MATLAB includes a special function named end that is very useful for creating
array subscripts. When used in an array subscript, end returns the highest value
taken on by that subscript. For example, suppose that array arr3 is defined as
follows:

arr3d = [1 2 3 4 5 6 7 8];

Then arr3 (5:end) would be the array [5 6 7 8], and array (end)
would be the value 8.

The value returned by end is always the highest value of a given subscript.
If end appears in different subscripts, it can return different values within the
same expression. For example, suppose that the 3 X 4 array arr4 is defined as
follows:

arrd = [1 2 3 4; 5 6 7 8; 9 10 11 12];
Then the expression arr4 (2 :end, 2 : end) would return the array

6 7 8
[ } Note that the first end returned the value 3, while the second

10 11 12
end returned the value 4!
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2.4.2 Using Subarrays on the Left-Hand Side
of an Assighment Statement

It is also possible to use subarrays on the left-hand side of an assignment state-
ment to update only some of the values in an array, as long as the shape (the num-
ber of rows and columns) of the values being assigned matches the shape of the
subarray. If the shapes do not match, then an error will occur. For example, sup-
pose that the 3 X 4 array arr4 is defined as follows:

» arrd = [1 2 3 4; 5 6 7 8; 9 10 11 12]
arrd =

Then the following assignment statement is legal, since the expressions on both
sides of the equal sign have the same shape (2 X 2):

» arrd(1:2,[1 4]) = [20 21; 22 23]
arrd =
20 2 3 21
22 6 7 23
9 10 11 12

Note that the array elements (1,1), (1,4), (2,1), and (2,4) were updated. In con-
trast, the following expression is illegal because the two sides do not have the
same shape.

» arr5(1:2,1:2) = [3 4]

??? In an assignment A (matrix,matrix) = B, the num-
ber of rows in B and the number of elements in the
A row index matrix must be the same.

For assignment statements involving subarrays, the shapes of the subarrays on
either side of the equal sign must match. MATLAB will produce an error if they
do not match.

There is a major difference in MATLAB between assigning values to a sub-
array and assigning values to an array. If values are assigned to a subarray, only
those values are updated, while all other values in the array remain unchanged.
On the other hand, if values are assigned to an array, the entire contents of the
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array are deleted and replaced by the new values. For example, suppose that the
3 X 4 array arr4 is defined as follows:

» arrd = [1 2 3 4; 56 7 8; 9 10 11 12]
arrd

1 2 3 4
5 6 7 8
9 10 11 12

Then the following assignment statement replaces the specified elements of arr4 :

» arrd(1:2,[1 4]) = [20 21; 22 23]
arrd =
20 2 3 21
22 6 7 23
9 10 11 12

In contrast, the following assignment statement replaces the entire contents of
arrd with a2 X 2 array:

» arrd = [20 21; 22 23]
arrd =

20 21

22 23

Be sure to distinguish between assigning values to a subarray and assigning val-
ues to an array. MATLAB behaves differently in these two cases.

2.4.3 Assigning a Scalar to a Subarray

A scalar value on the right-hand side of an assignment statement always matches
the shape specified on the left-hand side. The scalar value is copied into every ele-
ment specified on the left-hand side of the statement. For example, assume that
the 3 X 4 array arr4 is defined as follows:

arrd = [1 2 3 4; 5 6 7 8; 9 10 11 12];

Then the expression shown below assigns the value one to four elements of the array.

» arrd(1:2,1:2) =1

arrd =
1 1 3 4
1 1 7 8
9 10 11 12
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2.5 Special Values

MATLAB includes a number of predefined special values. These predefined val-
ues may be used at any time in MATLAB without initializing them first. A list of
the most common predefined values is given in Table 2.2.

These predefined values are stored in ordinary variables, so they can be
overwritten or modified by a user. If a new value is assigned to one of the prede-
fined variables, then that new value will replace the default one in all later
calculations. For example, consider the following statements that calculate the
circumference of a 10-cm circle:

circl = 2 * pi * 10
pi = 3;
circ2 = 2 * pi * 10

In the first statement, pi has its default value of 3.14159. . ., so circl is
62.8319, which is the correct circumference. The second statement redefines pi
to be 3, so in the third statement circ?2 is 60. Changing a predefined value in the
program has created an incorrect answer, and also introduced a subtle and hard-to-
find bug. Imagine trying to locate the source of such a hidden error in a 10,000-
line program!

Table 2.2 Predefined special values

Function Purpose

pi Contains 7 to 15 significant digits

i, 3 Contain the value i( le).

inf This symbol represents machine infinity. It is usually generated

as a result of a division by 0.

nan This symbol stands for Not-a-Number. It is the result
of an undefined mathematical operation, such as the division of
zero by zero.

clock This special variable contains the current date and time in the
form of a 6-element row vector containing the year, month,
day, hour, minute, and second.

date Contains the current data in a character string format, such as
24-Nov-1998.

eps This variable name is short for “epsilon”. It is the smallest
difference between two numbers that can be represented
on the computer.

ans A special variable used to store the result of an expression
if that result is not explicitly assigned to some other variable.
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Never redefine the meaning of a predefined variable in MATLAB. It is a recipe
for disaster, producing subtle and hard-to-find bugs.

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 2.3 through 2.5. If you have trouble with the quiz,
reread the sections, ask your instructor, or discuss the material with a fel-
low student. The answers to this quiz are found in the back of the book.

1. Assume that array c is defined as shown, and determine the contents
of the following subarrays:

—3.2

Q
I
=T
w o B
I
o w o
o R o

(a) c(2,

) c(:, end)

(¢) c(1:2,2:end)

(d) c(6)

(e) c(4:end)

(f) c(1:2,2:4)

(g) c(l1 31,2)

(h) c([2 21,13 31)

2. Determine the contents of array a after the following statements are
executed.

(@a=10123; 456; 78 9];
a([3 11,:) = a(ll 31,:);
(b)a =1123; 456; 78 9];
a(ll 31,:) = a(l2 2],:);

(¢)a=10123; 456; 78 9];

a =al(l2 2],:);
3. Determine the contents of array a after the following statements are
executed.

(@) a = eye(3,3);
b =112 3];
a(2,:) = b;
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(b) a = eye(3,3);
b [4 5 6];
a(:,3) = b';

(c) a = eye(3,3);
b= 1[7 8 9];

a(3,:) = b([3 1 2]);

2.6 Displaying Output Data

There are several ways to display output data in MATLAB. This simplest way is
one we have already seen—just leave the semicolon off of the end of a statement
and it will be echoed to the Command Window. We will now explore a few other
ways to display data.

2.6.1 Changing the Default Format

When data is echoed in the Command Window, integer values are always displayed
as integers, character values are displayed as strings, and other values are printed
using a default format. The default format for MATLAB shows four digits after
the decimal point, and it may be displayed in scientific notation with an exponent
if the number is too large or too small. For example, the statements

x 100.11
Yy 1001.1
z = 0.00010011

produce the following output

X =
100.1100
Yy =
1.0011e+003
7 =

1.0011e-004

This default format can be changed in one of two ways: from the main MAT-
LAB Window menu, or using the format command. You can change the format
by selecting the “File / Preferences” menu option. This option will pop up the
preferences window, and the format can be selected from the Command Window
item in the preferences list.

Alternatively, a user can use the format command to change the preferences.
The format command changes the default format according to the values given in
Table 2.3. The default format can be modified to display more significant digits of
data, to force the display to be in scientific notation, to display data to two decimal
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Table 2.3 Output Display Formats

Format Command Results Example'

format short 4 digits after decimal (default format) 12.3457

format long 14 digits after decimal 12.34567890123457
format short e 5 digits plus exponent 1.2346e+001
format short g 5 total digits with or without exponent 12.346

format long e 15 digits plus exponent 1.234567890123457e+001
format long g 15 total digits with or without exponent 12.3456789012346
format bank “dollars and cents” format 12.35

format hex hexadecimal display of bits 4028b0£fcd32£707a
format rat approximate ratio of small integers 1000/81

format compact suppress extra line feeds

format loose restore extra line feeds

format + Only signs are printed. +

IThe data value used for the example is 12.345678901234567 in all cases.

digits, or to eliminate extra line feeds to get more data visible in the Command
Window at a single time. Experiment with the commands in Table 2.3 for yourself.

Which of these ways to change the data format is better? If you are working
directly at the computer, it is probably easier to use the menu item. On the other
hand, if you are writing programs, it is probably better to use the format com-
mand, because it can be embedded directly into a program.

2.6.2 The disp function

Another way to display data is with the disp function. The disp function accepts
an array argument and displays the value of the array in the Command Window. If the
array is of type char, then the character string contained in the array is printed out.

This function is often combined with the functions num2str (convert a num-
ber to a string) and int2str (convert an integer to a string) to create messages
to be displayed in the Command Window. For example, the following MATLAB
statements will display “The value of pi = 3.1416” in the Command Window.
The first statement creates a string array containing the message, and the second
statement displays the message.

str = ['The value of pi = ' num2str(pi)];
disp (str);

2.6.3 Formatted Output with the fprintf Function

An even more flexible way to display data is with the fprintf function. The
fprintf function displays one or more values together with related text and lets
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Table 2.4 Common Special Characters in £printf Format Strings

Format String Results

%d Display value as an integer.

%e Display value in exponential format.

$f Display value in floating-point format.

%g Display value in either floating-point or exponential format,

whichever is shorter.

\n Skip to a new line.

the programmer control the way that the displayed value appears. The general
form of this function when it is used to print to the Command Window is

fprintf (format,data)

where format is a string describing the way the data is to be printed, and data
is one or more scalars or arrays to be printed. The format is a character string
containing text to be printed plus special characters describing the format of the
data. For example, the function

fprintf (' The value of pi is %f \n',pi)

will print out ' The value of pi is 3.141593" followed by a line feed. The
characters % f are called conversion characters; they indicate that a value in the data
list should be printed out in floating-point format at that location in the format string.
The characters \n are escape characters; they indicate that a line feed should be
issued so that the following text starts on a new line. There are many types of con-
version characters and escape characters that may be used in an fprintf function.
A few of them are listed in Table 2.4, and a complete list can be found in Chapter 8.

It is also possible to specify the width of the field in which a number will be dis-
played and the number of decimal places to display. This is done by specifying the
the width and precision after the % sign and before the £. For example, the function

fprintf ('The value of pi is %6.2f \n', pi)

will print out ' The value of pi is 3.14' followed by a line feed. The
conversion characters %6 .2f indicate that the first data item in the function
should be printed out in floating-point format in a field six characters wide,
including two digits after the decimal point.

The fprintf function has one very significant limitation: it displays only
the real portion of a complex value. This limitation can lead to misleading results
when calculations produce complex answers. In those cases, it is better to use the
disp function to display answers.

For example, the following statements calculate a complex value x and dis-
play it using both fprintf and disp.

x =2 % (1 - 2% )~3;
str = ['disp: x = ' num2str(x)];
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disp(str) ;
fprintf (' fprintf: x = %8.4f\n',x);

The results printed out by these statements are

disp: x = -22+41
fprintf: x = -22.0000

Note that the fprint £ function ignored the imaginary part of the answer.

The fprintf function displays only the real part of a complex number, which
can produce misleading answers when working with complex values.

2.7 Data Files

There are many ways to load and save data files in MATLAB, most of which will
be addressed in Chapter 8. For the moment, we will consider only the 1oad and
save commands, which are the simplest ones to use.

The save command saves data from the current MATLAB workspace into
a disk file. The most common form of this command is

save filename varl var2 var3

where filename is the name of the file where the variables are saved, and
varl, var2, etc. are the variables to be saved in the file. By default, the file
name will be given the extension “mat,” and such data files are called MAT-
files. If no variables are specified, then the entire contents of the workspace are
saved.

MATLAB saves MAT-files in a special compact format that preserves
many details, including the name and type of each variable, the size of each
array, and all data values. A MAT-file created on any platform (PC, Mac, Unix,
or Linux) can be read on any other platform, so MAT-files are a good way to
exchange data between computers if both computers run MATLAB.
Unfortunately, the MAT-file is in a format that cannot be read by other pro-
grams. If data must be shared with other programs, then the ~ascii option
should be specified, and the data values will be written to the file as ASCII
character strings separated by spaces. However, the special information such as
variable names and types are lost when the data is saved in ASCII format, and
the resulting data file will be much larger.

For example, suppose the array x is defined as

x=[1.23 3.14 6.28; -5.1 7.00 01;
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The the command “save -ascii x.dat x” will produce a file named x.dat
containing the following data:

1.2300000e+000 3.1400000e+000 6.2800000e+000
-5.1000000e+000 7.0000000e+000 0.0000000e+000

This data is in a format that can be read by spreadsheets or by programs written
in other computer languages, so it makes it easy to share data between MATLAB
programs and other applications.

If data must be exchanged between MATLAB and other programs, save the
MATLAB data in ASCII format. If the data will be used only in MATLAB, save
the data in MAT-file format.

MATLAB doesn’t care what file extension is used for ASCII files. However,
it is better for the user if a consistent naming convention is used, and an extension
of “dat” is a common choice for ASCII files.

*

Save ASCII data files with a “dat” file extension to distinguish them from
MAT-files, which have a “mat” file extension.

The 1load command is the opposite of the save command. It loads data
from a disk file into the current MATLAB workspace. The most common form
of this command is

load filename

where £1lename is the name of the file to be loaded. If the file is a MAT-file,
then all of the variables in the file will be restored, with the names and types
the same as before. If a list of variables is included in the command, then only
those variables will be restored. If the given £ilename has no extent, or if the
file extent is .mat, then the 1oad command will treat the file as a MAT-file.
MATLAB can load data created by other programs in comma- or space-
separated ASCII format. If the given £i1ename has any file extension other than
.mat, then the load command will treat the file as an ASCII file. The contents of
an ASCII file will be converted into a MATLAB array having the same name as
the file (without the file extension) that the data was loaded from. For example,
suppose that an ASCII data file named x . dat contains the following data:

1.23 3.14 6.28
-5.1 7.00 0
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Then the command “load x.dat” will create a 2 X 3 array named x in the
current workspace, containing these data values.

The 1oad statement can be forced to treat a file as a MAT-file by specifying
the —mat option. For example, the statement

load —-mat x.dat

would treat file x.dat as a MAT-file even though its file extent is not .mat.
Similarly, the 1oad statement can be forced to treat a file as an ASCII file by
specifying the —ascii option. These options allow the user to load a file prop-
erly even if its file extent doesn’t match the MATLAB conventions.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 2.6 and 2.7. If you have trouble with the quiz,
reread the sections, ask your instructor, or discuss the material with a fel-
low student. The answers to this quiz are found in the back of the book.

1. How would you tell MATLAB to display all real values in exponen-
tial format with 15 significant digits?

2. What do the following sets of statements do? What is the output from

them?
(a) radius = input ('Enter circle radius:\n');
area = pl * radius”2;
str = ['The area is ' num2str (area)];
disp(str);
(b) value = int2str(pi);
disp(['The value is ' value '!']);
3. What do the following sets of statements do? What is the output from
them?
value = 123.4567e2;
fprintf ('value = %e\n',value);
fprintf ('value = %f\n',value);
fprintf ('value = %g\n',value);
fprintf ('value = %12.4f\n',value) ;

2.8 Scalar and Array Operations

Calculations are specified in MATLAB with an assignment statement, whose
general form is

variable_name = expression;
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The assignment statement calculates the value of the expression to the right of the
equal sign, and assigns that value to the variable named on the left of the equal sign.
Note that the equal sign does not mean equality in the usual sense of the word. Instead,
it means: store the value of expression into location variable_name. For this

reason, the equal sign is called the assignment operator. A statement such as

ii = 1i + 1;

is complete nonsense in ordinary algebra, but it makes perfect sense in MATLAB.
It means take the current value stored in variable i1, add one to it, and store the

result back into variable i1i.

2.8.1 Scalar Operations

The expression to the right of the assignment operator can be any valid combination
of scalars, arrays, parentheses, and arithmetic operators. The standard arithmetic
operations between two scalars are given in Table 2.5.

Parentheses may be used to group terms whenever desired. When parentheses
are used, the expressions inside the parentheses are evaluated before the expres-
sions outside the parentheses. For example, the expression 2 ~ ((8+2)/5) is

evaluated as follows:

2 7~ ((8+2)/5) =

~ (10/5)
~2

S o N

2.8.2 Array and Matrix Operations

MATLAB supports two types of operations between arrays, known as array
operations and matrix operations. Array operations are operations performed
between arrays on an element-by-element basis. That is, the operation is
performed on corresponding elements in the two arrays. For example, if

2 [
T R !

3 0 5
1 } thena + b = [1 5}. Note that for these oper-

ations to work, the number of rows and columns in both arrays must be the same.
If not, MATLAB will generate an error message.

Table 2.5 Arithmetic Operations Between Two Scalars

Operation

Algebraic Form

MATLAB Form

Addition
Subtraction
Multiplication
Division

Exponentiation

a+b
a—»b
aXb

[ IR

a + b

a

a

a

*

/

b

b
b
b
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Array operations may also occur between an array and a scalar. If the operation
is performed between an array and a scalar, the value of the scalar is applied to every

1 2 56
element of the array. For example, if a = |: 3 4:|, thena + 4 = |:7 8:|'

In contrast, matrix operations follow the normal rules of linear algebra,
such as matrix multiplication. In linear algebra, the product ¢ = a X b is defined
by the equation

n

ci, j) = z,la(i, k)b(k, j)

1 2 -1 3 -5 5
F le, if a = = hy X b= .
or example, 1f a |:3 4:| and b |:_2 1:|’t ena X b |:—1l 13:|

Note that for matrix multiplication to work, the number of columns in matrix a
must be equal to the number of rows in matrix b.

MATLAB uses a special symbol to distinguish array operations from matrix
operations. In the cases where array operations and matrix operations have a differ-
ent definition, MATLAB uses a period before the symbol to indicate an array oper-
ation (for example, . *). A list of common array and matrix operations is given in
Table 2.6.

New users often confuse array operations and matrix operations. In some cases,
substituting one for the other will produce an illegal operation, and MATLAB will
report an error. In other cases, both operations are legal, and MATLAB will perform
the wrong operation and come up with a wrong answer. The most common problem
happens when working with square matrices. Both array multiplication and matrix
multiplication are legal for two square matrices of the same size, but the resulting
answers are totally different. Be careful to specify exactly what you want!

Example 2.1

Be careful to distinguish between array operations and matrix operations in your
MATLAB code. Confusing array multiplication with matrix multiplication is a
very common mistake.

Assume that a, b, ¢, and d are defined as follows:
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What is the result of each of the following expressions?

(a) a + b (e) a + ¢
b)a .* b (f) a + d
(c)a * b (ga .* d
(da * c (h)y a * 4
SOLUTION
o . . 0 2
(a) This is array or matrix addition:a + b = [ ) 2]

-1 0
(b) This is element-by-element array multiplication:a .* b = [ 0 1:|

-1 2
(¢) This is matrix multiplication: a * b = [_ ) 5:|
3
(d) This is matrix multiplication: a * c = |: 8:|

(e) This operation is illegal, since a and ¢ have different numbers of columns.

6 5
(f) This is addition of an array to a scalar: a + d = |:7 6:|

5 0
(g) This is array multiplication:a .* d = |:10 5:|

50
(h) This is matrix multiplication: a * d = |: ]

10 5 -

The matrix left division operation has a special significance that we must
understand. A 3 X 3 set of simultaneous linear equations takes the form
anxy + apx; + apx; = b
ayxy + apxy + ayx; = by (2-1)
azx) t apxy + apx; = by

which can be expressed as

Ax = B (2-2)
ayp dap dap by X1
where 4 = ay; dpyy drs |, B = b2 . and x = Xy |.
az; 4z dzz b3 X3

Equation (2-2) can be solved for x using linear algebra. The result is

x=A'B (2-3)
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Since the left division operator A \ B is defined to be inv (A) * B, the left
division operator solves a system of simultaneous equations in a single state-
ment!

Use the left division operator to solve systems of simultaneous equations.

Table 2.6 Common Array and Matrix Operations

Operation MATLAB Form Comments

Array Addition a + b Array addition and matrix addition are
identical.

Array Subtraction a - b Array subtraction and matrix subtraction

are identical.

Array Multiplication a .* b Element-by-element multiplication of a
and b. Both arrays must be the same
shape, or one of them must be a scalar.

Matrix Multiplication a * b Matrix multiplication of a and b. The
number of columns in a must equal the
number of rows in b.

Array Right Division a ./ b Element-by-element division of a and b:
a(i,j) / b(i,J).Both arrays must
be the same shape, or one of them must
be a scalar.

Array Left Division a .\ b Element-by-element division of a and b,
but with b in the numerator: b (i, 3) /
a(1i,J).Both arrays must be the same
shape, or one of them must be a scalar.

Matrix Right Division a /b Matrix division defined by a * inv (b),
where inv (b) is the inverse of matrix b.

Matrix Left Division a \b Matrix division defined by inv (a) * b,
where inv (a) is the inverse of matrix a.

Array Exponentiation a .~ b Element-by-element exponentiation of a
andb:a(i,j) ~b(i,Jj).Botharrays
must be the same shape, or one of them
must be a scalar.
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2.9 Hierarchy of Operations

Often, many arithmetic operations are combined into a single expression. For
example, consider the equation for the distance traveled by an object starting from
rest and subjected to a constant acceleration:

distance = 0.5 * accel * time ~ 2

There are two multiplications and an exponentiation in this expression. In such an
expression, it is important to know the order in which the operations are evaluated.
If exponentiation is evaluated before multiplication, this expression is equiva-
lent to

distance = 0.5 * accel * (time "~ 2)

But if multiplication is evaluated before exponentiation, this expression is equiv-
alent to

distance = (0.5 * accel * time) ©~ 2

These two equations have different results, and we must be able to unambiguously
distinguish between them.

To make the evaluation of expressions unambiguous, MATLAB has estab-
lished a series of rules governing the hierarchy or order in which operations are
evaluated within an expression. The rules generally follow the normal rules of
algebra. The order in which the arithmetic operations are evaluated is given in
Table 2.7.

Table 2.7 Hierarchy of Arithmetic Operations

Precedence Operation

1 The contents of all parentheses are evaluated,
starting from the innermost parentheses and working
outward.

2 All exponentials are evaluated, working from left
to right.

3 All multiplications and divisions are evaluated, working

from left to right.

4 All additions and subtractions are evaluated, working
from left to right.
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>

Example 2.2

Variables a, b, ¢, and d have been initialized to the following values:
a = 3; b = 2; c =5; d = 3;

Evaluate the following MATLAB assignment statements:
(a) output = a*b+c*d;
(b) output = a* (b+c) *d;
(c) output = (a*b)+(c*d);
(d) output = a"b"d;
(e) output = a”(b”d);

SOLUTION
(a) Expression to evaluate: output = a*b+c*d;
Fill in numbers: output = 3*2+5*3;

First, evaluate multiplications
and divisions from left to right: output = 6 +5*3;
output = 6 + 15;

Now evaluate additions: output = 21

(b) Expression to evaluate: output = a* (b+c)*d;
Fill in numbers: output = 3*(2+5)*3;
First, evaluate parentheses: output = 3*7*3;

Now, evaluate multiplications
and divisions from left to right: output = 21*3;
output = 63;

(¢) Expression to evaluate: output = (a*b)+(c*d);
Fill in numbers: output = (3*2)+(5*3);
First, evaluate parentheses: output = 6 + 15;

Now evaluate additions: output = 21

(d) Expression to evaluate: output = a”“b”d;

Fill in numbers: output = 37273;

Evaluate exponentials

from left to right: output = 97°3;
output = 729;

(e) Expression to evaluate: output = a”(b”d);
Fill in numbers: output = 37(273);
First, evaluate parentheses: output = 378;

Now, evaluate exponential: output = 6561;

As we see in the preceding example, the order in which operations are per-
formed has a major effect on the final result of an algebraic expression.
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It is important that every expression in a program be made as clear as possi-
ble. Any program of value must not only be written but must also be maintained
and modified when necessary. You should always ask yourself: “Will I easily
understand this expression if I come back to it in six months? Can another pro-
grammer look at my code and easily understand what I am doing?” If there is any
doubt in your mind, use extra parentheses in the expression to make it as clear as
possible.

Use parentheses as necessary to make your equations clear and easy to understand.

If parentheses are used within an expression, then the parentheses must be
balanced. That is, there must be an equal number of open parentheses and close
parentheses within the expression. It is an error to have more of one type than
the other. Errors of this sort are usually typographical, and they are caught by
the MATLAB interpreter when the command is executed. For example, the
expression

(2 + 4) / 2)

produces an error during when the expression is executed.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 2.8 and 2.9. If you have trouble with the
quiz, reread the sections, ask your instructor, or discuss the material with
a fellow student. The answers to this quiz are found in the back of the
book.

1. Assume that a, b, ¢, and d are defined as follows, and calculate the
results of the following operations if they are legal. If an operation is,
explain why it is illegal.

S

(a) result = a .* c;
(b) result = a * [c c];
(c¢) result

1l
Q
*
Q
Q
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(d) result = a + b * c;
(e) result = a + b .* ¢;

1 2 1
2. Solve for x in the equation Ax = B, where 4 = 2 3 2|and
-1 0 1
1
B=|1
0

2.10 Built-in MATLAB Functions

In mathematics, a function is an expression that accepts one or more input values and
calculates a single result from them. Scientific and technical calculations usually require
functions that are more complex than the simple addition, subtraction, multiplication,
division, and exponentiation operations that we have discussed so far. Some of these
functions are very common and are used in many different technical disciplines.
Others are rarer and specific to a single problem or a small number of problems.
Examples of very common functions are the trigonometric functions, logarithms,
and square roots. Examples of rarer functions include the hyperbolic functions,
Bessel functions, and so forth. One of MATLAB’s greatest strengths is that it comes
with an incredible variety of built-in functions ready for use.

2.10.1 Optional Results

Unlike mathematical functions, MATLAB functions can return more than one
result to the calling program. The function max is an example of such a function.
This function normally returns the maximum value of an input vector, but it can
also return a second argument containing the location in the input vector where
the maximum value was found. For example, the statement

maxval = max ([1 -5 6 -=3])

returns the result maxval = 6. However, if two variables are provided to store
results in, the function returns both the maximum value and the location of the
maximum value.

[maxval index] = max ([1 -5 6 -=-31])

produces the results maxval = 6 and index = 3.

2.10.2 Using MATLAB Functions with Array Inputs

Many MATLAB functions are defined for one or more scalar inputs and produce
a scalar output. For example, the statementy = sin(x) calculates the sine of x
and stores the result in y. If these functions receive an array of input values, then
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they will calculate an array of output values on an element-by-element basis. For
example, if x = [ 0 pi/2 pi 3*pi/2 2*pi], then the statement

v = sin(x)

will produce the resulty = [0 1 0 -1 0].

2.10.3 Common MATLAB Functions

A few of the most common and useful MATLAB functions are shown in Table 2.8.
These functions will be used in many examples and homework problems. If you
need to locate a specific function not on this list, you can search for the function
alphabetically or by subject using the MATLAB Help Browser.

Note that unlike most computer languages, many MATLAB functions work
correctly for both real and complex inputs. MATLAB functions automatically
calculate the correct answer, even if the result is imaginary or complex. For
example, the function sqgrt (-2) will produce a runtime error in languages
such as C++, Java, or Fortran. In contrast, MATLAB correctly calculates the
imaginary answer:

» sqgrt(-2)
ans =
0 + 1.41421

2.1 1 Introduction to Plotting

MATLAB?’s extensive, device-independent plotting capabilities are one of its
most powerful features. They make it very easy to plot any data at any time. To
plot a data set, just create two vectors containing the x and y values to be plotted
and use the plot function.

For example, suppose that we wish to plot the function y = x> — 10x + 15
for values of x between 0 and 10. It takes only three statements to create this
plot. The first statement creates a vector of x values between 0 and 10 using the
colon operator. The second statement calculates the y values from the equation
(note that we are using array operators here so that this equation is applied to
each x value on an element-by-element basis). Finally, the third statement cre-
ates the plot.

x = 0:1:10;
v = x.72 - 10.*x + 15;
plot(x,vy);

When the plot function is executed, MATLAB opens a Figure Window and
displays the plot in that window. The plot produced by these statements is shown
in Figure 2.5.
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Table 2.8 Common MATLAB Functions

Function Description
Mathematical Functions
abs (x) Calculates |x|.
acos (x) Calculates cos™ 'x.
angle (x) Returns the phase angle of the complex value x, in radians.
asin(x) Calculates sin™'x.
atan (x) Calculates tan ™ 'x.
atan2 (y, x) Calculates tan ™! % over all four quadrants of the circle (results in
radians in the range — 7 < tan~ ! Y < ).
cos (x) Calculates cos x, with x in radians).c
exp (x) Calculate e*.
log (x) Calculates the natural logarithm log, x

[value, index]

[value, index]

max (x)

min (x)

Returns the maximum value in vector x, and optionally the
location of that value.

Returns the minimum value in vector x, and optionally the
location of that value.

mod (x,Vy) Remainder or modulo function.

sin(x) Calculates sin x, with x in radians.

sqgrt (x) Calculates the square root of x.

tan (x) Calculates tan x, with x in radians.

Rounding Functions

ceil (x) Rounds x to the nearest integer towards positive infinity:
ceil(3.1) =4 andceil(-3.1) = -3.

fix(x) Rounds x to the nearest integer towards zero:
fix(3.1) =3 and fix(-3.1) = -3.

floor (x) Rounds x to the nearest integer towards minus infinity:
floor(3.1) =3 and floor(-3.1) = -4.

round (x) Rounds x to the nearest integer.

String Conversion Functions

char (x) Converts a matrix of numbers into a character string.
For ASCII characters the matrix should contain numbers =<127.

double (x) Converts a character string into a matrix of numbers.

int2str (x)
num2str (x)

str2num(s)

Converts x into an integer character string.
Converts x into a character string.

Converts character string s into a numeric array.
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Figure 2.5 Plot of y = x> — 10x + 15 from 0 to 10.

2.11.1 Using Simple xy Plots

As we have seen previously, plotting is very easy in MATLAB. Any pair of vec-
tors can be plotted versus each other as long as both vectors have the same length.
However, the result is not a finished product, since there are no titles, axis labels,
or grid lines on the plot.

Titles and axis labels can be added to a plot with the title, xlabel, and
ylabel functions. Each function is called with a string containing the title or
label to be applied to the plot. Grid lines can be added or removed from the plot
with the grid command: grid on turns on grid lines, and grid off turns
off grid lines. For example, the statements that follow generate a plot of the func-
tion y = x> — 10x + 15 with titles, labels, and gridlines. The resulting plot is
shown in Figure 2.6.

x = 0:1:10;
v = xX.72 - 10.*x + 15;
plot(x,vy):

title ('Plot of v = x.72 - 10.*x + 15');
xlabel ('x');

ylabel ('y');

grid on;
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Figure 2.6 Plotof y = x% — 10x + 15 with a title, axis labels, and gridlines.

2.11.2 Printing a Plot

Once created, a plot may be printed on a printer with the print command by
clicking on the “print” icon in the Figure Window, or by selecting the “File/Print”
menu option in the Figure Window.

The print command is especially useful because it can be included in a
MATLAB program, allowing the program to automatically print graphical
images. The form of the print command is:

print <options> <filename>

If no filename is included, this command prints a copy of the current figure on
the system printer. If a filename is specified, the command prints a copy of the
current figure to the specified file.

2.11.3 Exporting a Plot as a Graphical Image

The print command can be used to save a plot as a graphical image by speci-
fying appropriate options and a file name.

print <options> <filename>

There are many different options that specify the format of the output sent to
a file. One very important option is —dt 1 £ £. This option specifies that the output
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Table 2.9 print Options to Create Graphics Files

Option Description

-deps Creates a monochrome encapsulated postcript image.
-depsc Creates a color encapsulated postcript image.
-djpeg Creates a JPEG image.

-dpng Creates a Portable Network Graphic color image.
-dtiff Creates a compressed TIFF image.

will be to a file in Tagged Image File Format (TIFF). Since this format can be
imported into all of the important word processors on PC, Mac, Unix, and Linux
platforms, it is a great way to include MATLAB plots in a document. The fol-
lowing command will create a TIFF image of the current figure and store it in a
file called my_image.tif:

print -dtiff my image.tif

Other options allow image files to be created in other formats. Some of the
most important image file formats are given in Table 2.9.

In addition, the “File/Save As” menu option on the Figure Window can be
used to save a plot as a graphical image. In this case, the user selects the file name
and the type of image from a standard dialog box (see Figure 2.7).

2.11.4 Multiple Plots

It is possible to plot multiple functions on the same graph by simply including
more than one set of (x, y) values in the plot function. For example, suppose that
we wanted to plot the function f(x) = sin 2x and its derivative on the same plot.
The derivative of f(x) = sin 2x is:

d
ur sin 2x = 2 cos 2x (2-4)

To plot both functions on the same axes, we must generate a set of x values
and the corresponding y values for each function. Then to plot the functions,
we would simply list both sets of (x, y) values in the plot function as shown
in the following statements:

x = 0:p1/100:2*pi;
vl = sin(2*x);

Y2 = 2*cos(2*x) ;
plot(x,vl,x,vy2);

The resulting plot is shown in Figure 2.8.
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Figure 2.7 Exporting a plot as an image file using the “File/Save As” menu item.

Figure 2.8 Plot of f(x) = sin 2x and f{x) = 2 cos 2x on the same axes.
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2.11.5 Line Color, Line Style, Marker Style, and Legends

MATLAB allows a programmer to select the color of a line to be plotted, the style
of the line to be plotted, and the type of marker to be used for data points on the
line. These traits may be selected using an attribute character string after the x and
v vectors in the plot function.

The attribute character string can have up to three characters, with the first
character specifying the color of the line, the second character specifying the
style of the marker, and the last character specifying the style of the line. The
characters for various colors, markers, and line styles are shown in Table 2.10.

The attribute characters may be mixed in any combination, and more than
one attribute string may be specified if more than one pair of (x, y) vectors is
included in a single plot function call. For example, the following statements
will plot the function y = x> — 10x + 15 with a dashed red line and will include
the actual data points as blue circles (see Figure 2.9).

x = 0:1:10;
v = x.72 - 10.*x + 15;
plot(x,y, 'r--',x,y, 'bo');

Legends may be created with the 1egend function. The basic form of this
function is

legend('stringl', 'string2', ..., pos)

Table 2.10 Table of Plot Colors, Marker Styles, and Line Styles

Color Marker Style Line Style
y  yellow . point - solid
m  magenta o circle : dotted
c  cyan x x-mark -. dash-dot
r red + plus - dashed
g green * star <none> no line
b  Dblue s square
w  white d diamond
k  black v triangle (down)

~ triangle (up)

< triangle (left)

> triangle (right)

) pentagram

h hexagram

<none> no marker
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Figure 2.9 Plot of the function y = x2 — 10x + 15 with a dashed red line, showing the actual data
points as blue circles.

where stringl, string?, etc. are the labels associated with the lines plotted,
and pos is an string specifying where to place the legend. The possible values for
pos are given in Table 2.112, and are shown graphically in Figure 2.10.

The command 1egend of £ will remove an existing legend.

An example of a complete plot is shown in Figure 2.11, and the statements
to produce that plot are shown below. They plot the function f{xx) = sin2x and its
derivative f'(x) = 2cos2x on the same axes, with a solid black line for f{x) and a
dashed red line for its derivative. The plot includes a title, axis labels, a legend in
the top left corner of the plot, and grid lines.

x = 0:p1/100:2*p1i;

vl = sin(2*x);

v2 = 2*cos(2*x);

plot(x,vl, 'k-',x,v¥y2, 'b--");

title ('Plot of f(x) = sin(2x) and its derivative');
xlabel ('x');

vlabel ('v');

legend ('f(x)','d/dx f(x)','tl")

grid on;

2Before MATLAB 7.0, the pos parameter took a number in the range 0—4 to specify the location of
a legend. This usage is now obsolete, but is still supported for backwards compatibility.
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Table 2.11 Values of pos in the legend Command
Value Legend Location
"NW ' Above and to the left
'NL' Above top left corner
'NC"' Above center of top edge
'NR' Above top right corner
'NE' Above and to right
CTW! At top and to left
'TL' Top left corner
'TC! At top center
'TR' Top right corner
'TE"' At top and to right
"MW At middle and to left
‘ML Middle left edge
'‘MC! Middle and center
'MR' Middle right edge
'ME' At middle and to right
"BW' At bottom and to left
'BL' Bottom left corner
'BC At bottom center
'BR' Bottom right corner
'BE' At bottom and to right
'SW' Below and to left
'SL' Below bottom left corner
'SC! Below center of bottom edge
'SR Below bottom right corner
'SE' Below and to right

NW | NL | NC | NR | NE

w7 Te TR :T = Limits of Plot Axes

P MW ML | MO | MR ME
BW | BL | BC | BR | BE
SW | SL | SC | B8R SE

Figure 2.10 Possible locations for a plot legend.

63
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Plot of f{x) = sin{2x) and its derivative

Figure 2.11 A complete plot with title, axis labels, legend, grid, and multiple line styles.

2.11.6 Logarithmic Scales

It is possible to plot data on logarithmic scales as well as linear scales. There are
four possible combinations of linear and logarithmic scales on the x and y axes,
and each combination is produced by a separate function.

1. The plot function plots both x and y data on linear axes.

2. The semilogx function plots x data on logarithmic axes and y data on
linear axes.

3. The semilogy function plots x data on linear axes and y data on loga-
rithmic axes.

4. The 1loglog function plots both x and y data on logarithmic axes.

All of these functions have identical calling sequences: the only difference is
the type of axis used to plot the data. Examples of each plot are shown in
Figure 2.12.
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Figure 2.12 Comparison of linear, semilog x, semilog y, and log-log plots.

2.12 Examples

The following examples illustrate problem-solving with MATLAB.

>
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Example 2.3—Temperature Conversion

Design a MATLAB program that reads an input temperature in degrees
Fahrenheit, converts it to an absolute temperature in kelvin, and writes out the

result.

SoLuTiON  The relationship between temperature in degrees Fahrenheit (°F) and
temperature in kelvin (K) can be found in any physics textbook. It is

5
T'(in kelvin) = [6 T'(in °F) — 32.0} + 273.15

(2-5)

The physics books also give us sample values on both temperature scales, which
we can use to check the operation of our program. Two such values are

The boiling point of water
The sublimation point of dry ice

212° F
-110° F

373.15 K
194.26 K
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Our program must perform the following steps:

1. Prompt the user to enter an input temperature in °F.

2. Read the input temperature.

3. Calculate the temperature in kelvin from Equation (2-5).
4. Write out the result and stop.

We will use function input to get the temperature in degrees Fahrenheit
and function fprintf to print the answer. The resulting program is shown
as follows:

Script file: temp_conversion

Purpose:
To convert an input temperature from degrees
Fahrenheit to an output temperature in kelvin.

Record of revisions:
Date Programmer Description of change

01/03/0 S. J. Chapman Original code

Define variables:
temp_f -- Temperature in degrees Fahrenheit
temp_k -- Temperature in kelvin

A O° 00 ° O° 0° A O° O° I O° 0P P o°

o

Prompt the user for the input temperature.
temp_f = input ('Enter the temperature in degrees Fahrenheit:');

(o

% Convert to kelvin.
temp_k = (5/9) * (temp_f - 32) + 273.15;

% Write out the result.
fprintf ('%$6.2f degrees Fahrenheit = %6.2f kelvin.\n', ... temp_f, temp_k);

To test the completed program, we will run it with the known input values
that have been given. Note that user inputs appear in boldface in the following:

» temp_conversion

Enter the temperature in degrees Fahrenheit: 212
212.00 degrees Fahrenheit = 373.15 kelvin.

» temp_conversion

Enter the temperature in degrees Fahrenheit: -110
-110.00 degrees Fahrenheit = 194.26 kelvin.

The results of the program match the values from the physics book. <
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In the foregoing program, we echoed the input values and printed the output
values together with their units. The results of this program make sense only if the
units (degrees Fahrenheit and kelvin) are included together with their values. As
a general rule, the units associated with any input value should always be printed
along with the prompt that requests the value, and the units associated with any
output value should always be printed along with that value.

I

Always include the appropriate units with any values that you read or write in a
program.

The foregoing program exhibits many of the good programming practices
that we have described in this chapter. It includes a data dictionary defining the
meanings of all of the variables in the program. It also uses descriptive variable
names, and appropriate units are attached to all printed values.

v

Example 2.4—Electrical Engineering: Maximum Power Transfer to a Load

Figure 2.13 shows a voltage source V' = 120 V with an internal resistance R of
50 Q supplying a load of resistance R,. Find the value of load resistance R, that
will result in the maximum possible power being supplied by the source to the
load. How much power be supplied in this case? Also, plot the power supplied to
the load as a function of the load resistance R, .

CD I RL Load

Vollage Source

Figure 2.13 A voltage source with a voltage /" and an internal resistance R supplying a load of
resistance R, .
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O° 00 o° O° 00 AP O° O° A J° O° A O° o° P o°

oe

o

SOLUTION

In this program, we need to vary the load resistance R, and compute the power
supplied to the load at each value of R,. The power supplied to the load resistance
is given by the equation

P, = I’R, (2-6)

where [ is the current supplied to the load. The current supplied to the load can
be calculated by Ohm’s Law:

V- 14
Rror  Rg+ R,

(2-7)

The program must perform the following steps:

1. Create an array of possible values for the load resistance R,. The array
will vary R, from 1 Q to 100 Q in 1 € steps.

2. Calculate the current for each value of R,.

. Calculate the power supplied to the load for each value of R, .

4. Plot the power supplied to the load for each value of R, and determine the
value of load resistance resulting in the maximum power.

The final MATLAB program is shown here.

W

Script file: calc_power.m

Purpose:
To calculate and plot the power supplied to a load as
as a function of the load resistance.

Record of revisions:

Date Programmer Description of change

\II

1/03 S. J. Chapman Original code

Define variables:

amps -- Current flow to load (amps)

pl -- Power supplied to load (watts)

rl -- Resistance of the load (ohms)

rs -- Internal resistance of the power source (ohms)
volts -- Voltage of the power source (volts)

Set the values of source voltage and internal resistance

volts = 120;

rs

[
°

rl

= 50;
Create an array of load resistances
= 1:1:100;
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(o)

% Calculate the current flow for each resistance
amps = volts ./ ( rs + rl );

% Calculate the power supplied to the load
pl = (amps .7~ 2) .* rl;

% Plot the power versus load resistance
plot(rl,pl);

title('Plot of power versus load resistance');
xlabel ('Load resistance (ohms)');

vlabel ('Power (watts)');

grid on;

When this program is executed, the resulting plot is shown in Figure 2.14.
From this plot, we can see that the maximum power is supplied to the load when
the load’s resistance is 50 Q. The power supplied to the load at this resistance is
72 watts.

+} Figure 1 =] 3
File Edt View Insert Tooks Window Hep
DeEs ke w 0880

Plot of power versus load resistance
BO T T T

&0

o
o

Power (walls)
&

(5]
(=]

0 20 40 60 80 100
Load resistance (ohms)

Figure 2.14 Plot of power supplied to load versus load resistance.

Note the use of the array operators . *, ., and . / in the preceding program.
These operators cause the arrays amps and pl to be calculated on an element-
by-element basis.
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Example 2.5—Carbon 14 Dating

A radioactive isotope of an element is a form of the element that is not stable.
Instead, it spontaneously decays into another element over a period of time.
Radioactive decay is an exponential process. If Q, is the initial quantity of a
radioactive substance at time ¢ = 0, then the amount of that substance which will
be present at any time # in the future is given by

0(1) = Qe ™ (2-8)

where A is the radioactive decay constant.

Because radioactive decay occurs at a known rate, it can be used as a clock
to measure the time that has elapsed since the decay started. If we know the
initial amount of the radioactive material O, present in a sample and the
amount of the material Q left at the current time, we can solve for 7 in Equation
(2-8) to determine how long the decay has been going on. The resulting
equation is

1
foy = 3 0. 9)

Equation (2-9) has practical applications in many areas of science. For
example, archaeologists use a radioactive clock based on carbon 14 to deter-
mine the time that has passed since a once-living thing died. Carbon 14 is
continually taken into the body while a plant or animal is living, so the
amount of it present in the body at the time of death is assumed to be known.
The decay constant A of carbon 14 is well known to be 0.00012097/year.
Therefore, the amount of carbon 14 remaining now can be accurately measured,
then Equation (2-9) can be used to determine how long ago the living thing
died. The amount of carbon 14 remaining as a function of time is shown in
Figure 2.15.

Write a program that reads the percentage of carbon 14 remaining in a
sample, calculates the age of the sample from it, and prints out the result with
proper units.

SOLUTION  Our program must perform the following steps:

1. Prompt the user to enter the percentage of carbon 14 remaining in the
sample.

Read in the percentage.

Convert the percentage into the fraction 2
0
Calculate the age of the sample in years using Equation (2-9).

5. Write out the result, and stop.

el

The resulting code is shown here.
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Figure 2.15 The radioactive decay of carbon 14 as a function of time. Notice that 50 percent of the
original carbon 14 is left after about 5730 years have elapsed.

Script file: cl4_date.m

Purpose:
To calculate the age of an organic sample from the
percentage of the original carbon 14 remaining in
the sample.

Record of revisions:
Date Programmer Description of change

01/05/07 S. J. Chapman Original code

Define variables:
age -- The age of the sample in years
lambda -- The radioactive decay constant for
carbon-14, in units of 1/years.

71
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% percent -- The percentage of carbon 14 remaining
% at the time of the measurement
% ratio -- The ratio of the carbon 14 remaining at

o

the time of the measurement to the
original amount of carbon 14.

o

% Set decay constant for carbon-14
lambda = 0.00012097;

% Prompt the user for the percentage of C-14 remaining.

percent = input ('Enter the percentage of carbon 14 remaining:\n');

% Perform calculations

ratio = percent / 100; % Convert to fractional ratio
age = (-1.0 / lambda) * log(ratio); % Get age in years

% Tell the user about the age of the sample.

string = ['The age of the sample is' num2str(age) ' years.'];
disp(string) ;

To test the completed program, we will calculate the time it takes for half of
the carbon 14 to disappear. This time is known as the half-life of carbon 14.

» cld4_date

Enter the percentage of carbon 14 remaining:
50

The age of the sample is 5729.9097 years.

The CRC Handbook of Chemistry and Physics states that the half-life of
carbon 14 is 5730 years, so output of the program agrees with the reference

book.
-

2.13 Debugging MATLAB Programs

There is an old saying that the only sure things in life are death and taxes. We
can add one more certainty to that list: if you write a program of any significant
size, it won’t work the first time you try it! Errors in programs are known as
bugs, and the process of locating and eliminating them is known as debugging.
Given that we have written a program and it is not working, how do we debug it?
Three types of error are found in MATLAB programs. The first type of error
is a syntax error. Syntax errors are errors in the MATLAB statement itself, such
as spelling errors or punctuation errors. These errors are detected by the MATLAB
compiler the first time that an M-file is executed. For example, the statement

x = (y + 3) / 2);
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contains a syntax error because it has unbalanced parentheses. If this statement
appears in an M-file named test . m, the following message appears when test
is executed.

» test
??? x = (y + 3) / 2)

Missing operator, comma, or semi-colon.

Error in ==> d:\book\matlab\chapl\test.m
On line 2 ==>

The second type of error is the run-time error. A run-time error occurs
when an illegal mathematical operation is attempted during program execution
(for example, attempting to divide by 0). These errors cause the program to return
Inf or NaN, which is then used in further calculations. The results of a program
that contains calculations using Inf or NaN are usually invalid.

The third type of error is a logical error. Logical errors occur when the pro-
gram compiles and runs successfully but produces the wrong answer.

The most common mistakes made during programming are fypographical
errors. Some typographical errors create invalid MATLAB statements. These errors
produce syntax errors that are caught by the compiler. Other typographical
errors occur in variable names. For example, the letters in some variable names
might have been transposed, or an incorrect letter might be typed. The result will be
a new variable, and MATLAB simply creates the new variable the first time that it
is referenced. MATLAB cannot detect this type of error. Typographical errors can
also produce logical errors. For example, if variables vell and vel2 are both
used for velocities in the program, then one of them might be inadvertently used
instead of the other one at some point. You must check for that sort of error by man-
ually inspecting the code.

Sometimes a program will start to execute, but run-time errors or logical
errors occur during execution. In this case, there is either something wrong with
the input data or something wrong with the logical structure of the program. The
first step in locating this sort of bug should be to check the input data to the
program. Either remove semicolons from input statements or add extra output
statements to verify that the input values are what you expect them to be.

If the variable names seem to be correct and the input data is correct, then
you are probably dealing with a logical error. You should check each of your
assignment statements.

1. If an assignment statement is very long, break it into several smaller
assignment statements. Smaller statements are easier to verify.

2. Check the placement of parentheses in your assignment statements. It is a
very common error to have the operations in an assignment statement
evaluated in the wrong order. If you have any doubts as to the order in
which the variables are being evaluated, add extra sets of parentheses to
make your intentions clear.
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3. Make sure that you have initialized all of your variables properly.
4. Be sure that any functions you use are in the correct units. For example, the
input to trigonometric functions must be in units of radians, not degrees.

If you are still getting the wrong answer, add output statements at various
points in your program to see the results of intermediate calculations. If you can
locate the point where the calculations go bad, then you know just where to look
for the problem, which is 95 percent of the battle.

If you still cannot find the problem after following all of these steps, explain
what you are doing to another student or to your instructor, and let him or her look
at the code. It is very common for people to see just what they expect to see when
they look at their own code. Another person can often quickly spot an error that
you have overlooked time after time.

To reduce your debugging effort, make sure that during your program design you

1. Initialize all variables.
2. Use parentheses to make the functions of assignment statements clear.

MATLAB includes a special debugging tool called a symbolic debugger,
which is embedded into the Edit/Debug Window. A symbolic debugger is a
tool that allows you to walk through the execution of your program one state-
ment at a time, and to examine the values of any variables at each step along
the way. Symbolic debuggers allow you to see all of the intermediate results
without having to insert a lot of output statements into your code. We will learn
how to use MATLAB’s symbolic debugger in Chapter 3.

2.14 Summary

In this chapter, we have presented many of the fundamental concepts required to
write functional MATLAB programs. We learned about the basic types of MATLAB
windows, the workspace, and how to get on-line help.

We introduced two data types: double and char. We also introduced
assignment statements, arithmetic calculations, intrinsic functions, input/output
statements, and data files.

The order in which MATLAB expressions are evaluated follows a fixed
hierarchy, with operations at a higher level evaluated before operations at lower
levels. The hierarchy of operations is summarized in Table 2.12.

The MATLAB language includes an extremely large number of built-in func-
tions to help us solve problems. This list of functions is much richer than the list
of functions found in other languages such as Fortran or C++, and it includes
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Table 2.12 Hierarchy of Operations

Precedence Operation

1 The contents of all parentheses are evaluated, starting from the
innermost parentheses and working outward.

2 All exponentials are evaluated, working from left to right.
All multiplications and divisions are evaluated, working from left
to right.

4 All additions and subtractions are evaluated, working from left to
right.

device-independent plotting capabilities. A few of the common intrinsic functions
are summarized in Table 2.8, and many others will be introduced throughout the
remainder of the book. A complete list of all MATLAB functions is available
through MATLAB Help, which can be accessed by clicking the 2l icon, or by
typing helpdesk in the Command Window.

2.14.1 Summary of Good Programming Practice

Every MATLAB program should be designed so that another person who is
familiar with MATLAB can easily understand it. This is very important, given
that a good program may be used for a long period of time. Over that time, con-
ditions will change, and the program will need to be modified to reflect the
changes. The program modifications may be done by someone other than the
original programmer. The programmer making the modifications must under-
stand the original program well before attempting to change it.

It is much harder to design clear, understandable, and maintainable programs
than it is to simply write programs. To do so, a programmer must develop the dis-
cipline to properly document his or her work. In addition, the programmer must
be careful to avoid known pitfalls along the path to good programs. The follow-
ing guidelines will help you to develop good programs:

1. Use meaningful variable names whenever possible. Use names that can be
understood at a glance, like day, month, and year.

2. Create a data dictionary for each program to make program maintenance
easier.

3. Use only lower-case letters in variable names, so that there won’t be errors
due to capitalization differences in different occurrences of a variable
name.

4. Use a semicolon at the end of all MATLAB assignment statements to sup-
press echoing of assigned values in the Command Window. If you need to
examine the results of a statement during program debugging, you may
remove the semicolon from that statement only.



76

Chapter 2 MATLAB Basics

5. If data must be exchanged between MATLAB and other programs, save the
MATLAB data in ASCII format. If the data will only be used in MATLAB,

save the data in MAT-file format.

6. Save ASCII data files with a “dat” file extent to distinguish them from

MAT-files, which have a “mat” file extent.

7. Use parentheses as necessary to make your equations clear and easy to
understand.
8. Always include the appropriate units with any values that you read or

write in a program.

2.14.2 MATLAB Summary

The following summary lists all of the MATLAB special symbols, commands,
and functions described in this chapter, along with a brief description of

each one.

Special Symbols

o

Array constructor
Forms subscripts
Marks the limits of a character string.

1. Separates subscripts or matrix elements.
2. Separates assignment statements on a line.

Separates subscripts or matrix elements.

1. Suppresses echoing in Command Window.
2. Separates matrix rows.
3. Separates assignment statements on a line.

Marks the beginning of a comment.
Colon operator, used to create shorthand lists
Array and matrix addition

Array and matrix subtraction

Array multiplication

Matrix multiplication

Array right division

Array left division

Matrix right division

Matrix left division

Array exponentiation

Transpose operator
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Commands and Functions

abs (x)
ans
acos (x)

asin(x)

atan (x)

atan2 (v, x)

ceil (x)

char

clock
cos (x)
date
disp
doc
double
eps

exp (x)
eye(m,n)
fix(x)

floor (x)

format +
format bank
format compact
format hex
format long
format long e
format long g
format loose
format rat

format short

Continues a MATLAB statement on the following line.

Calculates the absolute value of x.

Default variable used to store the result of expressions not assigned to another variable
Calculates the inverse cosine of x. The resulting angle is in radians between 0 and 7.

Calculates the inverse sine of x. The resulting angle is in radians between —7/2
and 7/2.

Calculates the inverse tangent of x. The resulting angle is in radians between — /2
and 7/2.

Calculates the inverse tangent of y/x, valid over the entire circle. The resulting angle is
in radians between — and 7.

Rounds x to the nearest integer towards positive infinity: £loor (3.1) =4 and
floor(-3.1) = -3.

Converts a matrix of numbers into a character string. For ASCII characters the matrix
should contain numbers =127.

Current time

Calculates cosine of x, where x is in radians.

Current date

Displays data in Command Window.

Open HTML Help Desk directly at a particular function description.

Converts a character string into a matrix of numbers.

Represents machine precision.

Calculates e ™.

Generates an identity matrix.

Rounds x to the nearest integer towards zero: fix(3.1) =3 and fix(-3.1) = -3.

Rounds x to the nearest integer towards minus infinity: f1oor (3.1) = 3 and
floor(-3.1) = -4.

Print + and — signs only.

Print in “dollars and cents” format.

Suppress extra linefeeds in output.

Print hexadecimal display of bits.

Print with 14 digits after the decimal.

Print with 15 digits plus exponent.

Print with 15 digits with or without exponent.
Print with extra linefeeds in output.

Print as an approximate ratio of small integers.
Print with 4 digits after the decimal.

(continued )
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Commands and Functions (Continued)

format short e

format short g

fprintf
grid

i

inf
input
int2str
]

legend
length (arr)
load
log(x)
loglog
lookfor
max (x)
min (x)
mod (m, n)
nan
num2str (x)
ones (m,n)
pi

plot
print
round (x)
save
semilogx
semilogy
sin (x)
size
sgrt
str2num
tan (x)
title

zeros

Print with 5 digits plus exponent.

Print with 5 digits with or without exponent.

Print formatted information.

Add or remove a grid from a plot.

V-1

Represents machine infinity ().

Writes a prompt and reads a value from the keyboard.

Converts x into an integer character string.

V-1

Adds a legend to a plot.

Returns the length of a vector, or the longest dimension of a 2-D array.
Load data from a file.

Calculates the natural logarithm of x.

Generates a log-log plot.

Look for a matching term in the one-line MATLAB function descriptions.
Returns the maximum value in vector x, and optionally the location of that value.
Returns the minimum value in vector x, and optionally the location of that value.
Remainder or modulo function.

Represents not-a-number.

Converts x into a character string.

Generates an array of ones.

Represents the number 7.

Generates a linear xy plot.

Prints a Figure Window.

Rounds x to the nearest integer.

Saves data from workspace into a file.

Generates a log-linear plot.

Generates a linear-log plot.

Calculates sine of x, where x is in radians.

Get number of rows and columns in an array.

Calculates the square root of a number.

Converts a character string into a number.

Calculates tangent of x, where x is in radians.

Adds a title to a plot.

Generate an array of zeros.
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Answer the following questions for the array shown here.

0.0 0.5 2.1 =35 6.0

00 —1.1 —6.6 2.8 34
arrayl =

2.1 0.1 03 —04 1.3

1.1 5.1 0.0 1.1 —2.0

(a) What is the size of array1?

(b) What is the value of arrayl (1,4)?

(c¢) What is the size and value of arrayl (:,1:2:5)?
(d) What is the size and value of arrayl ([1 3],end)?

Are the following MATLAB variable names legal or illegal? Why?

(a) dogl

(b) 1dog

(¢) Do_you_know_the_way_to_san_jose
(d) _help

(e) What's_up?

Determine the size and contents of the following arrays. Note that the
later arrays may depend on the definitions of arrays defined earlier in
this exercise.

(a) a = 2:3:8;

b) b = [a' a' a']l;

(¢c) c = b(1:2:3,1:2:3);

(dd=a+ b(2,:);

(e) w [zeros(1,3) ones(3,1)' 3:5'];

(f) b(I[1 31,2) = b([3 11,2);

(g) e 1:-1:5;

Assume that array arrayl is defined as shown, and determine the con-
tents of the following subarrays:

11 00 —21 -35 60
| 00 -30 -56 28 43
arrayl =\ 51 03 01 -04 13
—14 51 00 11 =30

3,:)

,3)

1:2:3,[3 3 41])
(1 11,:)

(a) arrayl
(b) arrayl
(¢) arrayl
(d) arrayl

—_— o~ o~ —~
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2.5 Assume that value has been initialized to 107, and determine what is
printed out by each of the following statements.

disp (['value = ' num2str(value)l]);
disp (['value = ' int2str(value)]);
fprintf ('value = %$e\n',value) ;
fprintf ('value = %$f\n',value) ;
fprintf ('value = %g\n',value) ;
fprintf ('value = %12.4f\n',value);

2.6 Assume that a, b, ¢, and d are defined as follows, and calculate the results
of the following operations if they are legal. If an operation is illegal,
explain why it is illegal.

=[] »=[ % 2]

c = [?} d = eye(2)

(a) result = a + b;
(b) result = a * d;
(¢) result = a .* d;
(d) result = a * c;
(e) result = a .* c;
(f) result = a \ Db;
(g) result = a .\ b;

(h) result = a .» b;
2.7 Evaluate each of the following expressions:

(@) 11 / 5 + 6

() (11 / 5) + 6

(¢) 11 / (5 + 6)
d3~2~3

(e) 3 ~ (2 ~ 3)

() (3 ~2) ~ 3

(g) round(-11/5) + 6
(h) ceil(-11/5) + 6
(i) floor(-11/5) + 6

2.8 Use MATLAB to evaluate each of the following expressions:
(@) (3 —4i)(—4 + 3i)
(b) cos '(1.2)
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Solve the following system of simultaneous equations for x:

.0 xg - 1.0 xq 0.
.0 x, = 1.
X, = -6.
10.
X, = -6.
0 x, = -2.
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Position and Velocity of a Ball If a stationary ball is released at a height
hy above the surface of the Earth with a vertical velocity v, the position
and velocity of the ball as a function of time will be given by the equations

1 2
h(t) = gt + vl + hy (2-10)

v(t) = gt + v (2-11)

where g is the acceleration due to gravity (—9.81 m/s?), & is the height
above the surface of the Earth (assuming no air friction), and v is the ver-
tical component of velocity. Write a MATLAB program that prompts a
user for the initial height of the ball in meters and velocity of the ball in
meters per second, and plots the height and velocity as a function of time.
Be sure to include proper labels in your plots.

The distance between two points (x,, y,) and (x,, ¥,) on a Cartesian coor-
dinate plane is given by the equation

d=V(x —x)?+ 0 — )’ (2-12)

(See Figure 2.16.) Write a program to calculate the distance between any
two points (x,, y,) and (x,, y,) specified by the user. Use good programming
practices in your program. Use the program to calculate the distance
between the points (—3, 2) and (3, —6).

A o (xl,y0)

e (x2,v2)

» X

Figure 2.16 Distance between two points on a Cartesian plane.
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2.12

2.13

2.14

The distance between two points (x,, ¥, z;) and (x,, ¥,, z,) in a three-
dimensional Cartesian coordinate system is given by the equation

d=\V(x —x)+ 0 -+ (- 2) (2-13)

Write a program to calculate the distance between any two points (x,, y,,
z,) and (x,, ,, z,) specified by the user. Use good programming practices
in your program. Use the program to calculate the distance between the
points (—3, 2, 5) and (3, —6, —5).

Decibels Engineers often measure the ratio of two power measurements
in decibels, or dB. The equation for the ratio of two power measurements
in decibels is

P
dB = 10 log,q == (2-14)
P,

where P, is the power level being measured, and P; is some reference
power level.

(a) Assume that the reference power level P; is 1 milliwatt, and write a
program that accepts an input power P, and converts it into dB with
respect to the 1 mW reference level. (Engineers have a special unit
for dB power levels with respect to a 1 mW reference: dBm.) Use
good programming practices in your program.

(b) Write a program that creates a plot of power in watts versus power in
dBm with respect to a 1 mW reference level. Create both a linear xy
plot and a log-linear xy plot.

Power in a Resistor The voltage across a resistor is related to the current
flowing through it by Ohm’s law

V=1IR (2-15)
and the power consumed in the resistor is given by the equation
P=1 (2-16)

Write a program that creates a plot of the power consumed by a 1000 ()
resistor as the voltage across it is varied from 1 V to 200 V. Create two
plots, one showing power in watts, and one showing power in dBW
(dB power levels with respect to a 1 W reference).

Figure 2.17 Voltage and current in a resistor.
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Hyperbolic cosine The hyperbolic cosine function is defined by the equation

coshx = gre’ (2-17)
2

Write a program to calculate the hyperbolic cosine of a user-supplied
value x. Use the program to calculate the hyperbolic cosine of 3.0.
Compare the answer that your program produces to the answer produced
by the MATLAB intrinsic function cosh (x). Also, use MATLAB to plot
the function cosh (x). What is the smallest value that this function can
have? At what value of x does it occur?
Energy Stored in a Spring The force required to compress a linear spring
is given by the equation

F = kx (2-18)
where F'is the force in newtons and £ is the spring constant in newtons per

meter. The potential energy stored in the compressed spring is given by the
equation
1. >
E = > kx (2-19)

where E is the energy in joules. The following information is available for
four springs:

Spring | Spring 2 Spring 3 Spring 4
Force (N) 20 30 25 20
Spring constant k& (N/m) 200 250 300 400

Determine the compression of each spring, and the potential energy stored
in each spring. Which spring has the most energy stored in it?
Radio Receiver A simplified version of the front end of an AM radio receiver
is shown in Figure 2.18. This receiver consists of an RLC tuned circuit con-
taining a resistor, capacitor, and an inductor connected in series. The RLC cir-
cuit is connected to an external antenna and ground as shown in the picture.
The tuned circuit allows the radio to select a specific station out of all
the stations transmitting on the AM band. At the resonant frequency of the
circuit, essentially all of the signal V}, appearing at the antenna appears
across the resistor, which represents the rest of the radio. In other words,
the radio receives its strongest signal at the resonant frequency. The reso-
nant frequency of the LC circuit is given by the equation

1

fo= ic (2-20)
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Figure 2.18 A simplified version of the front end of an AM radio receiver.

2.18

2.19

where L is inductance in henrys (H) and C is capacitance in farads (F).
Write a program that calculates the resonant frequency of this radio set
given specific values of L and C. Test your program by calculating the fre-
quency of the radio when L = 0.25 mH and C = 0.10 nF.

Radio Receiver The average (rms) voltage across the resistive load in
Figure 2.18 varies as a function of frequency according to Equation (2-18).

R
By v, (2-21)
2 .
\/R + (u)L wC)

where @ = 2xf and f is the frequency in hertz. Assume that L = 0.25 mH,
C=0.10nF R = 50Q, and V, = 10 mV.

VR=

(a) Plot the rms voltage on the resistive load as a function of frequency.
At what frequency does the voltage on the resitive load peak? What
is the voltage on the load at this frequency? This frequency is called
the resonant frequency f, of the circuit.

(b) If the frequency is changed to 10% greater than the resonant fre-
quency, what is the voltage on the load? How selective is this radio
receiver?

(¢) At what frequencies will the voltage on the load drop to half of the
voltage at the resonant frequency?

Suppose two signals were received at the antenna of the radio receiver
described in the previous problem. One signal has a strength of 1 V at a
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frequency of 1000 kHz, and the other signal has a strength of 1 V at 950 kHz.
Calculate the voltage V, that will be received for each of these signals. How
much power will the first signal supply to the resistive load R? How much
power will the second signal supply to the resistive load R? Express the ratio of
the power supplied by signal 1 to the power supplied by signal 2 in decibels (see
Problem 2.12 above for the definition of a decibel). How much is the second
signal enhanced or suppressed compared to the first signal? (Note: The power
supplied to the resistive load can be calculated from the equation P = I{f / R).
2.20 Aircraft Turning Radius An object moving in a circular path at a con-
stant tangential velocity v is shown in Figure 2.19. The radial acceleration

required for the object to move in the circular path is given by the
Equation (2-22)

a= (2-22)

where a is the centripetal acceleration of the object in m/s%, v is the tangen-
tial velocity of the object in m/s, and 7 is the turning radius in meters. Suppose
that the object is an aircraft, and answer the following questions about it:

(a) Suppose that the aircraft is moving at Mach 0.85, or 85% of the
speed of sound. If the centripetal acceleration is 2 g, what is the
turning radius of the aircraft? (Note: For this problem, you may
assume that Mach 1 is equal to 340 m/s, and that 1 g = 9.81 m/s%)

(b) Suppose that the speed of the aircraft increases to Mach 1.5. What is
the turning radius of the aircraft now?

(c) Plot the turning radius as a function of aircraft speed for speeds between
Mach 0.5 and Mach 2.0, assuming that the acceleration remains 2 g.

(d) Suppose that the maximum acceleration that the pilot can stand is 7 g.
What is the minimum possible turning radius of the aircraft at Mach 1.5?

(e) Plot the turning radius as a function of centripetal acceleration for accel-

erations between 2 g and 8 g, assuming a constant speed of Mach 0.85.

Figure 2.19 An object moving in uniform circular motion due to the centripetal acceleration a.
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CHAPTEHR

Branching
Statements and
Program Design

In the previous chapter, we developed several complete working MATLAB pro-
grams. However, all of the programs were very simple, consisting of a series of
MATLAB statements that were executed one after another in a fixed order. Such
programs are called sequential programs. They read input data, process it to pro-
duce a desired answer, print out the answer, and quit. There is no way to repeat
sections of the program more than once, and there is no way to selectively exe-
cute only certain portions of the program depending on values of the input data.

In the next two chapters, we will introduce a number of MATLAB state-
ments that allow us to control the order in which statements are executed in a
program. There are two broad categories of control statements: branches,
which select specific sections of the code to execute, and loops, which cause
specific sections of the code to be repeated. Branches will be discussed in this
chapter, and loops will be discussed in Chapter 4.

With the introduction of branches and loops, our programs are going to
become more complex, and it will get easier to make mistakes. To help avoid
programming errors, we will introduce a formal program design procedure
based on the technique known as top-down design.We will also introduce a com-
mon algorithm development tool known as pseudocode.

We will also study the MATLAB logical data type before discussing branches,
because branches are controlled by logical values and expressions.

3.1 Introduction to Top-Down Design Techniques

Suppose that you are an engineer working in industry and that you need to write
a program to solve some problem. How do you begin?

87



88

Chapter 3  Branching Statements and Program Design

When given a new problem, there is a natural tendency to sit down at a key-
board and start programming without “wasting” a lot of time thinking about the
problem first. It is often possible to get away with this “on-the-fly”” approach to
programming for very small problems, such as many of the examples in this book.
In the real world, however, problems are larger, and a programmer attempting this
approach will become hopelessly bogged down. For larger problems, it pays to
completely think out the problem and the approach you are going to take to it
before writing a single line of code.

We will introduce a formal program design process in this section and then
apply that process to every major application developed in the remainder of the
book. For some of the simple examples that we will be doing, the design process
will seem like overkill. However, as the problems that we solve get larger and larger,
the process becomes more and more essential to successful programming.

When I was an undergraduate, one of my professors was fond of saying,
“Programming is easy. It’s knowing what to program that’s hard.” His point was
forcefully driven home to me after I left university and began working in industry on
larger-scale software projects. I found that the most difficult part of my job was to
understand the problem 1 was trying to solve. Once I really understood the problem,
it became easy to break the problem apart into smaller, more easily manageable
pieces with well-defined functions, and then to tackle those pieces one at a time.

Top-down design is the process of starting with a large task and breaking it
down into smaller, more easily understandable pieces (subtasks) which perform a
portion of the desired task. Each subtask may in turn be subdivided into smaller
subtasks if necessary. Once the program is divided into small pieces, each
piece can be coded and tested independently. We do not attempt to combine the
subtasks into a complete task until each of the subtasks has been verified to work
properly by itself.

The concept of top-down design is the basis of our formal program design
process. We will now introduce the details of the process, which is illustrated in
Figure 3.1. The steps involved are as follows:

1. Clearly state the problem that you are trying to solve.

Programs are usually written to fill some perceived need, but that need may
not be articulated clearly by the person requesting the program. For example,
a user may ask for a program to solve a system of simultaneous linear
equations. This request is not clear enough to allow a programmer to design
a program to meet the need; he or she must first know much more about the
problem to be solved. Is the system of equations to be solved real or complex?
What is the maximum number of equations and unknowns that the program
must handle? Are there any symmetries in the equations which might be
exploited to make the task easier? The program designer will have to talk with
the user requesting the program, and the two of them will have to come up
with a clear statement of exactly what they are trying to accomplish. A clear
statement of the problem will prevent misunderstandings, and it will also help
the program designer to properly organize his or her thoughts. In the example
we were describing, a proper statement of the problem might have been:
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Start

State the problem you

are trying to solve

Define required inputs
and outputs

X / Decomposition
Design the algorithm ’
1 Stepwise refinement
Convert algorithm into
MATLAB statements Top-down design process

Test the resulting
MATLAB program

!

Finished!

Figure 3.1 The program design process used in this book.

Design and write a program to solve a system of simultaneous linear
equations having real coefficients and with up to 20 equations in 20
unknowns.

2. Define the inputs required by the program and the outputs to bepro-
duced by the program.
The inputs to the program and the outputs to be produced by the program
must be specified so that the new program will properly fit into the overall
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processing scheme. In the preceding example, the coefficients of the equa-
tions to be solved are probably in some preexisting order, and our new
program needs to be able to read them in that order. Similarly, it needs to
produce the answers required by the programs that may follow it in the over-
all processing scheme, and to write out those answers in the format needed
by the programs following it.

3. Design the algorithm that you intend to implement in the program.

An algorithm is a step-by-step procedure for finding the solution to a
problem. It is at this stage in the process that top-down design techniques
come into play. The designer looks for logical divisions within the prob-
lem and divides it up into sub-tasks along those lines. This process is
called decomposition. If the sub-tasks are themselves large, the designer
can break them up into even smaller sub—sub-tasks. This process contin-
ues until the problem has been divided into many small pieces, each of
which does a simple, clearly understandable job.

After the problem has been decomposed into small pieces, each
piece is further refined through a process called stepwise refinement. In
stepwise refinement, a designer starts with a general description of what
the piece of code should do and then defines the functions of the piece
in greater and greater detail until they are specific enough to be turned
into MATLAB statements. Stepwise refinement is usually done with
pseudocode, which will be described in the next section.

It is often helpful to solve a simple example of the problem by hand
during the algorithm development process. If the designer understands the
steps that he or she went through in solving the problem by hand, then he
or she will be in better able to apply decomposition and stepwise refine-
ment to the problem.

. Turn the algorithm into MATLAB statements.

If the decomposition and refinement process was carried out properly, this
step will be very simple. All the programmer will have to do is to replace
pseudocode with the corresponding MATLAB statements on a one-for-one
basis.

. Test the resulting MATLAB program.

This step is the real killer. The components of the program must first
be tested individually, if possible, and then the program as a whole
must be tested. When testing a program, we must verify that it works
correctly for all legal input data sets. It is very common for a program
to be written, tested with some standard data set, and released for use,
only to find that it produces the wrong answers (or crashes) with a dif-
ferent input data set. If the algorithm implemented in a program
includes different branches, we must test all of the possible branches
to confirm that the program operates correctly under every possible
circumstance.
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Large programs typically go through a series of tests before they are released
for general use (see Figure 3.2). The first stage of testing is sometimes called unit
testing. During unit testing, the individual sub-tasks of the program are tested
separately to confirm that they work correctly. After the unit testing is completed,
the program goes through a series of builds during which the individual sub-tasks
are combined to produce the final program. The first build of the program

Start

1

Unit testing of

individual subtasks

Subtasks validated separately

Successive builds
(adding subtasks to the As many times as necessary
program)

Subtasks combined into program

Y
Alpha release As many times as necessary
Worst bugs fixed
Y
Beta release As many times as necessary

1 Minor bugs fixed

Finished program

Figure 3.2 A typical testing process for a large program.
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typically includes only a few of the sub-tasks. It is used to check the interactions
among those sub-tasks and the functions performed by the combinations of the sub-
tasks. In successive builds, more and more sub-tasks are added, until the entire
program is complete. Testing is performed on each build, and any errors (bugs) that
are detected are corrected before moving on to the next build.

Testing continues even after the program is complete. The first complete ver-
sion of the program is usually called the alpha release. It is exercised by the pro-
grammers and others very close to them in as many different ways as possible,
and the bugs discovered during the testing are corrected. When the most serious
bugs have been removed from the program, a new version called the beta release
is prepared. The beta release is normally given to “friendly” outside users who
have a need for the program in their normal day-to-day jobs. These users put the
program through its paces under many different conditions and with many differ-
ent input data sets, and they report any bugs that they find to the programmers.
When those bugs have been corrected, the program is ready to be released for
general use.

Because the programs in this book are fairly small, we will not go through
the sort of extensive testing described here. However, we will follow the basic
principles in testing all of our programs.

The program design process may be summarized as follows:

1. Clearly state the problem that you are trying to solve.

2. Define the inputs required by the program and the outputs to be produced
by the program.

3. Design the algorithm that you intend to implement in the program.

4. Turn the algorithm into MATLAB statements.

5. Test the MATLAB program.

Follow the steps of the program design process to produce reliable, understand-
able MATLAB programs.

In a large programming project, the time actually spent programming is sur-
prisingly small. In his book The Mythical Man-Month!, Frederick P. Brooks,
Jr. suggests that in a typical large software project, one-third of the time is spent
planning what to do (steps 1 through 3), one-sixth of the time is spent actually
writing the program (step 4), and fully one-half of the time is spent in testing and
debugging the program! Clearly, anything that we can do to reduce the testing and
debugging time will be very helpful. We can best reduce the testing and debugging

The Mythical Man-Month, Anniversary Edition, by Frederick P. Brooks, Jr., Addison-Wesley, 1995.
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time by doing a very careful job in the planning phase, and by using good pro-
gramming practices. Good programming practices will reduce the number of bugs
in the program and will make the ones that do creep in easier to find.

3.2 Use of Pseudocode

As a part of the design process, it is necessary to describe the algorithm that you
intend to implement. The description of the algorithm should be in a standard
form that is easy for both you and other people to understand, and the description
should aid you in turning your concept into MATLAB code. The standard forms
that we use to describe algorithms are called constructs (or sometimes structures),
and an algorithm described using these constructs is called a structured algorithm.
When the algorithm is implemented in a MATLAB program, the resulting pro-
gram is called a structured program.

The constructs used to build algorithms can be described in a special way
called pseudocode. Pseudocode is a hybrid mixture of MATLAB and English. It
is structured like MATLAB, with a separate line for each distinct idea or segment
of code, but the descriptions on each line are in English. Each line of the
pseudocode should describe its idea in plain, easily understandable English.
Pseudocode is very useful for developing algorithms, since it is flexible and easy
to modify. It is especially useful since pseudocode can be written and modified
with the same editor or word processor used to write the MATLAB program—no
special graphical capabilities are required.

For example, the pseudocode for the algorithm in Example 1.3 is

Prompt user to enter temperature in degrees Fahrenheit
Read temperature in degrees Fahrenheit (temp_f)

temp_k in kelvins <— (5/9) * (temp_f - 32) + 273.15
Write temperature in kelvins

Notice that a left arrow (<—) is used instead of an equal sign (=) to indicate that
a value is stored in a variable, since this avoids any confusion between assignment
and equality. Pseudocode is intended to aid you in organizing your thoughts
before converting them into MATLAB code.

3.3 The Logical Data Type

The 1logical data type? is a special type of data that can have one of only two
possible values: true or false. These values are produced by the two special
functions true and false. They are also produced by two types of MATLAB
operators: relational operators and logic operators.

The logical data type was introduced in MATLAB 6.5.
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Logical values are stored in a single byte of memory, so they take up much
less space than numbers, which usually occupy 8 bytes.

The operation of many MATLAB branching constructs is controlled by logical
variables or expressions. If the result of a variable or expression is true, then one
section of code is executed. If not, then a different section of code is executed.

To create a 1ogical variable, just assign a logical value it to in an assign-
ment statement. For example, the statement

al = true;

creates a logical variable al containing the logical value true. If this variable is
examined with the whos command, we can see that it has the logical data type:

» whos al
Name Size Bytes Class
al 1x1 1 logical array

Unlike programming languages such as Java, C++, and Fortran, it is legal in
MATLAB to mix numerical and logical data in expressions. If a logical value is used
in a place where a numerical value is expected, true values are converted to 1, and
false values are converted to 0 and then used as numbers. If a numerical value is
used in a place where a logical value is expected, nonzero values are converted to
true, and 0 values are converted to false and then used as logical values.

It is also possible to explicitly convert numerical values to logical values, and
vice versa. The 1ogical function converts numerical data to logical data, and the
real function converts logical data to numerical data.

3.3.1 Relational Operators

Relational operators are operators with two numerical or string operands that
yield a 1ogical result, depending on the relationship between the two operands.
The general form of a relational operator is

aop a

where a, and a, are arithmetic expressions, variables, or strings, and op is one of
the following relational operators:

Table 3.1 Relational Operators

Operator Operation

== Equal to

Not equal to

Greater than

Greater than or equal to

Less than

A AN V V

Less than or equal to
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If the relationship between a, and a, expressed by the operator is true, then
the operation returns a true value; otherwise, the operation returns false.
Some relational operations and their results are given here:

Operation Result

3 < 4 true (1)
3 <= 4 true (1)
3 == 4 false (0)
3 >4 false (0)
4 <=4 true (1)
'A' < 'B' true (1)

The last relational operation is true, because characters are evaluated in alphabet-
ical order.

Note that both true and 1 are shown as the result of true operations, and
both false and 0 are shown as the result of false operations. MATLAB is a bit
schizophrenic about how the results of logical operations are displayed. When a
relational operator is evaluated in the Command Window, the result of the opera-
tion will be displayed as a 0 or a 1. When it is displayed in the Workspace
Browser, the same value will be show as false or true (see Figure 3.3).

Relational operators may be used to compare a scalar value with an array. For

1
-2 1
true false

0
example, if a = |: J and b = 0, then the expression a > b will yield the

10
logical array |: :| (shown as [0 J in the Command Window).

false true
Relational operators may also be used to compare two arrays, as long as both

1 0 0o 2
arrays have the same size. For example, if a = [_2 1:| and b = |:_2 _ :|,

. SR . true false
then the expression a >= b will yield the logical array |:
true true

:| (shown

1 0
as |:1 1] in the Command Window). If the arrays have different sizes, a run-

time error will result.

Note that since strings are really arrays of characters, relational operators
can only compare two strings if they are of equal lengths. If they are of unequal
lengths, the comparison operation will produce an error. We will learn of a more
general way to compare strings in Chapter 6.

The equivalence relational operator is written with two equal signs, while the
assignment operator is written with a single equal sign. These are very different oper-
ators that beginning programmers often confuse. The == symbol is a comparison
operation that returns a logical result, while the = symbol assigns the value of the
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MATLAB 7.4.0 (R2007a)
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Figure 3.3 The result of a relational operator is a true or false value that can be stored in a
logical variable. In the example shown here, the result of the operator 10 > 5 is
displayed as a 1 on the Command Window and as a true in the Workspace Browser.

expression to the right of the equal sign to the variable on the left of the equal
sign. It is a very common mistake for beginning programmers to use a single
equal sign when trying to do a comparison.

Be careful not to confuse the equivalence relational operator (==) with the
assignment operator (=).

In the hierarchy of operations, relational operators are evaluated after all

arithmetic operators have been evaluated. Therefore, the following two expres-
sions are equivalent (both are true).

7 + 3 <2 + 11
(7 + 3) < (2 + 11)
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3.3.2 A Caution About the == and ~= Operators

The equivalence operator (==) returns a true value (1) when the two values
being compared are equal, and a false (0) when the two values being compared
are different. Similarly, non-equivalence operator (~=) returns a false (0) when
the two values being compared are equal, and a true (1) when the two values
being compared are different. These operators are generally safe to use for com-
paring strings, but they can sometimes produce surprising results when two
numeric values are compared. Due to roundoff errors during computer calcula-
tions, two theoretically equal numbers can differ slightly, causing an equality or
inequality test to fail.

For example, consider the following two numbers, both of which should be

equal to 0.0.
a = 0;
b = sin(pi);

Since these numbers are theoretically the same, the relational operation a ==
should produce a 1. In fact, the results of this MATLAB calculation are

»> a = 0;

» b = sin(pi):;
» a ==Db

ans =

0

MATLAB reports that a and b are different because a slight roundoff error in
the calculation of sin (pi)makes the result be 1.2246 X 107! instead of
exactly zero. The two theoretically equal values differ slightly due to roundoff error!

Instead of comparing two numbers for exact equality, you should set up your
tests to determine if the two numbers are nearly equal to each other within some
accuracy that takes into account the roundoff error expected for the numbers
being compared. The test

» abs(a - b) < 1.0E-14
ans =
1

produces the correct answer, despite the roundoff error in calculating b.

Be cautious about testing for equality with numeric values, since roundoff errors
may cause two variables that should be equal to fail a test for equality. Instead,
test to see if the variables are nearly equal within the roundoff error to be expected
on the computer you are working with.
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Table 3.2 Logic Operators

Operator Operation
& Logical AND
&& Logical AND with shortcut evaluation

| Logical Inclusive OR
| Logical Inclusive OR with shortcut evaluation
Xor Logical Exclusive OR

~ Logical NOT

3.3.3 Logic Operators

Logic operators are operators with one or two logical operands that yield a logi-
cal result. There are five binary logic operators: AND (& and &&), inclusive OR
(| and | |), and exclusive OR (xor), and one unary operator: NOT (~). The gen-
eral form of a binary logic operation is

Lyopl
and the general form of a unary logic operation is
op [;

where /, and /, are expressions or variables, and op is one of the following logic
operators shown in Table 3.2.

If the relationship between /, and /, expressed by the operator is true, then the
operation returns a value of true (displayed as | in the Command Window);
otherwise, the operation returns a value of false (0 in the Command Window).

The results of the operators are summarized in truth tables, which show the
result of each operation for all possible combinations of /; and /,. Table 3.3 shows
the truth tables for all logic operators.

Logical ANDs

The result of an AND operator is t rue if and only if both input operands are true.
If either or both operands are false, the result is false, as shown in Table 3.3.

Note that there are two logical AND operators: && and &. Why are there two
AND operators, and what is the difference between them? The basic difference
between && and & is that && supports short-circuit evaluations (or partial evalua-
tions), while & doesn’t. That is, && will evaluate expression /;, and immediately
return a false value if /; is false. If [, is false, the operator never evaluates
1,, because the result of the operator will be £alse regardless of the value of /,. In
contrast, the & operator always evaluates both /, and /, before returning an answer.

A second difference between && and & is that && works only between scalar
values, whereas & works with either scalar or array values, as long as the sizes of
the arrays are compatible.
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Table 3.3 Truth Tables for Logic Operators

Inputs and or xor not

I8 A I, &1, I, && 1, IRA Ll xox(l}, 1) ~I,
false false false false false false false true
false true false false true true true true
true false false false true true true false
true true true true true true false false

When should you use && and when should you use & in a program? Most of
the time, it doesn’t matter which AND operation is used. If you are comparing
scalars and it is not necessary to always evaluate /,, then use the && operator. The
partial evaluation will make the operation faster in the cases where the first
operand is false.

Sometimes it is important to use shortcut expressions. For example, suppose
that we wanted to test for the situation where the ratio of two variables a and b is
greater than 10. The code to perform this test is:

x =a / b >10.0

This code normally works fine, but what about the case in which b is zero? In that
case, we would be dividing by zero, which produces an Inf instead of a number.
The test could be modified to avoid this problem as follows:

x = (b ~=0) & (a/b > 10.0)

This expression uses partial evaluation, so if b = 0, the expression a/b > 10.0
will never be evaluated, and no Inf will occur.

Use the & AND operator if it is necessary to ensure that both operands are eval-
uated in an expression, or if the comparison is between arrays. Otherwise, use
the && AND operator, since the partial evaluation will make the operation faster
in the cases where the first operand is false. The & operator is preferred in
most practical cases.

Logical Inclusive ORs

The result of an inclusive OR operator is true if either of the input operands are
true. If both operands are false, the result is false, as shown in Table 3.3.

Note that there are two inclusive OR operators: | | and |. Why are there
two inclusive OR operators, and what is the difference between them? The basic



100

Chapter 3 Branching Statements and Program Design

difference between | | and | is that | | supports partial evaluations, while | doesn’t.
That is, | | will evaluate expression /; and immediately return a true value if /,
is true. If /, is true, the operator never evaluates /,, because the result of the
operator will be true regardless of the value of /,. In contrast, the | operator
always evaluates both /, and /, before returning an answer.

A second difference between | | and | is that | | only works between scalar
values, while | works with either scalar or array values, as long as the sizes of the
arrays are compatible.

When should you use | | and when should you use | in a program? Most of
the time, it doesn’t matter which OR operation is used. If you are comparing scalars,
and it is not necessary to always evaluate ,, use the | | operator. The partial evalua-
tion will make the operation faster in the cases where the first operand is true.

Use the | inclusive OR operator if it is necessary to ensure that both operands
are evaluated in an expression, or if the comparison is between arrays.
Otherwise, use the | | operator, since the partial evaluation will make the operation
faster in the cases where the first operand is true. The | operator is preferred
in most practical cases.

Logical Exclusive OR

The result of an exclusive OR operator is true if and only if one operand is
true and the other one is false. If both operands are true or both operands are
false, then the result is false, as shown in Table 3.3. Note that both operands
must always be evaluated in order to calculate the result of an exclusive OR.

The logical exclusive OR operation is implemented as a function. For example:

a = 10;
b = 0;
x = xor(a, b);

This result is true. The value of a is nonzero, so it will be converted to true.
The value of b is zero, so it will be converted to false. Therefore, the result of
the xor operation will be true.

Logical NOT

The NOT operator is a unary operator, having only one operand. The result of a
NOT operator is true if its operand is false, and false if its operand is
true, as shown in Table 3.3.

Using Numeric Data with Logic Operators

Real numeric data can also be use with logic operators. Since logic operators
expect logical input values, MATLAB converts nonzero values to true and zero
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values to false before performing the operation. Thus, the result of ~5 is
false (0 in the Command Window) and the result of ~0 is true (1 in the
Command Window).

Logic operators may be used to compare a scalar value with an array. For
true false

and b = false, then the expression
false true

example, if a = |:

false false 0 0
& b will yield th It displayed in th
a will yie e resu |:false false} (displayed as [0 0:| in the

Command Window). Logic operators may also be used to compare two arrays, as
true fals e]

long as both arrays have the same size. For example, ifa =
false true

true true . . .
and b = , then the expression a | b will yield the result
false false

|: true true
false true
arrays have different sizes, a run-time error will result.

Logic operators may not be used with complex or imaginary numeric data.
For example, an expression such as “2i & 21” will produce an error when it is
evaluated.

11
] (displayed as [0 1] in the Command Window). If the

Hierarchy of Operations

In the hierarchy of operations, logic operators are evaluated affer all arithmetic
operations and all relational operators have been evaluated. The order in which
the operators in an expression are evaluated is as follows:

1. All arithmetic operators are evaluated first in the order previously
described.

2. All relational operators (==, ~=, >, >=, <, <=) are evaluated, working
from left to right.

3. All ~ operators are evaluated.

4. All & and && operators are evaluated, working from left to right.

5. All |, | |, and xor operators are evaluated, working from left to right.

As with arithmetic operations, parentheses can be used to change the
default order of evaluation. Examples of some logic operators and their results
follow.

Example 3.1

Assume that the following variables are initialized with the values shown, and
calculate the result of the specified expressions:

valuel = true
value2 = false
value3 = 1
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valued = -10
value5 = 0
value6 = [1 2; 0 1]
Expression Result Comment

(@) ~valuel false

() ~value3 false The number 1 is converted to true before
operation is applied.

(¢) valuel | value2 true

(d) wvaluel & value2 false

(e) valued & valueb false —10 is converted to true and 0 is converted to
false before the operation is applied.

(f) ~(valued & valueb) true —10 is converted to true and 0 is converted to
false before the operation is applied.

(g) valuel +valued -9 valuel is converted to the number 1 before the
addition is performed.

(h) valuel + (~valued) 1 The logical valuel is converted to the number 1
before the addition is performed. The number
value4 is converted to true before the NOT is
performed. Then ~value4 is evaluated to be
false. This false value is converted to 0 before
the addition, so the final resultis 1 + 0 = 1.

(i) value3 && valueb Ilegal The && operator must be used with scalar operands.

true true

(j) value3 & valueb AND between a scalar and an array operand.

false true

The ~ operator is evaluated before other logic operators. Therefore, the parenthe-
ses in part (f) of the above example were required. If they had been absent, the
expression in part (/) would have been evaluated in the order (~valued) &
valueb5.

3.3.4 Logical Functions

MATLAB includes a number of logical functions that return true whenever the
condition they test for is true, and false whenever the condition they test for is
false. These functions can be used with relational and logic operator to control the
operation of branches and loops.

A few of the more important logical functions are given in Table 3.4.
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Function

Purpose

ischar (a)
isempty(a)
isinf (a)
isnan(a)
isnumeric(a)

logical

Returns true if a is a character array and false otherwise.

Returns true if a is an empty array and false otherwise.

Returns true if the value of a is infinite (Inf) and false otherwise.
Returns true if the value of a is NaN (not a number) and false otherwise.

Returns true if a is a numeric array and false otherwise.

Converts numerical values to logical values: if a value is non-zero, it is converted to

true. If it is zero, it is converted to false.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Section 3.3. If you have trouble with the quiz, reread
the sections, ask your instructor, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.

