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CHAPTER 1

A first approach: examples

This chapter presents some basic constructions of von Neumann algebras
arising from measure theory, group theory, group actions and equivalence
relations. All these examples are naturally equipped with a faithful trace
and are naturally represented on a Hilbert space. This provides a plentiful
source of tracial von Neumann algebras to play with. More constructions
will be given in Chapter 5.

The most general von Neumann algebras are obtained from simpler
building blocks, called factors. These are the von Neumann algebras with
a trivial center. We will see that they appear frequently, under usual as-
sumptions. Infinite dimensional tracial factors (type II; factors) are our
main concern. We end this chapter with the most elementary example, the
hyperfinite II; factor, which is constructed as an appropriate closure of an
increasing sequence of matrix algebras.

1.1. Notation and preliminaries

Let H be a complex Hilbert space with inner-product (-,-) (always as-
sumed to be antilinear in the first variable), and let B(#H) be the algebra
of all bounded linear operators from H to H. Equipped with the involu-
tion x — z* (adjoint of x) and with the operator norm, B(#) is a Banach
«-algebra with unit Idy. We will denote by ||z||, or sometimes |z, the
operator norm of x € B(H). Throughout this text, we will consider the two
following weaker topologies on B(H):

e the strong operator topology (s.o. topology), that is, the locally con-
vex topology on B(#H) generated by the seminorms

pe(x) = [zl £eH,

e the weak operator topology (w.o. topology), that is, the locally con-
vex topology on B(H) generated by the seminorms

peq(r) = |wep(o)], &neEH,

where we , is the linear functional = — (£, zn) on B(H).

This latter topology is weaker than the s.o. topology. It is strictly weaker
when H is infinite dimensional (see Exercise 1.1). An important observa-
tion is that the unit ball of B(#) is w.o. compact. This is an immediate
consequence of Tychonoff’s theorem.

3



4 1. A FIRST APPROACH: EXAMPLES

This unit ball, endowed with the uniform structure associated with the
s.o. topology, is a complete space. In case H is separable, both w.o. and
s.0. topologies on the unit ball are metrizable and second-countable. On the
other hand, when H is infinite dimensional, this unit ball is not separable
with respect to the operator norm (Exercise 1.2).

A wvon Neumann algebra M on a Hilbert space H is a *x-subalgebra of
B(H) (i.e., a subalgebra invariant under the x-operation) which is closed in
the s.0. topology and contains the identity operator Idy." We will sometimes
write (M, H) to specify the Hilbert space on which M acts. The unit Idy
of M will also be denoted 13, or simply 1.

Given a subset S of B(H), we denote by S’ its commutant in B(H):

S'={z € B(H): xy =yx for all y € S}.

The commutant (S”)" of S’ is denoted S” and called the bicommutant of
S. Note that S’ is a s.o. closed unital subalgebra of B(H); if S = S*, then
S’ = (8")* and therefore S” is a von Neumann algebra on H. We will see
in the next chapter that every von Neumann algebra appears in this way
(Theorem 2.1.3).

The first example of von Neumann algebra coming to mind is of course
M = B(H). Then, M' = CIdy,. When H = C", we get the algebra M, (C) of
n X n matrices with complex entries, the simplest example of a von Neumann
algebra.

We recall that a C*-algebra on H is a x-subalgebra of B(H) which is
closed in the norm topology. Hence a von Neumann algebra is a C*-algebra,
but the converse is not true. For instance the C*-algebra K(#) of compact
operators on an infinite dimensional Hilbert space H is not von Neumann
algebra on H: its s.o. closure is B(H).

We assume that the reader has a basic knowledge about C*-algebras.
We have gathered in the appendix, with references, the main facts that
we will use. Note that for us, a homomorphism between two C*-algebras
preserves the algebraic operations and the involution?. We recall that it is
automatically a contraction and a positive map, ¢.e., it preserves the positive
cone (Appendix A).

REMARK 1.1.1. A C*-algebra can be defined abstractly as a Banach *-
algebra A such that ||z*z|| = ||z||* for every 2 € A. A celebrated theorem of
Gelfand and Naimark states that such an algebra is isometrically isomorphic
to a norm closed *-algebra of operators on some Hilbert space.

Similarly, for von Neumann algebras, there are two points of view: the
concrete and the abstract one (see the notes at the end of this chapter).
In this monograph, we have chosen to define von Neumann algebras as

1We will see in Theorem 2.1.3 that we may require, equivalently, that M is closed in
the w.o. topology.

°In the literature, very often one says *-homomorphism to emphasize the fact that
the involution is also preserved.
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concretely represented operator algebras on some Hilbert space (even if this
Hilbert space will not always be explicitely mentioned).

1.2. Measure space von Neumann algebras

Every probability measure space (X, p) gives rise in a natural way to an
abelian von Neumann algebra.

PROPOSITION 1.2.1. Let (X, u) be a probability measure space. We set
A=L>®(X,u).
(i) For f € L*>(X, ), we denote by My the multiplication operator by
f on L*(X, ), that is, Ms& = f€ for € € L*(X,pn). Then My is a
bounded operator and [|[My|| = | f|| -
(ii) If A is identified with a subalgebra of B(L*(X, 1)) via f — M, then
A = A'. In particular, A is a von Neumann algebra on L*(X, )
and a mazimal abelian subalgebra of B(L*(X, ).

PRrROOF. (i) Obviously, My is a bounded operator with |[M¢]| < [|f|l
and it is a classical exercise in measure theory to show that || M¢| = || f]| .-
(ii) Since A is abelian, we have A C A’. Let T € A’ and set f = T'(1).
Then, for h € L>*(X,u), we have T'(h) = TMyl = MT(1) = hf and
| fhlly < |T|||R]l5- It follows that f € L°(X, pu) with | f|l < ||| and so
T = M;. O

REMARK 1.2.2. Recall that L>(X, p) is the dual Banach space of L1 (X, ).
The weak™® topology on L (X, p) is defined by the family of seminorms
ag(f) = |[x fgdu|, g € L*(X, n). Equivalently, it is defined by the family

of seminorms
/ fén du‘
X

with &, € L?(X, ). Therefore, the weak* topology coincides with the w.o.
topology on L™ (X, ) acting on L?(X, p).

f—= p&,n(f) =

1.3. Group von Neumann algebras

Let G be a countable group®. We denote by A (or Ag in case of ambigu-
ity) and p (or pg) the left, and respectively right, reqular representation of
G in 2(Q), i.e., for all 5,t € G,

)\(S)ét = (55,5, ,0(8)(5,5 = (5?58717

where (6;)iec is the natural orthonormal basis of £2(G).4

3For us, unless otherwise stated, countable will mean countably infinite. Of course
the constructions of von Neumann algebras carried out in this section and in the next one
also hold for finite groups but these are not the examples of interest for us.

4Given a set X, we denote by &, both the characteristic function of {z} and the Dirac
measure at ¢ € X.
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1.3.1. Definition and first properties. We denote by L(G) the strong
operator closure of the linear span of A(G). This von Neumann algebra is
called the (left) group von Neumann algebra of G. Similarly, one introduces
the strong operator closure R(G) of the linear span of p(G). Obviously,
these two algebras commute: xy = yz for x € L(G) and y € R(G) and
we will see in Theorem 1.3.6 that each one is the commutant of the other.
These von Neumann algebras come equipped with a natural trace, as shown
below.

DEFINITION 1.3.1. A linear functional ¢ on a von Neumann algebra M is
positive if p(x*z) > 0 for every x € M (i.e., p(x) > 0 for z > 0). Whenever
p(z*x) = 0 implies x = 0, we say that ¢ is faithful. If ¢ is positive with
©(1) = 1 we say that ¢ is a state®.

A positive linear functional such p(zy) = p(yx) for every z,y € M is a
trace. If moreover it is a state, we call it a tracial state.

We recall that a positive linear functional is norm continuous with ||| =
p(1).

DEFINITION 1.3.2. Given a von Neumann algebra M acting on a Hilbert
space H, a vector £ € H is called cyclic for M if M is dense in H. It is
called separating for M if, for x € M, we have z€ = 0 if and only if x = 0.

We denote by e the unit of G. One easily checks that ¢, is a cyclic and
separating vector for L(G) (and R(G)). We define a faithful state on L(G)
by

T(2) = (Je, x0e).
For s1,s2 € G, we have 7(A(s1)A(s2)) = 1 if 8152 = e and 7(A(s1)A(s2)) =0
otherwise. It follows immediately that 7 is a trace. We observe that this
trace is continuous with respect to the w.o. topology.

Thus, L(G) and R(G) are examples of tracial von Neumann algebras in
the following sense’.

DEFINITION 1.3.3. A tracial von Neumann algebra (M, T) is a von Neu-
mann algebra (M, H) equipped with a faithful tracial state 7 whose res-
triction to the unit ball is continuous with respect to the w.o. topology
(equivalently, equipped with a faithful normal tracial state, see Proposition
2.5.5). In case of ambiguity, the given trace of M will be denoted by 7.

Since 6, is a separating vector for L(G), the map = — xd. provides a
natural identification of L(G) with a dense linear subspace of 2(G) that we
are going to characterize.

Recall first that for f, fi € £2(G), the convolution product

Li(f1) = f* f1,

SRecall that {z*z : € M} is the cone of all positive elements in M (see Appendix
A.2).
6L°°(X, 1) equipped with the integral 7, : f — fx fdu is of course another example.
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defined by
(F f)#&) =) f(s)fi(s™M),
seG
belongs to ¢>°(G). More precisely, using the Cauchy-Schwarz inequality, we
see that
1S * fillso < M2l F2ll,- (1.1)
We say that f is a left convolver for G if f* f1 € £2(G) for every f1 € £2(G).
Observe that every finitely supported function f is a left convolver and that
Li =Y sea F(5)A(s)-
LEMMA 1.3.4. Let f € %(G).
(i) If f is a left convolver, Ly is a bounded operator on (*(G).
(ii) f is a left convolver if and only if there exists ¢ > 0 such that
| f * k|l < cllk|y for every finitely supported function k on G.

Proor. (i) It is sufficient to prove that L¢ has a closed graph. Let (fy)
be a sequence in ¢?(G) such that lim,, f,, = 0 and lim, L¢(f,) = h in £3(G).
It follows from the inequality (1.1) that

tim [ # fallo = 0

and therefore h = 0.

(ii) Assume the existence of a bounded operator T such that T'(k) = fxk
for every finitely supported function k£ on G. Let h € £2(G) and let (hy,)
be a sequence of finitely supported functions on G' with lim,, ||h — hy||, = 0.
Then we have lim,, ||T'(h) — f * hy||, = 0 and lim,, || f x h — f * h,|| =0, so
that T' = Ly. O

We denote by LC(G) the space of all left convolvers for G. Note that

for f € LC(G) and t € G, we have
Lyop(t)=p(t)oLy.

Since f +— Ly is injective, it follows that we may (and will) view LC(G) as
a subspace of p(G) C B(£*(Q)).

PRrROPOSITION 1.3.5. LC(G) is a von Neumann subalgebra of p(G)'.

