AIR AND SPACEBORNE RADAR SYSTEMS: AN INTRODUCTION

PHILIPPE LACOMME
JEAN-PHILIPPE HARDANCE
JEAN-CLAUDE MARCHAIS
ERIC NORMANT

TRANSLATED FROM THE FRENCH
BY
MARIE-LOUISE FREYSZ AND RODGER HICKMAN
Other Books Under the SciTech Imprint

Low-angle Radar Land Clutter (2001)
Barrie Billingsley

George W. Stimson

John C. Toomay

Fred Nathanson

Simon Kingsley and Shaun Quegan

Hazardous Gas Monitors (2000)
Jack Chou

Richard Gedney, Ronald Shertler, and Frank Gargione

Moving Up the Organization in Facilities Management (1998)
A. S. Damiani

Return of the Ether (1999)
Sid Deutsch
Table of Contents

FOREWORD .. xvii
PREFACE .. xix

PART I — GENERAL PRINCIPLES

CHAPTER 1 — THE HISTORY AND BASIC PRINCIPLES OF RADAR . 1
1.1 History .. 1
1.2 Basic Principles ... 2
1.2.1 Basic Configuration 3
1.2.2 Choice of a Wavelength 12

CHAPTER 2 — INITIAL STATEMENTS OF OPERATIONAL REQUIREMENTS
2.1 Introduction .. 13
2.2 Missions ... 13
2.2.1 Surveillance .. 13
2.2.2 Reconnaissance 14
2.2.3 Fire Control and Targeting 15
2.3 Carriers and Weapons 17
2.3.1 Carriers .. 17
2.3.2 Weapons .. 17
2.4 System Functions 17
2.5 Definitions of Flight Conditions 19

CHAPTER 3 — THE RADAR EQUATION 21
3.1 Introduction .. 21
3.2 Signal Transmission and Reception 21
3.2.1 The Role of the Antenna on Transmission 21
3.2.2 Role of the Antenna on Reception 23
3.2.3 Reflection from the Target 23
3.3 Radar Equation in Free Space 24
3.4 The Radar Cross Section of a Target 25
3.4.1 Example of the Double Spheres 25
3.4.2 General Example 27
3.5 Mathematical Modeling of the Received Signal 29
3.6 Direction of Arrival and Monopulse Measurement 32
3.6.1 Angular Fluctuation (Glint) 33
Table of Contents

Chapter 4 — Propagation 35
4.1 Introduction 35
4.2 Role of the Ground 35
 4.2.1 The Reflection Phenomenon 35
 4.2.2 The Presence of Obstacles—
Diffraction 41
4.3 The Role of the Troposphere 42
 4.3.1 Normal Propagation 42
 4.3.2 Abnormal Propagation 44
 4.3.3 Atmospheric Absorption 45
4.4 Other Phenomena 46

Chapter 5 — Noise and Spurious Signals 47
5.1 Introduction 47
5.2 Thermal Noise 47
 5.2.1 The Characteristics of Thermal Noise .. 47
 5.2.2 Definition of the Noise Factor 48
 5.2.3 Noise Factor in a Reception Chain 49
5.3 Radiometric Noise 50
5.4 Spurious Echoes and Clutter 51
 5.4.1 Clutter and Ground Clutter 51
 5.4.2 Sea Clutter 56
 5.4.3 Meteorological Echoes (Atmospheric Clutter) 57

Chapter 6 — Detection of Point Targets 59
6.1 Introduction 59
6.2 The Optimal Receiver (White Noise) 60
 6.2.1 Definition of Processing 60
 6.2.2 Interpretation of the Optimal
Receiver 62
 6.2.3 Signal-to-noise Ratio at the Optimal
Receiver Output 63
 6.2.4 Signal Detection in White Noise 65
6.3 Optimal Receiver for Known
Non-white Noise 69
6.4 Adaptive Receiver for Unknown
Non-white Noise 70
 6.4.1 Adaptive Radar with a Noise-only
Reference Signal 71
 6.4.2 Adaptive Radar without a Noise-only
Reference Signal 72
6.5 Space-time Adaptive Processing 75
6.6 Waveform and Ambiguity Function 76
 6.6.1 Ambiguity Function 78
 6.6.2 Resolution Capability 82
6.6.3 Precision of Range and Velocity Measurement 84