Assume that a, b, ¢, and d are as defined, and evaluate the following
expressions:

a = 20; b = -2;
c = 0; d = 1;
l.a>Db
2. b >d
3.a>Db && c > d
4, a ==
5.a & b > ¢
6. ~~b
Assume that a, b, ¢, and d are as defined, and evaluate the following
expressions:
1 -2
a = 2; b = ;
0 10
0 1 -2 1 2
c = ; a = ;
|:2 O:| [ 0 1 O:|
7. ~(a > b)

8. a >c & b > ¢
9. ¢ <= d
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10. logical (d)
11. a * b > ¢
12. a * (b > ¢)

Assume that a, b, ¢, and d are as defined. Explain the order in which
each of the following expressions are evaluated, and specify the results
in each case:

a = 2; b = 3;
c = 10; d = 0;
13. a*b"2 > a*c
4.4 || b > a
15.(a | b) > a

Assume that a, b, ¢, and d are as defined, and evaluate the following
expressions:

1l
N
(@}
o
Il

a -2;

c = 0; d = 'Test';
16. isinf (a/b)

17. isinf(a/c)

18. a > b && ischar(d)

19. isempty (c)

20. (~a) & b

21. (~a) + b
.|

3.4 Branches

Branches are MATLAB statements that permit us to select and execute specific
sections of code (called hlocks) while skipping other sections of code. They are vari-
ations of the i £ construct, the switch construct, and the try/catch construct.

3.4.1 The if Construct

The if construct has the form

if control_expr_ 1
Statement 1
Statement 2 Block 1

elseif control_expr_ 2
Statement 1
Statement 2 Block 2
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else
Statement 1
Statement 2 Block 3

end

where the control expressions are logical expressions that control the operation
of the if construct. If control_expr_1 is true (nonzero), then the program exe-
cutes the statements in Block 1 and skips to the first executable statement fol-
lowing the end. Otherwise, the program checks for the status of
control_expr_2. If control_expr_2 is true (nonzero), then the program executes
the statements in Block 2, and skips to the first executable statement following
the end. If all control expressions are false (zero), then the program executes the
statements in the block associated with the else clause.

There can be any number of elseif clauses (0 or more) in an i £ construct,
but there can be at most one else clause. The control expression in each clause
will be tested only if the control expressions in every clause above are false (0).
Once one of the expressions proves to be true and the corresponding code block is
executed, the program skips to the first executable statement following the end. If
all control expressions are false, then the program executes the statements in the
block associated with the el se clause. If there is no else clause, then execution
continues after the end statement without executing any part of the i £ construct.

Note that the MATLAB keyword end in this construct is completely differ-
ent from the MATLAB function end that we used in Chapter 2 to return the high-
est value of a given subscript. MATLAB tells the difference between these two
uses of end from the context in which the word appears within an M-file.

In most circumstances, the control expressions will be some combination of
relational and logic operators. As we learned earlier in this chapter, relational and
logic operators produce a true (1) when the corresponding condition is true and a
false (0) when the corresponding condition is false. When an operator is true, its
result is nonzero, and the corresponding block of code will be executed.

As an example of an i £ construct, consider the solution of a quadratic equa-
tion of the form

ax* +bx+¢c=0 (3-1)

The solution to this equation is

—b * Vb — dac
x = 7 (3-2)
a

The term »* — 4ac is known as the discriminant of the equation. If > — 4ac > 0, then
there are two distinct real roots to the quadratic equation. If > — 4ac = 0, then there
is a single repeated root to the equation, and if b*> — 4ac < 0, then there are two
complex roots to the quadratic equation.

Suppose that we wanted to examine the discriminant of a quadratic equation
and to tell a user whether the equation has two complex roots, two identical real
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roots, or two distinct real roots. In pseudocode, this construct would take the
form
if (b"2 - 4*a*c) < 0
Write msg that equation has two complex roots.

elseif (b**2 - 4.*a*c) == 0

Write msg that equation has two identical real roots.
else

Write msg that equation has two distinct real roots.
end

The MATLAB statements to do this are

if (b"2 - 4*a*c) < 0
disp('This equation has two complex roots.');

elseif (b"2 - 4*a*c) ==

disp('This equation has two identical real roots.');
else

disp('This equation has two distinct real roots.');
end

For readability, the blocks of code within an i f construct are usually indented
by two or three spaces, but this is not actually required.

Always indent the body of an i f construct by two or more spaces to improve
the readability of the code. Note that indentation is automatic if you use the
MATLAB editor to write your programs.

It is possible to write a complete if construct on a single line by separating
the parts of the construct by commas or semicolons. Thus the following two con-
structs are identical:

if x < 0
y = abs(x);
end

and
if x < 0; y = abs(x); end

However, this should be done only for very simple constructs.

3.4.2 Examples Using if Constructs

We will now look at two examples that illustrate the use of i f constructs.
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Example 3.2—The Quadratic Equation
Write a program to solve for the roots of a quadratic equation, regardless of type.

SoLutioN  We will follow the design steps outlined earlier in the chapter.

1. State the problem.
The problem statement for this example is very simple. We want to write
a program that will solve for the roots of a quadratic equation, whether
they are distinct real roots, repeated real roots, or complex roots.

2. Define the inputs and outputs.
The inputs required by this program are the coefficients a, b, and ¢ of the
quadratic equation

ax* +bx+c¢=0 3-1)

The output from the program will be the roots of the quadratic equation,
whether they are distinct real roots, repeated real roots, or complex roots.

3. Design the algorithm.
This task can be broken down into three major sections, whose functions
are input, processing, and output:

Read the input data
Calculate the roots
Write out the roots

We will now break each of the foregoing major sections into smaller,
more detailed pieces. There are three possible ways to calculate the roots,
depending on the value of the discriminant, so it is logical to implement
this algorithm with a three-branched if construct. The resulting
pseudocode is

Prompt the user for the coefficients a, b,and c.
Read a, b,and c
discriminant <— b"2 - 4 * a * ¢
if discriminant > 0
x1l <— ( -b + sqgrt(discriminant) ) / ( 2 * a )
x2 <— ( -b - sgrt(discriminant) ) / ( 2 * a )
Write msg that equation has two distinct real roots.
Write out the two roots.
elseif discriminant == 0
X1 <—-b / (2 *a)
Write msg that equation has two identical real roots.
Write out the repeated root.
else
real_part <— -b / (2 * a )
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imag_part <— sqgrt ( abs ( discriminant ) ) / ( 2 * a )
Write msg that equation has two complex roots.
Write out the two roots.

end

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown here:

Script file: calc_roots.m

Purpose:
This program solves for the roots of a gquadratic equation
of the form a*x**2 + b*x + ¢ = 0. It calculates the answers
regardless of the type of roots that the equation possesses.

Record of revisions:
Date Programmer Description of change

01/02/07 S. J. Chapman Original code

Define variables:

A 0° 00 A° O° 0° A O° ° A O° ° A O° I O° O° ° O° o° o°

a -- Coefficient of x”2 term of equation

b -- Coefficient of x term of equation

c -- Constant term of equation

discriminant -- Discriminant of the equation

imag_part -- Imag part of equation (for complex roots)
real_part -- Real part of equation (for complex roots)

x1 -- First solution of equation (for real roots)
x2 -- Second solution of equation (for real roots)

% Prompt the user for the coefficients of the equation
disp ('This program solves for the roots of a quadratic ');
disp ('equation of the form A*X"2 + B*X + C = 0. ');

= input ('Enter the coefficient A: ');

input ('Enter the coefficient B: ');

= input ('Enter the coefficient C: ');

Calculate discriminant

discriminant = b"2 - 4 * a * c;

N o W
Il

o°

Solve for the roots, depending on the value of the discriminant
if discriminant > 0 % there are two real roots, so...

x1l = ( -b + sgrt(discriminant) ) / ( 2 * a );
x2 = ( -b - sgrt(discriminant) ) / ( 2 * a );
disp ('This equation has two real roots:')
fprintf ('x1 = %f\n', x1);

fprintf ('x2 = %f\n', x2);

’
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elseif discriminant == 0 % there is one repeated root, so...

x1 = (-b)/ (2 *a);
disp ('This equation has two identical real roots:');
fprintf ('xl = x2 = %$f\n', x1);

else % there are complex roots, so

real_part = ( -b ) / (2 * a );

imag_part sgrt ( abs ( discriminant ) ) / ( 2 * a );
disp ('This equation has complex roots:');

fprintf('xl = %f +i $f\n', real_part, imag _part );
fprintf('xl = %f -i $f\n', real_part, imag _part );

end

5. Test the program.
Next, we must test the program using real input data. Since there are three
possible paths through the program, we must test all three paths before we
can be certain that the program is working properly. From Equation (3-2),
it is possible to verify the solutions to the following equations:

XH+5+6=0 x = —2andx = -3
XHA4x+4=0 x= -2
X+2x+5=0 x=—1=xi2

If this program is executed three times with these coefficients, the results
are as shown in the following (user inputs are shown in boldface):

» calc_roots

This program solves for the roots of a gquadratic
equation of the form A*X"2 + B*X + C = 0.

Enter the coefficient A: 1

Enter the coefficient B: 5

Enter the coefficient C: 6

This equation has two real roots:

x1 -2.000000

x2 = -3.000000

» calc_roots

This program solves for the roots of a gquadratic
equation of the form A*X"2 + B*X + C = 0.

Enter the coefficient A: 1

Enter the coefficient B: 4

Enter the coefficient C: 4

This equation has two identical real roots:

x1l = x2 = -2.000000

» calc_roots

This program solves for the roots of a gquadratic
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equation of the form A*X"2 + B*X + C = 0.
Enter the coefficient A: 1

Enter the coefficient B: 2

Enter the coefficient C: 5

This equation has complex roots:

x1 = -1.000000 +i 2.000000

x1 = -1.000000 -i 2.000000

The program gives the correct answers for our test data in all three

possible cases.
-

>

Example 3.3—Evaluating a Function of Two Variables

Write a MATLAB program to evaluate a function f{(x, y) for any two user-specified
values x and y. The function f(x, y) is defined as follows:

x+y x=0andy=0
x+)y? x=0andy <0
¥+y x<Oandy=0
¥ +)y? x<Oandy <0

fle,y) =

SoLuTioN  The function f(x, y) is evaluated differently depending on the signs of
the two independent variables x and y. To determine the proper equation to apply,
it will be necessary to check for the signs of the x and y values supplied by the user.

1. State the problem.
This problem statement is very simple: Evaluate the function f(x, y) for
any user-supplied values of x and y.

2. Define the inputs and outputs.
The inputs required by this program are the values of the independent variables
x and y. The output from the program will be the value of the function f{x, y).

3. Design the algorithm.
This task can be broken down into three major sections, whose functions
are input, processing, and output.

Read the input values x and y
Calculate f(x,v)
Write out f(x,vy)

We will now break each of the foregoing major sections into smaller, more
detailed pieces. There are four possible ways to calculate the function f{(x, y),
depending upon the values of x and y, so it is logical to implement this
algorithm with a four-branched i £ statement. The resulting pseudocode is
as follows:



Purpose:

KM oo

o0 o°

if x >= 0 &&
fun = x +

Script file:

Prompt
Read x
if x 2
fun
elseif
fun
elseif
fun
else
fun
end
Write

4. Turn

34

the user for the values x and y.

and y

0 and y 2 0

<- X + Yy

x 20 and y < 0
<- X + y"2

x < 0and v 20
<- xX"2 +y

<— X2 + Y2
out f(x,vy)

the algorithm into MATLAB statements.

The final MATLAB code is shown here.

y >= 0
Vi

funxy.m

This program solves the function f(x,y) for a
user-specified x and y, where f(x,y) i1s defined as:

Prompt the user for the values x and y
= input ('Enter the x coefficient: ');
= input ('Enter the y coefficient: ');

Calculate the function f(x,y) based upon
the signs of x and y.

Branches |

%

%

%

%

%

%

%

% X +y x > 0 and y >= 0
% X + y*2 x > 0 and v < 0
% f(x,y) = X2 +y x < 0 and y >= 0
% X2 + y2 x <0 and y < 0
%

%

% Record of revisions:

% Date Programmer Description of change
% === ey e ——
% 01/03/04 S. J. Chapman Original code

%

% Define variables:

% ble -- First independent variable

% v -- Second independent variable

% fun -- Resulting function
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elseif
fun
elseif
fun
else %
fun
end

x > 0 & v < 0
=X + yv"2;

x < 0 && vy >0

= X"2 + vy;

x < 0 and v < 0, so
= X2 + y*2;

Chapter 3 Branching Statements and Program Design

% Write the value of the function.

disp

(['The value of the function is '

5. Test the program.

num2str (fun) 1) ;

Next, we must test the program using real input data. Since there are four
possible paths through the program, we must test all four paths before we
can be certain that the program is working properly. To test all four possible
paths, we will execute the program with the four sets of input values (x, y) =
(2,3), (2 =3),(—2, 3), and (—2, —3). Calculating by hand, we see that

f(2,3)=2+3=5

f(2,-3) =2+ (=3 =11
f(=2,3) = (-2)2+3=7

f(=2,-3) = (=2)> + (=3)* =13

If this program is compiled and then run four times with the foregoing
values, the results are

» funxy

Enter the
Enter the
The value
» funxy

Enter the
Enter the
The value
» funxy

Enter the
Enter the
The value
» funxy

Enter the
Enter the
The value

x coefficient: 2
y coefficient: 3
of the function is 5

x coefficient: 2
vy coefficient: -3
of the function is 11

x coefficient: -2

y coefficient: 3

of the function is 7
x coefficient: -2

vy coefficient: -3

of the function is 13

The program gives the correct answers for our test values in all four

possible cases.

-
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3.4.3 Notes Concerning the Use of if Constructs

The if construct is very flexible. It must have one if statement and one end
statement. In between, it can have any number of elseif clauses, and it may
also have one else clause. With this combination of features, it is possible to
implement any desired branching construct.

In addition, if constructs may be nested. Two if constructs are said to be
nested if one of them lies entirely within a single code block of the other one. The
following two 1 f constructs are properly nested.

if x > 0
if vy < 0
end

end

The MATLAB interpreter always associates a given end statement with the
most recent if statement, so the first end above closes the 1 £ y < 0 statement,
while the second end closes the i f x > 0 statement. This works well for a prop-
erly written program, but can cause the interpreter to produce confusing error mes-
sages in cases where the programmer makes a coding error. For example, suppose
that we have a large program containing a construct like the one shown here.

ié'(testl)
ié'(testZ)
if'(testB)
end
end

end

This program contains three nested 1 £ constructs that may span hundreds of lines
of code. Now suppose that the first end statement is accidentally deleted during an
editing session. When that happens, the MATLAB interpreter will automatically
associate the second end with the innermost if (test3) construct, and the
third end with the middle 1 £ (test2). When the interpreter reaches the end of
the file, it will notice that the first if (testl) construct was never ended, and
it will generate an error message saying that there is a missing end. Unfortunately,
it can’t tell where the problem occurred, so we will have to go back and manually
search the entire program to locate the problem.
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It is sometimes possible to implement an algorithm using either multiple
elseif clauses or nested if statements. In that case, a programmer may choose
whichever style he or she prefers.

>
Example 3.4—Assigning Letter Grades

Suppose that we are writing a program that reads in a numerical grade and assigns
a letter grade to it according to the following table:

95
86
76
66

0

AN AN AN A

Write an 1f construct that

grade
grade
grade
grade
grade

INININ N

will assign

A
95 B
86 C
76 D
66 F

the grades as described herein using

(a) multiple elseif clauses and (b) nested if constructs.

SOLUTION

(a) One possible structure using elseif clauses is

if grade > 95
disp ('The
elseif grade
disp ('The
elseif grade
disp ('The
elseif grade
disp ('The
else
disp ('The
end

.0

grade is
> 86.0
grade is
> 76.0
grade is
> 66.0
grade is

grade is

A.');
B.");
C.");
D.");
F.');

(b) One possible structure using nested i £ constructs is

if grade > 95

.0

disp('The grade is A.');

else
if grade >

86.0

disp('The grade is B.');

else

if grade > 76.0
disp('The grade is C.');

else

if grade > 66.0
disp('The grade is D.');

else

disp('The grade is F.');
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A

It should be clear from the preceding example that if there are a lot of mutu-
ally exclusive options, a single 1 f construct with multiple elseif clauses will
be simpler than a nested i f construct.

I

For branches in which there are many mutually exclusive options, use a single 1 £
construct with multiple elseif clauses in preference to nested i f constructs.

3.4.4 The switch Construct

The switch construct is another form of branching construct. It permits a
programmer to select a particular code block to execute based on the value of a
single integer, character, or logical expression. The general form of a switch
construct is

switch (switch_expr)
case case_expr_1
Statement 1
Statement 2 Block 1

case case_expr_2
Statement 1

Statement 2 Block 2
otherwise

Statement 1

Statement 2 Block n
end

If the value of switch_expr is equal to case_expr_I, then the first code block will
be executed and the program will jump to the first statement following the end
of the switch construct. Similarly, if the value of switch_expr is equal to
case_expr_2, then the second code block will be executed, and the program will
jump to the first statement following the end of the swi tch construct. The same
idea applies for any other cases in the construct. The otherwise code block
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is optional. If it is present, it will be executed whenever the value of
switch_expr is outside the range of all of the case selectors. If it is not present
and the value of switch_expr is outside the range of all of the case selectors,
then none of the code blocks will be executed. The pseudocode for the case con-
struct looks just like its MATLAB implementation.

If many values of the switch_expr should cause the same code to execute,
all of those values may be included in a single block by enclosing them in brackets,
as shown in the following statements. If the switch expression matches any of the
case expressions in the list, then the block will be executed.

switch (switch_expr)
case {case_expr_ 1, case_expr_ 2, case_expr_3}
Statement 1

Statement 2 Block 1
otherwise

Statement 1

Statement 2 Block n
end

The switch_expr and each case_expr may be either numerical or string values.

Note that at most one code block can be executed. After a code block is exe-
cuted, execution skips to the first executable statement after the end statement.
Thus, if the switch expression matches more than one case expression, only the
first one of them will be executed.

Let’s look at a simple example of a switch construct. The following state-
ments determine whether an integer between 1 and 10 is even or odd and print out
an appropriate message. It illustrates the use of a list of values as case selectors,
as well as the use of the otherwise block.

switch (value)
case {1,3,5,7,9}

disp('The value is odd.');
case {2,4,6,8,10}

disp('The value is even.');
otherwise

disp('The value is out of range.');
end

3.45 The try/catch Construct

The try/catch construct is a special form branching construct designed to trap
errors. Ordinarily, when a MATLAB program encounters an error while running,
the program aborts. The try/catch construct modifies this default behavior. If
an error occurs in a statement in the try block of this construct, then instead of
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aborting, the code in the catch block is executed and the program keeps
running. This allows a programmer to handle errors within the program without
causing the program to stop.

The general form of a try/catch construct is as follows:

try

Statement 1

Statement 2 Try Block
catch

Statement 1

Statement 2 Catch Block
end

When a try/catch construct is reached, the statements in the try block of a
will be executed. If no error occurs, the statements in the catch block will be
skipped, and execution will continue at the first statement following the end of the
construct. On the other hand, if an error does occur in the try block, the program
will stop executing the statements in the try block and immediately execute the
statements in the catch block.

An example program containing a try/catch construct follows. This pro-
gram creates an array and asks the user to specify an element of the array to
display. The user will supply a subscript number, and the program displays
the corresponding array element. The statements in the try block will always be
executed in this program, while the statements in the catch block will be
executed only if an error occurs in the try block.

% Initialize array
a=1[1-3225];
try

% Try to display an element
index = input ('Enter subscript of element to display: ');

disp( ['a(' int2str(index) ') = ' num2str(a(index))] );
catch

% If we get here an error occurred

disp( ['Illegal subscript: ' int2str(index)] );
end

When this program is executed, the results are as follows:

» try catch

Enter subscript of element to display: 3
a(3) =2

» try catch

Enter subscript of element to display: 8
Illegal subscript: 8
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This quiz provides a quick check to see if you have understood the con-
cepts introduced in Section 3.4. If you have trouble with the quiz,
reread the section, ask your instructor, or discuss the material with a
fellow student. The answers to this quiz are found in the back of the
book.

Write MATLAB statements that perform the functions described
below.

1. If x is greater than or equal to zero, then assign the square root of x
to variable sgrt_x and print out the result. Otherwise, print out an
error message about the argument of the square root function and set
sgrt_x to zero.

2. A variable fun is calculated as numerator/denominator. If
the absolute value of denominator is less than 1.0E—300, write
“Divide by 0 error.” Otherwise, calculate and print out fun.

3. The cost per mile for a rented vehicle is $1.00 for the first 100 miles,
$0.80 for the next 200 miles, and $0.70 for all miles in excess of 300
miles. Write MATLAB statements that determine the total cost and
the average cost per mile for a given number of miles (stored in vari-
able distance).

Examine the following MATLAB statements. Are they correct or incor-
rect? If they are correct, what do they output? If they are incorrect, what
is wrong with them?

4., if volts > 125
disp ('WARNING: High voltage on line.');

if volts < 105
disp ('WARNING: Low voltage on line.');

else
disp('Line voltage is within tolerances.');
end
5. color = 'yellow';

switch ( color )
case 'red',

disp('Stop now!');
case 'yellow',

disp('Prepare to stop.');
case 'green',

disp('Proceed through intersection.');
otherwise,

disp('Illegal color encountered.');
end
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6. if temperature > 37
disp ('Human body temperature exceeded.');
elseif temperature > 100
disp('Boiling point of water exceeded.');
end
. ____________________________________________________________________________________________________________|

3.5 Additional Plotting Features

This section describes additional features of the simple two-dimensional plots
introduced in Chapter 2. These features permit us to control the range of x and y
values displayed on a plot, to lay multiple plots on top of each other, to create
multiple figures, to create multiple subplots within a figure, and to provide
greater control of the plotted lines and text strings. In addition, we will learn how
to create polar plots.

3.5.1 Controlling x- and y-Axis Plotting Limits

By default, a plot is displayed with x- and y-axis ranges wide enough to show
every point in an input data set. However, it is sometimes useful to display only
the subset of the data that is of particular interest. This can be done using the axis
command/function (see the Sidebar about the relationship between MATLAB com-
mands and functions).

Some of the forms of the axis command/function are shown in Table 3.5.
The two most important forms are shown in bold type—they let a programmer get

Table 3.5 Forms of the axis Function/Command

Command Description

v = axis; This function returns a 4-element row vector containing
[xmin xmax ymin ymax], where xmin, xmax,
ymin, and ymax are the current limits of the plot.

axis ([xmin xmax ymin ymax]); This function sets the x and y limits of the plot to the
specified values.

axis equal This command sets the axis increments to be equal on
both axes.

axis square This command makes the current axis box square.

axis normal This command cancels the effect of axis equal and axis square.

axis off This command turns off all axis labeling, tick marks, and
background.

axis on This command turns on all axis labeling, tick marks, and

background (default case).
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Command/Function Duality

Some items in MATLAB seem to be unable to make up their minds whether
they are commands (words typed out on the command line) or functions (with
arguments in parentheses). For example, sometimes axis seems to behave
like a command, and sometimes it seems tobehave like a function. Sometimes
we treat it as a command: axis on, and other times we might treat it as a func-
tion: axis ([0 20 0 35]). How is this possible?

The short answer is that MATLAB commands are really implemented by
functions, and the MATLAB interpreter is smart enough to substitute the func-
tion call whenever it encounters the command. It is always possible to call the
command directly as a function instead of using the command syntax. Thus
the following two statements are identical:

axis on;
axis ('on');

Whenever MATLAB encounters a command, it forms a function from the
command by treating each command argument as a character string and call-
ing the equivalent function with those character strings as arguments. Thus
MATLAB interprets the command

garbage 1 2 3
as the following function call:
garbage('1','2','3")

Note that only functions with character arguments can be treated as com-
mands. Functions with numerical arguments must be used in function form
only. This fact explains why axis is sometimes treated as a command and some-
times treated as a function.

the current limits of a plot and modify them. A complete list of all options can be
found in the MATLAB on-line documentation.

To illustrate the use of axis, we will plot the function f(x) = sin x from

—2m to 2, and then restrict the axes to the regionto 0 = x = wrand 0 =y = 1.
The statements to create this plot are shown as follows, and the resulting plot is
shown in Figure 3.4a.

X = —-2*pi:pi/20:2*pi;

y = sin(x);

plot(x,y);

title ('Plot of sin(x) vs X');
grid on;

The current limits of this plot can be determined from the basic axis function.
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(b)

Figure 3.4 (a) Plot of sin x versus x. (b) Closeup of the region [0 7 0 1].
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» limits=axis
limits =
-8 8 -1 1

These limits can be modified with the function call axis ([0 pi 0 1]).After
that function is executed, the resulting plot is shown in Figure 3.45.

3.5.2 Plotting Multiple Plots on the Same Axes

Normally, a new plot is created each time that a plot command is issued, and the
previous data are lost. This behavior can be modified with the hold command.
After a hold on command is issued, all additional plots will be laid on top of the
previously existing plots. A hold off command switches plotting behavior back
to the default situation, in which a new plot replaces the previous one.

For example, the following commands plot sin x and cos x on the same axes.
The resulting plot is shown in Figure 3.5.

X = -pi:pi/20:pi;
vl = sin(x);

y2 = cos(x);
plot(x,yl, 'b-");
hold on;
plot(x,v2, 'k--"');
hold off;

legend ('sin x','cos x');
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Figure 3.5 Multiple curves plotted on a single set of axes using the hold command.
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3.5.3 Creating Multiple Figures

MATLAB can create multiple Figure Windows, with different data displayed in
each window. Each Figure Window is identified by a figure number, which is a
small positive integer. The first Figure Window is Figure 1, the second is Figure 2,
etc. One of the Figure Windows will be the current figure, and all new plotting
commands will be displayed in that window.

The current figure is selected with the £igure function. This function takes
the form “figure (n)”, where n is a figure number. When this command is
executed, Figure n becomes the current figure and is used for all plotting com-
mands. The figure is automatically created if it does not already exist. The current
figure may also be selected by clicking on it with the mouse.

The function gc £ returns the number of the current figure. This function can
be used by an M-file if it needs to know the current figure.

The following commands illustrate the use of the figure function. They create
two figures, displaying e* in the first figure and e™* in the second one.

figure (1)

x = 0:0.05:2;
vl = exp(x);
plot(x,vyl);
figure(2)

y2 = exp(-x);
plot(x,vy2);

3.5.4 Subplots

It is possible to place more than one set of axes on a single figure, creating mul-
tiple subplots. Subplots are created with a subplot command of the form

subplot (m,n,p)

This command divides the current figure into m X n equal-sized regions, arranged
in m rows and n columns, and creates a set of axes at position p to receive all current
plotting commands. The subplots are numbered from left to right and from top to
bottom. For example, the command subplot (2, 3,4) would divide the current
figure into six regions arranged in two rows and three columns, and create an axis in
position 4 (the lower left one) to accept new plot data (see Figure 3.6).

If a subplot command creates a new set of axes that conflict with a previ-
ously existing set, then the older axes are automatically deleted.

The commands that follow create two subplots within a single window and dis-
play the separate graphs in each subplot. The resulting figure is shown in Figure 3.7.

figure(l)
subplot(2,1,1)

X = -pi:pi/20:pi;
y = sin(x);
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in position 4 (the
lower left hand
corner)

I
Subplot generated

Figure 3.7 A figure containing two subplots.
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plot(x,y);
title('Subplot 1 title');
subplot(2,1,2)

X = -pl:pi/20:pi;
y = cos(x);
plot (x,vy);

title('Subplot 2 title');

3.5.5 Enhanced Control of Plotted Lines

In Chapter 1 we learned how to set the color, style, and marker type for a line. It
is also possible to set four additional properties associated with each line:

B [, ineWidth—specifies the width of each line in points.

B MarkerEdgeColor—specifies the color of the marker or the edge
color for filled markers.

B MarkerFaceColor—specifies the color of the face of filled markers.

B MarkerSize—specifies the size of the marker in points.

These properties are specified in the plot command after the data to be plotted
in the following fashion:

plot(x,y, 'PropertyName',6 value, ...)

For example, the following command plots a 3-point-wide solid black line with
6-point-wide circular markers at the data points. Each marker has a red edge and
a green center, as shown in Figure 3.8.

x = 0:pi/15:4%pi;

y = exp(2*sin(x));

plot(x,vy, '-ko', 'Linewidth',3.0, 'MarkerSize',6, ...
'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'g"')

3.5.6 Enhanced Control of Text Strings

It is possible to enhance plotted text strings (titles, axis labels, etc.) with format-
ting such as bold face, italics, and so forth, and with special characters such as
Greek and mathematical symbols.

The font used to display the text can be modified by stream modifiers.
A stream modifier is a special sequence of characters that tells the MATLAB
interpreter to change its behavior. The most common stream modifiers are

® \bf—Boldface.

\ 1t—Italics.

\rm—Remove modifiers, restoring normal font.

\ fontname { fontname}—Specify the font name to use.
\fontsize{ fontsize}—Specify font size.
_{xxx}—The characters inside the braces are subscripts.

~ {xxx}—The characters inside the braces are superscripts.
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Figure 3.8 A plot illustrating the use of the LineWidth and Marker properties.

Once a stream modifier has been inserted into a text string, it will remain in effect
until the end of the string or until canceled. Any stream modifier can be followed
by braces {}. If a modifier is followed by braces, only the text within the braces
is affected.

Special Greek and mathematical symbols may also be used in text strings.
They are created by embedding escape sequences into the text string. These
escape sequences are the same as those defined in the TeX language. A sample of
the possible escape sequences is shown in Table 3.6; the full set of possibilities is
included in the MATLAB on-line documentation.

If one of the special escape characters \, {, }, _, or *~ must be printed, pre-
cede it by a backslash character.

The following examples illustrate the use of stream modifiers and special
characters.

String Result

\tau_{ind} versus \omega_{\itm} Tind VEIsus @,
\theta varies from O\circ to 90\circ 0 varies from 0° to 90°

\bE{B}_{\itS) B,
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Table 3.6 Selected Greek and Mathematical Symbols
Character Character Character
Sequence Symbol Sequence Symbol Sequence Symbol
\alpha o \int )
\beta B \cong =
\gamma Y \Gamma r \sim ~
\delta ) \Delta A \infty 00
\epsilon € \pm +
\eta n \leq <
\theta 0 \geq >
\lambda A \Lambda A \neq #
\mu n \propto oc
\nu \Y \div +
\pi b4 \Pi IT \circ °
\phi (0] \leftrightarrow <>
\rho p \leftarrow <
\sigma c \Sigma z \rightarrow -
\tau T \uparrow N
\omega o \Omega Q \downarrow v
3.5.7 Polar Plots
MATLAB includes a special function called polar, which plots data in polar
coordinates. The basic form of this function is
polar (theta, r)
where theta is an array of angles in radians and r is an array of distances. It is
useful for plotting data that is intrinsically a function of angle.
>

Example 3.5—Cardioid Microphone

Most microphones designed for use on a stage are directional microphones,
which are specifically built to enhance the signals received from the singer in
the front of the microphone while suppressing the audience noise from behind the
microphone. The gain of such a microphone varies as a function of angle accord-
ing to the equation

Gain = 2g(1 + cos0) (3-3)

where g is a constant associated with a particular microphone, and 0 is the angle
from the axis of the microphone to the sound source. Assume that g is 0.5 for a
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particular microphone, and make a polar plot the gain of the microphone as a
function of the direction of the sound source.

SoLuTION  We must calculate the gain of the microphone versus angle and then
plot it with a polar plot. The MATLAB code to do this is as follows:

o

Script file: microphone.m

o

o

Purpose:
This program plots the gain pattern of a cardioid
microphone.

o° o0 o°

o

Record of revisions:

% Date Programmer Description of change
% ==== === prmp e e
% 01/05/07 S. J. Chapman Original code

%

% Define variables:

% g -- Microphone gain constant

% gain -- Gain as a function of angle

% theta -- Angle from microphone axis (radians)

o

Calculate gain versus angle

g = 0.5;
theta = 0:p1/20:2*pi;
gain = 2*g* (l+cos(theta));

(o

% Plot gain
polar (theta,gain,'r-');
title ('\bfGain versus angle \theta');

The resulting plot is shown in Figure 3.9. Note that this type
of microphone is called a “cardioid microphone” because its gain pattern is

heart-shaped.
|

>

Example 3.6—Electrical Engineering: Frequency Response of a Low-Pass Filter

A simple low-pass filter circuit is shown in Figure 3.10. This circuit consists of a
resistor and capacitor in series, and the ratio of the output voltage ¥, to the input
voltage V; is given by the equation

v, 1

L — 3-4
V. 1+ j2nfRC (3-4)
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Figure 3.9 Gain of a cardioid microphone.

Figure 3.10 A simple low-pass filter circuit.

where V; is a sinusoidal input voltage of frequency f, R is the resistance in ohms,
C is the capacitance in farads, and j is V/—1 (electrical engineers use j instead
of i for /=1, because the letter i is traditionally reserved for the current in a
circuit).

Assume that the resistance R = 16 k(), and capacitance C = 1 uF, and plot
the amplitude and frequency response of this filter.

SoLutioN  The amplitude response of a filter is the ratio of the amplitude of the
output voltage to the amplitude of the input voltage, and the phase response of
the filter is the difference between the phase of the output voltage and the phase
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Script

Purpose
This
of a

Record
Da

of the input voltage. The simplest way to calculate the amplitude and phase
response of the filter is to evaluate Equation (3-4) at many different frequencies.
The plot of the magnitude of Equation (3-4) versus frequency is the amplitude
response of the filter, and the plot of the angle of Equation (3-4) versus frequency
is the phase response of the filter.

Because the frequency and amplitude response of a filter can vary over a
wide range, it is customary to plot both of these values on logarithmic scales. On
the other hand, the phase varies over a very limited range, so it is customary to
plot the phase of the filter on a linear scale. Therefore, we will use a 1oglog
plot for the amplitude response, and a semilogx plot for the phase response of
the filter. We will display both responses as two subplots within a figure.

The MATLAB code required to create and plot the responses is shown
here.

file: plot_filter.m

program plots the amplitude and phase responses
low-padd RC filter.

of revisions:

te Programmer Description of change

5/07 S. J. Chapman Original code

Define variables:

Initiali
16000;
1.0E-6

-- Amplitude response

-- Capacitiance (farads)

-- Frequency of input signal (Hz)
-- Phase response

-- Resistance (ohms)

-- Vo/Vi

ze R & C

7

Create array of input frequencies

= 1:2:10

Calculat

res =1 ./

[
°

Calculat

amp = abs(

00;

e response
(1 + j*2*pi*f*R*C );

e amplitude response
res) ;
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% Calculate phase response
phase = angle(res);

% Create plots
subplot(2,1,1);

loglog( £, amp );
title('Amplitude Response') ;
xlabel ('Frequency (Hz)');
vlabel ('Output/Input Ratio');
grid on;

subplot(2,1,2);

semilogx( f, phase );

title('Phase Response') ;

xlabel ('Frequency (Hz)');

vlabel ('Output-Input Phase (rad)');
grid on;

The resulting amplitude and phase responses are shown in Figure 3.11. Note
that this circuit is called a low-pass filter because low frequencies are passed
through with little attenuation, while high frequencies are strongly attenuated.

>

Example 3.7—Thermodynamics: The Ideal Gas Law

An ideal gas is one in which all collisions between molecules are perfectly elas-
tic. It is possible to think of the molecules in an ideal gas as perfectly hard billiard
balls that collide and bounce off of each other without losing kinetic energy.

Such a gas can be characterized by three quantities: absolute pressure (P),
volume (V'), and absolute temperature (7'). The relationship among these quanti-
ties in an ideal gas is known as the Ideal Gas Law:

PV = nRT (3-5)

where P is the pressure of the gas in kilopascals (kPa), ¥ is the volume of the gas
in liters (L), n is the number of molecules of the gas in units of moles (mol), R is
the universal gas constant (8.314 L-kPa/mol-K), and T is the absolute tempera-
ture in kelvins (K). (Note: 1 mol = 6.02 X 10> molecules)

Assume that a sample of an ideal gas contains 1 mole of molecules at a tem-
perature of 273 K, and answer the following questions.

(a) How does the volume of this gas vary as its pressure varies from 1 to
1000 kPa? Plot pressure versus volume for this gas on an appropriate set
of axes. Use a solid red line with a width of 2 pixels.
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Figure 3.11 The amplitude and phase response of the low-pass filter circuit.

(b) Suppose that the temperature of the gas is increased to 373 K. How does
the volume of this gas vary with pressure now? Plot pressure versus vol-
ume for this gas on an the same set of axes as in part (a). Use a dashed
blue line with a width of 2 pixels.

Include a bold-face title and x- and y-axis labels on the plot, as well as leg-
ends for each line.

SorLuTioN  The values that we wish to plot both vary by a factor of 1000, so an
ordinary linear plot will not produce a useful plot. Therefore, we will plot the data
on a log-log scale.

Note that we must plot two curves on the same set of axes, so we must issue
the command hold on after the first one is plotted, and hold of £ after the plot
is complete. It will also be necessary to specify the color, style, and width of each
line, and to specify that labels be in bold face.

A program that calculates the volume of the gas as a function of pressure and
creates the appropriate plot is shown below. Note that the special features con-
trolling the style of the plot are shown in boldface.
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Script file: ideal_gas.m

Purpose:
This program plots the pressure versus volume of an
ideal gas.

Record of revisions:
Date Programmer Description of change

01/16/07 S. J. Chapman Original code

Define variables:
n -— Number of atoms (mol)
-- Pressure (kPa)
-- Ideal gas constant (L kPa/mol K)
Temperature (K)
-- volume (L)

P 00 00 AP O° P A O° P O° O° P O° O° P oJ° oP

<Hxnd
I
I

o

Initialize nRT

n=1; % Moles of atoms
R = 8.314; % Ideal gas constant
T = 273; $ Temperature (K)

Create array of input pressures. Note that this
array must be quite dense to catch the major
changes in volume at low pressures.

= 1:0.1:1000;

0P o o°

g

o

Calculate volumes
= (n*R*T) ./ P;

<

[}

% Create first plot

figure(l);

loglog( P, V, 'r-', 'LinewWidth', 2 );
title('\bfVvolume vs Pressure in an Ideal Gas');
xlabel (' \bfPressure (kPa)');

vlabel ('\bfVolume (L)"');

grid on;

holdon;

o

Now increase temperature

T = 373; % Temperature (K)
% Calculate volumes
V= (n*R*T) ./ P;

133
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Figure 3.12 Pressure versus volume for an ideal gas.

% Add second line to plot

figure(1l);

loglog( P, V, 'b--', 'Linewidth', 2 );
hold off;

% Add legend
legend('T=273K','T=373k"');

The resulting volume versus pressure plot is shown in Figure 3.12.

3.5.8 Annotating and Saving Plots

Once a plot has been created by a MATLAB program, a user can edit and anno-
tate the plot using the GUI-based tools available from the plot toolbar. Figure 3.13
shows the tools available, which allow the user to edit the properties of any
objects on the plot, or to add annotations to the plot. When the Editing Button
(I'51) is selected from the toolbar, the editing tools become available for use.
When the button is depressed, clicking any line or text on the figure will cause it
to be selected for editing, and double-clicking the line or text will open a Property
Editor Window that allows you to modify any or all of the characteristics of that
object. Figure 3.14 shows Figure 3.12 after a user has clicked on the blue line to
change it to a 3-pixel-wide dashed line.
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Figure 3.13 The editing tools on the figure toolbar.

The figure toolbar also includes a Plot Browser Button ('@'). When this but-
ton is depressed, the Plot Browser is displayed. This tool gives the user complete
control over the figure. He or she can add axes, edit object properties, modify data
values, and add annotations such as lines and text boxes.

If it is not otherwise displayed, the user can enable a Plot Edit Toolbar by
selecting the “View/Plot Edit Toolbar” menu item. This toolbar allows a user to
add lines, arrows, text, rectangles, and ellipses to annotate and explain a plot.
Figure 3.15 shows a Figure Window with the Plot Edit Toolbar enabled.

Figure 3.16 the plot in Figure 3.12 after the Plot Browser and the Plot Edit
Toolbar have been enabled. In this figure, the user has used the controls on the
Plot Edit Toolbar to add an arrow and a comment to the plot.

When the plot has been edited and annotated, you can save the entire plot in
a modifiable form using the “File/Save As” menu item from the Figure Window.
The resulting figure file (* . £1g) contains all the information required to re-create
the figure plus annotations at any time in the future.

This quiz provides a quick check to see if you have understood the
concepts introduced in Section 3.5. If you have trouble with the quiz,
reread the section, ask your instructor, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.

1. Write the MATLAB statements required to plot sin x versus cos 2x
from 0 to 27 in steps of 7/10. The points should be connected by a
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Figure 3.14 Figure 3.12 after the blue line has been modified using the editing tools built into the
figure toolbar.

2-pixel-wide red line, and each point should marked with a 6-pixel-
wide blue circular marker.

2. Use the Figure Editing tools to change the markers on the previous
plot into black squares. Add an arrow and annotation pointing to the
location x = 7 on the plot.

Write the MATLAB text string that will produce the following expressions:

3. f(x) = sin Ocos 2¢

4. Plot of 2,x* versus x

Write the expression produced by the following text strings:

5. "\tau\it_{m}"'

6. "\bf\itx {1}7{2} + x {2}7{2} \rm(units: \bfm"{2}
\rm) '

7. How do you display the backslash (\) character in a text string?
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Figure 3.15 Afigure window showing the Plot Edit Toolbar.

3.6 More on Debugging MATLAB Programs

It is much easier to make a mistake when writing a program containing branches
and loops than it is when writing simple sequential programs. Even after a user
has gone through the full design process, a program of any size is almost guaran-
teed not to be completely correct the first time it is used. Suppose that we have
built the program and tested it, only to find that the output values are in error.
How do we go about finding the bugs and fixing them?

Once programs start to include loops and branches, the best way to locate an
error is to use the symbolic debugger supplied with MATLAB. This debugger is
integrated with the MATLAB editor.

To use the debugger, first open the file that you would like to debug using the
“File/Open” menu selection in the MATLAB Command Window. When the file is
opened, it is loaded into the editor and the syntax is automatically color-coded.
Comments in the file appear in green, variables and numbers appear in black, char-
acter strings appear in red, and language keywords appear in blue. Figure 3.17
shows an example Edit/Debug window containing the file calc_roots.m.
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Figure 3.16 Figure 3.12 after the Plot Browser has been used to add an arrow and annotation.

Let’s say that we would like to determine what happens when the program is
executed. To do this, we can set one or more breakpoints by right-clicking the
mouse on the lines of interest and choosing the “Set/Clear Breakpoint” option.
When a breakpoint is set, a red dot appears to the left of that line containing the
breakpoint, as shown in Figure 3.18.

Once the breakpoints have been set, execute the program as usual by typing
calc_roots in the Command Window. The program will run until it reaches the
first breakpoint and stop there. A green arrow will appear by the current line during
the debugging process, as shown in Figure 3.19. When the breakpoint is reached, the
programmer can examine and/or modify any variable in the workspace by typing its
name in the Command Window. When the programmer is satisfied with the program
at that point, he or she can either step through the program a line at a time by repeat-
edly pressing F10 or run to the next breakpoint by pressing F5. It is always possible
to examine the values of any variable at any point in the program.

When a bug is found, the programmer can use the Editor to correct the MAT-
LAB program and save the modified version to disk. Note that all breakpoints may
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ﬂ_ C:\book\matlab\4e\revl\chap3\calc_roots.m = |n] X[
File Edt Text Go Cel Tools Debug Deskiop Window Help 2
DEH| s RBoc @ Aesr 00 BDY DB mfm ]

QBB B| -0+ |+ = |£]0

1 & Script file: calc_roots.m - =]
- h .
i Purpose:

4 This program solves for the roots of a gquadratic equation
5 of the form a*x**2 + b*x + ¢ = 0. It calculaces the a

6 regardless of the type of roots that the equation possesse
7

L Record of revisions:

9 % Date Program

10 5 -

11 L 01/1z2/07

12 %

13 % Define variables:

14 a -=- Coefficient of x"2 term of equation

15 b =

16

17 nt of the equaticn

18 -- Imag part of equation (for complex roots)

19 -- Real part of equation (for complex roots)

20 ®1 rat solution of equation (for real roots)
21 % w2 == Second solution of equation (for real roots)
2z

23 % Prompt the user for the coefficients of the equation

24 = disp ('This program solves for the roots of a quadratic '}

25 = disp ('equation of the form A*X*Z + B*X + C = 0. '"):

26= a = inpuc ('Enter the coefficient A: ');

&1 = b = inpuc ('Encer the coefficient B: ')

28 = c = input ('Enter the coefficient C: ');

29 =
30 % Calculate discriminant

31 - discriminant = b2 - 4 * a ¥ ¢;

& Solve for the rootz, depending on the value of the discriminant
= if discriminant > 0 % there are two real roots, so...

tE88488288
1

x1 = ( -b + sqgrt(discriminant) ) / (2 * & ):
= %2 = ( -b - sqgru(discriminanc) ) / (2 *a ):
= disp ('This equation has two real roots:');
& fprincf ('x1 = 3f\n', Xx1):
= fprintt ('x2 = 3f\n', x2): ;l
| seript [l el 1 [oR 4

Figure 3.17 An Edit/Debug window with a MATLAB program loaded.

be lost when the program is saved to disk, so they may have to be set again before
debugging can continue. This process is repeated until the program appears to be
bug-free.

Two other very important features of the debugger are found in the “Debug”
menu. The first feature is “Set/Modify Conditional Breakpoint.” A conditional
breakpoint is a breakpoint where the code stops only if some condition is true.
For example, a conditional breakpoint can be used to stop execution inside a for
loop on its 200th execution. This can be very important if a bug appears only after
a loop has been executed many times. The condition that causes the breakpoint to
stop execution can be modified, and the breakpoint can be enabled or disabled
during debugging.

The second feature is “Set Error Breakpoints for All Files.” If an error is
occurring in a program that causes it to crash or generate warning messages, the
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B C:\book\matlab\4e\revl\chap3\calc_roots.m i M
File Edt Text Go Cel Tools Debug Deskiop ‘Window Help =
DS H B o & Aess 00 BRE DB | sufo ]
Q|‘EtElE|'|L.u +|+||.1 x | |0,

1 & Script file: calc_roots.m = a
2 % I~
] & Purpose:
4 % This program solves for the roots of a gquadratic egquation
5 of the form a*x**2 + b*t + ¢ = 0. It calculates the ansvers
6 % regardless of the type of roots that the equation possesses.
7 ¥
L % Record of revisions:
9 5 Date Programmer Description of change
10 % ==== ==
11 % o1/12/07 5. J. Chapman Original code
12 %
13 % Define variables:
14 % a -- Coefficient of x"2 term of equation
15 % b -- Coefficient of x term of equation
16 LI - -- Constant term of eguation
17 5 discriminant -- Discriminant of the egquacion
18 % imag_part -- Imag part of equation (for complex roots)
19 % real part -~ Real part of equation (for complex roots)
20 % 1l == First solution of equation (for real roots)
21 % x2 == Second solution of equation (for real roots)
22
=3 % Prompt the user for the coefficients of the equation
24 = disp ('This program solves for the roots of a quadratic '}
25 = disp ('equation of the form A*X"2 + B*X + C = 0. '");
26/— a = input ('Enter the coefficient A: ')}
27— b = inpuc ('Enter the coefficient B: '}):
Z8 = c = input ('Encer the coefficient C: ');
29 —
30 % Calculate discrimwinant
310 diacrxmibam: =Db*2 -4 *a g
3z
33 % Solve for the roots, depending on the value of the discriminant
34 = if discriminant > 0 % there are two real roots, so...
35
36 = x1 = { -b + sqrt(discriminant) ) / (2 * & ):
3= x2 = | -b - sqgrr(discriminant) ) / (2 * a ):
38 - disp ('This equation has two real roots:'):
39 = fprinct ('x1 = sfin', x1):
40 - fprintt ('x2 = %fin', x2): =
[ script ftn'3t oo 5 [om 4

Figure 3.18 The window after a breakpoint has been set. Note the red dot to the left of the line with
the breakpoint.

programmer can turn this item on and execute the program. It will run to the point
of the error and stop there, allowing the programmer to examine the values of
variables and determine exactly what is causing the problem.

A final critical feature is found on the “Tools” menu. It is “Show M-Lint
Report.” M-Lint is a program that examines one or more M-files and reports any
examples of improper or questionable usage. It is a great tool for locating
errors, poor usage, or obsolete features in MATLAB code, including such
things as variables that are defined but never used. You should always run M-Lint
over your programs when they are finished as a final check that everything has
been done properly.

Take some time now to become familiar with the Editor/Debugger and its
supporting tools—it is a very worthwhile investment.
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B C:\book\matlab\de\revl\chap3\calk_roots.m

Fie Edt Test Go Cel Took Debug Desktop | Window Help : -.
Dl imBy | S Aesf B8 DD R D | sedfcarons -]
G(*BBIB| - |+ | =[x |&%&|0

1 % Script file: calc_roots.m =
2 % I~
] & Purpose:
4 % This program solves for the roots of a gquadratic equation
5 3 of the form a*x**2 + b*x + ¢ = 0. It calculates the answers
6 % regardless of the type of roots that the equation possesses.
7 ¥
L % Record of revisions:
9 5 Date Programmer Description of change
10 % ] =amsssssssz=sssssss=s
11 % o1/12/07 5. J. Chapman Original code
12 %
13 % Define variables:
14 % a == Coefficient of x*2 term of egquation
15 % b -- Coefficient of x term of equation
16 L - -- Constant term of eguation
17 % dizcriminant -- Discriminant of the egquation
18 ¥ imag_part -- Imag part of equation (for complex roots)
19 % real_parc -- Real part of equation (for complex roots)
20 % x1 == First solution of equation (for real roots)
21 % el == Second solution of equation (for real roots)
22
23 % Prompt the user for the coefficients of the equation
24 = disp ('This program solves for the roots of a quadratic '});
25 = disp ('equation of the form A*X"2 + B*X + C = 0. '"):
26/— a = input ('Enter the coefficient A: ')}
27— b = inpuc ('Encter the coefficient B: '):
28 = ¢ = input ('Enter the coefficient C: ');
29 =
30 % Calculate discrimwinant
31 @< discriminant = b"2 - 4 * a * ¢
3z
33 % Solve for the roots, depending on the value of the discriminant
34 = if discriminant > 0 % there are two real roots, so...
35
36 = x1 = { -b + sqrt(discriminant) ) / (2 * & ):
37 = x2 = | -b - sqgrr(discriminanct) ) / (2 * a ):
38 - disp ('This equation has two real roots:'):
39 = fprinct ('x1 = sfin', x1):
a0 - fprintt ('x2 = %fin', x2): =
| seript i3t oo 1 [or 4

Figure 3.19 A green arrow will appear by the current line during the debugging process.

3.7 Summary

In Chapter 3 we have presented the basic types of MATLAB branches and the
relational and logic operations used to control them. The principal type of branch
is the 1 £ construct. This construct is very flexible. It can have as many elseif
clauses as needed to construct any desired test. Furthermore, i £ constructs can
be nested to produce more complex tests. A second type of branch is the switch
construct. It may be used to select among mutually exclusive alternatives speci-
fied by a control expression. A third type of branch is the try/catch construct.
It is used to trap errors that might occur during execution.

Chapter 3 also provided additional information about plots. The axis com-
mand allows a programmer to select the specific range of x and y data to be
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plotted. The hold command allows later plots to be plotted on top of earlier ones,
so that elements can be added to a graph a piece at a time. The figure com-
mand allows the programmer to create and select among multiple Figure
Windows, so that a program can create multiple plots in separate windows. The
subplot command allows the programmer to create and select among multiple
plots within a single Figure Window.

In addition, we learned how to control additional characteristics of our plots,
such as the line width and marker color. These properties may be controlled by
specifying ' PropertyName ', value pairs in the plot command after the data
to be plotted.

Text strings in plots may be enhanced with stream modifiers and escape
sequences. Stream modifiers allow a programmer to specify features such as
boldface, italic, superscripts, subscripts, font size, and font name. Escape
sequences allow the programmer to include special characters such as Greek and
mathematical symbols in the text string.

The MATLAB symbolic debugger and related tools such as M-Lint make
debugging MATLAB code much easier. You should invest some time to become
familiar with these tools.

3.7.1 Summary of Good Programming Practice

The following guidelines should be adhered to when programming with branch
or loop constructs. If you follow them consistently, your code will contain fewer
bugs, it will be easier to debug, and it will be more understandable to others who
may need to work with it in the future.

1.

2.

Follow the steps of the program design process to produce reliable, under-
standable MATLAB programs.

Be cautious about testing for equality with numeric values, since round-
off errors may cause two variables that should be equal to fail a test for
equality. Instead, test to see if the variables are nearly equal within the
roundoff error to be expected on the computer you are working with.

. Use the & AND operator if it is necessary to ensure that both operands are

evaluated in an expression, or if the comparison is between arrays.
Otherwise, use the && AND operator, since the partial evaluation will
make the operation faster in the cases where the first operand is false.
The & operator is preferred in most practical cases.

Use the | inclusive OR operator if it is necessary to ensure that both
operands are evaluated in an expression or if the comparison is between
arrays. Otherwise, use the | | operator, since the partial evaluation will
make the operation faster in the cases where the first operand is true.
The | operator is preferred in most practical cases.

. Always indent code blocks in i £, switch, and try/catch constructs

to make them more readable.

For branches in which there are many mutually exclusive options, use a
single 1 f construct with multiple elseif clauses in preference to nested
if constructs.
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3.7.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

Commands and Functions

axis

figure

hold

if construct
ischar (a)
isempty(a)
isinf (a)
isnan(a)
isnumeric (a)

logical

polar

subplot

switch construct

try/catch construct

(a) Set the x and y limits of the data to be plotted.
(b) Get the x and y limits of the data to be plotted.
(c) Set other axis-related properties.

Select a Figure Window to be the current Figure Window. If the selected
Figure Window does not exist, it is automatically created.

Allows multiple plot commands to write on top of each other.

Selects a block of statements to execute if a specified condition is satisfied.
Returns a 1 if a is a character array and a 0 otherwise.

Returns a 1 if a is an empty array and a 0 otherwise.

Returns a 1 if the value of a is infinite (Inf) and a 0 otherwise.

Returns a 1 if the value of a is NaN (not a number) and a 0 otherwise.
Returns a 1 if the a is a numeric array and a 0 otherwise.

Converts numeric data to logical data, with nonzero values becoming
true and zero values becoming false.

Create a polar plot.

Select a subplot in the current Figure Window. If the selected subplot
does not exist, it is automatically created. If the new subplot conflicts
with a previously existing set of axes, they are automatically deleted.

Selects a block of statements to execute from a set of mutually-exclusive
choices based on the result of a single expression.

A special construct used to trap errors. It executes construct the code in
the try block. If an error occurs, execution stops immediately and
transfers to the code in the catch construct.

3.8 Exercises

3.1

Evaluate the following MATLAB expressions:
(@) 5 >= 5.5

(b) 20 > 20

(¢) xor( 17 - pi < 15, pi < 3 )
(d) true > false

() ~~(35 / 17) == (35 / 17)

(Hh (7 <=8) == (3 / 2 == 1)

(g) 17.5 && (3.3 > 2.)
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3.2

3.3

34

3.5

3.6

The tangent function is defined as tan 6 = sin 6/cos 6. This expression
can be evaluated to solve for the tangent as long as the magnitude of cos 6
is not too near to 0. (If cos O is 0, evaluating the equation for tan 6 will
produce the nonnumerical value Inf.) Assume that 0 is given in degrees,
and write the MATLAB statements to evaluate tan 6 as long as the magni-
tude of cos 6 is greater than or equal to10~2°. If the magnitude of cos 6 is
less than 1072, write out an error message instead.

The following statements are intended to alert a user to dangerously high
oral thermometer readings (values are in degrees Fahrenheit). Are they cor-
rect or incorrect? If they are incorrect, explain why and correct them.

if temp < 97.5

disp ('Temperature below normal') ;
elseif temp > 97.5

disp ('Temperature normal') ;

elseif temp > 99.5

disp ('Temperature slightly high');
elseif temp > 103.0

disp('Temperature dangerously high');
end

The cost of sending a package by an express delivery service is $15.00 for the
first two pounds, and $5.00 for each pound or fraction thereof over two pounds.
If the package weighs more than 70 pounds, a $15.00 excess weight surcharge
is added to the cost. No package over 100 pounds will be accepted. Write a pro-
gram that accepts the weight of a package in pounds and computes the cost of
mailing the package. Be sure to handle the case of overweight packages.

In Example 3.3, we wrote a program to evaluate the function f(x, y) for any
two user-specified values x and y, where the function f(x, y) was defined
as follows:

x+y x=0andy =0
x+)? x=0andy <0
¥+y x<Oandy=0
¥ 4+)> x<O0andy <0

flx,y) =

The problem was solved by using a single if construct with four code
blocks to calculate f{(x, y) for all possible combinations of x and y. Rewrite
program funxy to use nested 1 f constructs, where the outer construct
evaluates the value of x and the inner constructs evaluate the value of y.
Write a MATLAB program to evaluate the function:

1
1 —x

y(x) = In

for any user-specified value of x, where x is a number <1.0 (note that In
is the natural logarithm, the logarithm to the base ¢). Use an 1 f structure
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to verify that the value passed to the program is legal. If the value of x is
legal, calculate y(x). If not, write a suitable error message and quit.

Write a program that allows a user to enter a string containing a day of the
week (“Sunday,” “Monday,” “Tuesday,” etc.) and uses a swi tch construct
to convert the day to its corresponding number, where Sunday is consid-
ered the first day of the week and Saturday is considered the last day of
the week. Print out the resulting day number. Also, be sure to handle the
case of an illegal day name! (Nofe: Be sure to use the ' s' option on func-
tion input so that the input is treated as a string.)

Suppose that a student has the option of enrolling for a single elective dur-
ing a term. The student must select a course from a limited list of options:
“English,” “History,” “Astronomy,” or “Literature.” Construct a fragment
of MATLAB code that will prompt the student for his or her choice, read
in the choice, and use the answer as the case expression for a switch
construct. Be sure to include a default case to handle invalid inputs.
Ideal Gas Law The Ideal Gas Law was defined in Example 3.7. Assume
that the volume of 1 mole of this gas is 10 L, and plot the pressure of the
gas as a function of temperature as the temperature is changed from 250
to 400 kelvins. What sort of plot (linear, semilogx, efc.) is most appropri-
ate for this data?

Antenna Gain Pattern The gain G of a certain microwave dish anten-
na can be expressed as a function of angle by the equation

G(6) = |sinc 46) for—g = 9= g (3-5)

where 0 is measured in radians from the boresite of the dish, and sinc x =
sin x/x. Plot this gain function on a polar plot, with the title “Antenna
Gain vs 6” in boldface.

The author of this book now lives in Australia. Australia is a great place
to live, but it is also a land of high taxes. In 2002, individual citizens and
residents of Australia paid the following income taxes:

Taxable Income (in A$)  Tax on This Income

$0-$6,000 None

$6,001-$20,000 17¢ for each $1 over $6,000
$20,001-$50,000 $2,380 plus 30¢ for each $1 over $20,000
$50,001-$60,000 $11,380 plus 42¢ for each $1 over $50,000
Over $60,000 $15,580 plus 47¢ for each $1 over $60,000

In addition, a flat 1.5% Medicare levy is charged on all income. Write a
program to calculate how much income tax a person will owe based on
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this information. The program should accept a total income figure from
the user and calculate the income tax, Medicare levy, and total tax payable
by the individual.

3.12 Refraction When a ray of light passes from a region with an index of
refraction #n, into a region with a different index of refraction n,, the light
ray is bent (see Figure 3.20). The angle at which the light is bent is given
by Snell’s Law

n sin 91 = ny sin 92 (3-6)

Index of Refraction n ,

Region 1

(@)

Region 1 Index of Refraction n,

Figure 3.20 A ray of light bends as it passes from one medium into another one. (@) If the ray of
light passes from a region with a low index of refraction into a region with a higher index
of refraction, the ray of light bends more towards the vertical. (b) If the ray of light
passes from a region with a high index of refraction into a region with a lower index of
refraction, the ray of light bends away from the vertical.
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where 0, is the angle of incidence of the light in the first region and 6, is
the angle of incidence of the light in the second region. Using Snell’s Law,
it is possible to predict the angle of incidence of a light ray in Region 2 if
the angle of incidence 6, in Region 1 and the indices of refraction », and
n, are known. The equation to perform this calculation is

0, = sin‘<"1 sin el) (3-7)
n

Write a program to calculate the angle of incidence (in degrees) of a light

ray in Region 2 given the angle of incidence 6, in Region 1 and the indices

of refraction n, and n,. (Note: If n,>n,, then for some angles 6;, Equation

(3-7) will have no real solution because the absolute value of the quantity

% sin 91> will be greater than 1.0. When this occurs, all light is reflected
2

back into Region 1, and no light passes into Region 2 at all. Your program
must be able to recognize and properly handle this condition.)

The program should also create a plot showing the incident ray, the
boundary between the two regions, and the refracted ray on the other side
of the boundary.

Test your program by running it for the following two cases: (a) n,=
1.0, n,= 1.7, and 8, = 45°. (b) n,= 1.7, n, = 1.0; and 6, = 45°.
Assume that the complex function f() is defined by the equation

() = (1 +025) ¢t — 2.0

Plot the amplitude and phase of function f'for 0 =t =< 4.

High-Pass Filter Figure 3.21 shows a simple high-pass filter consisting
of a resistor and a capacitor. The ratio of the output voltage ¥, to the input
voltage V; is given by the equation

¥,  j2mfRC

= 3-8
V, 1+ j2mfRC 3-8)

Vi C’) R§ Ve

A simple high-pass filter circuit.
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3.16

3.17

Assume that R = 16 kQ) and C = 1 uF. Calculate and plot the amplitude
and phase response of this filter as a function of frequency.

The Spiral of Archimedes The spiral of Archimedes is a curve
described in polar coordinates by the equation

r=ko (3-9)

where 7 is the distance of a point from the origin and 6 is the angle of that
point in radians with respect to the origin. Plot the spiral of Archimedes
for 0 = 6 = 6 when k = 0.5. Be sure to label your plot properly.
Output Power from a Motor The output power produced by a rotating
motor is given by the equation

P = TinD @y, (3-10)

where Typ is the induced torque on the shaft in newton-meters, ,, is the
rotational speed of the shaft in radians per second, and P is in watts.
Assume that the rotational speed of a particular motor shaft is given by the
equation

o, = 188.5(1 — ¢ %) rad/s
and the induced torque on the shaft is given by
o = 1067 "% N - m

Plot the torque, speed, and power supplied by this shaft versus time for
0 = ¢ = 10 s. Be sure to label your plot properly with the symbols 7i\p
and @, where appropriate. Create two plots, one with the power displayed
on a linear scale, and one with the output power displayed on a logarith-
mic scale. Time should always be displayed on a linear scale.

Plotting Orbits When a satellite orbits the Earth, the satellite’s orbit
will form an ellipse with the Earth located at one of the focal points of the
ellipse. The satellite’s orbit can be expressed in polar coordinates as

p

= 1 — &cosO

(3-11)
where r and 6 are the distance and angle of the satellite from the center of the
Earth, p is a parameter specifying the size of the size of the orbit, and
€ is a parameter representing the eccentricity of the orbit. A circular orbit has
an eccentricity € of 0. An elliptical orbit has an eccentricity of 0 = £ = 1.
If € > 1, the satellite follows a hyperbolic path and escapes from the Earth’s
gravitational field.

Consider a satellite with a size parameter p = 1000 km. Plot the orbit
of this satellite if (@) € = 0; (b) € = 0.25; (c) € = 0.5. How close does each
orbit come to the Earth? How far away does each orbit get from the Earth?
Compare the three plots you created. Can you determine what the param-
eter p means from looking at the plots?
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Loops

Loops are MATLAB constructs that permit us to execute a sequence of state-
ments more than once. There are two basic forms of loop constructs: while
loops and for loops. The major difference between these two types of loop is
in how the repetition is controlled. The code in a while loop is repeated an
indefinite number of times until some user-specified condition is satisfied. By
contrast, the code in a for loop is repeated a specified number of times, and the
number of repetitions is known before the loops starts.

4.1 The while Loop

A while loop is a block of statements that are repeated indefinitely as long as
some condition is satisfied. The general form of a while loop is

while expression
Code block

end

The controlling expression produces a logical value. If the expression is true,
the code block will be executed, and then control will return to the while state-
ment. If the expression is still true, the statements will be executed again. This
process will be repeated until the expression becomes false. When control
returns to the while statement and the expression is false, the program will
execute the first statement after the end.

149
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The pseudocode corresponding to a while loop is

while expr

end

We will now show an example statistical analysis program that is implemented
using a while loop.

Example 4.1—Statistical Analysis

It is very common in science and engineering to work with large sets of numbers,
each of which is a measurement of some particular property that we are interested
in. A simple example would be the grades on the first test in this course. Each
grade would be a measurement of how much a particular student has learned in the
course to date.

Much of the time, we are not interested in looking closely at every single
measurement that we make. Instead, we want to summarize the results of a set of
measurements with a few numbers that tell us a lot about the overall data set. Two
such numbers are the average (or arithmetic mean) and the standard deviation of
the set of measurements. The average or arithmetic mean X of a set of numbers
is defined as

1 N

X=—2% 4-1)
Ni=

where x; is sample i out of N samples. If all of the input values are available in an

array, the average of a set of number may be calculated by the MATLAB function

mean. The standard deviation of a set of numbers is defined as

N N 2
N Xxi - (E%‘)
_ i=1 i=1

= I (4-2)

Standard deviation is a measure of the amount of scatter on the measurements;
the greater the standard deviation, the more scattered the points in the data set are.

Implement an algorithm that reads in a set of measurements and calculates
the mean and the standard deviation of the input data set'.

SoruTioN  This program must be able to read in an arbitrary number of meas-
urements and then calculate the mean and standard deviation of those measure-

'MATLAB has a built-in function called std to calculate the standard deviation of the data in an
array. In this exercise, we are creating our on program to calculate the standard deviation. In a real
problem, we would normally just use the built-in function.
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ments. We will use a while loop to accumulate the input measurements before
performing the calculations.

When all of the measurements have been read, we must have some way of
telling the program that there is no more data to enter. For now, we will assume
that all the input measurements are either positive or zero, and we will use a neg-
ative input value as a flag to indicate that there is no more data to read. If a
negative value is entered, then the program will stop reading input values and will
calculate the mean and standard deviation of the data set.

1. State the problem.
Since we assume that the input numbers must be positive or zero, a proper
statement of this problem would be: calculate the average and the standard
deviation of a set of measurements, assuming that all of the measurements
are either positive or zero and assuming that we do not know in advance
how many measurements are included in the data set. A negative input value
will mark the end of the set of measurements.

2. Define the inputs and outputs.
The inputs required by this program are an unknown number of positive
or zero numbers. The outputs from this program are a printout of the mean
and the standard deviation of the input data set. In addition, we will print
out the number of data points input to the program, since this is a useful
check that the input data was read correctly.

3. Design the algorithm.
This program can be broken down into three major steps:

Accumulate the input data

Calculate the mean and standard deviation

Write out the mean, standard deviation, and
number of points

The first major step of the program is to accumulate the input data.
To do this, we will have to prompt the user to enter the desired numbers.
When the numbers are entered, we will have to keep track of the number
of values entered, plus the sum and the sum of the squares of those val-
ues. The pseudocode for these steps is

Initialize n, sum_x, and sum_x2 to 0
Prompt user for first number
Read in first x
while x >= 0
n<-n+ 1
sum_X <- sum_ X + X
sum_x2 <- sum_ X2 + X2
Prompt user for next number
Read in next x
end
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Note that we have to read in the first value before the while loop starts so
that the while loop can have a value to test the first time it executes.

Next, we must calculate the mean and standard deviation. The
pseudocode for this step is just the MATLAB versions of Equations (4-1)
and (4-2).

X_bar <- sum_x / n
std_dev <- sgrt((n*sum x2 - sum_x"2) / (n*(n-1)))

Finally, we must write out the results.

Write out the mean value x_bar
Write out the standard deviation std_dev
Write out the number of input data points n

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is shown below:

Script file: stats_1.m

Purpose:
To calculate mean and the standard deviation of
an input data set containing an arbitrary number
of input values.

Record of revisions:

Date Programmer Description of change

01/ 07 S. J. Chapman Original code

Define variables:

n -- The number of input samples

std_dev -- The standard deviation of the input samples
sum_X -- The sum of the input values

sum_x2 -- The sum of the squares of the input values
X -- An input data value

xbar -- The average of the input samples

Initialize sums.
= 0; sum_x = 0; sum_x2 = 0;

Read in first value
= input ('Enter first value: ');

% While Loop to read input values.
while x >= 0
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% Accumulate sums.
n

=n + 1;
sum X = sum X + X;
sum x2 = sum X2 + X*2;

% Read in next value
x = input ('Enter next value: ")

end
% Calculate the mean and standard deviation

_bar = sum_x / n;
std_dev = sgrt( (n * sum_x2 - sum_x"2) / (n * (n-1)) );

X

% Tell user.

fprintf ('The mean of this data set is: $f\n', x_bar);
fprintf ('The standard deviation is: $f\n', std_dev);
fprintf (' The number of data points is: $f\n', n);

5. Test the program.
To test this program, we will calculate the answers by hand for a simple
data set, and then compare the answers to the results of the program. If we
used three input values: 3, 4, and 5, then the mean and standard deviation
would be

When these values are fed into the program, the results are as follows:

» stats_1

Enter first value: 3
Enter next value: 4
Enter next value: 5

Enter next value: -1
The mean of this data set is: 4.000000
The standard deviation is: 1.000000

The number of data points is: 3.000000

The program gives the correct answers for our test data set. <
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In the preceding example, we failed to follow the design process completely.
This failure has left the program with a fatal flaw! Did you spot it?

We have failed because we did not completely test the program for all possi-
ble types of input. Look at the example once again. If we enter either no numbers
or only one number, then we will be dividing by zero in the foregoing equations!
The division-by-zero error will cause divide-by-zero warnings to be printed, and
the output values will be NaN. We need to modify the program to detect this prob-
lem, tell the user what the problem is, and stop gracefully.

A modified version of the program called stats_2 follows. Here, we check
to see if there are enough input values before performing the calculations. If not,
the program will print out an intelligent error message and quit. Test the modified
program for yourself.

Script file: stats_2.m
Purpose:
To calculate mean and the standard deviation of

an input data set containing an arbitrary number
of input values.

Record of revisions:

Date Programmer Description of change
01/24/07 S. J. Chapman Original code
1. 01/24/07 S. J. Chapman Correct divide-by-0 error if

0 or 1 input values given.

Define variables:

O 00 O° P A° O° O° A @f % O° P P O° O° AP P O° O° P oP

n -- The number of input samples

std_dev -- The standard deviation of the input samples
sum_x -- The sum of the input values

sum_ X2 -- The sum of the squares of the input values
X -- An input data wvalue

xbar -- The average of the input samples

Initialize sums.
= 0; sum_x = 0; sum_x2 = 0;

oe

o]

Read in first value
x = input ('Enter first value: ');

o°

o

While Loop to read input values.
while x >= 0

% Accumulate sums.
n =n + 1;
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sum_X = sum_X + X;
sum_x2 = sum_X2 + xX"2;

% Read in next value
x = input ('Enter next value: ');

end

% Check to see if we have enough input data.
if n < 2 % Insufficient information

disp('At least 2 values must be entered!');

else % There is enough information, so
% calculate the mean and standard deviation
xX_bar = sum_x / n;
std_dev = sqgrt( (n * sum x2 - sum _x"2) / (n * (n-1)) );
% Tell user.
fprintf ('The mean of this data set is: $f\n', x_bar);
fprintf (' The standard deviation is: $f\n', std_dev);
fprintf (' The number of data points is: gf\n', n);
end

Note that the average and standard deviation could have been calculated with
the built-in MATLAB functions mean and std if all of the input values are saved
in a vector and that vector is passed to these functions. You will be asked to cre-
ate a version of the program that uses the standard MATLAB functions in an exer-
cise at the end of this chapter.

The for Loop

The for loop is a loop that executes a block of statements a specified number of
times. The for loop has the form

for index = expr
Body

end
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where index is the loop variable (also known as the loop index) and expr is the
loop control expression, whose result is an array. The columns in the array pro-
duced by expr are stored one at a time in the variable index and then the loop
body is executed, so that the loop is executed once for each column in the array
produced by expr. The expression usually takes the form of a vector in shortcut
notation first:incr:last.

The statements between the for statement and the end statement are known
as the body of the loop. They are executed repeatedly during each pass of the for
loop. The for loop construct functions as follows:

1. At the beginning of the loop, MATLAB generates an array by evaluating
the control expression.

2. The first time through the loop, the program assigns the first column of
the array to the loop variable index, and the program executes the state-
ments within the body of the loop.

3. After the statements in the body of the loop have been executed, the pro-
gram assigns the next column of the array to the loop variable index, and
the program executes the statements within the body of the loop again.

4. Step 3 is repeated over and over as long as there are additional columns in
the array.

Let’s look at a number of specific examples to make the operation of the for
loop clearer. First, consider the following example:

for ii = 1:10
Statement 1

Statement n

end
In this case, the control expression generates a 1 X 10 array, so statements 1
through n will be executed 10 times. The loop index ii will be 1 the first time,
2 the second time, and so on. The loop index will be 10 on the last pass through
the statements. When control is returned to the for statement after the tenth pass,
there are no more columns in the control expression, so execution transfers to the
first statement after the end statement. Note that the loop index i1 is still set to
10 after the loop finishes executing.

Second, consider the following example:

for 1i = 1:2:10
Statement 1

Statement n
end
In this case, the control expression generates a 1 X 5 array, so statements 1 through
n will be executed 5 times. The loop index 11 will be 1 the first time, 3 the sec-

ond time, and so on. The loop index will be 9 on the fifth and last pass through the
statements. When control is returned to the for statement after the fifth pass,
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there are no more columns in the control expression, so execution transfers to the
first statement after the end statement. Note that the loop index 11 is still set to
9 after the loop finishes executing.

Third, consider the following example:

for ii = [5 9 7]
Statement 1

Statement n
end
Here, the control expression is an explicitly written 1 X 3 array, so statements 1
through n will be executed three times with the loop index set to 5 the first time,
9 the second time, and 7 the final time. The loop index i1 is still set to 7 after the
loop finishes executing.
Finally, consider the example:

for ii = [1 2 3;4 5 6]
Statement 1

Statement n
end

In this case, the control expression is a 2 X 3 array, so statements 1 through n will

1
be executed three times. The loop index ii will be the column vector [4:| the
. 2 . 3 o . L
first time, [5] the second time, and [6j| the third time. The loop index i1 is

3
still set to |:6] after the loop finishes executing. This example illustrates the fact

that a loop index can be a vector.
The pseudocode corresponding to a for loop looks like the loop itself:

for index = expression
Statement 1

Statement n
end

>—

Example 4.2—The Factorial Function

To illustrate the operation of a for loop, we will use a for loop to calculate the
factorial function. The factorial function is defined as

N! =1 N 0
N! = N * (N-1) * (N-2) * ... * 3 * 2 * 1 N >0
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The MATLAB code to calculate N factorial for positive value of N would be

n_factorial = 1
for ii = 1:n

n_factorial = n_factorial * ii;
end

Suppose that we wish to calculate the value of 5!. If n is 5, the for loop control
expression would be the row vector [1 2 3 4 5]. This loop will be executed
5 times, with the variable 11 taking on values of 1, 2, 3,4, and 5 in the successive loops.
The resulting value of n_factorial willbe 1 X2 X 3 X 4 X 5 =120

Example 4.3—Calculating the Day of Year

The day of year is the number of days (including the current day) that have elapsed
since the beginning of a given year. It is a number in the range 1 to 365 for ordi-
nary years, and 1 to 366 for leap years. Write a MATLAB program that accepts a
day, month, and year, and calculates the day of year corresponding to that date.

SoLuTioN  To determine the day of year, this program will need to sum up the
number of days in each month preceding the current month, plus the number of
elapsed days in the current month. A for loop will be used to perform this sum.
Since the number of days in each month varies, it is necessary to determine the
correct number of days to add for each month. A swi tch construct will be used
to determine the proper number of days to add for each month.

During a leap year, an extra day must be added to the day of year for any
month after February. This extra day accounts for the presence of February 29 in
the leap year. Therefore, to perform the day of year calculation correctly, we must
determine which years are leap years. In the Gregorian calendar, leap years are
determined by the following rules:

1. Years evenly divisible by 400 are leap years.

2. Years evenly divisible by 100 but not by 400 are not leap years.
3. All years divisible by 4 but not by 100 are leap years.

4. All other years are not leap years.

We will use the mod (for modulus) function to determine whether or not a year is
evenly divisible by a given number. The mod function returns the remainder after the
division of two numbers. For example, the remainder of 9/4 is 1, since 4 goes into 9
twice with a remainder of 1. If the result of the function mod(year, 4) is zero, then
we know that the year was evenly divisible by 4. Similarly, if the result of the function
mod(year, 400) is zero, then we know that the year was evenly divisible by 400.

A program to calculate the day of year follows. Note that the program sums
up the number of days in each month before the current month, and that it uses a
switch construct to determine the number of days in each month.
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Script file: doy.m

Purpose:
This program calculates the day of year corresponding
to a specified date. It illustrates the use switch and
for constructs.

Record of revisions:
Date Programmer Description of change

01/27/07 S. J. Chapman Original code

Define variables:

A 00 00 A O° O° A° O° I A° O° I O° O° I O° o° P o°
|
|
|

day -- Day (dd)

day_of_vyear -- Day of vyear

ii -- Loop index

leap_day -- Extra day for leap year
month -- Month (mm)

year -- Year (yyvyy)

% Get day, month, and year to convert
disp('This program calculates the day of year given the ');
disp('specified date.');

month = input('Enter specified month (1-12): ');
day = input ('Enter specified day(1-31): ")
yvear = ilnput('Enter specified year (yyyy) : ")

% Check for leap year, and add extra day if necessary

if mod(year,400) == 0
leap_day = 1; % Years divisible by 400 are leap years
elseif mod(year,100) == 0

o

leap_day = 0; Other centuries are not leap years

elseif mod(year,4) == 0

leap_day = 1; % Otherwise every 4th year is a leap year
else

leap_day = 0; % Other years are not leap years
end

Calculate day of year by adding current day to the
days in previous months.

day_of_vyear = day;

for ii = 1:month-1

Q
o
Q

]
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end

]

% Add days in months from January to last month
switch

(ii)

case {1,3,5,7,8,10,12},

day_of_vyear = day_of_vyear + 31;

case {4,6,9,11},

day_of_vyear = day_of_vyear + 30;

case 2,

end

day_of_vyear = day_of_vyear + 28 + leap_day;

% Tell user
fprintf ('The date %2d/%2d/%4d is day of year %d.\n',

month, day, yvear, day_of_vear);
We will use the following known results to test the program:

1. Year 1999 is not a leap year. January 1 must be day of year 1, and
December 31 must be day of year 365.

2. Year 2000 is a leap year. January 1 must be day of year 1, and December
31 must be day of year 366.

3. Year 2001 is not a leap year. March 1 must be day of year 60, since January
has 31 days, February has 28 days, and this is the first day of March.

If this program is executed five times with the above dates, the results are

» doy

This program calculates the day of year given the
specified date.

Enter specified month (1-12): 1

Enter specified day(1-31): 1
Enter specified year (yyyy): 1999
The date 1/ 1/1999 is day of year 1.
» doy

This program calculates the day of year given the
specified date.

Enter specified month (1-12): 12
Enter specified day(1-31): 31
Enter specified year (yyyy) : 1999
The date 12/31/1999 is day of year 365.
» doy

This program calculates the day of year given the
specified date.

Enter specified month (1-12): 1
Enter specified day(1-31): 1
Enter specified year (yyyy): 2000

The date 1/ 1/2000 is day of year 1.
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» doy
This program calculates the day of year given the
specified date.

Enter specified month (1-12): 12
Enter specified day(1-31): 31
Enter specified year (yyyy) : 2000
The date 12/31/2000 is day of year 366.
» doy

This program calculates the day of year given the
specified date.

Enter specified month (1-12): 3
Enter specified day(1-31): 1
Enter specified year (yyyy) : 2001

The date 3/ 1/2001 is day of year 60.

The program gives the correct answers for our test dates in all five test cases.

__________________________________________________________________________________________________________________________________|
>—
Example 4.4—Statistical Analysis

Implement an algorithm that reads in a set of measurements and calculates the

mean and the standard deviation of the input data set, when any value in the data
set can be positive, negative, or zero.

SoLuTION  This program must be able to read in an arbitrary number of measure-
ments, and then calculate the mean and standard deviation of those measurements.
Each measurement can be positive, negative, or zero.

Since we cannot use a data value as a flag this time, we will ask the user for
the number of input values and then use a for loop to read in those values. The
modified program that permits the use of any input value is shown below. Verify
its operation for yourself by finding the mean and standard deviation of the fol-
lowing five input values: 3., —1.,0., 1., and —2.

o

Script file: stats_3.m

o

o

Purpose:
To calculate mean and the standard deviation of
an input data set, where each input value can be
positive, negative, or zero.

o° o0 o°

o

Record of revisions:
Date Programmer Description of change

o° o0 oo
|
|
|
|

o

01/27/07 S. J. Chapman Original code

o
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Define variables:

% ii -- Loop index

% n -- The number of input samples

% std_dev -- The standard deviation of the input samples
% sum_x -- The sum of the input values

% sum_ X2 -- The sum of the squares of the input values
% x -- An input data value

% xbar -- The average of the input samples

% Initialize sums.
sum_x = 0; sum_x2 = 0;

% Get the number of points to input.
= input ('Enter number of points: ');

B

% Check to see if we have enough input data.
if n < 2 % Insufficient data

disp ('At least 2 values must be entered.');

else % we will have enough data, so let's get 1it.

Q

% Loop to read input values.
for ii = 1:n

% Read in next value
x = input('Enter value: ")

% Accumulate sums.
sum_xX = sum_X + X;
sum_x2 = sum_x2 + X"2;

end
% Now calculate statistics.
x_bar = sum_x / n;

std_dev = sqgrt( (n * sum_x2 - sum x"2) / (n * (n-1)) );

% Tell user.

°

fprintf ('The mean of this data set is: $f\n', x_bar);
fprintf ('The standard deviation is: $f\n', std_dev);
fprintf (' The number of data points is: $f\n', n);

end
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4.2.1 Details of Operation

Now that we have seen examples of a for loop in operation, we must examine
some important details required to use for loops properly.

1. Indent the bodies of loops. It is not necessary to indent the body of a
for loop as we have shown above. MATLAB will recognize the loop
even if every statement in it starts in column 1. However, the code is much
more readable if the body of the for loop is indented, so you should
always indent the bodies of loops.

I

Always indent the body of a for loop by two or more spaces to improve the
readability of the code.

2. Don’t modify the loop index within the body of a loop. The loop index
of a for loop should not be modified anywhere within the body of the
loop. The index variable is often used as a counter within the loop, and
modifying its value can cause strange and hard-to-find errors. The exam-
ple shown below is intended to initialize the elements of an array, but
the statement “i1 = 5” has been accidentally inserted into the body of the
loop. As a result, only a (5) is initialized, and it gets the values that
should have gone into a (1), a(2), etc.

for ii = 1:10
ii = 5; % Error!

a(ii) = <calculation>

I
(0]
B
o}

Never modify the value of a loop index within the body of the loop.

3. Preallocating Arrays. We learned in Chapter 2 that it is possible to
extend an existing array simply by assigning a value to a higher array ele-
ment. For example, the statement

arr = 1:4;
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defines a 4-element array containing the values [1 2 3 4].If the
statement

arr(8) = 6;

is executed, the array will be automatically extended to eight elements and
will contain the values [1 2 3 4 0 0 0 6]. Unfortunately, each
time that an array is extended, MATLAB has to (1) create a new array,
(2) copy the contents of the old array to the new longer array, (3) add
the new value to the array, and then (4) delete the old array. This process
is very time consuming for long arrays.

When a for loop stores values in a previously-undefined array, the
loop forces MATLAB to go through this process each time the loop is
executed. On the other hand, if the array is preallocated to its maximum
size before the loop starts executing, no copying is required, and the code
executes much faster. The code fragment shown below shows how to pre-
allocate an array before the starting the loop.

square = zeros(1l,100);
for ii = 1:100

square (ii) = 1i"2;
end

Always preallocate all arrays used in a loop before executing the loop. This
practice greatly increases the execution speed of the loop.

4. Vectorizing Arrays. It is often possible to perform calculations with
either for loops or vectors. For example, the following code fragment
calculates the squares, square roots, and cube roots of all integers between
1 and 100 using a for loop.

for ii = 1:100

square (ii) = 1i"2;
square_root (ii) = 1i~(1/2);
cube_root (ii) = 1i~(1/3);

end

The following code fragment performs the same calculation with vectors.

ii = 1:100;
square = 1i."2;
square_root = 1i.7(1/2);

cube_root(ii) = i1.7(1/3);
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Even though these two calculations produce the same answers, they are
not equivalent. The version with the for loop can be more than 15 times
slower than the vectorized version! This happens because the statements
in the for loop must be interpreted® and executed a line at a time by
MATLAB during each pass of the loop. In effect, MATLAB must inter-
pret and execute 300 separate lines of code. In contrast, MATLAB only
has to interpret and execute 4 lines in the vectorized case. Since MAT-
LAB is designed to implement vectorized statements in a very efficient
fashion, it is much faster in that mode.

In MATLAB, the process of replacing loops by vectorized statements
is known as vectorization. Vectorization can yield dramatic improve-
ments in performance for many MATLAB programs.

If it is possible to implement a calculation either with a for loop or by using vec-
tors, implement the calculation with vectors. Your program will be much faster.

4.2.2 The MATLAB Just-in-Time (JIT) Compiler

A just-in-time (JIT) compiler was added to MATLAB 6.5 and later versions. The
JIT compiler examines MATLAB code before it is executed, and where possible,
compiles the code before executing it. Since the MATLAB code is compiled
instead of being interpreted, it runs almost as fast as vectorized code. The JIT
compiler can sometimes dramatically speed up the execution of for loops.

The JIT compiler is a very nice tool when it works, since it speeds up the
loops without any action by the programmer. However, the JIT compiler has
many limitations that prevent it from speeding up all loops. A full list of JIT
compiler limitations appears in the MATLAB documentation, but some of the
more important limitations are

1. The JIT compiler only accelerates loops containing double, logical,
and char data types (plus integer data types that we haven’t met yet). If
other data types such as cell arrays or structures’ appear in the loop, it will
not be accelerated.

2. If an array in the loop has more than two dimensions, the loop will not be
accelerated.

3. If the code in the loop calls external functions (other than built-in func-
tions), it will not be accelerated.

But see the next item about the MATLAB Just-in-Time compiler.
3We will learn about these data types in Chapter 7.



166 | Chapter4 Loops

4. If the code in the loop changes the data type of a variable within a loop,
the loop will not be accelerated.

Because of these limitations, a good programmer using vectorization can
almost always create a faster program than one relying on the JIT compiler.

I

Do not rely on the JIT compiler to speed up your code. It has many limitations,
and a programmer can typically do a better job with manual vectorization.

>

Example 4.5—Comparing Loops and Vectors

To compare the execution speeds of loops and vectors, perform and time the
following four sets of calculations.

1. Calculate the squares of every integer from 1 to 10,000 in a for loop
without initializing the array of squares first.

2. Calculate the squares of every integer from 1 to 10,000 in a for loop,
using the zeros function to preallocate the array of squares first, but
calling an external function to perform the squaring. (This will disable the
JIT compiler.)

3. Calculate the squares of every integer from 1 to 10,000 in a for loop, using
the zeros function to preallocate the array of squares first, and calculating the
square of the number in-line. (This will allow the JIT compiler to function.)

4. Calculate the squares of every integer from 1 to 10,000 with vectors.

SoLuTioN  This program must calculate the squares of the integers from 1 to
10,000 in each of the four ways described previously, timing the executions in
each case. The timing can be accomplished using the MATLAB functions tic
and toc. Function tic resets the built-in elapsed time counter, and function
toc returns the elapsed time in seconds since the last call to function tic.

Since the real-time clocks in many computers have a fairly coarse granulari-
ty, it may be necessary to execute each set of instructions multiple times to get a
valid average time.

A MATLAB program to compare the speeds of the four approaches is shown
as follows:

oe

Script file: timings.m

oe

oe

Purpose:
This program calculates the time required to

oe



array.

Define variables
ii, 3J --
averagel -—
average?2 --
average3 -—
averaged --
maxcount -=
square --

00 0° 0P 0P A° O° O° O° O° O° O° O° O° O° O° O° O° O° 0P AP O° J° o

%

%

% because it is so slow.

maxcount = 1;

tic;

for jj = 1l:maxcount
clear square
for ii = 1:10000

square(ii) = 1i"2;

end

end

averagel = (toc)/maxcount;

%

%

%

% loops.

maxcount = 10;

tic;

Record of revisions:
Date Programmer
01/29/07 S. J. Chapman

Loop index

Average
Average
Average
Average

time
time
time
time

42 The for Loop | 167

calculate the squares of all integers from 1 to
10,000 in four different ways:
1. Using a for loop with an uninitialized output

2.Using a for loop with a pre-allocated output
array and NO JIT compiler.

3.Using a for loop with a pre-allocated output
array and the JIT compiler.

4. Using vectors.

Description of change

Original code

for calculation
for calculation
for calculation
for calculation 4

w N =

Number of times to loop calculation
Array of squares

@ o°

o

o

O

]

Q
°
Q

°

Perform calculation with an uninitialized array
"square". This calculation is done only once

Number of repetitions
Start timer

Clear output array

Calculate square

Calculate average time

Perform calculation with a pre-allocated array
"square", calling an external function to square
the number. This calculation is averaged over 10

Number of repetitions

Start timer
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for jj = 1:maxcount
clear square % Clear output array
square = zeros(1,10000); % Pre-initialize array
for ii = 1:10000
square (ii) = sqgr(ii); % Calculate square
end
end
average?2 = (toc)/maxcount; % Calculate average time
% Perform calculation with a pre-allocated array
% "square". This calculation is averaged over 100
% loops.
maxcount = 100; % Number of repetitions
tic; % Start timer
for jj = 1:maxcount
clear square % Clear output array
square = zeros(1,10000); % Pre-initialize array
for ii = 1:10000
square (ii) = 11"2; % Calculate square
end
end
average3 = (toc)/maxcount; % Calculate average time

% Perform calculation with vectors. This calculation
% averaged over 1000 executions.

maxcount = 1000; % Number of repetitions
tic; % Start timer
for jj = 1:maxcount

clear square
ii = 1:10000;
square = ii.”"2;
end
averaged = (toc)/maxcount; % Calculate average time

Clear output array
Set up vector
Calculate square

o° o o°

% Display results

fprintf ('Loop / uninitialized array =
fprintf ('Loop / initialized array / no JIT =
fprintf ('Loop / initialized array / JIT
fprintf ('Vectorized =

’

.4f\n', averagel) ;
.4f\n', averagel);
)
)

’

.4f\n', average3
.4f\n', averaged

’

0 0 0 @

o0 d° 0P 0P

When this program is executed using MATLAB 7.4 on a 2.4 GHz Pentium
IV computer, the results are:

» timings
Loop / uninitialized array
Loop / initialized array / no JIT

0.1111
0.0922
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0.0002
0.0001

Loop / initialized array / JIT
Vectorized

The loop with the uninitialized array and the loop with the initialized array
but no JIT were very slow compared with the loop executed with the JIT compil-
er or the vectorized loop. The vectorized loop was the fastest way to perform the
calculation, but if the JIT compiler works for your loop, you get most of the accel-
eration without having to do anything! As you can see, designing loops to allow
the JIT compiler to function* or replacing the loops with vectorized calculations
can make an incredible difference in the speed of your MATLAB code!

