
Efficient Parallel Algorithms

Alexander Tiskin

Department of Computer Science
University of Warwick

http://go.warwick.ac.uk/alextiskin

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 1 / 185

1 Computation by circuits

2 Parallel computation models

3 Basic parallel algorithms

4 Further parallel algorithms

5 Parallel matrix algorithms

6 Parallel graph algorithms

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 2 / 185

1 Computation by circuits

2 Parallel computation models

3 Basic parallel algorithms

4 Further parallel algorithms

5 Parallel matrix algorithms

6 Parallel graph algorithms

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 3 / 185

Computation by circuits
Computation models and algorithms

Model: abstraction of reality allowing qualitative and quantitative
reasoning

E.g. atom, galaxy, biological cell, Newton’s universe, Einstein’s universe. . .

Computation model: abstract computing device to reason about
computations and algorithms

E.g. scales+weights, Turing machine, von Neumann machine (“ordinary
computer”), JVM, quantum computer. . .

An algorithm in a specific model: input→ (computation steps)→ output

Input/output encoding must be specified

Algorithm complexity (worst-case): T (n) = max
input size=n

computation steps

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 4 / 185

http://go.warwick.ac.uk/alextiskin

Computation by circuits
Computation models and algorithms

Algorithm complexity depends on the model

E.g. sorting n items:

Ω(n log n) in the comparison model

O(n) in the arithmetic model (by radix sort)

E.g. factoring large numbers:

hard in a von Neumann-type (standard) model

not so hard on a quantum computer

E.g. deciding if a program halts on a given input:

impossible in a standard (or even quantum) model

can be added to the standard model as an oracle, to create a more
powerful model

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 5 / 185

Computation by circuits
The circuit model

Basic special-purpose parallel model: a circuit

a2 + 2ab + b2

a2 − b2

a b

x2 2xy y 2

x + y + z x − y

Directed acyclic graph (dag)

Fixed number of inputs/outputs

Oblivious computation: control sequence independent of the input

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 6 / 185

Computation by circuits
The circuit model

Bounded or unbounded fan-in/fan-out

Elementary operations:

arithmetic/Boolean/comparison

each (usually) constant time

size = number of nodes

depth = max path length from input to output

Timed circuits with feedback: systolic arrays

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 7 / 185

Computation by circuits
The comparison network model

A comparison network is a circuit of comparator nodes

x

x u y

y

x t y

denotes

x y

x u y x t y

u = min

t = max

The input and output sequences have the same length

Examples:

n = 4

size 5

depth 3

n = 4

size 6

depth 3

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 8 / 185

Computation by circuits
The comparison network model

A merging network is a comparison network that takes two sorted input
sequences of length n′, n′′, and produces a sorted output sequence of
length n = n′ + n′′

A sorting network is a comparison network that takes an arbitrary input
sequence, and produces a sorted output sequence

A sorting (or merging) network is equivalent to an oblivious sorting (or
merging) algorithm; the network’s size/depth determine the algorithm’s
sequential/parallel complexity

General merging: O(n) comparisons, non-oblivious

General sorting: O(n log n) comparisons by mergesort, non-oblivious

What is the complexity of oblivious sorting?

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 9 / 185

Computation by circuits
Naive sorting networks

BUBBLE -SORT (n)

size n(n − 1)/2 = O(n2)

depth 2n − 3 = O(n)

BUBBLE -SORT (n−1)

BUBBLE -SORT (8)

size 28

depth 13

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 10 / 185

Computation by circuits
Naive sorting networks

INSERTION-SORT (n)

size n(n − 1)/2 = O(n2)

depth 2n − 3 = O(n)

INSERTION-SORT (n−1)

INSERTION-SORT (8)

size 28

depth 13

Identical to BUBBLE -SORT !

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 11 / 185

Computation by circuits
The zero-one principle

Zero-one principle: A comparison network is sorting, if and only if it sorts
all input sequences of 0s and 1s

Proof. “Only if”: trivial. “If”: by contradiction.

Assume a given network does not sort input x = 〈x1, . . . , xn〉
〈x1, . . . , xn〉 7→ 〈y1, . . . , yn〉 ∃k, l : k < l : yk > yl

Let Xi =

{
0 if xi < yk

1 if xi ≥ yk
, and run the network on input X = 〈X1, . . . ,Xn〉

For all i , j we have xi ≤ xj ⇒ Xi ≤ Xj , therefore each Xi follows the same
path through the network as xi

〈X1, . . . ,Xn〉 7→ 〈Y1, . . . ,Yn〉 Yk = 1 > 0 = Yl

We have k < l but Yk > Yl , so the network does not sort 0s and 1s

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 12 / 185

Computation by circuits
The zero-one principle

The zero-one principle applies to sorting, merging and other comparison
problems (e.g. selection)

It allows one to test:

a sorting network by checking only 2n input sequences, instead of a
much larger number n! ≈ (n/e)n

a merging network by checking only (n′ + 1) · (n′′ + 1) pairs of input
sequences, instead of an exponentially larger number

(n
n′
)

=
(n
n′′
)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 13 / 185

Computation by circuits
Efficient merging and sorting networks

General merging: O(n) comparisons, non-oblivious

How fast can we merge obliviously?

〈x1 ≤ · · · ≤ xn′〉, 〈y1 ≤ · · · ≤ yn′′〉 7→ 〈z1 ≤ · · · ≤ zn〉
Odd-even merging

When n′ = n′′ = 1 compare (x1, y1), otherwise

merge 〈x1, x3, . . . 〉, 〈y1, y3, . . . 〉 7→ 〈u1 ≤ u2 ≤ · · · ≤ udn′/2e+dn′′/2e〉
merge 〈x2, x4, . . . 〉, 〈y2, y4, . . . 〉 7→ 〈v1 ≤ v2 ≤ · · · ≤ vbn′/2c+bn′′/2c〉
compare pairwise: (u2, v1), (u3, v2), . . .

sizeOEM(n′, n′′) ≤ 2 · sizeOEM(n′/2, n′′/2) + O(n) = O(n log n)

depthOEM(n′, n′′) ≤ depthOEM(n′/2, n′′/2) + 1 = O(log n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 14 / 185

Computation by circuits
Efficient merging and sorting networks

OEM(n′, n′′)

size O(n log n)

depth O(log n)

n′ ≤ n′′

OEM(dn′/2e,dn′′/2e)

OEM(bn′/2c,bn′′/2c)

OEM(4, 4)

size 9

depth 3

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 15 / 185

Computation by circuits
Efficient merging and sorting networks

Correctness proof of odd-even merging (sketch): by induction and the
zero-one principle

Induction base: trivial (2 inputs, 1 comparator)

Inductive step. By the inductive hypothesis, we have for all k , l :

〈0dk/2e11 . . .〉, 〈0dl/2e11 . . .〉 7→ 〈0dk/2e+dl/2e11 . . .〉
〈0bk/2c11 . . .〉, 〈0bl/2c11 . . .〉 7→ 〈0bk/2c+bl/2c11 . . .〉
We need 〈0k11 . . .〉, 〈0l11 . . .〉 7→ 〈0k+l11 . . .〉
(dk/2e+ dl/2e)− (bk/2c+ bl/2c) ={

0, 1 result sorted: 〈0k+l11 . . .〉
2 single pair wrong: 〈0k+l−11011 . . .〉

The final stage of comparators corrects the wrong pair

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 16 / 185

Computation by circuits
Efficient merging and sorting networks

Sorting an arbitrary input 〈x1, . . . , xn〉
Odd-even merge sorting [Batcher: 1968]

When n = 1 we are done, otherwise

sort 〈x1, . . . , xdn/2e〉 recursively

sort 〈xdn/2e+1, . . . , xn〉 recursively

merge results by OEM(dn/2e, bn/2c)

sizeOEM-SORT (n) ≤ 2 · sizeOEM-SORT (n/2) + sizeOEM(n) =
2 · sizeOEM-SORT (n/2) + O(n log n) = O

(
n(log n)2

)
depthOEM-SORT (n) ≤ depthOEM-SORT (n/2) + depthOEM(n) =

depthOEM-SORT (n/2) + O(log n) = O
(
(log n)2

)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 17 / 185

Computation by circuits
Efficient merging and sorting networks

OEM-SORT (n)

size O
(
n(log n)2

)
depth O

(
(log n)2

) OEM-SORT

(dn/2e)
OEM-SORT

(bn/2c)

OEM(dn/2e,bn/2c)

OEM-SORT (8)

size 19

depth 6

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 18 / 185

Computation by circuits
Efficient merging and sorting networks

A bitonic sequence: 〈x1 ≥ · · · ≥ xm ≤ · · · ≤ xn〉 1 ≤ m ≤ n

Bitonic merging: sorting a bitonic sequence

When n = 1 we are done, otherwise

sort bitonic 〈x1, x3, . . . 〉 recursively

sort bitonic 〈x2, x4, . . . 〉 recursively

compare pairwise: (x1, x2), (x3, x4), . . .

Correctness proof: by zero-one principle (exercise)

(Note: cannot exchange ≥ and ≤ in definition of bitonic!)

Bitonic merging is more flexible than odd-even merging, since a single
circuit applies to all values of m

sizeBM(n) = O(n log n) depthBM(n) = O(log n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 19 / 185

Computation by circuits
Efficient merging and sorting networks

BM(n)

size O(n log n)

depth O(log n)

BM(dn/2e)

BM(bn/2c)

BM(8)

size 12

depth 3

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 20 / 185

Computation by circuits
Efficient merging and sorting networks

Bitonic merge sorting [Batcher: 1968]

When n = 1 we are done, otherwise

sort 〈x1, . . . , xdn/2e〉 7→ 〈y1 ≥ · · · ≥ ydn/2e〉 in reverse, recursively

sort 〈xdn/2e+1, . . . , xn〉 7→ 〈ydn/2e+1 ≤ · · · ≤ yn〉 recursively

sort bitonic 〈y1 ≥ · · · ≥ ym ≤ · · · ≤ yn〉 m = dn/2e or dn/2e+ 1

Sorting in reverse seems to require “inverted comparators”, however

comparators are actually nodes in a circuit, which can always be
drawn using “standard comparators”

a network drawn with “inverted comparators” can be converted into
one with only “standard comparators” by a top-down rearrangement

sizeBM-SORT (n) = O
(
n(log n)2

)
depthBM-SORT (n) = O

(
(log n)2

)
Alexander Tiskin (Warwick) Efficient Parallel Algorithms 21 / 185

Computation by circuits
Efficient merging and sorting networks

BM-SORT (n)

size O
(
n(log n)2

)
depth O

(
(log n)2

)
⇐=

BM-SORT

(dn/2e)

=⇒
BM-SORT

(bn/2c)

BM(n)

BM-SORT (8)

size 24

depth 6

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 22 / 185

Computation by circuits
Efficient merging and sorting networks

Both OEM-SORT and BM-SORT have size Θ
(
n(log n)2

)
Is it possible to sort obliviously in size o

(
n(log n)2

)
? O(n log n)?