PROOF. Let f € LC(G). Then (Lf)* = Lg« where f*(t) = f(t71), so
that LC(G) is stable under involution. Let now fi, fa be in LC(G). For
t € GG, we have

Ly, o Lpy(8t) = Ly, 0 p(t™") 0 Ly, (8e) = p(t71) © Ly, (f2)
= p(t™)(f1  f2) = (fr % f2) % &,

so that, by Lemma 1.3.4 (ii), fi * fo € LC(G) with Ly, Ly, = Ly s f,-

Let us show next that LC(G) is s.o. closed. Let T € B(£?(G)) be such

that there exists a sequence (f,,) of left convolvers with lim,, L, = T in the
s.0. topology. We put h = Té, € (*(G). Since Ly, 6. = fn, we get

1= fulla = 1T0c = Ly, 0cll, = 0.
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To conclude, we show that T' = L;,. For f € £?(G), we have

ITf = fax flloo SNTf—faxflla =0
and

1B f = fox flloo < 1= fullallfllz =0,
and therefore T'f = h* f. Hence, h € LC(G) with Ly =T. O

Since A(G) C LC(G), it follows from the above proposition that L(G) C
LC(G). Similarly, we may introduce the von Neumann RC(G) generated by
the right convolvers Ry for G. It commutes with LC(G), that is, LC(G) C
RC(G)".

We will see that L(G) is exactly the subspace of £2(G) formed by the
left convolvers and prove simultaneously that L(G) = R(G)'.

THEOREM 1.3.6. We have LC(G) = L(G) = R(G) and RC(G) =
R(G) = L(G).

ProoFr. We already know that
L(G) c LC(G) c RC(G) c R(GY'.

Let us prove that R(G)" € LC(G). To this end, we consider T' € R(G)’
and set f = Td.. Then for t € G, we have

T6; = Tp(t )6 = p(t ™ )T6s = f % 6.
It follows that Tk = fxk for every finitely supported function k on G. Then,
by Lemma 1.3.4 (ii), we see that f € LC(G) and T'= Ly.

So, we have proved that LC(G) = RC(G)' = R(G)’. Similarly, we have
RC(G) = LC(GQ)" = L(G)". Now, we use one of the fundamental tools of
the theory of von Neumann algebras, that will be established in the next
chapter, namely the von Neumann bicommutant theorem. It tells us that

every von Neumann algebra is equal to its bicommutant (see Theorem 2.1.3).
It follows that

L(G) = L(G)" = RC(G) = LC(G) = R(G)’
and, similarly,
R(G) = RC(G) = L(G)'.
O

REMARK 1.3.7. Usually, for g € G, we will put v, = A(g) € L(G) and
this unitary operator will be identified with the vector A(g)d. = &, € £2(G).
Therefore, every f € £2(G) is written as f =Y gec fgtg and, in particular,
every x € L(G) is written as

x = Z Tyl (1.2)
geG

Observe that 7(z*z) = 3~ ¢ |acg|2 and that x5 = 7(zuy). In analogy with
developments in Fourier series, the scalars z, are called the Fourier coeffi-
cients of x. The unitaries u, are called the canonical unitaries of L(G). We
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warn the reader that in (1.2) the convergence is in #2-norm and not with
respect to the s.o. or w.o. topology.

Denote, as usually, by C[G] the group algebra of G, that is, the *-
subalgebra of L(G) formed by the elements . x4uq where z, = 0 except
for a finite number of indices. Then L(G) is the s.o. closure of C[G].

ExamMpLE 1.3.8. Consider the group G = Z of all integers. Since Z
is abelian, L(Z) is an abelian von Neumann algebra which coincides with
R(Z) = L(Z)'.

Let F : (*(Z) — L?(T) be the Fourier transform, where T is the unit
circle in C, equipped with the Lebesgue measure m. Then F§, = e, with
en(z) = 2" and, for f € LC(Z), we have FLF~ ! = My where My is

the multiplication operator by the Fourier transform fof f- Hence, fis a
multiplier for T, that is, a function ¥ on T such that A — h is a bounded
operator from L?(T) into itself. It follows that FLC(Z)F~! is the von
Neumann subalgebra of B(L?(T)) formed by the multiplication operators
by these multipliers for T. It can be identified in a natural way with L>°(T).

The canonical tracial state 7 on L(Z) becomes, after Fourier transform,
the integration with respect to the Lebesgue probability measure on T:

T(Lf) = /T Fdm.

The same observations hold for any abelian countable group G: the group
von Neumann algebra L(G) is abelian and isomorphic to L>(G,m) where
G is the dual group and m is the Haar probability measure on this compact
group.

However, the most interesting examples for us come from groups such
that L(G) has, to the contrary, a center reduced to the scalar operators. A
von Neumann algebra with such a trivial center is called a factor.

PROPOSITION 1.3.9. Let G be a countable group. The following condi-
tions are equivalent:
(i) L(G) is a factor;
(ii) G is an ICC (infinite conjugacy classes) group, that is, every non
trivial conjugacy class {gsg_1 1g € G}, s # e, is infinite.

PROOF. Let x be an element of the center of L(G). For ¢t € G we have
26 = M)At 16 = Mt)zp(t)de = A(t)p(t) (26e).

It follows that x4, is constant on conjugacy classes. Therefore, if G is ICC,
since zd. is square summable, we see that xd, = «ad, with a € C, and
therefore r = aIdy.

Assume now that G is not ICC and let C' C G be a finite non-trivial
conjugacy class. An easy computation shows that the characteristic function
f = 1¢ of C defines an element L of the center of L(G) which is not a scalar
operator. ([l
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There are plenty of countable ICC groups. Among the simplest exam-
ples, let us mention:

o
e S = U Shn, the group of those permutations of N* fixing all
n=0
but finitely many integers’ (S, is the group of all permutations of
{1,2,---,n}) (Exercise 1.7);
e F,, n > 2, the free group on n generators (Exercise 1.8);
e wreath products G = H ! I" where H is non trivial and I' is an
infinite group, as well as many generalized wreath products.

Let us give some details about the third example. Suppose we are given
a non-trivial finite or countable group H and a countable group I' acting
on a countable set I. We denote by H) the direct sum of copies of H,
indexed by I, that is, H) is the group of all maps £ : I — H such that
& = e for all but finitely many 7. We let I act on H) by (y&); = Ey1-
The generalized wreath product H ; T' is the semi-direct product H) x T
The wreath product H I is the particular case where I = T" on which I" acts
by left translations.

ProprosiTION 1.3.10. Let H, I" and I be as above. We denote by I'y
the subgroup of elements in I' whose conjugacy class is finite. We assume
that the orbits of I' ~ I are infinite and that the restricted action I'y ~ 1
is faithful. Then the group G = H iy I is ICC. In particular every wreath
product H T, where H is non trivial and I" is infinite, is ICC.

PROOF. We denote by e the unit of H) and by ¢ the unit of I'. Given
g € G and a subgroup K C G we set g& = {kgk:_l 1k e K}

Let g = (£,7) be an element of G distinct from the unit. Assume first
that £ # e. Then its support is non-empty and has an infinite orbit under T,
so g and a fortiori g@ are infinite. Assume now that g = (e, ) with v # e.
If v & I'y then of course the conjugacy class of g is infinite. It remains to
consider the case where v € I'y \ {€}. Since I'y acts faithfully on I, there
is an ig € I such that vig # ig. Let £ be an element in HD having all its
components trivial except the one of index iy and take gy = (£,¢). Then
9o t990 = (£719(€),~) has an infinite conjugacy class since £~ 1y(£) # e, and
we see that ¢@ is infinite. O

We have previously met examples of factors, namely the von Neumann
algebras B(H) where H is a finite or infinite dimensional Hilbert space. They
are type I factors to be defined in the next section. When G is a countable
ICC group, L(G) is another type of factor, called a type II; factor.

In this text N denotes the set of non-negative integers and N* is the set of positive
integers.
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DEFINITION 1.3.11. A type 11y factor is an infinite dimensional tracial
von Neumann algebra M whose center is reduced to the scalar operators®.

1.3.2. Digression about type I factors. A basic result of linear al-
gebra tells us that the (finite dimensional) von Neumann algebra M, (C) of
n x n complex matrices has a unique tracial state 7, namely 7 = (1/n)Tr
where Tr is the usual trace of matrices®.

On the other hand, it is easily shown that there is no tracial state on
the von Neumann algebra B(H) when # is infinite dimensional. Indeed, we
may write H as the orthogonal direct sum of two Hilbert subspaces H1, Ho
of the same dimension as the dimension of H. If pi,ps are the orthogonal
projections on these subspaces, there exist partial isometries uy,us with
uiu; = Idy and wu} = p;, @ = 1,2. The existence of a tracial state 7 on
B(H) leads to the contradiction

L=7(p1) +7(p2) = T(uruq) + 7(ugu3) = T(ujur) + 7(uzuz) = 2.

DEFINITION 1.3.12. A factor M is said to be of type I if it is isomorphic
to some B(H). If dimH = n, we say that M (which is isomorphic to M, (C))
is of type I,,. If dimH = oo, we say that M is of type 1.

Let us specify what we mean by isomorphic von Neumann algebras.

DEerFINITION 1.3.13. We say that two von Neumann algebras M; and My
are isomorphic, and we write M1 ~ Mo, if there exists a bijective homomor-
phism (i.e., an isomorphism) a : My — M.

An isomorphism preserves the algebraic structures as well as the involu-
tion. We recall that it is automatically an isometry (see Appendix A). On
the other hand it is not necessarily continuous with respect to the w.o. or
s.o. topology (see Exercise 1.3) but we will see later (Remark 2.5.10) that
its restriction to the unit ball is continuous with respect to these topologies.

Factors of type I (on a separable Hilbert space) are classified, up to
isomorphism, by their dimension. On the other hand, the classification of
type II; factors is out of reach!?. Already, given two countable ICC groups
G1,Gy, to determine whether the type II; factors L(Gp) and L(G3) are
isomorphic or not is a very difficult question.

Since we have defined von Neumann algebras as acting on specified
Hilbert spaces, the following stronger notion of isomorphism is also very
natural.

8We will see later (Theorem 6.3.5) that it is enough to require the existence of a
tracial state: for factors, such a tracial state is automatically faithful and has the desired
continuity property. Moreover, it is unique.

9By convention, T will always denote tracial states whereas Tr will denote not neces-
sarily normalized traces.

wlndeed, type II; factors on separable Hilbert spaces, up to isomorphism, are not
classifiable by countable structures [ST09].
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DEFINITION 1.3.14. We say that the von Neumann algebras (M, H1),
(Mo, Hs), are spatially isomorphic if there exists a unitary operator U :
Hi — Ha such that z +— UxU™* is an isomorphism (called spatial) from M;
onto M.

Two isomorphic von Neumann algebras need not be spatially isomorphic
(see Exercise 1.4). Classification, up to spatial isomorphism, involves in
addition a notion of multiplicity.