PART II — TARGET DETECTION AND TRACKING

CHAPTER 7 — CLUTTER CANCELLATION 87

7.1 Introduction ... 87
7.2 Waveform Selection 87
 7.2.1 Calculation of Ground Clutter Received by the Radar 87
 7.2.2 General Clutter Cancellation 90
 7.2.3 Clutter Cancellation and Waveform Selection 95

7.3 Improvement Factor and Spectral Purity 101
 7.3.1 Definitions .. 101
 7.3.2 Spectral Purity 103
 7.3.3 Constraints Linked to Clutter Cancellation 108

7.4 Dynamic Range and Linearity 112

CHAPTER 8 — AIR-TO-AIR DETECTION 115

8.1 Introduction ... 115
8.2 Non-coherent Low-PRF Mode 115
 8.2.1 Waveform and Theoretical Processing 116
 8.2.2 Non-coherent Radar Block Diagram 118
8.3 Pulse-compression Radar 127
 8.3.1 Definition .. 127
 8.3.2 Pulse-compression Radar Block Diagram 128
 8.3.3 Pulse-compression Systems 129
8.4 Low-PRF Doppler Radars (MTI) 131
 8.4.1 Definition .. 131
 8.4.2 Coherent Low-PRF Radar Theoretical Analysis 131
 8.4.3 MTI Basic Block Diagram 133
 8.4.4 Additional MTI Considerations 136
 8.4.5 Airborne MTI (AMTI) 136
8.5 High-PRF Radar ... 137
 8.5.1 Continuous Wave (CW) Radar 138
 8.5.2 0.5-Duty Cycle, High-PRF Radar 139
 8.5.3 Range Measurement 144
8.6 Pulse-Doppler Mode (High- and Medium-PRF) 145
 8.6.1 Definition .. 145
 8.6.2 Ideal Pulse-Doppler Receiver 146
 8.6.3 Pulse-Doppler Radar Block Diagram 149
Chapter 9 — Air Target Tracking 159
 9.1 Introduction .. 159
 9.2 Platform Motion and Attitude—
 Coordinate Systems 160
 9.3 Single-Target Tracking (STT) 161
 9.3.1 Definition 161
 9.3.2 Acquisition—Presence 162
 9.3.3 General Structure of Tracking Loops .. 162
 9.3.4 Range Tracking 163
 9.3.5 Doppler Velocity Tracking 165
 9.3.6 Angle Tracking 165
 9.4 Plot Tracking 166
 9.4.1 Definition 166
 9.4.2 Trajectory Estimation 166
 9.4.3 Tracking Management and Update 168
 9.5 Track-While-Scan (TWS) 169

Chapter 10 — Ground Target Detection and Tracking . 171
 10.1 Introduction 171
 10.2 Detection and Tracking of Contrasted
 Targets ... 171
 10.3 Detection and Tracking of Moving
 Ground Targets 171
 10.3.1 Low-speed Aircraft (Helicopters) .. 171
 10.3.2 High-speed Aircraft (Airplanes) .. 172

Chapter 11 — Maritime Target Detection and Tracking . 177
 11.1 Maritime Surveillance Radars 177
 11.2 Search Strategy 178
 11.2.1 Positioning of the Radar with
 Respect to Wind Direction 178
 11.2.2 Platform Altitude 178
 11.3 Surface Vessel Detection 180
 11.3.1 Pulse-repetition Frequency 180
 11.3.2 Resolution 181
 11.3.3 Polarization 181
 11.3.4 Transmission Frequencies 181
 11.3.5 Processing 181
 11.4 Detection of Small Targets (Periscopes) 182
 11.4.1 Processing 182
 11.4.2 Resolution 184
 11.4.3 Pulse-repetition Frequency 184
11.5 Maritime Target Tracking 185
 11.5.1 Purpose of the Tracking Function .. 185
 11.5.2 Tracking Initialization 185
 11.5.3 Algorithm Design 185
11.6 Maritime Target Classification 187
 11.6.1 Radar Cross Section Measurement .. 187
 11.6.2 Range Profile 187
 11.6.3 Imaging 188