AKS sorting [Ajtai, Komlós, Szemerédi: 1983]

[Paterson: 1990]; [Seiferas: 2009]

Sorting network: size O(n log n), depth O(log n)

Uses sophisticated graph theory (expanders)

Asymptotically optimal, but has huge constant factors

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 23 / 185

1 Computation by circuits

2 Parallel computation models

3 Basic parallel algorithms

4 Further parallel algorithms

5 Parallel matrix algorithms

6 Parallel graph algorithms

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 24 / 185

Parallel computation models
The PRAM model

Parallel Random Access Machine (PRAM) [Fortune, Wyllie: 1978]

Simple, idealised general-purpose parallel
model

MEMORY

P

0

P

1

P

2

· · ·

Contains

unlimited number of processors (1 time unit/op)

global shared memory (1 time unit/access)

Operates in full synchrony

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 25 / 185

Parallel computation models
The PRAM model

PRAM computation: sequence of parallel steps

Communication and synchronisation taken for granted

Not scalable in practice!

PRAM variants:

concurrent/exclusive read

concurrent/exclusive write

CRCW, CREW, EREW, (ERCW) PRAM

E.g. a linear system solver: O
(
(log n)2

)
steps using n4 processors :-O

PRAM algorithm design: minimising number of steps, sometimes also
number of processors

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 26 / 185

Parallel computation models
The BSP model

Bulk-Synchronous Parallel (BSP) computer [Valiant: 1990]

Simple, realistic general-purpose parallel
model

COMM. ENV . (g , l)

0

P
M

1

P
M

p − 1

P
M· · ·

Contains

p processors, each with local memory (1 time unit/operation)

communication environment, including a network and an external
memory (g time units/data unit communicated)

barrier synchronisation mechanism (l time units/synchronisation)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 27 / 185

Parallel computation models
The BSP model

Some elements of a BSP computer can be emulated by others, e.g.

external memory by local memory + communication

barrier synchronisation mechanism by the network

Parameter g corresponds to the network’s communication gap (inverse
bandwidth) — the time for a data unit to enter/exit the network

Parameter l corresponds to the network’s latency — the worst-case time
for a data unit to get across the network

Every parallel computer can be (approximately) described by the
parameters p, g , l

E.g. for Cray T3E: p = 64, g ≈ 78, l ≈ 1825

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 28 / 185

Parallel computation models
The BSP model

ÞÛÒÝØÓßÎÕÎÛÍËÔÌÍ íë

ð

ëððð

ïðððð

ïëððð

îðððð

îëððð

ð ëð ïðð ïëð îðð îëð

¸

Ó»¿«®»¼¼¿¬¿
Ô»¿¬ó «̄¿®» º·¬

Ú·¹òïòïíòÌ·³» ±º¿² ó®» ¿́¬·±²±²¿êìó°®±½»±® Ý®¿§ ÌíÛò

Ì¿¾́» ïòîòÞ»²½̧³¿®µ»¼ÞÍÐ°¿®¿³»¬»® ¿²¼¬ »̧
¬·³» ±º¿ðó®» ¿́¬·±²º±® ¿Ý®¿§ ÌíÛòß́́ ¬·³» ¿®» ·²�±°
«²·¬ øãíëÓ�±°ñ÷

½±³³øð÷

ï íê ìé íè
î îè ìèê íîë
ì íï êéç ìíé
è íï ïïçí ëèð

ïê íï îðïè éëé
íî éî ïïìë èéï
êì éè ïèîë ïììð

´
´

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 29 / 185

Parallel computation models
The BSP model

BSP computation: sequence of parallel supersteps

0

1

p − 1 · · ·

· · ·

· · ·

· · ·

Asynchronous computation/communication within supersteps (includes
data exchange with external memory)

Synchronisation before/after each superstep

Cf. CSP: parallel collection of sequential processes

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 30 / 185

Parallel computation models
The BSP model

Compositional cost model

For individual processor proc in superstep sstep:

comp(sstep, proc): the amount of local computation and local
memory operations by processor proc in superstep sstep

comm(sstep, proc): the amount of data sent and received by
processor proc in superstep sstep

For the whole BSP computer in one superstep sstep:

comp(sstep) = max0≤proc<p comp(sstep, proc)

comm(sstep) = max0≤proc<p comm(sstep, proc)

cost(sstep) = comp(sstep) + comm(sstep) · g + l

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 31 / 185

Parallel computation models
The BSP model

For the whole BSP computation with sync supersteps:

comp =
∑

0≤sstep<sync comp(sstep)

comm =
∑

0≤sstep<sync comm(sstep)

cost =
∑

0≤sstep<sync cost(sstep) = comp + comm · g + sync · l

The input/output data are stored in the external memory; the cost of
input/output is included in comm

E.g. for a particular linear system solver with an n × n matrix:

comp O(n3/p) comm O(n2/p1/2) sync O(p1/2)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 32 / 185

Parallel computation models
The BSP model

BSP computation: scalable, portable, predictable

BSP algorithm design: minimising comp, comm, sync

Main principles:

load balancing minimises comp

data locality minimises comm

coarse granularity minimises sync

Data locality exploited, network locality ignored!

Typically, problem size n� p (slackness)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 33 / 185

Parallel computation models
Network routing

BSP network model: complete graph, uniformly accessible (access
efficiency described by parameters g , l)

Has to be implemented on concrete networks

Parameters of a network topology (i.e. the underlying graph):

degree — number of links per node

diameter — maximum distance between nodes

Low degree — easier to implement

Low diameter — more efficient

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 34 / 185

Parallel computation models
Network routing

2D array network

p = q2 processors

degree 4

diameter p1/2 = q

�� �� �� �� �	

� � �� �� ��

�� �� �� �� ��

�� ! "# $% &'

() *+ ,- ./ 01

232 254

462 434

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 35 / 185

Parallel computation models
Network routing

3D array network

p = q3 processors

degree 6

diameter 3/2 · p1/3 = 3/2 · q

�� �� �� ��

�	
� � ��

�� �� �� ��

�� �� �� ��

 ! "# $% &'

() *+ ,- ./

01 23 45 67

89 :; <= >?

@A BC DE FG

HI JK LM NO

PQ RS TU VW

XY Z[\] ^_

`a bc de fg

hi jk lm no

pq rs tu vw

xy z{ |} ~�

�����

����� �����

����� �����

�����

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 36 / 185

Parallel computation models
Network routing

Butterfly network

p = q log q processors

degree 4

diameter ≈ log p ≈ log q

���������	��
�����������������������������

���	�����������������
����������	���������

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 37 / 185

Parallel computation models
Network routing

Hypercube network

p = 2q processors

degree log p = q

diameter log p = q

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�������

�������

������� ���	���

�����	� �	�����

�������

�������

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 38 / 185

Parallel computation models
Network routing

Network Degree Diameter

1D array 2 1/2 · p
2D array 4 p1/2

3D array 6 3/2 · p1/3

Butterfly 4 log p
Hypercube log p log p
· · · · · · · · ·
BSP parameters g , l depend on degree, diameter, routing strategy

Assume store-and-forward routing (alternative — wormhole)

Assume distributed routing: no global control

Oblivious routing: path determined only by source and destination

E.g. greedy routing: a packet always takes the shortest path

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 39 / 185

Parallel computation models
Network routing

h-relation (h-superstep): every processor sends and receives ≤ h packets

Sufficient to consider permutations (1-relations): once we can route any
permutation in k steps, we can route any h-relation in hk steps

Any routing method may be forced to make Ω(diameter) steps

Any oblivious routing method may be forced to make Ω(p1/2/degree) steps

Many practical patterns force such “hot spots” on traditional networks

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 40 / 185

Parallel computation models
Network routing

Routing based on sorting networks

Each processor corresponds to a wire

Each link corresponds to (possibly several) comparators

Routing corresponds to sorting by destination address

Each stage of routing corresponds to a stage of sorting

Such routing is non-oblivious (for individual packets)!

Network Degree Diameter

OEM-SORT/BM-SORT O
(
(log p)2

)
O
(
(log p)2

)
AKS O(log p) O(log p)

No “hot spots”: can always route a permutation in O(diameter) steps

Requires a specialised network, too messy and impractical

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 41 / 185

Parallel computation models
Network routing

Two-phase randomised routing: [Valiant: 1980]

send every packet to random intermediate destination

forward every packet to final destination

Both phases oblivious (e.g. greedy), but non-oblivious overall due to
randomness

Hot spots very unlikely: on a 2D array, butterfly, hypercube, can route a
permutation in O(diameter) steps with high probability

On a hypercube, the same holds even for a log p-relation

Hence constant g , l in the BSP model

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 42 / 185

Parallel computation models
Network routing

BSP implementation: processes placed at random, communication delayed
until end of superstep

All packets with same source and destination sent together, hence message
overhead absorbed in l

Network g l

1D array O(p) O(p)

2D array O(p1/2) O(p1/2)

3D array O(p1/3) O(p1/3)
Butterfly O(log p) O(log p)
Hypercube O(1) O(log p)
· · · · · · · · ·
Actual values of g , l obtained by running benchmarks

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 43 / 185

1 Computation by circuits

2 Parallel computation models

3 Basic parallel algorithms

4 Further parallel algorithms

5 Parallel matrix algorithms

6 Parallel graph algorithms

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 44 / 185

Basic parallel algorithms
Broadcast/combine

The broadcasting problem:

initially, one designated processor holds a value a

at the end, every processor must hold a copy of a

The combining problem (complementary to broadcasting):

initially, every processor holds a value ai , 0 ≤ i < p

at the end, one designated processor must hold a0 • · · · • ap−1 for a
given associative operator • (e.g. +)

By symmetry, we only need to consider broadcasting

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 45 / 185

Basic parallel algorithms
Broadcast/combine

Direct broadcast:

designated processor makes p − 1 copies of a and sends them directly
to destinations

a

a a a a

comp O(p) comm O(p) sync O(1)

(from now on, cost components will be shaded when they are optimal,
i.e. cannot be improved under reasonable assumptions)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 46 / 185

Basic parallel algorithms
Broadcast/combine

Binary tree broadcast:

initially, only designated processor is awake

processors are woken up in log p rounds

in every round, every awake processor makes a copy of a and send it
to a sleeping processor, waking it up

In round k = 0, . . . , log p − 1, the number of awake processors is 2k

comp O(log p) comm O(log p) sync O(log p)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 47 / 185

Basic parallel algorithms
Broadcast/combine

The array broadcasting/combining problem: broadcast/combine an array
of size n ≥ p elementwise

(effectively, n independent instances of broadcasting/combining)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 48 / 185

Basic parallel algorithms
Broadcast/combine

Two-phase array broadcast:

partition array into p blocks of size n/p

scatter blocks, then total-exchange blocks

A B

C D

A B C D

A B

C D

A B

C D

A B

C D

A B

C D

comp O(n) comm O(n) sync O(1)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 49 / 185

Basic parallel algorithms
Balanced tree and prefix sums

The balanced binary tree dag:

a generalisation of broadcasting/combining

can be defined top-down (root the input, leaves the outputs) or
bottom-up

tree(n)

1 input

n outputs

size n − 1

depth log n

a

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

Sequential work O(n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 50 / 185

Basic parallel algorithms
Balanced tree and prefix sums

Parallel balanced tree computation

From now on, we always assume that a problem’s input/output is stored in
the external memory

Partition tree(n) into

one top block, isomorphic to tree(p)

a bottom layer of p blocks, each isomorphic to tree(n/p)

tree(n) a

tree(p)

tree(n/p) tree(n/p) tree(n/p) tree(n/p)

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 51 / 185

Basic parallel algorithms
Balanced tree and prefix sums

Parallel balanced tree computation (contd.)

a designated processor is assigned the top block; the processor reads
the input from external memory, computes the block, and writes the
p outputs back to external memory;

every processor is assigned a different bottom block; a processor reads
the input from external memory, computes the block, and writes the
n/p outputs back to external memory.