1.3.3. A remark about L(S.). We end this section by pointing out
a nice important property of L(S): it is the s.o. closure of the union of
an increasing sequence of finite dimensional von Neumann algebras namely
the von Neumann algebras L(S,), n > 1. Indeed, these algebras are finite
dimensional since the groups S,, are finite. Moreover, L(S),) is naturally
isomorphic to the linear span of A\g__(S,) in L(Sx), as a consequence of the
following proposition.

PROPOSITION 1.3.15. Let H be a subgroup of a countable group G. Then

the restriction of Aq to H is a multiple of the left regular representation of
H.

PROOF. Write G as the disjoint union of its right H-cosets: G = UgegH s,
where S is a set of representatives of H \ G. Then (?(G) = @4esl?(Hs). It
is enough to observe that ¢?(Hs) is invariant under the restriction of Ag to
H, and that this restriction is equivalent to the left regular representation
of H. (|

1.4. Group measure space von Neumann algebras

We will describe in this section a fundamental construction, associated
with an action of a countable group G on a probability measure space (X, 11).
The previous section was concerned with the case where X is reduced to a
point.

1.4.1. Probability measure preserving actions. Recall that two
probability measure spaces (Xi,u1) and (Xo, pu2) are isomorphic if there
exist conull subsets Y7 and Ys of X; and X», respectively, and a Borel
isomorphism 0 : Y1 — Y3 such that 0.1, = pa)y,, i.e., (Oup)y, )(E) =
p1(071(E)) = pa(E) for every Borel subset E of Y. Such a map 6 is
called a probability measure preserving (p.m.p.) isomorphism, and a p.m.p.
automorphism whenever (X1, p1) = (Xo, p2). We identify two isomorphisms
that coincide almost everywhere. We denote by Aut (X, u) the group of
(classes modulo null sets of) p.m.p. automorphisms of a probability measure
space (X, u).

Every element 6 € Aut (X, u) induces an automorphism f +— fo# of the
algebra L°°(X, ;1) which preserves the functional 7, : f — [, fdu, i.e.,

VF € (X, ), /Xfoedu:/xfdu.
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We will see later that, for nice probability measure spaces (the so-called
standard ones, see Section B.2 in the appendix), every such automorphism
of L>°(X, u) is so provided by an element of Aut (X, ) (see Corollary 3.3.3).
The most useful examples of probability measure spaces are standard, which
will be our implicit assumption in the sequel.

DEFINITION 1.4.1. A probability measure preserving (p.m.p.) action
G ~ (X, p) of a countable group G on a probability measure space (X, )
is a group homomorphism from G into Aut (X, ). The action of g € G on
w € X will be written gw.

The most classical examples of p.m.p. actions are Bernoulli shift actions.
Let (Y, v) be a probability measure space and let X = Y& be equipped with
the product measure u = v®“. The Bernoulli action G ~ (X, i) is defined
by (9z)n = w41, for = (zp)heq € X and g € G. As a particular case, we
may take Y = {0,1} and v({0}) = p,v({1}) = 1 — p, for a given p €]0, 1|.

1.4.2. Construction of the group measure space algebra. Let
G ~ (X, ) be a p.m.p. action of G on a probability measure space (X, u).
Let A be the von Neumann algebra L>°(X, u), acting by mutiplication on
L?*(X,p). Let o be the unitary representation of G on L?(X, ) defined by
(04f)(w) = f(g~ w). By restriction to L>(X,u) C L?(X, p), this induces
an action of G by automorphisms on L*(X, u).

We encode this action of G on A through the involutive algebra A[G]
generated by a copy of A and a copy of G, subject to the covariance relation
gag—! = 04(a). More precisely, A[G] is the space of formal sums of the form
deG agg where agz € A and where the set of g € G with a4 # 0 is finite.
The product is defined by

(a1g)(azh) = arog4(az)gh,
and the involution by
(ag)* = ag_l(a*)g_l, where a*(w) = a(w).

These operations are consistent with the operations on A and G: a € A — ae
is an injective x-homomorphism from A into A[G] and g € G + 144 is an
injective group homomorphism into the unitary group of A[G].}!' Of course,
A will be identified with the corresponding subalgebra of A[G]. To avoid
confusion, g € G when viewed as the element 149 of A[G] will be written
ug. Thus, a generic element of A[G] is written as

S ey (13)

geG
Fora =73 cqagug and b= 3 . byug in A[G], we have
( Z ag“g) ( Z bgug) = Z(a *b) gug
geG geqG geqG

Hywhen X is reduced to a point, A[G] is just the group algebra C[G].
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where a x b is the twisted convolution product

(axb)g = Z anpon(by-1g). (1.4)

heG

We will complete A[G] in order to get a von Neumann algebra. The first
step is to represent A[G] as a x-algebra of operators acting on the Hilbert
space H = L?(X, 1) ® £*(G) by sending a € A C A[G] to L(a) = a® 1 and
ug to L(ug) = 04 ® Ay. Since the algebraic homomorphism rules for A and
G are satisfied, as well as the covariance rule L(ug)L(a)L(ug)* = L(og4(a)),
this gives a *-homomorphism L from A[G] into B(H).

The group measure space von Neumann algebra associated with G ~
(X, ), or crossed product, is the von Neumann subalgebra of B(#H) generated
by L(A)U{L(uy) : g € G}, that is, the s.o. closure of L(A[G]) in B(#H). We
denote it by L(A,G), or A x G.

Since L(3_,cq agug)(1 ® be) = 3- e ag ® Jg we see that L is injective
and we identify A[G] with the corresponding s.o. dense subalgebra of A x G.
We also identify it in an obvious way with a dense subspace of the Hilbert
space L?(X, 1) ® £?(G). Note that L?(X, 1) @ ¢?(G) is the Hilbert space of
all f =3 cqfy®dqg with fg € L?(X, p) and

Z ||fg||i2(x) < +00.

geG

It is convenient to set
foug = fg® 0y
and thus to write f as the sum deG fug, with coefficients f; € L?(X, ).

This is consistent with the above identification of a = 3~ . aguy € A[G]
with 3° g ag®d, € L?*(X, ) ® 2(G). Then we have

(Z ag“g) ( Z fg“g) = Z(a * f)gtg

geG geqG geqG

where a x f is defined as in Equation (1.4)
Similarly, A[G] acts on H by right convolution:

R(aug)(fun) = (fun)(aug) = fon(a)upg,

( Z fg“g) ( Z agug) = Z(f *Q)gUg.
geqG geG geG
We denote by R(A,G) the von Neumann subalgebra of B(H) generated by
this right action R. Obviously, L(A, G) and R(A, G) commute. The vector
ue = 1® 3. € H is cyclic for L(A,G) and R(A,G) and therefore is also
separating for these two algebras. In particular, the elements of L(A,G)
may be identified to elements of L?(X, u) ® ¢*(G) by x — zu, and thus are

and thus
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written (in compatibility with (1.3)) as

x = ngug, (1.5)

geG

with >0 ¢ ||$g||%2(x) < 400. Observe that A appears as a von Neumann

subalgebra of L(A,G).
Let 7 be the linear functional on L(A, G) defined by

7(x) = (Ue, Tue) = / redp, for x= wgu,.
X geG

Using the invariance of the probability measure p, it is easily seen that 7 is
a tracial state. We also remark that 7 is faithful, with

T(z*z) = Z/X 24| dp

geG

Following the lines of the proof of Theorem 1.3.6 (which corresponds to
the case A = C), one shows that L(A, G) is the subspace of f = deG fqug €
H = L*(X,u) ® £2(G) which are left convolvers in the sense that there
exists ¢ > 0 with ||f xk||;, < c[|k[l5, for every finitely supported k € H."?
In particular, for every g € G, we have f; € L>®(X,pn) C L*(X,pu) with
1£4ll., < c. One also gets L(A,G) = R(A,G)" and R(A,G) = L(A,G)'.

Thus, the coefficients z, in (1.5) belong in fact to L*(X,u). They
are called the Fourier coefficients of x . The uy’s are called the canonical
unitaries of the crossed product. Again, we warn the reader that the
convergence of the series in (1.5) does not occur in general with respect to
the s.o. topology.

We now introduce conditions on the action, under which A x G turns
out to be a factor, and so a type II; factor.

DEFINITION 1.4.2. A p.m.p. action G ~ (X, p) is (essentially) free if
every g € G, g # e, acts (essentially) freely, i.e., the set {w € X : gw = w}
has p-measure 0.

The action is said to be ergodic if every Borel subset E of X such that
w(gE \ E) = 0 for every g # e is either a null set or a conull set.

We give equivalent formulations, which in particular will allow us later
to extend these notions to group actions on any von Neumann algebra (see
Definition 5.2.2).

LEMMA 1.4.3. Let G ~ (X, ) be a p.m.p. action. The following condi-
tions are equivalent:

(i) the action is ergodic;

(ii) (resp. (ii")) the only functions f € L>(X,p) (resp. f € L*(X,pu))
that are fized under the G-action (i.e., o4(f) = f for every g € G)
are the constant (a.e.) functions;

12566 Chapter 7, Section 7.1 for a general study of this property.
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(iii) the only measurable functions f : X — C that are fized under the
G-action are the constant (a.e.) functions.

PROOF. We only prove that (i) = (iii), from which the whole lemma
follows immediately. Let f : X — R be a measurable G-invariant function.
For every 7 € R, the set E, = {we€ X : f(w) <r} is invariant, so has
measure 0 or 1. Set a = sup {r : u(E,) = 0}. Then for r; < a < ry, we have
w(Ey,) =0 and pu(E,,) = 1. It follows that f = «a (a.e.). O

For the next two results, we will assume that the Borel space underlying
(X, p) is a countably separated Borel space. This means the existence of a
sequence (F,) of Borel subsets such that for w; # wy € X there is some E,
with wy € E, and we ¢ E,,.

LEMMA 1.4.4. Let (X, u) be a probability measure space, g € Aut (X, u)
and o4 the corresponding automorphism of L>°(X, ). The following condi-
tions are equivalent:

(i) g acts freely;
(ii) for every Borel subset Y with u(Y') > 0, there exists a Borel subset
Z of Y with u(Z) >0 and ZNgZ = ;
(iii) if a € L™(X, p) is such that acg(x) = xa for every x € L=(X, p),
then a = 0.

PRrROOF. (i) = (ii). Let (E,) be a separating family of Borel subsets
as above. Assume that (i) holds and let Y be such that u(Y) > 0. Since
Y=U X N(E,\g 'E,)) (up to null sets) there exists ng such that

p(Y N (Eng \g_lEno)) #0
and we take Z =Y N (Epy \ ¢ 1 Eny) -

(ii) = (iii). Let a € L*®(X,u) such that aoy(x) = za for every x €
L>(X,p). If a # 0, there exists a Borel subset Y of X with u(Y) > 0 such
that, for every z € L*®(X,u), we have x(g~'w) = z(w) for almost every
w €Y. Taking x = 1z with Z as in (ii) leads to a contradiction.