CHAPTER 12 — ELECTROMAGNETIC POLLUTION 189

 12.1 Introduction 189
 12.2 Electromagnetic Compatibility 189
 12.3 Interference from Other Radar Components . 191
 12.3.1 Frequency Source (Master Oscillator Exciter) 191
 12.3.2 Transmitter 192
 12.3.3 Antenna Assembly 192
 12.3.4 Intermediate Frequency Receiver . 193
 12.3.5 Digital Processing 193
 12.4 Inter-equipment Interference on the Platform 194
 12.4.1 Decoupling the Antenna Systems .. 194
 12.4.2 Frequency Decoupling 195
 12.4.3 Operation Management 195
 12.5 Unintentional Interactions 195
 12.5.1 Interactions Outside the Radar Bandwidth 195
 12.5.2 Interactions Inside the Radar Bandwidth 196

PART III — GROUND MAPPING AND IMAGERY

CHAPTER 13 — GROUND MAPPING 201

 13.1 Introduction 201
 13.2 Principal Parameters 201
 13.2.1 Aircraft Motion 201
 13.2.2 Beam Shape 202
 13.2.3 Signal Dynamics Adaptation: STC and Log Receiver 203
 13.2.4 Angular Resolution 204
 13.3 Ground Mapping with Monopulse Sharpening 205
 13.3.1 Sharpening by Suppression 206
 13.3.2 Sharpening by Compression 206
CHAPTER 14 — RADAR IMAGERY 207