For bottom-up computation, reverse the steps

n ≥ p2

comp O(n/p) comm O(n/p) sync O(1)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 52 / 185

Basic parallel algorithms
Balanced tree and prefix sums

The described parallel balanced tree algorithm is fully optimal:

optimal comp O(n/p) = O
(sequential work

p

)
optimal comm O(n/p) = O

(input/output size
p

)
optimal sync O(1)

For other problems, we may not be so lucky. However, we are typically
interested in algorithms that are optimal in comp (under reasonable
assumptions). Optimality in comm and sync is considered relative to that.

For example, we are not allowed to run the whole computation in a single
processor, sacrificing comp and comm to guarantee optimal sync O(1)!

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 53 / 185

Basic parallel algorithms
Balanced tree and prefix sums

Let • be an associative operator, computable in time O(1)

a • (b • c) = (a • b) • c

E.g. numerical +, ·, min. . .

The prefix sums problem:

a0

a1

a2

...
an−1

 7→

a0

a0 • a1

a0 • a1 • a2

...
a0 • a1 • · · · • an−1

Sequential work O(n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 54 / 185

Basic parallel algorithms
Balanced tree and prefix sums

The prefix circuit [Ladner, Fischer: 1980]

prefix(n) ∗

∗

a0

a0

a1 a2

a0:2

a3 a4

a0:4

a5 a6

a0:6

a7 a8

a0:8

a9 a10

a0:10

a11 a12

a0:12

a13 a14

a0:14

a15

prefix(n/2)

a0:1

a0:1

a2:3

a0:3

a4:5

a0:5

a6:7

a0:7

a8:9

a0:9

a10:11

a0:11

a12:13

a0:13

a14:15

a0:15

where ak:l = ak • ak+1 • . . . • al , and “∗” is a dummy value

The underlying dag is called the prefix dag

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 55 / 185

Basic parallel algorithms
Balanced tree and prefix sums

The prefix circuit (contd.)

prefix(n)

n inputs

n outputs

size 2n − 2

depth 2 log n

∗

∗

a0

a0

a1

a0:1

a2

a0:2

a3

a0:3

a4

a0:4

a5

a0:5

a6

a0:6

a7

a0:7

a8

a0:8

a9

a0:9

a10

a0:10

a11

a0:11

a12

a0:12

a13

a0:13

a14

a0:14

a15

a0:15

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 56 / 185

Basic parallel algorithms
Balanced tree and prefix sums

Parallel prefix computation

The dag prefix(n) consists of

a dag similar to bottom-up tree(n), but with an extra output per
node (total n inputs, n outputs)

a dag similar to top-down tree(n), but with an extra input per node
(total n inputs, n outputs)

Both trees can be computed by the previous algorithm. Extra
inputs/outputs are absorbed into O(n/p) communication cost.

n ≥ p2

comp O(n/p) comm O(n/p) sync O(1)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 57 / 185

Basic parallel algorithms
Balanced tree and prefix sums

Application: binary addition via Boolean logic

x + y = z

Let x = 〈xn−1, . . . , x0〉, y = 〈yn−1, . . . , y0〉, z = 〈zn, zn−1, . . . , z0〉 be the
binary representation of x , y , z

The problem: given 〈xi 〉, 〈yi 〉, compute 〈zi 〉 using bitwise ∧ (“and”), ∨
(“or”), ⊕ (“xor”)

Let c = 〈cn−1, . . . , c0〉, where ci is the i-th carry bit

We have: xi + yi + ci−1 = zi + 2ci 0 ≤ i < n

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 58 / 185

Basic parallel algorithms
Balanced tree and prefix sums

x + y = z

Let ui = xi ∧ yi vi = xi ⊕ yi 0 ≤ i < n

Arrays u = 〈un−1, . . . , u0〉, v = 〈vn−1, . . . , v0〉 can be computed in size
O(n) and depth O(1)

z0 = v0 c0 = u0

z1 = v1 ⊕ c0 c1 = u1 ∨ (v1 ∧ c0)

· · · · · ·
zn−1 = vn−1 ⊕ cn−2 cn−1 = un−1 ∨ (vn−1 ∧ cn−2)

zn = cn−1

Resulting circuit has size and depth O(n). Can we do better?

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 59 / 185

Basic parallel algorithms
Balanced tree and prefix sums

We have ci = ui ∨ (vi ∧ ci−1)

Let Fu,v (c) = u ∨ (v ∧ c) ci = Fui ,vi (ci−1)

We have ci = Fui ,vi (. . .Fu0,v0(0))) = Fu0,v0 ◦ · · · ◦ Fui ,vi (0)

Function composition ◦ is associative

Fu′,v ′ ◦ Fu,v (c) = Fu,v (Fu′,v ′(c)) = u ∨ (v ∧ (u′ ∨ (v ′ ∧ c))) =
u ∨ (v ∧ u′) ∨ (v ∧ v ′ ∧ c) = Fu∨(v∧u′),v∧v ′(c)

Hence, Fu′,v ′ ◦ Fu,v = Fu∨(v∧u′),v∧v ′ is computable from u, v , u′, v ′ in
time O(1)

We compute Fu0,v0 ◦ · · · ◦ Fui ,vi for all i by prefix(n)

Then compute 〈ci 〉, 〈zi 〉 in size O(n) and depth O(1)

Resulting circuit has size O(n) and depth O(log n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 60 / 185

Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

A complex number ω is called a primitive root of unity of degree n, if
ω, ω2, . . . , ωn−1 6= 1, and ωn = 1

The Discrete Fourier Transform problem:
Fn,ω(a) = Fn,ω · a = b, where Fn,ω =

[
ωij
]n−1

i ,j=0
1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ωn−2

...
...

...
. . .

...
1 ωn−1 ωn−2 · · · ω

 ·

a0

a1

a2

...
an−1

 =

b0

b1

b2

...
bn−1

∑

j ω
ijaj = bi i , j = 0, . . . , n − 1

Sequential work O(n2) by matrix-vector multiplication

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 61 / 185

Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The Fast Fourier Transform (FFT) algorithm (“four-step” version)

Assume n = 22r Let m = n1/2 = 2r

Let Au,v = amu+v Bs,t = bms+t s, t, u, v = 0, . . . ,m − 1

Matrices A, B are vectors a, b written out as m ×m matrices

Bs,t =
∑

u,v ω
(ms+t)(mu+v)Au,v =

∑
u,v ω

msv+tv+mtuAu,v =∑
v

(
(ωm)sv · ωtv ·

∑
u(ωm)tuAu,v

)
, thus B = Fm,ωm(Tm,ω(Fm,ωm(A)))

Fm,ωm(A) is m independent DFTs of size m on each column of A

Equivalent to matrix-matrix product of size m Fm,ωm(A) = Fm,ωm · A
Fm,ωm(A)t,v =

∑
u(ωm)tuAu,v

Tm,ω(A) is the transposition of matrix A, with twiddle-factor scaling

Tm,ω(A)v ,t = ωtv · At,v

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 62 / 185

Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The Fast Fourier Transform (FFT) algorithm (contd.)

We have B = Fm,ωm(Tm,ω(Fm,ωm(A))), thus DFT of size n in four steps:

m independent DFTs of size m

transposition and twiddle-factor scaling

m independent DFTs of size m

We reduced DFT of size n = 22r to DFTs of size m = 2r . Similarly, can
reduce DFT of size n = 22r+1 to DFTs of sizes m = 2r and 2m = 2r+1.

By recursion, we have the FFT circuit

sizeFFT (n) = O(n) + 2 ·n1/2 · sizeFFT (n1/2) = O(1 ·n ·1 + 2 ·n1/2 ·n1/2 + 4 ·
n3/4 ·n1/4 + · · ·+ log n ·n ·1) = O(n + 2n + 4n + · · ·+ log n ·n) = O(n log n)

depthFFT (n) = 1+2·depthFFT (n1/2) = O(1+2+4+· · ·+log n) = O(log n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 63 / 185

Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The FFT circuit

bfly(n) a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a11

b11

a12

b12

a13

b13

a14

b14

a15

b15

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

bfly(n1/2)

The underlying dag is called butterfly dag

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 64 / 185

Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The FFT circuit and the butterfly dag (contd.)

bfly(n)

n inputs

n outputs

size n log n
2

depth log n

a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a11

b11

a12

b12

a13

b13

a14

b14

a15

b15

Applications: Fast Fourier Transform; sorting bitonic sequences (bitonic
merging)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 65 / 185

Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

The FFT circuit and the butterfly dag (contd.)

Dag bfly(n) consists of

a top layer of n1/2 blocks, each isomorphic to bfly(n1/2)

a bottom layer of n1/2 blocks, each isomorphic to bfly(n1/2)

The data exchange pattern between the top and bottom layers
corresponds to n1/2 × n1/2 matrix transposition

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 66 / 185

Basic parallel algorithms
Fast Fourier Transform and the butterfly dag

Parallel butterfly computation

To compute bfly(n):

every processor is assigned n1/2/p blocks from the top layer; the
processor reads the total of n/p inputs, computes the blocks, and
writes back the n/p outputs

every processor is assigned n1/2/p blocks from the bottom layer; the
processor reads the total of n/p inputs, computes the blocks, and
writes back the n/p outputs

n ≥ p2

comp O(n log n
p) comm O(n/p) sync O(1)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 67 / 185

Basic parallel algorithms
Ordered grid

The ordered 2D grid dag

grid2(n)

nodes arranged in an n × n grid

edges directed top-to-bottom, left-to-right

≤ 2n inputs (to left/top borders)

≤ 2n outputs (from right/bottom borders)

size n2 depth 2n − 1

Applications: Gauss–Seidel iteration (single step); triangular system
solution; dynamic programming; 1D cellular automata

Sequential work O(n2)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 68 / 185

Basic parallel algorithms
Ordered grid

Parallel ordered 2D grid computation

grid2(n)

Consists of a p × p grid of blocks, each isomorphic to grid2(n/p)

The blocks can be arranged into 2p − 1 anti-diagonal layers, with ≤ p
independent blocks in each layer

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 69 / 185

Basic parallel algorithms
Ordered grid

Parallel ordered 2D grid computation (contd.)