Finally, the easy proof of (iii) = (i) is left to the reader. O

PROPOSITION 1.4.5. Let G ~ (X, u) be a p.m.p. action and set A =
L>(X, ).
(i) AN (A xG) = A if and only if the action is free.
(ii) Assume that the action is free. Then A x G is a factor (and thus
a type 11y factor) if and only if the action is ergodic.

PRrROOF. Recall that A is naturally embedded into A X G by a — aue.
Let . =) . xgug € A x G. Then for a € A we have

ang axrgug, and xa:E zg0q4(a)ug.
geqG geG

It follows that x belongs to A’ N (A x G) if and only if azy = z404(a) for
every g € G and a € A. Assertion (i) is then immediate.

geG
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To prove (ii), we remark that = belongs to the center of A x G if and
only if it commutes with A and with the uy4, g € G. Assuming the freeness
of the action, we know that the center of A x G is contained in A. Moreover,
an element a € A commutes with ug if and only if o4(a) = a. Hence, the
only elements of A commuting with u, for every g are the scalar operators
if and only if the action is ergodic. This concludes the proof O

1.4.3. Examples. Examples of such free and ergodic p.m.p. actions
are plentiful. We mention below the most basic ones.

First, let G be a countable dense subgroup of a compact group X. De-
note by p the Haar probability measure on X. The left action of G onto X
by left multiplication is of course measure preserving. It is obviously free.
It is ergodic since any function in L?(X) which is G-invariant is invariant
under the action of the whole group X (using the density of G) and therefore
is constant.

The simplest such example is X = T and G = exp(i2nZa) with «
irrational. For another nice example, consider X = (Z/(2Z))Y, the group
operation being the coordinate-wise addition, and take for G the subgroup
of sequences having only finitely many non-zero coordinates. fE

Second, let G be any countable group, (Y, v) a probability measure space
and X = Y©, equipped with the product measure p = v®¢. We assume
that v does not concentrate on a single point.

PROPOSITION 1.4.6. The Bernoulli action G ~ X is free and ergodic.

PrROOF. We begin by showing that the action is free. Let g # e and
choose an infinite subset I of G such that gI NI = (). Then we have

p({z: gz =a}) < p({z : 241y = xp,Vh € I})

= H,u({x txyo1y, =xp}) =0,
hel
since the (v x v)-measure of the diagonal of Y x Y is strictly smaller than
1.

We now prove a stronger property than ergodicity, that is the mizing
property: for any Borel subsets A, B we have limg_,o u(ANgB) = p(A)u(B).
Using basic arguments appealing to monotone classes, it suffices to prove this
property when A, B are both of the form ngG E, where E, =Y for all

except finitely many g. But then, obviously there is a finite subset ¥ C G
such that u(ANgB) = u(A)u(B) for g ¢ F. O

REMARK 1.4.7. It is also interesting to deal with generalized Bernoull:
actions. We let G act on a countable set I and we set X = Y/, endowed
with the product measure p = v®!. This gives rise to the following p.m.p.
action on (X, u), called a generalized Bernoulli action:

Ve € X,Vg € G, (g7); =14,

Ergodicity and freeness of these actions are studied in Exercise 1.12.
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As a last example of a free and ergodic action, let us mention the natural
action of SL(n,Z) on (T™, m) where m is the Lebesgue probability measure
on T" (see Exercise 1.13).

1.5. Von Neumann algebras from equivalence relations

We now present a construction which allows to obtain factors from not
necessarily free group actions.

1.5.1. Countable p.m.p. equivalence relations.

DEFINITION 1.5.1. A countable or discrete equivalence relation is an equi-
valence relation R C X x X on a standard Borel space X, which is a Borel
subset of X x X and whose equivalence classes are finite or countable.

Let G ~ X be an action of a countable group G by Borel automorphisms
of the Borel standard space X. The corresponding orbit equivalence relation
is

Re~x ={(z,g92) 1z € X, g € G}.
It is an example of a countable equivalence relation, and is in fact the most
general one (see Exercise 1.15).

Coming back to the general case of Definition 1.5.1, a partial isomor-
phism ¢ : A — B between two Borel subsets of X is a Borel isomorphism
from A onto B. We denote by [[R]] the set of such ¢ whose graph is con-
tained into R, i.e., (z,p(z)) € R for every x € A. The domain A of ¢ is
written D(y) and its range B is written R(y). This family of partial iso-
morphisms is stable by the natural notions of composition and inverse. It is
called the (full) pseudogroup of the equivalence relation. The pseudogroup
[[Ra~x]] is described in Exercise 1.17.

Given a probability measure p on X, one defines a o-finite measure v
on R by

v(C) = /X C* | dp(x)

where |C?| denotes the cardinality of the set C* = {(z,y) € C : yRx}. Sim-
ilarly, we may define the measure C' +— [ |Cy|dp(x) where |C,| denotes the
cardinal of the set C, = {(y,z) € C : yRx}. When these two measures are
the same, we say that R preserves the probability measure p. In this case, we
say that R is a countable probability measure preserving (p.m.p.) equivalence
relation on (X, p). We will implicitly endow R with the measure v.

LEMMA 1.5.2. Let R be a countable equivalence relation on a probability
measure space (X, ). The two following conditions are equivalent:
(i) R preserves the measure fi;
(ii) for every v : A — B in [[R]], we have @.«(pja) = p5-
Whenever an action G ~ X is given and R = Rg~Xx, these conditions are
also equivalent to
(i) G ~ X preserves pu.
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PROOF. Obviously (i) implies (ii). Conversely, assume that (ii) holds.
Let E be a Borel subset of R. Since the two projections from R onto X
are countable to one, there exists a Borel countable partition £ = UE,, such
that both projections are Borel isomorphisms from FE,, onto their respective
ranges, as a consequence of a theorem of Lusin-Novikov (see B.5 in the
appendix). Each E, is the graph of an element of [[R]], and the conclusion
(i) follows.

When R is defined by G ~ X, it suffices to observe that for every
¢ : A — Bin [[R]], there exists a partition A = Uyeq Ay such that p(x) = gx
for x € A,. O

1.5.2. The von Neumann algebras of a countable p.m.p. equi-
valence relation. To any countable equivalence relation R on X, we as-
sociate an involutive algebra M;(R), generalizing matrix algebras which
correspond to trivial equivalence relations on finite sets, where all the el-
ements are equivalent. By definition, My(R) is the set of bounded Borel
functions F' : R — C such that there exists a constant C' > 0 with, for every
z,y € X,

Hze X:F(z,y) #0}| <C, and |{z€ X:F(z,2)#0} <C.

It is easy to see that My(R) is an involutive algebra, when the product and
the involution are given respectively by the expressions

(Fux Fo)(@,y) = D Fi(w, 2)Fa(z,y),
ZRx

F(z,y) = F(y,2).

Viewing the elements of My(R) as matrices, these operations are respectively
the matricial product and adjoint. Note also that M;(R) contains the al-
gebra By(X) of bounded Borel functions on X: one identifies f € By(X) to
the diagonal function (z,y) — f(x)1a(x,y) where 14 is the characteristic
function of the diagonal A C R. The algebra M;(R) also contains the full
pseudo-group [[R]] when the element ¢ : A — B of [[R]] is identified with
the characteristic function S, of the set {(p(x),z) : x € A}.
Every finite sum!3

F(.l‘,y) = Zf¢($)5¢($,y), (1'6)

where ¢ € [[R]] and f, : R(p) — C is a bounded Borel function, belongs to
My(R). Using again the Lusin-Novikov theorem B.5, it can be shown that
My(R) is exactly the space of such functions (see Exercise 1.14).

Assume in addition that R preserves the probability measure pu. We
define a representation L of M,(R) in L?(R,v) by the expression

Le()(a,y) = (F+&)(a,y) = 3 Flz,2)¢(2.y),
zZRzx

Banalogous to the expression (1.3)
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for F € My(R) and &€ € L?(R,v). We leave it to the reader to check that
F + Lp is a *-homomorphism from the *-algebra My(R) into B(L?(R,v)).
Moreover the restriction of L to By(X) induces an injective representation
of L>°(X, p), defined by

(Ls&)(x,y) = f(2)(2,y)

for f € L®(X,u) and ¢ € L?(R,v). Note also that for ¢,v € [[R]], we
have Lg, * Lg, = Lg,,, and (LSW)* = LS¢_1- It follows that the element
u, = Lg, is a partial isometry: ugu, and u,ug are the projections in
L>®(X, u) C B(L}(R,v)) corresponding to the multiplication by the charac-
teristic functions of the domain D(y) of ¢ and of its range R(¢p) respectively.
We have (uyé)(z,y) = (1 (z),y) if © € R(p) and (up€)(z,y) = 0 other-
wise.

The von Neumann algebra of the countable p.m.p. equivalence relation R
is the s.o. closure L(R) of {Lr : F € My(R)} in B(L?(R,v)). Observe that
L>(X, p) is naturally embedded as a von Neumann subalgebra of L(R).
From the expression (1.6) we see that L(R) is the von Neumann algebra
generated by the partial isometries u, where ¢ ranges over [[R]].

Similarly, we may let M;(R) act on the right by

Rp(€)(,y) = (£ F)(z,y) = Y &(@,2)F(2,y).
ZzRx
We denote by R(R) the von Neumann algebra generated by these operators
Rp with F € My(R). We may proceed as in Sections 1.3 and 1.4 to prove
the following facts:

e 1, is a cyclic and separating vector for L(R). In particular, T
T1, identifies L(R) with a subspace of L?(R,v). Note that Lrpla =
F for F € My(R).
o 7(Lp) = (1a,Lrla) = [y F(x,x)du(z) defines a faithful w.o. con-
tinuous tracial state on L(R).
We might prove, as we did for group von Neumann algebras, that L(R)" =
R(R) and that the elements of L(R) (resp. R(R)), viewed as functions, are
the left (resp. right) convolvers for R (see Section 7.1 for another proof).

DEFINITION 1.5.3. Let R be a countable p.m.p. equivalence relation and
let A be a Borel subset of X. We denote by [AJr = p1(p; 1 (A)) = pa(p7*(A))
the R-saturation of A, where p1,po are the left and right projections from
R onto X. We say that A is invariant (or saturated) if [A]g = A (up to null
sets). The relation (R, u) is called ergodic if any invariant Borel subset is
either null or co-null.

REMARK 1.5.4. The Borel set A is invariant if and only if 1 4op; = 1 40p9
v-a.e. More generally, a Borel function f on X is said to be invariant if
fop1 = fops v-a.e. The equivalence relation is ergodic if and only if the
only invariant bounded Borel functions are the constant (up to null sets)
ones.
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PROPOSITION 1.5.5. Let R be a countable p.m.p. equivalence relation on
(X, ).
(i) L>®(X,pn) N L(R) = L™®(X,u), that is, L>®(X,u) is a mazimal
abelian subalgebra of L(R).
(ii) The center of L(R) is the algebra of invariant functions in L (X, u).
In particular, L(R) is a factor if and only if the equivalence relation
1$ ergodic.