14.1 Imaging Radar Applications 207

14.2 Image Quality 208

14.2.1 Resolution 208

14.2.2 Geometrical Linearity 212

14.2.3 Signal-to-noise Ratio 212

14.2.4 Radiometric Resolution 212

14.2.5 Radiometric Linearity 214

14.2.6 Contrast 214

14.2.7 Dynamic Range 216

14.3 Special Techniques for Range Resolution 222

14.3.1 Deramp 223

14.3.2 Stepped Frequency 226

14.3.3 Synthetic Bandwidth 229

CHAPTER 15 — SYNTHETIC APERTURE RADAR 233

15.1 Design Principle 233

15.1.1 Synthetic Aperture Radar: A Type of Doppler Processing 234

15.1.2 Focused and Unfocused Synthetic Aperture 235

15.1.3 A Remarkable Configuration: the Side-looking Antenna Radar 244

15.1.4 Ultimate SAR Resolution 247

15.2 SAR Ambiguities 248

15.2.1 Range Ambiguity 249

15.2.2 Cross-range Ambiguity 249

15.3 Spaceborne SAR 251

15.3.1 Side-looking Focused SAR Resolution 253

15.3.2 A Range-ambiguous Waveform 254

15.3.3 Antenna Surface Area 256

15.3.4 Doppler Frequency and Yaw Steering 258

15.4 SAR Operating Modes 260

15.4.1 Doppler Beam Sharpening, with Rotating Antenna 260

15.4.2 Spotlight SAR 261

15.4.3 Scansar 262

15.4.4 Squint or Off-boresight Mode 262

15.4.5 Multilook Mode 263

15.4.6 Other Modes 264

CHAPTER 16 — SYNTHETIC APERTURE RADAR SPECIFIC ASPECTS 265

16.1 Migrations 265

16.2 Phase Errors 266

16.2.1 Effect of a Periodic Phase Error of Frequency fn 267
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2.2 Effect of a Random Error</td>
<td>271</td>
</tr>
<tr>
<td>16.3 Platform Motion</td>
<td>273</td>
</tr>
<tr>
<td>16.3.1 Calculation Example: Motion along Platform Flight Axis</td>
<td>274</td>
</tr>
<tr>
<td>16.3.2 Calculation of Transverse Motion and Vibration Effects</td>
<td>278</td>
</tr>
<tr>
<td>16.3.3 Summary of Platform Motion</td>
<td>279</td>
</tr>
<tr>
<td>16.3.4 X-band or L-band?</td>
<td>282</td>
</tr>
<tr>
<td>16.4 Spectral Purity</td>
<td>282</td>
</tr>
<tr>
<td>16.4.1 Modeling</td>
<td>282</td>
</tr>
<tr>
<td>16.4.2 Effects of Instabilities</td>
<td>283</td>
</tr>
<tr>
<td>16.4.3 Other Sources of Frequency Instability</td>
<td>285</td>
</tr>
<tr>
<td>16.5 Signal Processing</td>
<td>286</td>
</tr>
<tr>
<td>16.5.1 Transfer Function</td>
<td>287</td>
</tr>
<tr>
<td>16.5.2 Processing Block Diagram</td>
<td>290</td>
</tr>
<tr>
<td>16.5.3 “Single-pass” Processing</td>
<td>290</td>
</tr>
<tr>
<td>16.5.4 Multilook Processing</td>
<td>292</td>
</tr>
<tr>
<td>16.6 Autofocus</td>
<td>294</td>
</tr>
<tr>
<td>16.6.1 Introduction</td>
<td>294</td>
</tr>
<tr>
<td>16.6.2 Multilook Registration</td>
<td>297</td>
</tr>
<tr>
<td>16.6.3 Contrast Maximization</td>
<td>301</td>
</tr>
<tr>
<td>16.6.4 Phase Gradient</td>
<td>303</td>
</tr>
<tr>
<td>16.6.5 Asymptotic Performance of Autofocus</td>
<td>311</td>
</tr>
<tr>
<td>16.7 Power Budget</td>
<td>315</td>
</tr>
<tr>
<td>16.7.1 Power Budget for Point Targets</td>
<td>315</td>
</tr>
<tr>
<td>16.7.2 Power Budget for Diffuse Targets</td>
<td>316</td>
</tr>
<tr>
<td>16.7.3 Multilook Processing</td>
<td>316</td>
</tr>
<tr>
<td>16.8 Localization Accuracy</td>
<td>317</td>
</tr>
<tr>
<td>16.8.1 Localization Model</td>
<td>317</td>
</tr>
<tr>
<td>16.8.2 Bearing Measurement Accuracy</td>
<td>318</td>
</tr>
<tr>
<td>16.8.3 Computation of the Geographical Localization Error</td>
<td>320</td>
</tr>
<tr>
<td>16.9 Other Processing Methods</td>
<td>322</td>
</tr>
<tr>
<td>16.9.1 Moving Target Detection</td>
<td>322</td>
</tr>
<tr>
<td>16.9.2 Height Measurement Using Interferometry</td>
<td>323</td>
</tr>
<tr>
<td>16.9.3 Polarimetry</td>
<td>326</td>
</tr>
<tr>
<td>16.9.4 Image-enhancement Processing</td>
<td>328</td>
</tr>
<tr>
<td>16.9.5 Thematic Processing</td>
<td>328</td>
</tr>
<tr>
<td>Chapter 17 — Inverse Synthetic Aperture Radar (ISAR)</td>
<td>329</td>
</tr>
<tr>
<td>17.1 Objectives and Applications</td>
<td>329</td>
</tr>
<tr>
<td>17.2 Preliminary Description of ISAR</td>
<td>329</td>
</tr>
<tr>
<td>17.2.1 Basic Principles</td>
<td>329</td>
</tr>
</tbody>
</table>
Chapter 18 — Other Observation Radars

18.1 Millimeter-wave Radars
 18.1.1 The Benefits of Millimeter Waves
 18.1.2 Airborne Applications: Field of Use
 18.1.3 Cable RCS

18.2 Scatterometers
 18.2.1 Orders of Magnitude

18.3 Altimeters
 18.3.1 Antenna Beam
 18.3.2 Power Budget

Part IV — Principal Applications

Chapter 19 — Radar Applications and Roles

19.1 Civil Applications
 19.1.1 Space Systems
 19.1.2 Air Transport Applications
 19.1.3 Maritime Applications

19.2 Military Applications
 19.2.1 Space Systems
 19.2.2 Airborne Applications
 19.2.3 Maritime Applications

19.3 Examples of Applications
 19.3.1 Ground Observation from Space
 19.3.2 Airborne Reconnaissance
 19.3.3 Air Surveillance
 19.3.4 Maritime Surveillance
 19.3.5 Battlefield Surveillance
 19.3.6 Air Superiority, Interception, and Combat
 19.3.7 Tactical Support, Ground Attack, and Interdiction
 19.3.8 Very Low-altitude Penetration