The M-Lint code checking tool can help you identify problems with unini-
tialized arrays that can slow the execution of a MATLAB program. For example,
if we run M-Lint on program timings.m, the code checker will identify the unini-
tialized array and write out a warning message.

4.2.3 The break and continue Statements

There are two additional statements that can be used to control the operation of
while loops and for loops: the break and continue statements. The
break statement terminates the execution of a loop and passes control to the
next statement after the end of the loop, while the continue statement termi-
nates the current pass through the loop and returns control to the top of the loop.

If a break statement is executed in the body of a loop, the execution of the
body will stop, and control will be transferred to the first executable statement
after the loop. An example of the break statement in a for loop is shown here.

for ii = 1:5
if i1 == 3;
break;
end
fprintf('ii = %d\n',ii);
end
disp(['End of loop!'l);

When this program is executed, the output is
» test_break
ii =1
ii =2
End of loop!

“We will learn how to use the MATLAB Profiler later in this chapter. This tool can identify loops that
do not get speeded up by the JIT compiler and tell you why they can’t be accelerated.
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£
Dz @ 2 e s coroie oo (s stz [
—  OpenProfier
; s Pt T are figainst Versian on Disk = =
3 Purpose: CONOMS HOMNF: 2
4 This program calculates the time recquired to
5 calculate the sguares of all integers from 1 to
] 10,000 in four different wvay:.
7 % 1. Using a for loop with an u cialized outpur
8 array.
9 2. Using a for loop with a pre-allocated output
10 array and NO JIT compiler.
11 3 Using a for loop with a pre-allocated ocutput
1z array and the JIT compiler.
13 3 4 Using vec
14
15!
16
17 % S
18 01/28/07 5. J. Chapman Original code
19 3
20 Define variables =
21 ii, 33 Loop index
22 averagel -- Average time for calculation 1
23 average? ~= jverage time for calculation 2
24 - hverage time for leulation 3
25 % -- Average time for calculation 4
26 HAaXCount == Number of times to loop calculation
27 square == Array of squares
28
29 Perform calculation with an uninitialized array
30 "square”. This calculation is done only once
31 % because it is so slow.
32 - maxcount = 1; % Number of repetitions
33 = tie; % Start timer
34 = for 3) = limaxcount
a5 - clear square % Clear output arcay
36 - for ii = 1:10000
3% = square (i) = 1i"2; % Calculate square
3\ - end
39 = end
40 - gel = (toc)/ : culace average time 5l

| seript ftn 1 ol 3 [OR .

@

=10 x|
File Edt View Go Debug Desktop Window Help B

«s (88

M-Lint Code Check Report ‘

Report for fle ¢ \bookimatiab\de\reviichap4iimings m

i'message 37: 'square®' might be growing inside a loop. Consider preallocating for speed.

(b)

Figure 4.1 The M-Lint code checker can identify some problems that will slow down the execution
of MATLAB loops.
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Note that the break statement was executed on the iteration when i1 was 3, and
control transferred to the first executable statement after the loop without execut-
ing the fprintf statement.

Ifa continue statement is executed in the body of a loop, the execution of the
current pass through the loop will stop, and control will return to the top of the loop.
The controlling variable in the for loop will take on its next value, and the loop will
be executed again. An example of the continue statement in a for loop is
shown here.

for ii = 1:5
if i1 == 3;
continue;
end
fprintf('ii = %d\n',11);
end
disp(['End of loop!']);

When this program is executed, the output is

» test_continue

ii =1
ii = 2
ii =4
ii = 5

End of loop!

Note that the cont inue statement was executed on the iteration when 11 was 3,
and control will be transferred to the top of the loop without executing the
fprintf statement.

The break and continue statements work with both while loops and
for loops.

4.2.4 Nesting Loops

It is possible for one loop to be completely inside another loop. If one loop is
completely inside another one, the two loops are called nested loops. The fol-
lowing example shows two nested for loops used to calculate and write out the
product of two integers.

for ii = 1:3
for jj = 1:3
product = ii * jj;
fprintf('sd * %d = %d\n',ii, jj,product) ;
end
end

In this example, the outer for loop will assign a value of 1 to index variable i1,
and then the inner for loop will be executed. The inner for loop will be
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executed three times with index variable jj having values 1, 2, and 3. When the
entire inner for loop has been completed, the outer for loop will assign a value
of 2 to index variable i1, and the inner for loop will be executed again. This
process repeats until the outer for loop has executed three times, and the result-
ing output is

W W W NDNDNDRE PP

P T T T T R T

W NEFE WNE WNPRE
I

O oW PN WDNPR

Note that the inner for loop executes completely before the index variable of the
outer for loop is incremented.

When MATLAB encounters an end statement, it associates that statement
with the innermost currently open construct. Therefore, the first end state-
ment in the preceding closes the “for jj = 1:3” loop, and the second end
statement closes the “for i1 = 1:3” loop. This fact can produce hard-to-find
errors if an end statement is accidentally deleted somewhere within a nested
loop construct.

If for loops are nested, they should have independent loop index variables.
If they have the same index variable, then the inner loop will change the value of
the loop index that the outer loop just set.

If a break or continue statement appears inside a set of nested loops,
then that statement refers to the innermost of the loops containing it. For exam-
ple, consider the following program:

for ii = 1:3
for jj = 1:3
if jj == 3;
break;
end
product = ii * jj;
fprintf ('%d * %d = %d\n',ii,jj,product) ;
end
fprintf ('End of inner loop\n');
end

fprintf ('End of outer loop\n');

If the inner loop counter jj is equal to 3, then the break statement will be
executed. This will cause the program to exit the innermost loop. The program
will print out “End of inner loop,” the index of the outer loop will be increased



4.3 Logical Arrays and Vectorization | 173

by 1, and execution of the innermost loop will start over. The resulting output

values are
1 *1 =1
1 *2 =2
End of inner loop
2 * 1 =2
2 * 2 =4
End of inner loop
31 =3
3 %2 =6

End of inner loop
End of outer loop

4.3 Logical Arrays and Vectorization

We learned about the 1ogical data type in Chapter 3. Logical data can have one
of two possible values: true (1) or false (0). Scalars and arrays of logical
data are created as the output of relational and logic operators.

For example, consider the following statements:

[1 2 3; 45 6; 78 9];
a > 5;

a
b

These statements produced two arrays a and b. Array a is a double array con-

1 2 3
taining the values | 4 5 6 |, while array b is a logical array containing the
L7 8 9
00 0]
values | 0 0 1 |. When the whos command is executed, the results are as
1 1 1]
shown as follows:
» whos
Name Size Bytes Class
a 3x%x3 72 double array
b 3x3 9 logical array

Grand total is 18 elements using 81 bytes

Logical arrays have a very important special property—they can serve as a
mask for arithmetic operations. A mask is an array that selects the elements of
another array for use in an operation. The specified operation will be applied to
the selected elements and nof to the remaining elements.



174

Chapter 4 Loops

For example, suppose that arrays a and b are as defined previously. Then the
statement a (b) = sqgrt (a (b)) will take the square root of all elements for which
the logical array b is true and leave all the other elements in the array unchanged.

» a(b) = sgrt(a(b))

a =
1.0000 2.0000 3.0000
4.0000 5.0000 2.4495
2.6458 2.8284 3.0000

This is a very fast and very clever way of performing an operation on a subset of
an array without needing loops and branches.

The following two code fragments both take the square root of all elements
in array a whose value is greater than 5, but the vectorized approach is more com-
pact and elegant than the loop approach.

for ii = l:size(a,l)
= l:size(a,?2)
if a(ii,jj) > 5
a(ii,jj) = sgrt(a(ii,jj)):

for jj

end
end
end

b=a>5;
a(b) = sagrt(a(b));

4.3.1 Creating the Equivalent of if /else Constructs

with Logical Arrays

Logical arrays can also be used to implement the equivalent of an 1 £ /else con-
struct inside a set of for loops. As we saw in the preceding section, it is possi-
ble to apply an operation to selected elements of an array using a logical array as
a mask. It is also possible to apply a different set of operations to the unselected
elements of the array by simply adding the not operator (~) to the logical mask.
For example, suppose that we wanted to take the square root of any elements in a
two-dimensional array whose value is greater than 5, and to square the remaining
elements in the array. The code for this operation using loops and branches is

for ii = l:size(a,l)
for jj = 1l:size(a,?2)
if a(ii,jj) > 5
a(ii,jj) = sqgrt(a(ii,jj));
else
a(ii,jj)
end
end
end

a(ii,jj)"2;
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The vectorized code for this operation is

b=a>25;
a(b) = sgrt(a(b));
a(~b) = a(~b)."2;

The vectorized code is significantly faster than the loops-and-branches
version.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 4.1 through 4.3. If you have trouble with the
quiz, reread the section, ask your instructor, or discuss the material with
a fellow student. The answers to this quiz are found in the back of
the book

Examine the following for loops and determine how many times
each loop will be executed.

1. for index = 7:10
2. for jj = 7:-1:10
3. for index = 1:10:10
4. for ii = -10:3:-7
5. for kk = [0 5 ; 3 3]

Examine the following loops and determine the value in ires at
the end of each of the loops.
6. ires = 0;
for index = 1:10
ires = ires + 1;
end
7. ires = 0;
for index = 1:10
ires = ires + index;
end
8. ires = 0;
for indexl = 1:10
for index2 = index1:10
if index2 ==
break;
end
ires = ires + 1;
end
end
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9. ires = 0;
for indexl = 1:10
for index2 = index1:10
if index2 ==
continue;
end
ires = ires + 1;
end
end

10. Write the MATLAB statements to calculate the values of the
function

sint¢ for all # where sin¢ > 0
f) =
0 elsewhere

for =6z = t = 6 at intervals of 7/10. Do this twice, once using
loops and branches and once using vectorized code.

4.4 The MATLAB Profiler

MATLAB includes a profiler, which can be used to identify the parts of a
program that consume the most execution time. The profiler can identify
“hot spots.” where optimizing the code will result in major increases in
speed.

The MATLAB profiler is started by selecting the “Tools/Open Profiler”
option on the Edit/Debug Window. A Profiler Window opens, with a field con-
taining the name of the program to profile and a pushbutton to start the profile
process running.

After the profiler runs, a Profile Summary is displayed, showing how much
time is spent in each function being profiled (see Figure 4.3a). Clicking on any
profiled function brings up a more detailed display, showing exactly how much
time was spent on each line when that function was executed (see Figure 4.3b).
With this information, the programmer can identify the slow portions of the code
and work to speed them up with vectorization and similar techniques. For exam-
ple, the profiler will highlight loops that run slowly because they can’t be handled
by the JIT compiler.

Normally, the profiler should be run after a program is working properly. It
is a waste of time to profile a program before it is working.
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3 % Purpose:
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51 3 calculate the square roots of all elements in

- % array a whose value exceeds 5000. This is done

7 % in two different ways:

g8 % 1. Using a for loop and if construct.
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Profiler for Improving Performance

One way to improve the performance of your M-files is using profiling tools. MATLAB provides the M-file Profiler, a graphical user interface that is
based on the results retumed by the profile function. Use the Profiler to help you determine where you can modify your code to make

[« 2 imp! ents

For details on how to use the Profiler, see the Profiler documentation.

()

Figure 4.2 (a) The MATLAB Profiler is opened using the “Tools/Open Profile” menu option on the
Edit/Debug Window. (b) The profiler has a box in which to type the name of the
program to execute, and a pushbutton to start profiling.

Use the MATLAB Profiler to identify the parts of programs that consume the
most CPU time. Optimizing those parts of the program will speed up the over-
all execution of the program.
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Profile Summary

Generated 28-Apr-2007 19.06:56 using cpu time.
Eunction Name | Calls | Total Time = Self Time" ' Total Time Plot
(dark band = self time)
timings 1 24565 15335 | EE— N
sar 100000 |0.923s 0923 | N

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from the
process of profiling.

(@

Figure 4.3

(®)

¥ Show parent functions I Show busy lines ¥ Show child functions

¥ Show M-Lint results ¥ Show file coverage ¥ Show function listing
Parents (calling functions)
N paient — —
Lines where the most time was spent

Line Number | Code Calls | Total Time | % Time | Time Plot
52 square(ii) = sge(it); % Calew... | 100000 13%2s  56.7% | S
67 end 1000000 0548s  223% W

66 square (ii) = ii~2; 4 Calcu... | 1000000 0.250 s ! 102% (W

ar squere(s1) = 15°2: % Calew...|10000 | 0.M41s |57% (M

53 end 100000 |0.063s  25% |1

All other lines 00635 | 25% |1

Totals {24565 | 100%

Children (called functions)

Function Name Function Type | Calls | Total Time | % Time | Time Plot

sqr Mdunction | 100000 | 0.923s | 376%
Selftime (builtins, averhead, etc.) 1535 | 624%  mmm—
Totals 24565 100% I

M-Lint results

Line number Message

37 "square’ might be growing inside a loop. Consider preallocating for speed.
Coverage results )

Show coverage for parent directory

[Tow lines in function : | 85 |

Non-code lines (comments, blank lines) | 45 | E

(a) The Profile Summary, indicating the time spent in each profiled function.
(b) A detailed profile of function timings.
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4.5 Additional Examples

>

Example 4.6—Fitting a Line to a Set of Noisy Measurements

The velocity of a falling object in the presence of a constant gravitational field is
given by the equation

v(t) = at + v (4-3)

where v(f) is the velocity at any time ¢, a is the acceleration due to gravity, and v, is
the velocity at time 0. This equation is derived from elementary physics—it is known
to every freshman physics student. If we plot velocity versus time for the falling
object, our (v, f) measurement points should fall along a straight line. However, the
same freshman physics student also knows that if we go into the laboratory and
attempt to measure the velocity versus time of an object, our measurements will not
fall along a straight line. They may come close, but they will never line up perfectly.
Why not? Because we can never make perfect measurements. There is always some
noise included in the measurements, which distorts them.

There are many cases in science and engineering where there are noisy sets of
data such as this, and we wish to estimate the straight line that “best fits” the data. This
problem is called the linear regression problem. Given a noisy set of measurements
(, v) that appear to fall along a straight line, how can we find the equation of the line

y=mx+b (4-4)

that “best fits” the measurements? If we can determine the regression coefficients
m and b, then we can use this equation to predict the value of y at any given x by
evaluating Equation (4-4) for that value of x.

A standard method for finding the regression coefficients m and b is the
method of least squares. This method is named “least squares” because it pro-
duces the line y = mx + b for which the sum of the squares of the differences
between the observed y values and the predicted y values is as small as possible.
The slope of the least squares line is given by

_ Cxy) — )y

m = = 4-5
(30) — (S0 *2)

and the intercept of the least squares line is given by
b=y — mx (4-6)

where

> x is the sum of the x values

>x? is the sum of the squares of the x values

>xy is the sum of the products of the corresponding x and y values
X is the mean (average) of the x values

y is the mean (average) of the y values
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Write a program that will calculate the least-squares slope m and y-axis inter-
cept b for a given set of noisy measured data points (x, y). The data points should

be read

from the keyboard, and both the individual data points and the resulting

least-squares fitted line should be plotted.

SOLUTION

1.

State the problem.

Calculate the slope m and intercept b of a least-squares line that best fits
an input data set consisting of an arbitrary number of (x, y) pairs. The
input (x, y) data is read from the keyboard. Plot both the input data points
and the fitted line on a single plot.

. Define the inputs and outputs.

The inputs required by this program are the number of points to read, plus
the pairs of points (x, y).

The outputs from this program are the slope and intercept of the least-
squares fitted line, the number of points going into the fit, and a plot of
the input data and the fitted line.

. Describe the algorithm.

This program can be broken down into six major steps:

Get the number of input data points

Read the input statistics

Calculate the required statistics
Calculate the slope and intercept

Write out the slope and intercept

Plot the input points and the fitted line

The first major step of the program is to get the number of points to
read in. To do this, we will prompt the user and read his or her answer with
an input function. Next we will read the input (x, y) pairs one pair at a
time using an input function in a for loop. Each pair of input value
will be placed in an array ([x y]), and the function will return that array
to the calling program. Note that a for loop is appropriate because we
know in advance how many times the loop will be executed.

The pseudocode for these steps is shown as follows:

Print message describing purpose of the program

n_p
for

end

oints <- input ('Enter number of [x y] pairs: ');
i1 = 1:n_points
temp <- input('Enter [x y] pair: ');

x(11) <- temp(l)
v(ii) <- temp(2)

Next, we must accumulate the statistics required for the calculation.
These statistics are the sums >x, >y, >x2, and 2xy. The pseudocode
for these steps is
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Clear the variables sum_x, sum_y, xum_x2, and sum_y2
for ii = 1l:n_points

sum_xX <-
sum_y <-

sum_x + x(i1)
sum_y + y(ii)

sum_x2 <- sum_x2 + xX(ii)"2
sum_xXy <- sum_xy + xX(1ii)*y(ii)

end

Next, we must calculate the slope and intercept of the least-squares
line. The pseudocode for this step is just the MATLAB versions of
Equations 4-4 and 4-5.

x_bar <- sum_x /
v_bar <- sum_y /

slope <- (sum_xy-

v_int <- y_bar -

n_points

n_points

sum_x * y_bar)/( sum_x2 - sum_x * x_bar)
slope * x_bar

Finally, we must write out and plot the results. The input data points
should be plotted with circular markers and without a connecting line,
and the fitted line should be plotted as a solid 2-pixel wide line. To do
this, we will need to plot the points first, set hold on, plot the fitted
line, and set hold off. We will add titles and a legend to the plot for
completeness.

4. Turn the algorithm into MATLAB statements.
The final MATLAB program follows:

Purpose:

To perform a least-squares fit of an input data set
to a straight line, and print out the resulting slope
and intercept values. The input data for this fit
comes from a user-specified input data file.

Record of revisions:

Date Programmer

Define variables:

ii --
n_points --
slope -—
sum_x --
sum_ X2 -
sum_xy --
sum_y --
temp -=
< -

Description of change

J. Chapman Original code

Loop index

Number in input [x y] points
Slope of the line

Sum of all input x values

Sum of all input x values squared
Sum of all input x*y yalues

Sum of all input y values
Variable to read user input

Array of x values
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Y

o° o o° oP

x_bar

y_bar
y_int

-- Average x value

-- Array of y values

-- Average y value

-- y-axis intercept of the line

disp('This program performs a least-squares fit of an ');
disp('input data set to a straight line.');
n_points = input('Enter the number of input

% Read the input data
= 1:n_points
= input ('Enter [x v]
) = temp(1);
) = temp(2);

for ii
temp
x(1i
y(ii

end

°

% Accumulate statistics

sum_x = 0;

sum_y = 0;

sum_x2 = 0;

sum_xy = 0

for ii = 1:n_points
sum_x = sum X + x(ii);
sum_y = sum.y + y(ii);
sum_xX2 = sum_x2 + x(1i1)"2;
sum_xXy = sum_xy + x(ii) *

end

% Now calculate

x_bar =
yv_bar =
slope =
y_int =

pair:

y(ii);

")

the slope and intercept.

sum_x / n_points;

sum_y / n_points;

(sum_xy - sum_x * y_bar) /
yv_bar - slope * x_bar;

% Tell user.
disp('Regression coefficients for the least-squares line:');
\n', slope);
%$8.3f\n', y_int);
n_points) ;

fprintf ('
fprintf ('
fprintf ('

Q
°
o

°

No.

plot(x,y, 'bo"');

hold on;

Slope
Intercept (b) =
of points =

(m) = %8.3f

%8d\n'

(

sum_x2

[x y] points: ');

sum_xX * x_bar) ;

Plot the data points as blue circles with no
connecting lines.
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% Create the fitted line
xmin = min(x) ;
xmax = max(x);
yvmin = slope * xmin + y_int;

ymax = slope * xmax + y_int;

% Plot a solid red line with no markers
plot ([xmin xmax], [ymin ymax], 'r-', 'Linewidth',2);
hold off;

% Add a title and legend

title ('\bfLeast-Squares Fit');
xlabel ('\bf\itx"') ;

ylabel ('\bf\ity"');

legend('Input data', 'Fitted line');
grid on

5. Test the program.
To test this program, we will try a simple data set. For example, if every
point in the input data set falls exactly along a line, then the resulting
slope and intercept should be exactly the slope and intercept of that line.
Thus the data set

.1]
.2]
.31
4]
.51
.61
.71

<N o Uk W
<N oUW
<N oUW

should produce a slope of 1.0 and an intercept of 0.0. If we run the pro-
gram with these values, the results are

» lsqgfit

This program performs a least-squares fit of an
input data set to a straight line.

Enter the number of input [x y] points: 7

Enter [x y] pair: [1.1 1.1]

Enter [x y] pair: [2.2 2.2]

Enter [x y] pair: [3.3 3.3]

Enter [x y] pair: [4.4 4.4]

Enter [x y] pair: [5.5 5.5]

Enter [x y] pair: [6.6 6.6]
]

Enter [x y] pair: [7.7 7.7]
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Regression coefficients for the least-squares line:

Slope

Intercept

(m)

(b)

No. of points

1.000
0.000
7

Now let’s add some noise to the measurements. The data set becomes

[1.
[2.
[3.
[4.
[5.
[6.
[7.

< oUW N

1.

~N oy U W N

If we run the program with these values, the results are:

» lsgfit

This program performs a least-squares fit of an
input data set to a straight line.

Least Squares Fit

Figure 4.4 A noisy data set with a least-squares fitted line.
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Enter the number of input [x y] points: 7
Enter [x y] pair: [1.1 1.01]

Enter [x y] pair: [2.2 2.30]

Enter [x y] pair: [3.3 3.05]

Enter [x y] pair: [4.4 4.28]

Enter [x y] pair: [5.5 5.75]

Enter [x y] pair: [6.6 6.48]
]

Enter [x y] pair: [7.7 7.84]
Regression coefficients for the least-squares line:

Slope (m) = 1.024
Intercept (b) = -0.120
No of points = 7

If we calculate the answer by hand, it is easy to show that the pro-
gram gives the correct answers for our two test data sets. The noisy
input data set and the resulting least-squares fitted line are shown in

Figure 4.4.
g -«

This example uses several of the plotting capabilities that we introduced in
Chapter 3. It uses the hold command to allow multiple plots to be placed on
the same axes, the LineWidth property to set the width of the least-squares
fitted line, and escape sequences to make the title boldface and the axis labels
bold italic.

>

Example 4.7—Physics—The Flight of a Ball

If we assume negligible air friction and ignore the curvature of the Earth, a ball
that is thrown into the air from any point on the Earth’s surface will follow a par-
abolic flight path (see Figure 4.5a). The height of the ball at any time ¢ after it is
thrown is given by Equation 4-7

1 2
y(t) = yo + vyt + 58! 4-7)

where y, is the initial height of the object above the ground, v, is the initial ver-
tical velocity of the object, and g is the acceleration due to the Earth’s gravity. The
horizontal distance (range) traveled by the ball as a function of time after it is
thrown is given by Equation (4-8)

x(t) = xo + vyt (4-8)

where x, is the initial horizontal position of the ball on the ground, and v, is the
initial horizontal velocity of the ball.
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= >
Origin Impact X
(a)

Figure 4.5 (a) When a ball is thrown upwards, it follows a parabolic trajectory. (b) The horizontal and

vertical components of a velocity vector v at an angle 6 with respect to the horizontal.

If the ball is thrown with some initial velocity v, at an angle of 6 degrees with
respect to the Earth’s surface, then the initial horizontal and vertical components
of velocity will be

vy = Vg cos 8 (4-9)
Vyo = Vo sin 6 (4-10)

Assume that the ball is initially thrown from position (x,, y,) = (0, 0) with
an initial velocity v, of 20 meters per second at an initial angle of 8 degrees. Write
a program that will plot the trajectory of the ball and also determine the horizon-
tal distance traveled before it touches the ground again. The program should plot
the trajectories of the ball for all angles 6 from 5 to 85° in 10° steps, and it should
determine the horizontal distance traveled for all angles 6 from 0 to 90° in 1°
steps. Finally, it should determine the angle 6 that maximizes the range of the ball
and plot that particular trajectory in a different color with a thicker line.

SoLuTioN  To solve this problem, we must determine an equation for the time
that the ball returns to the ground. Then, we can calculate the (x, y) position of the
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ball using Equations 4-7 through 4-10. If we do this for many times between 0 and
the time that the ball returns to the ground, we can use those points to plot the
ball’s trajectory.

The time that the ball will remain in the air after it is thrown may be calcu-
lated from Equation 4-7. The ball will touch the ground at the time ¢ for which
¥(t) = 0. Remembering that the ball will start from ground level (»(0) = 0), and
solving for ¢, we get:

1 2
(1) = yo + vyt + 58! 4-7)

1
0=0+ v+ Egtz

1
0= (vyo + 2gt>t

so the ball will be at ground level at time #; = 0 (when we threw it), and at time

2
- (4-11)
g

From the problem statement, we know that the initial velocity v, is 20 meters
per second and that the ball will be thrown at all angles from 0° to 90° in 1° steps.
Finally, any elementary physics textbook will tell us that the acceleration due to
the earth’s gravity is —9.81 meters per second squared.

Now let’s apply our design technique to this problem.

153

1. State the problem.

A proper statement of this problem would be: Calculate the range that a
ball would travel when it is thrown with an initial velocity of v of 20 m/s
at an initial angle 6. Calculate this range for all angles between 0° and
90° in 1° steps. Determine the angle 6 that will result in the maximum
range for the ball. Plot the trajectory of the ball for angles between 5° and
85° in 10° increments. Plot the maximum-range trajectory in a different
color and with a thicker line. Assume that there is no air friction.

2. Define the inputs and outputs.
As the problem has been defined, no inputs are required. We know from
the problem statement what v, and 6 will be, so there is no need to input
them. The outputs from this program will be a table showing the range of
the ball for each angle 6, the angle 6 for which the range is maximum,
and a plot of the specified trajectories.

3. Design the algorithm.
This program can be broken down into the following major steps:

Calculate the range of the ball for 0 between 0 and 90°
Write a table of ranges
Determine the maximum range and write it out
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Plot the trajectories for 0 between 5 and 85°
Plot the maximum-range trajectory

Since we know the exact number of times that the loops will be
repeated, for loops are appropriate for this algorithm. We will now
refine the pseudocode for each of the preceding major steps.

To calculate the maximum range of the ball for each angle, we will first
calculate the initial horizontal and vertical velocity from Equations (4-9) and
(4-10). Then we will determine the time when the ball returns to Earth from
Equation (4-11). Finally, we will calculate the range at that time from
Equation (4-7). The detailed pseudocode for these steps is shown here. Note
that we must convert all angles to radians before using the trig functions!

Create and initialize an array to hold ranges
for ii = 1:91

theta <- 11 - 1

vxXOo <- vo * cos(theta*conv)

vVyo <- vo * sgin(theta*conv)

max_time <- -2 * vyo / g

range (ii) <- vxo * max_time
end

Next, we must write a table of ranges. The pseudocode for this step is

Write heading
for ii = 1:91

theta <- 11 - 1

print theta and range
end

The maximum range can be found with the max function. Recall
that this function returns both the maximum value and its location. The
pseudocode for this step is

[maxrange index] <- max (range)
Print out maximum range and angle (=index-1)

We will use nested for loops to calculate and plot the trajectories.
To get all of the plots to appear on the screen, we must plot the first tra-
jectory and then set hold on before plotting any other trajectories.
After plotting the last trajectory, we must set hold of £. To perform this
calculation, we will divide each trajectory into 21 time steps and find
the x and y positions of the ball for each time step. Then, we will plot
those (x, v) positions. The pseudocode for this step is

for ii = 5:10:85
% Get velocities and max time for this angle

theta <- 11 - 1
VX0 <- vO * cos(theta*conv)
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vyo <- vo * sin(theta*conv)
max_time <- -2 * vyo / g

Initialize x and y arrays
for jj = 1:21
time <- (jj-1) * max_time/20
x(time) <- vxo * time
yv(time) <- vyo * time + 0.5 * g * time”2
end
plot(x,y) with thin green lines
Set "hold on" after first plot
end
Add titles and axis labels

Finally, we must plot the maximum range trajectory in a different

color and with a thicker line.

VX0 <- VO * cos(max_angle*conv)
vyo <- vo * sin(max_angle*conv)
max_time <- -2 * vyo / g

Initialize x and y arrays
for jj = 1:21
time <- (jj-1) * max_time/20
x(jj) <- vxo * time
v(jj) <- vyo * time + 0.5 * g * time”"2
end
plot(x,y) with a thick red line
hold off

4. Turn the algorithm into MATLAB statements.
The final MATLAB program follows.
Script file: ball.m

Purpose:
This program calculates the distance traveled by a
ball thrown at a specified angle "theta" and a
specified velocity "vo" from a point on the surface of
the Earth, ignoring air friction and the Earth’s
curvature. It calculates the angle yielding maximum
range, and also plots selected trajectories.

Record of revisions:

Date Programmer Description of change

1/30/0 S. J. Chapman Original code
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% Define variables:
% conv --
% gravity --
% ii, 33 -—
% index --
% maxangle --
% maxrange --
% range -——
% time --
% theta --
% traj_time --
% VO --
% VX0 --
% vyOo -——
% X --
% v -—

% Constants

conv = pi / 180; %
g = -9.81; %
vo = 20; %

Degrees to radians conv factor

Accel. due to gravity
Loop index

(m/s”2)

Location of maximum range in array

Angle that gives maximum range

Maximum range (m)

Range for a particular angle
Time (s)

Initial angle (deg)
Total trajectory time
Initial velocity (m/s)

(s)

(m)

X-component of initial velocity
Y-component of initial velocity

(m)
(m)

X-position of ball
Y-position of ball

due to gravity

$Create an array to hold ranges

range = zeros(1l,91);

% Calculate maximum ranges

for ii = 1:91
theta = ii 1;
VX0 = voO *
vyo = vo *

max_time =
range (ii) =
end

VX0 *

cos (theta*conv) ;
sin(theta*conv) ;
-2 * vyo / g;

max_time;

% Write out table of ranges

fprintf

for ii = 1:91
theta = ii 1;
fprintf (' %2d

end

('Range versus angle theta:\n');

%$8.4f\n',theta, range(ii));

% Calculate the maximum range and angle
[

maxrange index] =

maxangle = index - 1;
fprintf ('\nMax range is %8.4f at %2d degrees.\n'
maxrange, maxangle) ;

max (range) ;

(deg)

(m/s)
(m/s)

Degrees-to-radians conversion factor
Accel.
Initial velocity
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% Now plot the trajectories
for ii = 5:10:85

% Get velocities and max time for this angle
theta = ii;

vX0 = vo * cos(theta*conv) ;
vyo = vo * sin(theta*conv);
max_time = -2 * vyo / g;

% Calculate the (x,y) positions

x = zeros(1l,21);
y = zeros(1l,21);
for jj = 1:21
time = (jj-1) * max_time/20;
x(jj) = vxo * time;
v(jj) = vyo * time + 0.5 * g * time"2;
end
plot(x,y,'b");
if ii == 5
hold on;
end
end

% Add titles and axis lables

title ('\bfTrajectory of Ball vs Initial Angle \theta');
xlabel ('\bf\itx \rm\bf (meters)');

vlabel ('\bf\ity \rm\bf (meters)');

axis ([0 45 0 25]);

grid on;

% Now plot the max range trajectory

VX0 = VO * cos (maxangle*conv) ;

vyo = vo * sin(maxangle*conv) ;

max_time = -2 * vyo / g;

o

Calculate the (x,y) positions

x = zeros(1l,21);
v = zeros(1l,21);
for jj = 1:21
time = (jj-1) * max_time/20;
x(jj) = vxo * time;
v(jj) = vyo * time + 0.5 * g * time"2;
end
plot(x,y,'r', 'Linewidth',3.0);
hold off

The acceleration due to gravity at sea level can be found in any physics
text. It is it is about 9.81 m/s?, directed downward.



192

Chapter 4 Loops

5. Test the program.
To test this program, we will calculate the answers by hand for a few of
the angles and compare the results with the output of the program.

2
0 Vo = Vo €OSO vy = vosind  t; = ——;ﬂ X = Vyoty
0° 20 m/s 0m/s 0s 0m
5° 19.92 m/s 1.74 m/s 0.355s 7.08 m
40° 15.32 m/s 12.86 m/s 2.621s 40.15 m
45° 14.14 m/s 14.14 m/s 2.883 s 40.77 m

When program ball is executed, a 91-line table of angles and ranges is
produced. To save space, only a portion of the table is reproduced here.

» ball

Range versus angle theta:
0.0000

.4230

.8443

.2621

.6747

.0805

U W N R o
~N ok N

40 40.1553
41 40.3779
42 40.5514
43 40.6754
44 40.7499
45 40.7747
46 40.7499
47 40.6754
48 40.5514
49 40.3779
50 40.1553

85 7.0805
86 5.6747
87 4.2621
88 2.8443
89 1.4230
90 0.0000

Max range is 40.7747 at 45 degrees.
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Trajectory of Ball vs Initial Angle 6
25 .r ! ! ! '

¥ (meters)

0 5 10 15 20 25 30 35 40 45
x (meters)

Figure 4.6 Possible trajectories for the ball.

The resulting plot is shown in Figure 4.6. The program output matches our
hand calculation for the angles calculated above to the 4-digit accuracy of
the hand calculation. Note that the maximum range occurred at an angle

of 45°.
-«

This example uses several of the plotting capabilities that we introduced
in Chapter 3. It uses the axis command to set the range of data to display,
the hold command to allow multiple plots to be placed on the same axes, the
LineWidth property to set the width of the line corresponding to the maximum-
range trajectory, and escape sequences to create the desired title and x- and y-axis
labels.

However, this program is not written in the most efficient manner, since
there are a number of loops that could have been better replaced by vectorized
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statements. You will be asked to rewrite and improve ball .m in Exercise 4.11
at the end of this chapter.

4.6 Summary

There are two basic types of loops in MATLAB, the while loop and the for
loop. The while loop is used to repeat a section of code in cases where we do
not know in advance how many times the loop must be repeated. The for loop
is used to repeat a section of code in cases where we know in advance how many
times the loop should be repeated. It is possible to exit from either type of loop at
any time using the break statement.

4.6.1 Summary of Good Programming Practice

The following guidelines should be adhered to when programming with loop con-
structs. If you follow them consistently, your code will contain fewer bugs, will
be easier to debug, and will be more understandable to others who may need to
work with it in the future.

1.

Always indent code blocks in while and for constructs to make them
more readable.

. Use a while loop to repeat sections of code when you don’t know in

advance how often the loop will be executed.

. Use a for loop to repeat sections of code when you know in advance how

often the loop will be executed.

. Never modify the values of a for loop index while inside the loop.
. Always preallocate all arrays used in a loop before executing the loop.

This practice greatly increases the execution speed of the loop.

. If it is possible to implement a calculation either with a for loop or using

vectors, implement the calculation with vectors. Your program will be
much faster.

. Do not rely on the JIT compiler to speed up your code. It has many limi-

tations, and a programmer can typically do a better job with manual vec-
torization.

. Use the MATLAB Profiler to identify the parts of programs that consume

the most CPU time. Optimizing those parts of the program will speed up
the overall execution of the program.

4.6.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.
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Commands and Functions

break Stop the execution of a loop, and transfer control to the first
statement after the end of the loop.

continue Stop the execution of a loop, and transfer control to the top of
the loop for the next iteration.

for loop Loops over a block of statements a specified number of times.

tic Resets elapsed time counter.

toc Returns elapsed time since last call to tic.

while loop Loops over a block of statements until a test condition becomes
0 (false).

4.7 Exercises

4.1 Write the MATLAB statements required to calculate y(f) from the

equation
) = =32 +5 t=0
Y 32 +5 1<0

for values of # between —9 and 9 in steps of 0.5. Use loops and branches to
perform this calculation.

4.2 Rewrite the statements required to solve Exercise 4.1 using vectorization.

4.3 Write the MATLAB statements required to calculate and print out the
squares of all the even integers between 0 and 50. Create a table con-
sisting of each integer and its square, with appropriate labels over each
column.

4.4 Write an M-file to evaluate the equation y(x) = x*> — 3x + 2 for all val-
ues of x between —1 and 3, in steps of 0.1. Do this twice, once with a for
loop and once with vectors. Plot the resulting function using a 3-point-
thick dashed red line.

4.5 Write an M-file to calculate the factorial function N!, as defined in
Example 4.2. Be sure to handle the special case of 0! Also, be sure to
report an error if N is negative or not an integer.

4.6 Examine the following for statements and determine how many times
each loop will be executed.

(a) for ii = -32768:32767
(b) for ii = 32768:32767
(c) for kk = 2:4:3

(d) for jj = ones(5,5)
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4.7 Examine the following for loops and determine the value of ires at
the end of each of the loops, and also the number of times each loop

executes.
(@) ires = 0;
for index = -10:10
ires = ires + 1;
end

(b) ires = 0;
for index = 10:-2:4
if index == 6
continue;
end
ires = ires + index;
end

(¢) ires = 0;
for index = 10:-2:4
if index == 6
break;
end
ires = ires + index;
end

(d) ires = 0;
for indexl = 10:-2:4
for index2 = 2:2:indexl
if index2 == 6
break
end
ires = ires + 1index2;
end
end

4.8 Examine the following while loops and determine the value of ires at
the end of each of the loops and the number of times each loop executes.

(@) ires = 1;
while mod(ires,10) ~= 0
ires = ires + 1;
end

() ires = 2;
while ires <= 200
ires = ires”2;
end
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(¢) ires = 2;
while ires > 200
ires = ires”2;
end

What is contained in array arrl after each of the following sets of state-
ments have been executed?
(@ arrl = [1 2 3 4; 56 7 8; 9 10 11 121;

mask = mod(arrl,2) == 0;

arrl (mask) = -arrl (mask);

() arrl = [1 2 3 4; 56 7 8; 9 10 11 12];

arr2 = arrl <= 5;
arrl (arr2) = 0;
arrl (~arr2) = arrl(~arr2)."2;

How can a logical array be made to behave as a logical mask for vector
operations?

Modify program ball from Example 4.7 by replacing the inner for
loops with vectorized calculations.

Modify program ball from Example 4.7 to read in the acceleration due
to gravity at a particular location, and to calculate the maximum range of
the ball for that acceleration. After modifying the program, run it with
accelerations of —9.8 m/s?, —9.7 m/s%, and —9.6 m/s>. What effect does
the reduction in gravitational attraction have on the range of the ball? What
effect does the reduction in gravitational attraction have on the best angle 0
at which to throw the ball?

Modify program ball from Example 4.7 to read in the initial velocity
with which the ball is thrown. After modifying the program, run it with
initial velocities of 10 m/s, 20 m/s, and 30 m/s. What effect does chang-
ing the initial velocity v, have on the range of the ball? What effect does
it have on the best angle # at which to throw the ball?

Program 1sgfit from Example 4.6 required the user to specify the number
of input data points before entering the values. Modify the program so that it
reads an arbitrary number of data values using a whi 1e loop, and stops read-
ing input values when the user pressed the Enter key without typing any val-
ues. Test your program using the same two data sets that were used in
Example 4.6. (Hint: The input function returns an empty array ([]) ifa
user presses Enter without supplying any data. You can use function i semp-
ty to test for an empty array, and stop reading data when one is detected.)
Modify program 1sgfit from Example 4.6 to read its input values from
an ASCII file named inputl.dat. The data in the file will be organ-
ized in rows, with one pair of (x, y) values on each row, as shown here:

1.1 2.2
2.2 3.3
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4.16

4.18

4.19

Test your program using the same two data sets that were used in
Example 4.6. (Hint: Use the 1oad command to read the data into an
array named inputl, and then store the first column of input1 into
array x and the second column of inputl into array y.)

MATLAB Least-Squares Fit Function MATLAB includes a standard
function that performs a least-squares fit to a polynomial. Function poly-
fit calculates the least-squares fit of a data set to a polynomial of order N:

p(x) =ax"+ a,_x" '+ - +ax+ a (4-12)

where N can be any value greater than or equal to 1. Note that for N = 1,
this polynomial is a linear equation, with the slope being the coefficient a;
and the y-intercept being the coefficient a,. The form of this function is

p = polyfit(x,y,n)

where x and y are vectors of x and y components, and n is the order of
the fit.

Write a program that calculates the least-squares fit of a data set to a
straight line using polyfit. Plot the input data points and the resulting
fitted line. Compare the result produced by the program using polyfit with
the result produced by 1sgfit for the input data set in Example 4.6.
Program doy in Example 4.3 calculates the day of year associated with any
given month, day, and year. As written, this program does not check to see
if the data entered by the user is valid. It will accept nonsense values for
months and days and do calculations with them to produce meaningless
results. Modify the program so that it checks the input values for validity
before using them. If the inputs are invalid, the program should tell the user
what is wrong, and quit. The year should be a number greater than zero, the
month should be a number between 1 and 12, and the day should be a num-
ber between 1 and a maximum that depends on the month. Use a switch
construct to implement the bounds checking performed on the day.

Write a MATLAB program to evaluate the function

1
1 —x

y(x) = In

for any user-specified value of x, where In is the natural logarithm (loga-
rithm to the base e). Write the program with a while loop, so that the
program repeats the calculation for each legal value of x entered into
the program. When an illegal value of x is entered, terminate the pro-
gram. (Any x = 1 is considered an illegal value.)

Fibonacci Numbers The nth Fibonacci number is defined by the fol-
lowing recursive equations:

) =1
f2) =2
f) =fn = 1) + f(n = 2)
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Figure 4.7 A semiconductor diode.
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4.21

Therefore, f(3) = f(2) + f(1) =2 + 1 = 3, and so forth for higher
numbers. Write an M-file to calculate and write out the nth Fibonacci
number for n > 2, where n is input by the user. Use a while loop to per-
form the calculation.

Current Through a Diode The current flowing through the semicon-
ductor diode shown in Figure 4.7 is given by the equation

ip = 1 - ) (+-13)
where ip = the voltage across the diode, in volts
vp = the current flow through the diode, in amps
I, = the leakage current of the diode, in amps
g = the charge on an electron, 1.602 X 10~!? coulombs
k = Boltzmann’s constant, 1.38 X 1072 joule/K
T = temperature, in kelvins (K)

The leakage current 7, of the diode is 2.0 u A. Write a program to calcu-
late the current flowing through this diode for all voltages from —1.0 V to
+0.6 V, in 0.1 V steps. Repeat this process for the following temperatures:
75°F and 100°F, and 125°F. Create a plot of the current as a function of
applied voltage, with the curves for the three different temperatures
appearing as different colors.
Tension on a Cable A 200-pound object is to be hung from the end of
a rigid 8-foot horizontal pole of negligible weight, as shown in Figure 4.8.
The pole is attached to a wall by a pivot and is supported by an 8-foot
cable that is attached to the wall at a higher point. The tension on this cable
is given by the equation
Welc-Ip

T N =& (4-14)
where T is the tension on the cable, ¥ is the weight of the object, /c is the
length of the cable, Ip is the length of the pole, and d is the distance along
the pole at which the cable is attached. Write a program to determine the dis-
tance d at which to attach the cable to the pole in order to minimize the
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Ip=8fi

W=200Ib

Figure 4.8 A 200 pound weight suspended from a rigid bar supported by a cable.
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tension on the cable. To do this, the program should calculate the tension on
the cable at regular one-foot intervals from d = 1 foot to d = 7 feet, and
should locate the position d that produces the minimum tension. Also, the
program should plot the tension on the cable as a function of d, with appro-
priate titles and axis labels.

Bacterial Growth Suppose that a biologist performs an experiment in
which he or she measures the rate at which a specific type of bacterium
reproduces asexually in different culture media. The experiment shows
that in Medium A the bacteria reproduce once every 60 minutes, and in
Medium B the bacteria reproduce once every 90 minutes. Assume that a
single bacterium is placed on each culture medium at the beginning of the
experiment. Write a program that calculates and plots the number of bac-
teria present in each culture at intervals of three hours from the beginning
of the experiment until 24 hours have elapsed. Make two plots, one a lin-
ear xy plot and the other a linear-log (semilogy) plot. How do the num-
bers of bacteria compare on the two media after 24 hours?

Decibels Engineers often measure the ratio of two power measurements in
decibels, or dB. The equation for the ratio of two power measurements
in decibels is

dB = 10 logm& (4-15)
Py

where P, is the power level being measured and P; is some reference power

level. Assume that the reference power level P; is 1 watt, and write a program

that calculates the decibel level corresponding to power levels between 1 and

20 watts, in 0.5 W steps. Plot the dB-versus-power curve on a log-linear scale.
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Geometric Mean The geometric mean of a set of numbers x; through
x,, is defined as the nth root of the product of the numbers:

geometric mean = \/x,xx3. . . x, (4-16)

Write a MATLAB program that will accept an arbitrary number of posi-
tive input values and calculate both the arithmetic mean (i.e., the average)
and the geometric mean of the numbers. Use a while loop to get the
input values, and terminate the inputs when a user enters a negative num-
ber. Test your program by calculating the average and geometric mean of
the four numbers 10, 5, 2, and 5.

RMS Average The root-mean-square (rms) average is another way of
calculating a mean for a set of numbers. The rms average of a series of num-
bers is the square root of the arithmetic mean of the squares of the numbers:

1 N
rms average = + |— > x? (4-17)
Ni=1

Write a MATLAB program that will accept an arbitrary number of posi-
tive input values and calculate the rms average of the numbers. Prompt the
user for the number of values to be entered, and use a for loop to read in
the numbers. Test your program by calculating the rms average of the four
numbers 10, 5, 2, and 5.
Harmonic Mean The harmonic mean is yet another way of calculating
a mean for a set of numbers. The harmonic mean of a set of numbers is
given by the equation:
. N
harmonic mean = 1 1 1 (4-18)
- + JR— + o + -
X X AN

Write a MATLAB program that will read in an arbitrary number of posi-
tive input values and calculate the harmonic mean of the numbers. Use any
method that you desire to read in the input values. Test your program by
calculating the harmonic mean of the four numbers 10, 5, 2, and 5.

Write a single program that calculates the arithmetic mean (average), rms
average, geometric mean, and harmonic mean for a set of positive num-
bers. Use any method that you desire to read in the input values. Compare
these values for each of the following sets of numbers:

(a) 4,4,4,4,4,4,4
(b) 4,3,4,5,4,3,5
(c) 4,1,4,7,4,1,7
(d) 1,2,3,4,5,6,7

>

Mean Time Between Failure Calculations The reliability of a piece of
electronic equipment is usually measured in terms of mean time between
failures (MTBF), where MTBF is the average time that the piece of equip-
ment can operate before a failure occurs in it. For large systems containing
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Overall System

——> Subsystem |

—’ Subsystem 2 —> Subsystem 3 ’

MTEBF 1

MTBF 2 MTBEF 3

MTBF

Figure 4.9 An electronic system containing three subsystems with known MTBFs.

many pieces of electronic equipment, it is customary to determine the
MTBFs of each component and to calculate the overall MTBF of the sys-
tem from the failure rates of the individual components. If the system is
structured like the one shown in Figure 4.9, every component must work in
order for the whole system to work, and the overall system MTBF can be
calculated as
1
MTBF,, = 1 N N (4-19)

+ oot
MTBF, MTBF, MTBF,

Write a program that reads in the number of series components in a sys-
tem and the MTBFs for each component and then calculates the overall
MTBEF for the system. To test your program, determine the MTBF for a
radar system consisting of an antenna subsystem with an MTBF of 2000
hours, a transmitter with an MTBF of 800 hours, a receiver with an MTBF
of 3000 hours, and a computer with an MTBF of 5000 hours.
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User-Defined
Functions

In Chapter 3, we learned the importance of good program design. The basic
technique that we employed is top-down design. In top-down design, the pro-
grammer starts with a statement of the problem to be solved and the required
inputs and outputs. Next, he or she describes the algorithm to be implemented
by the program in broad outline and applies decomposition to break the algo-
rithm down into logical subdivisions called sub-tasks. Then the programmer
breaks down each sub-task until he or she winds up with many small pieces,
each of which does a simple, clearly understandable job. Finally, the individual
pieces are turned into MATLAB code.

Although we have followed this design process in our examples, the results
have been somewhat restricted because we have had to combine the final MATLAB
code generated for each sub-task into a single large program.There has been no
way to code, verify, and test each sub-task independently before combining them
into the final program.

Fortunately, MATLAB has a special mechanism designed to make sub-tasks
easy to develop and debug independently before building the final program. It is
possible to code each sub-task as a separate function, and each function can be
tested and debugged independently of all of the other sub-tasks in the program.

Well-designed functions enormously reduce the effort required on a large
programming project. Their benefits include

I. Independent testing of sub-tasks. Each sub-task can be written as an
independent unit. The sub-task can be tested separately to ensure that it
performs properly by itself before combining it into the larger program.
This step is known as unit testing. It eliminates a major source of prob-
lems before the final program is even built.

203
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2. Reusable code. In many cases, the same basic sub-task is needed in
many parts of a program. For example, it may be necessary to sort a list
of values into ascending order many times within a program, or even
within other programs. It is possible to design, code, test, and debug a
single function to do the sorting and then to reuse that function when-
ever sorting is required.This reusable code has two major advantages: it
reduces the total programming effort required, and it simplifies debug-
ging, since the sorting function needs to be debugged only once.

3. Isolation from unintended side effects. Functions receive input
data from the program that invokes them through a list of variables
called an input argument list, and return results to the program
through an output argument list. Each function has its own work-
space with its own variables, independent of all other functions and of
the calling program. The only variables in the calling program that can be
seen by the function are those in the input argument list, and the only vari-
ables in the function that can be seen by the calling program are those in
the output argument list. This is very important, since accidental pro-
gramming mistakes within a function can affect only the variables with-
in function in which the mistake occurred.

Once a large program is written and released, it has to be maintained.
Program maintenance involves fixing bugs and modifying the program to
handle new and unforeseen circumstances. The programmer who modifies a
program during maintenance is often not the person who originally wrote it.
In poorly written programs, it is common for the programmer modifying the
program to make a change in one region of the code and to have that change
cause unintended side effects in a totally different part of the program. This
happens because variable names are reused in different portions of the pro-
gram. When the programmer changes the values left behind in some of the
variables, those values are accidentally picked up and used in other portions
of the code.

The use of well-designed functions minimizes this problem by data hiding.
The variables in the main program are not visible to the function (except for
those in the input argument list), and the variables in the main program cannot
be accidentally modified by anything occurring in the function. Therefore, mis-
takes or changes in the function’s variables cannot accidentally cause unintended
side effects in the other parts of the program.

Break large program tasks into functions whenever practical to achieve the
important benefits of independent component testing, reusability, and isolation
from undesired side effects.



5.1 Introduction to MATLAB Functions | 205

5.1 Introduction to MATLAB Functions

All of the M-files that we have seen so far have been script files. Script files
are just collections of MATLAB statements that are stored in a file. When a
script file is executed, the result is the same as it would be if all of the com-
mands had been typed directly into the Command Window. Script files share
the Command Window’s workspace, so any variables that were defined
before the script file starts are visible to the script file, and any variables
created by the script file remain in the workspace after the script file finishes
executing. A script file has no input arguments and returns no results, but
script files can communicate with other script files through the data left
behind in the workspace.

In contrast, a MATLAB function is a special type of M-file that runs in its
own independent workspace. It receives input data through an input argument
list, and returns results to the caller through an output argument list. The gen-
eral form of a MATLAB function is

function [outargl, outarg2, ...] = fname(inargl, inarg2, ...)
H1 comment line
% Other comment lines

o°

(Executable code)

(return)
(end)

The function statement marks the beginning of the function. It specifies the
name of the function and the input and output argument lists. The input argument
list appears in parentheses after the function name, and the output argument list
appears in brackets to the left of the equal sign. (If there is only one output argu-
ment, the brackets can be dropped.)

Each ordinary MATLAB function should be placed in a file with the same
name (including capitalization) as the function, and the file extent “.m”. For
example, if a function is named My_ fun, then that function should be placed in
a file named My_ fun.m.

The input argument list is a list of names representing values that will be
passed from the caller to the function. These names are called dummy arguments.
They are just placeholders for actual values that are passed from the caller when
the function is invoked. Similarly, the output argument list contains a list of
dummy arguments that are placeholders for the values returned to the caller when
the function finishes executing.

A function is invoked by naming it in an expression together with a list of
actual arguments. A function may be invoked by typing its name directly in the
Command Window, or by including it in a script file or another function. The name
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in the calling program must exactly match the function name (including capital-
ization)!. When the function is invoked, the value of the first actual argument is used
in place of the first dummy argument, and so forth for each other actual argu-
ment/dummy argument pair.

Execution begins at the top of the function and ends when either a
return statement, an end statement, or the end of the function is reached.
Because execution stops at the end of a function anyway, the return
statement is not actually required in most functions and is rarely used. Each
item in the output argument list must appear on the left side of a least one
assignment statement in the function. When the function returns, the values
stored in the output argument list are returned to the caller and may be used in
further calculations.

The use of an end statement to terminate a function is a new feature as of
MATLAB 7.0. In earlier versions of MATLAB, the end statement was used only
to terminate structures such as if, for, while, and the like. It is optional in
MATLAB 7 and later unless a file includes nested functions, which will be cov-
ered further on in this chapter. In this book, we will not use an end statement
unless it is actually needed (in a set of nested functions).

The initial comment lines in a function serve a special purpose. The first
comment line after the function statement is called the H1 comment line. It should
always contain a one-line summary of the purpose of the function. The special sig-
nificance of this line is that it is searched and displayed by the 1lookfor com-
mand. The remaining comment lines from the H1 line until the first blank line or
the first executable statement are displayed by the help command. They should
contain a brief summary of how to use the function.

A simple example of a user-defined function is shown here. Function dist?2
calculates the distance between points (x,, ;) and (x,, y,) in a Cartesian coordi-
nate system.

function distance = dist2 (x1, y1, x2, y2)
%$DIST2 Calculate the distance between two points

d° 00 0P od° o o°

o° o°

Function DIST2 calculates the distance between
two points (x1,vy1l) and (x2,y2) in a Cartesian
coordinate system.

Calling sequence:
distance = dist2(x1l, v1, x2, y2)

Define variables:
x1 —-— x-position of point 1

For example, suppose that a function has been declared with the name My_Fun, and placed in file
My_Fun.m. Then this function should be called with the name My_ Fun, not my_ fun or MY_FUN.
If the capitalization fails to match, this will produce an error on Linux, Unix, and Macintosh com-
puters, and a warning on Windows-based computers.
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% vl —-— y-position of point 1
% x2 —-— xX-position of point 2
% v2 —-— y-position of point 2
% distance —-- Distance between points
% Record of revisions:
% Date Programmer Description of change
% 02/01/07 S. J. Chapman Original code
% Calculate distance.
distance = sqgrt((x2-x1).72 + (y2-yl1l)."2);
end % function distance

This function has four input arguments and one output argument. A simple script
file using this function is

% Script file: test_dist2.m

%

% Purpose:

% This program tests function dist2.

%

% Record of revisions:

% Date Programmer Description of change
% ==== ========== ——====================
% 2/01/0 S. J. Chapman Original code

%

% Define variables:

% ax -- x-position of point a

% ay -- y-position of point a

% bx -- x-position of point b

% by -- y-position of point b

% result -- Distance between the points

o

Get input data.

disp('Calculate the
ax = input('Enter x
ay = input ('Enter vy
bx = input ('Enter x
by = input('Enter y

% Evaluate function
result dist2 (ax,

% Write out result.
fprintf (

distance
of
of
of
of

value
value
value
value

ay, bXI bY);

between two points:
point a:
point a:
point b:
point b:

'The distance between points a and b is

")

")

$f\n',result) ;
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When this script file is executed, the results are

» test_dist2

Calculate the distance between two points:
Enter x value of point a: 1

Enter vy value of point a: 1

Enter x value of point b: 4

Enter vy value of point b: 5

The distance between points a and b is 5.000000

These results are correct, as we can verify from simple hand calculations.
Function dist2 also supports the MATLAB help subsystem. If we type
“help dist2”, the results are

» help dist2

DIST2 Calculate the distance between two points
Function DIST2 calculates the distance between
two points (x1,yl) and (x2,y2) in a Cartesian
coordinate system.

Calling sequence:
res = dist2(x1l, yl1, x2, y2)

Similarly, “lookfor distance” produces the result

» lookfor distance

DIST2 Calculate the distance between two points
MAHAL Mahalanobis distance.

DIST Distances between vectors.

NBDIST Neighborhood matrix using vector distance.
NBGRID Neighborhood matrix using grid distance.
NBMAN Neighborhood matrix using Manhattan-distance.

To observe the behavior of the MATLAB workspace before, during, and after
the function is executed, we will load function dist2 and the script file
test_dist2 into the MATLAB debugger and set breakpoints before, during,
and after the function call (see Figure 5.1). When the program stops at the break-
point before the function call, the workspace is as shown in Figure 5.2(a). Note
that variables ax, ay, bx, and by are defined in the workspace with the values
that we have entered. When the program stops at the breakpoint within the func-
tion call, the function’s workspace is active. It is as shown in Figure 5.2(b). Note
that variables x1, x2, y1, y2, and distance are defined in the function’s
workspace, and the variables defined in the calling M-file are not present. When
the program stops in the calling program at the breakpoint after the function call,
the workspace is as shown in Figure 5.2(c). Now the original variables are back,
with the variable result added to contain the value returned by the function.
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Seript file: cest_distZ.m

Purpose:
This program tests function dist2.

Record of revisions:
Date Programmer Deacription of change

%
%
3
&
%
3
%
%
% 0z/01/07 5. J. Chapman Original code
%
L
%
%
%
L
%

Define variables:
== ¥=-pogition of point &
—-- y-position of point a
== ¥=position of point b
== y-position of point b
result -- Distance between the points

% Get input data.

disp(‘Calculate the distance between two points:');
ax = inpuc('Enter x value of point a: ‘1

ay = input('Enter ¥ value of point a: 'V:

bx = input('Enter x value of point b: b

by = input('Enter ¥ value of point b: i

% Evaluate function
26/@® result = distZ (ax, ay, bx, by):

% Write out result.
fprintf (' The distance between points a and b is %£\n',resulc);

Figure 5.1 M-file test_dist2 and function dist2 are loaded into the debugger, with
breakpoints set before, during, and after the function call.

These figures show that the workspace of the function is different from the work-
space of the calling M-file.

5.2 Variable Passing in MATLAB:
The Pass-by-Value Scheme

MATLAB programs communicate with their functions using a pass-by-value
scheme. When a function call occurs, MATLAB makes a copy of the actual argu-
ments and passes them to the function. This copying is very significant, because
it means that even if the function modifies the input arguments, it won’t affect
the original data in the caller. This feature helps to prevent unintended side effects
in which an error in the function might unintentionally modify variables in the
calling program.

This behavior is illustrated in the function shown here. This function has two
input arguments: a and b. During its calculations, it modifies both input arguments.



(@

X 1 1 1
FH ay 1 1 1
FH b 5 5 5
FH by 4 4 4
FH result 5 5 5

©

Figure 5.2 (@) The workspace before the function call. (b)) The workspace during the function call.
(c) The workspace after the function call.
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function out = sample(a, b, c)

fprintf ('In sample: a = %f, b = %f $f\n',a,b);
a = b(l) + 2*a;

b =a .* b;

out = a + b(l);

fprintf ('In sample: a = %f, b = %f $f\n',a,b);
A simple test program to call this function is

a=2; b= [64];

fprintf ('Before sample: a = %$f, b = %f %f\n',a,b);

out = sample(a,b);
fprintf ('After sample: a = %$f, b = %f %f\n',a,b);
fprintf ('After sample: out = %f\ )

When this program is executed, the results are

» test_sample

Before sample: a = 2.000000, b = 6.000000 4.000000

In sample: a = 2.000000, b = 6.000000 4.000000

In sample: a = 10.000000, b = 60.000000 40.000000
a

After sample: = 2.000000, b = 6.000000 4.000000
After sample: out = 70.000000

Note that a and b were both changed inside function sample, but those changes
had no effect on the values in the calling program.
Users of the C language will be familiar with the pass-by-value scheme, since

C uses it for scalar values passed to functions. However C does nof use the pass-

by-value scheme when passing arrays, so an unintended modification to a dummy

array in a C function can cause side effects in the calling program. MATLAB

improves on this by using the pass-by-value scheme for both scalars and arrays?.
>—
Example 5.1—Rectangular-to-Polar Conversion

The location of a point in a Cartesian plane can be expressed in either the rectan-
gular coordinates (x, y) or the polar coordinates (, 8), as shown in Figure 5.3. The
relationships among these two sets of coordinates are given by the following
equations:

x = rcos 6 (5-1)
y =rsinf (5-2)

>The implementation of argument passing in MATLAB is actually more sophisticated than this dis-
cussion indicates. As pointed out above, the copying associated with pass-by-value takes up a lot of
time, but it provides protection against unintended side effects. MATLAB actually uses the best of
both approaches: it analyzes each argument of each function and determines whether or not the func-
tion modifies that argument. If the function modifies the argument, then MATLAB makes a copy of
it. If it does not modify the argument, then MATLAB simply points to the existing value in the calling
program. This practice increases speed while still providing protection against side effects!
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Ay

\ 4

Figure 5.3 A point P in a Cartesian plane can be located by either the rectangular coordinates (x, y)
or the polar coordinates (7, 6).

r=Vx*+ y2 (5-3)

0= tan”%

(5-4)

Write two functions rect2polar and polar2rect that convert coordinates
from rectangular to polar form and vice versa, where the angle 0 is expressed in
degrees.

SoLuTioON  We will apply our standard problem-solving approach to creating
these functions. Note that MATLAB’s trigonometric functions work in radians, so
we must convert from degrees to radians and vice versa when solving this prob-
lem. The basic relationship between degrees and radians is

180° = & radians (5-5)

1. State the problem.
A succinct statement of the problem is

Write a function that converts a location on a Cartesian plane
expressed in rectangular coordinates into the corresponding
polar coordinates, with the angle 0 is expressed in degrees. Also,
write a function that converts a location on a Cartesian plane
expressed in polar coordinates with the angle 0 expressed in
degrees into the corresponding rectangular coordinates.
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2. Define the inputs and outputs.
The inputs to function rect2polar are the rectangular (x, y) location
of a point. The outputs of the function are the polar (r, 8) location of
the point. The inputs to function polar2rect are the polar (r, 6)
location of a point. The outputs of the function are the rectangular (x, y)
location of the point.

3. Describe the algorithm.
These functions are very simple, so we can directly write the final
pseudocode for them. The pseudocode for function polar2rect is

X <- r * cos(theta * pi/180)
y <- r * sin(theta * pi/180)

The pseudocode for function rect2polar will use the function
atan?2, because that function works over all four quadrants of
the Cartesian plane. (Look up that function in the MATLAB

Help Browser!)

r <- sqgrt( x."2 + vy .72 )
theta <- 180/pi * atan2(y,x)

4. Turn the algorithm into MATLAB statements.
The MATLAB code for the selection polar2rect function is

function [x%, y] = polar2rect(r,theta)

%$POLAR2RECT Convert rectangular to polar coordinates
Function POLAR2RECT accepts the polar coordinates
(r,theta), where theta is expressed in degrees,
and converts them into the rectangular coordinates
(x,y) .

o 00 00 0P o°

o

Calling sequence:

% [x, y] = polar2rect(r, theta)

% Define variables:

% r -- Length of polar vector

% theta -- Angle of vector in degrees
% X -- x-position of point

% v -- y-position of point

o

Record of revisions:
Date Programmer Description of change

o

o

02/01/07 S. J. Chapman Original code

o

X

= r * cos(theta * pi/180);
v = r * sin(theta * pi/180);
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The MATLAB code for the selection rect2polar function is

function [r, theta] = rect2polar(x,y)

$RECT2POLAR Convert rectangular to polar coordinates
Function RECT2POLAR accepts the rectangular coordinates
(x,v) and converts them into the polar coordinates
(r,theta), where theta is expressed in degrees.

o 00 o o°

oe

Calling sequence:
[r, theta] = rectl2polar(x,y)

oe

Define variables:

oe

% r -- Length of polar wvector

% theta -- Angle of vector in degrees
% x -- x-position of point

% v -- y-position of point

Record of revisions:
Date Programmer Description of change

oe

oe

oe

01/0 S. J. Chapman Original code

oe
\ Il

r = sgrt( x.”2 +y .72 );
theta = 180/pi * atan2(y,x);

Note that these functions both include help information, so they will
work properly with MATLAB’s help subsystem and with the lookfor
command.

5. Test the program.
To test these functions, we will execute them directly in the MATLAB
Command Window. We will test the functions using the 3-4-5 triangle,
which is familiar to most people from high school. The smaller angle
within a 3-4-5 triangle is approximately 36.87°. We will also test the func-
tion in all four quadrants of the Cartesian plane to ensure that the conver-
sions are correct everywhere.

» [r, theta] = rect2polar(4,3)
r =
5
theta =
36.8699
» [r, theta] = rect2polar(-4,3)
r =
5
theta =
143.1301
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» [r, theta] = rect2polar(-4,-3)

r =
5

theta =

-143.1301
» [r, theta] = rect2polar(4,-3)
r =

5

theta =

-36.8699
» [x%, y] = polar2rect(5,36.8699)
X =

4.0000
y:

3.0000
» [x, y] = polar2rect(5,143.1301)
X =

-4.0000
y:

3.0000
» [x%x, y] = polar2rect(5,-143.1301)
X =

-4.0000
y:

-3.0000
» [x%x, y] = polar2rect(5,-36.8699)
X =

4.0000
y:

-3.0000

»>

These functions appear to be working correctly in all quadrants of the

Cartesian plane.
-

__________________________________________________________________________________________________________________________________|
>—
Example 5.2—Sorting Data
In many scientific and engineering applications, it is necessary to take a random
input data set and to sort it so that the numbers in the data set are either all in
ascending order (lowest to highest) or all in descending order (highest to lowest).

For example, suppose that you were a zoologist studying a large population of
animals and that you wanted to identify the largest 5 percent of the animals in the
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population. The most straightforward way to approach this problem would be to
sort the sizes of all of the animals in the population into ascending order and take
the top 5 percent of the values.

Sorting data into ascending or descending order seems to be an easy job.
After all, we do it all the time. It is simple matter for us to sort the data (10, 3, 6,
4, 9) into the order (3, 4, 6, 9, 10). How do we do it? We first scan the input data
list (10, 3, 6, 4, 9) to find the smallest value in the list (3), and then scan the
remaining input data (10, 6, 4, 9) to find the next smallest value (4), and so on
until the complete list is sorted.

In fact, sorting can be a very difficult job. As the number of values to be
sorted increases, the time required to perform the simple sort just described
increases rapidly, since we must scan the input data set once for each value sorted.
For very large data sets, this technique just takes too long to be practical. Even
worse, how would we sort the data if there were too many numbers to fit into the
main memory of the computer? The development of efficient sorting techniques
for large data sets is an active area of research and is the subject of whole cours-
es all by itself.

In this example, we will confine ourselves to the simplest possible algorithm
to illustrate the concept of sorting. This simplest algorithm is called the selection
sort. It is just a computer implementation of the mental math described previ-
ously. The basic algorithm for the selection sort is

1. Scan the list of numbers to be sorted to locate the smallest value in the list.
Place that value at the front of the list by swapping it with the value cur-
rently at the front of the list. If the value at the front of the list is already
the smallest value, then do nothing.

2. Scan the list of numbers from position 2 to the end to locate the next
smallest value in the list. Place that value in position 2 of the list by swap-
ping it with the value currently at that position. If the value in position 2
is already the next smallest value, then do nothing.

3. Scan the list of numbers from position 3 to the end to locate the third
smallest value in the list. Place that value in position 3 of the list by swap-
ping it with the value currently at that position. If the value in position 3
is already the third smallest value, then do nothing.

4. Repeat this process until the next-to-last position in the list has been
reached. After the next-to-last position in the list has been processed, the
sort is complete.

Note that if we are sorting N values, this sorting algorithm requires N—1 scans
through the data to accomplish the sort.

This process is illustrated in Figure 5.4. Since there are five values in the
data set to be sorted, we will make four scans through the data. During the first
pass through the entire data set, the minimum value is 3, so the 3 is swapped
with the 10 which was in position 1. Pass 2 searches for the minimum value in
positions 2 through 5. That minimum is 4, so the 4 is swapped with the 10 in
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3 3 3 3
10 4 4 4
6 6 6 6

4 10 10
9 9 9 > 10

L]

Swap No Swap Swap

Figure 5.4 An example problem demonstrating the selection sort algorithm.

position 2. Pass 3 searches for the minimum value in positions 3 through 5.
That minimum is 6, which is already in position 3, so no swapping is required.
Finally, pass 4 searches for the minimum value in positions 4 through 5. That
minimum is 9, so the 9 is swapped with the 10 in position 4, and the sort is

completed.
-«

The selection sort algorithm is the easiest sorting algorithm to understand, but
it is computationally inefficient. It should never be applied to sort large data sets
(say, sets with more than 1000 elements). Over the years, computer scientists
have developed much more efficient sorting algorithms. The sort and
sortrows functions built into MATLAB are extremely efficient and should be
used for all real work.

We will now develop a program to read in a data set from the Command
Window, sort it into ascending order, and display the sorted data set. The sorting
will be done by a separate user-defined function.

SoLuTioN  This program must be able to ask the user for the input data, sort the
data, and write out the sorted data. The design process for this problem is given
as follows.
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for ii

Q

. State the problem.

We have not yet specified the type of data to be sorted. If the data is
numeric, then the problem may be stated as follows:

Develop a program to read an arbitrary number of numeric input val-
ues from the Command Window, sort the data into ascending order
using a separate sorting function, and write the sorted data to the
Command Window.

. Define the inputs and outputs.

The inputs to this program are the numeric values typed in the Command
Window by the user. The outputs from this program are the sorted data
values written to the Command Window.

. Describe the algorithm.

This program can be broken down into three major steps:

Read the input data into an array
Sort the data in ascending order
Write the sorted data

The first major step is to read in the data. We must prompt the user
for the number of input data values and then read in the data. Since we
will know how many input values there are to read, a for loop is appro-
priate for reading in the data. The detailed pseudocode is

Prompt user for the number of data wvalues
Read the number of data values
Preallocate an input array
for ii = 1:number of values

Prompt for next value

Read value
end

Next we have to sort the data in a separate function. We will need to make
nvals-1 passes through the data, finding the smallest remaining value
each time. We will use a pointer to locate the smallest value in each pass.
Once the smallest value has been found, it will be swapped to the top of
the list of it is not already there. The detailed pseudocode is

= l:nvals-1

% Find the minimum value in a(ii) through a(nvals)

iptr <- 1ii
for jj == ii+l to nvals

if a(jj) < a(iptr)

iptr <- 3jJj

end
end
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% with a(ii) if
if i ~= iptr
temp <- a(i)

iptr now points to the min wvalue,

iptr ~= 1ii.

a(i) <- a(iptr)
a(iptr) <- temp

end
end

so swap a(iptr)

219

The final step is writing out the sorted values. No refinement of the
pseudocode is required for that step. The final pseudocode is the combi-
nation of the reading, sorting, and writing steps.

4. Turn the algorithm into MATLAB statements.

The MATLAB

function out = ssor
%$SSORT Selection so

is relatively ine

o 00 00 0P o°

"sort" function i

Define variables:

code for the selection sort function is

t(a)
rt data in ascending order

Function SSORT sorts a numeric data set into
ascending order. Note that the selection sort

fficient. DO NOT USE THIS

FUNCTION FOR LARGE DATA SETS. Use MATLAB's

nstead.

%
% a -- Input array to sort
% ii -- Index variable
% iptr -- Pointer to min value
% 33 -- Index variable
% nvals -- Number of values in "a"
% out -- Sorted output array
% temp -- Temp variable for swapping
% Record of revisions:
% Date Programmer Description of change
% ==== —========= —====================
% 02/02/07 S. J. Chapman Original code
% Get the length of the array to sort
nvals = size(a,2);
% Sort the input array
for ii = 1l:nvals-1

% Find the minimum value in a(ii) through a(n)

iptr = 1ii;

for jj = ii+l:nvals

if a(jj) < a(iptr)
iptr = jj;
end

end
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iptr now points to the minimum value, so swap a(iptr)
with a(ii) if ii ~= iptr.
if ii ~= iptr

[
°
[

°

temp = a(ii);

a(ii) = a(iptr);

a(iptr) = temp;
end

end

o

% Pass data back to caller
out = a;

The program to invoke the selection sort function is

Script file: test_ssort.m

Purpose:
To read in an input data set, sort it into ascending
order using the selection sort algorithm, and to
write the sorted data to the Command Window. This
program calls function "ssort" to do the actual
sorting.

Record of revisions:
Date Programmer Description of change

02/0 S. J. Chapman Original code

\II

Define variables:

A O0° 00 A O° ° A° O° A O° O° I O° O° I O° P o° o°

array -- Input data array

ii -- Index variable

nvals -- Number of input values
sorted -- Sorted data array

oe

Prompt for the number of values in the data set

nvals = input ('Enter number of values to sort: ');
% Preallocate array
array = zeros(l,nvals);

% Get input values
for ii = l:nvals

Q

% Prompt for next wvalue
string = ['Enter value ' int2str(ii) ': '];
array(ii) = input(string) ;

end
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% Now sort the data
sorted = ssort(array);

% Display the sorted result.
fprintf ('\nSorted data:\n');
for ii = 1:nvals

fprintf (' %8.4f\n',sorted(ii));
end

5. Test the program.
To test this program, we will create an input data set and run the program
with it. The data set should contain a mixture of positive and negative
numbers as well as at least one duplicated value to see if the program
works properly under those conditions.

» test_ssort
Enter number of values to sort: 6

Enter value 1: -5
Enter value 2: 4
Enter value 3: -2
Enter value 4: 3
Enter value 5: -2
Enter value 6: 0

Sorted data:
-5.0000
-2.0000
-2.0000

.0000

.0000

.0000

> W o

The program gives the correct answers for our test data set. Note that it
works for both positive and negative numbers as well as for repeated

numbers.
-«

5.3 Optional Arguments

Many MATLAB functions support optional input arguments and output
arguments. For example, we have seen calls to the plot function with as
few as two or as many as seven input arguments. On the other hand, the func-
tion max supports either one or two output arguments. If there is only one
output argument, max returns the maximum value of an array. If there are two
output arguments, max returns both the maximum value and the location of the



222

Chapter 5 User-Defined Functions

maximum value in an array. How do MATLAB functions know how many
input and output arguments are present, and how do they adjust their behavior
accordingly?

There are eight special functions that can be used by MATLAB functions to
get information about their optional arguments and to report errors in those argu-
ments. Six of these functions are introduced here, and the remaining two will be
introduced in Chapter 7 after we learn about the cell array data type. The func-
tions introduced now are

® nargin—This function returns the number of actual input arguments
that were used to call the function.

B nargout—This function returns the number of actual output arguments
that were used to call the function.

B nargchk—This function returns a standard error message if a function is
called with too few or too many arguments.

® error—Display error message and abort the function producing the
error. This function is used if the argument errors are fatal.

® warning—Display warning message and continue function execution.
This function is used if the argument errors are not fatal and execution can
continue.

® jinputname—This function returns the actual name of the variable that
corresponds to a particular argument number.

When functions nargin and nargout are called within a user-defined
function, these functions return the number of actual input arguments and the num-
ber of actual output arguments that were used when the user-defined function was
called.

Function nargchk generates a string containing a standard error message
if a function is called with too few or too many arguments. The syntax of this
function is

message = nargchk (min_args,max_args,num_args) ;

where min_args is the minimum number of arguments, max_args is the max-
imum number of arguments, and num_args is the actual number of arguments.
If the number of arguments is outside the acceptable limits, a standard error mes-
sage is produced. If the number of arguments is within acceptable limits, then an
empty string is returned.

Function error is a standard way to display an error message and abort the
user-defined function causing the error. The syntax of this function is
error('msg'), where msg is a character string containing an error message.
When error is executed, it halts the current function and returns to the keyboard,
displaying the error message in the Command Window. If the message string is
empty, error does nothing and execution continues. This function works well
with nargchk, which produces a message string when an error occurs and an
empty string when there is no error.
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Function warning is a standard way to display a warning message that
includes the function and line number where the problem occurred but lets
execution continue. The syntax of this function is warning ( 'msg' ), where
msg is a character string containing a warning message. When warning is
executed, it displays the warning message in the Command Window and lists
the function name and line number where the warning came from. If the mes-
sage string is empty, warning does nothing. In either case, execution of the
function continues.

Function inputname returns the name of the actual argument used when a
function is called. The syntax of this function is

name = inputname (argno) ;

where argno is the number of the argument. If the argument is a variable, then
its name is returned. If the argument is an expression, then this function will
return an empty string. For example, consider the function

function myfun(x,vy, z)
name = inputname (2) ;
disp(['The second argument is named ' namel]) ;

When this function is called, the results are

» myfun (dog, cat)

The second argument is named cat
» myfun(l,2+cat)

The second argument is named

Function inputname is useful for displaying argument names in warning and
error messages.

>
Example 5.3—Using Optional Arguments

We will illustrate the use of optional arguments by creating a function that accepts
an (x, y) value in rectangular coordinates and produces the equivalent polar rep-
resentation consisting of a magnitude and an angle in degrees. The function will
be designed to support two input arguments, x and y. However, if only one argu-
ment is supplied, the function will assume that the y value is zero and proceed
with the calculation. The function will normally return both the magnitude and
the angle in degrees, but if only one output argument is present, it will return only the
magnitude. This function is

function [mag, angle] = polar_value(x,y)
$POLAR_VALUE Converts (x,y) to (r,theta)
Function POLAR_VALUE converts an input (x,y)
value into (r,theta), with theta in degrees.
It illustrates the use of optional arguments.

0P o0 oP
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Define variables:

% angle -- Angle in degrees

% msg -- Error message

% mag -- Magnitude

% bd -- Input x value

% v -- Input y value (optional)

% Record of revisions:

% Date Programmer Description of change
% 02/03/07 S. J. Chapman Original code

N

¥ Check for a legal number of input arguments.
msg = nargchk(1l,2,nargin);
error (msg) ;

% If the y argument is missing, set it to O.
if nargin < 2

y = 0;
end

Check for (0,0) input arguments, and print out
a warning message.

o° o

if x == 0 &y == 0
msg = 'Both x any y are zero: angle is meaningless!';
warning (msg) ;

end

% Now calculate the magnitude.
mag = sqrt(x.”2 + y."2);

If the second output argument is present, calculate
angle in degrees.
if nargout ==
angle = atan2(y,x) * 180/pi;
end

o° o

We will test this function by calling it repeatedly from the Command Window.
First, we will try to call the function with too few or too many arguments.

» [mag angle] = polar_value

??? Error using ==> polar_value
Not enough input arguments.

» [mag angle] = polar_value(l,-1,1)
??? Error using ==> polar_value
Too many input arguments.

The function provides proper error messages in both cases. Next, we will try to
call the function with one or two input arguments.
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» [mag angle] = polar value(l)
mag =

1
angle =

0
» [mag angle] = polar value(l,-1)
mag =

1.4142
angle =

-45

The function provides the correct answer in both cases. Next, we will try to call
the function with one or two output arguments.

» mag = polar_ value(l,-1)
mag =
1.4142
» [mag angle] = polar_ value(l,-1)
mag =

The function provides the correct answer in both cases. Finally, we will try to call
the function with both x and y equal to zero.

» [mag angle] = polar_value(0,0)

Warning: Both x any y are zero: angle is meaningless!
> In d:\book\matlab\chap5\polar_value.m at line 32
mag =

0
angle =

0

In this case, the function displays the warning message, but execution continues.

Note that a MATLAB function may be declared to have more output arguments
than are actually used, and this is not an error. The function does not actually have
to check nargout to determine if an output argument is present. For example,
consider the following function:

function [zl, z2] = junk(x,Vy)
zl = X + vy;
z2 = X - y;
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This function can be called successfully with one or two output arguments.

» a = junk(2,1)

a =
3
» [a b] = junk(2,1)
a =
3
b =
1

The reason for checking nargout in a function is to prevent useless work. If a
result is going to be thrown away anyway, why bother to calculate it in the first
place? A programmer can speed up the operation of a program by not bothering
with useless calculations.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 5.1 through 5.3. If you have trouble with the
quiz, reread the section, ask your instructor, or discuss the material with a
fellow student. The answers to this quiz are found in the back of the book.

1. What are the differences between a script file and a function?

2. How does the help command work with user-defined functions?
3. What is the significance of the HI comment line in a function?
4

. What is the pass-by-value scheme? How does it contribute to good
program design?

5. How can a MATLAB function be designed to have optional arguments?

For questions 6 and 7, determine whether the function calls are correct
or not. If they are in error, specify what is wrong with them.

6. out = testl(6);

function res = testl(x,vy)
res = sqgqrt(x.”2 + y."2);

7. out = test2(12);

function res = test2(x,vy)

error (nargchk (1, 2,nargin)) ;

if nargin == 2

res = sqrt(x.”2 + y."2);
else

res = X;

end
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5.4 Sharing Data Using Global Memory

We have seen that programs exchange data with the functions they call through
argument lists. When a function is called, each actual argument is copied and the
copy is used by the function.

In addition to the argument list, MATLAB functions can exchange data with
each other and with the base workspace through global memory. Global memory
is a special type of memory that can be accessed from any workspace. If a vari-
able is declared to be global in a function, then it will be placed in the global
memory instead of the local workspace. If the same variable is declared to be
global in another function, then that variable will refer to the same memory loca-
tion as the variable in the first function. Each script file or function that declares
the global variable will have access to the same data values, so global memory
provides a way to share data between functions.

A global variable is declared with the global statement. The form of a
global statement is

global varl var2 var3

where varl, var2, var3, and so on are the variables to be placed in global
memory. By convention, global variables are declared in all capital letters, but
this is not actually a requirement.

*

Declare global variables in all capital letters to make them easy to distinguish
from local variables.

Each global variable must be declared to be global before it is used for the
first time in a function—it is an error to declare a variable to be global after it has
already been created in the local workspace?. To avoid this error, it is customary
to declare global variables immediately after the initial comments and before the
first executable statement in a function.

*

Declare global variables immediately after the initial comments and before the
first executable statement of each function that uses them.

3If a variable is declared global after it has already been defined in a function, MATLAB will issue
a warning message and then change the local value to match the global value. You should never rely
on this capability, though, because future versions of MATLAB will not allow it.
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Global variables are especially useful for sharing very large volumes of data
among many functions, because the entire data set does not have to be copied
each time that a function is called. The downside of using global memory to
exchange data among functions is that the functions will work only for that spe-
cific data set. A function that exchanges data through input arguments can be
reused by simply calling it with different arguments, but a function that
exchanges data through global memory must actually be modified to allow it to
work with a different data set.

Global variables are also useful for sharing hidden data among a group of
related functions while keeping it invisible from the invoking program unit.

I

You may use global memory to pass large amounts of data among functions
within a program.

Example 5.4—Random Number Generator

It is impossible to make perfect measurements in the real world. There will always
be some measurement noise associated with each measurement. This fact is an
important consideration in the design of systems to control the operation of such
real-world devices as airplanes, refineries, and nuclear reactors. A good engi-
neering design must take these measurement errors into account so that the noise
in the measurements will not lead to unstable behavior (no plane crashes, refin-
ery explosions, or meltdowns!).

Most engineering designs are tested by running simulations of the operation
of the system before it is ever built. These simulations involve creating mathe-
matical models of the behavior of the system, and feeding the models a realistic
string of input data. If the models respond correctly to the simulated input data,
then we can have reasonable confidence that the real-world system will respond
correctly to the real-world input data.

The simulated input data supplied to the models must be corrupted by a simu-
lated measurement noise, which is just a string of random numbers added to the ideal
input data. The simulated noise is usually produced by a random number generator.

A random number generator is a function that will return a different and
apparently random number each time it is called. Since the numbers are in fact
generated by a deterministic algorithm, they only appear to be random*. However,
if the algorithm used to generate them is complex enough, the numbers will be
random enough to use in the simulation.

“For this reason, some people refer to these functions as pseudorandom number generators.
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One simple random number generator algorithm is described in the following
text>. It relies on the unpredictability of the modulus function when applied to
large numbers. Recall from Chapter 4 that the modulus function mod returns the
remainder after the division of two numbers. If the first number comes from an
unknown series and the second number is also unknown, then the resulting series
of remainders will appear to be random.

For example, consider Equation (5-6). This equation defines the next value
in a series by multiplying the previous value by a linear equation and then taking
the modulus of the resulting value.

n+y = mod (8121 n; + 28411, 134456) (5-6)

Assume that #; is a nonnegative integer. Then because of the modulus function,
n;+1 will be a number between 0 and 134455 inclusive. Next, 7, can be fed into
the equation to produce a number #,,, that is also between 0 and 134455. This
process can be repeated forever to produce a series of numbers in the range
[0,134455]. If we didn’t know the numbers 8121, 28411, and 134456 in advance,
it would be impossible to guess the order in which the values of #» would be pro-
duced. Furthermore, it turns out that there is an equal (or uniform) probability
that any given number will appear in the sequence. Because of these properties,
Equation 5-6 can serve as the basis for a simple random number generator with
a uniform distribution.

We will now use Equation 5-6 to design a random number generator whose
output is a real number in the range [0.0, 1.0)°.

SoLuTiON  We will write a function that generates one random number in the
range 0 < ran < 1.0 each time it is called. The random number will be based on
the equation

n;
= 34456 o7
where 7; is a number in the range 0 to 134455 produced by Equation 5-7.

The particular sequence produced by Equations 5-6 and 5-7 will depend
on the initial value of n, (called the seed) of the sequence. We must provide
a way for the user to specify n, so that the sequence may be varied from run
to run.

1. State the problem.
Write a function randomO that will generate and return an array ran
containing one or more numbers with a uniform probability distribution

SThis algorithm is adapted from the discussion found in Chapter 7 of Numerical Recipes: The Art of
Scientific Programming, by Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1986.
The notation [0.0, 1.0) implies that the range of the random numbers is between 0.0 and 1.0, includ-
ing the number 0.0, but excluding the number 1.0.
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in the range 0 < ran < 1.0, based on the sequence specified by
Equations 5-6 and 5-7. The function should have one or two input argu-
ments (m and n) specifying the size of the array to return. If there is one
argument, the function should generate a square array of size m X m.
If there are two arguments, the function should generate an array of size
m X n. The initial value of the seed n, will be specified by a call to a
function called seed.

2. Define the inputs and outputs.

There are two functions in this problem: seed and randomO. The
input to function seed is an integer to serve as the starting point of the
sequence. There is no output from this function. The input to function
randomO is one or two integers specifying the size of the array of
random numbers to be generated. If only argument m is supplied, the
function should generate a square array of size m X m. If both argu-
ments m and n are supplied, the function should generate an array of
size n X m. The output from the function is the array of random values
in the range [0.0, 1.0).

3. Describe the algorithm.
The pseudocode for function randomO is

function ran = randomO (m, n)
Check for valid arguments
Set n <- m if not supplied
Create output array with "zeros" function
for ii = 1l:number of rows
for jj = 1l:number of columns
iseed <- mod (8121 * iseed + 28411, 134456)
ran(ii,jj) <- iseed / 134456
end
end

where the value of iseed is placed in global memory so that it is
saved between calls to the function. The pseudocode for function seed
is trivial.

function seed (new_seed)
new_seed <- round(new_seed)
iseed <- abs(new_seed)

The round function is used in case the user fails to supply an integer, and the
absolute value function is used in case the user supplies a negative seed.
The user will not have to know in advance that only positive integers are
legal seeds.

The variable iseed will be placed in global memory so that it may
be accessed by both functions.
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4. Turn the algorithm into MATLAB statements.
Function randomO is

function ran = randomO (m,n)
$RANDOMO Generate uniform random numbers in [0,1)
Function RANDOMO generates an array of uniform

oe

% random numbers in the range [0,1). The usage
% is:

%

% randomO (m) -- Generate an m X m array

% randomO (m,n) -- Generate an m X n array

Define variables:

ii -- Index variable

iseed -- Random number seed (global)
33 -- Index variable

m -— Number of columns

msg -- Error message

n -- Number of rows

ran -- Output array

Record of revisions:
Date Programmer Description of change

02/04/07 S. J. Chapman Original code

O Jd° 00 AP O° O° AP O° O° AP O° P o°

oo

Declare global values

(o}

global iseed % Seed for random number generator

% Check for a legal number of input arguments.
msg = nargchk(l,2,nargin) ;
error (msg) ;

% If the n argument is missing, set it to m.
if nargin < 2

n = m;
end

% Initialize the output array
ran = zeros (m,n);

Q

% Now calculate random values
for ii = 1:m
for jj = 1:n
iseed = mod(81l21*iseed + 28411, 134456 );
ran(ii,jj) = iseed / 134456;
end
end
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5. Test the resulting MATLAB programs.
If the numbers generated by these functions are truly uniformly distrib-
uted random numbers in the range 0 < ran < 1.0, then the average of
many numbers should be close to 0.5 and the standard deviation of the
numbers

1
should be close to .
V12

Furthermore, if the range between 0 and 1 is divided into a number
of equal-size bins, the number of random values falling in each bin should
be about the same. A histogram is a plot of the number of values falling
in each bin. MATLAB function hist will create and plot a histogram
from an input data set, so we will use it to verify the distribution of
random number generated by random0.

To test the results of these functions, we will perform the following
tests:

Call seed with new_seed set to 1024.

Call randomO (4) to see that the results appear random.

Call random0 (4) to verify that the results differ from call to call.
Call seed again with new_seed set to 1024.

Call randomO (4) to see that the results are the same as in (2). This
verifies that the seed is properly being reset.

Call random0 (2, 3) to verify that both input arguments are being

used correctly.
7. Call random0 (1,100000) and calculate the average and standard

deviation of the resulting data set using MATLAB functions mean

nh L=

>

1
and std. Compare the results to 0.5 and W

8. Create a histogram of the data from (7) to see if approximately equal
numbers of values fall in each bin.

We will perform these tests interactively, checking the results as we go.

» seed(1024)
» randomO (4)

ans =
0.0598 1.0000 0.0905 0.2060
0.2620 0.6432 0.6325 0.8392
0.6278 0.5463 0.7551 0.4554
0.3177 0.9105 0.1289 0.6230

» randomO (4)

ans =
0.2266 0.3858 0.5876 0.7880
0.8415 0.9287 0.9855 0.1314
0.0982 0.6585 0.0543 0.4256
0.2387 0.7153 0.2606 0.8922



Count

» seed(1024)
» randomO (4)
ans =
0.0598
0.2620
0.6278
0.3177
» randomO (2,3)
ans =
0.2266
0.7880
» arr =
» mean (arr)
ans =
0.5001
» std(arr)
ans =
0.2887

5.4 Sharing Data Using Global Memory

1.0000 0.0905 0.2060
0.6432 0.6325 0.8392
0.5463 0.7551 0.4554
0.9105 0.1289 0.6230
0.3858 0.5876
0.8415 0.9287

randomO(1,100000);

Histogram of the Output of random0
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Figure 5.5 Histogram of the output of function random0.
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» hist(arr,10)

» title('\bfHistogram of the Output of randomO');
» xlabel('Bin');

» ylabel('Count');

The results of these tests look reasonable, so the function appears to
be working. The average of the data set was 0.5001, which is quite close
to the theoretical value of 0.5000, and the standard deviation of the data
set was 0.2887 to the accuracy displayed. The histogram is shown in
Figure 5.5, and the distribution of the random values is roughly even

across all of the bins.
-

MATLAB includes two standard functions that generate random values from
different distributions. They are

® rand—Generates random values from a uniform distribution on the range
[0, 1).
® randn—~Generates random values from a normal distribution.