PROOF. (i) Let T € L(R) N L*>®(X,u). We set F = T1a € L*(R,v).
For every f € L*™°(X, 1) we have

LiTIA =TLfIA =T(A * f),

where (€ * f)(x,y) = &(z,y)f(y) for € € L?(R,v). Moreover, T commutes
with the right convolution & — & x f by f, whence LyF = F x f, that
is f(z)F(xz,y) = F(z,y)f(y) v-a.e. It follows that F' is supported by the
diagonal A, and belongs to L*°(X, ) since T' is bounded.

(ii) f € L*>(X, p) belongs to the center of L(R) if and only if

flz)F(x,y) = F(x,y)f(y), v-ae.,
for every F' € My(R), therefore if and only if f op = fopy v-a.e. O

In particular, the von Neumann algebra of an ergodic countable p.m.p.
equivalence relation on a Lebesgue probability measure space (X, u) (i-e.,
without atoms) is a type II; factor.

REMARK 1.5.6. When G ~ (X, p) is a free p.m.p. action and R =
Rc~x, the von Neumann algebras L(R) and L*(X, ) x G coincide. In-
deed, the map ¢ : (z,g) — (x, g~ 2) induces a unitary operator V : £ = £o¢
from L?(R,v) onto L?(X x G,u® \) = L*(X,pn) ® £2(G), where X is the
counting measure on G. This holds true because the action is free, and
therefore ¢ is an isomorphism from (X x G, ® A) onto (R,v). We im-
mediately see that V*(L>(X,u) x G)V C L(R). In fact L*>(X, u) is iden-
tically preserved, and we have V*u,V = Lg, where S, is the characteris-
tic function of {(gz,z) :x € X} C R. Similarly, we see that the commu-
tant of L>°(X, ) x G is sent into the commutant R(R) of L(R), whence
V*(L>®(X,p) x G)V = L(R) thanks to the von Neumann bicommutant
theorem.

1.5.3. Isomorphisms of p.m.p. equivalence relations.

DEFINITION 1.5.7. We say that two countable p.m.p. equivalence rela-
tions R1 and Ro on (X1, pu1) and (Xo, pe) respectively are isomorphic (and
we write R1 ~ Rq) if there exists an isomorphism 6 : (X1, p1) — (Xa, pu2) (of
probability measure spaces, i.e., 0,11 = p2) such that (0 x 0)(R1) = Re, up
to null sets, that is, after restriction to conull subsets we have z ~%, y if and
only if 6(z) ~g, 6(y). Such a 6 is said to induce or implement the isomor-
phism between the equivalence relations. If this holds when Ri = R, and
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R2 = Rq, we say that the actions G; ~ (X1, 1) and Ga ~ (Xa, u2) are
orbit equivalent. This means that for a.e. z € X, we have 0(G1x) = G26(z).

Let 0 : (X1, p1) — (X2, u2) as above. Then U : £ — £o(0x0) is a unitary
operator from L?(Rz,vs) onto L*(R1,11) such that UL(R2)U* = L(R1).
Moreover, this spatial isomorphism sends L (Xa, 12) onto L> (X1, u1). More
precisely, for f € L*(Xa, 12), we have UL fU* = Lyo9. We also observe that
this isomorphism preserves the canonical traces on L(R;) and L(R2).

We deduce from Remark 1.5.6 that when G7 ~ (Xi,u1) and Go ~
(Xo,u2) are free p.m.p. actions which are orbit equivalent through 6 :
(X1, 1) — (X2, p2), the isomorphism f — f o6 from L>(Xy,us) onto
L>(X1, u1) extends to a spatial isomorphism from the crossed product von
Neumann algebra L*°(Xa, us) X G2 onto L*(X1,u1) x G1. We will study
the converse in Chapter 12 (Corollary 12.2.6).

1.6. Infinite tensor product of matrix algebras

In this section, we describe a way to construct type II; factors, starting
from increasing sequences of matrix algebras.
For any integer n, we embed the matrix algebra M, (C) into Ma,(C) by

HxO
T A

We consider the sequence of inclusions
M5(C) < My2(C) < -+ Mok (C) — - --

and we set M = Up>1Man(C). Since the inclusions are isometric, we have
a natural norm on M: if x € M, we let ||z|| be ||z ,, ), where n is any
integer such that © € Man(C). There is also a natural trace defined by
7(xz) = T (), where again n is such that € Man(C) and 7, is the (unique)
tracial state on Man(C). Obviously, we have 7(z*x) > 0 for every x € M,
and 7(z*r) = 0 if and only if z = 0. We denote by #H the completion
of M equipped with the inner product (z,y) = 7(z*y) and by ||| the
corresponding norm. An element x of M, when viewed as a vector in H,
will be written z. For z,y € M, we set

m(x)j = Ty.

Then, we have (for some n),

In(@)g]1 = T(y*a*zy) = T(y**zy) < |z|Praly*y) = ||*|I9]3.
Therefore, 7(x) extends to an element of B(#), still denoted by m(z). It is
easily checked that 7 : M — B(#) is an injective *-homomorphism and we
will write x for m(z). Let R be the s.o. closure of M into B(H).

This construction of R from (M, 7) is an example of the GNS construc-
tion that we will meet later.

For z € M, we observe that 7(z) = <i,xi>, and we extend 7 to R by
the same expression. Using the density of M into R we see that 7 is still a
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tracial state on R. We also note that this tracial state is continuous on R
equipped with the s.o. topology.
Similarly, we may define a *-antihomomorphism 7° : M — B(H) by:

Vo,y e M, n'(z)§ =y

Obviously, 7%(z) commutes with R. We deduce from this observation that
7 is a faithful state. Indeed, assume that x € R is such that 7(z*z) = 0,
that is 21 = 0. Then 29 = 27%(y)1 = 7°(y)(x1) = 0 for every y € M, which
implies that x = 0.

Finally, we show that R is a factor, thus a type II; factor. Let = be an
element of the center of R and let x; be a net in M which converges to x in
the s.o. topology. In particular, we have

lim Hzi - @HT = lim H:L’i - mliHT =0.
(2 7
Since 7 is a trace, we see that Huyu*iHT = HyiHT for every y € R and every

unitary element u € R. Therefore, if n is such that z; € Man(C) and if u is
in the group Uan (C) of unitary 2" x 2" matrices, we get

Hxi — u:L‘iu*iHT = Hu:vu*i — uzutl L= Hxi — @HT
Let A be the Haar probability measure on the compact group Usn (C). Since
fuw((c) ux;u* dA(u) commutes with every element of Usn (C), it belongs to

the center of Myn(C), and therefore is a scalar operator «;1. We have
HxifaliHT: Hxi/ uxzu*d)\(u)H < HxifleT
U(Man) T

It follows that lim; Hxi — O‘iiHT = 0, and therefore z is a scalar operator.
This factor R is called the hyperfinite type 11 factor. Since My (C) =
Mo (C)®k, we write R = My(C)®>°.

REMARK 1.6.1. This construction may be extended to any sequence of
inclusions

My, (C) = My, (C) < -+ My, (C) = -

where ny41 = ppng, and x € M, (C) is embedded into M, (C) by putting
diagonally pj, copies of z.14 Like L(S4), these factors are the s.o. closure
of an increasing union of finite dimensional von Neumann algebras (indeed
matrix algebras here). We will see in Chapter 11 that all these factors
are isomorphic to the above factor R and thus find the explanation for the

terminology “the” hyperfinite type II; factor.

MThis construction will be generalized in section 5.1.2.
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Comments. So far, we have now at hand various examples of type
II; factors. In the sequel, we will meet several constructions giving rise to
possibly new examples (see for instance Chapter 5).

We leave this chapter with many questions. A first one is, since we have
defined von Neumann algebras in a concrete way as operator algebras acting
on a given Hilbert space, what are the possible concrete representations for
a given von Neumann algebra? This will be studied in Chapter 8.

A much more important and challenging problem is the classification of
type II; factors, up to isomorphism. Those factors are so ubiquitous that
there is a serious need to detect whether they are isomorphic or not, hence
a serious need of invariants. Among the most useful invariants (up to iso-
morphism) for a type II; factor M, we will meet the fundamental group
F(M), the set Z(M) of indices of subfactors (see respectively Definitions
4.2.4 and 9.4.9) and the group Out (M) of outer automorphisms (see Sec-
tion 14.3.1). We will also introduce several invariant properties such as
amenability (Chapter 10), the Kazhdan property (T) (Chapter 14), and the
Haagerup property (H) (Chapter 16).

Exercises

EXERCISE 1.1. Let (en)neny be an orthonormal sequence in a Hilbert
space H. Let z,, be the operator sending ey onto e,, and such that z,,(§) =0
whenever ¢ is orthogonal to eg. Check that lim,, x,, = 0 with respect to the
w.0. topology but not with respect to the s.o. topology.

EXERCISE 1.2. Let H be a separable Hilbert space.

(a) Show that the unit ball (B(#)) , of B(H) is metrizable and compact
(hence second-countable) relative to the w.o. topology.

(b) Show that (B(H)), is metrizable and second-countable relative to
the s.o. topology, and complete for the corresponding uniform struc-
ture.

(c) When # is infinite dimensional, show that (B(#)),
relative to the operator norm topology (take H = L2([0,1]) for
instance).

is not separable

EXERCISE 1.3. Let H be a separable infinite dimensional Hilbert space
and let a be the isomorphism sending = € B(H) onto a(z) € B(HP>) with
a(z)((€n)n) = (@&n)n for every (&), € HP°. Show that a(B(H)) is a von
Neumann algebra on H¥>°, but that « is not continuous with respect to the
w.o. (or s.0.) topologies.'®

EXERCISE 1.4. Let H be a separable Hilbert space. Let & € N* and
let oy, be the isomorphism sending = € B(H) onto ax(x) € B(H) with
() ((€n)n) = (¥&)n for every (&,)n € HP®. Show that the von Neumann

1594 denotes the countable direct sum of copies of H and for k € N*, the direct
sum of k copies of H is denoted by HE",
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algebrasay, (B(H)) and g, (B(H)) are spatially isomorphic if and only if
k1 = ka.

EXERCISE 1.5. Let (X, pt) be a probability space and A = L*°(X, u). We
view A as a subspace L?(X, u) and as a von Neumann algebra on L?(X).
Show that on the unit ball (A); of the von Neumann algebra A, the s.o.
topology coincides with the topology defined by ||-||,. Show that ((A)1, ||-||5)
is a complete metric space.

EXERCISE 1.6. Let (M;, H;) be a family of von Neumann algebras. Given
(T;) with T; € M; and sup ||T;|| < 400, let T be the operator acting on
H = ®H; by T((&)) = (T'&). We denote by []; M; the set such operators
T. Show that [[, M; is a von Neumann subalgebra of B(H).

It is called the product of the von Neumann algebras M; or their direct
sum and also denoted Z? M; . Note that the projections 1,4, belong to the
center of the product.

EXERCISE 1.7. Let Soo = U2 1S, be the group of finite permutations of
N*. Let o € S, be a non-trivial permutation and let i be such that o (i) # i.
For j > n, denote by s; the transposition permuting 7 and j. Show that

{5]05 1y > n} is infinite.
EXERCISE 1.8. Show that the free group F,,,n > 2, is ICC.