The computation proceeds in 2p − 1 stages, each computing a layer of
blocks. In a stage:

every processor is either assigned a block or is idle

a non-idle processor reads the 2n/p block inputs, computes the block,
and writes back the 2n/p block outputs

comp: (2p − 1) · O
(
(n/p)2

)
= O(p · n2/p2) = O(n2/p)

comm: (2p − 1) · O(n/p) = O(n)

n ≥ p

comp O(n2/p) comm O(n) sync O(p)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 70 / 185

Basic parallel algorithms
Ordered grid

Application: string comparison

Let a, b be strings of characters

A subsequence of string a is obtained by deleting some (possibly none, or
all) characters from a

The longest common subsequence (LCS) problem: find the longest string
that is a subsequence of both a and b

a = “define” b = “design”

LCS(a, b) = “dein”

In computational molecular biology, the LCS problem and its variants are
referred to as sequence alignment

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 71 / 185

Basic parallel algorithms
Ordered grid

LCS computation by dynamic programming

Let lcs(a, b) denote the LCS length

lcs(a, “”) = 0

lcs(“”, b) = 0
lcs(aα, bβ) =

{
max(lcs(aα, b), lcs(a, bβ)) if α 6= β

lcs(a, b) + 1 if α = β

∗ d e f i n e

∗ 0 0 0 0 0 0 0
d 0 1 1 1 1 1 1
e 0 1 2 2 2 2 2
s 0 1 2 2 2 2 2
i 0 1 2 2 3 3 3
g 0 1 2 2 3 3 3
n 0 1 2 2 3 4 4

lcs(“define”, “design”) = 4

LCS(a, b) can be “traced back” through
the table at no extra asymptotic cost

Data dependence in the table
corresponds to the 2D grid dag

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 72 / 185

Basic parallel algorithms
Ordered grid

Parallel LCS computation

The 2D grid approach gives a BSP algorithm for the LCS problem (and
many other problems solved by dynamic programming)

comp O(n2/p) comm O(n) sync O(p)

It may seem that the grid dag algorithm for the LCS problem is the best
possible. However, an asymptotically faster BSP algorithm can be
obtained by divide-and-conquer, via a careful analysis of the resulting LCS
subproblems on substrings.

The semi-local LCS algorithm (details omitted) [Krusche, T: 2007]

comp O(n2/p) comm O
(n log p

p1/2

)
sync O(log p)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 73 / 185

Basic parallel algorithms
Ordered grid

The ordered 3D grid dag

grid3(n)

nodes arranged in an n × n × n grid

edges directed top-to-bottom, left-to-right,
front-to-back

≤ 3n2 inputs (to front/left/top faces)

≤ 3n2 outputs (from back/right/bottom faces)

size n3 depth 3n − 2

Applications: Gauss–Seidel iteration; Gaussian elimination; dynamic
programming; 2D cellular automata

Sequential work O(n3)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 74 / 185

Basic parallel algorithms
Ordered grid

Parallel ordered 3D grid computation

grid3(n)

Consists of a p1/2 × p1/2 × p1/2 grid of blocks, each isomorphic to
grid3(n/p1/2)

The blocks can be arranged into 3p1/2 − 2 anti-diagonal layers, with ≤ p
independent blocks in each layer

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 75 / 185

Basic parallel algorithms
Ordered grid

Parallel ordered 3D grid computation (contd.)

The computation proceeds in 3p1/2 − 2 stages, each computing a layer of
blocks. In a stage:

every processor is either assigned a block or is idle

a non-idle processor reads the 3n2/p block inputs, computes the
block, and writes back the 3n2/p block outputs

comp: (3p1/2 − 2) · O
(
(n/p1/2)3

)
= O(p1/2 · n3/p3/2) = O(n3/p)

comm: (3p1/2 − 2) · O
(
(n/p1/2)2

)
= O(p1/2 · n2/p) = O(n2/p1/2)

n ≥ p1/2

comp O(n3/p) comm O(n2/p1/2) sync O(p1/2)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 76 / 185

Basic parallel algorithms
Discussion

Typically, realistic slackness requirements: n� p

Costs comp, comm, sync : functions of n, p

The goals:

comp = compopt = compseq/p

comm scales down with increasing p

sync is a function of p, independent of n

The challenges:

efficient (optimal) algorithms

good (sharp) lower bounds

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 77 / 185

1 Computation by circuits

2 Parallel computation models

3 Basic parallel algorithms

4 Further parallel algorithms

5 Parallel matrix algorithms

6 Parallel graph algorithms

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 78 / 185

Further parallel algorithms
List contraction and colouring

Linked list: n nodes, each contains data and a pointer to successor

Let • be an associative operator, computable in time O(1)

Primitive list operation: pointer jumping

a b

•

a•b a, b

The original node data a, b and the pointer to b are kept, so that the
pointer jumping operation can be reversed

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 79 / 185

Further parallel algorithms
List contraction and colouring

Abstract view: node merging, allows e.g. for bidirectional links

a b

a • b

The original a, b are kept implicitly, so that node merging can be reversed

The list contraction problem: reduce the list to a single node by successive
merging (note the result is independent on the merging order)

The list expansion problem: restore the original list by reversing the
contraction

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 80 / 185

Further parallel algorithms
List contraction and colouring

Application: list ranking

The problem: for each node, find its rank (distance from the head) by list
contraction

0 1 2 3 4 5 6 7

Note the solution should be independent of the merging order!

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 81 / 185

Further parallel algorithms
List contraction and colouring

Application: list ranking (contd.)

With each intermediate node during contraction/expansion, associate the
corresponding contiguous sublist in the original list

Contraction phase: for each node keep the length of its sublist

Initially, each node assigned 1

Merging operation: k, l → k + l

In the fully contracted list, the node contains value n

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 82 / 185

Further parallel algorithms
List contraction and colouring

Application: list ranking (contd.)

Expansion phase: for each node keep

the rank of the starting node of its sublist

the length of its sublist

Initially, the node (fully contracted list) assigned (0, n)

Un-merging operation: (s, k), (s + k , l)← (s, k + l)

In the fully expanded list, a node with rank i contains (i , 1)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 83 / 185

Further parallel algorithms
List contraction and colouring

Application: list prefix sums

Initially, each node i contains value ai

a0 a1 a2 a3 a4 a5 a6 a7

Let • be an associative operator with identity ε

The problem: for each node i , find a0:i = a0 •a1 • · · · •ai by list contraction

a0 a0:1 a0:2 a0:3 a0:4 a0:5 a0:6 a0:7

Note the solution should be independent of the merging order!

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 84 / 185

Further parallel algorithms
List contraction and colouring

Application: list prefix sums (contd.)

With each intermediate node during contraction/expansion, associate the
corresponding contiguous sublist in the original list

Contraction phase: for each node keep the •-sum of its sublist

Initially, each node assigned ai

Merging operation: u, v → u • v

In the fully contracted list, the node contains value bn−1

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 85 / 185

Further parallel algorithms
List contraction and colouring

Application: list prefix sums (contd.)

Expansion phase: for each node keep

the •-sum of all nodes before its sublist

the •-sum of its sublist

Initially, the node (fully contracted list) assigned (ε, bn−1)

Un-merging operation: (t, u), (t • u, v)← (t, u • v)

In the fully expanded list, a node with rank i contains (bi−1, ai)

We have bi = bi−1 • ai

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 86 / 185

Further parallel algorithms
List contraction and colouring

From now on, we only consider pure list contraction (the expansion phase
is obtained by symmetry)

Sequential work O(n) by always contracting at the list’s head

Parallel list contraction must be based on local merging decisions: a node
can be merged with either its successor or predecessor, but not with both
simultaneously

Therefore, we need either node splitting, or efficient symmetry breaking

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 87 / 185

Further parallel algorithms
List contraction and colouring

Wyllie’s mating [Wyllie: 1979]

Split every node into “forward” node � ��, and “backward” node ���
� ��

���

� ��

���

� ��

���

� ��

���

� ��

���

� ��

���

� ��

���

� ��

���

Merge mating node pairs, obtaining two lists of size ≈ n/2

� ��

���

� ��

���

� ��

���

� ��

���

� ��

���

� ��

���

� ��

���

� ��

���
Alexander Tiskin (Warwick) Efficient Parallel Algorithms 88 / 185

Further parallel algorithms
List contraction and colouring

Parallel list contraction by Wyllie’s mating

Initially, each processor reads a subset of n/p nodes

A node merge involves communication between the two corresponding
processors; the merged node is placed arbitrarily on either processor

reduce the original list to n fully contracted lists by log n rounds of
Wyllie’s mating; after each round, the current reduced lists are
written back to external memory

select one fully contracted list

Total work O(n log n), not optimal vs. sequential work O(n)

comp O(n log n
p) comm O(n log n

p) sync O(log n) n ≥ p

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 89 / 185

Further parallel algorithms
List contraction and colouring

Random mating [Miller, Reif: 1985]

Label every node either “forward” � ��, or “backward” ���
For each node, labelling independent with probability 1/2

� �� � �� � �� � ����� ��� ��� ���

A node mates with probability 1/2, hence on average n/2 nodes mate

Merge mating node pairs, obtaining a new list of expected size 3n/4

� �� � �� � �� � ����� ��� ��� ���

More precisely, Prob(new size ≤ 15n/16) ≥ 1− e−n/64

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 90 / 185

Further parallel algorithms
List contraction and colouring

Parallel list contraction by random mating

Initially, each processor reads a subset of n/p nodes

reduce list to expected size n/p by log4/3 p rounds of random mating

collect the reduced list in a designated processor and contract
sequentially

Total work O(n), optimal but randomised

The time bound holds with high probability (whp)

This means “with probability exponentially close to 1” (as a function of n)

comp O(n/p) whp comm O(n/p) whp sync O(log p)

n ≥ p2 · log p

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 91 / 185

Further parallel algorithms
List contraction and colouring

Block mating

Will mate nodes deterministically

Contract local chains (if any)

Build distribution graph:

complete weighted digraph on p supernodes

w(i , j) = |{u → v : u ∈ proc i , v ∈ proc j}|

Each processor holds a supernode’s outgoing edges

2

1

1

2

1

1

1

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 92 / 185

Further parallel algorithms
List contraction and colouring

Block mating (contd.)

Collect distribution graph in a designated processor

Label every supernode “forward” F or “backward”
B, so that

∑
i∈F ,j∈B w(i , j) ≥ 1

4 ·
∑

i ,j w(i , j)

by a sequential greedy algorithm

Scatter supernode labels to processors

2

1

1

2

1

1

1

F

F

F B

B

By construction of supernode labelling, at
least n/2 nodes have mates

Merge mating node pairs, obtaining a new
list of size at most 3n/4

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 93 / 185

Further parallel algorithms
List contraction and colouring

Parallel list contraction by block mating

Initially, each processor reads a subset of n/p nodes

reduce list to size n/p by log4/3 p rounds of block mating

collect the reduced list in a designated processor and contract
sequentially

Total work O(n), optimal and deterministic

comp O(n/p) comm O(n/p) sync O(log p) n ≥ p3

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 94 / 185

Further parallel algorithms
List contraction and colouring

The list k-colouring problem: given a linked list and an integer k > 1,
assign a colour from {0, . . . , k − 1} to every node, so that all pairs of
adjacent nodes receive a different colour

Using list contraction, k-colouring for any k can be done in

comp O(n/p) comm O(n/p) sync O(log p)

For k = p, we can easily achieve (how?)

comp O(n/p) comm O(n/p) sync O(1)

Can we achieve the same for all k ≤ p? For k = O(1)?

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 95 / 185

Further parallel algorithms
List contraction and colouring

Deterministic coin tossing [Cole, Vishkin: 1986]

Given a k-colouring, k > 6; colours represented in binary

Consider every node v . We have col(v) 6= col(next(v)).