Both of them are much faster and much more “random” than the simple function
that we have created. If you really need random numbers in your programs, use
one of these functions.

Functions rand and randn have the following calling sequences:

® rand () —Generates a single random value.
® rand (n)—Generates an n X n array of random values.
® rand (m, n) —Generates an m X n array of random values.

5.5 Preserving Data between Calls to a Function

When a function finishes executing, the special workspace created for that func-
tion is destroyed, so the contents of all local variables within the function will dis-
appear. The next time that the function is called, a new workspace will be created
and all of the local variables will be returned to their default values. This behav-
ior is usually desirable, since it ensures that MATLAB functions behave in a
repeatable fashion every time they are called.

However, it is sometimes useful to preserve some local information within
a function between calls to the function. For example, we might want to create
a counter to count the number of times the function has been called. If such a
counter were destroyed every time the function exited, the count would never
exceed 1!

MATLAB includes a special mechanism to allow local variables to be pre-
served between calls to a function. Persistent memory is a special type of mem-
ory that can be accessed only from within the function but is preserved unchanged
between calls to the function.
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A persistent variable is declared with the persistent statement. The
form of a global statement is

persistent varl var2 var3

where varl, var2, var3, and so on are the variables to be placed in persist-
ent memory.

I

Use persistent memory to preserve the values of local variables within a function
between calls to the function.

>

Example 5.5—Running Averages

It is sometimes desirable to calculate running statistics on a data set on the fly as
the values are being entered. The built-in MATLAB functions mean and std
could perform this function, but we would have to pass the entire data set to them
for recalculation after each new data value is entered. A better result can be
achieved by writing a special function that keeps track of the appropriate running
sums between calls and needs only the latest value to calculate the current aver-
age and standard deviation.
The average or arithmetic mean of a set of numbers is defined as

1§ (5-8)
L )
Ni=1

where x; is sample i out of N samples. The standard deviation of a set of numbers
is defined as

N N \2
N;le _ <§1x,~> (5-9)

N(N — 1)

Standard deviation is a measure of the amount of scatter on the measurements;
the greater the standard deviation, the more scattered the points in the data set are.
If we can keep track of the number of values N, the sum of the values > x, and the
sum of the squares of the values >x, then we can calculate the average and stan-
dard deviation at any time from Equations 5-8 and 5-9.

Write a function to calculate the running average and standard deviation of a
data set as it is being entered.

s =

SoruTtioN  This function must be able to accept input values one at a time and
keep running sums of N, Zx, and >x?, which will be used to calculate the cur-
rent average and standard deviation. It must store the running sums in global
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memory so that they are preserved between calls. Finally, there must be a mech-
anism to reset the running sums.

1. State the problem.
Create a function to calculate the running average and standard deviation
of a data set as new values are entered. The function must also include a
feature to reset the running sums when desired.

2. Define the inputs and outputs.
There are two types of inputs required by this function:

1. The character string 'reset' to reset running sums to zero
2. The numeric values from the input data set, present one value per func-
tion call

The outputs from this function are the mean and standard deviation of the
data supplied to the function so far.

3. Design the algorithm.
This function can be broken down into four major steps:

Check for a legal number of arguments

Check for a 'reset', and reset sums if present

Otherwise, add current value to running sums

Calculate and return running average and std dev
if enough data is available. Return zeros if
not enough data is available.

The detailed pseudocode for these steps is

Check for a legal number of arguments
if x == 'reset'
n <- 0
sum_x <- 0
sum_x2 <- 0
else
n<-n+ 1
sum_X <- sum_X + X
sum_XxX2 <- sum X2 + X2
end

(o}

% Calculate ave and sd

if n==0
ave <- 0
std <- 0
elseif n == 1
ave <- sum_x
std <- 0

else
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ave <- sum_x / n
std <- sgrt((n*sum_x2 - sum_x"2) / (n*(n-1)))
end

4. Turn the algorithm into MATLAB statements.
The final MATLAB function is

function [ave, std] = runstats(x)

$RUNSTATS Generate running ave / std deviation
Function RUNSTATS generates a running average
and standard deviation of a data set. The
values x must be passed to this function one

at a time. A call to RUNSTATS with the argument
'reset' will reset the running sums.

00 00 0P o0 o

Define variables:

ave -- Running average

msg -- Error message

n -- Number of data values

std -- Running standard deviation

sum_x -- Running sum of data values

sum_x2 -- Running sum of data values squared
x -- Input value

Record of revisions:
Date Programmer Description of change

02/05/07 S. J. Chapman Original code

00 00 0P O O° P O° O° P O° O° P o

oe

Declare persistent values

persistent n % Number of input values
persistent sum x % Running sum of wvalues
persistent sum_ x2 % Running sum of values squared

o

% Check for a legal number of input arguments.
msg = nargchk(1l,1,nargin);
error (msg) ;

% If the argument i1s 'reset', reset the running sums.
if x == 'reset'
n = 0;
sum_x = 0;
sum_x2 = 0;
else
n=n+1;
sum_x = Ssum_X + X;
sum_x2 = sum_xX2 + X"2;
end
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% Calcula
if n==0
ave
std
elseif n
ave
std
else
ave =
std =
end

te ave and sd

sum_x / n;
sgrt ((n*sum_x2 - sum_x"2) / (n*(n-1)));

5. Test the program.

Script

To re

are r
to th

Record
Dat

05

\II

array
ave
std
ii
nvals
std

0 00 00 A° O° 00 A O° ° A I° ° A O° I° I O° o° o° o°

First r
ave std]

— oP

(o)

% Prompt

To test this function, we must create a script file that resets runstats,
reads input values, calls runstats, and displays the running statistics.
An appropriate script file is

file: test_runstats.m

Purpose:

ad in an input data set and calculate the

running statistics on the data set as the values

ead in. The running stats will be written
e Command Window.

of revisions:
e Programmer Description of change

/0 S. J. Chapman Original code

Define variables:

-- Input data array

-- Running average

-- Running standard deviation
-- Index variable

-—- Number of input values

-- Running standard deviation

eset running sums
= runstats('reset');

for the number of values in the data set nvals =

input ('Enter number of values in data set: ');

% Get input values

for ii =

l:nvals
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$ Prompt for next value
string = ['Enter value ' int2str(ii) ': '];
x = input(string) ;

% Get running statistics
[ave std] = runstats(x);

% Display running statistics
fprintf ('Average = %8.4f; Std dev = %8.4f\n',ave, std);

end

To test this function, we will calculate running statistics by hand for
a set of five numbers, and compare the hand calculations to the results
from the program. If a data set is created with the following five input
values

3, 2., 3., 4, 28 (2-8)

then the running statistics calculated by hand would be those shown in the
following table.

Value n >x > x2 Average Std_dev
3.0 1 3.0 9.0 3.00 0.000
2.0 2 5.0 13.0 2.50 0.707
3.0 3 8.0 22.0 2.67 0.577
4.0 4 12.0 38.0 3.00 0.816
2.8 5 14.8 45.84 2.96 0.713

The output of the test program for the same data set is

» test_runstats
Enter number of values in data set: 5

Enter value 1: 3

Average = 3.0000; sStd dev = 0.0000
Enter value 2: 2

Average = 2.5000; Std dev = 0.7071
Enter value 3: 3

Average = 2.6667; Std dev = 0.5774
Enter value 4: 4

Average = 3.0000; Std dev = 0.8165
Enter value 5 2.8

Average = 2.9600; Std dev = 0.7127

so the results check to the accuracy shown in the hand calculations.
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5.6 Function Functions

“Function functions” is the rather awkward name that MATLAB gives to a function
whose input arguments include the names of other functions. The functions that are
passed to the “function function” are normally used during that function’s execution.

For example, MATLAB contains a function function called fzero. This
function locates a zero of the function that is passed to it. The statement
fzero('cos', [0 pi]) locates a zero of the function cos between 0 and
7w, and fzero('exp(x)-2',[0 1]1) locates a zero of the function
“exp (x) -2 between 0 and 1. When these statements are executed, the result is

» fzero('cos', [0 pil)
ans =
1.5708
» fzero('exp(x)-2',[0 11)
ans =
0.6931

The keys to the operation of function functions are two special MATLAB
functions—eval and feval. Function eval evaluates a character string as
though it had been typed in the Command Window, and function feval evalu-
ates a named function at a specific input value.

Function eval evaluates a character string as though it had been typed in the
Command Window. This function gives MATLAB functions a chance to construct
executable statements during execution. The form of the eval function is

eval (string)
For example, the statement x = eval ('sin(pi/4) ') produces the result

» x = eval('sin(pi/4)")
X:
0.7071

An example in which a character string is constructed and evaluated using the
eval function is

x = 1;
str = ['exp(' num2str(x) ') -1'];
res = eval(str);

In this case, str contains the character string 'exp (1) —-1', which eval eval-
uates to get the result 1.7183.

Function feval evaluates a named function defined by an M-file at a spec-
ified input value. The general form of the feval function is

feval (fun, value)
For example, the statement x = feval ('sin',pi/4) produces the result

» x = feval('sin',pi/4)
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Table 5.1 Common MATLAB Function Functions

Function Name

Description

fminbnd
fzero
quad
ezplot
fplot

Minimize a function of one variable.
Find a zero of a function of one variable.
Numerically integrate a function.

Easy to use function plotter.

Plot a function by name.

X =

0.7071

24|

Some of the more common MATLAB function functions are listed in Table 5.1.
Type help fun_name to learn how to use each of these functions.

>

Example 5.6—Creating a Function Function

Create a function function that will plot any MATLAB function of a single vari-
able between specified starting and ending values.

SoLuTtioN  This function has two input arguments, the first one containing the
name of the function to plot and the second one containing a two-element vector
with the range of values to plot.

1. State the problem.

Create a function to plot any MATLAB function of a single variable
between two user-specified limits.

2. Define the inputs and outputs.
There are two inputs required by this function:

1. A character string containing the name of a function

2. A two-element vector containing the first and last values to plot

The output from this function is a plot of the function specified in the first
input argument.

3. Design the algorithm.

This function can be broken down into four major steps:

Check for a legal number of arguments

Check that the second argument has two elements

Calculate the value of the function between the
start and stop points

Plot and label the function

The detailed pseudocode for the evaluation and plotting steps is

n_steps <- 100
step_size <- (x1lim(2) - xlim(l)) / n_steps
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x <- x1lim(1l) :step_size:x1im(2)

vy <- feval (fun, x)

plot (x,vy)

title(['\bfPlot of function ' fun '(x)'])
xlabel ("\bfx")

ylabel (['\bf' fun '(x)'1])

4. Turn the algorithm into MATLAB statements.
The final MATLAB function is

function quickplot (fun,xlim)

%QUICKPLOT Generate quick plot of a function
Function QUICKPLOT generates a quick plot

of a function contained in a external M-file,
between user-specified x limits.

o° o°

oe

oe

Define variables:

% fun -- Name of function to plot in a char string
% msg -- Error message

% n_steps -— Number of steps to plot

% step_size -- Step size

% x -- X-values to plot

% v -- Y-values to plot

% x1im -- Plot x limits

oe

oe

Record of revisions:
Date Programmer Description of change

oe

02/07/07 S. J. Chapman Original code

oe

oe

oo

Check for a legal number of input arguments.
msg = nargchk(2,2,nargin) ;
error (msg) ;

o

Check the second argument to see if it has two
elements. Note that this double test allows the
% argument to be either a row or a column vector.

o

if ( size(xlim,1l) == 1 & size(xlim,2) == 2 ) |
( size(xlim,1l) == 2 & size(xlim,2) == 1)
% Ok--continue processing.
n_steps = 100;
step_size = (x1lim(2) - xlim(1l)) / n_steps;
x = x1lim(1l) :step_size:x1im(2) ;
y = feval(fun,x);
plot(x,y);

title(['\bfPlot of function ' fun '(x)']);
xlabel ('\bfx"') ;
vlabel (['\bf' fun '(x)']1);
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Figure 5.6 Plot of sin x versus x generated by function quickplot.

else

% Else wrong number of elements in xlim.

error ('Incorrect number of elements in xlim.');
end

5. Test the program.
To test this function, we must call it with correct and incorrect input argu-
ments, verifying that it handles both correct inputs and errors properly.
The results are

» quickplot('sin')

??? Error using ==> quickplot

Not enough input arguments.

» quickplot('sin', [-2*pi 2*pil, 3)

??? Error using ==> quickplot

Too many input arguments.

» quickplot('sin',-2*pi)

??? Error using ==> quickplot
Incorrect number of elements in xlim.
» quickplot('sin', [-2*pi 2*pil])

The last call was correct, and it produced the plot shown in Figure 5.6.
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5.7 Subfunctions, Private Functions,
and Nested Functions

5.7.1

fu

o° o°

oe

MATLAB includes several special types of functions that behave differently than
the ordinary functions we have used so far. Ordinary functions can be called by
any other function, as long as they are in the same directory or in any directory
on the MATLAB path.

The scope of a function is defined as the locations within MATLAB from
which the function can be accessed. The scope of an ordinary MATLAB
function is the current working directory. If the function lies in a directory on
the MATLAB path, then the scope extends to all MATLAB functions in a
program, because they all check the path when trying to find a function with
a given name.

In contrast, the scope of the other function types that we will discuss in the
rest of this chapter is more limited in one way or another.

Subfunctions

It is possible to place more than one function in a single file. If more than one
function is present in a file, the top function is a normal or primary function,
while the ones below it are subfunctions. The primary function should have the
same name as the file it appears in. Subfunctions look just like ordinary func-
tions, but they are accessible only to the other functions within the same file. In
other words, the scope of a subfunction is the other functions within the same file
(see Figure 5.7).

Subfunctions are often used to implement “utility” calculations for a main
function. For example, the file mystats .m shown subsequently contains a pri-
mary function—mystats—and two subfunctions—mean and median.
Function mystats is a normal MATLAB function, so it can be called by any
other MATLAB function in the same directory. If this file is in a directory includ-
ed in the MATLAB search path, it can be called by any other MATLAB function,
even if the other function is not in the same directory. By contrast, the scope of
functions mean and median is restricted to other functions within the same file.
Function mystats can call them and they can call each other, but a function out-
side of the file cannot. They are “utility” functions that perform a part the job of
the main function mystats.

nction [avg, med] = mystats(u)

MYSTATS Find mean and median with internal functions.
Function MYSTATS calculates the average and median
of a data set using subfunctions.

= length(u);

avg = mean(u,n) ;
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med = median(u,n);

function a = mean(v,n)
% Subfunction to calculate average.
a = sum(v)/n;

function m = median(v,n)
% Subfunction to calculate median.
w = sort(v);
if rem(n,2) == 1

m = w((n+l)/2);
else

m= (w(n/2)+ w(n/2+1))/2;
end

5.7.2 Private Functions

Private functions are functions that reside in subdirectories with the special
name private. They are visible only to other functions in the private
directory, or to functions in the parent directory. In other words, the scope of
these functions is restricted to the private directory and to the parent directory
that contains it.

Filemystats.m

Function mystats is
accessible from outside the file.

I

mystats

mean

[ Functions mean and median
are only accessible from inside

/ the file.

median /

Figure 5.7 The first function in a file is called the primary function. It should have the same name
as the file it appears in, and it is accessible from outside the file. The remaining functions
in the file are subfunctions; they are only accessible from within the file.
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For example, assume the directory testing is on the MATLAB search
path. A subdirectory of testing called private can contain functions that
only the functions in testing can call. Because private functions are invisible
outside of the parent directory, they can use the same names as functions in other
directories. This is useful if you want to create your own version of a particular
function while retaining the original in another directory. Because MATLAB
looks for private functions before standard M-file functions, it will find a private
function named test . m before a nonprivate function named test.m.

You can create your own private directories simply by creating a subdirectory
called private under the directory containing your functions. Do not place these
private directories on your search path.

When a function is called from within an M-file, MATLAB first checks the file
to see if the function is a subfunction defined in the same file. If not, it checks for a
private function with that name. If it is not a private function, MATLAB
checks the current directory for the function name. If it is not in the current direc-
tory, MATLAB checks the standard search path for the function.

If you have special-purpose MATLAB functions that should be used only
by other functions and never be called directly by the user, consider hiding them
as subfunctions or private functions. Hiding the functions will prevent their
accidental use, and will also prevent conflicts with other public functions of the
same name.

5.7.3 Nested Functions

Nested functions are functions that are defined entirely within the body of another
function, called the host function. They are visible only to the host function in
which they are embedded and to other nested functions embedded at the same
level within the same host function.

A nested function has access to any variables defined with it, plus any
variables defined within the host function (see Figure 5.8). The only exception
occurs if a variable in the nested function has the same name as a variable
within the host function. In that case, the variable within the host function is
not accessible.

Note that if a file contains one or more nested functions, then every func-
tion in the file must be terminated with an end statement. This is the only time
the end statement is required at the end of a function—at all other times it is
optional.

If a file contains one or more nested functions, then every function in the file
must be terminated with an end statement. It is an error to omit end statements
in this case.
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Variables defined in the host

function are visible inside any

host_function
nested functions.

nested_function_ 1 Variables defined within nested

functions are not visible in the
host function.

"L

end % nested function_

N

E—
\ nested function lcanbe
nested function 2 called from within

host functionor
nested function 2

.~
end % nested_function_z\

nested function 2canbe
called from within

host functionor

end % host_function nested function 1

Figure 5.8 Nested functions are defined within a host function, and they inherit variables defined
within the host function.

The following program illustrates the use of variables in nested functions. It
contains a host function test_nested_1 and a nested function funl. When
the program starts, variables a, b, x, and vy are initialized as shown in the host
function, and their values are displayed. Then the program calls funl. Since
funl is nested, it inherits a, b, and x from the host function. Note that it does
not inherit vy, because funl defines a local variable with that name. When the
values of the variables are displayed at the end of funl, we see that a has been
increased by 1 (due to the assignment statement), and that y is set to 5. When exe-
cution returns to the host function, a is still increased by 1, showing that the vari-
able a in the host function and the variable a in the nested function are really the
same. On the other hand, v is again 9, because the variable y in the host function
is not the same as the variable y in the nested function.

function res = test_nested_ 1

% This is the top level function.
% Define some variables.
a=1; b=2; x=0; v =29;

o

Display variables before call to funl
fprintf ('Before call to funl:\n');
fprintf('a, b, x, v = %2d %2d %24 %2d\n', a, b, x, v);

% Call nested function funl
= funl(x);

]

% Display variables after call to funl
fprintf ('\nAfter call to funl:\n');
fprintf('a, b, x, v = %2d %2d %24 %2d\n', a, b, x, v);
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% Declare a nested function
function res = funl(y)

% Display variables at start of call to funl
fprintf ('\nAt start of call to funl:\n');
fprintf('a, b, x, v = %2d %2d %2d %2d\n', a, b, x, v);

y =y + 5;
a=a+ 1;
res = y;

% Display variables at end of call to funl
fprintf ('\nAt end of call to funl:\n');
fprintf('a, b, x, vy = %2d %2d %2d %2d\n', a, b, x, y);

end % function funl
end % function test_nested 1
When this program is executed, the results are

» test_nested_ 1
Before call to funl:
a, b, x, y=12209

At start of call to funl:
a/b/X/y:lZOO

At end of call to funl:
a, b, x, y=222025

After call to funl:
a, b, x, vy =22529

Like subfunctions, nested functions can be used to perform special-purpose
calculations within a host function.

Use subfunctions, private functions, or nested functions to hide special-purpose
calculations that should not be generally accessible to other functions. Hiding
the functions will prevent their accidental use and will also prevent conflicts
with other public functions of the same name.
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5.7.4 Order of Function Evaluation

In a large program, there could possibly be multiple functions (subfunctions, pri-
vate functions, nested functions, and public functions) with the same name. When
a function with a given name is called, how do we know which copy of the func-
tion will be executed?

The answer this question is that MATLAB locates functions in a specific
order as follows:

1. First, MATLAB checks to see if there is a nested function with the speci-
fied name. If so, it is executed.

2. MATLAB checks to see if there is a subfunction with the specified name.
If so, it is executed.

3. MATLAB checks for a private function with the specified name. If so, it
is executed.

4. MATLAB checks for a function with the specified name in the current
directory. If so, it is executed.

5. MATLAB checks for a function with the specified name on the MATLAB
path. MATLAB will stop searching and execute the first function with the
right name found on the path.

5.8 Summary

In Chapter 5, we presented an introduction to user-defined functions.
Functions are special types of M-files that receive data through input argu-
ments and return results through output arguments. Each function has its own
independent workspace. Each normal function (one that is not a subfunction)
should appear in a separate file with the same name as the function, including
capitalization.

Functions are called by naming them in the Command Window or anoth-
er M-file. The names used should match the function name exactly, including
capitalization. Arguments are passed to functions using a pass-by-value
scheme, meaning that MATLAB copies each argument and passes the copy to
the function. This copying is important, because the function can freely modi-
fy its input arguments without affecting the actual arguments in the calling
program.

MATLAB functions can support varying numbers of input and output argu-
ments. Function nargin reports the number of actual input arguments used in
a function call, and function nargout reports the number of actual output
arguments used in a function call.

Data can also be shared between MATLAB functions by placing the data in
global memory. Global variables are declared using the global statement.
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Global variables may be shared by all functions that declare them. By convention,
global variable names are written in all capital letters.

Internal data within a function can be preserved between calls to that func-
tion by placing the data in persistent memory. Persistent variables are declared
using the persistent statement.

Function functions are MATLAB functions whose input arguments include
the names of other functions. The functions whose names are passed to the
function function are normally used during that function’s execution. Examples
are some root-solving and plotting functions.

Subfunctions are additional functions placed within a single file.
Subfunctions are accessible only from other functions within the same file.
Private functions are functions placed in a special subdirectory called
private. They are accessible only to functions in the parent directory.
Nested functions are functions completely defined within the body of another
function (called the host function). Nested functions have access to the
variables in the host function as well as to their own local variables.
Subfunctions, private functions, and nested functions can be used to restrict
access to MATLAB functions.

5.8.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB
functions.

1. Break large program tasks into smaller, more understandable functions
whenever possible.

2. Declare global variables in all capital letters to make them easy to distin-
guish from local variables.

3. Declare global variables immediately after the initial comments and
before the first executable statement each function that uses them.

4. You may use global memory to pass large amounts of data among func-
tions within a program.

5. Use persistent memory to preserve the values of local variables within a
function between calls to the function.

6. Use subfunctions, private functions, or nested functions to hide spe-
cial-purpose calculations that should not be generally accessible to
other functions. Hiding the functions will prevent their accidental
use, and will also prevent conflicts with other public functions of the
same name.

5.8.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.



5.9 Exercises | 251

Commands and Functions

error

eval
ezplot
feval
fmin
fplot
fzero
global
hist
inputname
nargchk
nargin
nargout
persistent
quad
rand
randn
return

warning

Displays error message and aborts the function producing the error. This function is
used if the argument errors are fatal.

Evaluates a character string as though it had been typed in the Command Window.
Easy-to-use function plotter.

Calculates the value of a function f(x) defined by an M-file at a specific x.

Minimize a function of one variable.

Plot a function by name.

Find a zero of a function of one variable.

Declares global variables.

Calculate and plot a histogram of a data set.

Returns the actual name of the variable that corresponds to a particular argument number.
Returns a standard error message if a function is called with too few or too many arguments.
Returns the number of actual input arguments that were used to call the function.

Returns the number of actual output arguments that were used to call the function.
Declares persistent variables.

Numerically integrate a function.

Generates random values from a uniform distribution.

Generates random values from a normal distribution.

Stop executing a function and return to caller.

Displays a warning message and continues function execution. This function is used if the
argument errors are not fatal and execution can continue.

5.9 Exercises

5.1 What is the difference between a script file and a function?

5.2 When a function is called, how is data passed from the caller to the func-
tion, and how are the results of the function returned to the caller?

5.3 What are the advantages and disadvantages of the pass-by-value scheme
used in MATLAB?

5.4 Modify the selection sort function developed in this chapter so that it accepts
a second optional argument, which may be either 'up' or 'down'. If the
argument is 'up', sort the data in ascending order. If the argument is
"down ', sort the data in descending order. If the argument is missing, the
default case is to sort the data in ascending order. (Be sure to handle the case
of invalid arguments, and be sure to include the proper help information in
your function.)
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5.5

5.6

5.7

5.8

5.9

5.10

5.11

Modify function randomO so that it can accept 0, 1, or 2 calling argu-
ments. Ifit has no calling arguments, it should return a single random value.
If it has 1 or 2 calling arguments, it should behave as it currently does.
As function randomO is currently written, it will fail if function seed is
not called first. Modify function random0 so that it will function prop-
erly with some default seed even if function seed is never called.
Write a function that uses function random0 to generate a random value in
the range [—1.0,1.0). Make random0 a subfunction of your new function.
Write a function that uses function randomO to generate a random value in
the range [low, high), where 1ow and high are passed as calling argu-
ments. Make randomO a private function called by your new function.
Dice Simulation It is often useful to be able to simulate the throw of
a fair die. Write a MATLAB function dice that simulates the throw of a
fair die by returning some random integer between 1 and 6 every time that
it is called. (Hint: Call random0 to generate a random number. Divide
the possible values out of randomO into six equal intervals and return the
number of the interval that a given random value falls into.)
Road Traffic Density Function random0 produces a number with a
uniform probability distribution in the range [0.0, 1.0). This function is
suitable for simulating random events if each outcome has an equal prob-
ability of occurring. However, in many events the probability of occur-
rence is not equal for every event, and a uniform probability distribution
is not suitable for simulating such events.

For example, when traffic engineers studied the number of cars pass-
ing a given location in a time interval of length 7, they discovered that the
probability of k cars passing during the interval is given by the equation

k
Pk, t) = 6_1’@

fort>0,A>0, andk=0,1,2,... (5-10)
This probability distribution is known as the Poisson distribution; it occurs
in many applications in science and engineering. For example, the number
of calls & to a telephone switchboard in time interval #, the number of bac-
teria k in a specified volume ¢ of liquid, and the number of failures & of a
complicated system in time interval ¢ all have Poisson distributions.

Write a function to evaluate the Poisson distribution for any £, #, and A.
Test your function by calculating the probability of 0, 1, 2, . . ., 5 cars pass-
ing a particular point on a highway in 1 minute, given that A is 1.6 per
minute for that highway. Plot the Poisson distribution for z= 1 and A= 1.6.
Recursion and the Factorial Function A function is said to be recur-
sive if the function calls itself. MATLAB functions are designed to allow
recursive operation. To test this feature, write a MATLAB function to
evaluate the factorial function, which is defined as follows:

NN-1)! N=1
N! {1 N =0 (5-11)
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where N is a positive integer. The function should check to make sure that
there is a single argument N, and that N is a nonnegative integer. If it is
not, generate an error using the error function. If the input argument is a
nonnegative integer, the function should evaluate N! using Equation (5-11).
Binomial Coefficients The probability that exactly & successes will
occur out of a series of n independent yes/no trials, each of which has a
probability of success p, is given by Equation (5-12):

P(k;n,p) = (Z) pr(1—p)"* (5-12)

where the expression (Z) is called the binomial coefficient. The value of

the binomial coefficient is given by the Equation (5-13):

n n!
(k) T K(n—k)! (5-13)

For example, suppose that we performed an experiment in which we
tossed a fair coin (py,.,4s = 0.5) ten times. In that case, the probability that
we would get exactly four heads is

10!
P(4;10,0.5) = ———0.5*(1—-0.5)'°7* = 0.2051 5-14
(4;10,0.5) 21(10—4)! ( ) (5-14)
and the probability that we would get exactly five heads is
10!
P(5;10,0.5) = ————0.5°(1—-0.5)'°7% = 0.2461 5-15
( ) 51(10—3)! ( ) (5-15)

Write a function that will determine the probability that exactly & suc-
cesses will occur out of # trials for a specified probability of success p.
The function should include two private functions, one to calculate the
values of the binomial coefficient and one to calculate the value of the
factorial function n!. Test your function using the two example values cal-
culated in Equations (5-14) and (5-15).

The Binomial Distribution 7he binomial distribution is the probability
distribution of the number of successes in a sequence of » independent
yes/no trials, each of which has a probability of success p. In other words,
it is a list of every possible output from the # trials: the probability of no
successes, the probability of exactly one success, the probability of exactly
two successes, and so forth up to the probability of exactly n successes.
This distribution can be calculated for any number of trials » with
probability of success p by calling Equation (5-12) repeatedly with values
k=0,1,2,...,n

Write a program to calculate and plot the binomial distribution for any
given n and p. Use the function created in Exercise 5.11 to create the
values in distribution.
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Colored Dice Suppose that a game contained a set of six-sided dice
with two opposite faces colored red, two opposite faces colored green, and
two opposite faces colored yellow. If one of these dice is tossed 20 times,
what is the probability that there will be 5 or less green results? What is
the probability that there will be 10 or less green results?

Defending Ships against Missile Attacks Antiship missiles (ASMs) are
sometimes used to attack naval ships, and the ships being attacked use
surface-to-air missiles (SAMs) to try to kill the attacking missiles before
they hit the ship. Answer the following questions about this situation using
the function developed in Exercise 5.11.

(a) If the ship uses three SAMs to attack an incoming ASM and the prob-
ability of success of each attack is 0.3, what is the probability that the
ship will destroy the ASM before it is hit?

(b) If the ship uses three SAMs to attack an incoming ASM and the prob-
ability of success of each attack is 0.5, what is the probability that the
ship will destroy the ASM before it is hit?

(c) If the ship uses three SAMs to attack an incoming ASM and the prob-
ability of success of each attack is 0.7, what is the probability that the
ship will destroy the ASM before it is hit?

(d) If the ship uses three SAMs to attack an incoming ASM and the prob-
ability of success of each attack is 0.9, what is the probability that the
ship will destroy the ASM before it is hit?

Defending Ships against Missile Attacks Suppose a designer wanted

to ensure that there is a 90% probability that the ship will survive an ASM

attack without being hit. How many SAMs should the ship fire to destroy
the incoming ASM if the individual probability of success of for a SAM

is (a) 30%? (b) 50%? (c) 70%?

Write three MATLAB functions to calculate the hyperbolic sine, cosine,

and tangent functions:

: et —e”* et + e et —e "

sinh (x) > cosh(x) 2 tanh(x) R
Use your functions to plot the shapes of the hyperbolic sine, cosine, and
tangent functions.
Write a single MATLAB function hyperbolic to calculate the hyperbol-
ic sine, cosine, and tangent functions as defined in the previous problem. The
function should have two arguments. The first argument will be a string con-
taining the function names 'sinh', 'cosh', or 'tanh', and the second
argument will be the value of x at which to evaluate the function. The file
should also contain three subfunctions sinhl, coshl, and tanhl to per-
form the actual calculations, and the primary function should call the proper
subfunction depending on the value in the string. [Nofe: Be sure to handle the
case of an incorrect number of arguments, and also the case of an invalid
string. In either case, the function should generate an error.]
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Cross Product Write a function to calculate the cross product of two
vectors V; and V:

Vi X Vo= V)V, = VigVo) i+ (VoVio — VaaVi) §
+ (VaVy = VoV k

where V; = Vi + Vyj + Vykand V, = Vi, i + V), j + V., k Note
that this function will return a real array as its result. Use the function to
calculate the cross product of the two vectors V; = [—2,4,0.5] and
vV, =1[05,3,2].

Sort with Carry It is often useful to sort an array arrl into ascending
order, while simultaneously carrying along a second array arr2. In such a
sort, each time an element of array arr1 is exchanged with another element
of arrl, the corresponding elements of array arr2 are also swapped.
When the sort is over, the elements of array arrl are in ascending
order, while the elements of array arr2 that were associated with particu-
lar elements of array arr1 are still associated with them. For example, sup-
pose we have the following two arrays:

Element arrl arr2
1. 6. 1.
2. 1. 0.
3. 2. 10.

After sorting array arr1 while carrying along array arr2, the contents
of the two arrays will be:

Element arrl arr2
1. 1. 0.
2. 2. 10.
3. 6. 1.

Write a function to sort one real array into ascending order while carrying
along a second one. Test the function with the following two 9-element
arrays:

f, 11, -6, 17, =23, 0, 5, 1, -11;
(312, 101, 36, -17, O, 10, -8, -1, -11;

a
b

Use the Help Browser to look up information about the standard MATLAB
function sortrows, and compare the performance of sortrows with the
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sort-with-carry function created in the previous exercise. To do this, create
two copies of a 1000 X 2 element array containing random values, and sort
column 1 of each array while carrying along column 2 using both functions.
Determine the execution times of each sort function using tic and toc.
How does the speed of your function compare with the speed of the stan-
dard function sortrows?

Figure 5.9 shows two ships steaming on the ocean. Ship | is at position
(x1, 1) and steaming on heading 6,. Ship 2 is at position (x,,,) and
steaming on heading 6,. Suppose that Ship 1 makes radar contact with
an object at range r; and bearing ¢;. Write a MATLAB function
that will calculate the range r, and bearing ¢, at which Ship 2 should
see the object.

Minima and Maxima of a Function Write a function that attempts to
locate the maximum and minimum values of an arbitrary function f(x)
over a certain range. The function being evaluated should be passed to the
function as a calling argument. The function should have the following
input arguments:

first_ value—The first value of x to search
last_value—The last value of x to search
num_steps—The number of steps to include in the search
func—The name of the function to search

The function should have the following output arguments:

xmin—The value of x at which the minimum was found
min_value—The minimum value of f(x) found
xmax—The value of x at which the maximum was found
max_value—The maximum value f(x) found

Shipl N\
(1, 15 01) \\
\\\
¢2 ‘a)
\J
Ship 2
(2, y2, 6)

Figure 5.9 Two ships at positions (x;, y;) and (x,, y,) respectively. Ship 1 is traveling at heading 9,,

and Ship 2 is traveling at heading 0, .
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Be sure to check that there are a valid number of input arguments,
and that the MATLAB help and lookfor commands are properly
supported.

Write a test program for the function generated in the previous exercise.
The test program should pass to the function function the user-defined
function f(x) = x> — 5x% + 5x + 2, and search for the minimum and
maximum in 200 steps over the range —1 = x = 3. It should print out the
resulting minimum and maximum values.

Derivative of a Function The derivative of a continuous function f(x)
is defined by the equation

d _ St Ax) - ()
/) = lim Ax (5-16)
In a sampled function, this definition becomes
F1(x) = f(xi+1)A_ S(x) (5-17)
X

where Ax = x;;; — x;. Assume that a vector vect contains nsamp sam-
ples of a function taken at a spacing of dx per sample. Write a function
that will calculate the derivative of this vector from Equation (5-17). The
function should check to make sure that dx is greater than zero to prevent
divide-by-zero errors in the function.

To check your function, you should generate a data set whose derivative
is known and compare the result of the function with the known correct
answer. A good choice for a test function is sin x. From elementary calculus,

d , . . ..
we know that e (sinx) = cosx. Generate an input vector containing
x

100 values of the function sin x starting at x = 0 and using a step size Ax
of 0.05. Take the derivative of the vector with your function, and then
compare the resulting answers to the known correct answer. How close did
your function come to calculating the correct value for the derivative?

Derivative in the Presence of Noise We will now explore the effects of
input noise on the quality of a numerical derivative. First, generate an input
vector containing 100 values of the function sin x starting at x = 0 and
using a step size Ax of 0.05, just as you did in the previous problem. Next,
use function random0 to generate a small amount of random noise with a
maximum amplitude of *0.02, and add that random noise to the samples
in your input vector. Note that the peak amplitude of the noise is only 2% of
the peak amplitude of your signal, since the maximum value of sin x is 1.
Now take the derivative of the function using the derivative function that
you developed in the last problem. How close to the theoretical value of
the derivative did you come?

Linear Least-Squares Fit Develop a function that will calculate
slope m and intercept b of the least-squares line that best fits an input
data set. The input data points (x, y) will be passed to the function in
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Plot of sin(x) without added noise
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Figure 5.10 (a) A plot of sin x as a function of x with no noise added to the data. () A plot of sin x as
a function of x with a 2% peak amplitude uniform random noise added to the data.

two input arrays, x and y. (The equations describing the slope and
intercept of the least-squares line given in Example 4.6 in the previous
chapter.) Test your function using a test program and the following
20-point input data set:
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Sample Data to Test Least Squares Fit Routine

No. x y No. x y
1 —4.91 —8.18 11 —0.94 0.21
2 —3.84 —7.49 12 0.59 1.73
3 —2.41 —7.11 13 0.69 3.96
4 —2.62 —6.15 14 3.04 4.26
5 —3.78 —5.62 15 1.01 5.75
6 —0.52 —3.30 16 3.60 6.67
7 —1.83 —2.05 17 4.53 7.70
8 —2.01 —2.83 18 5.13 7.31
9 0.28 —1.16 19 4.43 9.05

10 1.08 0.52 20 4.12 10.95

Correlation Coefficient of Least Squares Fit Develop a function that will
calculate both the slope m and intercept b of the least-squares line that best fits
an input data set, and also the correlation coefficient of the fit. The input data
points (x, ) will be passed to the function in two input arrays, x and y. The
equations describing the slope and intercept of the least-squares line are given
in Example 4.6, and the equation for the correlation coefficient is

n(Sw) = (Z)(Sy)
V] 029 - (@[ 029 - (2]

r =

(5-18)

where

> x is the sum of the x values
>y is the sum of the y values
> x? is the sum of the squares of the x values

>)? is the sum of the squares of the y values

> xy is the sum of the products of the corresponding x and y values

n is the number of points included in the fit
Test your function using a test driver program and the 20-point input data
set given in the previous problem.
The Birthday Problem The Birthday Problem is stated as follows: if
there is a group of n people in a room, what is the probability that two or
more of them have the same birthday? It is possible to determine the answer
to this question by simulation. Write a function that calculates the proba-
bility that two or more of n people will have the same birthday, where # is
a calling argument. (Hint: To do this, the function should create an array of
size n and generate n birthdays in the range 1 to 365 randomly. It should
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Figure 5.11

5.29

5.30

Probability of occurrance

0.4

0.3

0.2

0.1

then check to see if any of the » birthdays are identical. The function should
perform this experiment at least 5000 times and calculate the fraction of
those times in which two or more people had the same birthday.) Write a
test program that calculates and prints out the probability that two or more
of n people will have the same birthday forn = 2, 3, . . ., 40.

Use function randomO to generate a set of three arrays of random numbers.
The three arrays should be 100, 1000, and 2000 elements long. Then, use
functions tic and toc to determine the time that it takes function ssort
to sort each array. How does the elapsed time to sort increase as a function
of the number of elements being sorted? (Hint: On a fast computer, you will
need to sort each array many times and calculate the average sorting time in
order to overcome the quantization error of the system clock.)

Gaussian (Normal) Distribution Function random0O returns a uni-
formly distributed random variable in the range [0, 1), which means that
there is an equal probability of any given number in the range occurring
on a given call to the function. Another type of random distribution is the
Gaussian distribution, in which the random value takes on the classic bell-
shaped curve shown in Figure 5.11. A Gaussian distribution with an aver-
age of 0.0 and a standard deviation of 1.0 is called a standardized normal
distribution, and the probability of any given value occurring in the stan-
dardized normal distribution is given by the equation

1 >
plx) = on e " (5-19)

It is possible to generate a random variable with a standardized normal
distribution starting from a random variable with a uniform distribution in
the range [—1, 1) as follows:

Normal distribution

Value

A Normal probability distribution.
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1. Select two uniform random variables x; and x, from the range [—1, 1)
such that x3 + x3 < 1. To do this, generate two uniform random vari-
ables in the range [—1, 1), and see if the sum of their squares happens to
be less than 1. If so, use them. If not, try again.

2. Then each of the values y; and y, in the equations below will be a
normally-distributed random variable.

—21

=T (5-20)
—21

n=AT (5-21)

r=xi+x3 (5-22)

where

Write a function that returns a normally-distributed random value each
time that it is called. Test your function by getting 1000 random values,
calculating the standard deviation, and plotting a histogram of the distri-
bution. How close to 1.0 was the standard deviation?
Gravitational Force The gravitational force F between two bodies of
masses m and m, is given by the equation

F = Gmm (5-23)

r

where G is the gravitation constant (6.672 X 107" N m?/ kg?), m; and m,
are the masses of the bodies in kilograms, and r is the distance between the
two bodies. Write a function to calculate the gravitational force between two
bodies given their masses and the distance between them. Test you func-
tion by determining the force on an 800 kg satellite in orbit 38,000 km
above the Earth. (The mass of the Earth is 5.98 X 10%* kg.)
Rayleigh Distribution The Rayleigh distribution is another random
number distribution that appears in many practical problems. A Rayleigh-
distributed random value can be created by taking the square root of the
sum of the squares of two normally-distributed random values. In other
words, to generate a Rayleigh-distributed random value », get two nor-
mally distributed random values ( #; and #n,), and perform the following
calculation:

r=Vni +nm (5-24)

(a) Create a function rayleigh (n,m) that returns an n X m array of
Rayleigh-distributed random numbers. If only one argument is sup-
plied [rayleigh (n) ], the function should return an n X n array of
Rayleigh-distributed random numbers. Be sure to design your func-
tion with input argument checking, and with proper documentation for
the MATLAB help system.
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(b) Test your function by creating an array of 20,000 Rayleigh-distributed
random values and plotting a histogram of the distribution. What does
the distribution look like?

(¢) Determine the mean and standard deviation of the Rayleigh
distribution.

Constant False Alarm Rate (CFAR) A simplified radar receiver chain
is shown in Figure 5.12a. When a signal is received in this receiver, it con-
tains both the desired information (returns from targets) and thermal
noise. After the detection step in the receiver, we would like to be able to
pick out received target returns from the thermal noise background. We
can do this by setting a threshold level and then declaring that we see a tar-
get whenever the signal crosses that threshold. Unfortunately, it is occa-
sionally possible for the receiver noise to cross the detection threshold
even if no target is present. If that happens, we will declare the noise spike
to be a target, creating a false alarm. The detection threshold needs to be
set as low as possible so that we can detect weak targets, but it must not
be set too low, or we get many false alarms.

After video detection, the thermal noise in the receiver has a Rayleigh
distribution. Figure 5.126 shows 100 samples of a Rayleigh-distributed
noise with a mean amplitude of 10 volts. Note that there would be one
false alarm even if the detection threshold were as high as 26! The prob-
ability distribution of these noise samples is shown in Figure 5.12¢.

Detection thresholds are usually calculated as a multiple of the mean
noise level, so that if the noise level changes, the detection threshold will
change with it to keep false alarms under control. This is known as constant
false alarm rate (CFAR) detection. A detection threshold is typically quot-
ed in decibels. The relationship between the threshold in dB and the
threshold in volts is

Threshold (volts) = Mean Noise Level (volts) X 10% (5-25)

or

dB =20 10g10<

Threshold (volts) ) (5:26)

Mean Noise Level (volts)

The false alarm rate for a given detection threshold is calculated as

Number of False Alarms
Pfa = (5-27)
Total Number of Samples

Write a program that generates 1,000,000 random noise samples with
a mean amplitude of 10 volts and a Rayleigh noise distribution. Determine
the false alarm rates when the detection threshold is setto 5, 6, 7, 8, 9, 10,
11, 12, and 13 dB above the mean noise level. At what level should the
threshold be set to achieve a false alarm rate of 10™+?



5.9 Exercises | 263
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Figure 5.12 (a) A typical radar receiver. (b) Thermal noise with a mean of 10 volts output from the
detector. The noise sometimes crosses the detection threshold. (¢c) Probability distribution
of the noise out of the detector.

5.34 Probability of Detection (P,) versus Probability of False Alarm (Pp,)
The signal strength returned by a radar target usually fluctuates over time.
The target will be detected if its signal strength exceeds the detection
threshold for any given look. The probability that the target will be detect-
ed can be calculated as:

P — Number of Target Detections
d Total Number of Looks

(5-28)

Suppose that a specific radar looks repeatedly in a given direction. On each
look, the range between 10 km and 20 km is divided into 100 independent
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Figure 5.12 (continued)

range samples (called range gates). One of these range gates contains a target
whose amplitude has a normal distribution with a mean amplitude of 7 volts
and a standard deviation of 1 volt. All 100 of the range gates contain sys-
tem noise with a mean amplitude of 2 volts and a Rayleigh distribution.
Determine both the probability of target detection P, and the probability of
a false alarm Py, on any given look for detection thresholds of 8.0, 8.5, 9.0,
9.5,10.0, 10.5, 11.0, 11.5, and 12.0 dB. What threshold would you use for
detection in this radar? (Hint: Perform the experiment many times for each
threshold and average the results to determine valid probabilities.)
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Additional Data
Types and Plot
Types

In earlier chapters, we were introduced to three fundamental MATLAB data
types: double, logical, and char. In this chapter, we will learn additional
details about these data types, and then we will study some additional MATLAB
data types.

First, we will learn how to create, manipulate, and plot complex values in the
double data type.Then, we will learn more about using the char data type and
how to extend MATLAB arrays of any type to more than two dimensions.

Next, we will learn about some additional data types.The MATLAB data types
are shown in Figure 6.1.We will learn about the single and integer data types
in this chapter and discuss the remaining ones on the figure later in this book.

The chapter concludes with a discussion of additional types of plots avail-
able in MATLAB.

6.1 Complex Data

Complex numbers are numbers with both a real and an imaginary component.
Complex numbers occur in many problems in science and engineering. For exam-
ple, complex numbers are used in electrical engineering to represent alternating
current voltages, currents, and impedances. The differential equations that describe
the behavior of most electrical and mechanical systems also give rise to complex
numbers. Because they are so ubiquitous, it is impossible to work as an engineer
without a good understanding of the use and manipulation of complex numbers.
A complex number has the general form

c=a+bi (6-1)

265



266 | Chapter 6 Additional Data Types and Plot Types

MATLAB Data Types

double

double precision

(real and complex) (real and complex)

Figure 6.1

single int8, units logical char
intl6, uintl6
int32, unit32
single precision int64, unint64 logical data character strings
integer and unsigned
integer data types
user function
cell structure classes handles
cell arrays structures objects function handles

MATLAB data types.

where c is a complex number, a and b are both real numbers, and i is \/jl The
number « is called the real part and b is called the imaginary part of the com-
plex number c. Since a complex number has two components, it can be plotted as
a point on a plane (see Figure 6.2). The horizontal axis of the plane is the real axis,
and the vertical axis of the plane is the imaginary axis, so that any complex num-
ber @ + bi can be represented as a single point « units along the real axis and
b units along the imaginary axis. A complex number represented this way is said
to be in rectangular coordinates, since the real and imaginary axes define the
sides of a rectangle.

A complex number can also be represented as a vector of length z and
angle O pointing from the origin of the plane to the point P (see Figure 6.3).
A complex number represented this way is said to be in polar coordinates.

c=a+ bi=1z/0

The relationships among the rectangular and polar coordinate terms a, b, z, and
0 are:

a=1zcosf (6-2)
b = zsin6 (6-3)
2= Vd + b (6-4)
6 = tan—lé (6-5)

a
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imaginary axis
A

Figure 6.2 Representing a complex number in Rectangular Coordinates.

imaginary axis
A

a+ bi

real axis

Figure 6.3 Representing a complex number in Polar Coordinates.
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6.1.1

MATLAB uses rectangular coordinates to represent complex numbers. Each
complex number consists of a pair of real numbers (a, b). The first number (a)
is the real part of the complex number, and the second number (b) is the imagi-
nary part of the complex number.

If complex numbers c¢; and ¢, are defined as ¢; = a; + byi and
¢, = a, + b,i, then the addition, subtraction, multiplication, and division of ¢,
and ¢, are defined as follows.

Cq + Cy = (al + 612) + (bl + bz)l (6-6)

= ¢ =(ap —a) + (by — by)i (6-7)

ey X ¢y = (aay = biby) + (aby + biay)i (6-8)
ﬁ _ a1a§ + b;bz + blag - aébzi (6-9)
(&) ay + bz ay + b2

When two complex numbers appear in a binary operation, MATLAB performs
the required additions, subtractions, multiplications, or divisions between the two
complex numbers, using versions of the previously stated formulas.

Complex Variables

A complex variable is created automatically when a complex value is assigned to
a variable name. This easiest way to create a complex value is to use the intrinsic
values i or j, both of which are predefined to be V' —1. For example, the fol-
lowing statement stores the complex value 4 + i3 into variable c1.

» cl = 4 + i*3
cl =
4.0000 + 3.00001

Alternatively, the imaginary part can be specified by simply appending an i or j
to the end of a number.

» cl = 4 + 31
cl =
4.0000 + 3.00001

The function isreal can be used to determine whether a given array is real
or complex. If any element of an array has an imaginary component, then the
array is complex, and isreal (array) returns a 0.

6.1.2 Using Complex Numbers with Relational Operators

It is possible to compare two complex numbers with the == relational operator to
see if they are equal to each other, and to compare them with the ~ = operator to see
if they are not equal to each other. Both of these operators produce the expected
results. For example, if c; = 4 + i3 and ¢, = 4 — i3, then the relational operation
¢; == ¢, produces a 0 and the relational operation ¢; ~=c, produces a 1.
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1 % Script file: calc_roota.m -
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3 % Purpose:

4 % This program solves for the roots of a quadratic equation
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& % regardless of the type of roots that the equation possesses.

7 %

& % Record of revisions:

9 L Date Programmer Description of change
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1L Ll o1/12/0% 5. J. Chapman Original code

1z %

13 % Define variables:

14 i a -- Coefficient of x"2 term of egquation

15 ¥ b -- Coeificient of x term of equaticn

18 % c == Conatant term of equation

17 % discriminant -- Discriminant of the eguation

18 % imag parc -- Imag part of equation (for complex roots)

19 % ceal pact -- Real part of equation (for complex roots)

z0 3 x1 -- First solution of equation (for real roots)

21 % x2 -- Second solution of equation (for real roots)

2

23 % Prompt the user for the coefficients of the eguation

24— disp ('Thi= program solves for the roots of & guadracic ')

25 = disp ('equation of the form A*X"2 + B*X + C = 0. ');

26 = a = input ('Enter the coefficient A: ')j

27 = b = input ('Enter the coefficient B: ')z

28 = c = input ('Enter the coefficient C: '}

29 =
30 % Calculate discriminant

31 = discriminant = b*Z - 4 * a * ¢

32

33 % Solve for the roots, depending on the value of the diacriminant

34— if discriminant > 0 % there are two real roots, =o...

35

36 — %x1 = ( -b + sqrt(discriminant) ) / (2 * & ):

a1 = x2 = ( -b - sqrt(discriminent) } / (2 * & );

38 - disp ('This equation has two real roots:');

39 = fprincf ('x1 = 3f\n', x1);

40 = fpeinte ['x2 = ¥f\n', x2): |

| seript | [E I

Figure 3.17 An Edit/Debug window with a MATLAB program loaded.



Mesh Plot

Figure 6.12 (a) A mesh plot of the function z(x, y) = e OSLE+05Ge—y)] (b) A surface plot of the same
function.

Surface Plot

(b)



Contour Plot
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Figure 6.12 (continued) (c) A contour plot of the same function.
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However, comparisons with the >, <, >=, or <= operators do not
produce the expected results. When complex numbers are compared with these
relational operators, only the real parts of the numbers are compared. For example,
ifc;y =4 + i3 and ¢, = 3 + i8, then the relational operation ¢; > ¢, produces a
true (1) even though the magnitude of c; is really smaller than the magnitude of ¢,.

If you ever need to compare two complex numbers with these operators, you
will probably be more interested in the total magnitude of the number than we are in
the magnitude of only its real part. The magnitude of a complex number can be cal-
culated with the albs intrinsic function (see below) or directly from Equation 6-4.

le] = Va* + b (6-4)

If we compare the magnitudes of ¢, and c,, the results are more reasonable:
abs(c;) > abs(c,) produces a 0, since the magnitude of ¢, is greater than the
magnitude of ¢;.

Be careful when using the relational operators with complex numbers. The rela-
tional operators >, >=, <, and <= compare only the real parts of complex
numbers, not their magnitudes. If you need these relational operators with a
complex number, it will probably be more sensible to compare the total magni-
tudes rather than only the real components.

6.1.3 Complex Functions

MATLAB includes many functions that support complex calculations. These
functions fall into three general categories:

1. Type conversion functions. These functions convert data from the complex
data type to the real (double) data type. Function real converts the
real part of a complex number into the double data type and throws away
the imaginary part of the complex number. Function imag converts the
imaginary part of a complex number into a real number.

2. Absolute value and angle functions. These functions convert a complex
number to its polar representation. Function abs (c)calculates the
absolute value of a complex number using the equation

abs(c) = Vd* + b?

where ¢ = a + bi. Function angle (c) calculates the angle of a com-
plex number using the equation

angle(c) = atan2(imag(c),real(c))

producing an answer in the range —7 = 6 = 7.
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Table 6.1 Some Functions that Support Complex Numbers

Function Description

conj (c) Computes the complex conjugate of a number c. If ¢ = a + bi,
then conj (¢)=a — bi

real (c) Returns the real portion of the complex number c.

imag(c) Returns the imaginary portion of the complex number c.

isreal (c) Returns true (1) if no element of array c has an imaginary

component. Therefore, ~isreal (c) returns true (1) if an
array is complex.

abs (c) Returns the magnitude of the complex number c.

angle(c) Returns the angle of the complex number ¢, computed from the
expression atan2 (imag(c), real(c)).

3. Mathematical functions. Most elementary mathematical functions are
defined for complex values. These functions include exponential functions,
logarithms, trigonometric functions, and square roots. The functions sin,
cos, log, sqgrt, and so forth will work as well with complex data as
they will with real data.

Some of the intrinsic functions that support complex numbers are listed in
Table 6.1.

>

Example 6.1 —The Quadratic Equation (Revisited)

The availability of complex numbers often simplifies the calculations required
to solve problems. For example, when we solved the quadratic equation in
Example 3.2, it was necessary to take three separate branches through the pro-
gram depending on the sign of the discriminant. With complex numbers available,
the square root of a negative number presents no difficulties, so we can greatly
simplify these calculations.

Write a general program to solve for the roots of a quadratic equation,
regardless of type. Use complex variables so that no branches will be required
based on the value of the discriminant.

SOLUTION

1. State the problem.
Write a program that will solve for the roots of a quadratic equation,
whether they are distinct real roots, repeated real roots, or complex roots,
without requiring tests on the value of the discriminant.
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2. Define the inputs and outputs.

Script file:

Purpose:

The inputs required by this program are the coefficients a, b, and ¢ of the
quadratic equation

ax’+bx+c=0

The output from the program will be the roots of the quadratic equation,
whether they are real, repeated, or complex.

. Describe the algorithm.

This task can be broken down into three major sections, whose functions
are input, processing, and output.

Read the input data
Calculate the roots
Write out the roots

We will now break each of the foregoing major sections into smaller,
more detailed pieces. In this algorithm, the value of the discriminant is
unimportant in determining how to proceed. The resulting pseudocode is

Prompt the user for the coefficients a, b, and c.
Read a, b, and c

discriminant <- b"2 - 4 * a * ¢

xl <- ( -b + sgrt(discriminant) ) / ( 2 * a )
x2 <- ( -b - sgrt(discriminant) ) / ( 2 * a )
Print 'The roots of this equation are:

Print 'xl = ', real(xl), ' +1 ', imag(xl)
Print 'x2 = ', real(x2), ' +1 ', imag(x2)

. Turn the algorithm into MATLAB statements.

The final MATLAB code is

calc_roots2.m

This program solves for the roots of a quadratic equation
of the form a*x**2 + b*x + ¢ = 0. It calculates the answers
regardless of the type of roots that the equation possesses.

Date

02/24/07

Record of revisions:

Programmer Description of change

S. J. Chapman Original code

Define variables:

a
b
c

-—- Coefficient of x*2 term of equation
-—- Coefficient of x term of equation
-- Constant term of equation
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% discriminant -- Discriminant of the equation
% x1 -- First solution of equation
% x2 -- Second solution of equation

oe

Prompt the user for the coefficients of the equation
disp ('This program solves for the roots of a quadratic ');
disp ('equation of the form A*X"2 + B*X + C = 0. ');

a = input ('Enter the coefficient A: ');
b = input ('Enter the coefficient B: ');
c = input ('Enter the coefficient C: ');

% Calculate discriminant
discriminant = b"2 - 4 * a * c;

% Solve for the roots

x1 = ( -b + sgrt(discriminant) ) / ( 2 * a );

%2 = ( -b - sgrt(discriminant) ) / ( 2 * a );

% Display results

disp ('The roots of this equation are:');

fprintf ('x1 = (%f) +i (%f)\n', real(xl), imag(xl));
fprintf ('x2 = (%f) +1i (%f)\n', real(x2), imag(x2));

5. Test the program.
Next, we must test the program using real input data. We will test cases in
which the discriminant is greater than, less than, and equal to 0 to be certain
that the program is working properly under all circumstances. From Equat-
ion (3-1), it is possible to verify the solutions to the following equations:

X2 +5x+6=0 x=—2,andx = =3
X2+ 4x+4=0 x= -2
2+ 2x+5=0 x=—1=2i

When the preceding coefficients are fed into the program, the results are

» calc_roots2

This program solves for the roots of a quadratic
equation of the form A*X"2 + B*X + C = 0.

Enter the coefficient A: 1

Enter the coefficient B: 5

Enter the coefficient C: 6

The roots of this equation are:

x1 (-2.000000) +i (0.000000)

x2 = (-3.000000) +i (0.000000)

» calc_roots2

This program solves for the roots of a gquadratic
equation of the form A*X"2 + B*X + C = 0.

Enter the coefficient A: 1
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Enter the coefficient B: 4

Enter the coefficient C: 4

The roots of this equation are:

x1l = (-2.000000) +i (0.000000)

x2 = (-2.000000) +i (0.000000)

» calc_roots2

This program solves for the roots of a gquadratic
equation of the form A*X"2 + B*X + C = 0.
Enter the coefficient A: 1

Enter the coefficient B: 2

Enter the coefficient C: 5

The roots of this equation are:

x1l = (-1.000000) +i (2.000000)

x2 = (-1.000000) +1i (-2.000000)

The program gives the correct answers for our test data in all three possible
cases. Note how much simpler this program is compared to the quadratic root
solver found in Example 3.1. The complex data type has greatly simplified our

program.
-

6.1.4 Plotting Complex Data

Complex data has both real and imaginary components, and plotting complex
data with MATLAB is a bit different from plotting real data. For example, con-
sider the function

y(t) = e "%(cost + isint) (6-10)

If this function is plotted with the conventional plot command, only the real
data will be plotted—the imaginary part will be ignored. The following state-
ments produce the plot shown in Figure 6.4, together with a warning message that
the imaginary part of the data is being ignored.

t 0:p1/20:4*pi;

v = exp(-0.2*t) .*(cos(t)+i*sin(t));

plot(t,y, 'Linewidth', 2) ;

title('\bfPlot of Complex Function vs Time') ;
xlabel ('\bf\itt"');

vlabel ('\bf\ity(t)");

If both the real and imaginary parts of the function are of interest, then
the user has several choices. Both parts can be plotted as a function of time
on the same axes using the following statements (see Figure 6.5).
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Figure 6.4 Plot of y(1) = e %¥(cos ¢ + i sin ) using the command plot (t,y).

— rea| )
=== imaginary

Figure 6.5 Plot of real and imaginary parts of y(¢) versus time.
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t 0:p1/20:4*pi;

v = exp(-0.2*t).*(cos(t)+i*sin(t));
plot(t,real(y), 'b-', 'Linewidth',2);

hold on;

plot(t,imag(y),'r--', 'Linewidth',2);
title('\bfPlot of Complex Function vs Time') ;
xlabel ('\bf\itt"');

ylabel ('\bf\ity(t)");

legend ('real', 'imaginary');

hold off;

Alternatively, the real part of the function can be plotted versus the imaginary
part. If a single complex argument is supplied to the plot function, it automati-
cally generates a plot of the real part versus the imaginary part. The statements to
generate this plot are shown here, and the result is shown in Figure 6.6.

t 0:pi/20:4%pi;

v = exp(-0.2*t).*(cos(t)+i*sin(t));
plot(y, 'b-', 'Linewidth',2);
title('\bfPlot of Complex Function') ;
xlabel ('\bfReal Part');

vlabel ('\bfImaginary Part');

—Iolx]
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Real Part

Figure 6.6 Plot of real versus imaginary parts of y(¢).
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Figure 6.7 Polar plot of magnitude of y(#) versus angle.

Finally, the function can be plotted as a polar plot showing magnitude versus
angle. The statements to generate this plot are shown here, and the result is shown

in Figure 6.7.
t 0:pi/20:4%*pi;
y = exp(-0.2*t) .*(cos(t)+i*sin(t));

polar (angle(y),abs(y));
title('\bfPlot of Complex Function');

6.2 String Functions

A MATLAB string is an array of type char. Each character is stored in two bytes
of memory. A character variable is automatically created when a string is assigned
to it. For example, the statement

str = 'This is a test';
creates a 14-element character array. The output of whos for this array is

» whos str
Name Size Bytes Class Attributes

str 1x14 28 char
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A special function ischar can be used to check for character arrays. If a given
variable is of type character, then ischar returns a true (1) value. If it is not,
ischar returns a false (0) value.

The following subsections describe MATLAB functions useful for manipu-
lating character strings.

6.2.1 String Conversion Functions

Variables may be converted from the char data type to the double data type
using the double function. Thus the statement double (str) yields the
result

» x = double(str)
X =
Columns 1 through 12
84 104 105 115 32 105 115 32 97 32 116 101
Columns 13 through 14
115 116

Variables can also be converted from the double data type to the char data
type using the char function. If x is the 14-element array created previously, then
the statement char (x) yields the result

» z = char(x)
ZzZ =
This is a test

6.2.2 Creating Two-Dimensional Character Arrays

It is possible to create two-dimensional character arrays, but each row of such an
array must have exactly the same length. If one of the rows is shorter than the
other rows, the character array is invalid and will produce an error. For example,
the following statements are illegal because the two rows have different lengths.

name = ['Stephen J. Chapman';'Senior Engineer'];

The easiest way to produce two-dimensional character arrays is with the char
function. This function will automatically pad all strings to the length of the
largest input string.

» name = char('Stephen J. Chapman', 'Senior Engineer')
name =

Stephen J. Chapman

Senior Engineer

Two-dimensional character arrays can also be created with the function strvcat,
which is described later.
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Use the char function to create two-dimensional character arrays without
worrying about padding each row to the same length.

It is possible to remove any extra trailing blanks from a string when it is extracted
from an array using the deblank function. For example, the following statements
remove the second line from array name and compare the results with and without
blank trimming.

» line2 = name(2,:)

line2 =

Senior Engineer

» line2 trim = deblank(name(2,:))
line2_ trim =

Senior Engineer

» size(line2)

ans =
1 18
» size(line2 trim)
ans =
1 15

6.2.3 Concatenating Strings

Function strcat concatenates two or more strings horizontally, ignoring any
trailing blanks but preserving blanks within the strings. This function produces
the following result:

» result = strcat('String 1 ','String 2')
result =
String 1String 2

The result is ' String 1String 2'. Note that the trailing blanks in the first
string were ignored.

Function strvcat concatenates two or more strings vertically, automati-
cally padding the strings to make a valid two-dimensional array. This function
produces the following result:

» result = strvcat('Long String 1 ','String 2')
result =

Long String 1

String 2
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6.2.4 Comparing Strings
Strings and substrings can be compared in several ways:

B Two strings, or parts of two strings, can be compared for equality.

® Two individual characters can be compared for equality.

® Strings can be examined to determine whether each character is a letter or
whitespace.

Comparing Strings for Equality
You can use four MATLAB functions to compare two strings as a whole for
equality. They are

B strcmp determines whether two strings are identical.

B strcmpi determines whether two strings are identical ignoring case.

B strncmp determines whether the first n characters of two strings are
identical.

B strncmpi determines whether the first n characters of two strings are
identical ignoring case.

Function strcmp compares two strings, including any leading and trailing
blanks, and returns a true (1) if the strings are identical'. Otherwise, it returns a
false (0). Function strcmpi is the same as strcmp, except that it ignores the
case of letters (that is, it treats 'a' asequalto 'A'.)

Function strncmp compares the first n characters of two strings, including
any leading blanks, and returns a true (1) if the characters are identical.
Otherwise, it returns a false (0). Function strncmpi is the same as strncmp,
except that it ignores the case of letters.

To understand these functions, consider the two strings:

strl = 'hello';
str2 = 'Hello';
str3 = 'help';

Strings strl and str2 are not identical, but they differ only in the case of one
letter. Therefore, strcmp returns false (0), while strcmpi returns true (1).

» ¢ = strcmp(strl,str2)

C:

0
» ¢ = strcmpi(strl,str2)
Cc =

1

!Caution: The behavior of this function is different from that of the strcmp in C. C programmers
can be tripped up by this difference.
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Strings strl and str3 are also not identical, and both strcmp and strcmpi
will return a false (0). However, the first three characters of str1 and str3 are
identical, so invoking strncmp with any value up to 3 returns a true (1) :

» ¢ = strncmp(strl,str3, 2)
c:
1

Comparing Individual Characters for Equality and Inequality

You can use MATLAB relational operators on character arrays to test for equality
one character at a time, as long as the arrays you are comparing have equal
dimensions or one is a scalar. For example, you can use the equality operator (==
to determine which characters in two strings match:

» a = 'fate'
» b = 'cake'
» result = a == b
result =
0101

All of the relational operators (>, >=, <, <=, ==, ~=) compare the ASCII values
of corresponding characters.

Unlike C, MATLAB does not have an intrinsic function to define a “greater
than” or “less than” relationship between two strings taken as a whole. We will
create such a function in an example at the end of this section.

Categorizing Characters Within a String

There are three functions for categorizing characters on a character-by-character
basis inside a string:

B jsletter determines whether a character is a letter.

B j sspace determines if a character is whitespace (blank, tab, or new line).

B isstrprop ('str', 'category') is a more general function. It
determines whether a character falls into a user-specified category, such as
alphabetic, alphanumeric, uppercase, lowercase, numeric, control and so on.

To understand these functions, let’s create a string named mystring:
mystring = 'Room 23a';

We will use this string to test the categorizing functions.

Function isletter examines each character in the string, producing a
logical output vector of the same length as mystring that contains a true (1)
in each location corresponding to a character and a false (0) in the other locations.
For example,

» a = isletter (mystring)

a =
11110001
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The first four and the last elements in a are true (1) because the corresponding
characters of mystring are letters.

Function isspace also examines each character in the string, producing a
logical output vector of the same length as my st ring that contains a true (1)
in each location corresponding to whitespace, and a false (0) in the other loca-
tions. “Whitespace” is any character that separates tokens in MATLAB: a space,
a tab, a linefeed, carriage return, etc. For example,

» a = isspace(mystring)
a =
000O01O0O0O

The fifth element in a is true (1) because the corresponding character of
mystring is a space.

Function isstrprop was added in MATLAB 7.0. It is a more flexible
replacement for isletter, isspace, and several other functions. This func-
tion has two arguments, 'str' and 'category'. The first argument is the
string to characterize, and the second argument is the type of category to check
for. Some possible categories are given in Table 6.2.

This function examines each character in the string, producing a logical
output vector of the same length as the input string that contains a true (1) in

Table 6.2 Selected Categories for Function isstrprop

Category Description

'alpha’ Return true (1) for each character of the string that is alphabetic, and false
(0) otherwise.

'alphanum' Return true (1) for each character of the string that is alphanumeric, and
false (0) otherwise.
[Note: This category replaces function isletter.]

'cntrl’ Return true (1) for each character of the string is that is a control character,
and false (0) otherwise.

'digit’ Return true (1) for each character of the string that is a number, and false
(0) otherwise.

'lower Return true (1) for each character of the string that is a lower case letter,
and false (0) otherwise.

'wspace' Return true (1) for each character of the string that is whitespace, and false
(0) otherwise.
[Note: This category replaces function isspace.]

'upper' Return true (1) for each character of the string that is an upper case letter,
and false (0) otherwise.

'xdigit’ Return true (1) for each character of the string that is a hexadecimal digit,

and false (0) otherwise.
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each location that matches the category and a false (0) in the other locations. For
example, the following function checks to see which characters in mystring
are numbers:

» a = isstrprop(mystring, 'digit')
a =
00000110

Also, the following function checks to see which characters in mystring are
lowercase letters:

» a = isstrprop (mystring, 'lower’')

a =
01110001

Use function isstrprop to determine the characteristics of each character in
a string array. This function replaces the older functions isletter and
isspace, which may be deleted in a future version of MATLAB.

6.2.5 Searching and Replacing Characters Within a String

MATLAB provides several functions for searching and replacing characters within
a string. Consider a string named test:

test = 'This is a test!';

Function findstr returns the starting position of all occurrences of the
shorter of two strings within a longer string. For example, to find all occurrences
of the string 'is' inside test,

» position = findstr(test,'is')
position =
3 6

The string 'is' occurs twice within test, starting at positions 3 and 6.

Function strmatch is another matching function. This one looks at the
beginning characters of the rows of a two-dimensional character array and returns
a list of those rows that start with the specified character sequence. The form of
this function is

result = strmatch(str,array) ;

For example, suppose that we create a two-dimensional character array with the
function strvcat:

array = strvcat('maxarray', 'min value',k 'max value');
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Then the following statement will return the row numbers of all rows beginning
with the letters 'max':

» result = strmatch('max',array)
result =

1

3

Function strrep performs the standard search-and-replace operation. It
finds all occurrences if one string within another one and replaces them by a third
string. The form of this function is

result = strrep(str,srch,repl)

where str is the string being checked, srch is the character string to search for,
and repl is the replacement character string. For example,

» test = 'This is a test!’
» result = strrep(test, 'test', 'pest’')
result =

This is a pest!

The strtok function returns the characters before the first occurrence of a
delimiting character in an input string. The default delimiting characters are the
set of whitespace characters. The form of strtok is

[token, remainder] = strtok(string,delim)

where string is the input character string, de1lim is the (optional) set of delim-
iting characters, token is the first set of characters delimited by a character in
delim, and remainder is the rest of the line. For example,

» [token,remainder] = strtok('This is a test!')
token =

This

remainder =

is a test!

You can use the strtok function to parse a sentence into words; for
example,

function all_words = words (input_string)
remainder = input_string;
all _words = '';
while (any(remainder))
[chopped, remainder] = strtok(remainder) ;
all_words = strvcat(all_words, chopped) ;
end
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6.2.6 Uppercase and Lowercase Conversion

Functions upper and lower convert all of the alphabetic characters within a
string to uppercase and lowercase, respectively. For example,

» result = upper('This is test 1!')
result =

THIS IS TEST 1!

» result = lower('This is test 2!')
result =

this is test 2!

Note that the alphabetic characters were converted to the proper case, while the
numbers and punctuation were unaffected.

6.2.7 Trimming Whitespace from Strings

There are two functions that trim leading and/or trailing whitespace from a string.
Whitespace characters consists of the spaces, newlines, carriage returns, tabs,
vertical tabs, and formfeeds.

Function deblank removes any extra trailing whitespace from a string, and
function strtrim removes any extra leading and trailing whitespace from a
string.

For example, the following statements create a 2 1-character string with lead-
ing and trailing whitespace. Function deblank trims the trailing whitespace
characters in the string only, while function strtrim trims both the leading and
the trailing whitespace characters.

» test_string = ' This is a test. '
test_string =
This is a test.
» length(test_string)
ans =
21
» test_string triml= deblank(test_string)
test_string_triml =
This is a test.
» length(test_string triml)
ans =
18
» test_string trim2 = strtrim(test_string)
test_string_trim2 =
This is a test.
» length(test_string trim2)
ans =
15
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6.2.8 Numeric-to-String Conversions

MATLAB contains several functions to convert numeric values into character
strings. We have already seen two such functions, num2str and int2str.
Consider a scalar x:

x = 5317;

By default, MATLAB stores the number x as a 1 X | double array containing
the value 5317. The int2str (integer to string) function converts this scalar into
a 1-by-4 char array containing the string '5317 ':

» x = 5317;

» y = int2str(x);

» whos
Name Size Bytes Class Attributes
x 1x1 8 double
v 1x4 8 char

Grand total is 5 elements using 16 bytes

Function num2str converts a double value into a string, even if it does
not contain an integer. It provides more control of the output string format than
int2str. An optional second argument sets the number of digits in the output
string or specifies an actual format to use. The format specifications in the sec-
ond argument as similar to those used by fprintf. For example,

» p = num2str(pi)

p =

3.1416

» p = num2str(pi,7)

p =

3.141593

» p = num2str(pi, '%10.5e')

p =

3.14159e+000

Both int2str and num2str are handy for labeling plots. For example, the
following lines use num2str to prepare automated labels for the x-axis of a plot:

function plotlabel (x,Vy)

plot(x,y)

strl num2str (min(x)) ;

str2 = num2str (max(x)) ;

out = ['Value of f from ' strl ' to ' str2];
xlabel (out) ;

There are also conversion functions designed to change numeric values
into strings representing a decimal value in another base, such as a binary or
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hexadecimal representation. For example, the dec2hex function converts a dec-
imal value into the corresponding hexadecimal string:

dec_num = 4035;

hex_num = dec2hex (dec_num)
hex num
FC3

Other functions of this type include hex2num, hex2dec, bin2dec,
dec2bin, base2dec, and dec2base. MATLAB includes on-line help for
all of these functions.

MATLAB function mat2str converts an array to a string that MATLAB
can evaluate. This string is useful input for a function such as eval, which eval-
uates input strings just as if they were typed at the MATLAB command line. For
example, if we define array a as

»>a = [12 3; 4 5 6]

1 2 3
4 5 6

then the function mat2str will return a string containing the result

» b = mat2str(a)

b
[1 2 3; 45 6]

Finally, MATLAB includes a special function sprintf that is identical to
function fprintf, except that the output goes into a character string instead of
the Command Window. This function provides complete control over the format-
ting of the character string. For example,

» str = sprintf('The value of pi = %8.6f."',pi)
str =
The value of pi = 3.141593.

This function is extremely useful in creating complex titles and labels for
plots.

6.2.9 String-to-Numeric Conversions

MATLAB also contains several functions to change character strings into numeric
values. The most important of these function are eval, str2double, and
sscanf.

Function eval evaluates a string containing a MATLAB expression and
returns the result. The expression can contain any combination of MATLAB func-
tions, variables, constants, and operations. For example, the string a containing
the characters '2 * 3.141592"' can be converted to numeric form by the fol-
lowing statements:
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» a = '2 * 3,141592';
» b = eval(a)
b =
6.2832
» whos
Name Size Bytes Class Attributes
a 1x12 24 char
b 1x1 8 double

Function str2double converts character strings into an equivalent double
value?. For example, the string a containing the characters '3.141592' can be
converted to numeric form by the following statements:

» a = '3.141592"';
» b = str2double(a)
b =

3.1416

Strings can also be converted to numeric form using the function sscanft.
This function converts a string into a number according to a format conversion
character. The simplest form of this function is

value = sscanf (string, format)

where string is the string to scan, and format specifies the type of conversion
to occur. The two most common conversion specifiers for sscanf are '$d' for
decimals and '%g"' for floating-point numbers. This function will be covered in
much greater detail in Chapter 8.

The following examples illustrate the use of sscanf.

» a = '3.,141592"';
» valuel = sscanf(a, '%g')

valuel =

3.1416
» value2 = sscanf(a,'%d')
value2 =

3

6.2.10 Summary

The common MATLAB string functions are summarized in Table 6.3.

MATLAB also contains a function str2num that can convert a string into a number. For a
variety of reasons mentioned in the MATLAB documentation, function str2double is better than
function str2num. You should recognize function str2num when you see it, but always use func-
tion str2double in any new code that you write.
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Table 6.3 Common MATLAB String Functions

Category Function Description
General char (1) Convert numbers to the corresponding character values.
(2) Create a two dimensional character array from a series
of strings.
double Convert characters to the corresponding numeric codes.
blanks Create a string of blanks.
deblank Remove trailing whitespace from a string.
strtrim Remove leading and trailing whitespace from a string.
String tests ischar Returns true (1) for a character array.
isletter Returns true (1) for letters of the alphabet.
isspace Returns true (1) for whitespace.
isstrprop Returns true (1) for characters matching the specified property.
String operations strcat Concatenate strings.
strvcat Concatenate strings vertically.
strcmp Returns true (1) if two strings are identical.
strcmpi Returns true (1) if two strings are identical, ignoring case.
strncmp Returns true (1) if first n characters of two strings are identical.
strncmpi Returns true (1) if first n characters of two strings are identical,
ignoring case.
findstr Find one string within another one.
strjust Justify string.
strmatch Find matches for string.
strrep Replace one string with another.
strtok Find token in string.
upper Convert string to uppercase.
lower Convert string to lowercase.
Number-to-string conversion int2str Convert integer to string.
num2str Convert number to string.
mat2str Convert matrix to string.
sprintf Write formatted data to string.
String-to-number conversion eval Evaluate the result of a MATLAB expression.
str2double Convert string to a double value.
str2num Convert string to number.
sscanf Read formatted data from string.
Base number conversion hex2num Convert IEEE hexadecimal string to double.
hex2dec Convert hexadecimal string to decimal integer.
dec2hex Convert decimal to hexadecimal string.
bin2dec Convert binary string to decimal integer.
dec2bin Convert decimal integer to binary string.
base2dec Convert base B string to decimal integer.
dec2base Convert decimal integer to base B string.




6.2 String Functions | 289

>

Example 6.2—String Comparison Function

In C, function strmcp compares two strings according to the order of their char-
acters in the ASCII table (called the lexicographic order of the characters), and
returns a — 1 if the first string is lexicographically less than the second string, a 0
if the strings are equal, and a +1 if the first string is lexicographically greater than
the second string. This function is extremely useful for such purposes as sorting
strings in alphabetic order.

Create a new MATLAB function c_strcmp that compares two strings in
a similar fashion to the C function and returns similar results. The function
should ignore trailing blanks in doing its comparisons. Note that the function
must be able to handle the situation where the two strings are of different
lengths.

SOLUTION

1. State the problem.
Write a function that will compare two strings strl and str2, and
return the following results:

= —] if strl is lexicographically less than str2.
= 0 if strl is lexicographically less than str2.
m+] if strl is lexicographically greater than str2.

The function must work properly if str1 and str2 do not have the same
length, and the function should ignore trailing blanks.

2. Define the inputs and outputs.
The inputs required by this function are two strings, strl and str2. The
output from the function will be a —1, 0, or 1, as appropriate.

3. Describe the algorithm.
This task can be broken down into four major sections:

Verify input strings

Pad strings to be equal length

Compare characters from beginning to end, looking
for the first difference

Return a value based on the first difference

We will now break each of the preceding major sections into smaller,
more detailed pieces. First, we must verify that the data passed to the
function is correct. The function must have exactly two arguments, and
the arguments must both be characters. The pseudocode for this step is

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin)
error (msg)
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% Check to see if the arguments are strings
if either argument is not a string

error ('strl and str2 must both be strings')
else

(add code here)
end

Next, we must pad the strings to equal lengths. The easiest way to do this is
to combine both strings into a two-dimensional array using strvcat.
Note that this step effectively results in the function’s ignoring trailing
blanks, because both strings are padded out to the same length. The
pseudocode for this step is

(o)

% Pad strings
strings = strvcat(strl,str2)

Now we must compare each character until we find a difference and
return a value based on that difference. One way to do this is to use rela-
tional operators to compare the two strings, creating an array of Os and 1s.
We can then look for the first 1 in the array, which will correspond to the
first difference between the two strings. The pseudocode for this step is

% Compare strings

diff = strings(l,:) ~= strings (2, :)
if sum(diff) == 0
% Strings match
result = 0
else
% Find first difference
ival = find(diff)
if strings(1l,ival) > strings(2,ival)
result = 1
else
result = -1
end
end

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is

function result = c_strcmp(strl,str2)
$C_STRCMP Compare strings like C function "strcmp"

oe

oe

Function C_STRCMP compares two strings, and returns
a -1 if strl < str2, a 0 if strl == str2, and a

+1 if strl > str2.

oe

Define variables:

oe

oe

diff -- Logical array of string differences
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% msg -- Error message

% result -- Result of function

% strl -- First string to compare
% str2 -- Second string to compare
% strings -- Padded array of strings

Record of revisions:
Date Programmer Description of change

02/25/07 S. J. Chapman Original code

o0 o0 0P o°

O

> Check for a legal number of input arguments.
msg = nargchk(2,2,nargin) ;
error (msg) ;

% Check to see if the arguments are strings
if ~(isstr(strl) & isstr(str2))

error ('Both strl and str2 must both be strings!')
else

% Pad strings

strings = strvcat(strl,str2);

% Compare strings

diff = strings(l,:) ~= strings(2,:);
if sum(diff) == 0

% Strings match, so return a zero!
result = 0;

else
% Find first difference between strings
ival = find(diff);

if strings(l,ival(l)) > strings(2,ival(1l))
result = 1;
else
result = -1;
end
end

end

5. Test the program.
Next, we must test the function using various strings.

» result = c_strcmp('String 1','String 1')
result =

0
» result = c_strcmp('String 1','String 1 ')
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result =
0
» result = c_strcmp('String 1','String 2')
result =
-1
» result = c_strcmp('String 1','String 0')
result =
1
» result = c_strcmp('String','str')
result =
-1

The first test returns a zero, because the two strings are identical. The sec-
ond test also returns a zero, because the two strings are identical except
for trailing blanks, and trailing blanks are ignored. The third test returns a
—1, because the two strings first differ in position 8, and '1' < '2' at
that position. The fourth test returns a 1, because the two strings first differ
in position 8,and '1' > ' 0" at that position. The fifth test returns a —1,
because the two strings first differ in position 1, and 'S' < 's' in the
ASCII collating sequence.
This function appears to be working properly.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 6.1 through 6.2. If you have trouble with the
quiz, reread the section, ask your instructor, or discuss the material with
a fellow student. The answers to this quiz are found in the back of the
book.

1. What is the value of result in the following statements?
(@) x = 12 + 1i*5;
v = 5 — i*13;
result = x > y;
(b) x = 12 + i*5;
y = 5 - i*13;
result = abs(x) > abs(y);
(c) x = 12 + 1i*5;
y = 5 — i*13;
result = real(x) - imag(y);



10.

11.

12.

13.

2. If array is a complex array, what does the function

3. How can you convert a vector of the char data type into a vector

For questions 4 through 11, determine whether these statements are cor-

plot (array) do?
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of the double data type?

rect. If they are, what is produced by each set of statements?

strl
str2
res =

strl
str2
res =

strl
str2
res =

strl
str2
res =

strl
str2
res =

strl
res =

strl
strl(

strl
res =

strl
strl (

strl
str2
str3
strd
str5
11 =
12
13 =

= 'This is a test! ';

= 'This line, too.

.
7

strcat (strl,str2);

= 'Line 1°';
= 'line 2';

strcati(strl,str2);

[strl; str2];

'This i1s another test! ';
'This line, too.

.
’

'This is another test! ';
'This line, too.

.
’

strvcat (strl,str2);

= 'This is a test! ';
'This line, too.

LI
7

strncmp (strl,str2,5);

= 'This is a test! ';

findstr(strl, 's

")

= 'This is a test! ';

isspace(strl)) = 'x';
= 'aBcD 1234 !?';
isstrprop(strl, 'alphanum') ;
= 'This is a test! ';
4:7) = upper(strl(4:7));
= ' 456 '; % Note: Three blanks before & after
= ' abc '; % Note: Three blanks before & after

[strl str2];
[strtrim(strl)
= [deblank(strl)
length(strl) ;

= length(str2);

length(str3) ;

strtrim(str2)];
deblank (str2)];

293
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14 = length(str4);
15 = length(str4);

. strl = 'This way to the egress.';
str2 = 'This way to the egret.'
res = strncmp(strl,str2);

6.3 Multidimensional Arrays

MATLAB also supports arrays with more than two dimensions. These multidi-
mensional arrays are very useful for displaying data that intrinsically has more
than two dimensions, or for displaying multiple versions of two-dimensional data
sets. For example, measurements of pressure and velocity throughout a three-
dimensional volume are very important in such studies as aecrodynamics and fluid
dynamics. These areas naturally use multidimensional arrays.

Multidimensional arrays are a natural extension of two-dimensional arrays.
Each additional dimension is represented by one additional subscript used to
address the data.

It is very easy to create multidimensional arrays. They can be created either
by assigning values directly in assignment statements or by using the same func-
tions that are used to create one- and two-dimensional arrays. For example, sup-
pose that you have a two-dimensional array created by the assignment statement

»a=[12 3 4; 5 6 7 8]

a:
1 2 3 4
5 6 7 8

Thisisa2 X 4 array, with each element addressed by two subscripts. The array
can be extended to be a three-dimensional 2 X 4 X 3 array with the following
assignment statements:

» a(:,:,2) = [ 9 10 11 12; 13 14 15 16];
» a(:,:,3) [ 17 18 19 20; 21 22 23 24]

a(:,:,1) =
1 2 3 4
5 6 7 8
a(:,:,2) =
9 10 11 12
13 14 15 16
a(:,:,3) =
17 18 19 20
21 22 23 24

Individual elements in this multidimensional array can be addressed by the array
name followed by three subscripts, and subsets of the data can be created using
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the colon operators. For example, the value of a (2,2, 2) is

» a(2,2,2)
ans =
14

and the vectora (1,1, :) is
» a(l,1,:)

ans(:,:,1) =
1

ans(:,:,2) =
9

ans(:,:,3) =
17

Multidimensional arrays can also be created using the same functions as
other arrays, for example,

» b = ones(4,4,2)

b(:,:,1) =
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
b(:,:,2) =
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
» ¢ = randn(2,2,3)
c(:,:,1) =
-0.4326 0.1253
-1.6656 0.2877
c(:,:,2) =
-1.1465 1.1892
1.1909 -0.0376
c(:,:,3) =
0.3273 -0.1867
0.1746 0.7258

The number of dimensions in a multidimensional array can be found using the
ndims function, and the size of the array can be found using the size function.

» ndims (c)
ans =

3
» size(c)
ans =
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If you are writing applications that need multidimensional arrays, see the
MATLAB Users Guide for more details on the behavior of various MATLAB
functions with multidimensional arrays.

*

Use multidimensional arrays to solve problems that are naturally multivariate in
nature, such as aerodynamics and fluid flows.

Also, recall from Chapter 4 that the MATLAB just-in-time compiler cannot
compile loops containing arrays with three or more dimensions. If you are work-
ing with such arrays, be sure to vectorize your code to increase its speed. Do not
rely on the JIT compiler to do the job—it won’t.

If you are working with multidimensional arrays, be sure to vectorize your code
by hand. The MATLAB JIT compiler cannot handle loops containing multidi-
mensional arrays.

6.4 Additional Data Types

MATLAB also includes a single data type and several integer data types. They
are briefly discussed in the following sections.

6.4.1 The single Data Type

Variables of type single are scalars or arrays of 32-bit single-precision
floating-point numbers. They can hold real, imaginary, or complex values.
Variables of type single occupy half the memory of variables of type double,
but they have lower precision and a more limited range. The real and imaginary
components of each single variable can be positive or negative numbers in the
range 10738 to 10°%, with six to seven significant decimal digits of accuracy.
The single function creates a variable of type single. For example, the
following statement creates a variable of type single containing the value 3.1:

» var = single(3.1)
var =
3.1000
» whos
Name Size Bytes Class Attributes

var 1x1 4 single
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Once a single variable is created, it can be used in MATLAB operations
just like a double variable. In MATLAB, an operation performed between a
single value and a double value has a single result?, so the result of the
following statements will be of type single:

> b = 7;
» ¢ = var * b
Cc =
21.7000
» whos
Name Size Bytes Class Attributes
b 1x1 8 double
c 1x1 4 single
var 1x1 4 single

The capability to perform mathematical operations with the single data type
is a relatively new feature introduced in MATLAB 7.0. Values of type single can
be used just like values of type double in most MATLAB operations. Built-in
functions such as sin, cos, exp, and so forth all support the single data type,
but some M-file functions may not support single values yet. (For example, com-
parisons for near equality between two numbers may be incorrect if the function is
expecting double values and instead is passed single values.) As a practical
matter, you will probably never use this data type. Its more limited range and
precision make the results more sensitive to cumulative round-off errors or to
exceeding the available range. You should consider using this data type only if you
have enormous arrays of data that could not fit into your computer memory if they
were saved in double precision.

6.4.2 Integer Data Types

MATLAB also includes 8-, 16-, 32-, and 64-bit signed and unsigned integers. The
data types are int8, uint8, intl6, uintl6, int32, uint32, int64,
and uint64. The difference between a signed and an unsigned integer is the
range of numbers represented by the data type. The number of values that can be
represented by an integer depends on the number of bits in the integer:

number of values = 2" (6-11)

where 7 is the number of bits. An 8-bit integer can represent 256 values (2%), a
16-bit integer can represent 65,536 values (2'°), and so forth. Signed integers
use half of the available values to represent positive numbers and half for nega-
tive numbers, whereas unsigned integers use all of the available values to repre-
sent positive numbers. Therefore, the range of values that can be represented in

3CAUTION: This is unlike the behavior of any other computer language that the author has ever
encountered. In every other language (Fortran, C, C++, Java, Basic, etc.), the result of an operation
between a single and a double would be of type double.
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the int8 data type is —128 to 127 (a total of 256), while the range of values
that can be represented in the uint8 data type is 0 to 255 (a total of 256).
Similarly, the range of values that can be represented in the int16 data type is
—32,768 to 32,767 (a total of 65,536), while the range of values that can be
represented in the uint16 data type is 0 to 65,535. The same idea applies to
larger integer sizes.

Integer values are created by the int8(), uint8(), intlé(),
uintl6 (), int32(), uint32(), int64 (), or uinté64 () functions.
For example, the following statement creates a variable of type int8 containing
the value 3:

» var = int8(3)

var =
3
» whos
Name Size Bytes Class Attributes
var 1x1 1 int8

Integers can be converted to other data types using the double and single
functions.

An operation performed between an integer value and a double value
has an integer result®, so the result of the following statements will be of type
int8:

» b = 17;
» ¢ = var * b
Cc =
21
» whos
Name Size Bytes Class Attributes
b 1x1 8 double
c 1x1 1 int8
var 1x1 1 int8

MATLAB uses saturating integer arithmetic. If the result of an integer math
operation would be larger than the largest possible value that can be represented in
that data type, then the result will be the largest possible value. Similarly, if the result
of an integer math operation would be smaller than the smallest possible value that
can be represented in that data type, then the result will be the smallest possible value.
For example, the largest possible value that can be represented in the int8 data type
is 127. The result of the operation int8 (100) + int8 (50) will be 127, because
150 is larger than 127, the maximum value that can be represented in the data type.

4CAUTION: This is unlike the behavior of any other computer language that the author has ever
encountered. In every other language (Fortran, C, C++, Java, Basic, etc.), the result of an operation
between an integer and a double would be of type double.
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It is unlikely that you will need to use the integer data type unless you are
working with image data. If you do need more information, please consult the
MATLAB documentation.

6.4.3 Limitations of the single and Integer Data Types

The single data type and integer data types have been around in MATLAB for
a while, but they have been mainly used for purposes such as storing image data.
Before MATLAB 7.0, it was not possible to perform mathematical operations (+,
—, etc.) with these data types. MATLAB is now evolving to make manipulating
these data types easier, but the support is still rough in the current release. There
are significant gaps. For example, you can add a single and a double, or an
integer and a double, but not a single and an integer.