Chapter 20 — Design Overview
Table of Contents

20.3.1 Mission Preparation and Management Chain 374
20.3.2 Image Chain ... 374
20.3.3 Image Exploitation Chain 377
20.4 Air-surveillance Radar (AEW) 377
 20.4.1 AEW Specifications 377
 20.4.2 Technical Description 378
 20.2.3 Performance Calculations 380
20.5 Maritime Surveillance Radar 383
 20.5.1 Surface Vessel Detecting Mode 383
 20.5.2 Detecting Small Targets (Periscope) 384
20.6 Battlefield Surveillance 385
 20.6.1 Specifications .. 385
 20.6.2 Technical Description 385
20.7 Interception Radar ... 389
 20.7.1 Specifications .. 389
 20.7.2 Technical Description 390
20.8 Tactical Support Radar 393
 20.8.1 Specifications .. 393
 20.8.2 Technical Description 394
20.9 Penetration Radar .. 400
 20.9.1 Specifications .. 401
 20.9.2 Technical Description 401

Chapter 21 — Multifuction Radar 403
 21.1 Introduction .. 403
 21.2 Radar Modes and Functions 403
 21.2.1 Functions ... 403
 21.2.2 Sizing .. 405
 21.2.3 Performance and Constraints 405
 21.3 Technical Specifications 408
 21.4 Technical Description 408
 21.4.1 Antenna .. 408
 21.4.2 Transmitter .. 408

Chapter 22 — Technological Aspects 411
 22.1 Introduction .. 411
 22.2 The Major Stages in Technological Innovation 411
 22.2.1 The Analog Age 411
 22.2.2 The Digital Age 413
 22.2.3 The New Age .. 415
 22.3 Advances in Radar Components 416
 22.3.1 Electronic Circuits 416
 22.3.2 Electronic Power Circuits 417
 22.3.3 Transmitters .. 418
Table of Contents

Part V — Radars of the Future

Chapter 23 — The Changing Target
- 23.1 Introduction ... 433
- 23.2 Electromagnetic Signature 433
- 23.3 Radar Cross Section 434
 - 23.3.1 Effects that Produce RCS 434
 - 23.3.2 Factors Influencing RCS 436
 - 23.3.3 Some Values for RCS 436
 - 23.3.4 Radar RCS 437
- 23.4 Reducing Electromagnetic Signature 439
 - 23.4.1 Achieving Low RCS 440
 - 23.4.2 Reducing RCS of the Radar 442
- 23.5 Conclusion ... 442

Chapter 24 — Operational Aspects
- 24.1 Introduction ... 445
- 24.2 RCS Values .. 445
- 24.3 Detection Range .. 446
- 24.4 Self-protection Range 447
- 24.5 Missions .. 447

Chapter 25 — Principal Limitations of Present-day Radars
- 25.1 Introduction ... 449
- 25.2 Physical Limitations 449
 - 25.2.1 Power Budget 449
 - 25.2.2 Interception Probability of Transient Targets 451
 - 25.2.3 Limits on Accuracy in Measuring Target Parameters .. 451
 - 25.2.4 Resolution Limits 452
 - 25.2.5 Limitations on Angular Coverage 453
- 25.3 Technological Limitations 453
 - 25.3.1 Waveform 453
 - 25.3.2 Spectral Purity and Dynamic Range 454
 - 25.3.3 Data Flow 454
 - 25.3.4 Exploitation 455
Table of Contents

Chapter 26 — Electronically Steered Antennas

26.1 Introduction .. 457
26.2 Operational and Technical Benefits
 of ESA for Airborne Radars 458
 26.2.1 Fighter Radar 458
 26.2.2 AEW Radar 460
 26.2.3 Air-to-Ground Surveillance 461
 26.2.4 Maritime Patrol Radar 462
26.3 Competing ESA Solutions 462
 26.3.1 Reflectarray 463
 26.3.2 RADANT ESA 464
 26.3.3 Active ESA (AESA) 465
26.4 Conclusion: ESA Solutions for
 Airborne Radars 466