If col(v) differs from col(next(v)) in i-th bit, re-colour v in

2i , if i-th bit in col(v) is 0, and in col(next(v)) is 1

2i + 1, if i-th bit in col(v) is 1, and in col(next(v)) is 0

After re-colouring, still have col(v) 6= col(next(v))

Number of colours reduced from k to 2 log k � k

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 96 / 185

Further parallel algorithms
List contraction and colouring

Parallel list 3-colouring by deteministic coin tossing:

compute a p-colouring

reduce the number of colours from p to 6 by deteministic coin
tossing: O(log∗ k) rounds

log∗ k = min r : log . . . log
(r times)

k ≤ 1

select node v as a pivot, if col(prev(v)) > col(v) < col(next(v)). No
two pivots are adjacent or further than 12 nodes apart

from each pivot, re-colour the succeeding run of at most 12
non-pivots sequentially in 3 colours

comp O(n/p) comm O(n/p) sync O(log∗ p)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 97 / 185

Further parallel algorithms
Sorting

a = [a0, . . . , an−1]

The sorting problem: arrange elements of a in increasing order

May assume all ai are distinct (otherwise, attach unique tags)

Assume the comparison model: primitives <, >, no bitwise operations

Sequential work O(n log n) e.g. by mergesort

Parallel sorting based on an AKS sorting network

comp O
(n log n

p

)
comm O

(n log n
p

)
sync O(log n)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 98 / 185

Further parallel algorithms
Sorting

Parallel sorting by regular sampling [Shi, Schaeffer: 1992]

Every processor

reads a subarray of size n/p and sorts it sequentially

selects from its subarray p samples at regular intervals

A designated processor

collects all p2 samples and sorts them sequentially

selects from the sorted samples p splitters at regular intervals

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 99 / 185

Further parallel algorithms
Sorting

Parallel sorting by regular sampling (contd.)

In each subarray of size n/p, samples define p local blocks of size n/p2

In the whole array of size n, splitters define p global buckets of size n/p

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 100 / 185

Further parallel algorithms
Sorting

Parallel sorting by regular sampling (contd.)

The designated processor broadcasts the splitters

Every processor

receives the splitters and is assigned a bucket

scans its subarray and sends each element to the appropriate bucket

receives the elements of its bucket and sorts them sequentially

writes the sorted bucket back to external memory

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 101 / 185

Further parallel algorithms
Sorting

Claim: each bucket has size ≤ 2n/p

Proof (sketch). Relative to a fixed bucket B, a block b is low (respectively
high), if lower boundary of b is ≤ (respectively >) lower boundary of B

A bucket can intersect ≤ p low blocks and ≤ p high blocks

Bucket size is at most (p + p) · n/p2 = 2n/p

comp O(n log n
p) comm O(n/p) sync O(1) n ≥ p3

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 102 / 185

Further parallel algorithms
Convex hull

Set S ⊆ Rd is convex, if for all x , y in S , every point between x and y is
also in S

A ⊆ Rd

The convex hull conv A is the smallest convex set
containing A

conv A is a polytope, defined by its vertices Ai ∈ A

Set A is in convex position, if every its point is a
vertex of conv A

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 103 / 185

Further parallel algorithms
Convex hull

a = [a0, . . . , an−1] ai ∈ Rd

The (discrete) convex hull problem: find vertices of conv a

Output must be ordered: every vertex must “know” its neighbours

Claim: Convex hull problem in R2 is at least as hard as sorting

Proof. Let x0, . . . , xn−1 ∈ R

To sort [x0, . . . , xn−1]:

compute conv
{

(xi , x
2
i) ∈ R2 : 0 ≤ i < n

}
follow the neighbour links to obtain sorted output

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 104 / 185

Further parallel algorithms
Convex hull

The discrete convex hull problem

d = 2: two neighbours per vertex; output size 2n

d = 3: on average, O(1) neighbours per vertex; output size O(n)

Sequential work O(n log n) by Graham’s scan or by mergehull

d > 3: typically, a lot of neighbours per vertex; output size � Ω(n)

From now on, will concentrate on d = 2, 3

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 105 / 185

Further parallel algorithms
Convex hull

A ⊆ Rd Let 0 ≤ ε ≤ 1

Set E ⊆ A is an ε-net for A, if any halfspace with no points in E covers
≤ ε|A| points in A

May always be assumed to be in convex position

Set E ⊆ A is an ε-approximation for A, if any halfspace with α|E | points
in E covers (α± ε)|A| points in A

May not be in convex position

Easy to construct in 2D, much harder in 3D and higher

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 106 / 185

Further parallel algorithms
Convex hull

Claim. An ε-approximation for A is an ε-net for A

Claim. Union of ε-approximations for A′, A′′ is ε-approximation for A′′ ∪A′′

Claim. An ε-net for a δ-approximation for A is an (ε+ δ)-net for A

Proofs: Easy by definitions.

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 107 / 185

Further parallel algorithms
Convex hull

d = 2 A ⊆ R2 |A| = n ε = 1/r

Claim. A 1/r -net for A of size ≤ 2r exists and can be computed in
sequential work O(n log n).

Proof. Consider convex hull of A and an arbitrary interior point v

Partition A into triangles: base at a hull edge, apex at v

A triangle is heavy if it contains > n/r points of A, otherwise light

Heavy triangles: for each triangle, take both hull vertices

Light triangles: for each triangle chain, greedy next-fit bin packing

combine adjacent triangles into bins with ≤ n/r points

for each bin, take both boundary hull vertices

In total ≤ 2r heavy triangles and bins, hence taken ≤ 2r points

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 108 / 185

Further parallel algorithms
Convex hull

d = 2 A ⊆ R2 |A| = n ε = 1/r

Claim. If A is in convex position, then a 1/r -approximation for A of size
≤ r exists and can be computed in sequential work O(n log n).

Proof. Take every n/r -th point on the convex hull of A.

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 109 / 185

Further parallel algorithms
Convex hull

Parallel 2D hull computation by generalised regular sampling

a = [a0, . . . , an−1] ai ∈ R2

Every processor

reads a subset of n/p points, computes its hull, discards the rest

selects p samples at regular intervals on the hull

Set of all samples: 1/p-approximation for set a (after discarding local
interior points)

A designated processor

collects all p2 samples (and does not compute its hull)

selects from the samples a 1/p-net of ≤ 2p points as splitters

Set of splitters: 1/p-net for samples, therefore a 2/p-net for set a

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 110 / 185

Further parallel algorithms
Convex hull

Parallel 2D hull computation by generalised regular sampling (contd.)

The 2p splitters can be assumed to be in convex position (like any ε-net),
and therefore define a splitter polygon with at most 2p edges

Each edge of splitter polytope defines a bucket: the subset of set a visible
when sitting on this edge (assuming the polygon is opaque)

Each bucket can be covered by two half-planes not containg any splitters.
Therefore, bucket size is at most 2 · (2/p) · n = 4n/p.

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 111 / 185

Further parallel algorithms
Convex hull

Parallel 2D hull computation by generalised regular sampling (contd.)

The designated processor broadcasts the splitters

Every processor

receives the splitters and is assigned 2 buckets

scans its hull and sends each point to the appropriate bucket

receives the points of its buckets and computes their hulls sequentially

writes the bucket hulls back to external memory

comp O(n log n
p) comm O(n/p) sync O(1) n ≥ p3

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 112 / 185

Further parallel algorithms
Convex hull

d = 3 A ⊆ R3 |A| = n ε = 1/r

Claim. A 1/r -net for A of size O(r) exists and can be computed in
sequential work O(rn log n).

Proof: [Brönnimann, Goodrich: 1995]

Claim. A 1/r -approximation for A of size O
(
r 3(log r)O(1)

)
exists and can

be computed in sequential work O(n log r).

Proof: [Matoušek: 1992]

Better approximations are possible, but are slower to compute

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 113 / 185

Further parallel algorithms
Convex hull

Parallel 3D hull computation by generalised regular sampling

a = [a0, . . . , an−1] ai ∈ R3

Every processor

reads a subset of n/p points

selects a 1/p-approximation of O
(
p3(log p)O(1)

)
points as samples

Set of all samples: 1/p-approximation for set a

A designated processor

collects all O
(
p4(log p)O(1)

)
samples

selects from the samples a 1/p-net of O(p) points as splitters

Set of splitters: 1/p-net for samples, therefore a 2/p-net for set a

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 114 / 185

Further parallel algorithms
Convex hull

Parallel 3D hull computation by generalised regular sampling (contd.)

The O(p) splitters can be assumed to be in convex position (like any
ε-net), and therefore define a splitter polytope with O(p) edges

Each edge of splitter polytope defines a bucket: the subset of a visible
when sitting on this edge (assuming the polytope is opaque)

Each bucket can be covered by two half-planes not containg any splitters.
Therefore, bucket size is at most 2 · (2/p) · n = 4n/p.

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 115 / 185

Further parallel algorithms
Convex hull

Parallel 3D hull computation by generalised regular sampling (contd.)

The designated processor broadcasts the splitters

Every processor

receives the splitters and is assigned a bucket

scans its hull and sends each point to the appropriate bucket

receives the points of its bucket and computes their convex hull
sequentially

writes the bucket hull back to external memory

comp O(n log n
p) comm O(n/p) sync O(1) n� p

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 116 / 185

Further parallel algorithms
Selection

a = [a0, . . . , an−1]

The selection problem: given k , find k-th smallest element of a

E.g. median selection: k = n/2

As before, assume the comparison model

Sequential work O(n log n) by naive sorting

Sequential work O(n) by successive elimination [Blum+: 1973]

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 117 / 185

Further parallel algorithms
Selection

Standard approach to selection: eliminate elements in rounds

In each round:

partition array a into subarrays of size 5

select median in each subarray

select median of subarray medians by recursion: (n, k)← (n/5, n/10)

find rank l of median-of-medians in array a

if l = k , we are done

if l < k : eliminate all ai that are ≤ al ; in next round, set k ← k − l

if l > k : eliminate all ai that are ≥ al ; in next round, k unchanged

Each time, we eliminate elements on “wrong” side of median-of-medians al

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 118 / 185

Further parallel algorithms
Selection

Claim. Each elimination removes ≥ a fraction of 3/10 of elements of a

Proof (sketch). In half of all subarrays, the subarray median is on the
“wrong” side of the median-of-medians al . In every such subarray, two
off-median subarray elements are on the “wrong” side of the subarray
median. Hence, in a round, at least a fraction of 1/2 · (1 + 2)/5 = 3/10
elements are eliminated.

Each round removes at least a constant fraction of elements of a

Data reduction rate is exponential

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 119 / 185

Further parallel algorithms
Selection

More general approach: elimination by regular sampling in rounds

In each round:

partition array a into subarrays

select a set of regular samples in each subarray

select a subset of regular splitters from the set of all samples

Selecting samples and splitters:

if subarray (resp. set of all samples) is small, then we just sort it

otherwise, we select samples (respectively, splitters) by recursion,
without pre-sorting

In standard approach: O(n) subarrays, each of size O(1); 3 samples per
subarray (median + boundaries); 3 splitters (m-of-ms + boundaries)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 120 / 185

Further parallel algorithms
Selection

Elimination by regular sampling (contd.)