EXERCISE 1.9. Let G ~ (X, ) be a p.m.p. action of a countable group
G and A = L>®(X, ). We keep the notation of Section 1.4.2. Let W be
the unitary operator of H = L?(X,u) ® (*(G) = (*(G, L*(X,p)) defined
by W(f)(g) = o4(f(9)) for f: g = f(g) € L*(X,p). For a € L™(X, p),
we define the operator m(a) on H by (7(a)f)(g) = o4-1(a)f(g). Show that
W(og@A)W* =1® )\, for g € G, and that W(a®1)W* = m(a). Therefore
A x G may be (and is often) alternatively defined as the von Neumann
subalgebra of B(#H) generated by (7(A) U1 ® A(Q)).

EXERCISE 1.10. Let G ~ (X, p) be a p.m.p. action of an ICC group G
and set A = L°>°(X, ). Show that the commutant of {u,: g€ G} in AxG
is the fixed-point algebra A®. Conclude that A x G is a type II; factor if
and only if the action is ergodic.

EXERCISE 1.11. Let G ~ (X, ) be a p.m.p. action and A = L*>(X, p).
Let z =3 c;ogug € AXGand § =) &ug € L3(X, 1) @ %(G). We set

x€ =3 eq(x€)gug € L*(X, p)®*(G). Show that (z€)g = > e hon(En-1y),
where the convergence holds in L'(X, i), and that

1 2 1/2
1@)gll ey < (2 NnllZag) 2 (D2 enlZay) 2.
heG heG

EXERCISE 1.12. Let G ~ (X, ) be a generalized Bernoulli action as
defined in Remark 1.4.7.
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(i) Show that this action is ergodic if and only if every orbit of the
action G ~ I is infinite.

(ii) Whenever v has atoms, show that this generalized Bernoulli action
G ~ (X, p) is free if and only if the action G ~ I is faithful, that
is, for every g # e there exists i € I with gi # 4. In case v has no
atom, show that the generalized Bernoulli action is free if and only
if for every g # e the set {i € I : gi # i} is infinite.

EXERCISE 1.13. Show that the canonical action of SL(n,Z) on (T",m)
is free and ergodic (Hint: to prove ergodicity, use the Fourier transform from
L?(T™,m) onto £2(Z")).

Observe that SL(n,Z) can be replaced by any subgroup with infinite
orbits on Z" (except the trivial one).

EXERCISE 1.14. Let R be a countable equivalence relation on X.
(i) Let C be a Borel subset of R with

sup |[C?| < 400, sup |Cy| < +o0.

zeX zeX
Show that there is a partition C' = | |C), into Borel subsets such
that the second projection ps is injective on each C), and p2(Cy,) D
p2(Cy) for m < n. Conclude that there are only finitely many such
non-empty subsets. Show that C' is the disjoint union of finitely
many Borel subsets such that both projections from X x X — X
are injective when restricted to them (use Theorem B.5).

(ii) Show that every F' € My(R) may be written as a finite sum
F(x7y) = Zf¢($)5@($,y), where 14 € [[R” and fip : R(SD) - (C
is a bounded Borel function.

EXERCISE 1.15. Let R be a countable equivalence relation on X.

(i) Show that there exists a partition R\ A = | | D,, into Borel subsets
such that both projections p1, po restricted to each D,, are injective
with py (Dn) ﬁp2(Dn) = 0.

(ii) Use this partition to construct a countable group of Borel isomor-
phisms of X such R = Rg~x (see [FM77a, Theorem 1)).

EXERCISE 1.16. Let R be a countable p.m.p. equivalence relation on
(X, ). We identify L(R) to a subspace of L?>(R,v) by sending T' € L(R)
onto Fr = T1A. Then we denote by Lp, the operator 7'

(i) Let F € L(R) and ¢ € L*(R,v). Show that

(Lrd)(z,y) = Y Flx,2)¢(z2,y) for a.e. (z,y) € R.
ii) Let Fy, Fy € L(R). Show that Lg, o Lp, = L 4, where
( ) 1 2 1 2

(Fy * Fy)(z,y) = ZFl(ZE, 2)Fy(z,y) a.e.
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(iii) Let F' € L(R). Show that (Lp)* = Lp+ where F*(z,y) = F(y, )
a.e.

(iv) Let F' € L(R). Show that F(x,y) < ||Lr| a.e.

EXERCISE 1.17. Let G ~ (X, ;) a p.m.p. action and let (Rg~x, i) be
the corresponding p.m.p. equivalence relation. Show that a Borel isomor-
phism ¢ between two Borel subsets A, B of X belongs to [[Rg~x]] if and
only if there exists a partition A = UgegAy of A into Borel subsets such
that p(x) = gz for a.e. x € A,.

Notes

The main part of this chapter is taken from the founding papers of Mur-
ray and von Neumann [MVN36, MvN37, vIN39, MvIN43|, where von
Neumann algebras were called rings of operators. They can also be ab-
stractly defined as C*-algebras that are duals of some Banach space!S. In-
deed, Dixmier [Dix53] proved that every von Neumann algebra is the dual
of a Banach space and Sakai has shown [Sak56] that if a unital C*-algebra
A is the dual of a Banach space F', there is an injective homomorphism 7
into some B(H) such that (7(A),H) is a von Neumann algebra. Moreover,
this predual F' is unique. It is called the predual of M (see [Tak02, Theo-
rem II1.3.5 and Corollary II1.3.9] for instance). For the case of tracial von
Neumann algebras, see Section 7.4.2.

The importance of factors as basic building blocks for general von Neu-
mann algebras was already recognized in the seminal paper [MVIN36| which
is a sequel of von Neumann’s article [vIN30]. In [M'VIN36]| the first exam-
ples of type II; factors were exhibited as crossed products. Soon after,
constructions of factors as infinite tensor products of matrix algebras were
investigated by von Neumann in [vIN39|. Later, group von Neumann al-
gebras were defined and studied in [MvIN43]. In this paper, among many
other outstanding results, it was shown that the hyperfinite factor R is the
unique hyperfinite separable type II; factor, up to isomorphism. This will
be made precise and proved in Chapter 11. In particular, Murray and von
Neumann discovered that R is isomorphic to L(Ss) but is not isomorphic
to L(Fg).

Automorphisms of crossed products associated with free ergodic p.m.p.
actions were first studied in the pioneering work of Singer [Sin55]. This
was followed by Dye’s deep analysis of the notion of orbit equivalence of
group actions, in connection with the associated crossed products [Dye59,
Dye63]. The von Neumann algebras of countable measured equivalence
relations are studied in detail in [FM77a, FMT77b]. Previously, Krieger
had led the way by showing how the freeness of a group action G ~ X
could be relaxed in order to get a factor [Kri70].

16T hys defined, they are often called W *-algebras.






CHAPTER 2

Fundamentals on von Neumann algebras

This chapter contains the most essential notions to start the study of
von Neumann algebras.

We first introduce two key results: the von Neumann bicommutant the-
orem and the Kaplansky density theorem.

Next, we point out that an immediate consequence of the spectral theory
is the abundance of projections in von Neumann algebras. We state some
useful facts to know about the geometry of projections.

We observe that the definition of von Neumann algebras as concretely
represented on Hilbert spaces, although easily accessible, has some draw-
backs. For instance, the w.o. and s.o. topologies are not intrinsic, and so
the notion of continuity for these topologies is not intrinsic either. To get
around this difficulty, we introduce the notion of normal positive linear map,
whose continuity is defined by using the order, and therefore is preserved
under isomorphism.

However, the situation is not so bad. On its unit ball, the w.o. and
s.o. topologies do not depend on the concrete representation of the von
Neumann algebra. A normal positive linear map is characterized by the fact
that its restriction to the unit ball is continuous with respect to either of
these topologies. In the last section we show that a tracial von Neumann
algebra has a natural representation, called the standard representation. We
will highlight later, in Chapter 8, its central role in the classification of the
representations of the algebra.

2.1. Von Neumann’s bicommutant theorem

We begin by showing that, although different for infinite dimensional
Hilbert spaces (see Exercise 1.1), the s.0. and w.o. topologies introduced in
the first chapter have the same continuous linear functionals. Recall that for
&,n in a Hilbert space H we denote by we , the linear functional x — (£, xn)
on B(H). We set we = we¢.

PROPOSITION 2.1.1. Letw be a linear functional on B(H). The following
conditions are equivalent:
(i) there exist &1,...,&n, M1, ..M € H such that w(z) = > | wy, ¢ (@)
for all z € B(H);
(ii) w is w.o. continuous;
(ili) w is s.0. continuous.

29
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PRrOOF. (i) = (ii) = (iii) is obvious. It remains to show that (iii) = (i).
Let w be a s.o. continuous linear functional. There exist vectors £1,...,&, €
H such that, for all x € B(H),

wia) < (Y Jlegil?)">.

=1
ntimes

e N—
Let HO" =H & --- & H be the Hilbert direct sum of n copies of H. We
set &€ = (&1,...,&) € HP" and for x € B(H),

0(x)€ = (z&1,...,x&,).

The linear functional ¢ : §(z){ — w(x) is continuous on the vector sub-
space O(B(H))¢ of H®™. Therefore it extends to a linear continuous func-
tional on the norm closure K of O(B(H)){. It follows that there exists
n=(m,...,nn) € K such that, for x € B(H),

w(x) = BO)E) = (0,0 )yan = 3 (). 0
=1

COROLLARY 2.1.2. The above proposition remains true when B(H) is
replaced by any von Neumann subalgebra M.

ProoOF. Immediate, since by the Hahn-Banach theorem, continuous w.o.
(resp. s.0.) linear functionals on M extend to linear functionals on B(H)
with the same continuity property. ([

In the sequel, the restrictions of the functionals we, and we = wee to

any von Neumann subalgebra of B(?) will be denoted by the same symbols.
Let us observe that every w.o. continuous linear functional is a linear

combination of at most four positive ones, as easily seen by polarization.

Recall that two locally convex topologies for which the continuous linear
functionals are the same have the same closed convex subsets. Therefore,
the s.0. and w.o. closures of any convex subset of B(#) coincide.

The following fundamental theorem shows that a von Neumann algebra
may also be defined by purely algebraic conditions.

THEOREM 2.1.3 (von Neumann’s bicommutant theorem). Let M
be a unital self-adjoint subalgebra of B(H). The following conditions are
equivalent:

(i) M =M";
(ii) M is weakly closed;

(iii) M is strongly closed.

PROOF. (i) = (ii) = (iii) is obvious. Let us show that (iii) = (i). Since
the inclusion M C M” is trivial, we only have to prove that every z € M”
belongs to the s.o. closure of M (which is M, by assumption (iii)). More
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precisely, given € > 0 and &1, ...,&, € H, we have to show the existence of
y € M such that

for 1<i<n, |z&—y&]| <e.

We consider first the case n = 1. Given { € H, we denote by [M¢] the
orthogonal projection from H onto the norm closure M¢ of M¢. Since this
vector space is invariant under M, the projection [M¢] is in the commutant
M’. Hence

x§ = w[MEJE = [ME]ag,
and so we have z& € M¢E. Therefore, given € > 0, there exists y € M such
that [|z§ — y¢l| <e.