» a = single(2.1)
a =
2.1000
» b = intl1l6(4)
b =
4

» ¢ = a+b
??? Error using ==> plus
Class of operand is not supported.

Unless you have some special need to manipulate images, you will probably never
need to use either of these data types.

Do not use the single or integer data types unless you have a special need,
such as image processing.

6.5 Additional Two-Dimensional Plots

In previous chapters, we have learned to create linear, log-log, semilog, and polar
plots. MATLAB supports many additional types of plots that you can use to display
your data. This section will introduce you to some of these additional plotting options.

6.5.1 Additional Types of Two-Dimensional Plots

In addition to the two-dimensional plots that we have already seen, MATLAB
supports many other more specialized plots. In fact, the MATLAB help desk lists
more than 20 types of two-dimensional plots! Examples include stem plots, stair
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plots, bar plots, pie plots, and compass plots. A stem plot is a plot in which each
data value is represented by a marker and a line connecting the marker vertically
to the x axis. A stair plot is a plot in which each data point is represented by a hor-
izontal line and successive points are connected by vertical lines, producing a
stair-step effect. A bar plot is a plot in which each point is represented by a ver-
tical bar or horizontal bar. A pie plot is a plot represented by “pie slices” of vari-
ous sizes. Finally, a compass plot is a type of polar plot in which each value is
represented by an arrow whose length is proportional to its value. These plots are
summarized in Table 6.4, and examples of all of the plots are shown in Figure 6.8.

Stair, stem, vertical bar, horizontal bar, and compass plots are all similar to
plot, and they are used in the same manner. For example, the following code
produces the stem plot shown in Figure 6.7a:

x =[123456];

v = [2 6 87 8 5];

stem(x,v) ;

title('\bfExample of a Stem Plot');
xlabel ("\bf\itx"') ;

vlabel ("\bf\ity"');

axis ([0 7 0 101);

Table 6.4 Additional Two-Dimensional Plotting Functions

Function Description

bar (x,v) This function creates a vertical bar plot, with the values in x
used to label each bar and the values in v used to determine
the height of the bar.

barh (x,vy) This function creates a horizontal bar plot, with the values in x

used to label each bar and the values in y used to determine
the horizontal length of the bar.

compass (x,Vy) This function creates a polar plot, with an arrow drawn from
the origin to the location of each (x, y) point. Note that the
locations of the points to plot are specified in Cartesian coordi-
nates, not polar coordinates.

pie(x) This function creates a pie plot. This function determines the

pie(x,explode) percentage of the total pie corresponding to each value of x,
and plots pie slices of that size. The optional array explode
controls whether or not individual pie slices are separated from
the remainder of the pie.

stairs(x,y) This function creates a stair plot, with each stair step centered
on an (x, y) point.

stem(x,v) This function creates a stem plot, with a marker at each (x, y)
point and a stem drawn vertically from that point to the x axis.
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# Figure 1
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Figure 6.8 Additional types of 2D plots: (a) stem plot; (b) stair plot;
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Figure 6.8 (continued) (c) vertical bar plot; (d) horizontal bar plot;
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Figure 6.8 (continued) (e) pie plot; (f) compass plot.



304

Chapter 6 Additional Data Types and Plot Types

Stair, bar, and compass plots can be created by substituting stairs, bar,
barh, or compass for stem in the preceding code. The details of all of these
plots, including any optional parameters, can be found in the MATLAB on-line
help system.

Function pie behaves differently from the other plots described previously.
To create a pie plot, a programmer passes an array x containing the data to be
plotted, and function pie determines the percentage of the total pie that each
element of x represents. For example, if the array x is [1 2 3 4], then pie will
calculate that the first element x (1) is 1/10 or 10% of the pie, the second ele-
ment x (2) is 2/10 or 20% of the pie, and so forth. The function then plots those
percentages as pie slices.

Function pie also supports an optional parameter, explode. If present,
explode is a logical array of 1s and Os, with an element for each element in
array x. If a value in explode is 1, then the corresponding pie slice is drawn
slightly separated from the pie. For example, the code shown below produces the
pie plot in Figure 6.7¢. Note that the second slice of the pie is “exploded.”

data = [ 10 37 5 6 61;

explode = [ 01 0 0 0];

pie(data, explode) ;

title('\bfExample of a Pie Plot');
legend('One', 'Two', 'Three', 'Four', 'Five');

6.5.2 Plotting Functions

In all previous plots, we have created arrays of data and passed those arrays to the
plotting function. MATLAB also includes two functions that will plot a function
directly, without the necessity of creating intermediate data arrays. These func-
tions are ezplot and fplot.

Function ezplot takes one of the following forms:

ezplot (fun) ;
ezplot (fun, [xmin xmax]) ;
ezplot (fun, [xmin xmax], figure);

In each case, fun is a character string containing the functional expression to
be evaluated. The optional parameter [xmin xmax] specifies the range of the
function to plot. If it is absent, the function will be plotted between —27 and
2. The optional parameter figure specifies the figure number to plot the
function on.

For example, the following statements plot the function f(x) = sinx/x
between —47x and 47z. The output of these statements is shown in Figure 6.9.

ezplot('sin(x)/x', [-4*pl 4*pil);
title('Plot of sin x / xX');
grid on;
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Figure 6.9 The function sin x/x, plotted with function ezplot.

Function fplot is similar to but more sophisticated than ezplot. The first
two arguments are the same for both functions, but fplot has the following
advantages:

1. Function fplot is adaptive, meaning that it calculates and displays more
data points in the regions where the function being plotted is changing
most rapidly. The resulting plot is more accurate at locations where a
function’s behavior changes suddenly.

2. Function fplot supports the use of TX commands in titles and axis
labels, whereas function ezplot does not.

In general, you should use fplot in preference to ezplot whenever you plot
functions.

Functions ezplot and fplot are examples of the “function functions”
described in Chapter 5.

Use function fplot to plot functions directly without having to create inter-
mediate data arrays.
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6.5.3 Histograms

A histogram is a plot showing the distribution of values within a data set. To cre-
ate a histogram, the range of values within the data set is divided into evenly
spaced bins, and the number of data values falling into each bin is determined.
The resulting count can then be plotted as a function of bin number.

The standard MATLAB histogram function is hist. The forms of this func-
tion are

hist(y)

hist (y,nbins)
hist(y,x);

[n,xout] = hist(y,...)

The first form of the function creates and plots a histogram with 10 equally-spaced
bins, and the second form creates and plots a histogram with nbins equally spaced
bins. The third form of the function allows the user to specify the bin centers to use
in an array x; the function creates a bin centered around each element in the array.
In all three of these cases, the function both creates and plots the histogram. The last
form of the function creates a histogram and returns the bin centers in array xout
and the count in each bin in array n, without actually creating a plot.

For example, the following statements create a data set containing 10,000
Gaussian random values, and generate a histogram of the data using 15 evenly
spaced bins. The resulting historam is shown in Figure 6.10.
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Figure 6.10 A histogram.
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v = randn(10000,1) ;
hist(y,15);

MATLAB also includes a function rose to create and plot a histogram on
radial axes. It is especially useful for distributions of angular data. You will be
asked to use this function in an end-of-chapter exercise.

6.6 Three-Dimensional Plots

MATLAB also includes a rich variety of three-dimensional plots that can be use-
ful for displaying certain types of data. In general, three-dimensional plots are
useful for displaying two types of data:

1. Two variables that are functions of the same independent variable, when
you wish to emphasize the importance of the independent variable.
2. A single variable that is a function of two independent variables.

6.6.1 Three-Dimensional Line Plots

A three-dimensional line plot can be created with the plot3 function. This func-
tion is exactly like the two-dimensional plot function, except that each point is
represented by x, y, and z values instead just of x and y values. The simplest form
of this function is

plot(x,vy,z);

where %, v, and z are equal-sized arrays containing the locations of data points
to plot. Function plot3 supports all the same line size, line style, and color
options as plot, and you can use it immediately using the knowledge acquired
in previous chapters.

As an example of a three-dimensional line plot, consider the following func-
tions:

x(t) = e ¥ cos 2t

6-12
y(t) = e % sin 2t (6-12)

These functions might represent the decaying oscillations of a mechanical system
in two dimensions, so x and y together represent the location of the system at any
given time. Note that x and y are both functions of the same independent variable 7.

We could create a series of (x, y) points and plot them using the two-
dimensional function plot (see Figure 6.11a), but if we do so, the importance
of time to the behavior of the system will not be obvious in the graph. The fol-
lowing statements create the two-dimensional plot of the location of the object
shown in Figure 6.11a. It is not possible from this plot to tell how rapidly the
oscillations are dying out.

t =0:0.1:10;
x = exp(-0.2*t) .* cos(2*t);



Figure 6.11
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(a) A two-dimensional line plot showing the motion in (x, y) space of a mechanical
system. This plot reveals nothing about the time behavior of the system. (b) A three-
dimensional line plot showing the motion in (x, y) space versus time for the mechanical
system. This plot clearly shows the time behavior of the system.
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v = exp(-0.2*t) .* sin(2*t);
plot(x,y);

title('\bfTwo-Dimensional Line Plot');
xlabel ('\bfx");

vlabel ('\bfy'");

grid on;

Instead, we could plot the variables with plot3 to preserve the time informa-
tion as well as the two-dimensional position of the object. The following statements
will create a three-dimensional plot of Equations (6-12):

t 0:0.1:10;

x = exp(-0.2*t) .* cos(2*t);

v = exp(-0.2*t) .* sin(2*t);
plot3(x,y,t);
title('\bfThree-Dimensional Line Plot');
xlabel ('\bfx") ;

vlabel ('\bfy");

zlabel ('\bftime') ;

grid on;

The resulting plot is shown in Figure 6.115. Note how this plot emphasizes time-
dependence of the two variables x and y.

6.6.2 Three-Dimensional Surface, Mesh, and Contour Plots

Surface, mesh, and contour plots are convenient ways to represent data that is a
function of two independent variables. For example, the temperature at a point is
a function of both the East-West location (x) and the North-South (y) location of
the point. Any value that is a function of two independent variables can be dis-
played on a three-dimensional surface, mesh, or contour plot. The more common
types of plots are summarized in Table 6.5, and examples of each plot are shown
in Figure 6.125.

To plot data using one of these functions, a user must create three equal-sized
arrays. The three arrays must contain the x, y, and z values of every point to be
plotted. As a simple example, suppose that we wanted to plot the four points
(=1,—-1,1), (1, —-1,2), (=1,1, 1), and (1, 1, 0). To plot these four points, we

-1 1 -1 -1
must create the arrays x = [_1 1],y = [ 1 1 },andz =

1 2 A

. Arra
1o MY
x contains the x values associated with every point to plot, array y contains the
y values associated with every point to plot, and array z contains the z values
associated with every point to plot. These array are then passed to the plotting
function.

SThere are many variations on these basic plot types. Consult the MATLAB Help Browser documen-
tation for a complete description of these variations.
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Table 6.5 Selected Mesh, Surface, and Contour Plot Functions

Function Description

mesh (x,v, z) This function creates a mesh or wireframe plot, where x is a two-
dimensional array containing the x values of every point to dis-
play, v is a two-dimensional array containing the y values of
every point to display, and z is a two-dimensional array contain-
ing the z values of every point to display.

surf (x,vy,z) This function creates a surface plot. Arrays x, vy, and z have the
same meaning as for a mesh plot.

contour (x,y,z) This function creates a contour plot. Arrays x, y, and z have the
same meaning as for a mesh plot.

The MATLAB function meshgrid makes it easy to create the x and y
arrays required for these plots. The form of this function is

[x, y] = meshgrid( xstart:xinc:xend, ystart:yinc:yend);

where xstart:xinc:xend specifies the x values to include in the grid, and
ystart:yinc:yend specifies the y values to be included in the grid.

To create a plot, we use meshgrid to create the arrays of x and y values and
then evaluate the function to plot at each of those (x, y) locations. Finally, we call
function mesh, surf, or contour to create the plot.

For example, suppose that we wish to create a mesh plot of the function

Z(X,y) — e—O.S[x2+O.5(x—y)2] (6-13)

over the interval —4 = x =4 and —4 = y = 4. The following statements will
create the plot, which is shown in Figure 6.12a:

[x,v] = meshgrid(-4:0.2:4);
z = exp(-0.5*(x."2+y."2));
mesh(x,vy, z) ;

xlabel ('\bfx");

vlabel ('\bfy"');

zlabel ('\bfz"');

Surface and contour plots may be created by substituting the appropriate function
for the mesh function.

6.7 Summary

MATLAB supports complex numbers as an extension of the double data type.
They can be defined using the i or j, both of which are predefined as to be
V—1. Using complex numbers is straightforward, except that the relational
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Figure 6.12 (a) A mesh plot of the function z(x, y) = . (b) A surface plot of the same

function.
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Contour Plot

(©

Figure 6.12 (continued) (c) A contour plot of the same function.

operators >, >=, <, and <= compare only the real parts of complex numbers, not
their magnitudes. They must be used with caution when working with complex
values.

String functions are functions designed to work with strings, which are arrays
of type char. These functions allow a user to manipulate strings in a variety of
useful ways, including concatenation, comparison, replacement, case conversion,
and numeric-to-string and string-to-numeric type conversions.

Multidimensional arrays are arrays with more than two dimensions. They
may be created and used in a fashion similar to one- and two-dimensional arrays.
Multidimensional arrays appear naturally in certain classes of physical problems.

The single data is consists of single-precision floating point numbers.
They are created using the single function. A mathematical operation between
a single and a double value produces a single result.

MATLAB includes signed and unsigned 8-, 16-, 32-, and 64-bit integers.
The integer data types are the int8, uint8, intl6(), uintl6, int32,
uint32, int64, and uint64. Each of these types is created using the
corresponding function: int8 (), uint8(), intlé6(), uintlé6(),
int32 (), uint32(), int64 (), or uint64 (). Mathematical operations
(+, —. etc.) can be performed on these data types; the result of an operation between
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an integer and a double has the same type as the integer. If the result of a mathe-
matical operation is too large or too small to be expressed by an integer data type,
the result is either the largest or smallest possible integer for that type.

MATLAB includes a rich variety of two- and three-dimensional plots. In this
chapter, we introduced stem, stair, bar, compass, mesh, surface, and contour plots.

Summary of Good Programming Practice

The following guidelines should be adhered to:

1.

2.

Use the char function to create two-dimensional character arrays with-
out worrying about padding each row to the same length.

Use function isstrprop to determine the characteristics of each char-
acter in a string array. This function supersedes the older functions
isletter and isspace, which may be deleted in a future version of
MATLAB.

Use multidimensional arrays to solve problems that are naturally multi-
variate in nature, such as aecrodynamics and fluid flows.

If you are working with multidimensional arrays, be sure to vectorize your
code by hand. The MATLAB JIT compiler cannot handle loops contain-
ing multidimensional arrays.

. Do not use the single or integer data types unless you have a special

need such as image processing.

. Use function fplot to plot functions directly without having to create

intermediate data arrays.

MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

abs
angle
bar (x,vy)
barh (x,vy)
base2dec
bin2dec
blanks

char

compass (X,Vy)
conj

contour

Returns absolute value (magnitude) of a number.

Returns the angle of a complex number, in radians.

Create a vertical bar plot.

Create a horizontal bar plot.

Convert base B string to decimal integer.

Convert binary string to decimal integer.

Create a string of blanks.

(1) Convert numbers to the corresponding character values. (2) Create a two-dimensional
character array from a series of strings.

Create a compass plot.

Compute complex conjugate of a number.

Create a contour plot.
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deblank
dec2base
dec2bin
double
find
findstr
hex2num
hex2dec
hist
full
imag
int2str
ischar
isletter
isreal
isstrprop
isspace
lower
mat2str
mesh
meshgrid
nnz
nonzeros
num2str
nzmax
pie(x)
plot(c)
real
rose
sscanf
stairs(x,vy)
stem(x,vy)
str2double
str2num
strcat

strcmp

Additional Data Types and Plot Types

Remove trailing whitespace from a string.

Convert decimal integer to base B string.

Convert decimal integer to binary string.

Convert characters to the corresponding numeric codes.
Find indices and values of nonzero elements in a matrix.
Find one string within another one.

Convert IEEE hexadecimal string to double.

Convert hexadecimal string to decimal integer.

Create a histogram of a data set.

Convert a sparse matrix into a full matrix.

Returns the imaginary portion of the complex number.
Convert integer to string.

Returns true (1) for a character array.

Returns true (1) for letters of the alphabet.

Returns true (1) if no element of array has an imaginary component.
Returns true (1) if a character has the specified property.
Returns true (1) for whitespace.

Convert string to lowercase.

Convert matrix to string.

Create a mesh plot.

Create the (x,y) grid required for mesh, surface, and contour plots.
Number of nonzero matrix elements.

Return a column vector containing the nonzero elements in a matrix.
Convert number to string.

Amount of storage allocated for nonzero matrix elements.
Create a pie plot.

Plots the real versus the imaginary part of a complex array.
Returns the real portion of the complex number.

Create a radial histogram of a data set.

Read formatted data from string.

Create a stair plot.

Create a stem plot.

Convert string to double value.

Convert string to number.

Concatenate strings.

Returns true (1) if two strings are identical.



strcmpi
strjust
strncmp
strncmpi
strmatch
strtrim
strrep
strtok
struct
strvcat
surf

upper
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Returns true (1) if two strings are identical ignoring case.
Justify string.

Returns true (1) if first n characters of two strings are identical.
Returns true (1) if first n characters of two strings are identical, ignoring case.
Find matches for string.

Remove leading and trailing whitespace from a string.

Replace one string with another.

Find token in string.

Predefine a structure array.

Concatenate strings vertically.

Create a surface plot.

Convert string to uppercase.

6.8 Exercises

6.1 In a sinusoidal steady-state AC circuit, the voltage across a passive ele-
ment is given by Ohm’s Law:

V=12 (6-14)

where V is the voltage across the element, I is the current though the ele-
ment, and Z is the impedance of the element. Note that all three of these
values are complex and that these complex numbers are usually specified
in the form of a magnitude at a specific phase angle expressed in degrees.
For example, the voltage might be V.= 120£30°V.

I
_—

‘F

Figure 6.13 The voltage and current relationship on a passive AC circuit element.
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6.2

120£0°V

Write a program that reads the voltage across an element and the
impedance of the element, and calculates the resulting current flow. The
input values should be given as magnitudes and angles expressed in
degrees, and the resulting answer should be in the same form. Use the func-
tion to_complex from Exercise 6.3 to convert the numbers to rectangu-
lar for the actual computation of the current, and the function to_polar
from Exercise 6.2 to convert the answer into polar form for display.
Figure 6.14 shows a series RLC circuit driven by a sinusoidal ac voltage
source whose value is 120/0° volts. The impedance of the inductor in this
circuitis Z, = j2mfL, where jis V/—1, f is the frequency of the voltage
source in hertz and L is the inductance in henrys. The impedance of the

capacitor in this circuit is Z, = where C is the capacitance in

1
ey o
farads. Assume that R = 100 ), L = 0.1 mH, and C = 0.25 nF.

The current I flowing in this circuit is given by Kirchhoff’s Voltage
Law to be

120/0°V
I= / . (6-15)
R+ 2rfL — j——
J2nf Jzﬂfc

(a) Calculate and plot the magnitude of this current as a function of fre-
quency as the frequency changes from 100 kHz to 10 MHz. Plot this
information on both a linear and a log-linear scale. Be sure to
include a title and axis labels.

(b) Calculate and plot the phase angle in degrees of this current as a func-
tion of frequency as the frequency changes from 100 kHz to 10 MHz.
Plot this information on both a linear and a log-linear scale. Be sure to
include a title and axis labels.

(c) Plot both the magnitude and phase angle of the current as a function
of frequency on two sub-plots of a single figure. Use log-linear scales.

I R L
—>
NNV YN
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)

Figure 6.14 A series RLC circuit driven by a sinusoidal AC voltage source.



6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.8 Exercises | 317

Write a function to_polar that accepts a complex number c, and returns
two output arguments containing the magnitude mag and angle theta of
the complex number. The output angle should be in degrees.

Write a function to_complex that accepts two input arguments con-
taining the magnitude mag and angle theta of the complex number in
degrees, and returns the complex number c.

Write a function that will accept a complex number c, and plot that point
on a Cartesian coordinate system with a circular marker. The plot should
include both the x and y axes, plus a vector drawn from the origin to the
location of c.

Plot the function v(7) = 107> for 0 = ¢ = 10 using the function
plot (t,v). What is displayed on the plot?

Plot the function v(7) = 10e"%>™7" for 0 = ¢ = 10 using the function
plot (v). What is displayed on the plot this time?

Create a polar plot of the function v(7) = 10727 for 0 =< ¢ = 10.
Plot the function v(7) = 10727 for 0 == 10 using function
plot3, where the three dimensions to plot are the real part of the func-
tion, the imaginary part of the function, and time.

Euler’s Equation Euler’s equation defines e raised to an imaginary power
in terms of sinusoidal functions as follows:

e® = cos® + jsinb (6-16)

Create a two-dimensional plot of this function as 6 varies from 0 to 27.
Create a three-dimensional line plot using function plot3 as 6 varies from
0 to 27 (the three dimensions are the real part of the expression, the imag-
inary part of the expression, and 6).

Create a mesh, surface plot, and contour plot of the function z = e**¥ for
the interval —1 = x = 1 and —27 =< y =< 2x. In each case, plot the real
part of z versus x and y.

Write a program that accepts an input string from the user and determines
the how many times a user-specified character appears within the string.
(Hint: Look up the 's' option of the input function using the MAT-
LAB Help Browser.)

Modify the previous program so that it determines how many times a
user-specified character appears within the string without regard to the
case of the character.

Write a program that accepts a string from a user with the input function,
chops that string into a series of tokens, sorts the tokens into ascending
order, and prints them out.

Write a program that accepts a series of strings from a user with the
input function, sorts the strings into ascending order, and prints them
out.

Write a program that accepts a series of strings from a user with the
input function, sorts the strings into ascending order disregarding case,
and prints them out.
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6.17

6.18

6.19

6.20

6.21

6.22

MATLAB includes functions upper and 1ower, which shift a string to
upper case and lower case respectively. Create a new function called
caps, which capitalizes the first letter in each word and forces all other
letters to be lower case. (Hint: Take advantage of functions upper,
lower, and strtok.)

Write a function that accepts a character string and returns a logical
array with true values corresponding to each printable character that is not
alphanumeric or whitespace (for example, $, %, #, etc.) and false values
everywhere else.

Write a function that accepts a character string and returns a logical
array with true values corresponding to each vowel and false values
everywhere else. Be sure that the function works properly for both lower-
case and uppercase characters.

Plot the function y = ¢ *sinx for x between 0 and 2 in steps of 0.1.
Create the following plot types: (a) stem plot; (b) stair plot; (c) bar plot;
(d) compass plot. Be sure to include titles and axis labels on all plots.
Suppose that George, Sam, Betty, Charlie, and Suzie contributed $15, $5,
$10, $5, and $15, respectively, to a colleague’s going-away present. Create
a pie chart of their contributions. What percentage of the cost was paid by
Sam?

Plot the function f(x) = 1/Vx over the range 0.1 = x < 10.0 using the
function fplot. Be sure to label your plot properly.
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Advanced
Features: Sparse
Arrays, Cell Arrays,
Structures, and
Function Handles

This chapter deals with four very useful features of MATLAB: sparse arrays, cell
arrays, structures, and function handles.

Sparse arrays are a special type of array in which memory is allocated only for
the nonzero elements in the array. Sparse arrays provide an extremely useful and
compact way to represent large arrays containing many zero values.

Cell arrays are very flexible type of array that can hold any sort of data. Each
element of a cell array can hold any type of MATLAB data, and different elements
within the same array can hold different types of data. They are used extensively
in MATLAB graphical user interface (GUI) functions.

Structures are a special type of array with named subcomponents. Each
structure can have any number of subcomponents, each with its own name and
data type. Structures are the basis of MATLAB objects.

Function handles provide an alternative way to access a function. They are
more flexible than simple function names. Function handles make it easy to pass
functions to other functions for processing, and also make it easy to save data
within a function between calls.

7.1 Sparse Arrays

We learned about ordinary MATLAB arrays in Chapter 2. When an ordinary array
is declared, MATLAB creates a memory location for every element in the array. For
example, the functiona = eye (10) creates 100 elements arranged asa 10 X 10
structure. In this array, 90 of those elements are zero! This matrix requires
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100 elements, but only 10 of them contain nonzero data. This is an example of a

sparse array or sparse matrix. A sparse matrix is a large matrix in which the vast

majority of the elements are zero.

» a =2 * eye(10);

Now suppose that we create another 10 X 10 matrix b defined as follows:

b =

If these two matrices are multiplied together, the result is

» ¢ =a *
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The process of multiplying these two sparse matrices together requires 1900 multi-
plications and additions, but because most of the terms being added and multiplied
are zeros, it was largely wasted effort.

This problem gets worse rapidly as matrix size increases. For example,
suppose that we were to generate two 200 X 200 sparse matrices a and b as
follows:

a 5 * eye(200) ;
b =3 * eye(200);

Each matrix now contains 20,000 elements, of which 19,800 are zero! Furthermore,
multiplying these two matrices together requires 7,980,000 additions and
multiplications.

It should be apparent that storing and working with large sparse matrices,
most of whose elements are zero, is a serious waste of both computer memory
and CPU time. Unfortunately, many real-world problems naturally create sparse
matrices, so we need some efficient way to solve problems involving them.

Calculations involving a large electric power system are excellent exam-
ples of real-world problems involving sparse matrices. Large electric power
systems can have a thousand or more electrical busses at generating plants and
transmission and distribution substations. If we wish to know the voltages, cur-
rents, and power flows in the system, we must first solve for the voltage at
every bus. For a 1000-bus system, this involves the simultaneous solution of
1000 equations in 1000 unknowns, which is equivalent to inverting a matrix
with 1,000,000 elements. Solving this matrix requires millions of floating
point operations.

However, each bus in the power system is probably connected to an average
of only two or three other busses, so 996 of the 1000 terms in each row of the
matrix will be zeros, and most of the operations involved in inverting the matrix
will be additions and multiplications by zeros. The calculation of the voltages and
currents in this power system would be much simpler and more efficient if the
zeros could be ignored in the solution process.

7.1.1 The sparse Attribute

MATLAB has a special version of the double data type that is designed to work
with sparse arrays. In this special version of the double data type, only the non-
zero elements of an array are allocated memory locations, and the array is said to
have the “sparse” attribute. An array with the sparse attribute actually saves three
values for each nonzero element: the value of the element itself and the row and
column numbers where the element is located. Even though three values must be
saved for each nonzero element, this approach is much more memory efficient
than allocating full arrays if a matrix has only a few nonzero elements.

To illustrate the use of sparse matrices, we will create a 10 X 10 identity
matrix:
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» a = eye(10)

O O OO OO oo oL
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If this matrix is converted to a sparse matrix using function sparse, the results are

» as = sparse(a)
as

~ 0~

~

~ e~ o~~~ o~~~ —~ |l
0 ~J O Ul i W DN
0 ~J O Ul i W DN

©
©
FRERPPPPRPRPRPRPR

(10,10)

Note that the data in the sparse matrix is a list of row and column addresses, fol-
lowed by the nonzero data value at that point. This is a very efficient way to store
data as long as most of the matrix is zero, but if there are many nonzero elements,
it can take up even more space than the full matrix because of the need to store
the addresses.

If we examine arrays a and as with the whos command, the results are

» whos
Name Size Bytes Class Attributes
a 10x10 800 double
as 10x10 164 double sparse

The a array occupies 800 bytes, because there are 100 elements with 8 bytes of
storage each. The as array occupies 164 bytes, because there are 10 nonzero ele-
ments with 8 bytes of storage each, plus 20 array indices occupying 4 bytes each,
and 4 bytes of overhead. Note that the sparse array occupies much less memory
than the full array.

The function issparse can be used to determine whether or not a given
array is sparse. If an array is sparse, then i ssparse (array) returns true (1).
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The power of the sparse data type can be seen by considering a 1000 X 1000
matrix z with an average of 4 nonzero elements per row. If this matrix is stored
as a full matrix, it will require 8,000,000 bytes of space. On the other hand, if it
is converted to a sparse matrix, the memory usage will drop dramatically.

» zs = sparse(z);

» whos
Name Size Bytes Class
b4 1000x1000 8000000 double array
ZSs 1000x1000 51188 sparse array

Grand total is 1003932 elements using 8051188 bytes

Generating Sparse Matrices

MATLAB can generate sparse matrices by converting a full matrix into a sparse
matrix with the sparse function or by directly generating sparse matrices with the
MATLAB functions speye, sprand, and sprandn, which are the sparse equiv-
alents of eye, rand, and randn. For example, the expression a = speye (4)
generates a 4 X 4 sparse matrix.

» a = speye(4)

a =
(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
The expression b = full (a) converts the sparse matrix into a full matrix.

» b = full(a)
b:

o O o
o O O
O OO
R O O o

Working with Sparse Matrices

Once a matrix has been made sparse, individual elements can be added to it or
deleted from it using simple assignment statements. For example, the following state-
ment generates a 4 X 4 sparse matrix and then adds another nonzero element to it:

» a = speye(4)
a =

R R R e
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» a(2,1) = -2
a =
(1,1) 1
(2,1) -2
(2,2) 1
(3,3) 1
(4,4) 1

MATLAB allows full and sparse matrices to be freely mixed and used in any
combination. The result of an operation between a full matrix and a sparse matrix
may be either a full matrix or a sparse matrix depending on which result is the
most efficient. Essentially any matrix technique that is supported for full matri-
ces is also available for sparse matrices.

A few of the common sparse matrix functions are listed in Table 7.1.

Table 7. Common MATLAB Sparse Matrix Functions
Function Description
Create Sparse Matrices
speye Create a sparse identity matrix.
sprand Create a sparse uniformly distributed random matrix.
sprandn Create a sparse normally distributed random matrix.
Full-to-Sparse Conversion Functions
sparse Convert a full matrix into a sparse matrix.
full Convert a sparse matrix into a full matrix.
find Find indices and values of nonzero elements in a matrix.
Working with Sparse Matrices
nnz Number of nonzero matrix elements.
nonzeros Return a column vector containing the nonzero elements in a matrix.
nzmax Amount of storage allocated for nonzero matrix elements.
spones Replace nonzero sparse matrix elements with ones.
spalloc Allocate space for a sparse matrix.
issparse Returns 1 (true) for sparse matrix.
spfun Apply function to nonzero matrix elements.
spy Visualize sparsity pattern as a plot.
>

Example 7.1—Solving Simultaneous Equations with Sparse Matrices

To illustrate the ease with which sparse matrices can be used in MATLAB, we
will solve the following simultaneous system of equations with both full and
sparse matrices.
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1.0x; + 0.0x, + 1.0x3 + 0.0x4 + 0.0x5 + 2.0x4 + 0.0x; — 1.0xg = 3.0
0.0x; + 1.0x, + 0.0x3 + 0.4x4 + 0.0x5 + 0.0x4 + 0.0x; + 0.0xg3 = 2.0
0.5x; + 0.0x, + 2.0x3 + 0.0x4 + 0.0x5 + 0.0xg — 1.0x7; + 0.0x3 = —1.5
0.0x; + 0.0x, + 0.0x3 + 2.0x4 + 0.0x5 + 1.0x4 + 0.0x; + 0.0x3 = 1.0
0.0x; + 0.0x, + 1.0x3 + 1.0x4 + 1.0x5 + 0.0x4 + 0.0x; + 0.0xg = —2.0
0.0x; + 0.0x, + 0.0x3 + 1.0x4 + 0.0x5 + 1.0x4 + 0.0x; + 0.0x3 = 1.0
0.5x; + 0.0x, + 0.0x3 + 0.0x4 + 0.0x5 + 0.0x4 + 1.0x; + 0.0x3 = 1.0
0.0x; + 1.0x, + 0.0x3 + 0.0x4 + 0.0x5 + 0.0x4 + 0.0x; + 1.0x3 = 1.0

SorutioN  To solve this problem, we will create full matrices of the equation

coefficients and convert them to sparse form using the sparse function. Then we

will solve the equation both ways, comparing the results and the memory required.
The script file to perform these calculations is

Script file: simul.m
Purpose:
This program solves a system of 8 linear equations in 8

unknowns (a*x = b), using both full and sparse matrices.

Record of revisions:
Date Programmer Description of change

03/03/07 S. J. Chapman Original code

Define variables:

a -- Coefficients of x (full matrix)

as -- Coefficients of x (sparse matrix)

b -- Constant coefficients (full matrix)
bs -- Constant coefficients (sparse matrix)
x -- Solution (full matrix)

xS -- Solution (sparse matrix)

Define coefficients of the equation a*x = b for
the full matrix solution.

= [ 1.0 0.0 1.0 0.0 0.0 2.0 0.0 -1.0;
0.0 1.0 0.0 0.4 0.0 0.0 0.0 0.0;
0.5 0.0 2.0 0.0 0.0 0.0 -1.0 0.0;
0.0 0.0 0.0 2.0 0.0 1.0 0.0 0.0;
0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0;
0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0;
0.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0;
0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.01;
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% Define coefficients of the equation a*x = b for
% the sparse matrix solution.

as = sparse(a);

bs = sparse(b);

(o

% Solve the system both ways
disp ('Full matrix solution:');
x = a\b

disp ('Sparse matrix solution:');
xs = as\bs

Q

% Show workspace
disp ('Workspace contents after the solutions:')
whos

When this program is executed, the results are

» simul
Full matrix solution:
X =
0.5000
2.0000
-0.5000
-0.0000
-1.5000
1.0000
0.7500
-1.0000
Sparse matrix solution:
XS =
(1,1) 0.5000
(2,1) 2.0000
(3,1) -0.5000
(5,1) -1.5000
(6,1) 1.0000
(7,1) 0.7500
(8,1) -1.0000
Workspace contents after the solutions:
Name Size Bytes Class Attributes
a 8x8 512 double
as 8x8 276 double sparse
b 8x1 64 double
bs 8x1 104 double sparse
bd 8x1 64 double

XS 8x1 92 double sparse
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The answers are the same for both solutions. Note that the sparse solution
does not contain a solution for x4, because that value is zero and zeros aren’t car-
ried in a sparse matrix! Also, note that the sparse form of matrix b actually takes
up more space than the full form. This happens because the sparse representation
must store the indices as well as the values in the arrays, so it is less efficient if

most of the elements in an array are nonzero.
-

7.2 Cell Arrays

Figure 7.1

A cell array is a special MATLAB array whose elements are cells, containers that
can hold other MATLAB arrays. For example, one cell of a cell array might con-
tain an array of real numbers, another an array of strings, and yet another a vec-
tor of complex numbers (see Figure 7.1).

In programming terms, each element of a cell array is a pointer to another data
structure, and those data structures can be of different types. Figure 7.2 illustrates
this concept. Cell arrays provide a great way to collect information about a problem,
because all of the information can be kept together and accessed by a single name.

Cell arrays use braces “{}” instead of parentheses “()” for selecting and
displaying the contents of cells. This difference is due to the fact that cell arrays
contain data structures instead of data. Suppose that the cell array a is defined

cell 1,1 cell 1,2
1 3 -7
2 0 6 "This is a text string.'
5 1
cell 2,1 cell 2,2
3+i4 -5
—il0 3-i4 [l

The individual elements of a cell array may point to real arrays, complex arrays, string,
other cell arrays, or even empty arrays.
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(=
wn O W
(o)}

'This is a
text string.'

a(1,1) a(l,2) I

a(2,1) Jla(2,2) |

[]

[3+4i -5

[—10;’ 3—4iJ

Figure 7.2 Each element of a cell array holds a pointer to another data structure, and different cells
in the same cell array can point to different types of data structures.

as shown in Figure 7.2. Then the contents of element a (1, 1) is a data structure
containing a 3 X 3 array of numeric data, and a reference to a (1, 1) displays
the contents of the cell, which is the data structure.

» a(l,1)
ans =
[3x3 double]

By contrast, a reference to a{1, 1} displays the contents of the data item contained

in the cell.
» a{l,1}
ans =
1 3 -7
2 0 6
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In summary, the notation a (1, 1) refers to the contents of cell a (1, 1) (which
is a data structure), while the notation a{1, 1} refers to the contents of the data
structure within the cell.

Be careful not to confuse () with {} when addressing cell arrays. They are very
different operations!

71.2.1 Creating Cell Arrays
Cell arrays can be created in two ways:

® By using assignment statements
® By preallocating a cell array using the cell function

The simplest way to create a cell array is to directly assign data to individual
cells, one cell at a time. However, preallocating cell arrays is more efficient, so
you should preallocate really large cell arrays.

Allocating Cell Arrays Using Assignment Statements

You can assign values to cell arrays one cell at a time using assignment state-
ments. There are two ways to assign data to cells, known as content indexing and
cell indexing.

Content indexing involves placing braces “{}” around the cell subscripts,
together with cell contents in ordinary notation. For example, the following state-
ment creates the 2 X 2 cell array in Figure 7.2:

a{1,1y = [1 3 -7; 2 06; 05 17];
a{l,2} = 'This is a text string.';
af{2,1} = [3+4*i -5; -10*1 3 - 4*i];
a{2,2} = [1;

This type of indexing defines the contents of the data structure contained in
a cell.

Cell indexing involves placing braces “{}” around the data to be stored in a
cell, together with cell subscripts in ordinary subscript notation. For example, the
following statement creates the 2 X 2 cell array in Figure 7.2:

a(l,1) = {[1 3 -7; 2 0 6; 05 11};
a(l,2) = {'This is a text string.'};
a(2,1) = {[3+4*1i -5; -10*1 3 - 4*il};
a(2,2) = {[1};

This type of indexing creates a data structure containing the specified data and
then assigns that data structure to a cell.
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These two forms of indexing are completely equivalent, and they may be freely
mixed in any program.

Do not attempt to create a cell array with the same name as an existing numeric
array. If you do this, MATLAB will assume that you are trying to assign cell
contents to an ordinary array, and it will generate an error message. Be sure to
clear the numeric array before trying to create a cell array with the same name.

Preallocating Cell Arrays with the cell Function

The cell function allows you to preallocate empty cell arrays of the specified

size. For example, the following statement creates an empty 2 X 2 cell array:
a = cell(2,2);

Once a cell array has been created, you can use assignment statements to fill val-
ues in the cells.

7.2.2 Using Braces {} as Cell Constructors

It is possible to define many cells at once by placing all of the cell contents
between a single set of braces. Individual cells on a row are separated by commas,
and rows are separated by semicolons. For example, the following statement cre-
ates a 2 X 3 cell array:

b= {[1 2], 17, [2;4]; 3-4*i, 'Hello',K eye(3)}

7.2.3 Viewing the Contents of Cell Arrays

MATLAB displays the data structures in each element of a cell array in a condensed
form that limits each data structure to a single line. If the entire data structure can
be displayed on the single line, it will be. Otherwise, a summary would be dis-
played. For example, cell arrays a and b would be displayed as:

» a
a =
[3x3 double] [1x22 char]
[2x2 double] []
» b
b =
[1x2 double] [ 171 [2x1 double]
[3.0000- 4.00001] 'Hello' [3x3 double]

Note that MATLAB is displaying the data structures, complete with brackets or
apostrophes, not the entire contents of the data structures.
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Figure 7.3 The structure of cell array b is displayed as a nested series of boxes by function cellplot.

If you would like to see the full contents of a cell array, use the celldisp
function. This function displays the contents of the data structures in each cell.

» celldisp(a)

a{l1,1} =
1 3 =7
2 0 6
0 5 1
a{2,1} =

3.0000 + 4.00001 -5.0000
0 -10.00001 3.0000 - 4.00001
a{l,2} =
This is a text string.
a{2,2} =
[]

For a high-level graphical display of the structure of a cell array, use function
cellplot. For example, the function cellplot (b) produces the plot shown
in Figure 7.3.

7.2.4 Extending Cell Arrays

If a value is assigned to a cell array element that does not currently exist, the ele-
ment will be automatically created, and any additional cells necessary to preserve
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the shape of the array will be automatically created. For example, suppose that
array a has been defined to be a 2 X 2 cell array as shown in Figure 7.1. If the
following statement is executed

a{3,3} =5

the cell array will be automatically extended to 3 X 3, as shown in Figure 7.4.

Preallocating cell arrays with the ce11 function is much more efficient than
extending the arrays one element at a time using assignment statements. When a
new element is added to an existing array as we did previously, MATLAB must
create a new array large enough to include this new element, copy the old data into
the new array, add the new value to the array, and then delete the old array. This is
a very time-consuming process. Instead, you should always allocate the cell array
to be the largest size that you can, and then add values to it one element at a time.
If you do that, only the new element needs to be added; the rest of the array can
remain undisturbed.

cell 1,1 cell 1,2 cell 1,3
3 -7
2 0 6 'This is a text string.' []
0 5
cell 2,1 cell 2,2 cell 2,3
3+i4 -5 [ [
—il0 3-i4
cell 3,1 cell 3,2 cell 3,3
[1] [1] (5]

Figure 7.4 The result of assigning a value to a {3, 3}. Note that four other empty cells were created

to preserve the shape of the cell array.
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The program that follows illustrates the advantages of preallocation. It
creates a cell array containing 50,000 strings added one at a time, with and

without preallocation.

o°

Script file: test_preallocate.m

o°

o°

Purpose:
This program tests the creation of cell arrays with
and without preallocation.

o o°

o°

Record of revisions:

o o°

o°

04/07 S. J. Chapman Original code

~ 1

o°

03

o°

Define variables:
a -- Cell array
maxvals -- Maximum values in cell array

o° o°

o°

O

> Create array without preallocation
clear all
maxvals = 50000;

tic
for ii = l:maxvals
a{ii} = ['Element ' int2str(ii)];
end
disp( ['Elapsed time without preallocation = ' num2str(toc)]

% Create array with preallocation
clear all
maxvals = 50000;

tic
a = cell(1l,maxvals);
for ii = l:maxvals
a{ii} = ['Element ' int2str(ii)l;
end
disp( ['Elapsed time with preallocation = ' num2str(toc)] );

Date Programmer Description of change

When this program is executed using MATLAB 7.4 on a 1.8 GHz Pentium Core
2 Duo computer, the results are as shown below. The advantages of preallocation

are obvious.

» test_preallocate
Elapsed time without preallocation = 7.6484
Elapsed time with preallocation 2.6934
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Always preallocate all cell arrays before assigning values to the elements of the
array. This practice greatly increases the execution speed of a program.

7.2.5 Deleting Cells in Arrays

To delete an entire cell array, use the clear command. Subsets of cells may be
deleted by assigning an empty array to them. For example, assume that a is the
3 X 3 cell array defined previously.

> a
a =
[3x3 doublel [1x22 char] []
[2x2 double] [] []
[] [] [5]

It is possible to delete the entire third row with the statement

» a(3,:) = [1]

a =
[3x3 double] [1x22 char] [1]
[2x2 double] [1] [1]

7.2.6 Using Data in Cell Arrays

The data stored inside the data structures within a cell array may be used at any
time, with either content indexing or cell indexing. For example, suppose that a
cell array c is defined as

c = {[1 2;3 4], 'dogs'; 'cats',6 i}

The contents of the array stored in cell ¢ (1, 1) can be accessed as follows:

» c¢{1,1}
ans =
1 2
3 4

and the contents of the array in cell ¢ (2, 1) can be accessed as follows:

» c{2,1}
ans =
cats

Subsets of a cell’s contents can be obtained by concatenating the two sets of
subscripts. For example, suppose that we would like to get the element (1, 2) from
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the array stored in cell ¢ (1,1) of cell array c. To do this, we would use the
expression c{1,1} (1, 2), which says “select element (1, 2) from the contents
of the data structure contained in cell c (1,1).”

» c{1,1}(1,2)
ans =
2

71.2.7 Cell Arrays of Strings

It is often convenient to store groups of strings in a cell array instead of storing
them in rows of a standard character array, because each string in a cell array can
have a different length, whereas every row of a standard character array must have
an identical length. This fact means that strings in cell arrays do not have to be
padded with blanks. Many MATLAB graphical user interface functions use cell
arrays for precisely this reason, as we will see in Chapter 10.

Cell arrays of strings can be created in one of two ways. Either the individual
strings can be inserted into the array with brackets, or else function cellstr can
be used to convert a two-dimensional string array into a cell array of strings.

The following example creates a cell array of strings by inserting the strings
into the cell array one at a time, and displays the resulting cell array. Note that the
individual strings can be of different lengths.

» cellstring{1l}
» cellstring{2}
» cellstring{3}
» cellstring
'Stephen J. Chapman' 'Male' '"SSN 999-99-9999"

'Stephen J. Chapman';
'Male';
'SSN 999-99-9999';

Function cellstr creates a cell array of strings from a two-dimensional
string array. Consider the character array

» data = ['Line 1 ';'Additional Line']
data =

Line 1

Additional Line

This 2 X 15 character array can be converted into a cell array of strings with the
function cellstr as follows:

» ¢ = cellstr(data)

'Line 1°'
'Additional Line'

and it can be converted back to a standard character array using function char:
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» newdata = char(c)
newdata =

Line 1

Additional Line

7.2.8 The Significance of Cell Arrays

Cell arrays are extremely flexible, since any amount of any type of data can be
stored in each cell. As a result, cell arrays are used in many internal MATLAB
data structures. We must understand them in order to use many features of the
MATLAB graphical user interface, which we will study in Chapter 10.

In addition, the flexibility of cell arrays makes them regular features of func-
tions with variable numbers of input arguments and output arguments. A special
input argument, varargin, is available within user-defined MATLAB func-
tions to support variable numbers of input arguments. This argument appears as
the last item in an input argument list, and it returns a cell array; thus, a single
dummy input argument can support any number of actual arguments. Each actual
argument becomes one element of the cell array returned by varargin. If it is
used, varargin must be the /ast input argument in a function, following all of
the required input arguments.

For example, suppose that we are writing a function that may have any num-
ber of input arguments. This function could be implemented as shown here:

function testl (varargin)

disp(['There are ' int2str(nargin) ' arguments.']);
disp('The input arguments are:');

disp (varargin) ;

When this function is executed with varying numbers of arguments, the results are

»> testl
There are 0 arguments.
The input arguments are:
»> testl(6)
There are 1 arguments.
The input arguments are:
[6]
»> testl(l,'test 1',[1 2;3 4])
There are 3 arguments.
The input arguments are:
[1] 'test 1° [2x2 double]

As you can see, the arguments become a cell array within the function.
A sample function making use of variable numbers of arguments is shown at
the end of this paragraph. Function plotline accepts an arbitrary number of
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1 X 2 row vectors, with each vector containing the (x, y) position of one point to
plot. The function plots a line connecting all of the (x, y) values together. Note
that this function also accepts an optional line specification string and passes that
specification on to the plot function.

function plotline (varargin)

$PLOTLINE Plot points specified by [x,y] pairs.
Function PLOTLINE accepts an arbitrary number of
[x,yv] points and plots a line connecting them.

In addition, it can accept a line specification
string, and pass that string on to function plot.

o 00 o0 oP

Define variables:

%

% ii -- Index variable

% 33 -- Index variable

% linespec -- String defining plot characteristics
% msg -- Error message

% varargin -- Cell array containing input arguments
T X -- x values to plot

Y -- y values to plot

% Record of revisions:

% Date Programmer Description of change
% ==== —========= —====================
% 03/05/07 S. J. Chapman Original code

Check for a legal number of input arguments.
We need at least 2 points to plot a line...
msg = nargchk(2,Inf,nargin) ;

error (msg) ;

o0 o°

% Initialize values

jj = 0;

linespec = '';

% Get the x and y values, making sure to save the line
% specification string, if one exists.

for ii = l:nargin

Is this argument an [x,y] pair or the line
specification?
if ischar (varargin{ii})

o o°

% Save line specification
linespec = varargin{ii};

else

% This is an [x,y] pair. Recover the values.
jj =33 + 1;
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x(jj) = varargin{ii}(1);
y(3j) = varargin{ii}(2);

end
end

% Plot function.
if isempty (linespec)
plot(x,vy);
else
plot (x,y,linespec) ;
end

When this function is called with the following arguments, the resulting plot
is shown in Figure 7.5. Try the function with different numbers of arguments and
see for yourself how it behaves.

plotline ([0 0],[1 11,[2 4],[3 9], k--');

There is also a special output argument, varargout, to support variable
numbers of output arguments. This argument appears as the last item in an output
argument list, and it returns a cell array; thus, a single dummy output argument can

Figure 7.5 The plot produced by function plotline.
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support any number of actual arguments. Each actual argument becomes one
element of the cell array stored in varargout.

If it is used, varargout must be the /ast output argument in a function, fol-
lowing all of the required input arguments. The number of values to be stored in
varargout can be determined from function nargout, which specifies the
number of actual output arguments for any given function call.

A sample function test?2 is shown below. This function detects the num-
ber of output arguments expected by the calling program, using the function
nargout. It returns the number of random values in the first output argument
and then fills the remaining output arguments with random numbers taken
from a Gaussian distribution. Note that the function uses varargout to
hold the random numbers, so that there can be an arbitrary number of output
values.

function [nvals,varargout] = test2 (mult)
% nvals is the number of random values returned
% varargout contains the random values returned

nvals = nargout - 1;

for ii = l:nargout-1
varargout{ii} = randn * mult;

end

When this function is executed, the results are as follows:

» test2(4)

ans =
-1
» [a b c d] = test2(4)
a =
3
b =
-1.7303
Cc =
-6.6623
d =
0.5013

Use cell array arguments varargin and varargout to create functions that
support varying numbers of input and output arguments.
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Table 7.2 Common MATLAB Cell Functions

Function Description

cell Predefine a cell array structure.

celldisp Display contents of a cell array.

cellplot Plot structure of a cell array.

cellstr Convert a two-dimensional character array to a cell

array of strings.

char Convert a cell array of strings into a two-dimensional
character array.

7.2.9 Summary of cell Functions

The common MATLAB cell functions are summarized in Table 7.2.

7.3 Structure Arrays

7.3.1

An array is a data type in which there is a name for the whole data structure, but
individual elements within the array are known only by number. Thus the fifth
element in the array named arr would be accessed as arr (5) . All of the indi-
vidual elements in an array must be of the same type.

A cell array is a data type in which there is a name for the whole data struc-
ture, but individual elements within the array are known only by number.
However, the individual elements in the cell array may be of different types.

In contrast, a structure is a data type in which each individual element has a
name. The individual elements of a structure are known as fields, and each field in
a structure may have a different type. The individual fields are addressed by com-
bining the name of the structure with the name of the field, separated by a period.

Figure 7.6 shows a sample structure named student. This structure has
five fields; name,addrl,city,state, and zip. The field “name” would be
addressed as student . name.

A structure array is an array of structures. Each structure in the array will
have identically the same fields, but the data stored in each field can differ. For
example, a class could be described by an array of the structure student. The
first student’s name would be addressed as student (1) .name, the second
student’s city would be addressed as student (2) .city, and so forth.

Creating Structure Arrays
Structure arrays can be created in two ways:

® A field at a time, using assignment statements
® All at once, using the struct function
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student

name
John Doe

addrl

123 Main Street

city
Anytown
state
LA
zip
71211

Figure 7.6 A sample structure. Each element within the structure is called a field, and each field is
addressed by name.

Building a Structure with Assignment Statements

You can build a structure one field at a time using assignment statements. Each
time data is assigned to a field, that field is automatically created. For example, the
structure shown in Figure 7.6 can be created with the following statements:



342 | Chapter 7 Advanced Features

» student.name = 'John Doe';
» student.addrl = '123 Main Street';
» student.city = 'Anytown';
» student.state = 'LA';
» student.zip = '71211"
student =

name: 'John Doe'

addrl: '123 Main Street'

city: 'Anytown'

state: 'LA'

zip: '71211"

A second student can be added to the structure by adding a subscript to the
structure name (before the period).

» student (2) .name = 'Jane Q. Public’
student =
1x2 struct array with fields:

name

addrl

city

state

zip

student isnowa l X 2 array. Note that when a structure array has more than one
element, only the field names are listed, not their contents. The contents of each
element can be listed by typing the element separately in the Command Window:

» student (1)
ans =

name: 'John Doe'

addrl: '123 Main Street'

city: 'Anytown'

state: 'LA'

zip: '71211"

» student (2)

ans =
name : 'Jane Q. Public'
addrl: []
city: [
state: []
zip: []

Note that all of the fields of a structure are created for each array element when-
ever that element is defined, even if they are not initialized. The uninitialized
fields will contain empty arrays, which can be initialized with assignment state-
ments at a later time.
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The field names used in a structure can be recovered at any time using the
fieldnames function. This function returns a list of the field names in a cell
array of strings and is very useful for working with structure arrays within a
program.

Creating Structures with the struct Function

The struct function allows you to preallocate a structure or an array of struc-
tures. The basic form of this function is

str_array = struct('fieldl',hvall, 'field2',val2, ...)

where the arguments are field names and their initial values. With this syntax,
function struct initializes every field to the specified value.

To preallocate an entire array with the struct function, simply assign the
output of the struct function to the last value in the array. All of the values
before that will be automatically created at the same time. For example, the state-
ments that follow create an array containing 1000 structures of type student.

student (1000) = struct('mame',[].'addrl"',[], ..
‘city', [],'state', [], 'zip"', [])

student =
1x1000 struct array with fields:

name

addrl

city

state

zip
All of the elements of the structure are preallocated, which will speed up any pro-
gram using the structure.

There is another version of the struct function that will preallocate an

array and at the same time assign initial values to all of its fields. You will be
asked to do this in an end-of-chapter exercise.

7.3.2 Adding Fields to Structures

If a new field name is defined for any element in a structure array, the field is
automatically added to all of the elements in the array. For example, suppose that
we add some exam scores to Jane Public’s record:

» student (2) .exams = [90 82 88]
student =
1x2 struct array with fields:
name
addrl
city
state
zip
exams
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There is now a field called exams in every record of the array, as shown at the end of
this paragraph. This field will be initialized for student (2) and will be an empty
array for all other students until appropriate assignment statements have been issued.

» student (1)

ans =
name: 'John Doe'
addrl: '123 Main Street'
city: 'Anytown'
state: 'LA'
zip: '71211"
exams: []
» student (2)
ans =
name: 'Jane Q. Public'
addrl: []
city: []
state: []
zip: [1]
exams: [90 82 88]

7.3.3 Removing Fields from Structures

A field may be removed from a structure array using the rmfield function. The
form of this function is

struct2 = rmfield(str_array, 'field'")

where str_array is a structure array, 'field' is the field to remove, and
struct?2 is the name of a new structure with that field removed. For example, we
can remove the field 'zip' from structure array student with the following
statement:

» stu2 =
stu2 =
1x2 struct array with fields:

name

addrl

city

state

exams

rmfield(student, 'zip')

7.3.4 Using Data in Structure Arrays

Now let’s assume that structure array student has been extended to include 3 stu-
dents, and all data has been filled in, as shown in Figure 7.7. How do we use the
data in this structure array?

To access the information in any field of any array element, just name the
array element followed by a period and the field name:



7.3 Structure Arrays | 345

student
student (1) student (2) student (3)
.name .name .name
=== 'JohnDoe' 'Jane Q. Public'f=== 'Big Bird'
.addr1 .addr1 .addr1
'123 Main Street ' 'P. O. Box 17" '123 Sesame Street'
.city .city .city
'Anytown' i ' Nowhere"' 'New York'
.state .state .state
"TA' Mg TNY'!
.zip .zip .zip
p—— ' 71211 168888 '10018"
.exams .exams .exams
[80 95 84] e [90 82 88] e [65 84 81]
Figure 7.7 The student array with three elements and all fields filled in.

» student (2) .addrl
ans =
P. O. Box 17
» student (3) .exams
ans =

65 84 81

To access an individual item within a field, add a subscript after the field name.
For example, the second exam of the third student is

» student (3) .exams (2)
ans =
84

The fields in a structure array can be used as arguments in any function that
supports that type of data. For example, to calculate student (2) s exam aver-
age, we could use the function

» mean (student (2) .exams)
ans =
86.6667
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To extract the values from a given field across multiple array elements, sim-
ply place the structure and field name inside a set of brackets. For example, we
can get access to an array of zip codes with the expression [student.zip]:

» [student.zip]
ans =
71211 68888 10018

Similarly, we can get the average of all exams from a// students with the function
mean ( [student.exams]).

» mean([student.exams])
ans =
83.2222
71211 68888 10018

7.3.5 The getfield and setfield Functions

Two MATLAB functions are available to make structure arrays easier to use in
programs. Function get £ield gets the current value stored in a field, and func-
tion setfield inserts a new value into a field. The structure of function
getfieldis

f = getfield(array, {array_index}, 'field', {field_index})

where the field_index is optional, and array_index is optional for a
1-by-1 structure array. The function call corresponds to the statement

f = array(array_index) .field(field_index) ;

but it can be used even if the programmer doesn’t know the names of the fields
in the structure array at the time the program is written.

For example, suppose that we needed to write a function to read and manipu-
late the data in an unknown structure array. This function could determine the field
names in the structure using a call to fieldnames, and then could read the data
using function getfield. To read the zip code of the second student, the func-
tion would be

» zip = getfield(student, {2}, 'zip")
zip =

68888

Similarly, a program could modify values in the structure using function
setfield. The structure of function setfield is

f = setfield(array, {array index}, 'field', {field_index},value)
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where £ is the output structure array, the field index is optional, and
array_index is optional for a 1-by-1 structure array. The function call corre-
sponds to the statement

array (array_index) .field(field_index) = value;

7.3.6 Dynamic Field Names

Beginning with MATLAB 7.0, there is an alternative way to access the elements of
a structure: dynamic field names. A dynamic field name is a string enclosed in
parentheses at a location where a field name is expected. For example, the name of
student 1 can be retrieved with either static or dynamic field names as follows:

» student (1) .name % Static field name
ans =

John Doe

» student(1l).('name') % Dynamic field name
ans =

John Doe

Dynamic field names perform the same function as static field names, but
dynamic field names can be changed during program execution. This allows a
user to access different information in the same function within a program.

For example, the following function accepts a structure array and a field
name and calculates the average of the values in the specified field for all ele-
ments in the structure array. It returns that average (and optionally the number of
values averaged) to the calling program.

function [ave, nvals] = calc_average(structure, field)
%$CALC_AVERAGE Calculate the average of values in a field.
Function CALC_AVERAGE calculates the average value

of the elements in a particular field of a structure
array. It returns the average value and (optionally)
the number of items averaged.

o0 00 o0 oP

Define variables:

o0

% arr -- Array of values to average
ave -- Average of arr
ii -- Index variable

Record of revisions:
Date Programmer Description of change

03/04/07 S. J. Chapman Original code

00 00 0P ° P O° 0P o°
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% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin) ;
error (msg) ;

% Create an array of values from the field

o

arr = [];
for ii = 1l:length(structure)

arr = [arr structure(ii). (field)];
end

Q

% Calculate average
ave = mean(arr) ;

% Return number of values averaged
if nargout == 2

nvals = length(arr);
end

A program can average the values in different fields by simply calling this
function multiple times with different structure names and different field
names. For example, we can calculate the average values in fields exams and
zip as follows:

» [ave,nvals] = calc_average(student, 'exams')
ave =
83.2222

nvals =

9
» ave = calc_average(student, 'zip')
ave =

50039

7.3.7 Using the size Function with Structure Arrays

When the size function is used with a structure array, it returns the size of
the structure array itself. When the size function is used with a field from a
particular element in a structure array, it returns the size of that field instead of
the size of the whole array. For example,

» size(student)
ans =
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» size(student (1) .name)
ans =

7.3.8 Nesting Structure Arrays

Each field of a structure array can be of any data type, including a cell array or a
structure array. For example, the following statements define a new structure
array as a field under array student to carry information about each class that
the student is enrolled in.

student (1) .class(1l) .name = 'COSC 2021'
student (1) .class(2) .name = 'PHYS 1001'
student (1) .class (1) .instructor = 'Mr. Jones'
student (1) .class(2) .instructor = 'Mrs. Smith'

After these statements have been issued, student (1) contains the following
data. Note the technique used to access the data in the nested structures.

» student (1)

ans =
name : "John Doe'
addrl: '123 Main Street'
city: 'Anytown'
state: 'LA'
zip: '71211"
exams : [80 95 84]
class: [1x2 struct]
» student(1l) .class
ans =
1x2 struct array with fields:
name
instructor
» student(1l) .class(1l)
ans =
name : 'COSC 2021
instructor: 'Mr. Jones'
» student(1l) .class(2)
ans =
name: '"PHYS 1001
instructor: 'Mrs. Smith'
» student(1l) .class(2) .name
ans =

PHYS 1001
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Table 7.3 Common MATLAB Structure Functions

Function Description

fieldnames Return a list of field names in a cell
array of strings.

getfield Get current value from a field.
rmfield Remove a field from a structure array.
setfield Set new value into a field.

struct Pre-define a structure array.

7.3.9 Summary of structure Functions

The common MATLAB structure functions are summarized in Table 7.3.

7.4 Function Handles

A function handle is a MATLAB data type that holds information to be used
in referencing a function. When you create a function handle, MATLAB
captures all the information about the function that it needs to execute it
later on. Once the handle is created, it can be used to execute the function at
any time.

As we will see in Chapter 10, function handles are key to the operation of
MATLAB graphical user interfaces. We will learn about them here, and we will
apply that knowledge in Chapter 10.

7.4.1 Creating and Using Function Handles

A function handle can be created either of two possible ways: the @ operator or
the str2func function. To create a function handle with the @ operator, just
place it in front of the function name. To create a function handle with the
str2func function, call the function with the function name in a string. For
example, suppose that function my_func is defined as follows:

function res = my_func (x)

res = x.72 - 2*x + 1;
Then either of the following lines will create a function handle for function
my_func:

hndl
hndl

@my_func
str2func ('my_func');
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Once a function handle has been created, the function can be executed by
naming the function handle followed by any calling parameters. The result will be
exactly the same as if the function itself were named.

» hndl = @my func
hndl =
@my_ func

» hndl (4)
ans =

9
» my func(4)
ans =

9

If a function has no calling parameters, then the function handle must be followed
by empty parentheses when it is used to call the function.

» hl = @randn;
» hl()
ans =

-0.4326

After a function handle has been created, it appears in the current workspace with
the data type “function handle”:

» whos

Name Size Bytes Class Attributes
ans 1x1 8 double

hl 1x1 16 function_handle

hndl 1x1 16 function_handle

A function handle can also be executed using the feval function. This
provides a convenient way to execute function handles within a MATLAB
program.

» feval (hndl, 4)
ans =
9

It is possible to recover the function name from a function handle using the
func2str function.

» func2str (hndl)
ans =
my_func

This feature is useful when we want to create descriptive messages, error mes-
sages, or labels inside a function that accepts and evaluates function handles.
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For example, the function that follows accepts a function handle in the first argu-
ment and plots the function at the points specified in the second argument. It also
prints out a title containing the name of the function being plotted.

function plotfunc (fun,points)

PLOTFUNC Plots a function between the specified points.
Function PLOTFUNC accepts a function handle, and

plots the function at the points specified.

@ o°

oe

o

Define variables:
fun -- Function handle
msg -- Error message

o° o o°

o

Record of revisions:
Date Programmer Description of change

o

o

03/05/07 S. J. Chapman Original code

o

o

Check for a legal number of input arguments.
msg = nargchk(2,2,nargin) ;
error (msg) ;

% Get function name
fname = func2str(fun);

% Plot the data and label the plot
plot (points, fun (points) ) ;
title(['\bfPlot of ' fname ' (x) vs xX']);
xlabel ('\bfx"');

vlabel (['\bf' fname ' (x)']);

grid on;

For example, this function can be used to plot the function sin x from —27 to 27
with the following statement:

plotfunc (@sin, [-2*pil:pi/10:2*pil)

The resulting function is shown in Figure 7.8.
Some common MATLAB functions used with function handles are summa-
rized in Table 7.4.

7.4.2 The Significance of Function Handles

Either function names or function handles can be used to execute most functions.
However, function handles have certain advantages over function names. These
advantages include:
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Figure 7.8 Plot of function sin x from —27 to 27, created using function plotfunc.

1. Passing Function Access Information to Other Functions. As we saw
in the previous section, you can pass a function handle as an argument in
a call to another function. The function handle enables the receiving func-
tion to call the function attached to the handle. You can execute a function
handle from within another function even if the handle's function is not in
the scope of the evaluating function. This is because the function handle
has a complete description of the function to execute; the calling function
does not have to search for it.

2. Improved Performance in Repeated Operations. MATLAB performs a
search for a function at the time that you create a function handle and then

Table 7.4 MATLAB Functions that Manipulate Function Handles

Function Description

c} Create a function handle.

feval Evaluate a function using a function handle.

func2str Recover the function name associated with a given function handle.
functions Recover miscellaneous information from a function handle. The

data is returned in a structure.

str2func Create a function handle from a specified string.
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stores this access information in the handle itself. Once it has been
defined, you can use this handle over and over, without having to look it
up again. This makes function execution faster.

3. Allow Wider Access to Subfunctions and Private Functions. All
MATLAB functions have a certain scope. They are visible to other
MATLAB entities within that scope but not visible outside of it. You can
call a function directly from another function that is within its scope but
not from a function outside that scope. Subfunctions, private functions,
and nested functions are limited in their visibility to other MATLAB
functions. You can invoke a subfunction only from another function that
is defined within the same M-file. You can invoke a private function only
from a function in the directory immediately above the private subdi-
rectory. You can invoke a nested function only from within the host func-
tion or another nested function at the same level. However, when you
create a handle to a function that has limited scope, the function handle
stores all the information MATLAB needs to evaluate the function
from any location in the MATLAB environment. If you create a handle
to a subfunction within the M-file that defines the subfunction, you can
then pass the handle to code that resides outside of that M-file and
evaluate the subfunction from beyond its usual scope. The same holds
true for private functions and nested functions.

4. Include More Functions per M-File for Easier File Management. You
can use function handles to help reduce the number of M-files required to
contain your functions. The problem with grouping a number of functions
in one M-file has been that this defines them as subfunctions and thus
reduces their scope in MATLAB. Using function handles to access these
subfunctions removes this limitation. This enables you to group func-
tions as you want and reduce the number of files you have to manage.

7.4.3 Function Handles and Nested Functions

When MATLAB invokes an ordinary function, a special workspace is created to
contain the function’s variables. The function executes to completion, and then the
workspace is destroyed. All the data in the function workspace is lost, except for
any values labeled persistent. If the function is executed again, a completely
new workspace is created for the new execution.

By contrast, when a host function creates a handle for a nested function and
returns that handle to a calling program, the host function’s workspace is created
and remains in existence for as long as the function handle remains in existence.
Since the nested function has access to the host function’s variables, MATLAB
has to preserve the host’s function’s data as long as there is any chance that the
nested function will be used. This means that we can save data in a function
between uses.

This idea is illustrated in the function that follows. When function
count_calls is executed, it initializes a local variable current_count to a
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user-specified initial count and then creates and returns a handle to the nested
function increment_count. When increment_count is called using that
function handle, the count is increased by one and the new value is returned.

function fhandle = count_calls(initial_value)

Save initial value in a local wvariable
in the host function.
current_count = initial value;

Q
o
Q

o

Create and return a function handle to the
nested function below.
fhandle = @increment_ count;

Q
o
Q

o

% Define a nested function to increment counter

]

function count = increment count
current_count = current_count + 1;
count = current_count;

end % function increment_count
end % function count_calls

When this program is executed, the results are as shown here. Each call to the
function handle increments the count by one.

» fh = count_calls(4);
» fh()
ans =
5
» fh()
ans =
6
» fh()
ans =
7

Even more importantly, each function handle created for a function has its
own independent workspace. If we create two different handles for this function,
each one will have its own local data, and they will be independent of each other.
As you can see, we can increment either counter independently by calling the
function with the proper handle.

» fhl count_calls(4);
» fh2 = count_calls(20);
» fhil()

ans =

5
» f£hl()
ans =
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» £h2()
ans =

21

» fhl()
ans =

7

You can use this feature to run multiple counters and so forth within a program
without their interfering with each other.

7.4.4 An Example Application: Solving Ordinary
Differential Equations

One very important application of function handles occurs in the MATLAB func-
tions designed to solve ordinary differential equations. MATLAB includes a
plethora of functions to solve differential equations under various conditions, but
the most useful of them is ode45. This function solves ordinary differential

equations of the form

Yy = (1Y) (7-1)

using a Runge-Kutta (4,5) integration algorithm, and it works well for many types
of equations with many different input conditions.
The calling sequence for this function is

[t,y] = oded5 (odefun_handle, tspan,y0,options)

where the calling parameters are as follows:

odefun_handle

tspan

v0
options

A handle to a function f{#, y) that calculates the derivative y’
of the differential equation.

A vector containing the times to integrate. If this is a
two-element array [t0 tend], then the values are
interpreted as the starting and ending times to integrate.
The integrator applies the initial conditions at time t0
and integrates the equation until time tend. If the array
has more than two elements, then the integrator returns
the values of the differential equation at exactly the
specified times.

The initial conditions for the variable at time tO0.

A structure of optional parameters that change the default
integration properties. (We will not use this parameter in
this book.)
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and the results are

t A column vector of time points at which the differential equa-
tion was solved.

v The solution array. Each row of y contains the solutions to all
variables at the time specified in the same row of t.

This function also works well for systems of simultaneous first-order differ-
ential equations, where there are vectors of dependent variables y,, y,, and so on.
We will try a few example differential equations to get a better understanding of
this function. First, consider the simple first-order linear time-invariant differential
equation
dy
—+2y=0 7-2
s Y (7-2)
with the initial condition y(0) = 1. The function that would specify the derivative
of the differential equation is

dy
- = -2 7-3

i v (7-3)
This function could be programmed in MATLAB as follows:

function yprime = funl(t,y)
yvprime = -2 * vy;

Function ode45 could be used to solve Equation (7-2) for y(f)

oo

Script file: ode4d45_testl.m

oo

0P

Purpose:
This program solves a differential equation of the
form dy/dt + 2 * v = 0, with the initial condition
y(0) = 1.

00 00 0P oP

oo

Record of revisions:
Date Programmer Description of change

oo

oo

03/15/07 S. J. Chapman Original code

o0 oP

0P

Define variables:

% odefun_handle -- Handle to function that defines the
derivative
% tspan -- Duration to solve equation for

oo

yO -—- Initial condition for equation
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oe

t -- Array of solution times
v -- Array of solution wvalues

oe

Get a handle to the function that defines the
derivative.
odefun_handle = @Qfunl;

oe

oe

(o

% Solve the equation over the period 0 to 5 seconds
tspan = [0 5];

% Set the initial conditions
y0 = 1;

% Call the differential equation solver.
[t,y] = oded5 (odefun_handle, tspan,y0) ;

% Plot the result

figure (1) ;

plot(t,y, 'b-', 'Linewidth', 2) ;

grid on;

title('\bfSolution of Differential Equation');
xlabel ('\bfTime (s)');

ylabel ('\bf\ity'"'");

When this script file is executed, the resulting output is shown in Figure 7.9. This
sort of exponential decay is exactly what would be expected for a first-order
linear differential equation.

_ 1=

File Edt Insert Tools Desktop Window Help -

DeEaE k| eaams @ 0Ee0
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Figure 7.9 Solution to the differential equation dy/dt + 2y = 0 with the initial condition (0) = 1.
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>

Example 7.1—Radioactive Decay Chains

The radioactive isotope thorium 227 decays into radium 223 with a half life of 18.68
days, and radium 223 in turn decays into radon 219 with a half life of 11.43 days.
The radioactive decay constant for thorium 227 is A, = 0.03710638/day, and
the radioactive decay constant for radon is A,, = 0.0606428/day. Assume that
initially we have 1 million atoms of thorium 227, and calculate and plot
the amount of thorium 227 and radium 223 that will be present as a function
of time.

SoLuTION  The rate of decrease in thorium 227 is equal to the amount of thorium
227 present at a given moment times the decay constant for the material.

dl’lth

dt = —Anhy (7-4)

where n,, is the amount of thorium 227 and A, is the decay rate per day. The rate
of decrease in radium 223 is equal to the amount of radium 223 present at a given
moment times the decay constant for the material. However, the amount of radium
223 is increased by the number of atoms of thorium 227 that have decayed, so the
total change in the amount of radium 223 is

dnra dnth
= — A —
dt raltra” 4,
dnm
? = _//Lranra + //Lthnth (7'5)

where n,, is the amount of radon 219 and A,, is the decay rate per day. Equations
(7-4) and (7-5) must be solved simultaneously to determine the amount of thorium
227 and radium 223 present at any given time.

1. State the problem.
Calculate and plot the amount of thorium 227 and radium 223 present as
a function of time, given that there were initially 1,000,000 atoms of tho-
rium 227 and no radium 223.

2. Define the inputs and outputs.
There are no inputs to this program. The outputs from this program are the
plots of thorium 227 and radium 223 as a function of time.

3. Describe the algorithm.
This program can be broken down into three major steps:

Create a function to describe the derivatives of
Thorium 227 and Radium 223

Solve the differential equations using ode4b

Plot the resulting data
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O 00 00 A O° O° A O° O° A° O° P o° o°

oe

The first major step is to create a function that calculates the rate of
change of thorium 227 and radium 223. This is just a direct implementa-
tion of Equations (7-4) and (7-5). The detailed pseudocode is

function yprime = decayl(t,vy)
yprime(l) = -lambda_th * y(1);
yprime(2) = -lambda_ra * y(2) + lambda_th * y(1);

Next we have to solve the differential equation. To do this, we need to set
the initial conditions and the duration, and then call ode45. The detailed
pseudocode is

% Get a function handle.
odefun_handle = @decayl;

% Solve the equation over the period 0 to 100 days
tspan = [0 100];

% Set the initial conditions
v0O(1l) = 1000000; % Atoms of Thorium 227
v0(2) = 0; % Atoms of Radium 223

% Call the differential equation solver.
[t,y] = oded5 (odefun_handle, tspan,y0) ;

The final step is plotting the results. Each result appears in its own col-
umn of the output array v, so y(:, 1) will contain the amount of thorium
227 and y(: , 2) will contain the amount of radium 223.

4. Turn the algorithm into MATLAB statements.
The MATLAB code for the selection sort function is

Script file: calc_decay.m

Purpose:

This program calculates the amount of Thorium 227 and
Radium 223 left as a function of time, given an inital
concentration of 1 gram of Thorium 227 and no grams of
Radium 223.

Record of revisions:

Date Programmer Description of change

15/07 S. J. Chapman Original code

~ 1

Define variables:
odefun_handle -- Handle to function that defines the

derivative
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% tspan -- Duration to solve equation for
% yO -- Initial condition for equation
% t -- Array of solution times

o°

-- Array of solution values

oo

Get a handle to the function that defines the derivative.
odefun_handle = @decayl;

% Solve the equation over the period 0 to 100 days
tspan = [0 1001];

% Set the initial conditions

]

v0 (1) = 1000000; % Atoms of Thorium 227
v0(2) = 0; % Atoms of Radium 223
% Call the differential equation solver.
[t,y] = oded5 (odefun_handle, tspan,y0) ;

% Plot the result

figure(l);
plot(t,y(:,1), 'b-', 'LinewWidth',2);
hold on;
plot(t,v(:,2), 'k--", 'Linewidth',2) ;

title('\bfAmount of Thorium 227 and Radium 223 vs Time');
xlabel ('\bfTime (days)');

vlabel (' \bfNumber of Atoms') ;

legend (' Thorium 227', 'Radium 223"');

grid on;

hold off;

The function to calculate the derivatives is

function yprime = decayl (t,y)

$DECAY1 Calculates the decay rates of Thorium 227 and
Radium 223.

% Function DECAY1l Calculates the rates of change of
Thorium 227

% and Radium 223 (yprime) for a given current
concentration y.

oo

Define variables:
t -- Time (in days)
Y -- Vector of current concentrations

o0 oP

oo
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Figure 1

= Thorium 227

Figure 7.10 Plot of radioactive decay of Thorium 227 and Radium 223 vs time.

% Record of revisions:

% Date Programmer Description of change
% === —=———===== ——————————————————===
% 03/15/07 S. J. Chapman Original code

% Set decay constants.
lambda_th = 0.03710636;
lambda_ra = 0.0606428;

% Calculate rates of decay

yprime = zeros(2,1);
yvprime(l) = -lambda_th * vy (1);
yprime(2) = -lambda_ra * y(2) + lambda_th * vy (1);

5. Test the program.
When this program is executed, the results are as shown in Figure 7.10.
These results look reasonable. The initial amount of thorium 227 starts
high and decreases exponentially with a half life of about 18 days. The ini-
tial amount of radium 223 starts a zero and rises rapidly due to the decay
of thorium 227, and then starts decaying as the amount increase from the

decay of thorium 227 slows. <
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This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 7.1 through 7.4. If you have trouble with the quiz,
reread the section, ask your instructor, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.

1.

What is a sparse array? How does it differ from a full array? How can
you convert from a sparse array to a full array, and vice versa?

2. What is a cell array? How does it differ from an ordinary array?

What is the difference between content indexing and cell indexing?

What is a structure? How does it differ from ordinary arrays and
cell arrays?

5. What is the purpose of varargin? How does it work?

6. What is a function handle? How do you create a function handle?

How do you call a function using a function handle?

7. Given the definition of array a shown here, what will be produced by
each of the following sets of statements? (Nofe: Some of these state-
ments may be illegal. If a statement is illegal, explain why.)

a{l,1}y = [1 2 3; 45 6; 7 8 9];
a(l,2) = {'Comment line'};
a{2,1} = 3;

a{2,2} = a{l,1} - a{l,1}(2,2);

(@) a(1,1)

(b) a{1,1}

(c) 2*a(1,1)

(d) 2*a{1,1}

(e) a{2,2}

(fHa(2,3) = {[-17; 171}

(g) a{2,2}(2,2)

8. Given the definition of structure array b shown here, what will be

produced by each of the following sets of statements? (Note: Some of
these statements may be illegal. If a statement is illegal, explain why.)

b(l).a = -2*eye(3);
b(l).b = 'Element 1°';
b(l).c = [1 2 3];
b(2).a [b(1l).c' [-1; -2; -3]1 b(l).c'];
b(2).b = 'Element 2°';
b(2).c = [1 0 -1];
(@) b(l).a - b(2).a
(b) strncmp(b(l).b,b(2).b,6)
c)

(¢) mean (b(1).
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(d) mean(b.c)

(e) b

(f)b(1).('b")

(&) b(1)

9. What will be returned by the following function, if it is called with
the expression my fun (@cosh) ?

function res = myfun(x)

res = func2str(x);

end % function myfun
.|

7.5 Summary

Sparse arrays are special arrays in which memory is allocated only for nonzero
elements. Three values are saved for each nonzero element—a row number, a col-
umn number, and the value itself. This form of storage is much more efficient
than for arrays for the situation where only a tiny fraction of the elements are
nonzero. MATLAB includes functions and intrinsic calculations for sparse arrays,
so they can be freely and transparently mixed with full arrays.

Cell arrays are arrays whose elements are cells, containers that can hold other
MATLAB arrays. Any sort of data may be stored in a cell, including structure
arrays and other cell arrays. They are a very flexible way to store data, and are
used in many internal MATLAB graphical user interface functions.

Structure arrays are a data type in which each individual element is given a
name. The individual elements of a structure are known as fields, and each field
in a structure may have a different type. The individual fields are addressed by
combining the name of the structure with the name of the field, separated by a
period. Structure arrays are useful for grouping together all of the data related to
a particular person or thing into a single location.

Function handles are a special data type containing all the information required
to invoke a function. Function handles are created with the @ operator or the
str2func function, and they are used to call the corresponding function by nam-
ing the handle following by parentheses and the required calling arguments. If a
function handle is created for a nested function, the workspace of the host function
will be preserved between calls to the nested function using the function handle.

7.5.1 Summary of Good Programming Practice

The following guidelines should be adhered to:

1. Always preallocate all cell arrays before assigning values to the elements of
the array. This practice greatly increases the execution speed of a program.

2. Use cell array arguments varargin and varargout to create func-
tions that support varying numbers of input and output arguments.
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7.5.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions

described in this chapter, along with a brief description of each one.

e} Create a function handle.

cell Predefine a cell array structure.

celldisp Display contents of a cell array.

cellplot Plot structure of a cell array.

cellstr Convert a two-dimensional character array to a cell array
of strings.

feval Evaluate a function using a function handle.

fieldnames Return a list of field names in a cell array of strings.

func2str Get the name of the function pointed to by the specified
function handle.

functions Recover miscellaneous information from a function handle
in a structure.

getfield Get current value from a field.

full Convert a sparse matrix into a full matrix.

nnz Number of nonzero matrix elements.

nonzeros Return a column vector containing the nonzero elements
in a matrix.

nzmax Amount of storage allocated for nonzero matrix elements.

ode45 Function to solve ordinary differential equations using
a Runge-Kutta (4,5) technique.

rmfield Remove a field from a structure array.

setfield Set new value into a field.

spalloc Allocate space for a sparse matrix.

sparse Convert a full matrix into a sparse matrix.

speye Create a sparse identity matrix.

spfun Apply function to nonzero matrix elements.

spones Replace nonzero sparse matrix elements with ones.

sprand Create a sparse uniformly distributed random matrix.

sprandn Create a sparse normally distributed random matrix.

sprintf Write formatted data to string.

sSpy Visualize sparsity pattern as a plot.

str2func Create a function handle for the function named in a string

argument.
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7.6 Exercises

7.1

7.2

7.3

7.4

7.5

7.6

Write a MATLAB function that will accept a cell array of strings and sort
them into ascending order according to the lexicographic order of the
ASCII character set. (You may use function c_strcmp from Chapter 6
for the comparisons if you wish.)

Write a MATLAB function that will accept a cell array of strings and sort
them into ascending order according to alphabetical order. (This implies
that you must treat ‘A’ and ‘a’ as the same letter.)

Create a sparse 100 X 100 array a in which about 5% of the elements
contain normally distributed random values, and all of the other elements
are zero (use function sprandn to generate these values). Next, set all of
the diagonal elements in the array to 1. Next, define a 100-element sparse
column array b, and initialize that array with 100 uniformly distributed
values produced by function rand. Answer the following questions about
these arrays:

(a) Create a full array a_full from the sparse array a. Compare the
memory required to store the full array and the sparse array. Which is
more efficient?

(b) Plot the distribution of values in array a using function spy.

(c) Create a full array b_full from the sparse array b. Compare the
memory required to store the full array and the sparse array. Which is
more efficient?

(d) Solve the system of equations a * x = Db using both the full arrays
and the sparse arrays. How do the two sets of answers compare? Time
the two solutions. Which one is faster?

Create a function that accepts any number of numeric input arguments and
sums up all of individual elements in the arguments. Test your function by

4 1 0 3
passing it the four argumentsa = 10,b=|—-2 |,c=|-5 1 2 |,and
2 1 2 0

a=[1 5 -=2].
Modify the function of the previous exercise so that it can accept either
ordinary numeric arrays or cell arrays containing numeric values. Test your

1 4
function by passing it the two arguments a and b, where a = |:_ :|,

| - 2 3
b{l} =[1 5 2],andb{2} = |:2 1:|.
Create a structure array containing all of the information needed to plot a

data set. At a minimum, the structure array should have the following fields:

B x data x-data (one or more data sets in separate cells)
B v data y-data (one or more data sets in separate cells)
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B type linear, semilogx, and so forth
B plot_title plottitle

B x label x-axis label

By label y-axis label

B x range x-axis range to plot

By range y-axis range to plot

You may add additional fields that would enhance your control of the final
plot.

After this structure array has been created, create a MATLAB func-
tion that accepts an array of this structure and produces one plot for each
structure in the array. The function should apply intelligent defaults if
some data fields are missing. For example, if the plot_title field is
an empty matrix, then the function should not place a title on the graph.
Think carefully about the proper defaults before starting to write your
function!

To test your function, create a structure array containing the data for
three plots of three different types and pass that structure array to your
function. The function should correctly plot all three data sets in three dif-
ferent figure windows.

Define a structure point containing two fields x and y. The x field will
contain the x-position of the point, and the y field will contain the y-position
of the point. Then write a function dist3 that accepts two points and
returns the distance between the two points on the Cartesian plane. Be
sure to check the number of input arguments in your function.

Write a function that will accept a structure as an argument and return two
cell arrays containing the names of the fields of that structure and the data
types of each field. Be sure to check that the input argument is a structure
and generate an error message if it is not.

Write a function that will accept a structure array of student as defined
in this chapter, and calculate the final average of each one, assuming that
all exams have equal weighting. Add a new field to each array to contain
the final average for that student, and return the updated structure to the
calling program. Also, calculate and return the final class average.

Write a function that will accept two arguments—the first a structure
array, and the second a field name stored in a string. Check to make sure
that these input arguments are valid. If they are not valid, print out an error
message. If they are valid and the designated field is a string, concatenate
all of the strings in the specified field of each element in the array, and
return the resulting string to the calling program.

Calculating Directory Sizes. Function dir returns the contents of a
specified directory. The dir command returns a structure array with four
fields, as shown here:

» d = dir('chap7')
d:
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7.12

7.13

7.14

7.15

36x1 struct array with fields:

name

date

bytes

isdir
The field name contains the names of each file, date contains the last
modification date for the file, by tes contains the size of the file in bytes,
and isdir is 0 for conventional files and 1 for directories. Write a func-
tion that accepts a directory name and path and returns the total size of all
files in the directory in bytes.
Recursion. A function is said to be recursive if the function calls itself.
Modify the function created in Problem 7.11 so that it calls itself when it
finds a subdirectory and sums up the size of all file in the current direc-
tory plus all subdirectories.
Function Generators. Write a nested function that evaluates a polynomi-
al of the form y = ax? + bx + ¢. The host function gen_ func should
have three calling arguments—a, b, and c—to initialize the coefficients of
the polynomial. It should also create and return a function handle for the
nested function eval_ func. The nested function eval_ func (x)
should calculate a value of y for a given value of x, using the values of a,
b, and c stored in the host function. This is effectively a function generator,
since each combination of a, b, and ¢ values produces a function handle that
evaluates a unique polynomial. Then perform the following steps:

(a) Call gen_func(1,2,1) and save the resulting function handle in
variable h1. This handle now evaluates the function y = x> + 2x + 1.

(b) Call gen_func(1,4,3) and save the resulting function handle in
variable h2. This handle now evaluates the function y = x* + 4x + 3.

(c¢) Write a function that accepts a function handle and plots the specified
function between two specified limits.

(d) Use this function to plot the two polynomials generated in parts (a) and (D).

Function Generators. Generalize the function generator of the previ-
ous problem to handle polynomial of arbitrary dimension. Test it by creat-
ing function handles and plots the same way that you did in the previous
problem. [Hint: Use varagrin.]

Look up function struct in the MATLAB Help Brower, and learn how
to preallocate a structure and simultaneously initialize all of the elements
in the structure array to the same value. Then create a 2000-element array
of type student, with the values in every array element initialized with
the fields shown here:

name: ‘John Doe’

addrl: ‘123 Main Street’
city: ‘Anytown’

state: ‘LA’
zip: ‘71211°
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7.16 RC Circuits. Figure 7.11a shows a simple series RC circuit with the
output voltage taken across the capacitor. Assume that there is no voltage
or power in this circuit before time # = 0, and that the voltage v,, (¢) is
applied at time # = 0. Calculate and plot the output voltage of this circuit
for time 0 = ¢ = 10 s. [Hint: The output voltage from this circuit can be
found by writing a Kirchoff’s Voltage Law (KVL) equation at the output,
and solving for v (f). The KVL equation is

out

Vout(t) - Vin(t) + Cdvout (t) _
R dt

0 (7-6)

Collecting terms in this equation produces the result

v, (1) 1

1
o (1) = vy (1t 7-7
dt RC VOM[ ( ) RC vlﬂ( ) ( )

Solve this equation for v,,, (¢).]
7.17 Calculate and plot the output v of the following differential equation:

dv(t) t 0=t=5
+ (1) = 7-8
dt V) {0 elsewhere (7-8)

R
MN ® +
Vin(l) C == vout(t)
O -
R=1MQ C=1,4F
(@)
Vin(t) A
1V
0 T ) 3 3 5 g
t,s
-1V
(b)
Figure 7.11 (a) A simple series RC circuit. () The input voltage to this circuit as a function of time.

Note that the voltage is 0 for all times before zero and all times after =6 s.
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CHAPTEHR

Input/Output
Functions

In Chapter 2, we learned how to load and save MATLAB data using the 1oad
and save commands,and how to write out formatted data using the fprintf
function. In this chapter we will learn more about MATLAB’s input/output capa-
bilities. First, we will learn about textread, a very useful function for reading
ASCII data from a file. Then, we will spend a bit more time examining the load
and save commands. Finally, we will look at the other file I/O options available
in MATLAB.

Those readers familiar with C will find much of this material very familiar.
However, be careful—there are subtle differences between MATLAB and C func-
tions that can trip you up.

8.1 The textread Function

The textread function reads ASCII files that are formatted into columns of
data where each column can be of a different type, and stores the contents of each
column in a separate output array. This function is very useful for importing tables
of data printed out by other applications.

The form of the textread function is

[a,b,c,...] = textread(filename, format,n)

where £ilename is the name of the file to open, format is a string containing a
description of the type of data in each column, and n is the number of lines to read.
(If nn is missing, the function reads to the end of the file.) The format string contains
the same types of format descriptors as function fprintf. Note that the number
of output arguments must match the number of columns that you are reading.

371
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For example, suppose that file test_input . dat contains the following data:

James Jones O+ 3.51 22 Yes
Sally Smith A+ 3.28 23 No

This data could be read into a series of arrays with the following function:

[first,last,blood, gpa, age, answer] =
textread('test_input.dat',

When this command is executed, the results are

» [first,last,blood,gpa,age,answer] = ...
textread('test_input.dat','%s %s %s %f %d %s')

first =
'James '
'Sally!
last =
'Jones'’
'Smith'
blood =
"o+
N
gpa =
3.5100
3.2800
age =
42
28
answer =
'Yes'
'No '
This function can also skip selected columns by adding an asterisk to the
corresponding format descriptor (for example, $*s). The following statement
reads only the first, last, and gpa from the file:

» [first,last,gpal = ...
textread('test_input.dat',6 '%s %s %*s %f %*d %*s')

first =
'James'
'Sally!'

last =
'Jones'
"Smith'

gpa =
3.5100
3.2800
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Function textread is much more useful and flexible than the 1 0ad command.
The 1oad command assumes that all of the data in the input file is of a single type—
it cannot support different types of data in different columns. In addition, it stores all
of the data into a single array. In contrast, the textread function allows each
column to go into a separate variable, which is much more convenient when working
with columns of mixed data.

Function textread has a number of additional options that increase its flex-
ibility. Consult the MATLAB on-line documentation for details of these options.

8.2 More about the 1load and save Commands

The save command saves MATLAB workspace data to disk, and the Load com-
mand load data from disk into the workspace. The save command can save data
either in a special binary format called a MAT-file or in an ordinary ASCII file.
The form of the save command is

save filename [content] [options]

The command save all by itself saves all of the data in the current workspace to
a file named matlab.mat in the current directory. If a filename is included, the
data will be saved in file “filename.mat”. If a list of variables is included at
the content position, then only those particular variables will be saved.

For example, suppose that a workspace contains a 1000-element double array
x and a character string str. We can save these two variables to a MAT-file with
the following command:

save test _matfile x str

This command creates a MAT-file with the name test_matfile.mat. The
contents of this file can be examined with —-f£ile option of the whos command:

» whos -file test_matfile.mat

Name Size Bytes Class Attributes
str 1x11 22 char
x 1x1000 8000 double

The content to be saved can be specified in several ways, as described in
Table 8.1.