Chapter 27 — Airborne and Spaceborne Radar

Enhancement ... 469
27.1 Introduction 469
27.2 Response to Target RCS Reduction 469
 27.2.1 Power Budget Increase 469
 27.2.2 Using Low-frequency Bands 470
 27.2.3 Multistatic Radar 471
27.3 Countering Electromagnetic Threats 472
 27.3.1 Waveforms 472
 27.3.2 Beam Matching (Digital Beamforming) 473
27.4 Multiple and Evolving Targets;
 Angular Coverage 474
 27.4.1 Electronic Scanning: Detection
 and Scanning Strategies 474
 27.4.2 Conformal Antennas and
 Dispersed Antennas 475
27.5 Space Imaging Radar 476
 27.5.1 Short- and Medium-term Development 476
 27.5.2 Long-term Development 476
 27.5.3 Air-Space Cooperation 476

Chapter 28 — Conclusions 477

List of Acronyms 479

List of Symbols 483

Bibliography .. 487

About the Authors 493

Index .. 495
The history of airborne radar is almost as old as that of radar itself. The improvement in detection range provided by an airborne platform was realised early during the Second World War, and the development of the cavity magnetron at almost the same time allowed higher radar frequencies and, hence, directive antennas to be used. Nowadays, radars on aircraft have a great variety of functions: from navigation and meteorological purposes, to more specialised purposes on military aircraft associated with surveillance and weapon delivery. Development of processing techniques such as coherent Moving Target Indication and Synthetic Aperture Radar have been matched by huge advances in technology, such as digital processing and solid-state phased arrays. More recent decades have seen the development of satellite-borne radars for geophysical environmental monitoring and surveillance applications.

A book that brings together a detailed theoretical treatment and a systems-level engineering understanding of the subject is both unusual and of great potential value to the radar community. The structure of the book combines a coverage of the principles of radar with a discussion of different applications and missions, showing how the design of the radar is adapted to each. The final chapters are devoted to a view of future technological developments and the ways that airborne and spaceborne radars may be expected to develop in response to new types of targets and missions. The French radar industry has played a significant role in the development of many of the innovations in airborne and spaceborne radar. The authors of this book are acknowledged as experts in the field and they provide a uniquely European perspective on the subject.

For all of these reasons, this book will be of value to a wide audience, both as a reference to radar engineers and those responsible for the specification and procurement of airborne and spaceborne radar systems, and as a textbook in graduate-level courses on radar.

Hugh Griffiths
Professor, University College London
IEEE PGEI5 Committee, IEEE Radar Systems Panel
For over half a century, radar has been a permanent feature of surveillance activities. Practically unaffected by meteorological conditions, it operates independently of sunlight, while its detection ranges and the angular domain it covers make it an essential tool for continuous surveillance of a very wide area. Over the last fifty years, radar operational capability and performance have continued to improve, and one can safely assume that this will hold true for the coming decades.

This book, devoted to airborne and spaceborne radar, avoids a purely theoretical approach and is certainly not intended for an “elite” group of specialists. Rather, it is a practical tool that we hope will be of major help to technicians, student engineers, and engineers working in radar research and development. The many users of radar, as well as systems engineers and designers, should also find it of interest.

Airborne and spaceborne radar systems, themselves highly complex systems, are fitted to mobile and often rapidly changing platforms that contain many other items of equipment. Radar can therefore not be considered as a separate entity. Its design must ensure its “compatibility” with the systems of which it forms a part, and with the dense electromagnetic environment to which it is often exposed. Naturally, and most importantly, it must also satisfy operating requirements.

Radar technology evolves at a rapid pace and can quickly appear obsolete. For this reason it is only briefly developed in this work. However, we have taken the major trends into account when describing the next generation of radars, as their feasibility is largely dependent on these new developments.

The book is divided into five parts:

- General Principles
- Target Detection and Tracking
- Ground Mapping and Imagery
- Principal Applications
- Radars of the Future

Following a historical overview and a reminder of the main principles behind radar, the functions, modes, properties, and specific nature of modern airborne radar systems are studied in detail. Next, the book examines radar’s role within the mission system when carrying out missions assigned to the aircraft or the satellite. The fourth section covers
the possibilities of radar as well as its limitations and constraints. Finally, given changing operational requirements and the potential opened up by technological development, the final section describes how radar may evolve in the future.

Remark

As airborne and spaceborne radars are often used in military applications, and in order to comply with security regulations, in this book we refrain from quoting existing systems or equipment that are either under development or in use. Explanations and examples are therefore based on the laws of physics (i.e., information that is in the public domain) and on hypothetical “equipment.”