Let al− , al+ be adjacent splitters, such that l− ≤ k ≤ l+

Splitters al− , al+ define the bucket

eliminate all ai outside the bucket

For work-optimality, sufficient to use constant subarray size and constant
sampling frequency (as in standard approach)

Since the array size decreases in every round, we can increase the sampling
frequency to reduce the number of rounds, while keeping work-optimality

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 121 / 185

Further parallel algorithms
Selection

Parallel selection

comp O(n/p) comm O(n/p)

sync O(log p) [Ishimizu+: 2002]

sync O(log log n) [Fujiwara+: 2000]

sync O(1) randomised whp [Gerbessiotis, Siniolakis: 2003]

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 122 / 185

Further parallel algorithms
Selection

Parallel selection by accelerated regular sampling

Main idea: variable sampling frequency in different rounds. As array size
decreases, we can afford to increase sampling frequency.

Data reduction rate now superexponential

Selection can be completed in O(log log p) rounds

reduce the input array to size n/p by O(log log p) rounds of
accelerated regular sampling (implicit load balancing);

collect the reduced array in a designated processor and perform
selection sequentially

comp O(n/p) comm O(n/p) sync O(log log p) n� p

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 123 / 185

1 Computation by circuits

2 Parallel computation models

3 Basic parallel algorithms

4 Further parallel algorithms

5 Parallel matrix algorithms

6 Parallel graph algorithms

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 124 / 185

Parallel matrix algorithms
Matrix-vector multiplication

Let A, b, c be a matrix and two vectors of size n

The matrix-vector multiplication problem

A · b = c

ci =
∑

j Aij · bj

0 ≤ i , j < n

A · b = c

Overall, n2 elementary products Aij · bj

Sequential work O(n2)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 125 / 185

Parallel matrix algorithms
Matrix-vector multiplication

The matrix-vector multiplication circuit

ci ← 0

ci
+
← Aij · bj (“add to ci , asynchronously”)

0 ≤ i , j < n

An ij-square of nodes, each representing an
elementary product

size O(n2), depth O(1)

A

b

c

j

i

•

• •

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 126 / 185

Parallel matrix algorithms
Matrix-vector multiplication

Parallel matrix-vector multiplication

Assume A is predistributed across the processors as needed, does not
count as input (motivation: iterative linear algebra methods)

Partition the ij-square into a regular grid of p = p1/2 · p1/2 square blocks

Matrix A gets partitioned into p square blocks AIJ of size n/p1/2

Vectors b, c each gets partitioned into p1/2 linear blocks bJ , cI of size
n/p1/2

0 ≤ I , J < p1/2

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 127 / 185

Parallel matrix algorithms
Matrix-vector multiplication

Parallel matrix-vector multiplication (contd.)

cI ← 0

cI
+
← AIJ · bJ

0 ≤ I , J < p1/2

A

b

c

j

i

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 128 / 185

Parallel matrix algorithms
Matrix-vector multiplication

Parallel matrix-vector multiplication (contd.)

Vector c in external memory is initialised by zero values

Every processor

is assigned to compute a block product AIJ · bJ = cJ
I

reads block bJ and computes cJ
I

updates cI in external memory by adding cJ
I elementwise

Updates to cI add up (asynchronously) to its correct final value

comp O
(
n2

p

)
comm O

(
n

p1/2

)
sync O(1) n ≥ p

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 129 / 185

Parallel matrix algorithms
Matrix multiplication

Let A, B, C be matrices of size n

The matrix multiplication problem

A · B = C

Cik =
∑

j Aij · Bjk

0 ≤ i , j , k < n

A · B = C

Overall, n3 elementary products Aij · Bjk

Sequential work O(n3)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 130 / 185

Parallel matrix algorithms
Matrix multiplication

The matrix multiplication circuit

Cik ← 0

Cik

+
← Aij · Bjk

0 ≤ i , j , k < n

An ijk-cube of nodes, each
representing an elementary product

size O(n3), depth O(1)

A

B

C

•

•

•

•
ij

jk

ik

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 131 / 185

Parallel matrix algorithms
Matrix multiplication

Parallel matrix multiplication

Partition the ijk-cube into a regular grid of p = p1/3 · p1/3 · p1/3 cubic
blocks

Matrices A, B, C each gets partitioned into p2/3 square blocks AIJ , BJK ,
CIK of size n/p1/3

0 ≤ I , J,K < p1/3

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 132 / 185

Parallel matrix algorithms
Matrix multiplication

Parallel matrix multiplication (contd.)

CIK ← 0

CIK

+
← AIJ · BJK

0 ≤ I , J,K < p1/3

A

B

C

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 133 / 185

Parallel matrix algorithms
Matrix multiplication

Parallel matrix multiplication (contd.)

Matrix C in external memory is initialised by zero values

Every processor

is assigned to compute a block product AIJ · BJK = C J
IK

reads blocks AIJ , BJK , and computes C J
IK

updates CIK in external memory by adding C J
IK elementwise

Updates to CIK add up (asynchronously) to its correct final value

comp O
(
n3

p

)
comm O

(
n2

p2/3

)
sync O(1) n ≥ p1/2

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 134 / 185

Parallel matrix algorithms
Matrix multiplication

Theorem. Computing the matrix multiplication dag requires
communication Ω

(
n2

p2/3

)
per processor

Proof. comp O
(
n3

p

)
, sync O(1) trivially optimal

Optimality of comm O
(

n2

p2/3

)
: (discrete) volume vs surface area

Let V be the subset of ijk-cube computed by a certain processor

For at least one processor: |V | ≥ n3

p

Let A, B, C be projections of V onto coordinate planes

Arithmetic vs geometric mean: |A|+ |B|+ |C | ≥ 3(|A| · |B| · |C |)1/3

Loomis–Whitney inequality: |A| · |B| · |C | ≥ |V |2

We have comm ≥ |A|+ |B|+ |C | ≥ 3(|A| · |B| · |C |)1/3 ≥ 3|V |2/3 ≥
3
(
n3

p

)2/3
= 3n2

p2/3 , hence comm = Ω
(

n2

p2/3

)
Alexander Tiskin (Warwick) Efficient Parallel Algorithms 135 / 185

Parallel matrix algorithms
Matrix multiplication

The optimality theorem only applies to matrix multiplication by the
specific O(n3)-node dag

Includes e.g.

numerical matrix multiplication using primitives +, ·
Boolean matrix multiplication using primitives ∨, ∧

Excludes e.g.

numerical matrix multiplication with extra primitive − (Strassen-like)

Boolean matrix multiplication with extra primitive if/then

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 136 / 185

Parallel matrix algorithms
Fast matrix multiplication

Recursive block matrix multiplication: A · B = C

A =

[
A00 A01

A10 A11

]
B =

[
B00 B01

B10 B11

]
C =

[
C00 C01

C10 C11

]
C00 = A00 · B00 + A01 · B10

C10 = A10 · B00 + A11 · B10

C01 = A00 · B01 + A01 · B11

C11 = A10 · B01 + A11 · B11

8 block multiplications (recursive calls)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 137 / 185

Parallel matrix algorithms
Fast matrix multiplication

Strassen’s matrix multiplication: A · B = C

Let A, B, C be numerical matrices: primitives +, −, · on matrix elements

A =

[
A00 A01

A10 A11

]
B =

[
B00 B01

B10 B11

]
C =

[
C00 C01

C10 C11

]
D(0) = (A00 + A11) · (B00 + B11)

D(1) = (A10 + A11) · B00

D(3) = A11 · (B10 − B00)

D(5) = (A10 − A00) · (B00 + B01)

D(2) = A00 · (B01 − B11)

D(4) = (A00 + A01) · B11

D(6) = (A01 − A11) · (B10 + B11)

C00 = D(0) + D(3) − D(4) + D(6)

C10 = D(1) + D(3)

C01 = D(2) + D(4)

C11 = D(0) − D(1) + D(2) + D(5)

7 block multiplications (recursive calls)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 138 / 185

Parallel matrix algorithms
Fast matrix multiplication

Strassen-like matrix multiplication: A · B = C

Main idea: for certain matrix sizes N, we can multiply N × N matrices
using R < N3 elementary products (·) and linear operations (+, −):

some linear operations on elements of A

some linear operations on elements of B

R elementary products of the resulting linear combinations

some more linear operations to obtain C

Let ω = logN R < logN N3 = 3

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 139 / 185

Parallel matrix algorithms
Fast matrix multiplication

Matrices of size n ≥ N are partitioned into an N × N grid of regular
blocks, and multiplied recursively:

some elementwise linear operations on blocks of A

some elementwise linear operations on blocks of B

R block products of the resulting elementwise linear combinations (by
recursion)

some more elementwise linear operations to obtain the blocks of C

Resulting dag has size O(nω), depth ≈ 2 log n

Number of linear operations turns out to be irrelevant

Sequential work O(nω)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 140 / 185

Parallel matrix algorithms
Fast matrix multiplication

Some specific instances of Strassen-like scheme:

N N3 R ω = logN R

[Strassen: 1969]2 8 7 2.81
3 27 23 2.85
5 125 100 2.86
48 110592 47216 2.78
.

[Coppersmith, Winograd: 1987]HUGE HUGE HUGE 2.3755
[Stothers: 2010]HUGE HUGE HUGE 2.3737

[Vassilevska–Williams: 2011]HUGE HUGE HUGE 2.3727

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 141 / 185

Parallel matrix algorithms
Fast matrix multiplication

Parallel Strassen-like matrix multiplication

At each level of the recursion tree, the R recursive calls are independent,
hence the recursion tree can be computed breadth-first

At level logR p, we have p independent matrix multiplication tasks

level tasks task size each task

0 1 n parallel
1 R n/N
2 R2 n/N2

. . .

logR p p n
N logR p = n

p1/ω sequential

. . .
logN n R logN n = nω 1

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 142 / 185

Parallel matrix algorithms
Fast matrix multiplication

Parallel Strassen-like matrix multiplication (contd.)

In recursion levels 0 to logR p, need to compute elementwise linear
combinations on distributed matrices

Assigning matrix elements to processors:

partition A into regular blocks of size n
p1/ω

distribute each block evenly and identically across processors

partition B, C analogously (distribution identical across all blocks of
the same matrix, but need not be identical across different matrices)

E.g. cyclic distribution

Such distribution allows linear operations on matrix blocks without
communication

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 143 / 185

Parallel matrix algorithms
Fast matrix multiplication

Parallel Strassen-like matrix multiplication (contd.)