The more important options supported by the save command are shown in
Table 8.2; a complete list can be found in the MATLAB on-line documentation.

The 1oad command can load data from MAT-files or from ordinary ASCII
files. The form of the 1oad command is

load filename [options] [content]

The command 1oad all by itself loads all of the data in file matlab.mat into
the current workspace. If a filename is included, the data will be loaded from that
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Table 8.1 Ways of Specifying save Command Content

Values for content Description
<nothing> Save all data in current workspace.
varlist Save only the values in the variable list.

-regexp exprlist

Save all variables that match any of the regular
expressions in the expression list.

-struct s Save as individual variables all fields of the scalar

structure s.

-struct s fieldlist Save as individual variables only the specified fields

of structure s.

Table 8.2 Selected save Command Options

Option Description
-mat Save data in MAT-file format (default).
-ascii Save data in space-separated ASCII format.
-append Adds the specified variables to an existing MAT file.
-vd Save the MAT-file in a format readable by MATLAB version 4 or later.
-v6 Save the MAT-file in a format readable by MATLAB
versions 5 and 6 or later.
-v7 Save the MAT-file in a format readable by MATLAB
versions 7 through 7.2 or later.
-v7.3 Save the MAT-file in a format readable by MATLAB

versions 7.3 or later.

filename. If specific variables are included in the content list, then only those
variables will be loaded from the file. For example,

load % Loads entire content of matlab.mat
load mydat.mat % Loads entire content of mydat.mat
load mydat.mat a b c % Loads only a, b, and c¢ from mydat.mat

The options supported by the 1oad command are shown in Table 8.3.
Although it is not immediately obvious, the save and 1oad commands are the

most powerful and useful I/O commands in MATLAB. Their advantages include the
following:

1. These commands are very easy to use.
2. MAT-files are platform independent. A MAT-file written on any type of
computer that supports MATLAB can be read on any other computer
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Table 8.3 1load Command Options

Option Description

-mat Treat file as a MAT-file (default if file extent is mat).

-ascii Treat file as a space-separated ASCII file (default if file extent is nof mat).

supporting MATLAB. This format transfers freely among PCs, Macs,
and many different versions of Linux and Unix. Also, the Unicode
character encoding ensures that character strings will be preserved
properly across platforms.

3. MAT-files are efficient users of disk space, using only the amount of
memory required for each data type. They store the full precision of every
variable—no precision is lost due to conversion to and from ASCII
format. MAT-files can also be compressed to save even more disk space.

4. MAT-files preserve all of the information about each variable in the work-
space, including its class, name, and whether or not it is global. All of this
information is lost in other types of I/O. For example, suppose that the
workspace contains the following information:

» whos
Name Size Bytes Class Attributes
a 10x10 800 double
b 10x10 800 double
c 2X2 32 double
string 1x14 28 char
student 1x3 888 struct

If this workspace is saved with the command save workspace.mat, a
file named workspace .mat will be created. When this file is loaded,
all of the information will be restored, including the type of each item and
whether or not it is global.

A disadvantage of these commands is that the MAT-file format is unique to
MATLAB and cannot be used to share data with other programs. The —ascii
option can be used if you wish to share data with other programs, but it has
serious limitations.

Unless you must exchange data with non-MATLAB programs, always use the
load and save commands to save data sets in MAT-file format. This format
is efficient and transportable across MATLAB implementations, and it pre-
serves all details of all MATLAB data types.
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The save —ascii command will not save cell or structure array data at all,
and it converts string data to numbers before saving it. The 1oad —ascii command
will load only space- or tab-separated data with an equal number of elements on each
row, and it will place all of the data into a single variable with the same name as the
input file. If you need anything more elaborate (e.g., saving and loading strings, cells,
structure arrays, etc. in formats suitable for exchanging with other programs), then it
will be necessary to use the other file I/O commands described in this chapter.

If the filename and the names of the variables to be loaded or saved are in
strings, then you should use the function forms of the 1oad and save com-
mands. For example, the following fragment of code asks the user for a filename,
and saves the workspace in that file.

filename = input ('Enter save file name: ','s');
save (filename, '-mat');

8.3 An Introduction to MATLAB File Processing

To use files within a MATLAB program, we need some way to select the desired
file and to read from or write to it. MATLAB has a very flexible method to read and
write files, whether they are on disk, memory stick, or some other device attached
to the computer. This mechanism is known as the file id (sometimes known as fid).
The file id is a number assigned to a file when it is opened and is used for all read-
ing, writing, and control operations on that file. The file id is a positive integer. Two
file id’s are always open—file id 1 is the standard output device (stdout), and file
id 2 is the standard error (stderr) device for the computer on which MATLAB is
executing. Additional file id’s are assigned as files are opened and released as files
are closed.

Several MATLAB functions may be used to control disk file input and
output. The file I/O functions are summarized in Table 8.4.

File id’s are assigned to disk files or devices using the fopen statement, and
detached from them using the fclose statement. Once a file is attached to a file
id using the fopen statement, we can read and write to that file using MATLAB
file input and output statements. When we are through with the file, the fclose
statement closes the file and makes the file id invalid. The frewind and fseek
statements may be used to change the current reading or writing position in a file
while it is open.

Data can be written to and read from files in two possible ways: as binary
data or as formatted character data. Binary data consists of the actual bit pat-
terns that are used to store the data in computer memory. Reading and writing
binary data is very efficient, but a user cannot read the data stored in the file.
Data in formatted files is translated into characters that can be read directly by
a user. However, formatted I/O operations are slower and less efficient than
binary I/O operations. We will discuss both types of I/O operations later in this
chapter.
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Table 8.4 MATLAB Input/Output Functions

Category Function Description

Load/Save Workspace load Load workspace.
save Save workspace.

File Opening and Closing fopen Open file.
fclose Close file.

Binary I/0 fread Read binary data from file.
fwrite Write binary data to file.

Formatted 1/O fscanf Read formatted data from file.
fprintf Write formatted data to file.
fgetl Read line from file, discard newline character.
fgets Read line from file, keep newline character.

File Positioning, Status, delete Delete file.

and Miscellaneous
exist Check for the existence of a file.
ferror Inquire file I/O error status.
feof Test for end-of-file.
fseek Set file position.
ftell Check file position.
frewind Rewind file.

Temporary Files tempdir Get temporary directory name.
tempname Get temporary file name.

8.4 File Opening and Closing

The file opening and closing functions, fopen and fclose, are described in the

following subsections.

8.4.1 The fopen Function

The fopen function opens a file and returns a file id number for use with the
file. The basic forms of this statement are

fid = fopen(filename, permission)
[fid, message] = fopen (filename, permission)
[fid, message] = fopen(filename,permission, format)

where filename is a string specifying the name of the file to open, permis-
sion is a character string specifying the mode in which the file is opened, and
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Table 8.5 fopen File Permissions

File Permission

Meaning

Tyt

R

W
A

Open an existing file for reading only (default).
Open an existing file for reading and writing.
Delete the contents of an existing file (or create a new file) and open it for writing only.

Delete the contents of an existing file (or create a new file) and open it for reading
and writing.

Open an existing file (or create a new file) and open it for writing only, appending
to the end of the file.

Open an existing file (or create a new file) and open it for reading and writing,
appending to the end of the file.

Write without automatic flushing (special command for tape drives).

Append without automatic flushing (special command for tape drives).

format is an optional string specifying the numeric format of the data in the file.
If the open is successful, £1d will contain a positive integer after this statement
is executed, and message will be an empty string. If the open fails, £id will
contain a —1 after this statement is executed, and message will be a string
explaining the error. If a file is opened for reading and it is not in the current
directory, MATLAB will search for it along the MATLAB search path.

The possible permission strings are shown in Table 8.5.

On some platforms such as PCs, it is important to distinguish between text
files and binary files. If a file is to be opened in text mode, then a t should be
added to the permissions string (for example, 'rt' or 'rt+"'). If a file is to
be opened in binary mode, a b may be added to the permissions string (for example,
'rb), but this is not actually required, since files are opened in binary mode by
default. This distinction between text and binary files does not exist on Unix or
Linux computers, so the t or b is never needed on those systems.

The format string in the fopen function specifies the numeric format of
the data stored in the file. This string is needed only when transferring files
between computers with incompatible numeric data formats, so it is rarely used.
A few of the possible numeric formats are shown in Table 8.6; see the MATLAB
Language Reference Manual for a complete list of possible numeric formats.

There are also two forms of this function that provide information rather than
open files. The function

fids = fopen('all')

returns a row vector containing a list of all file id’s for currently open files (except
for stdout and stderr). The number of elements in this vector is equal to the
number of open files. The function

[filename, permission, format] = fopen(fid)
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Table 8.6 fopen Format Strings

File Permission

Meaning

'native' or 'n'
'ieee-le' or '1"

'ieee-be' or 'b'

Numeric format for the machine MATLAB is executing on (default)
IEEE floating point with little-endian byte ordering
IEEE floating point with big-endian byte ordering

'ieee-le.164"' or 'a’ IEEE floating point with little-endian byte ordering and 64-bit long data type

'ieee-le.b64' or 's' IEEE floating point with big-endian byte ordering and 64-bit long data type

returns the file name, permission string, and numeric format for an open file
specified by file id.

Some examples of correct fopen functions are shown below.
Case |: Opening a Binary File for Input

The function that follows opens a file named example.dat for binary input only.
fid = fopen('example.dat',K6 'r')

The permission string is 'r ', indicating that the file is to be opened for reading
only. The string could have been 'rb', but this is not required, because binary
access is the default case.

Case 2: Opening a File for Text Output
The functions that follow open a file named outdat for text output only.

fid = fopen('outdat', 'wt')
or

fid = fopen('outdat', 'at"')
The 'wt ' permissions string specifies that the file is a new text file; if it already
exists, then the old file will be deleted and a new empty file will be opened for
writing. This is the proper form of the fopen function for an output file if we
want replace preexisting data.

The 'at' permissions string specifies that we want to append to an existing
text file. If it already exists, then it will be opened and new data will be appended

to the currently existing information. This is the proper form of the fopen func-
tion for an output file if we don’t want to replace preexisting data.

Case 3: Opening a Binary File for Read/Write Access

The function that follows opens a file named junk for binary input and output.
fid = fopen('junk', 'r+'")

The function that follows also opens the file for binary input and output.

fid = fopen('junk', 'w+')
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The difference between the first and the second statements is that the first statement
requires the file to exist before it is opened, whereas the second statement will
delete any preexisting file.

Always be careful to specify the proper permissions in fopen statements, depend-
ing on whether you are reading from or writing to a file. This practice will help
prevent errors such as accidentally overwriting data files that you want to keep.

It is important to check for errors after you attempt to open a file. If the £1d
is —1, then the file failed to open. You should report this problem to the user, and
allow him or her to either select another file or else quit the program.

*

Always check the status after a file open operation to make sure that it is successful.
If the file open fails, tell the user and provide a way to recover from the problem.

8.4.2 The fclose Function

The fclose function closes a file. Its form is

status = fclose(fid)
status = fclose('all')

where £i1d is a file id and status is the result of the operation. If the operation
is successful, status will be 0; if it is unsuccessful, status will be —1.

The form status = fclose('all') closes all open files except for
stdout (fid = 1) and stderr (f£id = 2). It returns a status of 0 if all files
close successfully, and —1 otherwise.

8.5 Binary I/O Functions

The binary I/0 functions, fwrite and fread, are described in the following
subsections.

8.5.1 The fwrite Function

The fwrite function writes binary data in a user-specified format to a file. Its
form is

count = fwrite(fid,array,precision)
count = fwrite(fid, array,precision, skip)
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where £1d is the file id of a file opened with the fopen function, array is the
array of values to write out, and count is the number of values written to the file.

MATLAB writes out data in column order, which means that the entire first col-
umn is written out, followed by the entire second column, and so on. For example, if

1 2
array = | 3 4 |, the data will be written out in the order 1, 3, 5, 2, 4, 6.
56

The optional precision string specifies the format in which the data will
be output. MATLAB supports both platform-independent precision strings,
which are the same for all computers that MATLAB runs on, and platform-
dependent precision strings, which vary among different types of computers. You
should use only the platform-independent strings, and those are the only forms
presented in this book.

For convenience, MATLAB accepts some C and Fortran data type equiva-
lents for the MATLAB precision strings. If you are a C or Fortran programmer,
you may find it more convenient to use the names of the data types in the lan-
guage that you are most familiar with.

The possible platform-independent precisions are presented in Table 8.7. All
of these precisions work in units of bytes, except for 'bitN' or 'ubitN',
which work in units of bits.

Table 8.7 Selected MATLAB Precision Strings

MATLAB

Precision C/Fortran

String Equivalent Meaning

'char' 'char*1"' 8-bit characters
'schar' 'signed char' 8-bit signed character
'"uchar' 'unsigned char' 8-bit unsigned character
'int8’ 'integer*1" 8-bit integer

'intl6" "integer*2" 16-bit integer

'int32" 'integer*4' 32-bit integer

'int64’ 'integer*8' 64-bit integer

'uint8'’ "integer*1' 8-bit unsigned integer
'uintlé6’ "integer*2" 16-bit unsigned integer
'uint32" "integer*4' 32-bit unsigned integer
'uint64’ 'integer*8' 64-bit unsigned integer
'float32" 'real*4’ 32-bit floating point
'float64’ 'real*8" 64-bit floating point
'bitN' N-bit signed integer, 1 <N < 64

"ubitN’ N-bit unsigned integer, 1 <N < 64
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The optional argument skip specifies the number of bytes to skip in the out-
put file before each write. This option is useful for placing values at certain points
in fixed-length records. Note that if precision is a bit format like 'bitN' or

"ubitN', skip is specified in bits instead of bytes.

8.5.2 The fread Function

The fread function reads binary data in a user-specified format from a file and
returns the data in a (possibly different) user-specified format. Its form is

[array,count] = fread(fid, size, precision)
[array,count] = fread(fid, size,precision, skip)

where £id is the file id of a file opened with the fopen function, size is the
number of values to read, array is the array to contain the data, and count is
the number of values read from the file.

The optional argument size specifies the amount of data to be read from the
file. There are three versions of this argument:

® n—Read exactly n values. After this statement, array will be a column
vector containing n values read from the file.

B Tnf—Read until the end of the file. After this statement, array will be
a column vector containing all of the data until the end of the file.

® [n m]—Read exactly n X m values and format the data as an n X m
array.

If fread reaches the end of the file and the input stream does not contain
enough bits to write out a complete array element of the specified precision,
fread pads the last byte or element with zero bits until the full value is obtained.
If an error occurs, reading is done up to the last full value.

The precision argument specifies both the format of the data on the disk
and the format of the data array to be returned to the calling program. The general
form of the precision string is

'disk_precision => array precision'

where disk_precision and array precision are both one of the
precision strings found in Table 8.6. The array_precision value can be
defaulted. If it is missing, then the data is returned in a double array. There is
also a shortcut form of this expression if the disk precision and the array preci-
sion are the same: ' *disk_precision'.

A few examples of precision strings are shown as follows:

'single’ Read data in single precision format from disk and
return it in a double array.

'single=>single" Read data in single precision format from disk and
return it in a single array.
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'*gingle' Read data in single precision format from disk and
return it in a single array (a shorthand version of the
previous string).

"double=>real*4’ Read data in double precision format from disk and
return it in a single array.

Example 8.1—Writing and Reading Binary Data

The example script file that follows creates an array containing 10,000 random val-
ues, opens a user-specified file for writing only, writes the array to disk in 64-bit
floating-point format, and closes the file. It then opens the file for reading and reads
the data back into a 100 X 100 array. It illustrates the use of binary I/O operations.

Script file: binary_io.m

Purpose:
To illustrate the use of binary i/o functions.

Record of revisions:
Date Programmer Description of change

03/21/07 S. J. Chapman Original code

Define variables:

O 00 0° AP O° P A0 O° AP A° O° AP O° O° P O° P o°

count -- Number of values read / written
fid -- File id

filename -- File name

in_array -- Input array

msg -- Open error message

out_array -- Output array

status -- Operation status

o

Prompt for file name
filename = input('Enter file name: ','s');

% Generate the data array
out_array = randn(1,10000);

% Open the output file for writing.
[fid,msg] = fopen(filename, 'w');

% Was the open successful?
if fid > 0

% Write the output data.
count = fwrite(fid,out_array, 'float64');
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o

% Tell user
disp([int2str (count) ' values written...']);

% Close the file
status = fclose(£fid);

else
% Output file open failed. Display message.
disp (msqg) ;

nd

[0}

% Now try to recover the data. Open the
% file for reading.
[fid,msg] = fopen(filename, 'r');

% Was the open successful?
if fid > 0

% Write the output data.
[in_array, count] = fread(fid, [100 100], 'floaté64');

% Tell user
disp([int2str(count) ' values read...']l);

% Close the file
status = fclose(£fid);

else

Q

% Input file open failed. Display message.
disp (msg) ;

end
When this program is executed, the result are

» binary io

Enter file name: testfile
10000 values written...
10000 values read...

An 80,000-byte file named test file was created in the current directory. This
file is 80,000 bytes long because it contains 10,000 64-bit values and each value

occupies 8 bytes.
p y -

This quiz provides a quick check to see if you have understood the
concepts introduced in Sections 8.1 through 8.5. If you have trouble with
the quiz, reread the section, ask your instructor, or discuss the material
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with a fellow student. The answers to this quiz are found in the back of
the book.

1. Why is the textread function especially useful for reading data cre-
ated by programs written in other languages?

2. What are the advantages and disadvantages of saving data in a
MAT-file?

3. What MATLAB functions are used to open and close files? What is
the difference between opening a binary file and opening a text file?

4. Write the MATLAB statement to open a preexisting file named
myinput.dat for appending new text data.

5. Write the MATLAB statements required to open an unformatted
input file for reading only. Check to see if the file exists, and gener-
ate an appropriate error message if it doesn’t.

For questions 6 and 7, determine whether the MATLAB statements are
correct or not. If they are in error, specify what is wrong with them.

6. fid = fopen('filel', 'rt');
array = fread(fid, Inf)
fclose(fid) ;

7. fid = fopen('filel', 'w');
x = 1:10;
count = fwrite(fid,x);
fclose(fid);
fid = fopen('filel','r');

array = fread(fid, [2 Inf])
fclose(fid) ;

8.6 Formatted I/0O Functions

8.6.1

The formatted I/O functions are described in the following subsections.

The fprintf Function

The fprintf function writes formatted data in a user-specified format to a file.
Its form is

count = fprintf (fid, format,vall,val2,...)
fprint (format,vall,val2,...)

where £id is the file id of a file to which the data will be written and format
is the format string controlling the appearance of the data. If £id is missing, the
data is written to the standard output device (the Command Window). This is the
form of fprintf that we have been using since Chapter 2.
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The Components of a Format Specifier

$-12.5e

/TN

Marker Modifier Field Width Precision Format Descriptor
(Required) (Optional) (Optional) {Optional) (Required)

The structure of a typical format specifier.

The format string specifies the alignment, significant digits, field width, and
other aspects of output format. It can contain ordinary alphanumeric characters along
with special sequences of characters that specify the exact format in which the output
data will be displayed. The structure of a typical format is shown in Figure 8.1.
A single % character always marks the beginning of a format—if an ordinary % sign
is to be printed out, then it must appear in the format string as $%. After the % char-
acter, the format can have a flag, a field width and precision specifier, and a conver-
sion specifier. The % character and the conversion specifier are always required in
any format, whereas the field and field width and precision specifier are optional.

The possible conversion specifiers are listed in Table 8.8, and the possible
flags are listed in Table 8.9. If a field width and precision are specified in a
format, then the number before the decimal point is the field width, which is the
number of characters used to display the number. The number after the decimal

Table 8.8 Format Conversion Specifiers for fprintf

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in 3.1416e+00)
SE Exponential notation (using an uppercase E as in 3.1416E+00)
£ Fixed-point notation

%9 The more compact of $e or $£. Insignificant zeros do not print.
%G Same as %g, but using an uppercase E

%0 Octal notation (unsigned)

%s String of characters

Fu Decimal notation (unsigned)

¥x Hexadecimal notation (using lowercase letters a—f)

%X Hexadecimal notation (using uppercase letters A-F)
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Table 8.9 Format Flags

Flag Description

Minus Left-justifies the converted argument in its field (example: $-5.2d).

sign (—) If this flag is not present, the argument is right justified.

+ Always print a + or - sign (example: $+5.2d).

0 Pad argument with leading zeros instead of blanks (example:
%05.24d).

Table 8.10 Escape Characters in Format Strings

Escape Sequences Description

\n New line.

\t Horizontal tab.

\b Backspace.

\r Carriage return.

\f Form feed.

A\ Print an ordinary backslash (\) symbol.
\'""or "' Print an apostrophe or single quote.

o
oo

Print an ordinary percent (%) symbol.

point is the precision, which is the minimum number of significant digits to
display after the decimal point.

In addition to ordinary characters and formats, certain special escape characters
can be used in a format string. These special characters are listed in Table 8.10.

8.6.2 Understanding Format Conversion Specifiers

Because the best way to understand the wide variety of format conversion speci-
fiers is by example, we will now present several examples along with their results.

Case |: Displaying Decimal Data

Decimal (integer) data is displayed with the $d format conversion specifier. The
d may be preceded by a flag and a field-width and precision specifier, if desired.
If used, the precision specifier will set a minimum number of digits to display. If
there are not enough digits, leading zeros will be added to the number.

If a nondecimal number is displayed with the %$d conversion specifier, the
specifier will be ignored, and the number will be displayed in exponential format.
For example,

fprintf ('$6d\n',123.4)
produces the result 1.234000e+002.
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Function

Comment

fprintf ('%d\n',123)

fprintf ('%$6d\n',123)

fprintf ('%$6.4d\n"',123)

fprintf('%$-6.4d\n"',123)

fprintf ('%+6.4d\n"',123)

Display the number using as many
characters as required. For the number
123, three characters are required.

Display the number in a 6-character-
wide field. By default the number is
right justified in the field.

Display the number in a 6-character-
wide field using a minimum of 4
characters. By default the number is
right justified in the field.

Display the number in a 6-character-
wide field using a minimum of 4
characters. The number is left justified
in the field.

Display the number in a 6-character-
wide field using a minimum of 4
characters plus a sign character. By
default the number is right justified in
the field.

Case 2:

Displaying Floating-Point Data

Floating-point data can be displayed with the $e, %£, or $g format conversion
specifiers. They may be preceded by a flag and a field width and precision spec-
ifier, if desired. If the specified field width is too small to display the number, it
is ignored. Otherwise, the specified field width is used.

Function

Result

Comment

fprintf ('%$f\n',123.4

fprintf ('%8.2f\n"',123.4)

fprintf ('%$4.2f\n',123.4)

123.400000

Display the number using as
many characters as required. The
default case for $£ is to display
6 digits after the decimal place.

Display the number in an
8-character wide field, with two
places after the decimal point.
The number is right justified in
the field.

Display the number in a
6-character-wide field. The width
specification was ignored
because it was too small to
display the number.
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fprintf('%10.2e\n"',123.4) ---—-|----]| Display the number in

1.23e+002 exponential format in a
10-character-wide field using
2 decimal places. By default
the number is right justified
in the field.

fprintf ('%10.2E\n',123.4) ----|---—-| The same but with a capital & for

1.23E+002 the exponent.

Case 3: Displaying Character Data

Character data may be displayed with the $c or %s format conversion specifiers.
They may be preceded by field width specifier, if desired. If the specified field
with is too small to display the number, it is ignored. Otherwise, the specified
field width is used.

Function Result Comment
fprintf('%c\n', 's") e BT Display a single character.
s
fprintf ('%s\n', 'string') ———— -] Display the character string.
string
fprintf('%$8s\n', 'string') ———= -] Display the character string in an
string 8-character-wide field. By default the
string is right justified in the field.
fprintf ('%-8s\n', 'string') el BT Display the character string in an
string 8-character-wide field. The string is

left justified in the field.

8.6.3 How Format Strings Are Used

The fprintf function contains a format string followed by zero or more values
to print out. When the fprintf function is executed, the list of output values
associated with the fprintf function is processed together with the format
string. The function begins at the left end of the variable list and the left end of
the format string, and scans from left to right, associating the first value in the
output list with the first format descriptor in the format string, and so forth.
The variables in the output list must be of the same type and in the same order as
the format descriptors in the format, or unexpected results may be produced. For
example, if we attempt to display a floating-point number such as 123.4 with a $c
or %d descriptor, the descriptor is ignored totally and the number is printed in
exponential notation.
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Make sure that there is a one-to-one correspondence between the types of the data
in an fprintf function and the types of the format conversion specifiers in the
associated format string, or your program will produce unexpected results.

As the program moves from left to right through the variable list of an
fprintf function, it also scans from left to right through the associated format
string. Format strings are scanned according to the following rules:

1. Format strings are scanned in ovder from left to right. The first format
conversion specifier in the format string is associated with the first value
in the output list of the fprintf function, and so forth. The type of each
format conversion specifier must match the type of the data being output.
In the example shown below, specifier %d is associated with variable a,
% £ with variable b, and %s with variable c. Note that the specifier types
match the data types.

a =10; b = pi; ¢ = 'Hello';
fprintf ('Output: %d %f %$s\n',a,b,c);

2. Ifthe scan reaches the end of the format string before the fprintf func-
tion runs out of values, the program starts over at the beginning of the
format string. For example, the statements

a = [10 20 30 40];
fprintf ('Output = %4d %4d\n',a);

will produce the output

Output 10 20
Output 30 40

When the function reaches the end of the format string after printing
a (2), it starts over at the beginning of the string to printa (3) anda (4).

3. If the fprintf function runs out of variables before the end of the
format string, the use of the format string stops at the first format conver-
sion specifier without a corresponding variable, or at the end of the format
string, whichever comes first. For example, the statements

a = 10; b = 15; ¢ = 20;
fprintf ('Output = %$4d\nOutput = %4.1f\n',a,b,c);

will produce the output

Output = 10
Output = 15.0
Output = 20
Output = »
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The use of the format string stops at $4 . 1 £, which is the first unmatched
format conversion specifier. On the other hand, the statements

voltage = 20;
fprintf ('Voltage = %6.2f kV.\n',voltage) ;

will produce the output
Voltage = 20.00 kV.

since there are no unmatched format conversion specifiers, and the use of
the format stops at the end of the format string.

8.6.4 The sprintf Function

The sprintf function is exactly like fprint £, except that it writes formatted
data to a character string instead of a file. Its form is

string = sprint(format,vall,val2,...)

where format is the format string controlling the appearance of the data.
This function is very useful for creating formatted data that can be displayed
within a program.

Example 8.2—Generating a Table of Information

0° 00 ° O° 0P o° J° o° P o

° o 0° P o° o°

o°

o

A good way to illustrate the use of fprintf functions is to generate and print
out a table of data. The example script file that follows generates the square roots,
squares, and cubes of all integers between 1 and 10 and presents the data in a table
with appropriate headings.

Script file: table.m

Purpose:

To

create a table of square roots, squares, and

cubes.

Record of revisions:
Date Programmer Description of change

03/

22/07 S. J. Chapman Original code

Define variables:

cube —-— Cubes

ii -- Index variable
square -- Squares
square_roots -- Square roots
out -- Output array

Print

the title of the table.

fprintf (' Table of Square Roots, Squares, and Cubes\n\n');
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% Print column headings
fprintf (' Number Square Root Square Cube\n"') ;
fprintf( ' ====== —————=—=—=—=== —===== ::::\n' ) ;

% Generate the required data
ii = 1:10;

square_root = sqgrt(ii);
square = ii."2;

cube = 11."73;

(o)

% Create the output array
out = [ii' square_root' square' cube'];

% Print the data
for ii = 1:10

fprintf (' %2d $11.4f %6d %8d\n',out (ii, :));
end

X

When this program is executed, the result is

» table
Table of Square Roots, Squares, and Cubes

Number Square Root Square Cube
1 1.0000 1 1
2 1.4142 4 8
3 1.7321 9 27
4 2.0000 16 64
5 2.2361 25 125
6 2.4495 36 216
7 2.6458 49 343
8 2.8284 64 512
9 3.0000 81 729

10 3.1623 100 1000

8.6.5 The fscanf Function

The fscanf function reads formatted data in a user-specified format from a file.
Its form is

array = fscanf (fid, format)
l[array, count] = fscanf (fid, format, size)

where £id is the file id of a file from which the data will be read, format is the for-
mat string controlling how the data is read, and array is the array that receives the
data. The output argument count returns the number of values read from the file.
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The optional argument size specifies the amount of data to be read from
the file. There are three versions of this argument:

® n—Read exactly n values. After this statement, array will be a column
vector containing n values read from the file.

® Tnf—Read until the end of the file. After this statement, array will be
a column vector containing all of the data until the end of the file.

® [n m]—Read exactly n X m values and format the data as an n X m
array.

The format string specifies the format of the data to be read. It can contain
ordinary characters along with format conversion specifiers. The £scanf func-
tion compares the data in the file with the format conversion specifiers in the for-
mat string. As long as the two match, £scanf converts the value and stores it in
the output array. This process continues until the end of the file or until the
amount of data in size has been read, whichever comes first.

If the data in the file does not match the format conversion specifiers, the
operation of £scanf stops immediately.

The format conversion specifiers for fscanf are basically the same as those
for fprintf. The most common specifiers are shown in Table 8.11.

To illustrate the use of fscanf, we will attempt to read a file called x . dat
containing the following values on two lines:

10.00 20.00
30.00 40.00

1. If the file is read with the statement

[z, count] = fscanf(fid, '$f');
10
20 .
variable z will be the column vector 30 and count will be 4.
40

Table 8.11 Format Conversion Specifiers for £scanf

Specifier Description

%c Read a single character. This specifier reads any character includ-
ing blanks, new lines, etc.

$Nc Read N characters.

%d Read a decimal number (ignores blanks).

oe
0]
o
h
oe
Q

Read a floating-point number (ignores blanks).

oo
o

Read a signed integer (ignores blanks).

o
0

Read a string of characters. The string is terminated by blanks or
other special characters such as new lines.
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. If the file is read with the statement

[z, count] = fscanf (fid, '$f',[2 21);

10 30
variable z will be the array {

20 40} and count will be 4.

. Next, let’s try to read this file as decimal values. If the file is read with the

statement
[z, count] = fscanf(fid, '%d', Inf);

variable z will be the single value 10 and count will be 1. This happens
because the decimal point in the 10.00 does not match the format
conversion specifier, and fscanf stops at the first mismatch.

. If the file is read with the statement

[z, count] = fscanf (fid, '%d.%d', [1 Inf]);

variable z will be the row vector [10 0 20 0 30 0 40 0]
and count will be 8. This happens because the decimal point is now
matched in the format conversion specifier and the numbers on either side
of the decimal point are interpreted as separate integers.

. Now let’s try to read the file as individual characters. If the file is read

with the statement
[z, count] = fscanf(fid, '%c');

variable z will be a row vector containing every character in the file,
including all spaces and newline characters! Variable count will be
equal to the number of characters in the file.

. Finally, let’s try to read the file as a character string. If the file is read with

the statement
[z, count] = fscanf(fid, '%s');

variable z will be a row vector containing the 20 characters
10.0020.0030.0040.00, and count will be 4. This happens
because the string specifier ignores white space, and the function found
four separate strings in the file.

8.6.6 The £getl Function

The fget1 function reads the next line excluding the end-of-line characters from
a file as a character string. It form is

line = fgetl (fid)

where £id is the file id of a file from which the data will be read, and 1ine
is the character array that receives the data. If fget1 encounters the end of a file,
the value of 1ine is set to —1.
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8.6.7 The fgets Function

The fgets function reads the next line including the end-of-line characters from
a file as a character string. Its form is

line = fgets(fid)

where £id is the file id of a file from which the data will be read and 1ine
is the character array that receives the data. If fgets encounters the end of a file,
the value of 1ine is set to —1.

8.7 Comparing Formatted and Binary 1/O Functions

Formatted 1/O operations produce formatted files. A formatted file contains rec-
ognizable characters, numbers, and so forth. stored as ASCII text. These files are
easy to distinguish, because we can see the characters and numbers in the file
when we display them on the screen or print them on a printer. However, to use
data in a formatted file, a MATLAB program must translate the characters in the
file into the internal data format used by the computer. Format conversion speci-
fiers provide the instructions for this translation.

Formatted files have the advantages that we can readily see what sort of data
they contain and it is easy to exchange data between different types of programs
using them. However, they also have disadvantages. A program must do a good deal
of work to convert a number between the computer’s internal representation and the
characters contained in the file. All of this work is just wasted effort if we are going
to be reading the data back into another MATLAB program. Also, the internal
representation of a number usually requires much less space than the corresponding
representation of the number found in a formatted file. For example, the internal
representation of a 64-bit floating-point value requires 8 bytes of space. The charac-
ter representation of the same value would be *d.ddddddddddddddE=*ee, which
requires 21 bytes of space (one byte per character). Thus, storing data in character
format is inefficient and wasteful of disk space.

Unformatted files (or binary files) overcome these disadvantages by
copying the information from the computer’s memory directly to the disk file
with no conversions at all. Since no conversions occur, no computer time is
wasted formatting the data. In MATLAB, binary I/O operations are much faster
than formatted I/O operations because there is no conversion. Furthermore,
the data occupies a much smaller amount of disk space. On the other hand,
unformatted data cannot be examined and interpreted directly by humans. In
addition, it usually cannot be moved between different types of computers,
because different types of computers have different internal ways to represent
integers and floating-point values.

Formatted and unformatted files are compared in Table 8.12. In general,
formatted files are best for data that people must examine or for data that may have
to be moved between different programs on different computers. Unformatted files
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Table 8.12 Comparison of Formatted and Unformatted Files

Formatted Files Unformatted Files

Can display data on output devices. Cannot display data on output devices.
Can easily transport data between Cannot easily transport data between
different computers. computers with different internal

data representations.

Require a relatively large Require relatively little disk space.
amount of disk space.

Slow—require a lot of Fast—require little computer time.
computer time.

Truncation or rounding errors No truncation or rounding errors.
possible in formatting.

are best for storing information that will not need to be examined by human beings
and that will be created and used on the same type of computer. Under those
circumstances, unformatted files are faster and occupy less disk space.

I

Use formatted files to create data that must be readable by humans, or that must
be transferable between programs on computers of different types. Use unfor-
matted files to efficiently store large quantities of data that do not have to be
directly examined and that will remain on only one type of computer. In addi-
tion, use unformatted files when I/O speed is critical.

v

Example 8.3—Comparing Formatted and Binary 1/O

O 00 00 d° O° o° 0P o

The program that follows compares the time required to read and write a 10,000-
element array using both formatted and binary I/O operations. Note that each
operation is repeated 10 times and the average time is reported.

Script file: compare.m

Purpose:
To compare binary and formatted I/0 operations.
This program generates an array of 10,000 random
values and writes it to disk both as a binary and
as a formatted file.
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Programmer

Record of revisions

)
o

Description of change

Date

o0 oo

Original code

J. Chapman

S.

03/22/07
Define variables

o0 o0 o°

-- Number of values read / written

count
fid

oo

File id

oo

Input array
-- Open error message

-- Output array

Y

in_arra
msg

oo

Y

status

out_arra
time

oo

-- Operation status

oo

-- Elapsed time in seconds

oe
oe

oe
oe

oe
o°

oe
oe

oe
oe

o°
oe

oe
oe

o
oe

oe
oe

oe
o°

oe
oe

o
o

oe
oe

o
o

o
oe
o°

o
o

Generate the data array.

)
o

oe
o°

oe
o°

oe
oe

oe
o°

oe
o°

o°
oe

oe
o°

oe
o°

oe
oe

o
oe

o
oe

o
oe

oe
oe

oe
o
o
o
oe
o
o
oe
oe

7

%6.3f\n"', time)

.
’

.
’

ion.

array, 'float64')

7

d,out_.

1

7

the binary output operat
fopen('unformatted.dat', 'w')

randn(1,10000)

fwrite(£f
fclose(£fid);

:10

time

Reset timer

C

1

('Write time for unformatted file

time the formatted output operation.

%
Open the binary output file for writing.
toc / 10

[£id,msg]
Write the data

Close the file

count
status

°
)
°
)
o

First,
Loop for 10 times
o

for ii
ime

fprintf
Next,

i
% Get the average time

out_arra

%
%
%
end
t
%
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% Reset timer
ic;

o

(o

% Loop for 10 times
for ii = 1:10

% Open the formatted output file for writing.
[

fid,msg] = fopen('formatted.dat',6 'wt');

% Write the data

count = fprintf(£fid, '%23.15e\n',out_array):;

% Close the file
status = fclose(£fid);

end
% Get the average time

time = toc / 10;

fprintf ('Write time for formatted file

oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe

Time the binary input operation.

o0 o0 o°

o° '

oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe

% Reset timer
ic;

o

% Loop for 10 times
for ii = 1:10

% Open the binary file for reading.
[

oe
oe
oe

oe
oe
oe

oe
oe
oe
oe
oe

oe
oe
oe
oe
oe

fid,msg] = fopen('unformatted.dat','r');

% Read the data
[

in array, count] = fread(fid,Inf, 'floaté64');

% Close the file
status = fclose(£id);

end

% Get the average time
time = toc / 10;
fprintf ('Read time for unformatted file

%6.3f\n"

’

%6.3f\n"', time) ;

time) ;
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% Reset timer
tic;

% Loop for 10 times

o

for ii = 1:10

% Open the formatted file for reading.
[£id,msg] = fopen('formatted.dat',6 'rt'):;

% Read the data
[in_array, count] = fscanf(fid, '%f',Inf);

% Close the file
status = fclose(£fid);

end

% Get the average time
time = toc / 10;
fprintf ('Read time for formatted file = %$6.3f\n', time);

When this program is executed in MATLAB 7.4 on a 1.8 GHz Intel Core 2 Duo
computer running Windows XP Professional, the results are

» compare
Write time for unformatted file = 0.002

Write time for formatted file = 0.033
Read time for unformatted file = 0.001
Read time for formatted file = 0.023

The files written to disk are

C:\book\matlab\chap8>dir *.dat
Volume in drive C is SYSTEM
Volume Serial Number is 0866-1ACH

Directory of C:\book\matlab\chap8
23/03/2007 04:24p <DIR>

23/03/2007 04:24p <DIR> ..
23/03/2007 05:26p 250,000 formatted.dat

23/03/2007 05:26p 80,000 unformatted.dat
4 File(s) 330,000 bytes

2 Dir(s) 30,364,545,024 bytes free
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Note that the write time for the formatted file was more than 15 times slower than
the write time for the unformatted file, and the read time for the formatted file
was more than 20 times slower than the read time for the unformatted file.
Furthermore, the formatted file was 3 times larger than the unformatted file.

It is clear from these results that unless you really need formatted data, binary

I/O operations are the preferred way to save data in MATLAB. <

This quiz provides a quick check to see if you have understood the
concepts introduced in Sections 8.6 and 8.7. If you have trouble with the
quiz, reread the section, ask your instructor, or discuss the material with
a fellow student. The answers to this quiz are found in the back of
the book.

1. What is the difference between unformatted (binary) and formatted
I/0O operations?

2. When should formatted I/O be used? When should unformatted I/0O

be used?
3. Write the MATLAB statements required to create a table contains the
sine and cosine of x for x =0, 0.147, . . ., 7. Be sure to include a title

and label on the table.

For questions 4 and 5, determine whether the MATLAB statements are
correct or not. If they are in error, specify what is wrong with them.
4. a = 2*pi;
b = 6;
c = 'hello';
fprintf (fid, '$s %d %g\n',a,b,c);
5. datal = 1:20;
data2 = 1:20;
fid = fopen('xxx', 'w+');
fwrite(fid, datal) ;
fprintf (fid, '$g\n',data2);
|

8.8 File Positioning and Status Functions

As was stated previously, MATLAB files are sequential—they are read in
order from the first record in the file to the last record in the file. However, we
sometimes need to read a piece of data more than once, or to process a whole
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file more than once during a program. How can we skip around within a
sequential file?

The MATLAB function exist can determine whether or not a file exists
before it is opened. There are two functions to tell us where we are within a file
once it is opened: feof and ftell. In addition, there are two functions to help
us move around within the file: frewind and fseek.

Finally, MATLAB includes a function ferror that provides a detailed
description of cause of I/O errors when they occur. We will now explore these
five functions, looking at ferror first, since it can be used with all of the
other functions.

8.8.1 The exist Function

The MATLAB function exist checks for the existence of a variable in a work-
space, a built-in function, or a file in the MATLAB search path. The forms of the
ferror function are

ident = exist('item');
ident = exist('item', 'kind');

If "item" exists, this function returns a value based on its type. The possible
results are shown in Table 8.13.

The second form of the exist function restricts the search for an item to a
specified kind. The legal types are 'var', 'file', 'builtin’',and 'dir"'.

The exist function is very important, because we can use it to check for
the existence of a file before it is overwritten by fopen. The permissions 'w'
and 'w+' delete the contents of an existing file when they open it. Before a
programmer allows fopen to delete an existing file, he or she should check with
the user to confirm that the file really should be deleted.

Table 8.13 Values Returned by the exist Function

Value Meaning

Item not found.

Item is a variable in the current workspace.
Item is an M-file or a file of unknown type.
Item is a MEX file.

Item is a MDL file.

Item is a built-in function.

Item is a P file.

Item is a directory.

0 N AN R WD = O

Item is a Java class.
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>

Example 8.4—Opening an Output File

The program that follows gets an output file name from the user and checks to
see whether it exists. If it exists, the program checks to see whether the user wants
to delete the existing file or to append the new data to it. If the file does not exist,
then the program simply opens the output file.

Script file: output.m

Purpose:
To demonstrate opening an output file properly.
This program checks for the existence of an output
file. If it exists, the program checks to see if
the old file should be deleted, or if the new data
should be appended to the old file.

O° 00 0P O o° P O o° o°

Record of revisions:
Date Programmer Description of change

24/07 S. J. Chapman Original code

~ 1l

03

o° 0° 00 0P o

Define variables:

%

% fid -- File id

% out_filename -- Output file name
% yn -- Yes/No response

O

> Get the output file name.
out_filename = input('Enter output filename: ','s');

% Check to see if the file exists.
if exist(out_filename, 'file’')

% The file exists
disp('Output file already exists.');
yn = input ('Keep existing file? (y/n) ','s');

if yn == 'n’'

fid = fopen(out_filename, 'wt');
else

fid = fopen(out_filename, 'at');

end

else
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% File doesn't exist
fid = fopen(out_filename, 'wt');

end

% Output data

fprintf (£id, '$s\n',date) ;
% Close file
fclose(fid) ;

When this program is executed, the results are

» output
Enter output filename: xxx (Nonexistent file)
» type xxx

23-Mar-2007

» output

Enter output filename: xxx

Output file already exists.

Keep existing file? (y/n) y (Keep current file)
» type xxx

23-Mar-2007
23-Mar-2007 (Note new data added)

» output

Enter output filename: xxx

Output file already exists.

Keep existing file? (y/n) n (Replace current file)
» type xxx

23-Mar-2007

The program appears to be functioning correctly in all three cases.

A

I

Do not overwrite an output file without confirming that the user would like to
delete the preexisting information.
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8.8.2 The ferror Function

The MATLAB I/O system has several internal variables, including a special error
indicator that is associated with each open file. This error indicator is updated by
every I/O operation. The ferror function gets the error indicator and translates
it into an easy to understand character message. The forms of the ferror func-

tion are
message = ferror (fid)
message = ferror(fid, 'clear’')
[message, errnum] = ferror (fid)

This function returns the most recent error message (and optionally error num-
ber) associated with the file attached to £id. It may be called at any time after
any I/O operation to obtain a more detailed description of what went wrong. If
this function is called after a successful operation, the message will be ' . . ' and
the error number will be 0.

The 'clear' argument clears the error indicator for a particular file id.

8.8.3 The feof Function

The feof function tests to see whether the current file position is at the end of
the file. The form of the feof function is

eofstat = feof (fid)
This function returns a logical true (1) if the current file position is at the end of

the file, and a logical false (0) otherwise.

8.8.4 The ftell Function

The ftell function returns the current location of the file position indicator for
the file specified by £id. The position is a nonnegative integer specified in bytes
from the beginning of the file. A returned value of —1 for position indicates that
the query was unsuccessful. If this happens, use ferror to determine why the
request failed. The form of the ftell function is

position = ftell(fid)

8.8.5 The frewind Function

The frewind function allows a programmer to reset a file’s position indicator
to the beginning of the file. The form of the frewind function is

frewind (f£id)

This function does not return status information.
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8.8.6 The £seek Function

The £seek function allows a programmer to set a file’s position indicator to an
arbitrary location within a file. The form of the £seek function is

status = fseek(fid,offset,origin)

This function repositions the file position indicator in the file with the given £id
to the byte with the specified of fset relative to origin. The offset is
measured in bytes, with a positive number indicating motion towards the end of
the file and a negative number indicating motion towards the head of the file. The
origin is a string that can have one of three possible values:

® 'bof '—This is the beginning of the file.
® 'cof'—This is the current position within the file.
® 'eof'—This is the end of the file.

The returned status is zero if the operation is successful and —1 if the
operation fails. If the returned status is —1, use ferror to determine why the
request failed.

As an example of using fseek and ferror together, consider the follow-
ing statements:

[fid,msg] = fopen('x','r');
status = fseek(fid,-10, 'bof"');

if status ~= 0
msg = ferror(fid);
disp (msg) ;

end

These commands open a file and attempt to set the file pointer 10 bytes before
the beginning of the file. Since this is impossible, fseek returns a status of —1,
and ferror gets an appropriate error message. When these statements are exe-
cuted, the result is an informative error message:

Offset is bad - before beginning-of-file.

>

Example 8.5—Fitting a Line to a Set of Noisy Measurements

In Example 4.6, we learned how to perform a fit of a noisy set of measurements
(x, ) to a line of the form

y=mx+b (8-1)

The standard method for finding the regression coefficients m and b is the method
of least squares. This method is named “least squares” because it produces the line
y = mx + b for which the sum of the squares of the differences between the
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observed y values and the predicted y values is as small as possible. The slope of
the least squares line is given by

B (zxy) - (Zx)y

m = 8-2)
S0~ (o (
and the intercept of the least squares line is given by
b=y —mx (8-3)

where

2x is the sum of the x values

2x? is the sum of the squares of the x values

Exy is the sum of the products of the corresponding x and y values
x is the mean (average) of the x values

y is the mean (average) of the y values

Write a program that will calculate the least-squares slope m and y-axis inter-
cept b for a given set of noisy measured data points (x, y) that are to be found in
an input data file.

SOLUTION

1. State the problem.
Calculate the slope m and intercept b of a least-squares line that best fits
an input data set consisting of an arbitrary number of (x, y) pairs. The
input (x, y) data resides in a user-specified input file.

2. Define the inputs and outputs.
The inputs required by this program are pairs of points (x, y), where x and
y are real quantities. Each pair of points will be located on a separate line
in the input disk file. The number of points in the disk file is not known
in advance.
The outputs from this program are the slope and intercept of the least-
squares fitted line, plus the number of points going into the fit.

3. Describe the algorithm.
This program can be broken down into four major steps:

Get the name of the input file and open it
Accumulate the input statistics

Calculate the slope and intercept

Write out the slope and intercept

The first major step of the program is to get the name of the input file and
to open the file. To do this, we will have to prompt the user to enter the
name of the input file. After the file has been opened, we must check to
see that the open was successful. Next, we must read the file and keep
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track of the number of values entered, plus the sums Ex, Ey, Exz, and
Exy. The pseudocode for these steps is

Initialize n, sum_x, sum_xX2, sum_y, and sum_xy to O
Prompt user for input file name
Open file 'filename'
Check for error on open
if no error
Read x, y from file 'filename'
while not at end-of-file
n<-n+ 1
sum_x <- sum X + X
sum_y <- sum.y + Yy
sum_x2 <- sum_x2 + X"2
sum_xy <- sum_Xy + X*y
Read x, vy from file 'filename’
end
(further processing)
end

Next, we must calculate the slope and intercept of the least-squares line.
The pseudocode for this step is just the MATLAB versions of Equations
8-2 and 8-3.

x_bar <- sum_x / n

v_bar <- sum_y / n

slope <- (sum_xy - sum_XxX*y bar) / (sum_x2 - sum_x*x_bar)
v_int <- vy _bar - slope * x_bar

Finally, we must write out the results.
Write out slope 'slope' and intercept 'y_int'.

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is

Script file: lsgfit.m

Purpose:
To perform a least-squares fit of an input data set
to a straight line, and print out the resulting slope
and intercept values. The input data for this fit
comes from a user-specified input data file.

Record of revisions:
Date Programmer Description of change

03/24/07 S. J. Chapman Original code
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%

% Define variables:

% count -- number of values read

% filename -- Input file name

% fid -- File id

% msg -- Open error message

% n -- Number of input data pairs (x,vy)
% slope -- Slope of the line

% sum_x -- Sum of all input X values

% sum_x2 -- Sum of all input X values squared
% sum_xy -- Sum of all input X*Y values

% sum_y -- Sum of all input Y values

% x -- An input X value

% x_bar -- Average X value

% v -- An input Y value

% v_bar -- Average Y value

% v_int -- Y-axis intercept of the line

% Initialize sums
n=20; sum_x = 0; sum_ vy = 0; sum _x2 = 0; sum_xy = 0;

% Prompt user and get the name of the input file.
disp('This program performs a least-squares fit of an');
disp('input data set to a straight line. Enter the name');
disp('of the file containing the input (x,y) pairs: ' );
filename = input(' ','s"');

% Open the input file
[£id,msg] = fopen(filename, 'rt');

% Check to see if the open failed.
if fid < 0

% There was an error--tell user.
disp (msg) ;

else

File opened successfully. Read the (x,y) pairs from

loop starts.

% the input file. Get first (x,y) pair before the
[in,count] = fscanf (fid, '%g %g',2);

while ~feof (fid)

x = in(1);

y = in(2);

n =n + 1; %

sum_xX = Sum_X + X; % Calculate
sum_y = sum.y + Y; % statistics



% Get next (
[in,count] =

end

% Close the fil
fclose(£fid);

Q

% Now calculate

X_bar = sum_x /
v_bar = sum_y /
slope = (sum_xy

y_int = y_bar -

% Tell user.
fprintf ('Regres

fprintf (' Slope

fprintf (' Inter

fprintf (' No of
end

>»>
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sum_XxX2 = sum_x2 + X."2;

sum_Xy = sum_Xy + X * y;

o° o

x,y) pair
fscanf (fid, '%£', [1 21);

e

the slope and intercept.

n;

n;

- sum_x*y bar) / (sum_x2 - sum_x*x_bar) ;
slope * x_bar;

sion coefficients for the least-squares line:\n');

(m) = %12.3f\n"',slope);
cept (b) = %12.3f\n',y_int);
points = %12d\n',n);

5. Test the program.
To test this program, we will try a simple data set. For example, if every
point in the input data set actually falls along a line, then the resulting
slope and intercept should be exactly the slope and intercept of that line.
Thus the data set

1.1 1.1
2.2 2.2
3.3 3.3
4.4 4.4
5.5 5.5
6.6 6.6
7.7 7.7

should produce a slope of 1.0 and an intercept of 0.0. If we place these
values in a file called input1, and run the program, the results are

lsgfit

This program performs a least-squares fit of an

i
o
i
R

nput data set to a straight line. Enter the name
f the file containing the input (x,y) pairs:
nputl
egression coefficients for the least-squares line:
Slope (m) = 1.000
Intercept (b) = 0.000

No of points = 7
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Now let’s add some noise to the measurements. The data set becomes

1.1 1.01
2.2 2.30
3.3 3.05
4.4 4.28
5.5 5.75
6.6 6.48
7.7 7.84

If these values are placed in a file called input?2, and the program is run
on that file, the results are

» lsqgfit

This program performs a least-squares fit of an
input data set to a straight line. Enter the name
of the file containing the input (x,y) pairs:

input2

Regression coefficients for the least-sqguares line:
Slope (m) = 1.024
Intercept (b) = -0.120
No of points = 7

If we calculate the answer by hand, it is easy to show that the program gives
the correct answers for our two test data sets. The noisy input data set and the
resulting least-squares fitted line are shown in Figure 8.2.

_lolx]

FIeEdt\!lewlnsertTools\Mﬂw

DEEd&| kl@.@.{"}‘@IHE'IEIEIIIEI
Least Squares Fit

Figure 8.2 A noisy input data set and the resulting least-squares fitted line.
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8.9 The textscan Function

The textscan function reads ASCII files that are formatted into columns of
data, where each column can be of a different type, and stores the contents into the
columns of a cell array. This function is very useful for importing tables of data
printed out by other applications. It is new as of MATLAB 7.0. It is basically
similar to textread, except that it is faster and more flexible.

The form of the textscan function is

a = textscan(fid, 'format')

a = textscan(fid, 'format', N)

a = textscan(fid, 'format', param, value, ...)

a = textscan(fid, 'format', N, param, value, ...)

where £id is the file id of a file that has already been opened with fopen, for-
mat is a string containing a description of the type of data in each column, and n
is the number of times to use the format specifier. (If n is —1 or is missing, the
function reads to the end of the file.) The format string contains the same types of
format descriptors as function fprintf. Note that there is only one output
argument, with all of the values returned in a cell array. The cell array will contain
a number of elements equal to the number of format descriptors to read.

For example, suppose that file test_inputl.dat contains the following

data:
James Jones O+ 3.51 22 Yes
Sally Smith A+ 3.28 23 No
Hans Carter B- 2.84 19 Yes
Sam Spade A+ 3.12 21 Yes

This data could be read into a cell array with the following function:

fid = fopen('test_inputl.dat',K6 'rt');
a = textscan(fid, '%s %s %s %f %d %s'
fclose(fid) ;

—1);

When this command is executed, the results are

» £fid = fopen('test_inputl.dat',6 'rt');

» a = textscan(fid, '%s %s %s %f %d %s',-1)

a =
{4x1 cell} {4x1 cell} {4x1 cell} [4x1 double]
[4x1 int32] {4x1 cell}

»> a{l}

ans =
'James'’
'Sally!'
'Hans'

'Sam'
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» a{2}
ans =

'Jones'
'Smith'
'Carter’
'Spade'’

» a{3}
ans =

O
VA
‘g
VA

» a{4}
ans =

3.5100
3.2800
2.8400
3.1200

» fclose(£fid);

This function can also skip selected columns by adding an asterisk to the cor-
responding format descriptor (e.g., % *s). For example, the following statements
read only the first name, last name, and gpa from the file:

fid = fopen('test_inputl.dat', 'rt');
a = textscan(fid, '%s %s %*s %f %*d %*s',-1);
fclose(£fid) ;

Function textscan is similar to function textread, but it is more flexi-
ble and faster. The advantages of textscan include the following:

1.

The textscan function offers better performance than textread,
making it a better choice when reading large files.

. With textscan, you can start reading at any point in the file. When the

file is opened with fopen, you can move to any position in the file with
fseek and begin the textscan at that point. The textread function
requires that you start reading from the beginning of the file.

. Subsequent textscan operations start reading the file at a point where

the last text scan left off. The textread function always begins at the
start of the file, regardless of any prior textread operations.

. Function textscan returns a single cell array regardless of how many

fields you read. With textscan, you don’t need to match the number of
output arguments with the number of fields being read, as you would with
textread.

. Function textscan offers more choices in how the data being read is

converted.
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Function textscan has a number of additional options that increase its flex-
ibility. Consult the MATLAB on-line documentation for details of these options.

Use function textscan in preference to textread to import ASCII data in
column format from programs written in other languages or exported from
applications such as spreadsheets.

8.10 Function uiimport

Function uiimport is a GUI-based way to import data from a file or from the
clipboard. This command takes the forms

uiimport
structure = uiimport;

In the first case, the imported data is inserted directly into the current MATLAB
workspace. In the second case, the data is converted into a structure and saved in
variable structure.

When the command uiimport is typed, the Import Wizard is displayed
in a window (see Figure 8.3 for the PC version of this window). The user can
then select the file that he or she would like to import from and the specific data
within that file. Many different formats are supported; a partial list is given in
Table 8.13. In addition, data can be imported from almost any application by
saving the data on the clipboard. This flexibility can be very useful when you
are trying to get data into MATLAB for analysis.

8.11 Summary

In Chapter 8, we have presented an introduction to file /O operations. Many
MATLAB I/O functions are quite similar to C functions, but there are differences
in some details.

The textread and textscan functions can be used to import ASCII data
in column format from programs written in other languages or exported from
applications such as spreadsheets. Of these two functions, textscan is pre-
ferred because it is more flexible and faster than textread.

The load and save commands using MAT-files are very efficient; are
transportable across MATLAB implementations; and preserve full precision, data
types, and global status for all variables. MAT-files should be used as the first-
choice method of I/O, unless data must be shared with other applications or must
be readable by humans.
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There are two types of I/O statements in MATLAB: binary and formatted.
Binary I/O statements store or read data in unformatted files, and formatted I/O
statements store or read data in formatted files.

MATLAB files are opened with the fopen function and closed with the
fclose function. Binary reads and writes are performed with the fread and
fwrite functions, while formatted reads and writes are performed with the
fscanf and fprintf functions. Functions fgets and fgetl simply trans-
fer a line of text from a formatted file into a character string.

The exist function can be used to determine whether a file exists before it is
opened. This is useful to ensure that existing data is not accidentally overwritten.

It is possible to move around within a disk file using the frewind and fseek
functions. The frewind function moves the current file position to the beginning
of the file, while the fseek function move the current file position to a point a

Table 8.13 Selected File Formats Supported by uiimport

File Extents Meaning

*.gif Image files
*.Jpg

*.jpeg

*.ico

*.png

*.pcx

*.tif

*. tiff

* . omp

*.cur Cursor format
* . hdf Hierarchical Data Format file
*.au Sound files
*.snd

* . wav

*.avi Movie file
*.csv Spreadsheet files
*.xls

* . wkl

*txt Text files
*.dat

*.dlm

*.tab
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specified number of bytes ahead or behind a reference point. The reference point
may be the current file position, the beginning of the file, or the end of the file.

8.11.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB 1/O
functions.

1.

Unless you must exchange data with non-MATLAB programs, always use
the 1oad and save commands to save data sets in MAT-file format. This
format is efficient and transportable across MATLAB implementations,
and it preserves all details of all MATLAB data types.

. Always be careful to specify the proper permissions in fopen statements,

depending on whether you are reading from or writing to a file. This prac-
tice will help prevent errors such as accidentally overwriting data files
that you want to keep.

. Always check the status after a file-open operation to make sure that it is

successful. If the file open fails, tell the user and provide a way to recov-
er from the problem.

Use formatted files to create data that must be readable by humans or that
must be transferable between programs on computers of different types.
Use unformatted files to efficiently store large quantities of data that do
not have to be directly examined and that will remain on only one type of
computer. Also, use unformatted files when I/O speed is critical.

. Do not overwrite an output file without confirming that the user would

like to delete the preexisting information.

. Use function textscan in preference to textread to import ASCII

data in column format from programs written in other languages or
exported from applications such as spreadsheets.

8.11.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

exist Check for the existence of a file.

fclose Close file.

feof Test for end-of-file.

ferror Inquire file I/O error status.

fgetl Read a line from file, and discard newline character.
fgets Read a line from file, and keep newline character.
fopen Open file.

fprintf Write formatted data to file.



fread
frewind
fscanft
fseek
ftell
fwrite
sprintf

textread

textscan

uiimport
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Read binary data from file.

Rewind file.

Read formatted data from file.

Set file position.

Check file position.

Write binary data to a file.

Write formatted data to a character string.

Read data of various types organized in column format from an
ASCII file and store the data in each column in separate variables.

Read data of various types organized in column format from an
ASCII file, and store the data in a cell array.

Starts a GUI tool for importing data.

8.12 Exercises

8.1 What is the difference between binary and formatted 1/0? Which
MATLAB functions perform each type of 1/0?

8.2 Table of Logarithms Write a MATLAB program to generate a table of
the base-10 logarithms between 1 and 10 in steps of 0.1. The table should
start in a new page, and it should include a title describing the table and
row and column headings. This table should be organized as shown here:

X.0 X.1 X.3 X.4 X.5 X.6 X.7 X.8 X.9
1.0 0.000 0.041 0.079 0.114
2.0 0.301 0.322 0.342 0.362
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

8.3 Write a MATLAB program that reads in a time in seconds since the start
of the day (this value will be somewhere between 0. and 86400.), and
prints a character string containing time in the form HH: MM : SS using the
24-hour clock convention. Use the proper format converter to ensure that
leading zeros are preserved in the MM and SS fields. Also, be sure to check
the input number of seconds for validity, and write an appropriate error
message if an invalid number is entered.
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8.4

8.5

8.6

8.7

8.8

8.9

8.10

Gravitational Acceleration The acceleration due to the Earth’s gravity at
any height /4 above the surface of the Earth is given by the equation

M
£ (R + h)?

where G is the gravitational constant (6.672 x 10~'" N m?/kg?), M is
the mass of the earth (5.98 x 10%* kg), R is the mean radius of the Earth
(6371 km), and / is the height above the Earth’s surface. If M is measured
in kg and R and % in meters, then the resulting acceleration will be in units
of meters per second squared. Write a program to calculate the acceleration
due to the Earth’s gravity in 500 km increments at heights from 0 km to
40,000 km above the surface of the Earth. Print out the results in a table of
height versus acceleration with appropriate labels, including the units
of the output values. Plot the data as well.

The program in Example 8.5 illustrated the use of formatted I/O com-
mands to read (x, y) pairs of data from disk. However, this could also be
done with the 1oad —ascii function. Rewrite this program to use Load
instead of the formatted I/O functions. Test your rewritten program to con-
firm that it gives the same answers as Example 8.5.

Rewrite the program in Example 8.5 to use the textread function
instead of the formatted I/O functions.

Rewrite the program in Example 8.5 to use the textscan function
instead of the formatted I/O functions. How difficult was it to use
textscan, compared to using textread, load —ascii, or the for-
matted I/O functions?

Write a program that reads an arbitrary number of real values from a user-
specified input data file, rounds the values to the nearest integer, and
writes the integers out to a user-specified output file. Make sure that the
input file exists, and if not, tell the user and ask for another input file. If
the output file exists, ask the user whether or not to delete it. If not, prompt
for a different output file name.

Table of Sines and Cosines Write a program to generate a table contain-
ing the sine and cosine of 6 for 6 between 0° and 90°, in 1° increments.
The program should properly label each of the column in the table.

File int . dat (available at this book’s Web site) contains 25 integer val-
ues in 'int8' format. Write a program that reads these values into a
single array using function fread.

Interest Calculations Suppose that you have a sum of money P in an
interest-bearing account at a local bank (P stands for present value). If the
bank pays you interest on the money at a rate of i percent per year and
compounds the interest monthly, the amount of money that you will have
in the bank after » months is given by the equation

F=PO+ ’) (8-5)
1200

(8-4)
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i
where F is the future value of the account and I is the monthly percent-

age interest rate (the extra factor of 100 in the denominator converts the
interest rate from percentages to fractional amounts). Write a MATLAB
program that will read an initial amount of money P and an annual inter-
est rate i, and will calculate and write out a table showing the future value
of the account every month for the next five years. The table should be
written to an output file called 'interest'. Be sure to properly label
the columns of your table.

Write a program to read a set of integers from an input data file, and locate
the largest and smallest values within the data file. Print out the largest
and smallest values, together with the lines on which they were found.
Assume that you do not know the number of values in the file before the
file is read.

Create a 400 x 400 element double array x, and fill it with random data
using function rand. Save this array to a MAT file x1 .dat, and then
save it again to a second MAT file x2 . dat using the —compress option.
How do the sizes of the two files compare?

Means In Exercise 4.27, we wrote a MATLAB program that calculated the
arithmetic mean (average), rms average, geometric mean, and harmonic
mean for a set of numbers. Modify that program to read an arbitrary number
of values from an input data file, and calculate the means of those numbers.
To test the program, place the following values into an input data file and run
the program on that file: 1.0, 2.0, 5.0, 4.0, 3.0, 2.1, 4.7, 3.0.

Converting Radians to Degrees/Minutes/Seconds Angles are often
measured in degrees (°), minutes ('), and seconds ("), with 360 degrees in
a circle, 60 minutes in a degree, and 60 seconds in a minute. Write a pro-
gram that reads angles in radians from an input disk file and converts them
into degrees, minutes, and seconds. Test your program by placing the fol-
lowing four angles expressed in radians into an input file and reading that
file into the program: 0.0, 1.0, 3.141593, 6.0.

Create a data set in some other program on your computer, such as Microsoft
Word, Microsoft Excel, a text editor, and so forth. Copy the data set to the
clipboard using the Windows or Unix copy function, and then use function
uiimport to load the data set into MATLAB.
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Handle Graphics

Handle graphics is the name of a set of low-level graphics functions that
control the characteristics of graphics objects generated by MATLAB.These func-
tions are normally hidden inside M-files, but they are very important to the pro-
grammer, since they allow him or her to have fine control of the appearance of
the plots and graphs that they generate. For example, it is possible to use handle
graphics to turn on a grid on the x-axis only, or to choose a line color such as
orange, which is not supported by the standard LineSpec option of the plot
command. In addition, handle graphics enable a programmer to create graphical
user interfaces (GUIs) for programs, as we will see in Chapter 10.

This chapter introduces the structure of the MATLAB graphics system and
explains how to control the properties of graphical objects to create a desired display.

9.1 The MATLAB Graphics System

The MATLAB graphics system is based on a hierarchical system of core graphics
objects, each of which is known by a unique number called a handle. Each
graphics object has special data known as properties associated with it, and mod-
ifying those properties will modify the behavior of the object. For example, a
line is one type of graphics object. The properties associated with a line object
include: x-data, y-data, color, line style, line width, marker type, and so forth.
Modifying any of these properties will change the way the line is displayed in a
Figure Window.

Every component of a MATLAB graph is a graphical object. For example, each
line, axes, and text string is a separate object with its own unique identifying num-
ber (handle) and characteristics. All graphical objects are arranged in a hierarchy

421
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Figure 9.1

The hierarchy of handle graphics objects.

with parent objects and child objects, as shown in Figure 9.1. When a child object
is created, it inherits many of its properties from its parent.

The highest-level graphics object in MATLAB is the root, which can be
thought of as the entire computer screen. The handle of the root object is always 0.
It is created automatically when MATLAB starts up, and it is always present until the
program is shut down. The properties associated with the root object are the defaults
that apply to all MATLAB windows.

Under the root there can be one or more Figure Windows, or just £igures.
Each figure is a separate window on the computer screen that can display graph-
ical data, and each figure has its own properties. The properties associated with
a figure include color, color map, paper size, paper orientation, and pointer type,
among others.

Each figure can contain seven types of objects: uimenus, uicon-
textmenus, uicontrols, uitoolbars, uipanels, uibuttongroups, and
axes. Ulmenus, uicontextmenus, uicontrols, uitoolbars, uipanels,
and uibuttongroups are special graphics objects used to create graphical
user interfaces—-they are described in Chapter 10. Axes are regions within a
figure where data is actually plotted. There can be more than one set of axes in a
single figure.
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Each set of axes can contain as many 1ines, text strings, patches, etc. as
necessary to create the plot of interest.

9.2 Object Handles

Each graphics object has a unique name called a handle. The handle is a unique
integer or real number that is used by MATLAB to identify the object. A handle
is automatically returned by any function that creates a graphics object. For exam-
ple, the function call

» hndl = figure;

creates a new figure and returns the handle of that figure in variable hndl. The
handle of the root object is always 0, and the handle of each figure is normally a
small positive integer, such as 1, 2, 3, . . . . The handles of all other graphics objects
are arbitrary floating-point numbers.

There are MATLAB functions available to get the handles of figures, axes, and
other objects. For example, the function gcf returns the handle of the currently
selected figure, gca returns the handle of the currently selected axes within the
currently selected figure, and gco returns the handle of the currently selected
object. These functions are discussed in more detail further on in this chapter.

By convention, handles are usually stored in variables that begin with the
letter h. This practice helps us to recognize handles in MATLAB programs.

9.3 Examining and Changing Object Properties

Object properties are special values associated with an object that control some
aspect of how that object behaves. Each property has a property name and an
associated value. The property names are strings that are typically displayed in
mixed case with the first letter of each word capitalized, but MATLAB recognizes
a property name regardless of the case in which it is written.

9.3.1 Changing Object Properties at Creation Time

When an object is created, all of its properties are automatically initialized to
default values. These default values can be overridden at creation time by
including ' PropertyName', value pairs in the object creation function'.

"Examples of object creation functions include figure, which creates a new figure; axes, which
creates a new set of axes within a figure; and 1ine, which creates a line within a set of axes. High-
level functions such as plot are also object creation functions.
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For example, we saw in Chapter 2 that the width of a line could be modified in the
plot command as follows:

plot(x,y, 'Linewidth',2) ;

This function overrides the default Linewidth property with the value 2 at the
time the line object is created.

9.3.2 Changing Object Properties after Creation Time

The properties of any object can be examined at any time using the get function,
and modified using the set function. The most common forms of the get func-
tion are

value = get (handle, 'PropertyName') ;
value = get (handle) ;

where value is the value contained in the specified property of the object whose
handle is supplied. If only the handle is included in the function call, then the func-
tion returns a structure array in which the field names are all of the properties of the
object and the field values are the property values.

The most common form of the set function is

set (handle, 'PropertyNamel', valuel,...);

where there can be any number of ' PropertyName', value pairs in a single
function.

For example, suppose that we plotted the function y(x) = x? from 0 to 2 with
the following statements:

x = 0:0.1:2;
Yy = X."2;
hndl = plot(x,Vy);

The resulting plot is shown in Figure 9.2a. The handle of the plotted line is stored
in hnd1, and we can use it to examine or modify the properties of the line. The func-
tion get (hndl) will return all of the properties of this line in a structure, with each
property name being an element of the structure.

» result = get (hndl)
result =
Color: [0 0O 1]
EraseMode: 'normal'

LineStyle: '-'
LineWidth: 0.5000
Marker: 'none'

MarkerSize: 6
MarkerEdgeColor: 'auto'
MarkerFaceColor: 'none'

XData: [1x21 double]
YData: [1x21 double]
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ZData: [1x0 double]
BeingDeleted: 'off'
ButtonDownFcn: []
Children: [0x1 double]
Clipping: 'on'
CreateFcn: []
DeleteFcn: []
BusyAction: 'queue'
HandleVisibility: 'on'
HitTest: 'on'
Interruptible: 'on'
Selected: 'off'
SelectionHighlight: 'on'
Tag: ''
Type: 'line'
UIContextMenu: []
UserData: []
Visible: 'on'
Parent: 303.0004
DisplayName: ''
XDataMode: 'manual'
XDataSource: ''
YDataSource: ''
ZDataSource: ''

Note that the current line width is 0.5 pixels and the current line style is a solid
line. We can change the line width and the line style with the commands

» set (hndl, 'LineWidth', 4, 'LineStyle', '--")

The plot after this command is issued is shown in Figure 9.25.

The get and set functions are especially useful for programmers, because
they can be directly inserted into MATLAB programs to modify a figure based on a
user’s input. As is shown in Chapter 10, these functions are used extensively in GUI
programming.

For the end user, however, it is often easier to change the properties of a
MATLAB object interactively. The Property Editor is a GUI-based tool
designed for this purpose. The Property Editor is started by first selecting the
Edit Button ([K) on the figure toolbar, and then clicking on the object that
you want to modify with the mouse. Alternatively, the property editor can be
started from the command line.

propedit (HandleList) ;
propedit;

For example, the following statements will create a plot containing the line
y = x*over the range 0 to 2, and will open the Property Editor to allow the user
to interactively change the properties of the line.
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(b)

Figure 9.2 (a) Plot of the function y = x” using the default linewidth. (5) Plot of the function after
modifying the LineWidth and LineStyle properties.
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Figure 9.3 The Property Editor when editing a line object. Changes in style are immediately
displayed on the figure as the object is edited.

figure(2);
x = 0:0.1:2;
v = X."2;

hndl = plot(x,vy);
propedit (hndl) ;

The Property Editor invoked by these statements is shown in Figure 9.3. The
Property Editor contains a series of panes that vary depending on the type of
object being modified.

>—

Example 9.1—Using Low-Level Graphics Commands
The function sinc(x) is defined by the equation

sin x
sinc x = X
1 x=0

x#*0
-1
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Plot this function from x = —3x to x = 37x. Use handle graphics functions to
customize the plot as follows:

1. Make the figure background pink.
2. Use y-axis grid lines only (no x-axis grid lines).
3. Plot the function as a 2-point-wide solid orange line.

SoLuTION To create this graph, we need to plot the function sinc x from
x = —3rx tox = 37 using the plot function. The plot function will return a han-
dle for the line that we can save and use later.

After plotting the line, we need to modify the color of the figure object, the grid
status of the axes object, and the color and width of the /ine object. These modifica-
tions require us to have access to the handles of the figure, axes, and 1ine
objects. The handle of the £igure object is returned by the gcf function, the han-
dle of the axes object is returned by the gca function, and the handle of the 1ine
object is returned by the plot function that created it.

The low-level graphics properties that need to be modified can be found by
referring to the on-line MATLAB Help Browser documentation, under the topic
“Handle Graphics.” They are the 'Color' property of the current figure, the
'YGrid' property of the current axes, and the 'LineWidth' and 'Color
properties of the line.

1. State the problem.
Plot the function sinc x from x = —37 to x = 37 using a figure with a
pink background, y-axis grid lines only, and a 2-point-wide solid
orange line.

2. Define the inputs and outputs.
There are no inputs to this program, and the only output is the speci-
fied figure.

3. Describe the algorithm.
This program can be broken down into three major steps:

Calculate sinc(x)
Plot sinc(x)
Modify the required graphics object properties

The first major step is to calculate sinc x from x = —37x to x = 3. This
can be done with vectorized statements, but the vectorized statements will
produce a NaN at x = 0, since the division of 0/0 is undefined. We must
replace the NaN with a 1.0 before plotting the function. The detailed
pseudocode for this step is

o

Calculate sinc(x)
= -3*pi:pi/10:3*pi
= sin(x) ./ x

KX

o

Find the zero value and fix it up. The zero is
located in the middle of the x array.

o
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index = fix(length(y)/2) + 1
v(index) = 1

Next, we must plot the function, saving the handle of the resulting line for
further modifications. The detailed pseudocode for this step is

hndl = plot(x,v);

Now we must use handle graphics commands to modify the figure back-
ground, y-axis grid, and line width and color. Remember that the figure
handle can be recovered with the function gcf, and the axis handle can be
recovered with the function gca. The color pink can be created with the
RGB vector [1 0.8 0.8], and the color orange can be created with
the RGB vector [1 0.5 0]. The detailed pseudocode for this step is

set (gcf, 'Color',[1 0.8 0.8])
set (gca, 'YGrid', 'on'")
set (hndl, 'Color',[1 0.5 0], 'Linewidth',2)

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is shown here.

Script file: plotsinc.m

Purpose:
This program illustrates the use of handle graphics
commands by creating a plot of sinc(x) from -3*pi to
3*pi, and modifying the characteristics of the figure,
axes, and line using the "set" function.

Record of revisions:
Date Programmer Description of change

04/02/07 S. J. Chapman Original code

Define variables:

hndl -- Handle of line
X -- Independent variable
v -- sinc(x)

Calculate sinc(x)
= -3*pi:pi/10:3*pi;
= sin(x) ./ x;

Find the zero value and fix it up. The zero is
located in the middle of the x array.

index = fix(length(y)/2) + 1;
v (index) = 1;
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Figure 9.4 Plot of sinc x versus x. A colour plot of this appears in the insert.

% Plot the function.
hndl = plot(x,v);

oe

Now modify the figure to create a pink background,
modify the axis to turn on y-axis grid lines, and
% modify the line to be a 2-point wide orange line.
set (gcf, 'Color',[1 0.8 0.8]);

set (gca, 'YGrid', 'on') ;

set (hndl, 'Color',[1 0.5 0], 'Linewidth',2);

oe

5. Test the program.
Testing this program is very simple—we just execute it and examine the
resulting plot. The plot created is shown in Figure 9.4, and it does have

the characteristics that we wanted. <

9.4 Using set to List Possible Property Values

The set function can be used to provide lists of possible property values. If a set
function call contains a property name but not a corresponding value, set returns a
list of all of the legal choices for that property. For example, the command
set (hndl, 'LineStyle') will return a list of all legal line styles with the
default choice in brackets:
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» set (hndl, 'LineStyle')
ans =

'none'’

This function shows that the legal line styles are '-', '--', ':', '=."', and
'none', with the first choice as the default.

If the property does not have a fixed set of values, MATLAB returns an empty
cell array:

» set (hndl, 'Linewidth')
ans =

{3

The function set (hndl) will return all of the possible choices for all of the
properties of an object.

» xxx = set(hndl)
XXX =
Color: {}
EraseMode: {4x1 cell}
LineStyle: {5x1 cell}
LinewWidth: {}
Marker: {14x1l cell}
MarkerSize: {}
MarkerEdgeColor: {2x1 cell}
MarkerFaceColor: {2x1 cell}

XData: {}
YData: {}
ZData: {}

ButtonDownFcn: {}
Children: {}
Clipping: {2x1 cell}

CreateFcn: {}

DeleteFcn: {}
BusyAction: {2x1 cell}
HandleVisibility: {3x1 cell}
HitTest: {2x1 cell}

Interruptible: {2x1 cell}
Selected: {2x1 cell}

SelectionHighlight: {2x1 cell}
Tag: {}

UIContextMenu: {}

UserData: {}
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Visible: {2x1 cell}
Parent: {}
DisplayName: {}

XDataMode: {2x1 cell}
XDataSource: {}
YDataSource: {}
ZDataSource: {}

Any of the items in this list can be expanded to show the available list of options.

» xXxX.EraseMode
ans =
'normal'’
'background'
'xor'
'none'’

9.5 User-Defined Data

In addition to the standard properties defined for a GUI object, a programmer can
define special properties to hold program-specific data. These extra properties are
a convenient way to store any kind of data that the programmer might wish to
associate with the GUI object. Any amount of any type of data can be stored and
used for any purpose.

User-defined data is stored in a manner similar to standard properties. Each
data item has a name and a value. Data values are stored in an object with the
setappdata function and retrieved from the object using the getappdata
function.

The general form of setappdata is

setappdata (hndl, 'DataName', DataValue) ;

where hnd1 is the handle of the object to store the data into, ' DataName ' is the
name given to the data, and DataValue is the value assigned to that name. Note
that the data value can be either numeric or a character string.

For example, suppose that we wanted to define two special data values, one
containing the number of errors that have occurred on a particular figure and the
other containing a string describing the last error detected. Such data values could
be given the names ' ErrorCount ' and 'LastError'. If we assume that hl
is the handle of the figure, then the command to create these data items and ini-
tialize them would be

setappdata (hl, 'ErrorCount',0) ;
setappdata (hl, 'LastError', 'No error');
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Application data can be retrieved at any time using the function getappdata.
The two forms of getappdata are

value = getappdata (hndl, 'DataName') ;
struct = getappdata (hndl) ;

where hndl is the handle of the object containing the data and ' DataName' is
the name of the data to be retrieved. If a ' DataName ' is specified, then the value
associated with that data name will be returned. If it is not specified, then all user-
defined data associated with that object will be returned in a structure. The names
of the data items will be structure element names in the returned structure.

For the example given previously, getappdata will produce the following
results:

» value = getappdata(hl, 'ErrorCount')

value =
0
» struct = getappdata(hl)
struct =
ErrorCount: 0
LastError: 'No error'

The functions associated with user-defined data are summarized in Table 9.1.

Functions for Manipulating User-Defined Data

Description

setappdata (hndl, 'DataName',Data Value) Stores DataValue in an item named

'DataName ' within the object specified
by the handle hnd1l.

getappdata (hndl, 'DataName') Retrieves user-defined data from the
getappdata (hndl) object specified by the handle hndl.

The first form retrieves the value
associated with ' DataName ' only, and
the second form retrieves all
user-defined data.

isappdata (hndl, 'DataName') A logical function that returns a 1 if

'DataName ' is defined within the
object specified by the handle hnd1l,
and 0 otherwise.

rmappdata (hndl, 'DataName') Removes the user-defined data item named

'DataName ' from the object specified
by the handle hndl.
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9.6 Finding Objects

Each new graphics object that is created has its own handle, and that handle is
returned by the creating function. If you intend to modify the properties of an
object that you create, then it is a good idea to save the handle for later use with
get and set.

If you intend to modify the properties of an object that you create, save the han-
dle of that object for later use with get and set.

However, sometimes we might not have access to the handle. Suppose that
we lost a handle for some reason. How can we examine and modify the graphics
objects?

MATLAB provides four special functions to help find the handles of objects.

gcf—Returns the handle of the current figure.

gca—Returns the handle of the current axes in the current figure.
gco—Returns the handle of the current object.

findobj—Finds a graphics object with a specified property value.

The function gcf returns the handle of the current figure. If no figure exists,
gc £ will create one and return its handle. The function gca returns the handle of the
current axes within the current figure. If no figure exists or if the current figure exists
but contains no axes, gca will create a set of axes and return its handle. The func-
tion gco has the form

h_obj = gco;
h_obj = gco(h_fig);

where h_obj is the handle of the object and h_fig is the handle of a figure.
The first form of this function returns the handle of the current object in the current
figure, and the second form of the function returns the handle of the current object
in a specified figure.

The current object is defined as the last object clicked on with the mouse.
This object can be any graphics object except the root. There will not be a current
object in a figure until a mouse click has occurred within that figure. Before the first
mouse click, function gco will return an empty array [ ]. Unlike gcf and gca, gco
does not create an object if it does not exist.

Once the handle of an object is known, we can determine the type of the
object by examining its ' Type' property. The ' Type' property will be a char-
acter string, such as 'figure', 'line', 'text', and so forth.

h_obj = gco;
type = get(h_obj, 'Type"')
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The easiest way to find an arbitrary MATLAB object is with the findobj
function. The basic form of this function is

hndls = findobj ('PropertyNamel',valuel, ...)

This command starts at the root object, and searches the entire tree for all objects
that have the specified values for the specified properties. Note that multiple
property/value pairs may be specified, and £indobj returns only the handles of
objects that match al/ of them.

For example, suppose that we have created Figures 1 and 3. Then the function
findobj ('Type"', 'figure') will return the results

» h_fig = findobj('Type', 'figure')
h_fig

= ow o

This form of the findobj function is very useful, but it can be slow, since it
must search through the entire object tree to locate any matches. If you must use an
object multiple times, make only one call to findobj and save the handle for reuse.

Restricting the number of objects that must be searched can increase the execu-
tion speed of this function. This can be done with the following form of the function:

hndls = findobj (Srchhndls, 'PropertyNamel', valuel, ...)

Here, only the handles listed in array Srchhndls and their children will be
searched to find the object. For example, suppose that you wanted to find all of the
dashed lines in Figure 1. The command to do this would be

hndls = findobj (1, 'Type', 'line', 'LineStyle','--"');

If possible, restrict the scope of your searches with £ indobj to make them faster.

9.7 Selecting Objects with the Mouse

Function gco returns the handle of the current object, which is the last object
clicked on by the mouse. Each object has a selection region associated with it,
and any mouse click within that selection region is assumed to be a click on that
object. This is very important for thin objects such as lines or points—the selec-
tion region allows the user to be slightly sloppy in mouse position and still select
the line. The width and shape of the selection region varies for different types of
objects. For instance, the selection region for a line is 5 pixels on either side of
the line, whereas the selection region for a surface, patch, or text object is the
smallest rectangle that can contain the object.
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>

The selection region for an axes object is the area of the axes plus the area of
the titles and labels. However, lines or other objects inside the axes have a higher pri-
ority, so to select the axes you must click on a point within the axes that is not near
lines or text. Clicking on a figure outside of the axes region will select the figure itself.

What happens if a user clicks on a point that has two or more objects, such as
the intersection of two lines? The answer depends on the stacking order of the
objects. The stacking order is the order in which MATLAB selects objects. This
order is specified by the order of the handles listed in the ' Children' property of
a figure. If a click is in the selection region of two or more objects, the one with the
highest position in the 'Children' list will be selected.

MATLAB includes a function called waitforbuttonpress that is some-
times used when selecting graphics objects. The form of this function is

k = waitforbuttonpress

When this function is executed, it halts the program until either a key is pressed
or a mouse button is clicked. The function returns 0 if it detects a mouse button
click or 1 if it detects a key press.

The function can be used to pause a program until a mouse click occurs.
After the mouse click occurs, the program can recover the handle of the selected
object using the gco function.

Example 9.2—Selecting Graphics Objects

0 0° 00 ° O° 0° A O° A° A O° O° A O° ° O° o° o°

o°

The program that follows explores the properties of graphics objects and inci-
dentally shows how to select objects using waitforbuttonpress and gco.
The program allows objects to be selected repeatedly until a key press occurs.

Script file: select_object.m
Purpose:
This program illustrates the use of waitforbuttonpress

and gco to select graphics objects. It creates a plot

of

sin(x) and cos(x), and then allows a user to select

any object and examine its properties. The program
terminates when a key press occurs.

Reco

04

Defi
de
hil
h2

rd of revisions:

Date Programmer Description of change
/02/07 S. J. Chapman Original code

ne variables:

tails -- Object details
-- handle of sine line
-- handle of cosine line

handle -- handle of current object
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% k -- Result of waitforbuttonpress
% type -- Object type

% X -- Independent variable

% vl -- sin(x)

% V2 -- cos (x)

% yn -- Yes/No

o

Calculate sin(x) and cos(x)

X = -3*pi:pi/10:3*pi;
vl = sin(x);
v2 = cos(x);

% Plot the functions.
hl = plot(x,vyl);
set (hl, 'LineWidth"', 2) ;

hold on;
h2 = plot(x,y2);
set (h2, 'Linewidth',2, 'LineStyle',':','Color','r"');

title('\bfPlot of sin \itx \rm\bf and cos \itx');
xlabel ("\bf\itx");

vlabel ('\bfsin \itx \rm\bf and cos \itx');
legend('sine', 'cosine');

hold off;

% Now set up a loop and wait for a mouse click.
k = waitforbuttonpress;

while k == 0

% Get the handle of the object
handle = gco;

% Get the type of this object.
type = get (handle, 'Type') ;

% Display object type

disp (['Object type = ' type '.'l);

% Do we display the details?

| 437

yn = input('Do you want to display details? (y/n) ','s');

if yn == 'y
details = get (handle);
disp(details) ;

end

% Check for another mouse click
k = waitforbuttonpress;
end
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Figure 9.5 Plot of sin x and cos x.

When this program is executed, it produces the plot shown in Figure 9.5.
Experiment by clicking on various objects on the plot and observing the resulting

characteristics.
-«

9.8 Position and Units

Many MATLAB objects have a 'position' property, which specifies the size
and position of the object on the computer screen. This property differs slightly for
different kinds of objects, as described in the following subsections.

9.8.1 Positions of figure Objects

The 'position' property for a figure specifies the location of that figure on
the computer screen using a four-element row vector. The values in this vector are
[left bottom width height], where left is the lefimost edge of the figure,
bottom is the bottom edge of the figure, width is the width of the figure, and
height is the height of the figure. These position values are in the units specified
inthe 'Units' property for the object. For example, the position and units associ-
ated with a the current figure can be found as follows:
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» get (gcf, 'Position')
ans =

176 204 672 504
» get (gcf, 'Units"')
ans =
pixels

This information specifies that the lower-left corner of the current figure window
is 176 pixels to the right and 204 pixels above the lower-left corner of the screen,
and the figure is 672 pixels wide by 504 pixels high. This is the drawable region
of the figure, excluding borders, scrollbars, menus, and the figure title area.

The 'units' property of a figure defaults to pixels, but it can be inches, cen-
timeters, points, characters, or normalized coordinates. Pixels are screen pixels,
which are the smallest rectangular shape that can be drawn on a computer screen.
Typical computer screens re at least 640 pixels wide X 480 pixels high, and screens
can have more than 1000 pixels in each direction. Since the number of pixels varies
from computer screen to computer screen, the size of an object specified in pixels
will also vary.

Normalized coordinates are coordinates in the range 0 to 1, where the lower-left
corner of the screen is at (0,0) and the upper-right corner of the screen is at (1,1). If
an object position is specified in normalized coordinates, it will appear in the same
relative position on the screen regardless of screen resolution. For example, the fol-
lowing statements create a figure and place it into the upper-left quadrant of the
screen on any computer, regardless of screen size?.

hl = figure(l)
set (hl, 'units', 'normalized', 'position', [0 .5 .5 .45])

If you would like to place a window in a specific location, it is easier to place
the window at the desired location using normalized coordinates; the results will
be the same regardless of the computer’s screen resolution.

9.8.2 Positions of axes and uicontrol Objects

The position of axes and uicontrol objects is also specified by a four-element
vector, but the object position is specified relative to the lower-left corner of
the figure instead of the position of the screen. In general, the ' Position' prop-
erty of a child object is relative to the position of its parent.

>The normalized height of this Figure is reduced to 0.45 to allow room for the Figure title and menu
bar, both of which are above the drawing area.
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By default, the positions of axes objects are specified in normalized units within
a figure, with (0,0) representing the lower-left corner of the figure, and (1,1) repre-
senting the upper-right corner of the figure.

9.8.3 Positions of text Objects

Unlike other objects, text objects have a position property containing only two or
three elements. These elements correspond to the x, y, and z values of the text object
within an axes object. Note that these values are in the units being displayed on the
axes themselves.

The position of the text object with respect to the specified point is controlled
by the object’s HorizontalAlignment and VerticalAlignment prop-
erties. The HorizontalAlignment can be {Left}, Center, or Right,
and the VerticalAlignment can be Top, Cap, {Middle}, Baseline,
or Bottom.

The size of text objects is determined by the font size and the number of char-
acters being displayed, so there are no height and width values associated with them.

>

Example 9.3—Positioning Objects within a Figure

As was mentioned previously, axis positions are defined relative to the lower-left
corner of the frame they are contained in, whereas text object positions are
defined within axes in the data units being displayed on the axes.

To illustrate the positioning of graphics objects within a figure, we will write
a program that creates two overlapping sets of axes within a single figure. The
first set of axes will display sin x versus x and will have a text comment attached
to the display line. The second set of axes will display cos x versus x and will have
a text comment in the lower-left corner.

A program to create the figure follows. Note that we are using the figure
function to create an empty figure, and then two axes functions to create the two
sets of axes within the figure. The position of the axes functions is specified in
normalized units within the figure, so the first set of axes, which starts at (0.05,
0.05), is in the lower-left corner of the figure, and the second set of axes, which
starts at (0.45,0.45), is in the upper-right corner of the figure. Each set of axes has
the appropriate function plotted on it.

The first text object is attached to the first set of axes at position (—, 0),
which is a point on the curve. The 'HorizontalAlignment', 'right'
property is selected, so the attachment point (—, 0) is on the right-hand side of
the text string. As a result, the text appears to the /eft of the of the attachment
point in the final figure. (This can be confusing for new programmers!)

The second text object is attached to the second set of axes at position
(—=7.5, —0.9), which is near the lower-left corner of the axes. This string uses the
default horizontal alignment, which is '1eft ', so the attachment point (—7.5,
—0.9) is on the left-hand side of the text string. As a result, the text appears to the
right of the of the attachment point in the final figure. The final program is:
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Script file: position_object.m

Purpose:
This program illustrates the positioning of graphics
graphics objects. It creates a figure, and then places
two overlapping sets of axes on the figure. The first
set of axes is placed in the lower left hand corner of
the figure, and contains a plot of sin(x). The second
set of axes is placed in the upper right hand corner of
the figure, and contains a plot of cos(x). Then two
text strings are added to the axes, illustrating the
positioning of text within axes.