We now reduce the general case to the case n = 1 thanks to the following
very useful and basic matrix trick. We identify the algebra B(H®™) with
the algebra M, (B(#)) of n by n matrices with entries in B(#). We denote
by 6 : B(H) — B(H®") the diagonal map

y -+ 0

y—=1: ;

0 - y
We set N = 0(M). Of course, N is s.o. closed. A straightforward compu-
tation shows that the commutant N’ of N is the algebra of n X n ma-
trices with entries in M’. It follows that for every x € M”, we have
O(x) € N”. We apply the first part of the proof to f(x) and N. Given

e>0and & = (£,...,&) € H®", we get an element 6(y) € N such that
16(2)E — 6)E] < &, that s, s — y&ill < for i = 1,....n. O

2.2. Bounded Borel functional calculus

In this section, we deduce some immediate applications of the bicommu-
tant theorem to the Borel functional calculus.

Let x € B(H) be a self-adjoint operator, and Sp(z) C [—|z|,||=|] its
spectrum . The continuous functional calculus defines an isometric isomor-
phism f +— f(z) from the C*-algebra C(Sp(z)) of complex-valued contin-
uous functions on Sp(z) onto the C*-subalgebra of B() generated by x
and 1 (see Appendix A.1). In particular, f(z) is the limit in norm of the
sequence (p,(x)), where (p,) is any sequence of polynomials converging to
f uniformly on Sp(z).

Let us recall briefly how this functional calculus extends to the x-algebra
By(Sp(x)) of bounded Borel functions on Sp(x). First, given &, € H, using
the Riesz-Markov theorem, we get a bounded, countably additive, complex-
valued measure ji¢ , on Sp(x) defined by

/ f ey = (€ F(@))

for every continuous function f on Sp(z). We say that pg, is the spectral
measure of x associated with £, 1. We set pe = ¢ ¢. The simple observation
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that, for a bounded Borel complex-valued function f on Sp(z), the map
&)= [f dpe  is a bounded sesquilinear functional implies, by the Riesz
lemma, the existence of a unique operator, denoted f(x), such that

/ fdpey = (€ f(@)n)

for every &,m € H. In particular, for every Borel subset 2 of Sp(z), if we
denote by 1q the characteristic function of €, then the operator E () =
1q(z) is a projection, called the spectral projection of x associated with €.
The map Q — E(Q) defined on the Borel subsets of Sp(z) is a projection-
valued measure called the spectral (projection-valued) measure of x. The
usual notation

f(z) = /S JwaE

is convenient. It is interpreted as

(&, F (@) = / £(t) A€, Bm)

Sp(x)

for every £, € H, the integral being the Stieltjes integral with respect to the
function ¢t — (£, Eyn), where E is the spectral projection of x corresponding
to ] — 0o,t]. ' Let us just remind the reader that the Borel functional
calculus f — f(x) is a *-homomorphism from By(Sp(x)) into B(H) with
| f(2)]] <|/flloo- The operator f(z) is self-adjoint whenever f is real-valued;
it is positive whenever f > 0. Moreover, if y € B(H) commutes with z, then
it commutes with f(x) for every f € By(Sp(z)). Therefore, the bicommutant
theorem implies the following result.

PROPOSITION 2.2.1. Let x be a self-adjoint element of a von Neumann
algebra (M, H). Then, for every bounded Borel function f on Sp(x), we
have f(x) € M. In particular, the spectral measure of x takes its values in
M.

The continuous and Borel functional calculi have several easy and im-
portant consequences. Let us introduce first some notation®. Given a von
Neumann algebra M,

My, is the subspace of its self-adjoint elements,

M is the cone of its positive elements,

U(M) is the group of its unitary operators,

P(M) is the set of its projections, that is of the self-adjoint idem-
potents.

We have recalled in Appendix A.2 that every element x € M may be
expressed as a linear combination of four positive elements. Moreover, it
follows from the continuous functional calculus that every x € M is the
linear combination of at most four unitary operators in M. Indeed, it suffices

IFor details on these facts we refer to [RS80, Chapter VII] or [Arv02, Chapter I1].
2We invite the reader to make explicit the sets introduced below when M = L*°(X, u).
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to consider the case of a self-adjoint element z with ||z|| < 1. Then 1 — 22

is a positive operator and an immediate computation shows that

w=x+i(l—z?)"?

is a unitary operator in M. Moreover, z = %(u + u*).

Proposition 2.2.1 implies that a von Neumann algebra has plenty of
projections.

COROLLARY 2.2.2. Let M be a von Neumann algebra. The linear span
of P(M) is dense in M equipped with the norm topology.

PROOF. It is enough to show that any self-adjoint element z of M
can be approximated by linear combinations of elements of P(M). Given
e > 0, let Sp(x) = U, be a finite partition of Sp(zx) by Borel sub-
sets, such that |t — s| < e for every s,t € Q; and 1 < i < n. We choose
an element t; in each ;. Then we have |z —> " | tE(Q)] < e since
SUP¢esp(z) |t - Z?:l tilQi (t)‘ <e.

We may even obtain a dyadic expansion of every positive element of M
in term of projections.

COROLLARY 2.2.3. Let x € M with 0 < x < 1. Then x can be written
as the sum of a norm-convergent series
+00 1
T = Z 27pn,
n=1

where the p, are projections in M.

PROOF. Observe that if p; is the spectral projection E([1/2,+o0[) of
we have
0<z—2"1p <1/2.
We perform the same construction with 2(x—27!p;) and we get a projection
po such that
0<z—2"1p —27%p, <272
By induction, we get the sequence (py,),>1 which satisfies, for all n,

n
0<z—Y 2Fp <2 O
k=1

The polar decomposition is another fundamental tool in operator theory.
Given x € B(H), recall that its absolute value is |z| = (z*z)'/2. There exists
a unique partial isometry® u such that « = u|z| and Ker u = Ker z = Ker |z|.
In particular, u*u is the smallest projection p € B(#) such that xp = x, that
is, the projection on (Ker )+ = Imz*.* We denote this projection by s, ().
It is called the right support of x. We have Imu = Im x and therefore uu*

3226., such that u*u, and thus uu™, are projections.

4As usual, Ker (z) and Im (x) denote the kernel and the image of @ respectively.
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is the smallest projection p € B(H) such that pxr = x. It is denoted by
si(z) and is called the left support of . Whenever x is self-adjoint, we set

s(z) = sp(z) = s1(x).

The factorization x = u|z| is called the polar decomposition of x.

PROPOSITION 2.2.4. Let x© be an element of a von Neumann algebra
(M, H).
(i) The left and right supports of x belong to M.

(ii) Let x = ulz| be the polar decomposition of x. Then u and |x| belong
to M.

ProOOF. (i) To prove that s.(z) € M, we check that s,(z) commutes
with every unitary element v of the commutant M’. Since vz = xv, for every
projection p € B(H) satisfying zp = = we have zvpv* = z and therefore
sr(z) < vsp(z)v*. Replacing v by v*, we get s,(z) = vs,(x)v*. The proof
for s;(x) is similar. We may also remark that s;(z) = s, (z*).

(i) We prove that u commutes with every unitary element v of the
commutant M’. We have x = vav* = (vuv*)|z|. Since Kervuv* = Kerz,

we get u = vuv* by uniqueness of the polar decomposition. O

2.3. The Kaplansky density theorem

The following theorem is an important technical result which allows
approximations by bounded sequences.

THEOREM 2.3.1 (Kaplansky density theorem). Let A be a x-subalgebra
of B(H) and M its w.o. closure. The unit ball (A)1 of A (resp. the unit ball
of the self-adjoint part Asq of A) is s.o. dense in the unit ball (M), of M
(resp. the unit ball of Ms.,).

ProoF. Obviously, we may assume that A is norm-closed. Using Propo-
sition 2.1.1, we remark first that M is also the s.o. closure of the convex set
A. Moreover, since the map = +— %(x + z*) is w.o. continuous, M;, is the
w.o. closure of Ag,, and so its s.o. closure, still by convexity.

The continuous function f : ¢t € R — littQ € [-1,1] is a bijection onto
[—1,1] when restricted to [—1,1]. We set g = (fl[_l,u)_l‘

We first consider the case of a self-adjoint element z € M with ||z| < 1,
and put y = g(x) € Ms,. Let (y;) be a net in A, such lim;y; = y in
the s.o. topology. Since f(y;) is in the unit ball of A, ,, it suffices to show
that lim; f(y;) = f(y) =  in the s.o0. topology to conclude that part of the
theorem. So, let us prove that f is a s.0. continuous function. We have

i) = fly) =201 +y2) ' —2y(1+ )"
=201+ )7 (s + %) - L+ 32y) (1 + )
=204+4) M wi— )+ ) 200+ ) il — vy + )7
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Since ||(1+ )7 <1 and |[(1+ y?) " wil| <1, we get

ICF(ws) = F@)EN < 2)|(yi — )X+ )]+ 2| (y — wa)y(1 + y*) ¢,

for every vector £ € H. This shows our assertion.
The general case is reduced to the self-adjoint one by using once again
a matrix trick. We consider the inclusions®

My(A) € Ma(M) C My(B(H)) = B(H®?)

and we observe that the s.o. convergence in My(B(H)) is the same as the
s.0. entry-wise convergence. So Mj3(A) is s.o. dense into My(M). Take
x € M with [|z|| <1 and put

~ (0 =
xiaz*O'

Then 7 is a self-adjoint element of Ma(M) with ||Z|| < 1. By the first part of
the proof, there exists a net (y;) in the unit ball of Ms(A)s,, which converges
to Z in the s.o. topology. Writing

o (ai b
Yi = ¢ di)’

we have ||b;]] < 1 and lim; b; = x in the s.o. topology. This concludes the
proof. ([l

As a first application of this theorem we have:

COROLLARY 2.3.2. Let M be a x-subalgebra of B(H), with 1dy € M.
Then M is a von Neumann algebra if and only if its unit ball is compact (or
equivalently closed) in the w.o. topology.

Proor. If M is a von Neumann algebra, its unit ball is w.o. compact,
being the intersection of the w.o. closed set M with the w.o. compact unit
ball of B(H).

Conversely, assume that the unit ball of M is w.o. closed. Let x be an
element of the w.o. closure of M. We may assume that ||z| < 1, and by
the Kaplansky density theorem, there is a net (x;) in the unit ball of M
converging to x in the w.o. topology. Therefore, we have x € M. O

2.4. Geometry of projections in a von Neumann algebra

Let #H be a Hilbert space. The set P(B(H)) of its orthogonal projections
is equipped with the partial order induced by the partial order on the space
B(H)s.q of self-adjoint operators: for p,q € P(B(H)), we have p < ¢ if and
only if (€, p€) < (£,4€) (or equivalently [|pé]| < [lg€]) for every € € H. We
remark that this is also equivalent to the inclusion p(H) C ¢(H). Given a
set {p; : i € I} of projections, there is a smallest projection p such p > p; for
all i € I. We denote it by \/, p; (or sup,; p;). It is the orthogonal projection

S5For every von Neumann algebra A, M, (A) denotes the von Neumann algebra of
n X n matrices with entries in A.
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on the norm closure of the linear span of | J;.; p;(#H). There is also a greatest
projection p with p < p; for all i. We denote it by A, p; (or inf;p;). It is
the orthogonal projection on (), p;H. Thus P(B(H)) is a complete lattice.
This fact is true in any von Neumann algebra M. For the proof, we need
the following proposition which connects the order and the s.o. topology on
the real vector space Mg 4, partially ordered by its cone M, .