Each processor reads its assigned elements of A, B

Recursion levels 0 to logR p on the way down the tree: comm-free
elementwise linear operations on linear combinations of blocks of A, B

Recursion level logR p: we have p independent block multiplication tasks

assign each task to a different processor

a processor collects its task’s two input blocks, performs the task
sequentially, and redistributes the task’s output block

Recursion levels logR p to 0 on the way up the tree: comm-free
elementwise linear operations on linear combinations of blocks of C

Each processor writes back its assigned elements of C

comp O
(
nω

p

)
comm O

(
n2

p2/ω

)
sync O(1)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 144 / 185

Parallel matrix algorithms
Fast matrix multiplication

Theorem. Computing the Strassen-like matrix multiplication dag requires
communication Ω

(
n2

p2/ω

)
per processor

Proof. By graph expansion, generalises the Loomis-Whitney inequality

[Ballard+:2012]

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 145 / 185

Parallel matrix algorithms
Boolean matrix multiplication

Let A, B, C be Boolean matrices of size n

Boolean matrix multiplication: A ∧ B = C

Primitives ∨, ∧, if/then on matrix elements

Cik =
∨

j Aik ∧ Bjk

0 ≤ i , j , k < n

Overall, n3 elementary products Aij ∧ Bjk

Sequential work O(n3) bit operations

Sequential work O(nω) using a Strassen-like algorithm

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 146 / 185

Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication

The following algorithm is impractical, but of theoretical interest, since it
beats the generic Loomis–Whitney communication lower bound

Regularity Lemma: in a Boolean matrix, the rows and the columns can be
partitioned into K (almost) equal-sized subsets, so that K 2 resulting
submatrices are random-like (of various densities) [Szemerédi: 1978]

K = K (ε), where ε is the “degree of
random-likeness”

Function K (ε) grows enormously as
ε→ 0, but is independent of n

? −→

We shall call this the regular decomposition of a Boolean matrix

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 147 / 185

Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication (contd.)

A ∧ B = C

If A, B, C random-like, then either A or B has few 1s, or C has few 0s

Equivalently, A ∧ B = C , either A, B or C has few 1s

By Regularity Lemma, we have the three-way regular decomposition

A(1) ∧ B(1) = C (1), where A(1) has few 1s

A(2) ∧ B(2) = C (2), where B(2) has few 1s

A(3) ∧ B(3) = C (3), where C (3) has few 1s

C = C (1) ∨ C (2) ∨ C (3)

A(1)

B(1)

C (1)

A(2)

B(2)

C (2)

A(3)

B(3)

C (3)

Matrices A(1), A(2), A(3), B(1), B(2), B(3), C (1), C (2), C (3) can be
“efficiently” computed from A, B, C

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 148 / 185

Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication (contd.)

A ∧ B = C

Partition the ijk-cube into a regular grid of p3 = p · p · p cubic blocks

Matrices A, B, C each gets partitioned into p2 square blocks AIJ , BJK ,
C IK of size n/p

0 ≤ I , J,K < p

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 149 / 185

Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication (contd.)

Every processor

assigned to compute a “slab” of p2 cubic blocks AIJ ∧ BJK = C
J
IK for

a fixed J and all I ,K

reads blocks AIJ , BJK and computes C
J
IJ for all I ,K

computes the three-way regular decomposition for the block product
and determines the submatrices having very 1s

0 ≤ I , J,K < p

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 150 / 185

Parallel matrix algorithms
Boolean matrix multiplication

Parallel Boolean matrix multiplication (contd.)

Recompute A ∧ B = C from block regular decompositions by a
Strassen-like algorithm

Communication saved by only sending the positions of 1s

comp O
(
nω

p

)
comm O

(
n2

p

)
sync O(1) n >>>>>>>>>>> p :-/

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 151 / 185

Parallel matrix algorithms
Triangular system solution

Let L, b, c be a matrix and two vectors of size n

L is lower triangular: Lij =

{
0 0 ≤ i < j < n

arbitrary otherwise
L · b = c∑

j Lij · bj = ci

0 ≤ j ≤ i < n L
· b = c

The triangular system problem: given L, c, find b

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 152 / 185

Parallel matrix algorithms
Triangular system solution

Forward substitution

L · b = c

L00 · b0 = c0

L10 · b0 + L11 · b1 = c1

L20 · b0 + L21 · b1 + L22 · b2 = c2

. . .∑
j :j≤i Lij · bj = ci

. . .∑
j :j≤n−1 Ln−1,j · bj = cn−1

b0 ← L−1
00 · c0

b1 ← L−1
11 · (c1 − L10 · b0)

b2 ← L−1
22 · (c2 − L20 · b0 − L21 · b1)

. . .

bi ← L−1
ii · (ci −

∑
j :j<i Lij · bj)

. . .

bn−1 ← L−1
n−1,n−1 ·(cn−1−

∑
j :j<n−1 Ln−1,j ·bj)

Sequential work O(n2)

Symmetrically, an upper triangular system solved by back substitution

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 153 / 185

Parallel matrix algorithms
Triangular system solution

Parallel forward substitution by 2D grid dag

Assume L is predistributed as needed, does not count as input

0

0

0

0

0

b[0]

b[1]

b[2]

b[3]

b[4]

c[0] c[1] c[2] c[3] c[4]

b[0] b[1] b[2] b[3] b[4]

c

s

L[i , i]−1 · (c − s)

L[i , i]−1 · (c − s)

b

s

b

s + L[i , j] · b

comp O(n2/p) comm O(n) sync O(p)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 154 / 185

Parallel matrix algorithms
Triangular system solution

Block forward substitution

L · b = c[
L00 ◦
L10 L11

]
·
[

b0

b1

]
=

[
c0

c1

]
Recursion: two half-sized subproblems

L00 · b0 = c0 by recursion

L11 · b1 = c1 − L10 · b1 by recursion
L21

Sequential work O(n2)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 155 / 185

Parallel matrix algorithms
Triangular system solution

Parallel block forward substitution

Assume L is predistributed as needed, does not count as input

At each level, the two subproblems are dependent, hence recursion tree
unfolded depth-first

At level log p, a task fits in a single processor

level tasks task size each task

0 1 n parallel
1 2 n/2
2 22 n/22

. . .

log p p n/p sequential
. . .
log n n 1

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 156 / 185

Parallel matrix algorithms
Triangular system solution

Parallel block forward substitution (contd.)

Recursion levels 0 to log p: block forward substitution using parallel
matrix-vector multiplication

Recursion level log p: a designated processor reads the current task’s
input, performs the task sequentially, and writes back the task’s output

comp = O(n2/p) ·
(
1 + 2 · (1

2)2 + 22 · (1
22)2 + . . .

)
+ O

(
(n/p)2

)
· p =

O(n2/p) + O(n2/p) = O(n2/p)

comm = O(n/p1/2) ·
(
1 + 2 · 1

2 + 22 · 1
22 + . . .

)
+ O(n/p) · p =

O(n/p1/2) · log p + O(n) = O(n)

comp O(n2/p) comm O(n) sync O(p)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 157 / 185

Parallel matrix algorithms
Gaussian elimination

Let A, L, U be matrices of size n

L is unit lower triangular: Lij =

0 0 ≤ i < j < n

1 0 ≤ i = j < n

arbitrary otherwise

U is upper triangular: Uij =

{
0 0 ≤ j < i < n

arbitrary otherwise

A = L · U
Aik =

∑
j Lij · Ujk

0 ≤ k ≤ j ≤ i < n

A =
L

·
U

The LU decomposition problem: given A, find L, U

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 158 / 185

Parallel matrix algorithms
Gaussian elimination

Generic Gaussian elimination

A = L · U[
A00 A01

A10 A11

]
=

[
1 ◦

L10 L11

][
A00 A01

◦ U11

]
First step of elimination: pivot A00[

A00 A01

A10 A11

]
=

[
1 ◦

L10 I

][
A00 A01

◦ A′11

]
L10 ← A10 · A−1

00 A′11 ← A11 − L10 · A01

a00

L10

U01

A′

Continue elimination on reduced matrix A′11 = L11 · U11

In every step, we assume A00 6= 0 (no pivoting, only default pivots)

Sequential work O(n3)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 159 / 185

Parallel matrix algorithms
Gaussian elimination

Parallel generic Gaussian elimination: 3D grid (details omitted)

comp O(n3/p) comm O(n2/p1/2) sync O(p1/2)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 160 / 185

Parallel matrix algorithms
Gaussian elimination

Block generic Gaussian elimination

A = L · U[
A00 A01

A10 A11

]
=

[
L00 ◦
L10 L11

][
U00 U01

◦ U11

]
Recursion: two half-sized subproblems

A00 = L00 · U00 by recursion

U01 ← L−1
00 · A01 L10 ← A10 · U−1

00

A11 − L10 · U01 = L11 · U11 by recursion

L10

U01

L−1 ←
[

L−1
00 ◦

−L−1
11 L10L−1

00 L−1
11

]
U−1 ←

[
U−1

00 −U−1
00 U10U−1

11

◦ U−1
11

]
Sequential work O(n3), allows use of Strassen-like schemes

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 161 / 185

Parallel matrix algorithms
Gaussian elimination

Parallel block generic Gaussian elimination

At each level, the two subproblems are dependent, hence recursion tree
unfolded depth-first

At level α log p, α ≥ 1/2, a task fits in a single processor

level tasks task size each task

0 1 n parallel
1 2 n/2
2 22 n/22

. . .

α log p pα n/pα sequential
. . .
log n n 1

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 162 / 185

Parallel matrix algorithms
Gaussian elimination

Parallel block generic Gaussian elimination (contd.)

Recursion levels 0 to α log p: block generic LU decomposition using
parallel matrix multiplication

Recursion level α log p: on each visit, a designated processor reads the
current task’s input, performs the task sequentially, and writes back the
task’s output

Threshold level controlled by parameter α: 1/2 ≤ α ≤ 2/3

α ≥ 1/2 needed for comp-optimality

α ≤ 2/3 ensures total comm of threshold tasks is not more than the
comm of top-level matrix multiplication

comp O(n3/p) comm O(n2/pα) sync O(pα)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 163 / 185

Parallel matrix algorithms
Gaussian elimination

Parallel LU decomposition (contd.)

In particular:

α = 1/2

comp O(n3/p) comm O(n2/p1/2) sync O(p1/2)

Cf. 2D grid

α = 2/3

comp O(n3/p) comm O(n2/p2/3) sync O(p2/3)

Cf. matrix multiplication

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 164 / 185

1 Computation by circuits

2 Parallel computation models

3 Basic parallel algorithms

4 Further parallel algorithms

5 Parallel matrix algorithms

6 Parallel graph algorithms

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 165 / 185

Parallel graph algorithms
Algebraic path problem

Semiring: a set S with addition � and multiplication �

Addition commutative, associative, has identity 0�

a � b = b � a a � (b � c) = (a � b) � c a � 0�= 0�� a = a

Multiplication associative, has annihilator 0� and identity 1�

a � (b � c) = (a � b) � c a � 0�= 0�� a = 0� a � 1�= 1�� a = a

Multiplication distributes over addition

a � (b � c) = a � b � a � c (a � b) � c = a � c � b � c

In general, no subtraction or division!

Given a semiring S , square matrices of size n over S also form a semiring:

� given by matrix addition; 0� by the zero matrix

� given by matrix multiplication; 1� by the unit matrix

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 166 / 185

Parallel graph algorithms
Algebraic path problem

Some specific semirings:

S � 0� � 1�
numerical R + 0 · 1
Boolean {0, 1} ∨ 0 ∧ 1
tropical R≥0 ∪ {+∞} min +∞ + 0

We will occasionally write ab for a � b, a2 for a � a, etc.