Record of revisions:
Date Programmer Description of change

4/03/0 S. J. Chapman Original code

O0° O° A° O° O° A° A° A° A° A° A° O° O° O° o° o° o°

Define variables:

%

%

% hl -- Handle of sine line

% h2 -—- Handle of cosine line
% hal -- Handle of first axes
% ha?2 -- Handle of second axes
% X -- Independent variable
% vl -- sin(x)

% V2 -- cos (x)

% Calculate sin(x) and cos(x)
X = -2*pi:pi/10:2*pi;

vl = sin(x);

v2 = cos(x);

% Create a new figure
figure;

Create the first set of axes and plot sin(x).
Note that the position of the axes is expressed
in normalized units.

hal = axes('Position',[.05 .05 .5 .5]1):

hl = plot(x,vyl);

set (hl, 'Linewidth',2);

title('\bfPlot of sin \itx');

xlabel ("\bf\itx");

vlabel ('\bfsin \itx');

axis([-8 8 -1 11);

o o o°

441
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Create the second set of axes and plot cos(x)

Note that the position of the axes is expressed
in normalized units.

ha2 = axes('Position',[.45 .45 .5
h2 = plot(x,yl);

set (h2, 'LineWidth',2, 'Color', 'r', 'LineStyle', '--");
title('\bfPlot of cos \itx');

xlabel ("\bf\itx"');

yvlabel ('\bfsin \itx');

axis([-8 8 -1 11);

o° 0P o°

.51);

% Create a text string attached to the line on the first
% set of axes.

axes (hal);
text (-pi,0.0, 'sin(x) \rightarrow', 'HorizontalAlignment', 'right') ;

% Create a text string in the lower left hand corner
% of the second set of axes.
axes (ha2);

text(-7.5,-0.9, 'Test string 2');

When this program is executed, it produces the plot shown in Figure 9.6. You
should execute this program again on your computer, changing the size and/or
location of the objects being plotted and observing the results.

«} Figure 1
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Figure 9.6 The output of program position_object.
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9.9 Printer Positions

The 'Position' and 'Units' properties specify the location of a figure on
the computer screen. There are five other properties that specify the location of
a figure on a sheet of paper when it is printed. These properties are summarized
in Table 9.2.

For example, to set a plot to print out in landscape mode, on A4 paper, in nor-
malized units, we could set the following properties:

set (hndl, 'PaperType', 'Ad")
set (hndl, 'PaperOrientation', 'landscape')
set (hndl, 'PaperUnits', 'normalized') ;

9.10 Default and Factory Properties

MATLAB assigns default properties to each object when it is created. If those
properties are not what you want, then you must use set to select the desired values.
If you wanted to change a property in every object that you have created, this process
could become very tedious. For those cases, MATLAB allows you to modify the
default property itself, so that all objects will inherit the correct value of the proper-
ty when they are created.

When a graphics object is created, MATLAB looks for a default value for each
property by examining the object’s parent. If the parent sets a default value, that value

Table 9.2 Printing-Related Figure Properties

Option Description
PaperUnits Units for paper measurements:
[ {inches} | centimeters | normalized | points ]
PaperOrientation [ {portrait} | landscape ]
PaperPosition A position vector of the form [left, bottom, width, height]
where all units are as specified in PaperUnits
PaperSize A two-element vector containing the power size, for example
[8.5 11]
PaperType Sets paper type. Note that setting this property automatically

updates the PaperSize property.

[ {usletter} | uslegal | A0 | A1 | A2 | A3 | A4 |
A5 | BO | BL | B2 | B3 | B4 | B5 | arch-A | arch-B |
arch-C | arch-D | arch-E | 2 | B | C | D | E |
tabloid | <custom> ]
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is used. If not, MATLAB examines the parent’s parent to see whether that object sets
a default value, and so on back to the root object. MATLAB uses the first default
value that it encounters when working back up the tree.

Default properties may be set at any point in the graphics object hierarchy that
is higher than level at which the object is created. For example, a default figure
color would be set in the root object, and then all figures created after that time
would have the new default color. On the other hand, a default axes color could be
set in either the root object or the figure object. If the default axes color is
set in the root object, it will apply to all new axes in all figures. If the default
axes color is set in the figure object, it will apply to all new axes in the current
figure only.

Default values are set using a string consisting of 'Default ' followed by the
object type and the property name. Thus, the default figure color would be set with
the property 'DefaultFigureColor', and the default axes color would be set
with the property 'DefaultAxesColor'. Some examples of setting default val-
ues are shown here:

set (0, 'DefaultFigureColor','y") Yellow figure background—all new figures

set (0, 'DefaultAxesColor', 'r")

Red axes background—all new axes in all figures

set (gct, 'DefaultAxesColor', 'r') Red axes background—all new axes in current
figure only
set (gca, 'DefaultlLinelLineStyle', ': ") Set default line style to dashed, in current axes only.

If you are working with existing objects, it is always a good idea to restore
them to their existing condition after they have been used. If you change the
default properties of an object in a function, save the original values and restore
them before exiting the function. For example, suppose that we wish to create a
series of figures in normalized units. We could save and restore the original units
as follows:

saveunits = get (0, 'DefaultFigureUnits') ;
set (0, 'DefaultFigureUnits', 'normalized') ;

<MATLAB statements>

set (0, 'DefaultFigureUnits', saveunits) ;

If you want to customize MATLAB to use different default values at all times,
then you should set the defaults in the root object every time that MATLAB starts

up. The easiest way to do this is to place the default values into the startup . m file,
which is automatically executed every time MATLAB starts. For example, suppose
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you always use A4 paper and you always want a grid displayed on your plots. Then
you could set the following lines into startup.m:

(0, 'DefaultFigurePaperType', 'Ad"') ;

(0, 'DefaultFigurePaperUnits', 'centimeters') ;
set (0, 'DefaultAxesXGrid', 'on') ;

(0, 'DefaultAxesYGrid', 'on') ;

(0, 'DefaultAxeszGrid', 'on') ;

There are three special value strings that are used with handle graphics:
'remove', 'factory',and 'default’'. If you have set a default value for a
property, the ' remove' value will remove the default that you set. For example,
suppose that you set the default figure color to yellow:

set (0, 'DefaultFigureColor', 'y');

The following function call will cancel this default setting and restore the previ-
ous default setting.

set (0, 'DefaultFigureColor', 'remove') ;

The string ' factory' allows a user to temporarily override a default value
and use the original MATLAB default value instead. For example, the following fig-
ure is created with the factory default color despite a default color of yellow having
been previously defined:

set (0, 'DefaultFigureColor', 'y"');
figure('Color', 'factory’')

The string 'default' forces MATLAB to search up the object hierarchy
until it finds a default value for the desired property. It uses the first default value
that it finds. If it fails to find a default value, then it uses the factory default value
for that property. This use is illustrated here:

Set default values

set (0, 'DefaultLineColor', 'k');
set (gcf, 'DefaultLineColor', 'g');

root default = black
figure default = green

°
o
°
<

Create a line on the current axes. This line is green.
plot(randn(1,10));

set (hndl, 'Color', 'default') ;
pause (2) ;

% Now clear the figure's default and set the line color to the new

% default. The line is now black.
set (gcf, 'DefaultLineColor', 'remove') ;
set (hndl, 'Color', 'default');
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Graphics Object Properties

There are hundreds of different graphic object properties, far too many to discuss
in detail here. The best place to find a complete list of graphics object properties
is in the Help Browser distributed with MATLAB.

We have mentioned a few of the most important properties for each type of
graphic object as we have needed them (*LineStyle’, ‘Color’, and so
forth). A complete set of properties is given in the MATLAB Help Browser doc-
umentation under the descriptions of each type of object.

9.12 Summary

Every element of a MATLAB plot is a graphics object. Each object is identified
by a unique handle, and each object has many properties associated with it that
affect the way the object is displayed.

MATLAB objects are arranged in a hierarchy with parent objects and child
objects. When a child object is created, it inherits many of its properties from
its parent.

The highest-level graphics object in MATLAB is the root, which can be
thought of as the entire computer screen. Under the root there can be one or more
Figure Windows. Each figure is a separate window on the computer screen that
can display graphical data, and each figure has its own properties.

Each figure can contain seven types of objects: uimenus, uicon-
textmenus, uicontrols, uitoolbars, uipanels, uibuttongroups,
and axes. Uimenus, uicontextmenus, uicontrols, uitoolbars,
uipanels, and uibuttongroups are special graphics objects used to create
graphical user interfaces—they are described in Chapter 10. Axes are regions
within a figure where data is actually plotted. There can be more than one set of
axes within a single figure.

Each set of axes can contain as many 1ines, text strings, patches, and
the like as is necessary to create the plot of interest.

The handles of the current figure, current axes, and current object may be
recovered with the gcf, gca, and gco functions, respectively. The properties of
any object may be examined and modified using the get and set functions.

There are literally hundreds of properties associated with MATLAB graph-
ics functions, and the best place to find the details of these of these functions is
the MATLAB on-line documentation.

9.12.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB
handle graphics.

1. If you intend to modify the properties of an object that you create, save
the handle of that object for later use with get and set.
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2. If possible, restrict the scope of your searches with findobj to make

them faster.

3. If you would like to place a window in a specific location, it is easier to place
the window at the desired location using normalized coordinates, and the
results will be the same regardless of the computer’s screen resolution.

9.12.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

axes
figure
findobj
gca

gcf

gco

get
getappdata
isappdata

rmappdata
set
setappdata

waitforbuttonpress

Creates a new axes/makes axes current.

Creates a new figure/makes figure current.

Finds an object based on one or more property values.
Get handle of current axes.

Get handle of current figure.

Get handle of current object.

Gets object properties.

Gets user-defined data in an object.

Tests to see if an object contains user-defined
data with the specified name.

Removes user-defined data from an object.
Sets object properties.

Stores user-defined data in an object.

Pauses program, waiting for a mouse click or keyboard input.

9.13 Exercises

9.1 What is meant by the term “handle graphics”? Sketch the hierarchy of
MATLAB graphics objects.
9.2 Use the MATLAB Help Browser to learn about the Name and
NumberTitle properties of a £igure object. Create a figure containing
a plot of the function y(x) = e* for —2 = x = 2. Change the properties
mentioned here to suppress the figure number and to add the title “Plot
Window” to the figure.
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9.3

9.4

9.5

9.6

9.7

Write a program that modifies the default figure color to orange and the
default line width to 3.0 points. Then create a figure plotting the ellipse
defined by the equations

x(t) = 10 cos ¢
(©-1)
y(t) = 65sint

from ¢ = 0 to ¢t = 2. What color and width was the resulting line?

Use the MATLAB Help Browser to learn about the CurrentPoint prop-
erty of an axes object. Use this property to create a program that creates an
axes object and plots a line connecting the locations of successive mouse
clicks within the axes. Use the function waitforbuttonpress to wait for
mouse clicks, and update the plot after each click. Terminate the plot when a
keyboard press occurs.

Use the MATLAB Help Browser to learn about the CurrentCharacter
property of a £igure object. Modify the program created in Problem 9.4 by
testing the CurrentCharacter property when a keyboard press occurs. If
the character typed on the keyboard is a “c” or “C,” change the color of the
line being displayed. If the character typed on the keyboard is an “s” or “S,”
change the line style of the line being displayed. If the character typed on the

[Tt

keyboard is a “w” or “W,” change the width of the line being displayed. If
the character typed on the keyboard is an “x” or “X,” terminate the plot.
(Ignore all other input characters.)

Create a MATLAB program that plots the functions

x(t) = cos L
T
%9-2)

t
t) = 2sin—
x(7) sin .

for the range —2 = ¢ = 2. The program should then wait for mouse
clicks, and if the mouse has clicked on one of the two lines, the program
should change the line’s color randomly from a choice of red, green, blue,
yellow, cyan, magenta, or black. Use the function waitforbutton-
press to wait for mouse clicks, and update the plot after each click. Use the
function gco to determine the object clicked on, and use the Type property
of the object to determine whether the click was on a line.

Create a MATLAB figure and store some user-defined data values in the fig-
ure. Then, save the figure in a figure file (* . £ig) using the File/Save As
menu option on the Figure Window. Next close down and restart MATLAB.
Reload the figure using the File/Open menu option on a Figure Window, and
try to recover the user-defined data using the getappdata function. Was
the information preserved?
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9.8 The plot function plots a line and returns a handle to that line. This handle
can be used to get or set the line’s properties after it has been created. Two of
a line’s properties are XData and YData, which contain the x- and y-values
currently plotted. Write a program that plots the function

x(t) = cos 2mt—0) (9-3)

between the limits —1.0 = ¢ = 1.0, and saves the handle of the resulting
line. The angle 6 is initially 0 radians. Then, re-plot the line over and over
with 8 = ©/10 rad, 6 = 27 /10 rad, 6 = 37/10 rad, and so forth up to
6 = 2r rad. To re-plot the line, use a for loop to calculate the new values
of x and 7, and update the line’s XData and YData properties with set com-
mands. Pause 0.5 seconds between each update, using MATLAB’ pause
command.
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CHAPTEHR

Graphical User
Interfaces

A graphical user interface (GUI) is a pictorial interface to a program. A good GUI
can make programs easier to use by providing them with a consistent appear-
ance and with intuitive controls such as pushbuttons, edit boxes, list boxes, slid-
ers, and menus. The GUI should behave in an understandable and predictable
manner so that a user knows what to expect when he or she performs an action.
For example, when a mouse click occurs on a pushbutton, the GUI should initi-
ate the action described on the label of the button.

This chapter contains an introduction to the basic elements of the MATLAB
GUIs. It does not contain a complete description of components or GUI fea-
tures, but it does provide the basics required to create functional GUIs for your
programs.

10.1 How a Graphical User Interface Works

A graphical user interface provides the user with a familiar environment in which
to work. It contains pushbuttons, toggle buttons, lists, menus, text boxes, and so
forth, all of which are already familiar to the user, so that he or she can concen-
trate on the purpose of the application instead of the mechanics involved in doing
things. However, GUIs are harder for the programmer, because a GUI-based pro-
gram must be prepared for mouse clicks (or possibly keyboard input) for any GUI
element at any time. Such inputs are known as events, and a program that
responds to events is said to be event driven.

451
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The three principal elements required to create a MATLAB graphical user
interface are

1. Components. Each item on a MATLAB GUI (pushbuttons, labels, edit
boxes, etc.) is a graphical component. The types of components include
graphical controls (pushbuttons, toggle buttons, edit boxes, lists, sliders,
etc.) static elements (text boxes), menus, toolbars, and axes. Graphical
controls and text boxes are created by the function uicontrol, and menus
are created by the functions uimenu and uicontextmenu. Toolbars are
created by function uitoolbar. Axes, which are used to display graphi-
cal data, are created by the function axes.

2. Containers. The components of a GUI must be arranged within a container,
which is a window on the computer screen. The most common container is
a figure. A figure is a window on the computer screen that has a title bar
along the top and that can optionally have menus attached. In the past,
figures have been created automatically whenever we plotted data.
However, empty figures can be created with the function £igure, and they
can be used to hold any combination of components and other containers.

The other types of containers are panels (created by the function
uipanel) and button groups (created by the function uibutton-
group). Panels can contain components or other containers, but they do
not have a title bar and cannot have menus attached. Button groups are
special panels that can manage groups of radio buttons or toggle buttons
to ensure that no more than one button in the group is on at any time.

3. Callbacks. Finally, there must be some way to perform an action if a user
clicks a mouse on a button or types information on a keyboard. A mouse
click or a key press is an event, and the MATLAB program must respond
to each event if the program is to perform its function. For example, if a
user clicks on a button, then that event must cause the MATLAB code that
implements the function of the button to be executed. The code executed
in response to an event is known as a callback. There must be a callback
to implement the function of each graphical component on the GUI.

The basic GUI elements are summarized in Table 10.1, and some sample ele-
ments are shown in Figure 10.1. We will study examples of these elements and
then build working GUIs from them.

10.2 Creating and Displaying a Graphical User Interface

MATLAB Graphical User Interfaces are created using a tool called guide, the
GUI Development Environment. This tool allows a programmer to lay out the GUI,
selecting and aligning the GUI components to be placed in it. Once the components
are in place, the programmer can edit their properties: name, color, size, font, text to
be displayed, and so forth. When guide saves the GUI, it creates a working pro-
gram, including skeleton functions that the programmer can modify to implement
the behavior of the GUIL.

(text continues on page 455)
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Some Basic GUI Components

Component

Created By

Description

Containers

Figure

Panel

Button Group

figure

uipanel

uibuttongroup

Creates a figure, which is container that can hold components and
other containers. Figures are separate windows that have title bars
and can have menus.

Creates a panel, which is container that can hold components
and other containers. Unlike figures, panels do not have title bars
or menus. Panels can be placed inside figures or other panels.

Creates a button group, which is a special kind of panel. Button
groups automatically manage groups of radio buttons or toggle
buttons to ensure that only one item of the group is on at any given
time.

Graphical Controls

Pushbutton

Toggle Button

Radio Button

Checkbox

Edit Box

List Box

Popup Menus

Slider

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

A graphical component that implements a pushbutton. It triggers
a callback when clicked with a mouse.

A graphical component that implements a toggle button. A toggle
button is either “on” or “off,” and it changes state each time it is
clicked. Each mouse button click also triggers a callback.

A radio button is a type of toggle button that appears as a small
circle with a dot in the middle when it is “on.” Groups of radio
buttons are used to implement mutually exclusive choices. Each
mouse click on a radio button triggers a callback.

A checkbox is a type of toggle button that appears as a small square
with a check mark in it when it is “on.” Each mouse click on a
checkbox triggers a callback.

An edit box displays a text string and allows the user to modify the
information displayed. A callback is triggered when the user presses
the Enter key, or when the user clicks on a different object with
the mouse.

A list box is a graphical control that displays a series of text
strings. A user may select one of the text strings by single- or
double-clicking on them. A callback is triggered when the user
selects a string.

A popup menu is a graphical control that displays a series of text
strings in response to a mouse click. When the popup menu is not
clicked on, only the currently selected string is visible.

A slider is a graphical control to adjust a value in a smooth,
continuous fashion by dragging the control with a mouse. Each
slider change triggers a callback.

(continued )



Table 10.1 (continued)
Component Created By Description
Static Elements

Frame uicontrol Creates a frame, which is a rectangular box within a figure. Frames
are used to group sets of controls together. Frames never trigger
callbacks. (This is a deprecated component, which should not be
used in new GUISs.)

Text Field uicontrol Creates a label, which is a text string located at a point on the
figure. Text fields never trigger callbacks.
Menus, Toolbars, Axes

Menu Items uimenu Creates a menu item. Menu items trigger a callback when a mouse

button is released over them.

Context Menus uicontextmenu Creates a context menu, which is a menu that appears over a
graphical object when a user right-clicks the mouse on that object.
Toolbar uitoolbar Creates a toolbar, which is a bar across the top of the figure
containing quick-access buttons.
Toolbar uipushtool Creates a pushbutton to go in a toolbar.
Pushbutton
Toolbar Toggle uitoggletool Creates a toggle button to go in a toolbar.
Button
Axes axes Creates a new set of axes to display data on. Axes never trigger
callbacks.
I
1
Push Button |
08
Toggle Button
06
-Button Group 0.4
" Radio Button 1
" Radio Bufton 2 02
D " L i
™ Checkbox 0 02 0.4 06 08 1
[ - |
Static Text Edit Text 'E::i g
Line 4 ;I
il d
Figure 10.1 A Figure Window showing examples of MATLAB GUI elements. From top to bottom

and left to right, the elements are: (1) a pushbutton; (2) a toggle button in the ‘on’ state;
(3) two radio buttons within a button group; (4) a check box; (5) a label and an edit box;
(6) a slider; (7) a set of axes; and (8) a list box.
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Figure 10.2 The guide tool window.

When guide is executed, it creates the Layout Editor, shown in Figure 10.2.
The large gray area with grid lines is the layout area, where a programmer can
lay out the GUI. The Layout Editor window has a palate of GUI components
along the left-hand side of the layout area. A user can create any number of GUI
components by first clicking on the desired component and then dragging its out-
line in the layout area. The top of the window has a toolbar with a series of use-
ful tools that allow the user to distribute and align GUI components, modify the
properties of GUI components, and add menus to GUIs, among other things.

The basic steps required to create a MATLAB GUI are as follows:

1. Decide what elements are required for the GUI and what the function of
each element will be. Make a rough layout of the components by hand on
a piece of paper.

2. Use the MATLAB tool called guide (GUI Development Environment)
to lay out the components on a figure. The size of the figure and the align-
ment and spacing of components on the figure can be adjusted using the
tools built into guide.

3. Use a MATLAB tool called the Property Inspector (built into guide) to
give each component a name (a “tag”) and to set the characteristics of
each component, such as its color or the text it displays.

4. Save the figure to a file. When the figure is saved, two files will be created
on disk with the same name but different extents. The £ig file contains the
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GUI layout and the components of the GUI; while the M-file contains the
code to load the figure as well as skeleton callback functions for each
GUI element.

5. Write code to implement the behavior associated with each callback
function.

As an example of these steps, let’s consider a simple GUI that contains a
single pushbutton and a single text string. Each time the pushbutton is clicked,
the text string will be updated to show the total number of clicks since the GUI
started.

Step 1: The design of this GUI is very simple. It contains a single pushbutton
and a single text field. The callback from the pushbutton will cause the number dis-
played in the text field to increase by one each time the button is pressed. A rough
sketch of the GUI is shown in Figure 10.3.

Step 2: To lay out the components on the GUI, run the MATLAB function
guide. When guide is executed, it creates the window shown in Figure 10.2.

First, we must set the size of the layout area, which will become the size of
the final GUIL. We do this by dragging the small square on the lower-right corner
of the layout area until it has the desired size and shape. Then, click on the
“pushbutton” button in the list of GUI components and create the shape of the
pushbutton in the layout area. Finally, click on the “text” button in the list of GUI
components and create the shape of the text field in the layout area. The resulting
figure after performing these steps is shown in Figure 10.4. We could now adjust
the alignment of these two elements using the Alignment Tool, if desired.

Step 3: To set the properties of the pushbutton, click on the button in the lay-
out area and then select “Property Inspector” (/&) from the toolbar.
Alternatively, right-click on the button and select “Property Inspector” from the
popup menu. The Property Inspector window shown in Figure 10.5 will appear.
Note that this window lists every property available for the pushbutton and allows
us to set each value using a GUI interface. The Property Inspector performs the

(text continues on page 459)

-«— Figure

Total Clicks: 0

/

Text Field / | __—1 Pushbutton

Pushbutton -]

Figure 10.3 Rough layout for a GUI containing a single pushbutton and a single label field.
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Figure 10.4 The completed GUI layout within the guide window.
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Figure 10.5 The Property Inspector showing the properties of the pushbutton. Note that the String is
setto 'Click Here', and the Tagis setto 'MyFirstButton'.
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same function as the get and set functions introduced in Chapter 9 but in a
much more convenient form.

For the pushbutton, we may set many properties such as color, size, font, text
and alignment. However, we must set two properties: the String property,
which contains the text to be displayed, and the Tag property, which is the name
of the pushbutton. In this case, the String property will be set to'Click
Here', and the Tag property will be set to MyFirstButton.

For the text field, we must set two properties: the String property, which
contains the text to be displayed, and the Tag property, which is the name of the
text field. This name will be needed by the callback function to locate and update
the text field. In this case, the String property will be set to 'Total
Clicks: 0', and the Tag property defaults to 'MyFirstText '. The layout
area after performing these steps is shown in Figure 10.6.

It is possible to set the properties of the figure itself by clicking on a clear
spot in the Layout Editor and using the Property Inspector to examine and set the
figure’s properties. Although not required, it is a good idea to set the figure’s
Name property. The string in the Name property will be displayed in the title bar
of the resulting GUI when it is executed. In this program, we will set the Name
to 'MyFirstGUI"'.

Step 4: We will now save the layout area under the name MyFirstGUT.
Select the “File/Save As” menu item, type the name MyFirstGUT as the file
name, and click “Save”. This action will automatically create two files:
MyFirstGUI.fig and MyFirstGUI.m. The figure file contains the actual
GUI that we have created. The M-file contains code that loads the figure file and
creates the GUI, plus a skeleton callback function for each active GUI component.

At this point, we have a complete GUI, but one that does not yet do the job
it was designed to do. You can start this GUI by typing MyFirstGUI in the
Command Window, as shown in Figure 10.7. If the button is clicked on this GUI,
nothing happens.

=100 x]

Fie Edt View Lsyout Tooks Hep

D fbea - s RIH% »

Figure 10.6 The design area after the properties of the pushbutton and the text field have been

modified.
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Command Window »ox

>> MyFirstGUI

}>|

>>» cd d:\book\matlab

Using Toclbox Path Cache. Type "help toolbox_path_cache" for more

To get started, select "MATLAE Help" from the Help menu.

L5ix]

Total Clicks: 0

Click Hera |

Figure 10.7 Typing MyFirstGUT in the Command Window starts the GUI.

A portion of the M-file automatically created by guide is shown in
Figure 10.8. This file contains the main function MyFirstGUI, plus sub-
functions to specify the behavior of the active GUI components. The file contains
a dummy callback function for every active GUI component that you defined. In
this case, the only active GUI component was the pushbutton, so there is a call-
back function called MyFirstButton_Callback, which is executed when
the user clicks on the button.

If function MyFirstGUT is called without arguments, then the function dis-
plays the GUI contained in file MyFirstGUI. fig. If function MyFirstGUI
is called with arguments, then the function assumes that the first argument is the
name of a subfunction, and it calls that subfunction using feval, passing the
other arguments on to that subfunction.

Each callback function handles events from a single GUI component. If a
mouse click (or keyboard input for edit fields) occurs on the GUI component,
then the component’s callback function will be automatically called by MATLAB.
The name of the callback function will be the value in the Tag property of the
GUI component plus the characters “_Callback”. Thus, the callback function
for MyFirstButton will be named MyFirstButton_Callback.

M-files created by guide contain callbacks for each active GUI component,
but these callbacks don’t do anything yet.

Step 5: Now, we need to write the callback subfunction code for the
pushbutton. This function will include a persistent variable that can be used
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function varargout = MyFirstGUI(varargin)--—

$ MYFIRSTGUI M-file for MyFirstGUI.fig
% MYFIRSTGUI, by itself, creates a new MYFIRSTGUI or raises the existing
singleton*.

H = MYFIRSTGUI returns the handle to a new MYFIRSTGUI or the handle to
the existing singleton*.

P o o° o oP

MYFIRSTGUI ('CALLBACK',hObject, eventData,handles,...) calls the local

P o o° o° of

existing singleton*. Starting from the left, property value pairs are
applied to the GUI before MyFirstGUI_OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to MyFirstGUI_OpeningFcn via varargin.

P o o° o° oP

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o0 o° 0P

See also: GUIDE, GUIDATA, GUIHANDLES

o

Edit the above text to modify the response to help MyFirstGUI
% Last Modified by GUIDE v2.5 21-Feb-2004 16:17:45

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename,
'gui_Singleton', gui_Singleton,
'gui_OpeningFcn', @MyFirstGUI_OpeningFcn,
'gui_OutputFcn', @MyFirstGUI_OutputFcn,

'gui_LayoutFcn', [,
'gui_Callback"', [1);
if nargin & isstr(varargin{l})
gui_State.gui_Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before MyFirstGUI is made visible.
function MyFirstGUI_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to MyFirstGUI (see VARARGIN)

% Choose default command line output for MyFirstGUI
handles.output = hObject;

% Update handles structure
guidata (hObject, handles) ;

Figure 10.8 The M-file for MyFirstGUI, automatically created by guide.

Main Function

function named CALLBACK in MYFIRSTGUI.M with the given input arguments.

MYFIRSTGUI ('Property', 'Value',...) creates a new MYFIRSTGUI or raises the

Figure
Opening
Function
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% UIWAIT makes MyFirstGUI wait for user response (see UIRESUME) Data

% uiwait (handles.figurel); ()quuI
Function

% --- Outputs from this function are returned to the command line.

function varargout = MyFirstGUI_OutputFcn(hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

oe

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
Button
% Get default command line output from handles structure Callback
varargout{l} = handles.output; .
Function
% --- Executes on button press in MyFirstButton.
function MyFirstButton_Callback (hObject, eventdata, handles)
% hObject handle to MyFirstButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Figure 10.8 (continued)

to count the number of clicks that have occurred. When a click occurs on
the pushbutton, MATLAB will call the function MyFirstGUI with
MyFirstButton_Callback as the first argument. Then function
MyFirstGUI will call subfunction MyFirstButton_Callback, as shown
in Figure 10.9. This function should increase the count of clicks by one, create a
new text string containing the count, and store the new string in the String
property of the text field MyFirstText. A function to perform this step is
shown here:

function MyFirstButton_Callback (hObject, eventdata, handles)

% hObject handle to MyFirstButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Declare and initialize variable to store the count
persistent count
if isempty (count)
count = 0;
end

o

% Update count
count = count + 1;

% Create new string
str = sprintf ('Total Clicks: %d', count) ;

% Update the text field
set (handles.MyFirstText, 'String',str);
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Original event:
mouse click on button

Total clicks: 0

Button calls MyFirstGUI with
argument MyFirstGUI Callback

MyFirstGUI

MyFirstGUI calls subfunction
MyFirstGUI_Callback

MyFirstButton_Callback

Function updates string in i
Total clicks: 1

MyFirstText
Pushbutton

Figure 10.9 Event handling in program MyFirstGUI. When a user clicks on the button with the
mouse, the function MyFirstGUT is called automatically with the argument
MyFirstButton_Callback. Function MyFirstGUI in turn calls subfunction
MyFirstButton_Callback. This function increments count, and then saves the
new count in the text field on the GUI.

Note that this function declares a persistent variable count and initializes it
to zero. Each time the function is called, it increments count by 1 and creates a
new string containing the count. Then, it updates the string displayed in the text
field MyFirstText.

The resulting program is executed by typing MyFirstGUT in the Command
Window. When the user clicks on the button, MATLAB automatically calls func-
tion MyFirstGUI with MyFirstButton_Callback as the first argument,
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Figure 10.10 The resulting program after three button pushes.

and function MyFirstGUT calls subfunction MyFirstButton_Callback.
This function increments variable count by one and updates the value dis-
played in the text field. The GUI that result after three button pushes is shown in
Figure 10.10.

I

Use guide to lay out a new GUI, and use the Property Inspector to set the ini-
tial properties of each component such as the text displayed on the component,
the color of the component, and the name of the callback function, if required.

After creating a GUI with guide, manually edit the resulting M-file to add
comments describing its purpose and components, and to implement the behav-
ior of callbacks.

10.2.1 A Look Under the Hood

Figure 10.8 shows the M-file that was automatically generated by guide for
MyFirstGUI. We will now examine this M-file more closely to understand how
it works.

First, let’s look at the main function declaration itself. Note that this function
uses varargin to represent its input arguments and varargout to represent its
output results. As we learned in Chapter 7, function varargin can represent
an arbitrary number of input arguments, and function varargout can represent a
varying number of output arguments. Therefore, a user can call function
MyFirstGUI with any number of arguments.
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The main function begins with a series of comments that serve as the help
message displayed when the user types “help MyFirstGUI”. You should edit
these comments to reflect the actual function of your program.

Next, the main function creates a structure called gui_State. The code to
create this structure is

guli_Singleton = 1;

gul_State

struct ('gui_Name', mfilename,
'gui_Singleton', guil_Singleton,
'gui_OpeningFcn', @MyFirstGUI_OpeningFcn,
'gui_OutputFcn', @MyFirstGUI_OutputFcn,

'gui_LayoutFcn', (1,
'gui_Callback', [1);

if nargin & isstr(varargin{l})

end

gul_State.gui_Callback = str2func(varargin{l}) ;

The structure contains some control information, plus function handles for some
of the subfunctions in the file. Other MATLAB GUI functions use these function
handles to call the subfunctions from outside of the M-file. Note that the first
argument is converted into a callback function handle, if it exists.

The value gui_Singleton specifies whether there can be one or more
simultaneous copies of the GUI. If gui_Singleton is 1, then there can be only
one copy of the GUL. If gui_Singleton is 0, then there can be many simulta-
neous copies of the GUL

The main function calls the MATLAB function gui_mainfcn and passes
the gui_State structure and all of the input arguments to it. Function
gui_mainfcn isa standard MATLAB function. It actually does the work of cre-
ating the GUI, or of calling the appropriate subfunction in response to a callback.

Calling the M-File without Arguments

If the user calls MyFirstGUI without arguments, function gui_mainfcn
loads the GUI from the figure file MyFirstGUI.fig using the openfig
function. The form of this function is

fig = openfig(mfilename, reuse) ;

where mfilename is the name of the figure file to load. The second argument
in the function specifies whether there can be only one copy of the figure running
at a given time or multiple copies can be run. If gui_State.gui_
Singleton is 1, then the second argument is set to 'reuse', and only one
copy of the figure can be run. If openfig is called with the ' reuse' option
and the specified figure already exists, the preexisting figure will be brought to
the top of the screen and reused. In contrast, if gui_State.gui_Singleton
is 0, then the argument is set to 'new', and a new copy of the figure will be cre-
ated each time MyFirstGUI is called without arguments. By default, a GUI
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created by guide has the gui_State.gui_Singleton setto 1, so only one
copy of the figure can exist at any time. If you wish to have multiple copies of the
GUI, turn off the “GUI allows only one instance to run” flag in the GUI Options
selection on guide’s Tools menu.

After the figure has been loaded, the gui_mainfcn function executes the
statement

set (fig, 'Color',get (0, 'defaultUicontrolBackgroundColor')) ;

This function sets the background color of the figure to match the default back-
ground color used by the computer that MATLAB is executing on. It makes the
color of the GUI match the color of native windows on the computer. Therefore,
a GUI can be written on a Windows-based PC and used on a Unix-based com-
puter, and vice versa. It will look natural in either environment.

Then, function gui_mainfcn creates a structure containing the handles of
all the objects in the current figure, and stores that structure as application data
in the figure.

guidata(gui_hFigure, guihandles (gui_hFigure)) ;

Function guihandles creates a structure containing handles to all of the
objects within the specified figure. The element names in the structure corre-
spond to the Tag properties of each GUI component, and the values are the
handles of each component. For example, the handle structure returned in
MyFirstGUI.mis

» handles = guihandles(£fig)
handles =
figurel: 99.0005
MyFirstText: 3.0021
MyFirstButton: 100.0007

There are three GUI components in this figure—the figure itself, plus a text
field and a pushbutton. Function guidata saves the handles structure as appli-
cation data in the figure, using the setappdata function that we studied in
Chapter 9.

Finally, just before making the figure visible, function gui_mainfcn calls
the function specified in gui_OpeningFcn. This function provides a way for
the programmer to customize the GUI before showing it to the user. For example,
a programmer could load initial data values here, change background colors, and
so forth.

Calling the M-File with Arguments

When the user clicks on an active GUI element, MATLAB calls MyFirstGUI
with the name of the GUI element’s callback function in the first argument. If
MyFirstGUT is called with arguments, the value returned by nargin will be
greater than zero. In this case, function MyFirstGUI converts the callback
function name into a function handle using the following code.
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if nargin & isstr(varargin{l})
gui_State.gui_Callback = str2func(varargin{l});
end

When function gui_mainfcn is called this time, it calls the callback func-
tion using this function handle. The callback executes and responds to the mouse
click or keyboard input, as appropriate.

Figure 10.11 summarizes the operation of MyFirstGUTI on first and subse-
quent calls.

10.2.2 The Structure of a Callback Subfunction

Every callback subfunction has the standard form
function ComponentTag_ Callback (hObject, eventdata, handles)

where ComponentTag is the name of the component generating the callback
(the string in its Tag property). The arguments of this subfunction are as follows:

® hobject—The handle of the parent figure.

B eventdata—A currently unused (in MATLAB 7) array.

® Handles—The handles structure contains the handles of all GUI com-
ponents on the figure.

Note that each callback function has full access to the handles structure,
and so each callback function can modify any GUI component in the figure. We
took advantage of this structure in the callback function for the pushbutton in
MyFirstGUI, where the callback function for the pushbutton modified the text
displayed in the text field.

% Update the text field
set (handles.MyFirstText, 'String', str);

10.2.3 Adding Appication Data to a Figure

It is possible to store any application-specific information needed by a GUI pro-
gram in the handles structure instead of using global or persistent memory for
that data. The resulting GUI design is more robust, since other MATLAB pro-
grams cannot accidentally modify the global GUI data and since multiple copies
of the same GUI cannot interfere with each other.

To add local data to the handles structure, we must manually modify the
M-file after it has been created by guide. A programmer first adds the required
local data to the handles structure and then calls guidata to update the
handles structure stored in the figure. For example, to add the number of
mouse clicks count to the handles structure, we would modify the
MyFirstButton_Callback function as follows:
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The operation of MyFirstGULIL. If there are no calling arguments, it either creates a
GUI or displays an existing GUI. If there are calling arguments, the first arguments is

assumed to be a callback function name, and MyFirstGUTI calls the appropriate

callback function.
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function MyFirstButton_Callback (hObject, eventdata, handles)

% hObject handle to MyFirstButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

N

3> Create the count field if it does not exist
if ~isfield(handles, 'count')

handles.count = 0;
end

% Update count
handles.count = handles.count + 1;

% Save the updated handles structure
guidata (hObject, handles):;

% Create new string
str = sprintf('Total Clicks: %d',handles.count);

% Update the text field
set (handles.MyFirstText, 'String', str);

I

Store GUI application data in the handles structure, so that it will automati-
cally be available to any callback function.

If you modify any of the GUI application data in the handles structure, be
sure to save the structure with a call to guidata before exiting the function
where the modifications occurred.

10.2.4 A Few Useful Functions

Three special functions are occasionally used in the design of callback functions:
gcbo, gcbf, and findobj. These functions are not actually needed with
MATLAB 7 GUISs, because the same information is available in the handles
data structure. However, they were commonly used in earlier versions of
MATLAB, and a programmer is sure to encounter them.

Function gcbo (get callback object) returns the handle of the object that
generated the callback, and function gcbf (gef callback figure) returns the han-
dle of the figure containing that object. These functions can be used by a callback
function to determine the object and figure producing the callback, so that it can
modify objects on that figure.
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Function findobj searches through all of the child objects within a parent
object, looking for those that have a specific value of a specified property. It
returns a handle to any objects with the matching characteristics. The most com-
mon form of £indobj is

Hndl = findobj (parent, 'Property',Value) ;

where parent is the handle of a parent object such as a figure, ' Property'
is the property to examine, and 'Value' is the value to look for.

For example, suppose that a programmer would like to change the color of
all the lines in a plot on the callback figure. He or she could find the lines and
change the line colors to red with the following statements:

Hndl = findobj (gcbf, 'Type', 'Line');
for ii = 1:1length(Hndl)

set( Hndl, 'Color','r' );
end

10.3 Object Properties

Every GUI object includes an extensive list of properties that can be used to cus-
tomize the object. These properties are slightly different for each type of object
(figures, axes, uicontrols, etc.). All of the properties for all types of objects
are documented on the on-line Help Browser, but a few of the more important
properties for figure and uicontrol objects are summarized in Tables 10.2
and 10.3.

Table 10.2 Important f£igure Properties

Property Description

Color Specifies the color of the figure. The value is either a predefined color such as
'r', 'g',or 'b', orelse a three-element vector specifying the red, green, and
blue components of the color on a 0—1 scale. For example, the color magenta
would be specified by [1 0 11].

CurrentCharacter Contains the character corresponding to the last key pressed in this figure.

CurrentPoint Location of the last button click in this figure, measured from the lower-left
corner of the figure in units specified in the Units property.

Dockable Specifies whether or not the figure can be docked to the desktop. Possible values
are 'on' or 'off'.

MenuBar Specifies whether or not the default set of menus appears on the figure. Possible
values are ' figure' to display the default menus, or 'none' to delete them.

Name A string containing the name that appears in the title bar of a figure.

NumberTitle Specifies whether or not the figure number appears in the title bar. Possible val-

uesare 'on' or 'off"'.

(continued)
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Table 10.2 (continued)

Property Description

Position Specifies the position of a figure on the screen, in the units specified by the
'units' property. This value accepts a four-element vector in which the first
two elements are the x and y positions of the lower-left corner of the figure
and the next two elements are the width and height of the figure.

SelectionType Specifies the type of selection for the last mouse click on this figure. A single
click returns type 'normal ', while a double click returns type 'open'. There
are additional options; see the MATLAB on-line documentation.

Tag The “name” of the figure, which can be used to locate it.

Units The units used to describe the position of the figure. Possible choices are
'inches', 'centimeters', 'normalized', 'points',
'pixels', or 'characters'. The default units are 'pixels"'.

Visible Specifies whether or not this figure is visible. Possible values are 'on' or 'off'.

WindowStyle Specifies whether this figure is normal or modal (see discussion of Dialog

Boxes). Possible values are 'normal' or 'modal’.

Table 10.3 Important uicontrol Properties

Property Description

BackgroundColor Specifies the background color of the object. The value is either a predefined
colorsuchas 'r', 'g',or 'b', or else a three-element vector specifying
the red, green, and blue components of the color on a 0—1 scale. For example,
the color magenta would be specified by [1 0 17].

Callback Specifies the name and parameters of the function to be called when the
object is activated by a keyboard or text input.

Enable Specifies whether or not this object is selectable. If it not enabled, it will not
respond to mouse or keyboard input. Possible values are 'on' or 'off'.

FontAngle A string containing the font angle for text displayed on the object. Possible
values are 'normal', 'italic',and 'oblique’.

FontName A string containing the font name for text displayed on the object.

FontSize A number specifying the font size for text displayed on the object.

FontUnits The units in which the font size is defined. Possible choices are ' inches',
'centimeters', 'mormalized', 'points',and 'pixels'. The
default font units are 'points"'.

FontWeight A string containing the font weight for text displayed on the object. Possible
values are '1ight', 'nmormal', 'demi', and 'bold'. The default
font weight is 'normal'.

ForegroundColor Specifies the foreground color of the object.

(continued )
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Property

Description

HorizontalAlignment
Max

Min

Parent

Position

Tag
TooltipString

Units

Value

Visible

Specifies the horizontal alignment of a text string within the object. Possible
values are 'left', 'center',and 'right'.

The maximum size of the value property for this object.
The minimum size of the value property for this object.
The handle of the figure containing this object.

Specifies the position of the object on the screen, in the units specified

by the 'units' property. This value accepts a four-element vector in
which the first two elements are the x and y positions of the lower-left corner
of the object relative to the figure containing it, and the next two elements
are the width and height of the object.

The “name” of the object, which can be used to locate it.

Specifies the help text to be displayed when a user places the mouse pointer
over an object.

The units used to describe the position of the figure. Possible choices are
'inches', 'centimeters',6 'normalized', 'points',
'pixels’', or 'characters'. The default units are 'pixels'.

The current value of the uicontrol. For toggle buttons, checkboxes, and
radio buttons, the value is max when the button is on and min when the but-
ton is off. Other controls have different meanings for this term.

Specifies whether or not this object is visible. Possible values are 'on'
or 'off"'.

Object properties can be modified using either the Property Inspector or the
get and set functions. Although the Property Inspector is a convenient way to
adjust properties during GUI design, we must use get and set to adjust them
dynamically from within a program, such as in a callback function.

10.4 Graphical User Interface Components

This section summarizes the basic characteristics of common graphical user
interface components. It describes how to create and use each component, as well
as the types of events each component can generate. The components discussed
in this section are

® Static Text Fields
® Edit Boxes
® Pyshbuttons
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Toggle Buttons
Checkboxes
Radio Buttons
Popup Menus
List Boxes
Sliders

10.4.1 Static Text Fields

A static text field is a graphical object that displays one or more text strings,
which are specified in the text field’s String property. The String property
accepts a string or a cell array of strings. If the input value is a string, it will be
displayed on a single line. If the input value is a cell array of strings, the first ele-
ment will be displayed on the first line of the text box, the second element will be
displayed on the second line of the text box, and so forth. You can specify how the
text is aligned in the display area by setting the horizontal alignment property.
By default, text fields are horizontally centered. A text field is created by a
uicontrol whose style property is ' text '. A text field may be added to a GUI
by using the text tool ( ) in the Layout Editor.

Text fields do not create callbacks, but the value displayed in the text field
can be updated from another component’s callback function by changing the text
field’s String property, as shown in program MyFirstGUT in Section 10.2.

10.4.2 Edit Boxes

An edit box is a graphical object that allows a user to enter one or more text
strings. It is created by a uicontrol whose style property is 'edit'. If the
min property and max property are both set to 1, then the edit box will accept a
single line of text, and it will generate a callback when the user presses the Enter
key or the ESC key after typing the text.

Figure 10.12a shows a simple GUI containing an edit box named
'EditBox' and a text field named ' TextBox'. When a user presses Enter or
ESC after typing a string into the edit box, the program automatically calls the
function EditBox_Callback, which is shown in Figure 10.12b. This function
locates the edit box using the handles structure, and recovers the string typed
by the user. Then, it locates the text field and displays the string in the text field.
Figure 10.13 shows this GUI just after it has started, and after the user has typed
the word “Hello” in the edit box.

If the max property is set to a number greater than the min property, then
the edit box will accept as many lines of text as the user wishes to enter. The
textbox will include a vertical scrollbar to allow the user to move up and down
through the data. Either the scrollbar or the up and down arrows can be used to
move between the input lines. If the user presses the Enter key in a multi-line edit
box, the current line is finished and the cursor moves down to the next line for



10.4 Graphical User Interface Components | 473

function EditBox_Callback (hObject, eventdata, handles)

% Find the value typed into the edit box
str = get (handles.EditBox, 'String');

% Place the value into the text field
set (handles.TextBox, 'String', str);

()

Figure 10.12 (a) Layout of a simple GUI with a single-line edit box and a text field. (5) The callback
function for this GUI.

J Test Edit Box J Test Edit Box

(@) (b)

Figure 10.13 (a) The GUI produced by program test_edit. (b) The GUI after a user types
'Hello' into the edit box and presses Enter.
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function EditBox2_Callback (hObject, eventdata, handles)

% Find the value typed into the edit box
str = get (handles.EditBox, 'String');

% Place the value into the text field
set (handles.TextBox2, 'String', str);

(b)

Figure 10.14 (a) Layout of a simple GUI with a multi-line edit box and a text field. (b) The callback

function for this GUI.

additional input. If the user presses the ESC key or clicks a point on the figure
background with the mouse, a callback will be generated and the data typed into
the edit box will be available as a cell array of strings in the uicontrol’s
String property.

Figure 10.14a shows a simple GUI containing a multi-line edit box
named 'EditBox2 ' and a text field named ' TextBox2 '. When a user presses
ESC after typing a set of lines into the edit box, the program automatically calls
the function EditBox2_Callback, which is shown in Figure 10.14b. This
function locates the edit box using the handles structure and recovers the
strings typed by the user. Then, it locates the text field and displays the strings in
the text field. Figure 10.15 shows this GUI just after it has started and after the
user has typed four lines in the edit box.

10.4.3 Pushbuttons

A pushbutton is a component that a user can click on to trigger a specific
action. The pushbutton generates a callback when the user clicks on it with the
mouse. A pushbutton is created by creating a uicontrol whose style property
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Figure 10.15 (a) The GUI produced by program test_edit2. (b) The GUI after a user types four
lines into the edit box and presses ESC.

is 'pushbutton'. It can be added to a GUI by using the pushbutton tool
( =) in the Layout Editor.
Function MyFirstGUT in Figure 10.10 illustrates the use of pushbuttons.

10.4.4 Toggle Buttons

A toggle button is a type of button that has two states: on (depressed) and off (not
depressed). A toggle button switches between these two states whenever the mouse
clicks on it, and it generates a callback each time. The 'Value' property of the
toggle button is set to max (usually 1) when the button is on, and min (usually 0)
when the button is off.

A toggle button is created by a uicontrol whose style property is ' tog-
glebutton'. It can be added to a GUI by using the toggle button tool (M) in
the Layout Editor.

Figure 10.16a shows a simple GUI containing a toggle button named
'ToggleButton' and a text field named ' TextBox'. When a user clicks on
the toggle button, it automatically calls the function ToggleButton_
Callback, which is shown in Figure 10.165. This function locates the toggle
button using the handles structure and recovers its state from the 'vValue'
property. Then, it locates the text field and displays the state in the text field.
Figure 10.17 shows this GUI just after it has started, and after the user has clicked
on the toggle button for the first time.

10.4.5 Checkboxes and Radio Buttons

Checkboxes and radio buttons are essentially identical to toggle buttons except
that they have different shapes. Like toggle buttons, they have two states: on and
off. They switch between these two states whenever the mouse clicks on them,
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function ToggleButton_Callback (hObject, eventdata, handles)
% hObject handle to ToggleButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Find the state of the toggle button
state = get (handles.ToggleButton, 'Value') ;

% Place the value into the text field

if state ==

set (handles.TextBox, 'String', 'Off"');
else

set (handles.TextBox, 'String', 'On"');
end

(b)

Figure 10.16 (a) Layout of a simple GUI with a toggle button and a text field. (b) The callback
function for this GUI.

~IE(x] _IE(x]
Off On
Toggle Button Toggle Button
(@ (b)

Figure 10.17 (a) The GUI produced by program test_togglebutton when the toggle button is
off. (b) The GUI when the toggle button is on.
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generating a callback each time. The 'Value' property of the checkbox or radio
button is set to max (usually 1) when it is on, and min (usually 0) when it is off.
Both checkboxes and radio buttons are illustrated in Figure 10.1.

A checkbox is created by a uicontrol whose style property is
'checkbox', and a radio button is created by a uicontrol whose style
property is 'radiobutton'. A checkbox may be added to a GUI by using
the checkbox tool (&) in the Layout Editor, and a radio button may be added
to a GUI by using the radio button tool ( ®|) in the Layout Editor.

Checkboxes are traditionally used to display on/off options, whereas groups
of radio buttons are traditionally used to select among mutually exclusive options.

Figure 10.18a shows a simple GUI containing a checkbox named
'CheckBox' and a text field named ' TextBox'. When a user clicks on the
checkbox, it automatically calls the function CheckButton_Callback,
which is shown in Figure 10.185b. This function locates the checkbox using the
handles structure and recovers its state from the 'Value' property. Then, it
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function CheckBox_Callback (hObject, eventdata, handles)

% Find the state of the checkbox
state = get (handles.CheckBox, 'Value') ;

% Place the value into the text field
if state ==

set (handles.TextBox, 'String', 'Off"');
else

set (handles.TextBox, 'String', 'On');
end ;

(b)

Figure 10.18 (a) Layout of a simple GUI with a CheckBox and a text field. (b) The callback function
for this GUL
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Figure 10.19 (a) The GUI produced by program test_checkbox when the toggle button is off.
(b) The GUI when the toggle button is on.

locates the text field and displays the state in the text field. Figure 10.19 shows
this GUI just after it has started, and after the user has clicked on the toggle but-
ton for the first time.

Figure 10.20a shows an example of how to create a group of mutually exclu-
sive options with radio buttons. The GUI in this figure creates three radio buttons,
labeled “Option 1,” “Option 2,” and “Option 3,” plus a text field to display the
currently selected results.

The corresponding callback functions are shown in Figure 10.205. When the
user clicks on a radio button, the corresponding callback function is executed.
That function sets the text box to display the current option, turns on that radio
button, and turns off all other radio buttons.

Figure 10.21 shows this GUI after Option 2 has been selected.

10.4.6 Popup Menus

Popup menus are graphical objects that allow a user to select one of a mutually
exclusive list of options. The list of options that the user can select among is
specified by a cell array of strings, and the 'Value' property indicates which
of the strings is currently selected. A popup menu may be added to a GUI by
using the popup menu tool ([=]) in the Layout Editor.

Figure 10.22a shows an example of a popup menu. This GUI in this figure
creates a popup menu with five options, labeled “Option 1,” “Option 2,” and so
forth.

The corresponding callback function is shown in Figure 10.225. The call-
back function recovers the selected option by checking the ' Value' parameter
of the popup menu and creates and displays a string containing that value in the
text field. Figure 10.23 on page 468 shows this GUI after Option 4 has been
selected.

10.4.7 List Boxes

List boxes are graphical objects that display many lines of text and allow a user
to select one or more of those lines. If there are more lines of text than can fit in
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function Optionl_Callback (hObject, eventdata, handles)

% Display the radio button clicked in the text field
set (handles.TextBox, 'String', 'Option 1');

% Update all text fields

set (handles.Optionl, 'Value',1);
set (handles.Option2, 'Value',0);
set (handles.Option3, 'Value',0);

function Option2_Callback (hObject, eventdata, handles)

% Display the radio button clicked in the text field
set (handles.TextBox, 'String', 'Option 2');

% Update all text fields

set (handles.Optionl, 'Value',0);
set (handles.Option2, 'Value',1);
set (handles.Option3, 'Value',0);

function Option3_Callback (hObject, eventdata, handles)

% Display the radio button clicked in the text field
set (handles.TextBox, 'String', 'Option 3');

% Update all text fields

set (handles.Optionl, 'Value',0);
set (handles.Option2, 'Value',0);
set (handles.Option3, 'Value',1);

(b)

Figure 10.20 (@) Layout of a simple GUI with three radio buttons and a text field. (5) The callback
functions for this GUI. When a user clicks on a radio button, it is set to ‘on’ and all other
radio buttons are set to ‘off”’.
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Figure 10.21

Figure 10.22
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The GUI produced by program test_radio_button when Option 2 has been
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function Popupl_Callback (hObject, eventdata, handles)

% Find the value of the popup menu
value = get (handles.Popupl, 'Value') ;

% Place the value into the text field

str = ['Option ' num2str(value)];
set (handles.Labell, 'String', str);
(b)

(a) Layout of a simple GUI with a popup menu and a text field to display the current
selection. (b) The callback functions for this GUI.

iE(x]
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Figure 10.23 The GUI produced by program test_popup_menu.
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the list box, a scroll bar will be created to allow the user to scroll up and down
within the list box. The lines of text that the user can select among are specified
by a cell array of strings, and the 'Value' property indicates which of the
strings are currently selected.

A list box is created by a uicontrol whose style property is '1ist-
box'. A list box may be added to a GUI by using the listbox tool (|£H]) in the
Layout Editor.

List boxes can be used to select a single item from a selection of possible
choices. In normal GUI usage, a single mouse click on a list item selects that item
but does not cause an action to occur. Instead, the action waits on some external
trigger, such as a pushbutton. However, a mouse double-click causes an action to
happen immediately. Single-click and double-click events can be distinguished
using the SelectionType property of the figure in which the clicks occurred.
A single mouse click will place the string 'normal' in the SelectionType
property, while a double mouse click will place the string 'open' in the
SelectionType property.

It is also possible for a list box to allow multiple selections from the list. If
the difference between the max and min properties of the list box is greater than
one, then multiple selection is allowed. Otherwise, only one item may be selected
from the list.

Figure 10.24a shows an example of a single-selection list box. The GUI in this
figure creates a list box with eight options, labeled “Option 1,” “Option 2,” and so
forth. In addition, it creates a pushbutton to perform selection and a text field to dis-
play the selected choice. Both the list box and the pushbutton generate callbacks.

The corresponding callback functions are shown in Figure 10.245b. If a selection
is made in the list box, then function Li stbox1_Callback will be executed. This
function will check the figure producing the callback (using function gcbf) to
determine whether the selecting action was a single-click or a double-click. If it
were a single-click, the function does nothing. If it was a double-click, then the
function gets the selected value from the listbox, and writes an appropriate string into
the text field.

If the pushbutton is selected, then function Buttonl_Callback will be
executed. This function gets the selected value from the listbox and writes an
appropriate string into the text field.

In an end-of-chapter exercise, you will be asked to modify this example to
allow multiple selections in the list box.

10.4.8 Sliders

Sliders are graphical objects that allow a user to select values from a continuous
range between a specified minimum value and a specified maximum value by
moving a bar with a mouse. The 'Value' property of the slider is set to a value
between min and max depending on the position of the slider.

A slider is created by a uicontrol whose style property is 'slider"'.
A slider may be added to a GUI by using the slider tool (=) in the Layout Editor.
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(a)
function Buttonl_Callback (hObject, eventdata, handles)

Q

% Find the value of the popup menu
value = get (handles.Listboxl, 'Value') ;

% Update text label
str = ['Option ' num2str (value)];
set (handles.Labell, 'String', str);

function Listboxl_Callback (hObject, eventdata, handles)

% If this was a double click, update the label.
selectiontype = get(gcbf, 'SelectionType') ;
if selectiontype(l) == 'o'

% Find the value of the popup menu
value = get(handles.Listboxl, 'Value');

% Update text label

str = ['Option ' num2str(value)];

set (handles.Labell, 'String', str);
end

(b)

Figure 10.24 (@) Layout of a simple GUI with a list box, a pushbutton, and a text field.
(b) The callback functions for this GUI.

Figure 10.26a shows the layout for a simple GUI containing a slider and a
text field. The 'Min' property for this slider is set to zero, and the 'Max ' prop-
erty is set to one. When a user drags the slider, it automatically calls the function
Sliderl_cCallback, which is shown in Figure 10.26h. This function gets the
value of the slider from the 'Value' property and displays the value in the text
field. Figure 10.27 shows this GUI with the slider at some intermediate position
in its range.
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Figure 10.25 The GUI produced by program test_1listbox.
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function Sliderl_Callback (hObject, eventdata, handles)

% Find the value of the slider
value = get(handles.Sliderl, 'Value');

% Place the value in the text field
str = sprintf('%.2f',value);
set (handles.Labell, 'String', str);

(b

Figure 10.26 (a) Layout of a simple GUI with a slider and a text field. (5) The callback function for
this GUL

i

027

I

Figure 10.27 The GUI produced by program test_slider.
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Example 10.1—Temperature Conversion

Write a program that converts temperature from degrees Fahrenheit to degrees
Celsius and vice versa over the range 0—100°C, using a GUI to accept data and
display results. The program should include an edit box for the temperature in
degrees Fahrenheit, an edit box for the temperature in degrees Celsius, and a
slider to allow for the continuous adjustment of temperature. The user should be
able to enter temperatures in either edit box or by moving the slider, and all GUI
elements should adjust to the corresponding values.

SoLuTioN  To create this program, we will need a text field and an edit box for
the temperature in degrees Fahrenheit, another text field and an edit box for the
temperature in degrees Celsius, and a slider. We will also need a function to con-
vert degrees Fahrenheit to degrees Celsius, and a function to convert degrees
Celsius to degrees Fahrenheit. Finally, we will need to write a callback function
to support user inputs.

The range of values to convert will be 32-212°F or 0-100°C, so it will be
convenient to set up the slider to cover the range 0-100, and to treat the value of
the slider as a temperature in degrees C.

The first step in this process is to use guide to design the GUI. We can use
guide to create the five required GUI elements and locate them in approxi-
mately the correct positions. Then we can use the Property Inspector to perform
the following steps:

1. Select appropriate names for each GUI element and store them in
the appropriate Tag properties. The names will be 'Labell',
'Label2', 'Editl', 'Edit2',and 'Sliderl".

2. Store ' Degrees F'and 'Degrees C'in the String properties of the

two labels.

. Set the slider’s minimum and maximum limits to 0 and 100, respectively.

4. Store initial values in the String property of the two edit fields and in
the Value property of the slider. We will initialize the temperature to
32°F or 0°C, which corresponds to a slider value of 0.

5. Set the Name property of the figure containing the GUI to
'Temperature Conversion'.

w

Once these changes have been made, the GUI should be saved to file
temp_conversion. fig. This will produce both a figure file and a matching
M-file. The M-file will contain stubs for the three callback functions needed by
the edit fields and the slider. The resulting GUI is shown during the layout process
in Figure 10.28.

The next step in the process is to create the functions to convert degrees
Fahrenheit to degrees Celsius. Function to_c will convert temperature from
degrees Fahrenheit to degrees Celsius. It must implement the equation

5
deg C = §(degF - 32) (10-1)
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Figure 10.28 Layout of the temperature conversion GUI.

The code for this function is
function deg_c = to_c(deg_f)

% Convert degrees Fahrenheit to degrees C.
deg c = (5/9) * (deg_£f - 32);
end % function deg_c

Function to_f will convert temperature from degrees Celsius to degrees
Fahrenheit. It must implement the equation

9
deg F = gdeg C+ 32 (10-2)

The code for this function is
function deg f = to_f(deg_c)

% Convert degrees Celsius to degrees Fahrenheit.
deg_f = (9/5) * deg_c + 32;

Finally, we must write the callback functions to tie it all together. The func-
tions must respond either to the edit box or to the slider, and must update all three
components. (Note that we will update even the edit box that the user types into,
so that the data can be displayed with a consistent format at all times and to cor-
rect errors if the user types an out-of-range input value.)

There is an extra complication here, since the values entered into edit boxes
are strings, and we wish to treat them as numbers. If a user types the value 100
into an edit box, he or she has really created the string ' 100 ', not the number
100. The callback function must convert the strings into numbers so that the con-
version can be calculated. This conversion is done with the str2num function,
which converts a string into a numerical value.

In addition, the callback function will have to limit user entries to the valid
temperature ranges, which are 0—100°C and 32-212°F.

The resulting callback functions are shown in Figure 10.29.
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function Editl_cCallback (hObject, eventdata, handles)
% Update all temperature values

deg_f = str2num( get (hObject, 'String') );

deg_f = max( [ 32 deg_£f] );

deg f = min( [212 deg_f£f] );

deg_c = to_c(deg_f);

% Now update the fields

set (handles.Editl, 'String', sprintf('%.1f',deg_£f));
set (handles.Edit2, 'String',sprintf('%.1f',deg _c));
set (handles.Sliderl, 'Value',deg_c);

function Edit2_Callback (hObject, eventdata, handles)

% Update all temperature values

deg_c = str2num( get (hObject, 'String') );
deg_c = max( [ 0 deg_c] );

deg_c = min( [100 deg_c] );

deg_f to_f(deg_c);

% Now update the fields

set (handles.Editl, 'String',sprintf('%.
set (handles.Edit2, 'String',sprintf('$%.
set (handles.Sliderl, 'Value',deg_c);

function Sliderl_Callback (hObject, eventdata, handles)
% Update all temperature values

deg_c = get (hObject, 'Value') ;

deg_f = to_f(deg_c);

% Now update the fields

set (handles.Editl, 'String',sprintf('%.1f',deg f));
set (handles.Edit2, 'String',sprintf('%.1f',deg_c));
set (handles.Sliderl, 'Value',deg_c);

Figure 10.29 Callback functions for the temperature conversion GUI.

The program is now complete. Execute it and enter several different values
using both the edit boxes and the sliders. Be sure to use some out-of-range values.

Does it appear to be functioning properly?

-
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10.5 Additional Containers: Panels and Button Groups

MATLAB GUISs include two other types of containers: panels (created by the func-
tion uipanel) and button groups (created by the function uibuttongroup).

10.5.1 Panels

Panels are containers that can contain components or other containers, but they
do not have a title bar and cannot have menus attached. A panel can contain GUI
elements such as uicontrols, axes, other panels, or button groups. Any elements
placed in a panel will be positioned relative to the panel. If the panel is moved on
the GUI, then all of the elements within it are moved as well. Panels are a great
way to group related controls on a GUIL

A panel is created by a uipanel function. It can be added to a GUI by using
the panel tool ( [2]) in the Layout Editor.

Each panel has a title and is usually surrounded by an etched or beveled
line marking the edges of the panel. The title of a panel can be located at the
left, center, or right side of either the top or bottom of the panel. Samples of
panels with several combinations of title positions and edge styles are shown in
Figure 10.30.
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Figure 10.30 Examples of various panel styles.
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Let’s look at a simple example using panels. Suppose that we wanted to cre-
ate a GUI to plot the function y = ax? + bx + ¢ between two specified values
Xmin and x.,,.. The GUI should allow the user to specify the values a, b, ¢, Xpin,
and x,,,«. In addition, it should allow the user to specify the style, color, and thick-
ness of the line being plotted. These two sets of values (the ones specifying the
line and the ones specifying what the line looks like) are logically distinct, so we
can group them together in two panels on the GUI. One possible layout is shown
in Figure 10.31. (You will be asked to finish this GUI and create an operational
program in Exercise 10.7 at the end of the chapter.)

Table 10.4 contains a list of some important uipanel properties. These
properties can be modified by the Property Inspector during the design phase, or
they can be modified during execution with get and set functions.

10.5.2 Button Groups

Figure 10.31

Button groups are a special type of panel that can manage groups of radio but-
tons or toggle buttons to ensure that no more than one button in the group is on
at any time. A button group is just like any other panel, except that the button
group ensures that at most one radio button or toggle button is on at any given
time. If one of them is turned on, then the button group turns off any buttons that
were already on.
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Layout of the Plot Function GUI, using panels to group related characteristics together.
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Table 10.4 Important uipanel and uibuttongroup Properties

Property Description

BackgroundColor Specifies the color of the uipanel background. The value is either a predefined
colorsuchas 'r', 'g',or 'b', or else a three-element vector specifying the
red, green, and blue components of the color on a 0—1 scale. For example, the
color magenta would be specified by [1 0 17.

BorderType Type of border around the uipanel. Options are 'none', 'etchedin',
'etchedout', 'beveledin', 'beveledout', or 'line'. The default
border type is 'etchedin'.

BorderWidth Width of border around the uipanel.

FontAngle A string containing the font angle for the title text. Possible values are 'normal’,
'italic',and 'oblique’.

FontName A string containing the font name for the title text.

FontSize A number specifying the font size for the title text.

FontUnits The units in which the font size is defined. Possible choices are 'inches"',
'centimeters', 'mormalized', 'points',and 'pixels'.The
default font units are 'points’.

FontWeight A string containing the font weight for the title text. Possible values are
'light', 'normal', 'demi', and 'bold'. The default font weight is
'normal’'.

ForegroundColor Specifies the color of the title font and the border.

HighlightColor Specifies the three-dimensional border highlight color.

Position Specifies the position of a panel relative to its parent figure, uipanel, or
uibuttongroup, in the units specified by the 'units' property. This value
accepts a four-element vector in which the first two elements are the x and y posi-
tions of the lower-left corner of the panel, and the next two elements are the width
and height of the panel.

ShadowColor Specifies the color of the three-dimensional border shadow.

Tag The ‘name’ of the uipanel, which can be used to access it.

Title The title string.

TitlePosition Location of the title string on the uipanel. Possible values are 'lefttop',
'centertop', 'righttop', 'leftbottom', 'centerbottom', and
'rightbottom'. The default value is 'lefttop’.

Units The units used to describe the position of the uipanel. Possible choices are
'inches', 'centimeters', 'normalized', 'points', 'pixels’,
or 'characters'. The default units are 'normalized'.

Visible Specifies whether or not this uipanel is visible. Possible values are 'on' or

'‘off".
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Figure 10.32 A button group controlling three radio buttons.

A button group is created by a uibuttongroup function. It can be added
to a GUI by using the button group tool ([Z]) in the Layout Editor.

If a radio button or a toggle button is controlled by a button group, then the
user must attach the name of the function to execute when that button is selected
in a special property called SelectionChangeFcn. This callback is executed
by the GUI whenever a radio button or toggle button changes state. Do not place
the function in the usual Callback property, since the button group overwrites
the callback property for every radio button or toggle button that it controls.

Figure 10.32 shows a simple GUI containing a button group and three radio
buttons, labeled 'Option 1', 'Option 2', and 'Option 3'. When a user
clicks on one radio button in the group, the button is turned on, and all other but-
tons in the group are turned off.

10.6 Dialog Boxes

A dialog box is a special type of figure that is used to display information or to get
input from a user. Dialog boxes are used to display errors, provide warnings, ask
questions, or get user input. They are also used to select files or printer properties.
Dialog boxes may be modal or non-modal. A modal dialog box does not
allow any other window in the application to be accessed until it is dismissed,
while a normal dialog box does not block access to other windows. Modal dialog
boxes are typically used for warning and error messages that need urgent atten-
tion and cannot be ignored. By default, most dialog boxes are non-modal.
MATLAB includes many types of dialog boxes, the more important of which are
summarized in Table 10.5. We will examine only a few types of dialog box here, but
you can consult the MATLAB on-line documentation for the details of the others.

10.6.1 Error and Warning Dialog Boxes

Error and warning dialog boxes have similar calling parameters and behavior. In
fact, the only difference between them is the icon displayed in the dialog box.
The most common calling sequence for these dialog boxes is
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Table 10.5 Selected Dialog Boxes

Property Description

dialog Create a generic dialog box.

errordlg Displays an error message in a dialog box. The user must click the OK button to continue.

helpdlg Displays a help message in a dialog box. The user must click the OK button to continue.

inputdlg Displays a request for input data and accepts the user’s input values.

listdlg Allows a user to make one or more selections from a list.

printdlg Displays a printer selection dialog box.

questdlg Asks a question. This dialog box can contain either two or three buttons, which by default
are labeled Yes, No, and Cancel.

uigetfile Displays a file open dialog box. This box allows a user to select a file to open, but does not
actually open the file.

uiputfile Displays a file save dialog box. This box allows a user to select a file to save, but does not
actually save the file.

uisetcolor Displays a color selection dialog box.

uisetfont Displays a font selection dialog box.

warndlg Displays a warning message in a dialog box. The user must click the OK button to continue.

errordlg (error_string,box_title,create_mode) ;
warndlg (warning_string,box_title, create_mode) ;

The error_string or warning_string is the message to display to the
user, and the box_title is the title of the dialog box. Finally, create_mode
is a string that can be 'modal' or 'non-modal', depending on the type of
dialog box you wish to create.

For example, the following statement creates a modal error message that can-
not be ignored by the user. The dialog box produced by this statement is shown in
Figure 10.33.

errordlg('Invalid input wvalues!', 'Error Dialog Box',6 'modal') ;

=) Error Dialog Box _>_<_J

Q Invalid input values!

Figure 10.33 An error dialog box.
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10.6.2 Input Dialog Boxes

Input dialog boxes prompt a user to enter one or more values that may be used by
a program. They may be created with one of the following calling sequences:

answer = inputdlg (prompt)

answer = inputdlg(prompt,title)

answer = inputdlg (prompt,title,line_no)

answer = inputdlg(prompt,title,line_no,default_answer)

Figure 10.34

Here, prompt is a cell array of strings, with each element of the array corre-
sponding to one value that the user will be asked to enter. The parameter title
specifies the title of the dialog box, while 1 ine_no specifies the number of lines
to be allowed for each answer. Finally, default_answer is a cell array con-
taining the default answers that will be used if the user fails to enter data for a par-
ticular item. Note that there must be as many default answers as there are
prompts.

When the user clicks the OK button on the dialog box, his or her answers will
be returned as a cell array of strings in variable answer.

As an example of an input dialog box, suppose that we wanted to allow a user
to specify the position of a figure using an input dialog. The code to perform this
function would be

prompt{l} = 'Starting x position:';
prompt{2} = 'Starting y position:';
prompt{3} = 'Width:"';

prompt{4} = 'Height:';

title = 'Set Figure Position';

default_ans = {'50','50','180"','100"'};
answer = inputdlg(prompt,title,l,default_ans);

The resulting dialog box is shown in Figure 10.34.

-} Set Figure Position _ill
Starting x position:
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Startin: iticn:

| 50

Width:

|18[|
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A =]

An input dialog box.
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10.6.3 The uigetfile, uisetfile, and

uigetdir Dialog Boxes

The uigetfile and uisetfile dialog boxes allow a user to interactively
pick files to open or save. These functions use the standard file open or file save
dialog boxes for the particular operating system that MATLAB is running on.
They return strings containing the name and the path of the file but do not actu-
ally read or save it. The programmer is responsible for writing additional code for
that purpose.

The form of these two dialog boxes is

[filename, pathname] = uigetfile(filter_spec,title);
[filename, pathname] = uisetfile(filter_spec,title);

Parameter filter_spec is a string specifying the type of files to display in
the dialog box, such as '*.m', '*.mat"', and so forth. Parameter title is
a string specifying the title of the dialog box. After the dialog box executes,
filename contains the name of the selected file and pathname contains the
path of the file. If the user cancels the dialog box, £ilename and pathname
are set to zero.

The following script file illustrates the use of these dialog boxes. It prompts
the user to enter the name of a Mat-file, and then reads the contents of that file.
The dialog box created by this code on a Windows 2000 Professional system is
shown in Figure 10.35. (This is the standard open file dialog for Windows 2000
Professional. It will appear slightly different on Windows NT 4.0, Windows XP,
or Unix/Linux systems).

[filename, pathname] = uigetfile('*.mat', 'Load MAT File');
if filename ~= 0

end

Figure 10.35

load ([pathname filenamel]) ;

2lx

Look jn: I 2 chapll ﬂ & @y B

IMyFirstGUlL
“Itemp_conversion
! |test_objects.mat

test_program.mat

File name: | Open

Files of type: IMAT-MIes {=mat) ;I Cancel

A file open dialog box created by uigetfile.
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The uigetdir dialog box allows a user to interactively select a directory.
This function uses the standard directory selection dialog box for the particular
operating system that MATLAB is running on. It returns the name of the direc-
tory but does not actually do anything with it. The programmer is responsible for
writing additional code to use the directory name.

The form of this dialog box is

directoryname = uigetdir(start_path, title);

Parameter start_path is the path of the initially selected directory. If it is not
valid, the dialog box opens with the base directory selected. Parameter title is
a string specifying the title of the dialog box. After the dialog box executes,
directoryname contains the name of the selected directory. If the user can-
cels the dialog box, directoryname is set to zero.

The following script file illustrates the use of this dialog box. It prompts the
user to select a directory starting with the current MATLAB working directory.
This dialog box created by this code on a Windows 2000 Professional system is
shown in Figure 10.36. (The style of the box varies for different operating sys-
tems. It will appear slightly different on a Windows NT 4.0, Windows XP, or
Unix/Linux systems).

dirl = uigetdir('d:\matlab7\work', 'Select a directory');
if dirl ~= 0

cd(dirl) ;

end

10.6.4 The uisetcolor and uisetfont Dialog Boxes

The uisetcolor and uisetfont dialog boxes allow a user to interactively
select colors or fonts using the standard dialog boxes for the computer on which

2lx]

Select a directory

® (1 java B
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® L rtw
m-] simuink
& () stateflow —I
=0 sys
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Figure 10.36 A file open dialog box created by uigetdir.
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MATLAB is executing. The appearances of these boxes will vary for different
operating systems. They provide a standard way to select colors or fonts within a
MATLAB GUI.

Consult the MATLAB on-line documentation to learn more about these special-
purpose dialog boxes. We will use them in some of the end-of-chapter exercises.

Use dialog boxes to provide information or request input in GUI-based pro-
grams. If the information is urgent and should not be ignored, make the dialog
boxes modal.

10.7 Menus

Menus can also be added to MATLAB GUIs. A menu allows a user to select
actions without additional components appearing on the GUI display. They are
useful for selecting less commonly used options without cluttering up the GUI
with a lot of extra buttons.

There are two types of menu in MATLAB: standard menus, which are
pulled down from the menu bar at the top of a figure, and context menus, which
pop up over the figure when a user right-clicks the mouse over a graphical object.
We will learn how to create and use both types of menu in this section.

Standard menus are created with uimenu objects. Each item in a menu is a
separate uimenu object, including items in submenus. These uimenu objects
are similar to uicontrol objects, and they have many of the same properties
such as Parent, Callback, Enable, and so forth. A list of the more impor-
tant uimenu properties is given in Table 10.6.

Each menu item is attached to a parent object, which is a figure for the top-
level menus, or another menu item for submenus. All of the uimenus connected
to the same parent appear on the same menu, and the cascade of items forms
a tree of submenus. Figure 10.37a shows a typical MATLAB menu in operation,
and Figure 10.37b shows the relationship among the objects making up
the menu.

MATLAB menus are created using the Menu Editor, which can be selected by
clicking the (B8 ) icon on the toolbar in the guide Layout Editor. Figure 10.37¢
shows the Menu Editor with the menu items that generate this menu structure. The
additional properties in Table 10.6 that are not shown in the Menu Editor can be
set with the Property Editor (propedit).

Top-level context menus are created by uicontextmenu objects, and the
lower-level items within context menus are created by uimenu objects. Context
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Table 10.6 Important uimenu Properties

Property

Description

Accelerator

Callback

Checked

Enable

ForegroundColor

Label

Parent

Position

Separator

Tag
Visible

A single character specifying the keyboard equivalent for the menu item. The key-
board combination CTRL+key allows a user to activate the menu item from the
keyboard.

Specifies the name and parameters of the function to be called when the menu item
is activated. It the menu item has a submenu, the callback executes before the sub-
menu is displayed. If the menu item does not have submenus, then the callback
executes when the mouse button is released.

When this property is 'on', a checkmark is placed to the left of the menu item.
This property can be used to indicate the status of menu items that toggle between
two states. Possible values are 'on' or 'off'.

Specifies whether or not this menu item is selectable. If it not enabled, the menu
item will not respond to mouse clicks or accelerator keys. Possible values are 'on'
or 'off".

Set color of text in the menu item.

Specifies the text to be displayed on the menu. The ampersand character (&) can be
used to specify a keyboard mnemonic for this menu item; it will not appear on the
label. For example, the string '&File' will create a menu item displaying the text
'File' and responding to the F key.

The handle of the parent object for this menu item. The parent object could be a
figure or another menu item.

Specifies the position of a menu item on the menu bar or within a menu. Position 1
is the left-most menu position for a top-level menu, and the highest position within
a submenu.

When this property is 'on', a separating line is drawn above this menu item.
Possible values are 'on' or 'off'.

The “name” of the menu item, which can be used to access it.

Specifies whether or not this menu item is visible. Possible values are 'on' or
'off".

menus are basically the same as standard menus, except that they can be associ-
ated with any GUI object (e.g., axes, lines, text, figures).

10.7.1 Suppressing the Default Menu

Every MATLAB figure comes with a default set of standard menus. If you wish
to delete these menus from a figure and create your own menus, you must first
turn the default menus off. The display of default menus is controlled by the fig-
ure’s MenuBar property. The possible values of this property are 'figure’
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Table 10.7 Important uicontextmenu Properties

Property Description

Callback Specifies the name and parameters of the function to be called when the context menu is
activated. The callback executes before the context menu is displayed.

Parent The handle of the parent object for this context menu.
Tag The “name” of the context menu, which can be used to access it.
Visible Specifies whether or not this context menu is visible. This property is set automatically and

should normally not be modified.

and 'none"'. If the property is set to ' figure', then the default menus are
displayed. If the property is set to 'none', then the default menus are sup-
pressed. You can use the Property Inspector to set the MenuBar property for
your GUIs when you create them.

10.7.2 Creating Your Own Menus
Creating your own standard menus for a GUI is basically a three-step process.

1. First, create a new menu structure with the Menu Editor. Use the Menu
Editor to define the structure, giving each menu item a Label to display
and a unique Tag value. You can also specify whether or not there is a
separator bar between menu items, and whether or not each menu item has
a check mark by it. A dummy callback function will be generated auto-
matically for each menu item.

=10] ]
| Menu 1 Menu2
tem1 |
Submenu Item 1
Item 3 Submenu ftem 2

@

Figure 10.37 (a) A typical menu structure.



498 | Chapter 10 Graphical User Interfaces

figure
uimenu uimenu
(Menu 1) (Menu 2)
uimenu uimenu uimenu uimenu
(Item 1) (Item 2) (Item 3) (Item 1)
uimenu uimenu
(Submenu Item 1) (Submenu Item 2)
(b)
=) Menu Editor =10] x|
BEE|e—~1 |8
= B menu1 L:llt:'nl‘lll;mT
R e 1) 3
S = ltem 2

i = Submenu lterm 1
= Submenu ltem 2
- k=t jtlem 3
=[] Menu 2
b e

Menu Bar | Contexd Menus

Tag: |Menutllem1

Accelerator Ctrl iINnne b

I Separator above this tem
™ Check mark this tem

¥ Enable this itern

Callback: k' gcbo [) guidatafgcbo))  Wiew |
More options == I

0K I Help

©

Figure 10.37 (continued) (b) The relationships among the uimenu items creating the menu. (¢) The
Menu Editor structure that generated these menus.
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2. If necessary, edit the properties of each menu item using the Property
Inspector. The Property Inspector can be started by clicking the “More
Options” button on the Menu Editor. The most important menu item prop-
erties (Label, Tag, Callback, Checked, and Separator) can be set on the
Menu Editor, so the Property Inspector is usually not needed. However, if
you must set any of the other properties listed in Table 10.6, you will need
to use the Property Inspector.

3. Third, implement a callback function to perform the actions required by
your menu items. The prototype function is created automatically, but you
must add the code to make each menu item behave properly.

The process of building menus is illustrated in an example at the end of this
section.

Only the Label, Tag, Callback, Checked, and Separator properties
of a menu item can be set from the Menu Editor. If you need to set any of the
other properties, you will have to use the Property Inspector on the figure and
select the appropriate menu item to edit.

10.7.3 Accelerator Keys and Keyboard Mnemonics

MATLAB menus support accelerator keys and keyboard mnemonics.
Accelerator keys are “CTRL+key” combinations that cause a menu item to be
executed without opening the menu first. For example, the accelerator key “o0”
might be assigned to the File/Open menu item. In that case, the keyboard combi-
nation CTRL+o will cause the File/Open callback function to be executed.

A few CRTL+key combinations are reserved for the use of the host operat-
ing system. These combinations differ between PC and Unix systems; consult the
MATLAB on-line documentation to determine which combinations are legal for
your type of computer.

Accelerator keys are defined by setting the Accelerator property in a
uimenu object.

Keyboard mnemonics are single letters that can be pressed to cause a menu
item to execute once the menu is open. The keyboard mnemonic letter for a given
menu item is underlined!. For top-level menus, the keyboard mnemonic is

!On some versions of Windows, the underlines are hidden until the ALT key is held down. This behav-
ior can be modified. For example, the underlines can be made visible all the time in Windows 2000
by going to the Display item in the Control Panel, selecting the Effects tab, and clearing the item
“Hide keyboard navigation indicators until I use the Alt key.”
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Il
Fle Edit

Open

Figure 10.38 An example showing keyboard mnemonics. The menu shown was opened by typing the

keys ALT+f, and the Exit option could be executed by simply typing ‘x’.

executed by pressing ALT plus the mnemonic key at the same time. Once the top-
level menu is open, simply pressing the mnemonic key will cause a menu item to
execute.

Figure 10.38 illustrates the use of keyboard mnemonics. The File menu is
opened with the keys ALT+f, and once it is opened, the Exit menu item can be
executed by simply typing “x.”

Keyboard mnemonics are defined by placing the ampersand character (&)
before the desired mnemonic letter in the Label property. The ampersand will
not be displayed, but the following letter will be underlined and it will act as a
mnemonic key. For example, the Label property of the Exit menu item in
Figure 10.29 is 'E&xit'.

10.7.4 Creating Context Menus

Context menus are created in the same fashion as ordinary menus, except that the
top-level menu item is a uicontextmenu. The parent of a uicontextmenu
must be a figure, but the context menu can be associated with and respond to right
mouse clicks on any graphical object. Context menus are created using the
“Context Menu” selection on the Menu Editor. Once the context menu is created,
any number of menu items can be created under it.

To associate a context menu with a specific object, you must set the object’s
UIContextMenu property to the handle of the uicontextmenu. This is nor-
mally done using the Property Inspector, but it can be done with the set command,
which follows. If Hcm is the handle to a context menu, the following statements will
associate the context menu with a line created by a plot command:
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H1 = plot(x,v);
set (H1l, 'UIContextMenu',Hcm);

We will create a context menu and associate it with a graphical object in the fol-
lowing example.

>

Example 10.2—Plotting Data Points

Write a program that opens a user-specified data file and plots the line specified
by the points in the file. The program should include a File menu, with Open and
Exit menu items. The program should also include a context menu attached to the
line, with options to change the line style. Assume that the data in the file is in
the form of (x, y) pairs, with one pair of data values per line.

SoLuTION  This program should include a standard menu with Open and Exit menu
items, plus a set of axes on which to plot the data. It should also include a context
menu specifying various line styles, which can be attached to the line after it is plot-
ted. The options should include solid, dashed, dotted, and dash-dot line styles.

The first step in creating this program is to use guide to create the required
GUI, which is only a set of axes in this case (see Figure 10.39a). Then, we must
use the Menu Editor to create the File menu. This menu will contain Open and
Exit menu items, as shown in Figure 10.395. Note that we must use the Menu
Editor to set the Label and Tag and strings for each of these menu items. We
will also define keyboard mnemonics " “F” for File, “O” for Open, and “x” for
Exit, and place a separator between the Open and Exit menu items. Figure 10.395
shows the Exit menu item. Note that “x” is the keyboard mnemonic and that the
separator switch is turned on.

Next, we must use the Menu Editor to create the context menu. This menu
starts with a uicontextmenu object, with four menu items attached to it (see
Figure 10.39¢). Again, we must set the Label and Tag strings for each of these
menu items.

At this point, the GUI should be saved as plot_line.fig, and
plot_line.m will be automatically created. Dummy callback functions will be
automatically created for the menu items.

After the GUI is created, we must implement six callback functions for the
Open, Exit, and linestyle menu items. The most difficult callback function is
the response to the File/Open menu item. This callback must prompt the user
for the name of the file (using a uigetfile dialog box) and to open the file,
read the data, save it into x and y arrays, and close the file. Then, it must plot the
line and save the line’s handle as application data so that we use it to modify
the line style later. Finally, it must associate the context menu with the line. The
FileOpen_Callback function is shown in Figure 10.40. Note that the func-
tion uses a dialog box to inform the user of file open errors.
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Figure 10.39 (a) The layout for plot_1line. (b) The File menu in the Menu Editor.
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Figure 10.39 (continued) (c) The context menu in the Menu Editor.

function varargout = FileOpen_Callback (h, eventdata,
handles, varargin)

% Get the file to open

[filename, pathname] = uigetfile('*.dat', 'Load Data'):;

if filename ~= 0
% he 1 fil .
.Open the input file . Get file
filename = [pathname filename]; name to open
[fid,msg] = fopen(filename, 'rt'); \ P
% Ch(.eck to see of the open failed. Open file
if fid < 0

% There was an error--tell user.
str = ['File ' filename ' could not be opened.'];
title = 'File Open Failed';

errordlg(str,title, 'modal'); \ Error message

if open fails
else

Figure 10.40 The File/Open callback function.
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o

File opened successfully. Read the (x,y) pairs from
the input file. Get first (x,y) pair before the
loop starts.

in,count] = fscanf(£fid, '%g',2); == Read data
i=20;

o

He— 00

while ~feof (fid)
ii = 1i + 1;
x(11i) = in(1);
y(ii) = in(2);

% Get next (x,y) pair
[

in,count] = fscanf(fid, '%g',2):
end
% Data read in. Close file.
fclose(fid) ; Plot line

% Now plot the data.

hline = plot(x,y,'Linewidth',3);

xlabel ('x"');

ylabel('y');
grid on;
% Associate the context menu with line \ Set context
set (hline, 'Uicontextmenu',handles.ContextMenul) ; menu

% Save the line's handle as application data

handles.hline = hline;
guidata(gcbf, handles); ‘  Save handle

as app data

end

Figure 10.40 (continued)

The remaining callback functions are very simple. The FileExit_
Callback function simply closes the figure, and the line style functions simply
set the line style. When the user right-clicks a mouse button over the line, the
context menu will appear. If the user selects an item from the menu, the result-
ing callback will use the line’s saved handle to change its properties. These five
functions are shown in Figure 10.41.

The output of the final program is shown in Figure 10.42. Experiment with
it on your own computer to verify that it behaves properly.
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function varargout = FileExit_Callback(h, eventdata,
handles, varargin)
close (gcbf) ;

function varargout = LineSolid_Callback (h, eventdata,
handles, varargin)
set (handles.hline, 'LineStyle', '-'); function varargout =
LineDashed_Callback (h, eventdata,
handles, varargin)
set (handles.hline, 'LineStyle', '--"');

function varargout = LineDotted_Callback(h, eventdata,
handles, varargin)
set (handles.hline, 'LineStyle', ':");

function varargout = LineDashDot_Callback(h, eventdata,
handles, varargin)
set (handles.hline, 'LineStyle', '-.");

Figure 10.41 The remaining callback functions in plot_line.

J plot_line

Figure 10.42 The GUI produced by program plot_line.
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This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 10.1 through 10.7. If you have trouble with
the quiz, reread the section, ask your instructor, or discuss the material
with a fellow student. The answers to this quiz are found in the back of
the book.

1. List the types of graphical components discussed in this chapter.
What is the purpose of each one?

2. List the types of containers discussed in this chapter. What are the
differences among them?

3. What is a callback function? How are callback functions used in
MATLAB GUIs?

4. Describe the steps required to create a GUI-based program.
5. Describe the purpose of the handles data structure.

6. How is application data saved in a MATLAB GUI? Why would you
want to save application data in a GUI?

7. How can you make a graphical object invisible? How can you turn
a graphical object off so that it will not respond to mouse clicks or
keyboard input?

8. Which of the GUI components described in this chapter respond to
mouse clicks? Which ones respond to keyboard inputs?

9. What are dialog boxes? How can you create a dialog box?
10. What is the difference between a modal and a non-modal dialog box?

11. What is the difference between a standard menu and a context
menu? What components are used to create these menus?

12. What are accelerator keys? What are mnemonics?

10.8 Tips for Creating Efficient GUIs

This section lists a few miscellaneous tips for creating efficient graphical user
interfaces.

10.8.1 Tool Tips

MATLAB GUIs support tool tips, which are small help windows that pop up
beside a uicontrol GUI object whenever the mouse is held over the object for
a while. Tool tips are used to provide a user with quick help about the purpose of
each object on a GUI.
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A tool tip is defined by setting an object’s TooltipString property to the
string that you wish to display. You will be asked to create tool tips in the end-of-
chapter exercises.

Define tool tips to provide users with helpful hints about the functions of your
GUI components.

10.8.2 Pcode

The first time that MATLAB executes a function during a program’s execution,
it compiles (or parses) the function into an intermediate code called pcode
(which is short for pseudocode), and then executes the pcode in its run-time
interpreter. Once a function has been compiled, it remains in MATLAB’s mem-
ory, and it can be executed over and over again without having to be recompiled.
However, the next time MATLAB executes, the function will have to be com-
piled again.

The penalty associated with this initial compilation is relatively small, but
it becomes more and more significant as function sizes get larger. Since the
functions that define a GUI are typically quite large, the compilation penalty for
GUI-based programs is relatively larger than for other types of programs. In
other words, the GUIs run more slowly because of this initial compilation time.

Fortunately, there is a way to avoid this extra penalty. It is possible to pre-
compile your MATLAB functions and script files into pcode and save the pcode
in files for immediate execution in the future. Executing the pcode files saves the
initial compilation time and so makes your programs faster.

MATLAB creates pcode files with the command pcode. This command
takes one of the following forms:

pcode funl.m fun2.m fun3.m
pcode *.m

The first form compiles the named files, whereas the second form compiles every
M-file in the current directory. The compiled output is saved with the file extent
“p.” For example, if you compile the file foo.m, the compiled output will be
stored in file foo.p.

If a function exists as both an M-file and a p-file, MATLAB will automati-
cally execute the p-file version since it will be faster. However, if you modify the
M-file, you must remember to manually recompile it, or the program will contin-
ue to execute your old code!

Compiling files to pcode can have an additional advantage as well. You can

protect your investment in your source code by distributing the program to others
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in the form of pcode files. They may be freely executed, but it is not easy for
someone to reengineer the files and take your ideas.

I

Once a program is working properly, you may use the pcode command to pre-
compile its M-files and increase the program’s speed.

If you change an M-file that has been compiled into pcode, always remember to
recompile the file. Otherwise, you will continue to execute your old, unmodi-
fied code!

10.8.3 Toolbars

MATLAB GUIs can also support foolbars. A toolbar is a row of special pushbut-
tons or toggle buttons along the top of a figure, just below the menu bar. Each
button has a small figure or icon on it, representing its function. We have seen
examples of toolbars in most of the MATLAB figures produced in this book. For
example, Figure 10.43 shows a simple plot displaying the default toolbar.

Every figure has a ToolBar property, which determines whether or not the
default figure toolbar is displayed. The possible values of this property are
'none', 'auto', and 'figure'. If the property is 'none’', the default

=lolx|
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Figure 10.43 A MATLAB figure showing the default toolbar.
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toolbar is not displayed. If the property is ' figure"', the default toolbar is dis-
played. If the property is 'auto', the default toolbar is displayed unless the user
defines a custom toolbar. If the property is 'auto' and the user has defined a
custom toolbar, then it will be displayed instead of the default toolbar.

A programmer can create his or her own toolbar using the uitoolbar
function, and can add the toolbar equivalent of pushbuttons and toggle buttons to
the toolbar using the uipushtool and uitoggletool functions. The user-
defined toolbar can be displayed in addition to or instead of the default figure
toolbar.

Unfortunately, toolbars are not yet integrated into guide. If you want to use
toolbars in your GUIs, you must create them manually. More details about these
functions can be found in the MATLAB on-line help documentation.

10.8.4 Additional Enhancements

GUI-based programs can be much more sophisticated than we have described
in this introductory chapter. In addition to the Callback property that we
have been using in the chapter, uicontrols support four other types
of callbacks: CreateFcn, DeleteFcn, ButtonDownFcn, and
KeyPressFcn. MATLAB figures also support three important types of
callbacks: WindowButtonDownFcn, WindowButtonMotionFcn, and
WindowButtonUpFcn.

The createFcn property defines a callback that is automatically called
whenever an object is created. It allows a programmer to customize his or her
objects as they are created during program execution. Since this callback is exe-
cuted before the object is completely defined, a programmer must specify the
function to execute as a default property of the root before the object is created.
For example, the following statement will cause the function function_name
to be executed each time a uicontrol is created. The function will be called
after MATLAB creates the object’s properties, so they will be available to the
function when it executes.

set (0, 'DefaultUicontrolCreateFcn', 'function_name')

The DeleteFcn property defines a callback that is automatically called
whenever an object is destroyed. It is executed before the object’s properties are
destroyed, so they will be available to the function when it executes. This callback
provides the programmer with an opportunity to do custom clean-up work.

The ButtonDownFcn property defines a callback that is automatically
called whenever a mouse button is pressed within a five-pixel border around a
uicontrol. If the mouse button is pressed on the uicontrol, the Callback
is executed. Otherwise, if it is near the border, the But tonDownFcn is executed.
If the uicontrol is not enabled, the ButtonDownFcn is executed even for
clicks on the control.

The ReyPressFcn property defines a callback that is automatically called
whenever a key is pressed while the specified object is selected or highlighted.
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This function can find out which key was pressed by checking the
CurrentCharacter property of the enclosing figure, or else by checking the
contents of the event data structure passed to the callback. It can use this infor-
mation to change behavior, depending on which key was pressed.

The figure-level callback functions WindowButtonDownFcn,
WindowButtonMotionFcn, and WindowButtonUpFcn allow a program-
mer to implement features such as animations and drag-and-drop, since the callbacks
can detect the initial, intermediate, and final locations at which the mouse button is
pressed. They are beyond the scope of this book, but are well worth learning about.
Refer to the Creating Graphical User Interfaces section in the MATLAB user
documentation for a description of these callbacks.

Example 10.3—Creating a Histogram GUI

Write a program that opens a user-specified data file and calculates a histogram
of the data in the file. The program should calculate the mean, median, and stan-
dard deviation of the data in the file. It should include a File menu, with Open
and Exit menu items. It should also include a means to allow the user to change
the number of bins in the histogram.

Select a color other than the default color for the figure and the text label
backgrounds, use keyboard mnemonics for menu items, and add tool tips where
appropriate.

SorutioN  This program should include a standard menu with Open and Exit
menu items, a set of axes on which to plot the histogram, and a set of six text
fields for the mean, median, and standard deviation of the data. Three of these
text fields will hold labels, and three will hold the read-only mean, median and
standard deviation values. It must also include a label and an edit field to allow
the user to selected the number of bins to display in the histogram.

We will select a light blue color [0.6 1.0 1.0] for the background of
this GUI. To make the GUI have a light-blue background, this color vector
must be loaded into the 'Color' property of the figure and into the
'BackgroundColor' property of each text label with the Property
Inspector during the GUI layout. Since MATLAB GUIs automatically reset
their figure color to match the system default, we will also need to set this
figure color in the histGUI_OpeningFcn callback, which is called just
before the figure becomes visible.

The first step in creating this program is to use guide to lay out the required
GUI (see Figure 10.44a). Then, use the Property Inspector to set the properties of
the seven text fields and the edit field. The fields must be given unique tags so
that we can locate them from the callback functions. Next, use the Menu Editor
to create the File menu (see Figure 10.44b). Finally, the resulting GUI should be
saved as histGUT, creating histGUI.fig and histGUI.m.
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After histGUI .m has been saved, the function histGUI_OpeningFcn
must be edited to initialize the background color of the figure and to save the ini-
tial number of histogram bins in the handles structure. The modified code for

the opening function is
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% ——- Executes just before histGUI is made visible.
function histGUI_OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

oe

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

varargin command line arguments to histGUI (see VARARGIN)

Choose default command line output for histGUI
handles.output = hObject;

o

% Set the figure background color
set (hObject, 'Color',[0.6 1 1]);

% Set the initial number of bins
handles.nbins = 11;

% Update handles structure
guidata (hObject, handles);

Next, we must create callback functions for the File/Open menu item, the
File/Exit menu item, and the “number of bins” edit box.

The File/Open callback must prompt the user for a file name and then read the
data from the file. It must calculate and display the histogram and update the statis-
tics text fields. Note that the data in the file must also be saved in the handles
structure, so that it will be available for recalculation if the user changes the number
of bins in the histogram. The callback function to perform these steps is shown here:

function Open_Callback (hObject, eventdata, handles)

% hObject handle to Open (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

»°

% Get file name
[filename,path] = uigetfile('*.dat',6 'Load Data File');
if filename ~= 0

% Read data
x = textread([path filename], '%f');

% Save in handles structure
handles.x = x;
guidata(gcbf, handles);

% Create histogram
hist (handles.x,handles.nbins);

% Set axis labels
xlabel ('\bfvalue') ;
yvlabel ('\bfCount') ;

% Calculate statistics
ave = mean (x) ;
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med = median (x) ;
sd = std(x);
n = length(x);

% Update fields
set (handles.MeanData, 'String', sprintf ('%7.2f',ave));

set (handles.MedianData, 'String', sprintf ('%$7.2f',med)) ;

set (handles.StdDevData, 'String',sprintf ('%7.2f',sd));

set (handles.TitleString, 'String', ['Histogram (N = 'int2str(n)')']);
end

The File/Exit callback is trivial. All it has to do is close the figure.

function Exit_Callback (hObject, eventdata, handles)

% hObject handle to Exit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close(gcbf) ;

The NBins callback must read a numeric input value, round it off to the
nearest integer, display that integer in the Edit Box, and recalculate and display
the histogram. Note that the number of bins must also be saved in the handles
structure, so that it will be available for recalculation if the user loads a new data
file. The callback function to perform these steps is shown here:

function NBins_Callback (hObject, eventdata, handles)

% hObject handle to NBins (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Get number of bins, round to integer, and update field
nbins = str2num(get (hObject, 'String'));
nbins = round(nbins) ;
if nbins < 1
nbins = 1;
end
set (handles.NBins, 'String', int2str (nbins));

% Save in handles structure
handles.nbins = nbins;
guidata(gcbf, handles);

% Re-display data, if available
if handles.nbins > 0 & ~isempty (handles.x)

% Create histogram
hist (handles.x,handles.nbins);

end
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Figure 10.45 The GUI produced by program histGUTI.

The final program is shown in Figure 10.45. Experiment with it on your own

computer to verify that it behaves properly. <

10.9 Summary

In Chapter 10, we learned how to create MATLAB graphical user interfaces. The
three fundamental parts of a GUI are components (uicontrols, uimenus,
uilcontextmenus, toolbars, and axes), containers to contain them, and call-
backs to implement actions in response to mouse clicks or keyboard inputs.

The standard GUI components created by uicontrol include text fields,
edit boxes, pushbuttons, toggle buttons, checkboxes, radio buttons, popup menus,
list boxes, and sliders. The standard GUI components created by uimenu and
uicontextmenu are standard menus and context menus.

MATLAB containers consist of figures, panels, and button groups. Figures
are created by the figure function. They are separate windows, complete with
title bars, menus, and toolbars. Panels are created by the uipanel function.
They are containers that reside within figures or other containers and do not have
title bars, menus, or toolbars. Panels can contain uicontrol components and
other panels or button groups, and those items will be laid out with respect to the
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panel itself. If the panel is moved, all of its contents move with it. Button groups
are created by the uibuttongroup function. They are special types of pan-
els that control any radio buttons or toggle buttons contained within them to
ensure that at most one of them can be on at any time.

Any of these components and containers can be placed on a figure using
guide (the GUI Development Environment tool). Once the GUI layout has been
completed, the user must edit the object properties with the Property Inspector,
and then write a callback function to implement the actions associated with each
GUI object.

Dialog boxes are special figures used to display information or to get input
from a user. Dialog boxes are used to display errors, provide warnings, ask ques-
tions, or get user input. They are also used to select files or printer properties.

Dialog boxes may be modal or non-modal. A modal dialog box does not
allow any other window in the application to be accessed until it is dismissed,
while a normal dialog box does not block access to other windows. Modal dialog
boxes are typically used for warning and error messages that need urgent atten-
tion and cannot be ignored.

Menus can also be added to MATLAB GUIs. A menu allows a user to select
actions without additional components appearing on the GUI display. They are
useful for selecting less commonly used options without cluttering up the GUI
with a lot of extra buttons. Menus are created with the Menu Editor, and then the
programmer must write a callback function to implement the actions associated
with each menu item. For each menu item, the user must use the Menu Editor to
set at least the Label and Tag properties.

Accelerator keys and keyboard mnemonics can be used to speed the operation
of windows.

Compiling MATLAB functions to pcode can speed the execution of a program.
It also protects your investment in your source code by allowing you to distribute
the program to others in the form of pcode files. They may be freely executed, but
it is not easy for someone to reengineer the files and take your ideas.

MATLAB uicontrol components have several additional properties
for specifying less common types of callbacks, including CreateFcn,
DeleteFcn, ButtonDownFcn, and KeyPressFcn. MATLAB figures
also have several properties for specifying types of callbacks,
including WindowButtonDownFcn, WindowButtonMotionFcn, and
WindowButtonUpFcn. These various callbacks allow a user to customize
the appearance and response of these MATLAB GUIs to various user inputs.

10.9.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB
GUIs.

1. Use guide to lay out a new GUI, and use the Property Inspector to set
the initial properties of each component, such as the text displayed on the
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component, the color of the component, and the name of the callback
function, if required.

. After creating a GUI with guide, manually edit the resulting function to

add comments describing its purpose and components, and to implement
the function of callbacks.

. Store GUI application data in the handles structure so that it will auto-

matically be available to any callback function.

. If you modify any of the GUI application data in the handles structure,

be sure to save the structure with a call to guidata before exiting the
function where the modifications occurred.

. Use dialog boxes to provide information or request input in GUI-based

programs. If the information is urgent and should not be ignored, make
the dialog boxes modal.

. Define tool tips to provide users with helpful hints about the functions of

your GUI components.

. One a program is working properly, you may use the pcode command to

precompile its M-files and increase the program’s speed.

10.9.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one. Also, refer to the
summaries of graphical object properties in Tables 10.2, 10.3, 10.4, 10.6, and 10.7.

axes
dialog
errordlg
helpdlg
findobj
gcbf

gcbo
guidata
guihandles
guide
inputdlg
printdlg
questdlg

uilbuttongroup

Function to create a set of axes.

Create a generic dialog box.

Display an error message.

Display a help message.

Find a GUI object by matching one or more of its properties.
Get callback figure.

Get callback object.

Save GUI application data in a figure.

Get the handles structure from the application data stored in a figure.
GUI Development Environment tool.

Dialog to get input data from the user.

Print dialog box.

Dialog box to ask a question.

Create a button group container.
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uicontrol Function to create a GUI object.

uicontextmenu Function to create a context menu.

uigetdir Dialog box to select a directory.

uigetfile Dialog box to select an input file.

uimenu Function to create a standard menu, or a menu item on either a standard menu or a

context menu.

uipanel Create a panel.

uipushtool Create a pushbutton on a user-defined toolbar.
uiputfile Dialog box to select an output file.
uisetcolor Displays a color selection dialog box.
uisetfont Displays a font selection dialog box.
uitoggletool Create a toggle button on a user-defined toolbar.
uitoolbar Create a user-defined toolbar.

warndlg Displays a warning message.

10.10 Exercises

10.1 Explain the steps required to create a GUI in MATLAB.

10.2 What types of components can be used in MATLAB GUIs? What func-
tions create them, and how do you select a particular component type?

10.3 What types of containers can be used in MATLAB GUIs? What function
creates each of them?

10.4 How does a callback function work? How can a callback function locate
the figures and objects that it needs to manipulate?

10.5 Create a GUI that uses a standard menu to select the background color dis-
played by the GUI. Include accelerator keys and keyboard mnemonics in
the menu design. Design the GUI so that it defaults to a green background.
(Note: You will need to use the figure’s OpeningFcn to set the back-
ground color, since MATLAB defaults the figure color to the system
default color.)

10.6 Create a GUI that uses a context menu to select the background color dis-
played by the GUI. Design the GUI so that it defaults to a yellow back-
ground.

10.7 Write a GUI program that plots the equation y(x) = ax* + bx + c. The
program should include a set of axes for the plot and should include a
panel containing GUI elements to input the values of a, b, ¢, and the min-
imum and maximum x to plot. A separate panel should contain controls to
set the style, color, and thickness of the line being plotted. Include tool tips
for each of your GUI elements.
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10.8

10.9

10.10

10.11

10.12

10.13

Modify the GUI of Exercise 10.7 to include a menu. The menu should
include two submenus to select the color and line style of the plotted
line, with a check mark beside the currently selected menu choices. The
menu should also include an “Exit” option. If the user selects this option,
the program should create a modal question dialog box asking “Are You
Sure?”, with the appropriate responses. Include accelerator keys and
keyboard mnemonics in the menu design. (Note that the menu items
duplicate some GUI elements; so if a menu item is selected, the corre-
sponding GUI elements must be updated too, and vice versa.)

Modify the List Box example in Section 10.4.7 to allow for multiple
selections in the list box. The text field should be expanded to multiple
lines, so that it can display a list of all selections whenever the “Select”
button is clicked.

Random Number Distributions Create a GUI to display the distribu-
tions of different types of random numbers. The program should create
the distributions by generating an array of 1,000,000 random values from
a distribution and using function hist to create a histogram. Be sure to
label the title and axes of the histogram properly.

The program should support uniform, Gaussian, and Rayleigh dis-
tributions, with the distribution selection made by a popup menu. In
addition, it should have an edit box to allow the user to select the num-
ber of bins in the histogram. Make sure that the values entered in the edit
box are legal (the number of bins must be a positive integer).

Modify the temperature conversion GUI of Example 10.1 to add a
“thermometer”. The thermometer should be set of rectangular axes
with a red “fluid” level corresponding to the current temperature in
degrees Celsius. The range of the thermometer should be 0°-100°C.
Modify the temperature conversion GUI of Exercise 10.11 to allow you
to adjust the displayed temperature by clicking the mouse. (Warning:
This exercise requires material not discussed in this chapter. Refer to the
CurrentPoint property of axes objects in the on-line MATLAB
documentation.)

Create a GUI that contains a title, and four pushbuttons grouped within
a panel. The pushbuttons should be labeled “Title Color,” “Figure Color,”
“Panel Color,” and “Title Font.” If the “Title Color” button is selected,
open a uisetcolor dialog box, and change the title text to be in the
selected color. If the “Figure Color” button is selected, open a uiset-
color dialog box, and change the figure color and the title text back-
ground color to be the selected color. If the “Panel Color” button is
selected, open a uisetcolor dialog box and change the panel back-
ground to be in the selected color. If the “Title Font” button is selected,
open a uisetfont dialog box and change the title text to be in the
selected font.
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Create a GUI that contains a title and a button group. The button group
will be titled “Style,” and it should contain four radio buttons labeled
“Plain,” “Italic,” “Bold,” and “Bold Italic”. Design the GUI so that the
style in the currently selected radio button is applied to the title text.
Least-Squares Fit Create a GUI that can read an input data set from a
file and perform a least-squares fit to the data. The data will be stored in
a disk file in (x, y) format, with one x and one y value per line. Perform
the least-squares fit with the MATLAB function polyfit, and plot
both the original data and the least-squares fitted line. Include two
menus: File and Edit. The File menu should include File/Open and
File/Exit menu items, and the user should receive an “Are You Sure?”
prompt before exiting. The Edit menu item should allow the user to
customize the display, including line style, line color, and grid status.
Modify the GUI of the previous exercise to include an Edit/Preferences
menu item that allows the user to suppress the “Are You Sure?” exit
prompt.

Modify the GUI of the previous exercise to read and write an initializa-
tion file. The file should contain the line style, line color, grid choice
(on/off), and exit prompt choice made by the user on previous runs.
These choices should be automatically written out and saved when the
program exits via the File/Exit menu item, and they should be read in and
used whenever the program is started again.
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The MATLAB
Compiler

The MATLAB Compiler is a tool that can convert your MATLAB programs into
stand-alone applications that can be distributed to users who do not have MATLAB
installed on their computers. It can also be used to convert collections of MATLAB
functions into shared libraries that can be called from C or C++ programs.

The programs produced by the MATLAB compiler are similar to Java pro-
grams. Java programs need a Java Virtual Machine to be installed on the host
computer before they can be executed. Similarly, compiled MATLAB programs
need a MATLAB Component Runtime (MCR) to be installed on the host com-
puter before they can be executed. The MCR is similar in function to a Java
Virtual Machine; it is a free special-purpose version of MATLAB that is used to
execute compiled MATLAB programs.

When a MATLAB program is compiled, the MATLAB compiler creates two
output files. One of the files is an executable file, and the other one is a Component
Technology File (CTF), which contains compressed and encrypted versions of the
M-files and related data files that are used by the application. When the MATLAB
program is started for the first time on a new computer, it unpacks the contents of
the CTF into a subdirectory and then calls the MATLAB runtime to execute the
M-files in exactly the same manner as the original program would have run.

The MATLAB compiler provides a number of important advantages for pro-
grammers and users:

I. Compiled programs can be executed by any number of users on their
own computers without requiring MATLAB licenses.

2. The algorithms inside the programs are hidden, so a programmer can
protect his or her intellectual property while allowing the program to be
used by various users.

521
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3. Programmers can take advantage of the many built-in MATLAB functions
to make their programming tasks easier.

The MATLAB compiler also has a number of important limitations that a
programmer must be aware of:

I. The starting M-file of any compiled program must be a function, not a
script file. If an existing program starts with a script file, then that file
must be converted into a function before attempting to compile it.

2. Not all built-in MATLAB functions and tool boxes are available in compiled
MATLAB programs.The missing functions are mostly related to the MATLAB
Command Window, the help subsystem, or third-party licensed packages.

3. The MATLAB Component Runtime (MCR) must be installed before a
compiled program can be executed.

I1.]1 Setting Up the MATLAB Compiler

» mbuild

When the MATLAB compiler is installed on a computer used to develop appli-
cations, it must be set up before it can be used. This is accomplished by typing
the command “mbuild -setup” in the MATLAB Command Window. The
mbuild function will search for available C and C++ compilers on your com-
puter and ask you which one to use when compiling MATLAB programs.

The example that follows is taken from the computer used to write this textbook.
This computer has four compilers on it: Microsoft Visual C++ 6.0, Microsoft Visual
C++ .NET 2003, Microsoft Visual C++ 2005, and the LCC C compiler. Note
that the LCC C compiler is distributed with the MATLAB compiler, so any com-
puter that has the MATLAB compiler installed will at least have that choice
available. In this example, the MATLAB compiler has been configured to use the
LCC compiler.

-setup

Please choose your compiler for building standalone MATLAB

applications:

Would you like mbuild to locate installed compilers [y]/n? y

Select a

compiler:

[1] Lecc-win32 C 2.4.1 in C:\PROGRA~1\MATLAB\R2007a\sys\lcc
[2] Microsoft Visual C+ 2005 in C:\PROGRA~1\Microsoft Visual Studio 8

[3] Micro

soft Visual C++ .NET 2003 in C:\PROGRA~1\Microsoft Visual

Studio .NET 2003

[4] Micro
[0] None

Compiler:

soft Visual C++ 6.0 in C:\ PROGRA~1\Microsoft Visual Studio

Please verify your choices: 1
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Compiler: Lcc-win32 C 2.4.1
Location: C:\PROGRA~1\MATLAB\R2007a\sys\lcc

Are these correct?([yl/n): ¥

Trying to update options file: C:\Documents and Settings\
schapman\Application Data\MathWorks\MATLAB\R2007a\compopts.bat
From template:
C:\PROGRA~1\MATLAB\R2007a\bin\win32\mbuildopts\lcccompp.bat

Done. ..

I

Always set up the MATLAB compiler using the mbuild -setup command
before trying to compile programs.

11.2 Setting Up Computers that Run
Compiled Applications

Before a computer is used to execute compiled MATLAB applications, the
MATLAB Component Runtime (MCR) must be installed. On Windows-based
computers, the MCR is installed using file MCRInstaller . exe. The application
creator needs to distribute this file to all users along with the application itself.

The MATLAB Component Runtime (MCR) must be installed before a computer
can be used to run a compiled MATLAB application. Always distribute the
runtime together with your compiled applications.

1.3 Using the MATLAB Compiler

We will now learn how to use the MATLAB compiler to create a stand-alone appli-
cation program. The steps involved in creating and running compiled MATLAB
programs are as follows:

1. Copy all of the M-files and supporting data files for the program into a
single directory.

2. If the starting point for the program is a script file, convert it into a func-
tion by adding a function statement to the top of the file.
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3. Compile the program using the mcc command. This will produce an
executable file to start the program and a CTF file containing com-
pressed and encrypted copies of the MATLAB M-files and supporting
data.

4. Copy the executable file and CTF file to the computer where the program
is to be executed.

5. Install the MATLAB Component Runtime if it is not already present on
that computer.

6. Run the program.

11.3.1 A Simple Example

To illustrate these steps, we will reexamine the selection sort function ssort and
the driver program test_ssort developed in Chapter 5. These M-files are
reproduced in Figures 11.1 and 11.2.

The first step in building a compiled version of this sort program is to create
a directory called test_ssort, and then to copy the test_ssort.m and
ssort .m files from Chapter 5 into that directory. After copying, the contents of
the directory are as shown here:

D:\work\test_ssort>dir
Volume in drive D is DATA
Volume Serial Number is E46A-233F

Directory of D:\work\test_ssort

26/05/2007 03:09 PM <DIR>
26/05/2007 03:09 PM <DIR> ..
19/05/2007 04:57 PM 1,293 ssort.m

19/05/2007 04:58 PM 1,132 test_ssort.m
2 File(s) 2,425 bytes
2 Dir(s) 18,683,101,184 bytes free

The next step is to convert the script file test_ssort.m into a function by
adding the line “function test_ssort ()” atthe top of the file.

Next, the program should be compiled using the mcc command. This
command can be executed either in the MATLAB Command Window or at an
ordinary command prompt outside of MATLAB. The syntax required to compile
this program is

mcc -m test_ssort.m

The —m switch means that we are creating a stand-alone C application which will
be compiled with the LCC compiler, and test_ssort.m is the name of the
function that will be executed first in the program. Note that we do rot have
to include the file ssort.m in the command, because the MATLAB compiler
automatically checks for all referenced M-files and includes them with the main
function in the compilation.
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function out = ssort(a)

%SSORT Selection sort data in ascending order
Function SSORT sorts a numeric data set into
ascending order. Note that the selection sort
is relatively inefficient. DO NOT USE THIS
FUNCTION FOR LARGE DATA SETS. Use MATLAB's
"sort" function instead.

oo

o

o0 0P o°

Define variables:

o° o0 o°

a -- Input array to sort
ii -- Index variable
% iptr -- Pointer to min value
% 33 -- Index variable
% nvals -- Number of values in "a"
% out -- Sorted output array
% temp -- Temp variable for swapping
% Record of revisions:
% Date Programmer Description of change
% ==== —========= ——===================
% 02/02/07 S. J. Chapman Original code

% Get the length of the array to sort
nvals = size(a,2);

% Sort the input array

for ii = 1l:nvals-1

% Find the minimum value in a(ii) through a(n)

iptr = ii;
for jj = ii+l:nvals
if a(jj) < al(iptr)
iptr = jj;
end
end

iptr now points to the minimum value, so swap a(iptr)

%
%

with a(ii) if ii ~= iptr.
if ii ~= iptr
temp = a(ii);
a(ii) = a(iptr);
a(iptr) = temp;
end

end

% Pass data back to caller
out = aj;

Figure 11.1 The selection sort function ssort.
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function out = ssort(a)

%$SSORT Selection sort data in ascending order
Function SSORT sorts a numeric data set into
ascending order. Note that the selection sort
is relatively inefficient. DO NOT USE THIS
FUNCTION FOR LARGE DATA SETS. Use MATLAB's
"sort" function instead.

o

o° P P of

oe

Define variables:

% a -- Input array to sort

% ii -- Index variable

% iptr -- Pointer to min value

% 33 -- Index variable

% nvals -- Number of values in "a"

% out -- Sorted output array

% temp -- Temp variable for swapping

% Record of revisions:

% Date Programmer Description of change
% ==== ========== —====================
% 02/02/07 S. J. Chapman Original code

Q

% Get the length of the array to sort
nvals = size(a,?2);

% Sort the input array
for ii = l:nvals-1

% Find the minimum value in a(ii) through a(n)

iptr = ii;
for jj = ii+l:nvals
if a(jj) < a(iptr)
iptr = jj;
end
end
% iptr now points to the minimum value, so swap a(iptr)
% with a(ii) if ii ~= iptr.
if ii ~= iptr
temp = a(ii);
a(ii) = a(iptr);
a(iptr) = temp;
end

end

% Pass data back to caller
out = aj;

Figure 11.2 The test driver program test_ssort.
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After the program is compiled, the directory will contain the following files:

D:\work\test ssort>dir

Volume in drive D i1is DATA
Volume Serial Number is E46A-233F

Directory of D:

\work\test_ ssort

26/05/2007 04:05 PM <DIR>
26/05/2007 04:05 PM <DIR> ..
26/05/2007 04:05 PM 1,081 mccExcludedFiles.log
26/05/2007 04:05 PM 6,999 readme.txt
19/05/2007 04:57 PM 1,293 ssort.m
26/05/2007 04:05 PM 81,750 test_ssort.ctf
26/05/2007 04:05 PM 11,032 test_ssort.exe
26/05/2007 04:00 PM 1,155 test_ssort.m
26/05/2007 04:05 PM 10,605 test_ssort.prj
26/05/2007 04:05 PM 3,079 test_ssort_main.c
26/05/2007 04:05 PM 6,574 test_ssort_mcc_
component_data.c
9 File(s) 123,568 bytes
2 Dir(s) 18,682,978,304 bytes free

The MATLAB compiler created the C function test_ssort_main.c, which
was compiled by the LCC C compiler to create the program test_ssort.exe.
In addition, the MATLAB compiler created the CTF file test_ssort.ctf,
which contains compressed and encrypted versions of test_ssort.m and
ssort.m, as well as any standard MATLAB functions that M-files called. The
readme. txt file that was generated describes how to distribute this program to
other users, and the file mccExcludedFiles. log lists any functions referred
to in the program that could not be included in the stand-alone program (usually
files relating to the help subsystem, licensed components, Simulink, and so forth).
If one of these excluded functions is called by the compiled program, the program
will not work properly.

The files test_ssort.exe, test_ssort.ctf, and the MATLAB
runtime installer MCRInstaller.exe can now be distributed to anyone who
may need to use the program.

To use the compiled application, place files test_ssort.exe and
test_ssort.ctf in a directory and then execute test_ssort.exe. The
first time it is started, this program will unpack the files from the CTF into a sub-
directory called test_ssort_mcr, and the runtime will then execute the
encrypted M-files in that subdirectory. An example execution of this application
is shown here.

D:\work\test_ssort>test_ssort

Extracting CTF archive. This may take a few seconds,
depending on the size of your application. Please
wait
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...CTF archive extraction complete.
Enter number of wvalues to sort: 6

Enter value 1: 2
Enter value 2: -6
Enter value 3: 5
Enter value 4: 9
Enter value 5: 4
Enter value 6: -99

Sorted data:

-99.0000
-6.0000
2.0000
4.0000
5.0000
9.0000

11.3.2 Additional Details

Some programs need to include data files for the program to work properly. If
extra data files are required for a particular application, they can be included
in the CTF file by adding them to the mcc command line with the —a option.
For example, if program MyProg.m needs the data file MyData.dat in
order to function correctly, the program would be compiled with the following
command:

mcc -m MyProg.m -a MyData.dat

Another complication occurs in the case of programs with graphical user inter-
faces. The MATLAB compiler is not able to detect that a program needs to include
a function if the only reference to it is in an eval function, an feval function,
or a handle graphics callback. To make such a program work, we must force the
compiler to include all referenced M-files in the final program. This can be
done by listing all of the callback M-files with the —a switch in the mcc command,
or else it can be done using a $#function pragma in the main function. A prag-
ma is an instruction to the compiler to do something. In this case, it is an instruc-
tion to include the specified file in the final compiled program. A series of these
pragmas can be placed in the main function, and the compiler will detect that the
named files have to be included in the program. For example, if we needed to
include functions funl, fun2, and fun3 in program MyProg, we would include
the following lines in the program:

program MyProg(...)

$#function funl fun2 fun3



1.3

Using the MATLAB Compiler

| 529

Since this line starts with a # symbol, it will be ignored by MATLAB when it exe-
cutes. However, the MATLAB compiler will read it and know that the additional
functions need to be included in the compiled program.

>

Example | |.1—Creating a Histogram GUI

Convert the histogram GUI created in Example 10.3 into a stand-alone applica-

tion program, and test that program.

D:\work\histGUI>dir
Volume in drive D is DATA

Volume Serial Number is E46A-233F

Directory of D:\work\histGUI

26/05/2007 05:42 PM <DIR>
26/05/2007 05:42 PM <DIR>
29/03/2004 07:57 AM
28/03/2004 07:40 AM
02/05/1999 10:59 PM

3 File(s)

21,688 histGUI.fig
5,811 histGUI.m
54,000 test_hist.dat
81,499 bytes

2 Dir(s) 18,682,626,048 bytes free

D:\work\histGUI>mcc -m histGUI.m -a histGUI.fig

D:\work\histGUI>dir
Volume in drive D is DATA

Volume Serial Number is E46A-233F

Directory of D:\work\histGUI

26/05/2007 05:46 PM <DIR>
26/05/2007 05:46 PM <DIR>
26/05/2007 05:46 PM
26/05/2007 05:46 PM
29/03/2004 07:57 AM
28/03/2004 07:40 AM
26/05/2007 05:46 PM
26/05/2007 05:46 PM
26/05/2007 05:46 PM

26/05/2007 05:46 PM
26/05/2007 05:46 PM
02/05/1999 10:59 PM

10 File(s)

(@

84,090
10,992
21,688
5,811
10,641
3,041
6,530

histGUI.
histGUI.
histGUI.

histGUI
histGUI
histGUI
histGUI

ctf
exe
fig

.m

.prj
_main.c
_mcc_

component_data.c
1,081 mccExcludedFiles.log
6,942 readme.txt
54,000 test_hist.dat
204,816 bytes
2 Dir(s) 18,682,490,880 bytes free

Figure 11.3 (a) The steps required to compile program histGUL.m.
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Fie

Histogram (N = 3000)

Figure 11.3 (continued) (b) The GUI produced by the stand-alone nprogram histGUI.

SoLuTION  This program is implemented by file histGUTI . m and the figure file
histGUI. fig. To make a stand-alone program, we must copy these files into
a separate directory and then run the compiler with a command-line option that
includes the figure file in the compiled applications. The command to compile
this application would be

mcce -m histGUI.m -a histGUI.fig
After compiling, the program will run on any computer with the MATLAB runtime

installed. The results are a shown in Figure 11.35. <

11.3.3 The Deployment Tool

The MATLAB compiler also includes a GUI-based tool to make the creation of
stand-alone MATLAB programs easier. It is called the Deployment Tool. This
tool is started by typing deploytool in the MATLAB Command Window.
When the tool starts, it opens the window shown in Figure 11.4.

To create a compiled program with this tool, first click the New Project Icon
(/D) to start a new project. When this icon is selected, a window will appear that
allows the user to select both the type of project to create (see Figure 11.5@) and the
directory in which the project will be built. After these steps have been taken, the
Deployment Tool shows a blank project with no files in it yet (see Figure 11.5b).

To re-create the histogram GUI using the Deployment Tool, right-click the
“Main function” folder and add the main M-file (the one where the program starts).
Then, right-click the “Other files” folder and add all the other files needed by this
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~loix
-~

File Edt Tools Project Debug Desktop Window Help
D E R0 x| B &aw|?

‘Welcome to the Deployment Tool

To get started, do any of the following:

# Click the New Deployment Project icon [ in the Deployment Tool toolbar.
# Click the Open Deployment Project icon = to open an existing project.
 Click the Help icon % in the toolbar,

Use the Deployment Tool to perform these tasks:

Create a

project —»| Addfiles |—» Build —» Package

Figure 11.4 The Deployment Tool Window when the tool is first opened.

J. New Deployment Project ] = |EI|1[

MATLAB Compiler

( >
| C Shared Library
{ £
C++ Shared Library

Name |histGULpr)

Location  |c:\workihistGUI Browse... |

@

Figure 11.5 (a) Selecting a new project type.
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-Ioix]
File Edit Tools Project Debug Desktop Window Help -
D E RN X|B|éaw|?
4 histGUI prj (Standalone Application)
~{_) Main Function
) Other files
L i+ files
[ Generate Yerbose Output
A

(b)

Figure 11.5 (continued) (b) The Deployment Tool Window after a new project has been created. Note
that there are no files in this project yet.

ol
File Edit Tools Project Debug Desktop Window Help ~
D@ /XD xBae|?
_ 4 histGUI.prj {Standalone Application)
(= Main function
) CAwarkihistGUIhistGULm
[=)-{_] Cther files
Rl \weork)hist G
] CJC++ Files

[¥ Generate Verbose Output

A

Figure 11.6 The Deployment Tool Window containing project histGUI.
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B C:\work\histGUT\histGUI\src i =10 x|
Fle Edt View Favorites Tools Hebp | &
€ -EY- % O : 13 : -
Qe - Q - (¥ [ Do i v | 6 8 X 19| [ —
mas|_1c:l.nakwmmrw1lm :J Go |
Folders ® | | Name » &ael Type Date Modified
B ) work o | Ebudiog | 1268 TextDocument  27/05/20078:28 AM
5 3 histour Sl histGur.ctf 83KB CTFFie 27/05/2007 8:28 AM
2 £ histaL Bhstout.exe 1168 Apphcation 27/05/2007 8:28 AM
£ dstrb €] histGUT_main.c 4KB C Source 27/05/2007 8:28 AM
=T £] histGUT_mee_component_data.c THB CSource 27/05/2007 8:28 AM
[ %o DATA (D:) () mecExdudedFies.log 2KB TextDocument  27/05/20078:28 AM
B A MSDVENUD3 () [ot] readme. txt 7B Text Document 27/05/2007 8:28 AM

3 schapman on ‘Coralisars' (H:)
® Lb DVD-RW Drive (R:)

H 3 g5oncoral (1)

Ifob)éc.!s‘w'&ee‘mce:x.sw} [12168 |53 My Computer

B Ciwork | histGUI | histGUT \distrib i =10] x|
Fle Edt View Favorites Tools Heb | & |
Qex-6) - T /.'1serd-[,; Foldes | | ¥ XQ|.
Address [ ) C:\work histGUT ustGUT dsirib =] Eee |
Folders ® | | Name « Size | Type
B 2 work | 5] nstalbat 1KB M5-DOS Batch Fie
B 123 histeul S histour.ctf 83KB CTF Fie
= . st exe 11KB  Applcation
Bl 2 histaut B
=] |
o s
[ %e» DATA (D:)

B b MSDVENUDS (E:)
3 schapman on ‘Coralisars' (H:)
# L DVD-RW Drive (R:)

o c5on'coral (W) _I
£2) : 95 on “coral’ (¥:) ;-I 1 | >
|3 objects (Disk free space: 26,5 GE) j93.1k8 | 5§ My Computer 7

Figure 11.7 (a) Contents of the src directory after compiling. (b) Contents of the distrib
directory after packaging.

project. Figure 11.6 shows the Deployment Tool after the histGUI program has
been inserted into it. The project can then be compiled by clicking the Build Icon
(/#) and packaged for delivery to the customer by clicking the Package Icon (#).

When the Build and Package Icons have been clicked, two directories are
created under the project directory. The src directory contains all of the compila-
tion files produced by running mcc, and the distrib directory contains the exe-
cutable program, the CTF file, and an install batch file for distribution to customers
(see Figure 11.7).

11.4 Summary

This chapter has introduced the MATLAB Compiler, which is a great tool for
converting MATLAB programs into stand-alone applications. The compiler can
be executed either from the MATLAB Command Windows or from a command
prompt outside of MATLAB. It can also be executed using the Deployment Tool.
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The entry point in a compiled program must be a MATLAB function, not
a script file. If the entry point is a script file, convert it into a function before
attempting to compile the program.

When the compiler is executed, it examines the M-files named on the command
line and attempts to determine all of the other M-files called from the named files.
It includes those additional files in the final program. However, the compiler cannot
identify files that are only referenced in the eval function, the feval function,
or callbacks. In that case, the files must be either explicitly included after the —a
option on the command line or else included in a $#function pragma in the
main function.

11.4.1 Summary of Good Programming Practice
The following guidelines should be adhered to when working with MATLAB GUIs.

1. Always set up the MATLAB compiler using the mbuild -setup
command before trying to compile programs.

2. The MATLAB Component Runtime (MCR) must be installed before a
computer can be used to run a compiled MATLAB application. Always
distribute the runtime together with your compiled applications.

11.4.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

deploytool GUI-based tool to compile and deploy MATLAB programs
#%function Pragma to tell compiler to include the named M-files in
a compiled program
mbuild Function used to set up MATLAB compiler
mcc MATLAB compiler execution command

1.5 Exercises

Il1.1  What are the principal advantages and disadvantages of compiling a
MATLAB program?

11.2 Compile the Least-Squares Fit GUI created in Exercises 10.15 through 10.17,
and test the resulting program by installing and running it on another com-
puter that does not have MATLARB installed.
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ASCII
Character Set

MATLARB strings use the ASCII character set, which consists of the 127 characters
shown in the table that follows. The results of MATLAB string comparison
operations depend on the relative lexicographic positions of the characters being
compared. For example, the character ‘a’ in the ASCII character set is at position
97 in the table, while the character ‘A’ is at position 65. Therefore, the relational
operator 'a' > 'A"' will return a 1 (true), since 97 > 65.

Each MATLAB character is stored in a 16-bit field, which means that in the
future MATLAB can support the entire Unicode character set.

The table shows the ASCII character set, with the first two digits of the
character number defined by the row, and the third digit defined by the column.
Thus, the letter 'R is on row 8 and column 2, so it is character 82 in the ASCII
character set.

0 1 2 3 4 5 6 7 8 9
0 nul soh stx etx eot enq ack bel bs ht
1 nl vt ff cr S0 si dle del dc2 dc3
2 dc4 nak syn etb can em sub esc fs gs
3 rs us sp ! " # $ % & '
4 ( ) * + , - / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 | < = > ? @ A B C D E
7 F G H 1 J K L M N O
8 P Q R S T U \'% w X Y
9 Z [ \ 1 " _ a b c
10 d e f g h I j k 1 m
11 n o p q r S t u v w
12 X y z { | } ~ del
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A PPENDIX

Answers
to
Quizzes

This appendix contains the answers to all of the quizzes in the book.

Quiz 1.1, page 18

1. The MATLAB Command Window is the window where a user enters
commands. A user can enter interactive commands at the command
prompt (») in the Command Window, and they will be executed on
the spot. The Command Window is also used to start M-files execut-
ing. The Edit/Debug Window is an editor used to create, modify, and
debug M-files. The Figure Window is used to display MATLAB
graphical output.

2. You can get help in MATLAB by:

® Typing help <command_name> in the Command Window. This
command will display information about a command or function
in the Command Window.

® Typing lookfor <keyword> in the Command Window. This
command will display in the Command Window a list of all com-
mands or functions containing the keyword in their first comment
line.

® Starting the Help Browser by typing helpwin or helpdesk in
the Command Window, by selecting “Help” from the Start menu,
or by clicking on the question mark icon (| 2|) on the desktop. The
Help Browser contains an extensive hypertext-based description
of all of the features in MATLAB, plus a complete copy of all

537
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manuals on-line in HTML and Adobe PDF formats. It is the most
comprehensive source of help in MATLAB.

3. A workspace is the collection of all the variables and arrays that can
be used by MATLAB when a particular command, M-file, or func-
tion is executing. All commands executed in the Command Window
(and all script files executed from the Command Window) share a
common workspace, so they can all share variables. The contents of
the workspace can be examined with the whos command, or graphi-
cally with the Workspace Browser.

4. To clear the contents of a workspace, type clear or clear vari-
ables in the Command Window.

5. The commands to perform this calculation are

» t = 5;

» x0 = 10;

» v0 = 15;

»> a = =9.81;

» x = X0 + v0O * £t + 1/2 * a * t42

x
-37.6250

6. The commands to perform this calculation are

» X = 3;
» y = 4;
» res = A2 * yA3 / (x - y)*2
res =
576

Questions 7 and 8 are intended to get you to explore the features of
MATLAB. There is no single “right” answer for them.

Quiz 2.1, page 30

1. An array is a collection of data values organized into rows and
columns and known by a single name. Individual data values within
an array are accessed by including the name of the array followed by
subscripts in parentheses that identify the row and column of the par-
ticular value. The term “vector” is usually used to describe an array
with only one dimension, whereas the term “matrix” is usually used
to describe an array with two or more dimensions.

2. (a) Thisis a3 X 4 array; (b) c (2, 3) = —0.6; (¢) The array ele-
ments whose value is 0.6 are c (1, 4),c (2, 1),andc (3, 2).
3@l X3;,(B)3X1;()3X3;d)3X2(e)3X3;(f)4 X3;

(g)4 X 1.
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(@c(2,:)=[06 11 —06 3.1]
0.6 |
(b)c(:, end) =] 3.1
0.0 |
©c(1:2, 2:end) [ —32 34 06
: ’ en =
A © 11 —06 3.1
(d)c(6) =06
(e)c(4, end) =[-32 1.1 0.6 34 —06 55 0.6 3.1 0.0]
(f)c(l:2, 2:end) = -32 34 06
ciiie, cxen 11 —06 3.1
-32
1 31, 2) =
(g c([1l 31, 2) [ o.e}
—0.6 —0.6
h 2 21, [3 3 =
(hyc(l2 21, [3 31) [0_6 0.6}
7 8 9] 4 5 6] - -
(a) a = 5 bya=|4 5 6| (c)a= 4506
4 5 6
1 2 3] 4 | - -
1 0 0] 1 0 4] 1 0 0]
(@a=[1 2 3| a=|0 1 5| (cga=1|0
0 0 1] 0 0 6] 9 7 8]

The required command is “format long e”.

(a) These statements get the radius of a circle from the user, and cal-
culate and display the area of the circle. (b) These statements display
the value of 7 as an integer, so they display the string: “The value
is 317,

539

Quiz 2.2, page 39

1.

Quiz 2.3, page 46

1.
2.
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3. The first statement outputs the value 12345.67 in exponential format;
the second statement outputs the value in floating-point format; the
third statement outputs the value in general format; and the fourth
statement outputs the value in floating-point format in a field
12 characters wide, with four places after the decimal point. The
results of these statements are

value = 1.234567e+004
value = 12345.670000
value = 12345.7

value = 12345.6700

Quiz 2.4, page 53

1. (a) This operation is illegal. Array multiplication must be between
arrays of the same shape, or between an array and a scalar. (b) Legal

4 4
matrix multiplication: result = |: 3 3:| (c) Legal array multiplication:

2 1
result = |:_2 4} (d) This operation is illegal. The matrix multipli-
cation b * cyieldsa l X 2 array, and a is a 2 X 2 array, so the
addition is illegal. (¢) This operation is illegal. The array multiplication

b . * c is between two arrays of different sizes, so the multiplication

is illegal.
—0.5
2. This result can be found from the operation x = A\B: x = 1.0
-0.5

Quiz 3.1, page 103

Expression Result Comment
l.a >b 1
(logical true)
2.b >4 0
(Logical false)
3.a>b&& c>a 0
(Logical false)



5.a & b >c¢

7. ~(a > b)

8. a>c && b > ¢

10. logical (d)

11. a * b > ¢

12. a * (b > ¢)

13. a*b”2 > a*c

4.4 || b > a

Appendix B Answers to Quizzes |

0
(logical false)
0
(logical false)
1
(logical true)

o 1]

(Logical array)
Illegal

Illegal

11 1
L0 1 0

(logical array)

1 0
0 1

(Logical array)

. o]

(double array)

0

(logical false)
1

(logical true)

The && and | | operators
work only between
scalar operands.

The <= operator must
be between arrays of the
same size, or between
an array and a scalar.

The expression a * b is
evaluated first, produc-
ing the double array

2 —4
, and the
0 20

logical operation is
evaluated second, pro-
ducing the final answer.

The expression b > c
produced the logical

1 0
array |:0 1:|, and

multiplying that logi-
cal array by 2 con-
verted the results back
into a double array.
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I5. (@ | b) > a 0
(logical false)
16. isinf (a/b) 0

(logical false)
17. isinf(a/c) 1
(logical true)

18. a > b && 1
ischar (d) (logical true)
19. isempty(c) 0
(logical false)
20. (~a) & b 0
(logical false)
21. (~a) + b -2 ~a is a logical 0. When

(double value)  added to b, the result is
converted back to a
double value.

Quiz 3.2, page 118

1. if x >= 0
sgrt_x = sqgrt(x);
else
disp('ERROR: x < 0');
sgrt_x = 0;
end

2. if abs(denominator) < 1.0E-300
disp('Divide by 0 error.');
else
fun = numerator / denominator;
disp (fun)
end

3. if distance <= 100
cost = 0.50 * distance;
elseif distance <= 300
cost = 50 + 0.30 * (distance - 100);
else
cost = 110 + 0.20 * (distance - 300);
end

4. These statement are incorrect. For this structure to work, the second
if statement would need to be an elsei f statement.
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5. These statement are legal. They will display the message “Prepare
to stop.”

6. These statement will execute, but they will not do what the program-
mer intended. If the temperature is 150, these statements will
print out “Human body temperature exceeded.” instead of
“Boiling point of water exceeded.”, because the if struc-
ture executes the first true condition and skips the rest. To get prop-
er behavior, the order of these tests should be reversed.

Quiz 3.3, page 135

1. x = 0:p1/10:2*pi;

x1 = cos(2*x);

vl = sin(x);

plot(xl,yl,'-ro', 'LineWidth',2.0, 'MarkerSize',6, ...
'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b"')

"\Nitf\rm(\itx\rm) = sin \theta cos 2\phi'

"\bfPlot of \Sigma \itx\rm\bf*{2} versus \itx'

This string creates the characters: T,

This string creates the characters: x? + x3 (units: m?)

NSk

The backslash character is displayed using a double backslash (' \\ ).

Quiz 4.1, page 175

1. 4 times
2. 0 times
3. 1 time
4. 2 times
5. 2 times
6. ires =10
7. ires =55
8. ires = 25;
9. ires = 49;
10. With loops and branches:
for 11 = -6*pi:pi/l10:6*pi
if sin(ii) > O
res(ii) = sin(ii);
else
res(ii) = 0;
end

end
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With vectorized code:

arrl = sin(-6*pi:pi/10:6*pi);
res = zeros(size(arrl));

res (arrl>0) = arrl(arrl>0);

Quiz 5.1, page 226

1. Script files are collections of MATLAB statements that are stored in a
file. Script files share the Command Window’s workspace, so any
variables that were defined before the script file starts are visible to
the script file, and any variables created by the script file remain in the
workspace after the script file finishes executing. A script file has no
input arguments and returns no results, but script files can communicate
with other script files through the data left behind in the workspace. In
contrast, each MATLAB function runs in its own independent work-
space. It receives input data through an input argument list and returns
results to the caller through an output argument list.

2. The help command displays all of the comment lines in a function
until either the first blank line or the first executable statement is
reached.

3. The H1 comment line is the first comment line in the file. This line
is searched by and displayed by the 1ookfor command. It should
always contain a one-line summary of the purpose of a function.

4. In the pass-by-value scheme, a copy of each input argument is passed
from a caller to a function instead of the original argument itself. This
practice contributes to good program design, because the input
arguments may be freely modified in the function without causing
unintended side effects in the caller.

5. A MATLAB function can have any number of arguments, and not all
arguments need to be present each time the function is called.
Function nargin is used to determine the number of input
arguments actually present when a function is called, and function
nargout is used to determine the number of output arguments
actually present when a function is called.

6. This function call is incorrect. Function test1 must be called with
two input arguments. In this case, variable y will be undefined in
function test1, and the function will abort.

7. This function call is correct. The function can be called with either
one or two arguments.
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Quiz 6.1, page 292

1. (a) result = 1 (true), because the comparison is made between
the real parts of the numbers. (b) result = 0 (false), because the
absolute values of the two numbers are identical. (¢) result = 25.

2. The function plot (array) plots the imaginary part of the array
versus the real part of the array, with the real part on the x axis and
the imaginary part on the y axis.

3. The vector can be converted using the double function.

4. These statements concatenate the two lines together, and variable res
contains the string ' This is a test!This line, too.".

5. These statements are illegal—there is no function strcati.

6. These statements are illegal—the two strings must have the same
number of columns, and these strings are of different lengths.
7. These  statements are legal, producing the result
This is another test! .
res = ) ] . Note that each line is now
This line, too.
21 characters long, with line 2 padded out to that length.

8. These statements are legal, and the result res = 1, since the two
strings are identical in their first five characters.

9. These statements are legal, and the resultis res = [4 7 13], since
the letter “s” is at those locations in the string.

10. These statements are legal. Each space in the original string
is replaced by an 'x', and the final string is
'Thisxisxaxtest!xx"'.

11. These statements are legal. The function isstrprop returns a 1
(true) for alphanumeric characters, and a 0 (false) for other
characters. The result is

res =
11 1 1 o0 1 1 1 1 O 0 O
12. These statements are legal, with the result res = 'ThiS IS a
test!"'.

13. These statements are legal. The resultsare 11 = 9,12 =9,13 = 18,
14 = 6,and 15 = 12.

14. These statements are illegal—you must specify the number of char-
acters to compare in the two strings when using function strncmp.
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Quiz 7.1, page 363

1. A sparse array is a special type of array in which memory is allo-
cated only for the nonzero elements in the array. Memory values
are allocated for both the subscripts and the value of each element
in a sparse array. By contrast, a memory location is allocated for
every value in a full array, whether the value is 0 or not. Sparse
arrays can be converted to full arrays using the full function, and
full arrays can be converted to sparse arrays using the sparse
function.

2. A cell array is an array of “pointers.” each element of which can point
to any type of MATLAB data. It differs from an ordinary array in that
each element of a cell array can point to a different type of data, such
as a numeric array, a string, another cell array, or a structure. Also,
cell arrays use braces { } instead of parentheses () for selecting and
displaying the contents of cells.

3. Content indexing involves placing braces { } around the cell subscripts,
together with cell contents in ordinary notation. This type of indexing
defines the contents of the data structure contained in a cell. Cell index-
ing involves placing braces {} around the data to be stored in a cell,
together with cell subscripts in ordinary subscript notation. This type of
indexing creates a data structure containing the specified data and then
assigns that data structure to a cell.

4. A structure is a data type in which each individual element is given a
name. The individual elements of a structure are known as fields, and
each field in a structure may have a different type. The individual
fields are addressed by combining the name of the structure with the
name of the field, separated by a period. Structures differ from ordi-
nary arrays and cell arrays in that ordinary arrays and cell array ele-
ments are addressed by subscript, but structure elements are
addressed by name.

5. Function varargin appears as the last item in an input argument
list, and it returns a cell array containing all of the actual arguments
specified when the function is called, each in an individual element
of a cell array. This function allows a MATLAB function to support
any number of input arguments.

6. A function handle is a MATLAB data type that holds information to
be used in referencing a function. A function handle is created using
the @ operator or the str2func function. A function is called using
a function handle by naming the function handle, followed by the
arguments in parentheses. If the function has no arguments, the han-
dle must be followed by empty parentheses ().
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7. (@)a(l, 1) =[3x3 double]. The contents of cell array element
a(l, 1) isa3 X 3 double array, and this data structure is displayed.

1 2 3
(b)a{l, 1} =| 4 5 6 |. This statement displays the value of
7 8 9

the data structure stored in elementa (1, 1).
(c) These statements are illegal, since you can not multiply a data
structure by a value.

(d) These statements are legal, since you can multiply the contents of

2 4 6

the data structure by a value. The resultis| 8 10 12

14 16 18
-4 -3 =2
(e)af2,2y=|-1 0 1
2 3 4

(f) This statement is legal.It initializes cell array element a (2, 3)

=17
to be a 2 X 1 double array containing the values |: 19 }

(@af{2,2}(2,2)=0.

-3 1 -1
8. (@b(l).a-b(2).a=| -2 0 -2
-3 3 5

(b) strncmp (b(1) .b, b(2) .b, 6) =1, because the two struc-
ture elements contain character strings that are identical in their first
six characters.

(¢c)mean (b(l).c) =2

(d) This statement is illegal, because you cannot treat individual ele-
ments of a structure array as though it were an array itself.

(e)b = 1x2 struct array with fields:

a
b
c
(f)b(1l).('b') = 'Element 1°'
(g b(1) =
a: [3x3 double]
b: 'Element 1°

c: [1 2 3]
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9. (a) The result of this function is the name of function whose handle
is passed as a calling argument:

> myfun (@cosh)
ans =
Element 1

Quiz 8.1, page 384

1. The textread function is designed to read ASCII files that are
formatted into columns of data, where each column can be of a dif-
ferent type. This command is very useful for importing tables of data
printed out by other applications, since it can handle data of mixed
types within a single file.

2. MAT-files are relatively efficient users of disk space, and they store
the full precision of every variable; no precision is lost due to con-
version to and from ASCII format. (If compression is used, MAT-files
take up even less space.) In addition, MAT-files preserve all of the
information about each variable in the workspace, including its class,
name, and whether or not it is global. A disadvantage of MAT-files is
that they are unique to MATLAB and cannot be used to share data
with other programs.

3. Function fopen is used to open files, and function fclose is used
to close files. On PCs (but not on Linux or Unix computers), there is
a difference between the format of a text file and a binary file. In
order to open files in text mode on a PC, a ' t ' must be appended to
the permission string in the fopen function.

4, fid = fopen('myinput.dat', 'at')
5. fid = fopen('input.dat',6 'r');
if fid < 0;
disp('File input.dat does not exist.');
end

6. These statements are incorrect. They open a file as a text file, but
then read the data in binary format. (Function fscanf should be
used to read text data, as is shown later in this chapter.)

7. These statements are correct. They create a 10-element array x, open
a binary output file £ilel, write the array to the file, and close the
file. Next, they open the file again for reading, and read the data into
array array ina [2 Inf] format. The resulting contents of the

3 5 7 9

array are .
2 4 6 8 10
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Quiz 8.2, page 400

1. Formatted I/O operations produce formatted files. A formatted file
contains recognizable characters, numbers, and so forth stored as
ASCII text. Formatted files have the advantages that we can readily
see what sort of data they contain and it is easy to exchange data
between different types of programs using them. However, format-
ted I/O operations take longer to read and write, and formatted files
take up more space than unformatted files. Unformatted I/O opera-
tions copy the information from a computer’s memory directly to the
disk file with no conversions at all. These operations are much faster
than formatted I/O operations because there is no conversion. In
addition, the data occupies a much smaller amount of disk space.
However, unformatted data cannot be examined and interpreted
directly by humans.

2. Formatted I/O should be used whenever we need to exchange data
between MATLAB and other programs, or when a person needs to be
able to examine and/or modify the data in the file. Otherwise, unfor-
matted 1/O should be used.

3. fprintf ('Table of Cosines and Sines\n\n');
fprintf (' theta cos(theta) sin(theta)\n') ;
fprintf(' —==== —===—====== ::::::::::\n' ) ;
for i1 = 0:0.1:1

theta = pi * 1i1i;
fprintf ('%7.4f %$11.5f %11.5f\n"',
theta, cos(theta),sin(theta)) ;
end

4. These statements are incorrect. The $s descriptor must correspond to
a character string in the output list.

5. These statements are technically correct, but the results are undesir-
able. It is possible to mix binary and formatted data in a single file
the way that these statements do, but the file is then very hard to use
for any purpose. Normally, binary data and formatted data should be
written to separate files.

Quiz 10.1, page 506

1. The types of graphical components discussed in this chapter are listed
here, together with their purposes.
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Table B.I

GUI Components Discussed in Chapter 10

Component

Created by

Description

Graphical Controls

Pushbutton

Toggle Button

Radio Button

Checkbox

Edit Box

List Box

Popup Menus

Slider

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

A graphical component that implements a pushbutton. It
triggers a callback when clicked with a mouse.

A graphical component that implements a toggle button.
A toggle button is either “on” or “oft,” and it changes
state each time it is clicked. Each mouse button click also
triggers a callback.

A radio button is a type of toggle button that appears as a
small circle with a dot in the middle when it is “on.”
Groups of radio buttons are used to implement mutually
exclusive choices. Each mouse click on a radio button
triggers a callback.

A checkbox is a type of toggle button that appears as a
small square with a check mark in it when it is “on.” Each
mouse click on a check box triggers a callback.

An edit box displays a text string and allows the user to
modify the information displayed. A callback is triggered
when the user presses the Enter key.

A list box is a graphical control that displays a series of
text strings. A user may select one of the text strings by
single- or double-clicking on them. A callback is triggered
when the user selects a string.

A popup menu is a graphical control that displays a series
of text strings in response to a mouse click. When the
popup menu is not clicked on, only the currently-selected
string is visible.

A slider is a graphical control to adjust a value in a
smooth, continuous fashion by dragging the control with a
mouse. Each slider change triggers a callback.

Static Elements

Frame

Text Field

uicontrol

uicontrol

Creates a frame, which is a rectangular box within a fig-
ure. Frames are used to group sets of controls together.
Frames never trigger callbacks. (This is a deprecated
component, which should not be used in new GUIs.)

Creates a label, which is a text string located at a point on
the figure. Text fields never trigger callbacks.

Menus, Toolbars, Axes

Menu Items

uimenu

Creates a menu item. Menu items trigger a callback when
a mouse button is released over them.

(continued)
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Table B.l (continued)

Component Created by Description

Context Menus ulcontextmenu Creates a context menu, which is a menu that appears over
a graphical object when a user right-clicks the mouse on
that object.

Toolbar uitoolbar Creates a toolbar, which is a bar across the top of the fig-
ure containing quick-access buttons.

Toolbar Pushbutton uipushtool Creates a pushbutton to go in a toolbar.

Toolbar Toggle Button uitoggletool Creates a toggle button to go in a toolbar.

Axes axes Creates a new set of axes to display data on. Axes never
trigger callbacks.

2. The types of containers discussed in this chapter are listed here,
together with their differences.

Table B.2 GUI Components Discussed in Chapter 10

Component Created by Description

Containers

Figure uicontrol Creates a figure, which is a container that can hold
components and other containers. Figures are separate
windows that have title bars and can have menus.

Panel uipanel Creates a panel, which is a container that can hold compo-
nents and other containers. Unlike figures, panels do not
have title bars or menus. Panels can be placed inside
figures or other panels.

Button Group uibuttongroup Creates a button group, which is a special kind of panel.
Button groups automatically manage groups of radio
buttons or toggle buttons to ensure that only one item
of the group is on at any given time.

3. A callback function is a function that is executed whenever an
action (mouse click, keyboard input, etc.) occurs on a specific GUI
component. They are used to perform an action when a user clicks
on or types in a GUI component. Callback functions are specified
by the 'Callback' property in a uicontrol, uimenu,
ulcontextmenu, uipushtool, oruitoggletool. When a
new GUI is created, the callbacks are set automatically by guide
to be xxx_Callback, where xxx is the value of the Tag proper-
ty of the corresponding GUI component.
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4.

The basic steps required to create a MATLAB GUI are

1. Decide what elements are required for the GUI and what the
function of each element will be. Make a rough layout of the com-
ponents by hand on a piece of paper.

2. Use a MATLAB tool called guide (GUI Development
Environment) to lay out the components on a figure. The size of
the figure, and the alignment and spacing of components on the
figure can be adjusted using the tools built into guide.

3. Use a MATLAB tool called the Property Inspector (built into
guide) to give each component a name (a “tag”), and to set the
characteristics of each component, such as its color, the text it
displays, and so forth.

4. Save the figure to a file. When the figure is saved, two files will
be created on disk with the same name but different extents. The
fig file contains the actual GUI that you have created, and the
M-file contains the code to load the figure, along with skeleton
callbacks for each GUI element.

5. Write code to implement the behavior associated with each call-
back function.

The handles data structure is a structure containing the handles
of all components within a figure. Each structure element has the
name of a component and the value of the component’s handle. This
structure is passed to every callback function, allowing each func-
tion to have access to every component in the figure.

Application data can be saved in a GUI by adding it to the handles
structure and saving that structure after it has been modified using
function guidata. Since the handles structure is automatically
passed to every callback function, any additional data added to the
structure will be available to any callback function in the GUI.
(Each function that modifies the handles structure must be sure to
save the modified version with a call to guidata before the func-
tion exits.)

A graphical object can be made invisible by setting its 'Visible'
property to 'of £ '. A graphical object can be disabled so that it will
not respond to mouse clicks or keyboard input by setting its
'Enable’ propertyto 'off"'.

Pushbuttons, toggle buttons, radio buttons, checkboxes, list boxes,
popup menus, and sliders all respond to mouse clicks. Edit boxes
respond to keyboard inputs.

A dialog box is a special type of figure that is used to display infor-
mation or to get input from a user. Dialog boxes are used to display
errors, provide warnings, ask questions, or get user input. Dialog
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boxes can be created by any of the functions listed in Table 10.5,
including errordlg, warndlg, inputdlg, uigetfile, and
SO on.

A modal dialog box does not allow any other window in the appli-
cation to be accessed until it is dismissed, whereas a normal dialog
box does not block access to other windows.

A standard menu is tied to a menu bar running across the top of a fig-
ure, but a context menu can be attached to any GUI component.
Standard menus are activated by normal mouse clicks on the menu
bar, whereas context menus are activated by mouse right-clicks over
the associated GUI component. Menus are built out of uimenu
components. Context menus are built out of both uicontextmenu
and uimenu components.

Accelerator keys are keys that may be typed on the keyboard to
cause a menu item to be selected. Keyboard mnemonic keys are
CTRL+key combinations that cause a menu item to be executed.
The principal difference between accelerator keys and keyboard
mnemonics is that accelerator keys work to select a menu item only
if a menu has already been opened, whereas keyboard mnemonics
can trigger an action even if a menu has not been opened.
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Index

Note: Boldface numbers indicate illustra-
tions or tables.

&, &&, logical AND operators, 98—99

!, exclamation point character, 15

%, conversion character, 386—389

% £, conversion characters, 43

(), parentheses, 47, 51-53, 101-102

*, multiplication operator, 17, 50

-, subtraction operator, 17, 50

', transpose operator, 28

/, division operator, 17, 50

/n, escape characters, 43

:, colon operator, 28

; , semicolon operator, 27

@ operator to create function handles,
350-351

~, exponentiation operator, 17, 50

{ 3}, braces, cell constructors, 330

|, | |, inclusive OR operators, 99100

~, logical NOT operator, 100, 174-175

~=, non-equivalence operator, 97, 268

+, addition operator, 17, 50

=, assignment operator, 17, 4647

==, equivalence operator, 95-96, 97,
268, 280

>>, command prompt, 45

..., continuation character
(ellipses), 5—6

A

Abort command, 15
abs () function, 269
Accelerator keys, 499-500
Algorithms, 90, 93, 107-110, 110-112,
114-115, 150-155, 161-162, 203,
216-221, 228-234, 235-239,
270-273
decomposition, 90
evaluating functions using, 110-112
multiple elseif clauses, using, 114
nested if clauses, using, 114-115
program design, use of in, 90, 93, 203
quadratic equation, 107-110, 270-273
random number generator, 228-234
running averages, 235-239
selection sort, 216221
statistical analysis, 150-155, 161-162
stepwise refinement, 90
sub-tasks, 90, 203
Alpha release, 92
AND (&, &&) operators, 9899
angle( ) function, 269
Argument lists, 204, 205-209, 221-226,
465-466
actual, 205-206
calling M-files with, 465-466
dummy, 205
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Argument lists, continued
input lists, 204, 205
M-files and, 205-209
optional, 221-226
output lists, 204, 205
Array Editor, 12—-13
Arrays, 3-4, 21-25, 25-31, 31-35, 35-37,
47-50, 164-165, 173-175, 277-278,
294-296, 319-327, 327-340, 340-350
cell, 327-340
data types for, 277-278, 294-296
empty, 26
identity matrices, 29
initializing variables in, 25-31
logical, 173175
MATLAB environment and, 3—4
matrices, 21
multidimensional, 31-34, 294-296
operations, 47-50
row order, 24-25
size function, 29, 295
size of, 21-22
sparse, 319-327
string functions and, 277-278
structure, 340-350
subarrays, 35-37
two-dimensional, 31-32, 277-278
variables and, 21-25, 25-26
vectorization, 164—165, 173—175
vectors, 21
ASCII character set, 535
Assignment operator (=), 17, 4647
Assignment statements, 25-27, 3637,
329-330, 341-343
cell arrays allocated of using,
329-330
cell indexing, 329
content indexing, 329
row order, 25-26
structure arrays built with, 341-343
subarrays and, 3637
variables initialized using, 25-27
axes objects, 422, 436, 439440, 444
axis command/function, 119-122,
193, 452

B

Bar plots, 300, 302
Beta release, 92
Binary files, 379-380
Binary I/O functions, 380-384, 395-400
formatted functions, comparison with,
395-400
fread function, 382-383
fwrite function, 380-382
precision strings and, 381-383
Braces { } as cell constructors, 330
Branches, 87, 104-119
if construct, 104-115
switch construct, 115-116
try/catch construct, 116117
use of in MATLAB, 87, 104-119
break statements, 169—171
Breakpoints, 138—139
Built-in functions, initializing variables
using, 29, 30
Button groups, GUIs, 452, 488490
ButtonDownFcn property, 509

C

Callbacks, 452, 466, 468—469
functions for design of, 468—469
graphical user interface (GUI), 452
subfunctions, 466

Cell arrays, 327-340
assignment statements, allocating using,

329-330
braces { } as cell constructors, 330
cell indexing, 329
content indexing, 329
creating, 329-330
data, use of in, 334-335
deleting, 334
displaying contents of, 330-331
extending, 331-334
MATLAB cell functions, 340
pointers in, 327-329
significance of, 336-339
strings and, 335-336



cell function, 330, 332
Cell indexing, 329
celldisp function, 331
cellplot function, 331
cellstr function, 335
char variable, 24, 276-278
Character data displayed, 389
Checkboxes, 475-478
Child objects, 422
clc command, 15
clear command, 11-12 15, 334
clf command, 15
Colon operator (;), 28
Command/function duality, 120
Command History Window, 6—7
Command Window, 4-6, 10-11
Compass plots, 300, 303
Compiler, 3, 521-534
commands and functions for, 534
Component Technology File (CTF), 521
Deployment Tool, 530-533
example of, 524-528
MATLAB Component Run Time (MCR),
521-522, 523
problems with, 528-530
setting up, 522-523
use of, 523-533
Complex data, 265-276
functions, 269-273
numbers, 265-268, 268-269, 270
plotting, 273-276
relational operators and, 268—269
variables, 268
Components, 452, 453-454, 471-486
checkboxes, 475478
edit boxes, 472-474
graphical user interfaces (GUIs), 452,
453-454, 471-486
list boxes, 478481
popup menus, 478
pushbuttons, 474475
radio buttons, 475-478
sliders, 481-486
static (text) elements, 454, 472
toggle buttons, 475

Index | 557

Concatenating strings, 278
Conditional breakpoint, 139
Constructs, 93
Containers, 452, 453, 466-468, 487-490
button groups, 452, 488—490
figures, 452, 466468
graphical user interfaces (GUIs), 452,
453, 487490
panels, 452, 487-488
uibuttongroup function, 487,
489-490
uipanel function, 487, 489
Content indexing, 329
Context menu, 495, 500-505
continue statements, 169-171
Contour plots, 309-310, 312
Conversion (% f) characters, 43
Conversion functions, 56, 277-287,
386-389, 393
character data displayed, 389
comparing strings, 279-282
concatenating strings, 278
decimals displayed, 387388
floating-point data displayed, 388-389
format specifiers, 386-389, 393
numeric-to-string, 285-286
% character, 386—389
string, 56, 277-278
string-to-numeric, 286287
trimming whitespace using, 284
uppercase and lowercase, 284
CreateFcn property, 509

D

Data, 4044, 44-46, 227-234, 234-239,
265-318, 334-335, 344-346, 432-433

cell arrays, use of in, 334-335
commands and functions for, 313-315
complex, 265-276
double variable, 296299
files, 4446
global memory, sharing using, 227-234
integers, 297-299
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Data, continued
load command, 45-46
MATLAB types of, 265-318
multidimensional arrays, 294-296
output, displaying using MATLAB,
40-44
persistent memory, preserving between
calls, 234-239
plotting, 273-276, 299-312
save command, 44-45
single variable, 296-299
string functions, 276292
structure arrays, use of in, 344-346
user-defined, handle graphics and,
432-433
Data dictionary, 23
Data hiding, 204
deblank function, 278, 284
Debugging, 72-74, 137-141
breakpoints, 138-139
conditional breakpoint, 139
logical error, 73-74
program design and, 127-141
run-time error, 73
symbolic debugger, 74
syntax error, 72—73
Decimals displayed, 387-388
Default and factory properties, MATLAB,
443-446
DeleteFcn property, 509
demo command, 14
Deployment Tool, 530-533
Dialog boxes, 490-495
error and warning, 490-491
input, 492
modal, 490
non-modal, 490
uigetdir, 493-494
uigetfile, 493
uisetcolor, 494-495
uisetfile, 493
uisetfont, 494-495
Diary command, 15
disp function, 42
Docking windows to desktop, 10-11

double variable, 24, 277, 296-299
Dynamic field names, 347-348

E

Edit boxes, 472-474

Edit/Debug Window, 4, 7-8, 10-11

Editing Button, 134-135, 137

Ellipsis (...), use of, 5-6

elseif clauses, 104-106, 113114

end function, 35

end statement, 246248

Enhancements for GUIs, 509-514

Equivalence (==) operator, 95-96, 97,
268, 280

error function, 222

Escape (/n) characters, 43

eval function, 240

Exclamation point (!) character, 15

exist function, 401-403

ezplot function, 304-305

F

fclose function, 376, 380

feof function, 404

ferror function, 404

feval function, 240-241, 351

fgetl function, 394

fgets function, 395

Fields, 340, 343-344, 347-348
adding to structures, 343-344
dynamic field names, 347-348
removing from structures, 344
structure arrays and, 340, 343-344

figure function, 123, 304

figure objects, 422, 444, 469-470

Figure Window, 4, 8-10, 10-11

File id (fid), 376, 385

Files, 6, 7-8, 11, 15-17, 205-209, 376410,

416-417, 463466, 467
binary, 379-380, 380-384
comparison of formatted to binary,
395400



exist function, 401-403

fclose function, 376, 380

feof function, 404

ferror function, 404

fgetl function, 394

fgets function, 395

fopen function, 376, 377-380

formatted, 385-395

fprintf function, 385-387, 389-391

fread function, 382-383

frewind function, 404

fscanf function, 392-394

fseek function, 405

ftell function, 404

fwrite function, 380-382

input/output functions, 376-410

M-files, 6, 7-8, 15-17, 205-209,
463-466, 467

MATLAB commands and functions for,
416-417

MATLAB processing, 376377

opening and closing, 377-380

positioning functions, 400-410

script, 6, 11, 205

status functions, 400-410
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character data displayed, 389
conversion specifiers, 386-389, 393
decimals displayed, 387—388
fgetl function, 394
fgets function, 395
floating-point data displayed, 388-389
fprintf function, 385-387, 389-391
fscanf function, 392-394
sprintf function, 391-392
strings, 389-391

fplot function, 304-305

fprintf function, 4244, 385-387,

389-391

fread function, 382-383

frewind function, 404

fscanf function, 392-394

fseek function, 405

ftell function, 404

func2str function, 351-352

Function handles, 350-362
@ operator, 350-351
creating, 350-352
examples of, 356362
func2str function, 351-352
MATLAB functions for, 353

findobj function, 434-435, 468-469
findstr function, 282
Floating-point data displayed, 388-389
fopen function, 376, 377-380
for loops, 155-172, 173-175
break statements, 169—-171
continue statements, 169-171
if/else constructs, 174-175
indentation of, 163
just-in-time (JIT) compiler, 165-169
logical arrays, 173-175
loop index, 156, 163
nesting, 171-173
preallocating arrays, 163—164
vectorizing arrays, 164—165
Format flags, 387
Formatted I/O functions, 385-395, 395-400
% conversion character, 386—389
binary functions, comparison with,
395-400

nested functions and, 354-356
significance of, 352-354
str2func function, 350-351
using, 350-352

Functions, 2, 29, 30, 54-55, 56, 77-78,

102-103, 120, 203-264, 269-273,
276-292, 304-305, 324, 371-419
absolute value, 269
angle, 269
array inputs and, 54-55
built-in, 29, 30, 54-55
command/function duality, 120
common, 56, 77-78
complex, 269-273
file positioning and status, 400410
function, 240-243
host, 246
input/output (I/O), 371419
logical, 102-103
mathematical, 56, 270
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Functions, continued

MATLAB, 2, 205-209, 209-221, 365

nested, 246248

optional results from, 54

order of evaluation, 276

pass-by value scheme, 209-221

plotting, 304-305

predefined, 2

primary, 244

private, 245-246

rounding, 56

scope of, 244

sparse matrix, 324

string, 56, 276292

subfunctions, 244245

type conversion, 269

user-defined, 203264
fwrite function, 380-382
fzero function, 240

G

gca function, 434

gcbf function, 468

gcbo function, 468

gcf function, 434

gco function, 434

get function, 424-425

getfield function, 346347

Global memory, 227-234

global statement, 227

Graphical user interfaces (GUIs), 3,

451-519
application data and, 466, 468
callbacks, 452, 466, 468-468
components, 452, 453-454, 471-486
containers, 452, 453, 466468,
487-490

creating and displaying, 452, 455469
dialog boxes, 490495
elements of, 451-452
enhancements for, 509-514
events, 451
figure objects, 469—470

figures, 452, 466468

findobj function, 468-469

graphical controls, 453

guide tool, 452, 455-463

MATLAB commands and functions for,

516-517
menus, 452, 495-506
M-files, 463-466, 467
object properties, 469—471
pcode, 507-508
tool tips, 506507
toolbars, 452, 508-509
uicontrol objects, 470471

Graphics, 58-59, 421-449.

See also Handle graphics
axes objects, 422, 436, 439440, 444
child objects, 422
figure objects, 422, 444
handle, 421-449
images, exporting plots as, 58-59
line, 421
MATLAB system, 421-424
parent objects, 422
properties, 421
root objects, 422, 444

Greek symbols, 127
grid command, 57
guide tool, 452, 455-463

H

Handle graphics, 421-449

finding objects, 434435

get function, 424425

MATLAB commands and functions
for, 447

MATLAB default and factory
properties, 443446

MATLAB graphics system, 421-424

object handles, 423

object properties, 423430, 430432
‘Position’ property, 438443

printer positions, 443

selecting objects, 435-438



set function, 424-425, 430-432
‘Units’ property, 438—443
user-defined data, 432-433
Help Browser, 13-14
helpdesk command, 15
helpwin command, 15
Histograms, 232-234, 306-307, 510-514,
529-530
compiling data from, 529-530
enhanced elements for, 510-514
GUI, creation of, 510-514, 529-530
plotting, 232-234, 306-307
hold command, 122, 185, 188, 193
H1 comment line, 206
Host function, 246

I

Identity matrices, 29

if construct, 104-115
else clauses, 105-106
elseif clauses, 105-106, 114
examples of, 106—112
nesting, 113—115

if/else constructs, 174-175

imag function, 29

input function, 29-30

Input/output (I/0) functions, 371419
binary, 380-384
comparison of formatted to binary,

395-400
file id (fid), 376, 385
file opening and closing, 377-380
file positioning and status, 400-410
formatted, 385-395
load command, 373-376
MATLAB commands and functions for,
416-417

MATLAB file processing, 376-377
save command, 373-376
textread function, 371-373
textscan function, 411-413
uiimport function, 413, 414, 415

inputname function, 222-223

Index

Integer data types, 297-299
isletter function, 280-281
isspace function, 280-281
issparse function, 322
isstrprop function, 280-282, 281

J
Just-in-time (JIT) compiler, 165-169

K

Keyboard input, initializing
variables using, 29-30

Keyboard mnemonics, 499-500

KeyPressFcn property, 509-510

L

legend command, 61-63
Line color and style, plotting, 61-62
LineWidth property, 185, 193
List boxes, 478-481
load command, 45-46, 373-376
Logarithmic scales, plotting, 64—65
Logic operators, 98—102
AND (&, &&), 98-99
exclusive OR (xor) operator, 100
hierarchy operations of, 101

561

inclusive OR (|, | |) operators, 99-100

NOT (~) operator, 100
numeric data used with, 100-101
Logical arrays, 173-175

if/else constructs using, 174—-175

masking operations with, 173-174
vectorization and, 173—-174
Logical data type, 93—-104
logic operators, 98—102
logical functions, 102-103
relational operators, 94-96
roundoff errors, 97-98
truth tables, 98-99
Logical error, 73-74
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Logical functions, 102-103
lookfor command, 16
Loops, 87, 149-202
break statements, 169—-171
commands and functions for, 195
continue statements, 169-171
examples of, 179-194
for, 155-172
index, 156, 163
just-in-time (JIT) compiler, 165-169
logical arrays, 173175
MATLAB Profiler and, 176178
nesting, 171-173
use of in MATLAB, 87, 149-202
vectorization, 173-175
while, 149-155

M

M-files, 6, 7-8, 15-17, 205-209,
463-466, 467
arguments and, 205-209
calling with arguments, 465—466
calling without arguments, 464—465
Edit/Debug Window, creation of using,
7-8
graphical user interfaces (GUIs) and,
463-466, 467
MATLAB user-defined functions and,
205-206
search path for finding, 15-17
Masks, 173-174
Mathematical calculations in
MATLAB, 17
Mathematical functions, 56, 270
Mathematical symbols, 127
MATLAB Component Run Time (MCR),
521-522, 523

Matrices, 21, 29, 47-50, 320-327. See also

Arrays
arrays and, 21
identity, 29
operations, 4750
sparse, 320-327

Matrix Laboratory (MATLAB), 1-20, 21-86,

176-178, 205-209, 209221, 319-369,
376-377, 416417, 421-423, 443-446,
447,451-519, 521-534

advanced features of, 319-369

advantages of, 2-3

arrays, 3—4, 21-25, 31-35, 35-37

built-in functions, 54-55, 56

cell arrays, 327-340

Command History Window, 6—7

Command Window, 4-6, 1011

commands in, 14-15, 77-78, 365

compiler, 3, 521-534

components, 452, 453-454, 471-486

data files, 44-46

debugging programs, 72—74

default and factory object properties,
443-446

desktop, 7

disadvantages of, 3

docking and undocking windows, 1011

Edit Window, 4, 7-8, 1011

environment, 3—17

Figure Window, 4, 8-10, 10-11

file processing, 376-377

files, commands and functions for,
416-417

function handles, 350-362

graphic images, 58—59

graphical user interfaces (GUIs), 3,
451-519

graphics system, 421-423

handle graphics, 443446, 447

help in, 13-14

input/output functions, 376-377,
416-417

introduction to, 1-20

mathematical symbols in, 17, 19

operations in, 46-50, 51-54, 75

output data, displaying, 40—44

plotting, 55, 57-65

predefined special values, 38-39

problem-solving, examples of using,
65-72

Profiler, 176178



scratch pad, as a, 17
search path, 15-17
sparse arrays (matrices), 319-327
special symbols, 19, 76
structure arrays, 340-350
user-defined functions, 205-209,
209-221, 251
variables, 21-25, 25-31
workspace, 11-13
max function, 221-222
mean function, 244-245
median function, 244-245
Memory, 33, 34, 337-237, 234-239
global, 227-234
multidimensional arrays, storing
in, 33, 34
persistent, 234-239
preserving data between calls,
234-239
sharing data, 227-234
Menus, 452, 495-506
accelerator keys, 499—500
context, 495, 500-505
creating for a GUI, 497—499, 500-505
keyboard mnemonics, 499500
standard, 495, 497-499
suppressing defaults, 496497
ulcontextmenu, 497
uimenu, 496
Mesh plots, 309-310, 311
Mouse, selecting objects with, 435-438
Multidimensional arrays, 31-34, 294-296
accessing with one dimension, 33
column major order, 33
data types for, 294-296
storing in memory, 33, 34
mystats function, 244-245

N

nargchk function, 222

nargin function, 222

nargout function, 222, 225-226, 339
ndims function, 295
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Nested functions, 246-248, 354-356

function handles and, 354-356

host function, 246248
Nesting, 113-115, 171-173, 349

if constructs, 113-115

loops, 171-173

structure arrays, 349
Non-equivalence (~=) operator, 97
NOT (~) operator, 100, 174-175
Numbers, complex, 265-268, 268269

(0]

Objects, 422443, 469471
axes, 422, 436, 439440
changing properties, 423-430
child, 422
figure, 422, 444, 469-470
figures, positions of, 438—443
finding, 434-435
get function, 424-425

graphical user interface (GUI) properties,

469471
handles, 423
listing property values of, 430—432
parent, 422
‘Position’ property, 438443
properties, 423—430, 430432
Property Editor, 425-427
root, 422, 444
selecting, 435-438
set function, 424-425, 430-432
stacking order of, 436
text, 440
uicontrol, 439440, 470471
‘Units’ property, 438443

Operations, 4650, 51-54, 75, 101-102

array, 47-50
common, 50
hierarchy of, 51-53, 75, 101-102
logical operators and, 101-102
matrix, 47-50
parentheses ( ), 47,51-53, 101-102
scalar, 4647
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Operators, 93—-102, 268-269
complex numbers used with relational,
268-269
logic, 98102
relational, 94-96, 268-269
roundoff errors, 97-98
OR operators (|, | |) and (xor),
99-100
Output data, 4044
default format, 4042
disp function, 42
displaying in MATLAB, 40-44
fprintf function, 42-44

P

Panels, GUISs, 452, 487488
Parent objects, 422
Pass-by value scheme, 209-221
pcode command, 507-508
Persistent memory, 234-239
persistent statement, 235
Pie plots, 300, 303
Platform independence, MATLAB, 2
plot function, 55, 61, 273-275,
307-309
plotline function, 336-338
Plotting, 2-3, 55-65, 119-137, 232-234,
273-276,299-312
axis command/function, 119-122
bar plots, 300, 302
command/function duality, 120
compass plots, 300, 303
complex data, 273-276
contour plots, 309-310, 312
device-independence of
MATLAB, 2-3
editing tools for, 134-135, 137
examples of, 127-134
exporting as graphical images, 58—59
ezplot function, 304-305
figure function, 123, 304
fplot function, 304-305
functions, 304-305

histograms, 232-234, 306-307
hold command, 122
legends, 61-63
line color and style, 61-62, 125
logarithmic scales, 64—65
marker style, 61-62
mesh plots, 309-310, 311
multiple plot functions, 60, 122
pie plots, 300, 303
polar plots, 127-129, 276
printing plots, 58
program design features, 119—137
saving plots, 134—-135
stair plots, 299-301
stem plots, 299-301
stream modifiers, 125
subplots, 123—-125
surface plots, 309-310, 311
text strings, enhanced control of,
125-127
three-dimensional, 307-310
two-dimensional, 299-307
xy plots, 57-58, 119-122
Pointers in cell arrays, 327-329
Polar plots, 127-129, 276
Popup menus, 478
‘Position’ property, 438-443
Pragmas, 528-529
precision strings, 381-383
Primary function, 244
print command, 58-59
Printer positions, 443
Printing plots, 58
private functions, 245246
Program design, 87-148
branches, 87, 104—-119
commands and functions for, 143
debugging, 137-141
logical data type, 93—-104
plotting features, 119-137
pseudocode, 93
top-down techniques, 87-93
Pseudocode, use of in program
design, 90, 93
Pushbuttons, 474-475



Q

Quadratic equation algorithm, 107-110,
270-273

R

Radio buttons, 475-478

Random number generator algorithm,
228-234

real function, 29

Relational operators, 94-96, 268-269

Reusable code, 204

rmfield function, 344

root objects, 422, 444

Rounding functions, 56

Roundoff errors, 97-98

Running averages algorithm, 235-239

Run-time error, 73

S

save command, 44-45, 373-376
Saving plots, 134—135
Scalar operations, 37, 4647
assigned to subarrays, 37
assignment operator (=) , 4647
Scratch pad, MATLAB as a, 17
Script files, 6, 11, 205. See also M-files
Search path in MATLAB, 15-17
Selection sort algorithm, 216-217
Semicolon operator (; ), 27
set function, 424-425, 430-432
setfield function, 346347
Shortcut expressions, initializing variables
using, 28-29
Signed integers, 297-298
single variable, 296299
size function, 29, 296, 348-349
Sliders, 481-486
Sparse arrays, 319-327
generating, 323
matrices, 320-327
MATLAB matrix functions, 324
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sparse attribute, 321-327
whos command, 322-323
working with, 323-324
Special symbols, 19, 76
Special values, predefined in MATLAB,
38-39
sprintf function, 391-392
Stair plots, 299-301
Standard menu, 495, 497499
Start button, 7
Static (text) elements, 454, 472
Statistical analysis algorithms, 150-155,
161-162
Stem plots, 299-301
strcat function, 278
Stream modifiers, 125
strerp function, 283
String functions, 56, 276-292, 335-336,
381-383, 389-391
categorizing characters using, 280-28/2
cell arrays of, 335-336
char variables, 276-278
common MATLAB uses, 288
comparing, 279282
concatenating, 278
conversion, 56, 277-287
double variables, 277
equality, comparing for, 279-280
equivalence (==) operator and, 280
format, 389-391
inequality, comparing for, 280
numeric-to-string conversions, 285-286
precision, binary I/O functions and,
381-383
replacing characters using, 282283
searching for characters using, 282-283
string-to-numeric conversions, 286287
trimming whitespace using, 284
two-dimensional character arrays using,
277-278
uppercase and lowercase conversion, 284
strmatch function, 282283
strncmp function, 279-280
strtok function, 283
strtrim function, 284
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str2func function, 350-351
struct function, 343-344
Structure arrays, 340-350
assignment statements, building with,
341-343
creating, 340343
data, use of in, 344-346
dynamic field names, 347-348
fields in, 340, 343-344
getfield function, 346347
MATLAB structure functions, 350
nesting, 349
setfield function, 346-347
size function, 348-349
struct function, 343-344
Structured program, 93
strvcat function, 277, 278, 282
Subarrays, 35-37
assignment statements and, 36-37
end function, 35
scalars assigned to, 37
shape of values and, 36-37
Subfunctions, 244245
Subplots, 123-125
Sub-tasks, 90, 203
Surface plots, 309-310, 311
switch construct, 115-116
Symbolic debugger, 74
Syntax error, 72—73

T

Text fields, static GUI component elements,
454, 472

text objects, 440

Text strings, enhanced control of for
plotting, 125-127

textread function, 371-373

textscan function, 411-413

Three-dimensional plots, 307-310

Toggle buttons, 475

Tool tips, GUIs, 506507

Toolbars, GUIs, 452, 508-509

Top-down program design, 87-93, 203-204

algorithms, 90, 203

argument lists, 204

data hiding, 204

pseudocode, 90

reusable code, 204

unit testing, 91, 203

user-defined functions and, 203-204
Transpose operator (), 28
Truth tables, 98-99
try/catch construct, 116-117
Two-dimensional arrays, 31-32
Two-dimensional character arrays using

string functions, 277-278

Two-dimensional plots, 299-307
Type conversion functions, 269

U

uibuttongroup function, 487, 489-490
uicontextmenu object, 495, 497, 500-501
uicontrol objects, 439440, 470471
uigetdir dialog boxes, 493-494
uigetfile dialog boxes, 493
uiimport function, 413, 414, 415
uimenu object, 495-496
uipanel function, 487, 489
uisetcolor dialog boxes, 494-495
uisetfile dialog boxes, 493
uisetfont dialog boxes, 494495
Undocking windows to desktop, 1011
Unit testing, 91, 203
‘Units’ property, 438—443
Unsigned integers, 297298
User-defined functions, 203-264

argument lists, 204, 205-209, 221-226

commands and functions for, 251

function functions, 240-243

global memory, 227-234

H1 comment line, 206

MATLAB, 205-209, 209-221

nested functions, 246248

order of evaluation, 276



pass-by value scheme, 209221
persistent memory, 234-239
preserving data between calls, 234-239
private functions, 245-246
reusable code, 204

script files, 205

subfunctions, 244-245

top-down design and, 203-204

unit testing, 203

\Y%

var variable, 24, 25
varargin function, 336-338
varargout function, 338-339
Variables, 5, 11-12, 21-25, 25-31
arrays and, 21-25
assignment statements, 2527
built-in functions, 29, 30
char, 24
displayed in MATLAB, 5, 11-12
double, 24
initializing, 25-31
keyboard input, 29-30
shortcut expressions, 28-29
var, 24, 25

Index

Vectorization, 164—-165, 173—-175
for loops, 164-165
logical arrays and, 173-175

W

warning function, 222-223
which command, 16-17
while loops, 149-155
whos command, 11, 276, 322-323
Windows, 411
Command, 46, 10-11
Command History, 67
docking and undocking, 10-11
Edit, 4, 7-8, 1011
Figure, 4, 8-10, 10-11
MATLAB desktop and, 4-11
Workspace Browser, 12—13

X

xor, exclusive OR operator, 100
xy plots, 57-58, 119-122

V4

zeros function, 29
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