The closure of a: a∗ = 1�� a � a2 � a3 � · · ·

Numerical closure a∗ = 1 + a + a2 + a3 + · · · =

{
1

1−a if |a| < 1

undefined otherwise

Boolean closure a∗ = 1 ∨ a ∨ a ∨ a ∨ . . . = 1

Tropical closure a∗ = min(0, a, 2a, 3a, . . .) = 0

In matrix semirings, closures are more interesting

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 167 / 185

Parallel graph algorithms
Algebraic path problem

A semiring is closed, if

an infinite sum a1 � a2 � a3 � · · · (e.g. a closure) is always defined

such infinite sums are commutative, associative and distributive

In a closed semiring, every element and every square matrix have a closure

The numerical semiring is not closed: an infinite sum can be divergent

The Boolean semiring is closed: an infinite ∨ is 1, iff at least one term is 1

The tropical semiring is closed: an infinite min is the greatest lower bound

Where defined, these infinite sums are commutative, associative and
distributive

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 168 / 185

Parallel graph algorithms
Algebraic path problem

Let A be a matrix of size n over a semiring

The algebraic path problem: compute A∗ = I ⊕ A⊕ A2 ⊕ A3 ⊕ · · ·
Numerical algebraic path problem: equivalent to matrix inversion

A∗ = I + A + A2 + · · · = (I − A)−1, if defined

The algebraic path problem in a closed semiring: interpreted via a
weighted digraph on n nodes with adjacency matrix A

Aij = length of the edge i → j

Boolean A∗: the graph’s transitive closure

Tropical A∗: the graph’s all-pairs shortest paths

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 169 / 185

Parallel graph algorithms
Algebraic path problem

A =

0 5 10 ∞ 10
∞ 0 3 2 9
∞ 2 0 ∞ 1
7 ∞ ∞ 0 6
∞ ∞ ∞ 4 0

 1

2

3

4

5

5

10
10

3

2

9
2

1

7

6 4

A∗ =

0 5 8 7 9
9 0 3 2 4

11 2 0 4 1
7 12 15 0 6

11 16 19 4 0

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 170 / 185

Parallel graph algorithms
Algebraic path problem

Floyd–Warshall algorithm [Floyd, Warshall: 1962]

Works for any closed semiring; we assume tropical, all 0s on main diagonal

Weights may be negative; assume no negative cycles

First step of elimination: pivot A00 = 0

Replace each weight Aij , i , j 6= 0, with Ai0 + A0j , if
that gives a shortcut from i to j

A′11 ← A11 ⊕ A10 � A01 = min(A11,A10 + A01)

Continue elimination on reduced matrix A′11

Generic Gaussian elimination in disguise

Sequential work O(n3)

0

A10

A01

A11

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 171 / 185

Parallel graph algorithms
Algebraic path problem

Block Floyd–Warshall algorithm

A =

[
A00 A01

A10 A11

]
A∗ =

[
A′′00 A′′01

A′′10 A′′11

]
Recursion: two half-sized subproblems

A′00 ← A∗00 by recursion

A′01 ← A′00A01 A′10 ← A10A′00 A′11 ← A11 ⊕ A10A′00A01

A′′11 ← (A′11)∗ by recursion

A′′10 ← A′′11A
′
10 A′′01 ← A′01A

′′
11 A′′00 ← A′00 ⊕ A′01A

′′
11A
′
10

A10

A01

Block generic Gaussian elimination in disguise

Sequential work O(n3)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 172 / 185

Parallel graph algorithms
Algebraic path problem

Parallel algebraic path computation

Similar to LU decomposition by block generic Gaussian elimination

Te recursion tree is unfolded depth-first

Recursion levels 0 to α log p: block Floyd–Warshall using parallel matrix
multiplication

Recursion level α log p: on each visit, a designated processor reads the
current task’s input, performs the task sequentially, and writes back the
task’s output

Threshold level controlled by parameter α: 1/2 ≤ α ≤ 2/3

comp O(n3/p) comm O(n2/pα) sync O(pα)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 173 / 185

Parallel graph algorithms
Algebraic path problem

Parallel algebraic path computation (contd.)

In particular:

α = 1/2

comp O(n3/p) comm O(n2/p1/2) sync O(p1/2)

Cf. 2D grid

α = 2/3

comp O(n3/p) comm O(n2/p2/3) sync O(p2/3)

Cf. matrix multiplication

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 174 / 185

Parallel graph algorithms
All-pairs shortest paths

The all-pairs shortest paths problem: the algebraic path problem over the
tropical semiring

S � 0� � 1�
tropical R≥0 ∪ {+∞} min +∞ + 0

We continue to use the generic notation: � for min, � for +

To improve on the generic algebraic path algorithm, we must exploit the
tropical semiring’s idempotence: a � a = min(a, a) = a

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 175 / 185

Parallel graph algorithms
All-pairs shortest paths

Let A be a matrix of size n over the tropical semiring, defining a weighted
directed graph

Aij = length of the edge i → j

Aij ≥ 0 Aii = 1�= 0 0 ≤ i , j < n

Path length: sum (�-product) of all its edge lengths

Path size: its total number of edges (by definition, ≤ n)

Ak
ij = length of the shortest path i j of size ≤ k

A∗ij = length of the shortest path i j (of any size)

The all-pairs shortest paths problem:

A∗ = I ⊕ A⊕ A2 ⊕ · · · = I ⊕ A⊕ A2 ⊕ · · · ⊕ An = (I ⊕ A)n = An

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 176 / 185

Parallel graph algorithms
All-pairs shortest paths

Dijkstra’s algorithm [Dijkstra: 1959]

Computes single-source shortest paths from fixed source (say, node 0)

Ranks all nodes by distance from node 0: nearest, second nearest, etc.

Every time a node i has been ranked: replace each weight A0j , j unranked,
with A0i + Aij , if that gives a shortcut from 0 to j

Assign the next rank to the unranked node closest to node 0 and repeat

It is essential that the edge lengths are nonnegative

Sequential work O(n2)

All-pairs shortest paths: multi-Dijkstra, i.e. running Dijkstra’s algorithm
independently from every node as a source

Sequential work O(n3)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 177 / 185

Parallel graph algorithms
All-pairs shortest paths

Parallel all-pairs shortest paths by multi-Dijkstra

Every processor

reads matrix A and is assigned a subset of n/p nodes

runs n/p independent instances of Dijkstra’s algorithm from its
assigned nodes

writes back the resulting n2/p shortest distances

comp O(n3/p) comm O(n2) sync O(1)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 178 / 185

Parallel graph algorithms
All-pairs shortest paths

Parallel all-pairs shortest paths: summary so far

comp O(n3/p)

Floyd–Warshall, α = 2/3 comm O(n2/p2/3) sync O(p2/3)

Floyd–Warshall, α = 1/2 comm O(n2/p1/2) sync O(p1/2)

Multi-Dijkstra comm O(n2) sync O(1)

Coming next comm O(n2/p2/3) sync O(log p)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 179 / 185

Parallel graph algorithms
All-pairs shortest paths

Path doubling

Compute A, A2, A4 = (A2)2, A8 = (A4)2, . . . , An = A∗

Overall, log n rounds of matrix �-multiplication: looks promising. . .

Sequential work O(n3 log n): not work-optimal!

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 180 / 185

Parallel graph algorithms
All-pairs shortest paths

Selective path doubling

Idea: to remove redundancy in path doubling by keeping track of path sizes

Assume we already have Ak . The next round is as follows.

Let A≤kij = length of the shortest path i j of size ≤ k

Let A=k
ij = length of the shortest path i j of size exactly k

We have Ak = A≤k = A=0 ⊕ · · · ⊕ A=k

Consider A= k
2 , . . . , A=k . The total number of non-0� elements in these

matrices is at most n2, on average 2n2

k per matrix. Hence, for some l ≤ k
2 ,

matrix A= k
2

+l has at most 2n2

k non-0� elements.

Compute (I + A= k
2

+l)� A≤k = A≤
3k
2

+l . This is a sparse-by-dense matrix

product, requiring at most 2n2

k · n = 2n3

k elementary multiplications.

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 181 / 185

Parallel graph algorithms
All-pairs shortest paths

Selective path doubling (contd.)

Compute A, A≤
3
2

+···, A≤(3
2

)2+···, . . . , A≤n = A∗

Overall, ≤ log3/2 n rounds of sparse-by-dense matrix �-multiplication

Sequential work 2n3
(

1 +
(

3
2

)−1
+
(

3
2

)−2
+ · · ·

)
= O(n3)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 182 / 185

Parallel graph algorithms
All-pairs shortest paths

Parallel all-pairs shortest paths by selective path doubling

All processors compute A, A≤
3
2

+···, A(≤ 3
2

)2+···, . . . , A≤p+··· by ≤ log3/2 p
rounds of parallel sparse-by-dense matrix �-multiplication

Consider A=0, . . . , A=p. The total number of non-0� elements in these
matrices is at most n2, on average n2

p per matrix. Hence, for some q ≤ p
2 ,

matrices A=q and A=p−q have together at most 2n2

p non-0� elements.

Every processor reads A=q and A=p−q and computes A=q � A=p−q = A=p

All processors compute (A=p)∗ by parallel multi-Dijkstra, and then
(A=p)∗ � A≤p+··· = A∗ by parallel matrix �-multiplication

Use of multi-Dijkstra requires that all edge lengths in A are nonnegative

comp O(n3/p) comm O(n2/p2/3) sync O(log p)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 183 / 185

Parallel graph algorithms
All-pairs shortest paths

Parallel all-pairs shortest paths by selective path doubling (contd.)

Now let A have arbitrary (nonnegative or negative) edge lengths. We still
assume there are no negative-length cycles.

All processors compute A, A≤
3
2

+···, A(≤ 3
2

)2+···, . . . , A≤p
2+··· by ≤ 2 log p

rounds of parallel sparse-by-dense matrix �-multiplication

Let A=(p) = A=p ⊕ A=2p ⊕ · · · ⊕ A=p2

Let A=(p)−q = A=p−q ⊕ A=2p−q ⊕ · · · ⊕ A=p2−q

Consider A=0, . . . , A= p
2 and A=(p)− p

2 , . . . , A=(p). The total number of
non-0� elements in these matrices is at most n2, on average n2

p per matrix.

Hence, for some q ≤ p
2 , matrices A=q and A=(p)−q have together at most

2n2

p non-0� elements.

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 184 / 185

Parallel graph algorithms
All-pairs shortest paths

Parallel all-pairs shortest paths by selective path doubling (contd.)

Every processor

reads A=q and A=(p)−q and computes A=q � A=(p)−q = A=(p)

computes (A=(p))∗ = (A=p)∗ by sequential selective path doubling

All processors compute (A=p)∗ � A≤p = A∗ by parallel matrix
�-multiplication

comp O(n3/p) comm O(n2/p2/3) sync O(log p)

Alexander Tiskin (Warwick) Efficient Parallel Algorithms 185 / 185

	Computation by circuits
	Computation models and algorithms
	The circuit model
	The comparison network model
	Naive sorting networks
	The zero-one principle
	Efficient merging and sorting networks

	Parallel computation models
	The PRAM model
	The BSP model
	Network routing

	Basic parallel algorithms
	Broadcast/combine
	Balanced tree and prefix sums
	Fast Fourier Transform and the butterfly dag
	Ordered grid

	Further parallel algorithms
	List contraction and colouring
	Sorting
	Convex hull
	Selection

	Parallel matrix algorithms
	Matrix-vector multiplication
	Matrix multiplication
	Fast matrix multiplication
	Boolean matrix multiplication
	Triangular system solution
	Gaussian elimination

	Parallel graph algorithms
	Algebraic path problem
	All-pairs shortest paths