THEOREM 2.4.1. Let M be a von Neumann algebra on a Hilbert space
H. Let (x;)ics be a bounded increasing net of self-adjoint elements in M,
i.e., sup; ||zi|| = ¢ < +o00 and x; < x; whenever i < j. Then (x;) converges
in the s.o. topology to some x € M. Moreover, x is the least upper bound of
{z; i € I} in the partially ordered space B(H)s.q-

PRrROOF. Using the polarization of the sesquilinear functional (£,7n) —
(€, z;m), we see that the net ((£, z;m));er converges for every £, € H. We set
b(&,n) = lim; (&, 2;m). Obviously, b is a bounded sesquilinear functional on
7, and by the Riesz theorem there exists « € B(H) such that b(§,n) = (€, xn)
for every &, € H. It is straightforward to check that x is self-adjoint with
|z|| < ¢ and z; < @ for every i € I. Since 0 < (z — ;)% < 2¢(x — z;) and
since lim; x; = x in the w.o. topology, we get that lim; x; = x in the s.o.
topology, as well.

Of course, x is in M. Now, if y is a self-adjoint element of B(H) with
y > x; for all i € I, we have (§,y&) > (£, x:€) and so (&, y&) > (&, &) for
every £ € ‘H. Hence, y > x. ([l

PROPOSITION 2.4.2. If {p; : i € I} is a set of projections in a von Neu-
mann algebra M, then \/, p; and N\, p; are in M.

PRrROOF. Weset pr = \/;c» p; for any finite subset F' of I. It is easily seen
that pr is the support of ), p;, that is, the smallest projection p € B(H)
with (3 ;cppi)p = X _icp Pi- Therefore pr € M by Proposition 2.2.4. Now,
(pr) where F ranges over the set of finite subsets of I is an increasing net
converging, by Theorem 2.4.1, to \/, p; in the s.o. topology, and therefore
Vz’ i € M.

To show the second assertion, we remark that

/\Pizl—\/(l—Pi)- g

When (p;)icr is a family of mutually orthogonal projections, \/, p; is
rather written ), ; p;. It is the s.o. limit of the increasing net (> . p pi)
where F' ranges over the finite subsets of I.

We introduce now a relation comparing the “sizes” of projections.

DEFINITION 2.4.3. Let p and ¢ be two projections in a von Neumann
algebra M. We say that p and g are equivalent and we write p ~ ¢ if there
exists a partial isometry v € M with v*u = p and uu™ = q. We write p = ¢
if there exists a partial isometry u € M with u*u = p and uwu* < g, i.e., p is
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equivalent to a projection p; € M with p; < q. If p = ¢ but p and ¢ are not
equivalent, we write p < q.

It is easy to see that ~ is indeed an equivalence relation and that the
relation 3 is transitive: p = g and ¢ = 7 implies p = r. It is also a
straightforward exercise to show that if {p; : ¢ € I} and {¢; : i € I} are two
sets of mutually orthogonal projections in M such that p; ~ g; for all ¢ € I,
then Y . ;pi ~ > ;c; ¢- Less obvious is the following.

THEOREM 2.4.4. Ifp 2 q and ¢ = p, then p ~ q.

PROOF. We have p ~ p’ < qgand q ~ ¢’ < p and therefore p’ is equivalent
to a projection e with e < ¢'; so p ~ e < ¢ < p with ¢ ~ ¢/. We claim that
p ~ ¢. Let u be a partial isometry in M such that u*u = p and uu* = e.
We set pa, = u"p(u*)"™ and pop1 = u™¢' (u*)™ and we observe that pg = p,
p1 = ¢, p2 = e and that up,u* = p,1o for n > 0, so that the sequence (p)
of projections is decreasing. We set f = A, pn. Then p is the sum

p=f+(po—p1)+(pP1—p2)+ (p2—p3) +(P3 —pa) +--- (2.1)

of mutually orthogonal projections, and similarly

¢ =f+@1—p2)+ (p2—p3)+ (p3—pa) + (pa—ps5) + -,

that we write rather as

¢ =f+2—p3)+ 1 —p2)+(pa—ps)+ (3 —pa)+---,  (22)
since we immediately see, under this form, that the mutually orthogonal

projections of the decompositions (2.1) of p and (2.2) of ¢’ are two by two
equivalent and so p ~ ¢’. O

PROPOSITION 2.4.5. Let p,q be two projections in M. Then we have
(PVa)—p~q—(pra).

Proor. Consider the operator (1 — p)g. The projection on its kernel is
(1 —¢q)+ (¢ Ap). Therefore the left support of ¢(1 — p), which is the right
support of (1 —p)g, is ¢ — (¢ A p). Similarly, the right support of ¢(1 — p)
is1—(p+(1-pA(1—-q)=1-(p+1-(pVaq)) = (Vg —p The
conclusion follows from the fact that the left and right supports of the same
operator are equivalent. [l

We denote by Z(M) the center of the von Neumann algebra M.

LEMMA 2.4.6. Let (M, H) be a von Neumann algebra.

(i) Let p € P(M). There exists a smallest projection z in the center
of M such that zp = p. We call it the central support of p and
denote it z(p). It is the orthogonal projection onto the closure of
span(MpH).

(ii) For p € P(M), we have z(p) = \/ yepy(ar) upu™

(i) If p,q € P(M) are such that p ~ q, then z(p) = z(q).
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PROOF. (i) By definition, z(p) is the infimum of the set of projections
z € Z(M) with zp = p. Since the closed linear span of Mp?H is invariant
under M and M’, the orthogonal projection onto it belongs to Z(M) and is
obviously majorized by z(p), so is z(p).

The other assertions are also very easy to establish and we leave their
proof to the reader. O

LEMMA 2.4.7. Let M be a von Neumann algebra and let p,q be two
projections in M. The following conditions are equivalent:
(i) z(p)z(q) # 0;
(ii) pMq # 0;
(iii) there exist non-zero projections p1 < p and q1 < q that are equiva-
lent.

PROOF. (i) = (ii). Suppose that pMq = 0. Then for every u,v € U(M)
we have upu*vqu* = 0 and so z(p)z(q) = 0 by the previous lemma.

(ii) = (iii). Let x € M such that pzq # 0. Then the right support ¢; of
pxq and its left support p; satisfy the conditions of (iii).

(iii) = (i). Let p1,q1 be as in (iii). Then we have z(p) > z(p1) = z(q1)
and z(q) > z(q1) and therefore z(p)z(q) # 0. O

The following theorem provides a useful tool which reduces the study of
pairs of projections to the case where they are comparable.

THEOREM 2.4.8 (Comparison theorem). Let p,q be two projections

in a von Neumann algebra M. Then there exists a projection z in the center
of M such that pz 3 gz and q(1 — z) I p(1 — 2).

PRrOOF. Using Zorn’s lemma, we see that there exists a maximal (rel-
ative to the inclusion order) family M = {(pi, ¢;) : ¢ € I} where (p;,q;) are
pairs of equivalent projections and the p; (resp. ¢;), i € I, are mutually
orthogonal and majorized by p (resp. by q). We have Y . ;pi ~ > ;c;qi-
We set po = p— > ,crpi and qo = ¢ — >, ¢i- We claim that poMgo = 0
and therefore z(pp)z(qo) = 0. Otherwise, taking = # 0 in poMqo, we have
si(z) ~ sp(z) with s;(z) < po and s,(z) < qo, which contradicts the maxi-
mality of M.

We put z = z(qp). We have

pz= (> _pi)z~ (D a)z<qz

el i€l
and
q(1—=2) qu )(1-2) N(Zpi)(l—z)gp(l—z),
iel el
that is pz = gz and ¢(1 — z) = p(1 — 2). O

We deduce the following important consequence.

COROLLARY 2.4.9. Let M be a factor and p,q be two projections in M.
Then, either p = q or ¢ X p.
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REMARK 2.4.10. Conversely, whenever any two projections are compa-
rable, then M is a factor. Indeed, a non-trivial projection z in the center of
M cannot be compared with 1 — z.

COROLLARY 2.4.11. Let M be a factor with a faithful tracial state® t
and let p,q be two projections in M. Then p 3 q if and only if T(p) < 7(q)
and therefore p ~ q if and only if T(p) = 7(q).

DEFINITION 2.4.12. A projection p in a von Neumann algebra M is said
to be minimal if p # 0 and if for every projection ¢ € M with 0 < g < p, we
have either ¢ = 0 or ¢ = p.

A von Neumann M is diffuse if it has no minimal projections.

Note that p is a minimal projection in M if and only if pMp = Cp.

Whenever M = L*°(X, p), its projections are the characteristic func-
tions of Borel subsets of X (up to null sets) and the minimal projections
correspond to atoms. In B(#) the minimal projections are exactly the rank
one projections.

The following proposition tells us that the type I factors are exactly
those having minimal projections.

By definition, a (system of) matriz units in M is a family of partial
isometries (e;;)ijer in M such that e;; = (e;;)* and e;jer; = 0 re;; for
every i,7,k,l. For instance the set of elementary matrices in B(¢?(I)) is a
matrix units.

PRrROPOSITION 2.4.13. A factor M has a minimal projection if and only
if it is isomorphic to B(K) for some Hilbert space K.

PROOF. Assume that M has a minimal projection. Corollary 2.4.9 im-
plies that the minimal projections in M are mutually equivalent and that
for any non-zero projection p € M there is a minimal projection ¢ < p.
Using Zorn’s lemma, we see that there exists a family (e;);c; of minimal
mutually orthogonal projections with ) ,.;e; = 1. We fix ig € I and for
i € I, let up; be a partial isometry with US,iUO,i = ¢; and UO,i“az‘ = €j,-
We put €;; = ug;uo,; and so €;; = e;. Then (es,5) is a matrix units with
Ei eii = 1y. For x € M, let z; ; € C be such that e;zej; = x; je;, and thus
eixe; = (e;xeji)e;j = xjje; ;. Then o — [z;;] is an isomorphism from M
onto B(¢3(I)). O

Since a diffuse von Neumann algebra is infinite dimensional, the next
corollary follows.

COROLLARY 2.4.14. A tracial factor is isomorphic to some matriz alge-
bra when it is non-diffuse and is a type 111 factor otherwise.

Let M be a von Neumann algebra and z be a projection in the center of
M. Then Mz is a two-sided w.o. closed ideal in M. We see below that all

6We will see in Corollary 6.4.2 that any tracial state on a factor is automatically
faithful.



40 2. FUNDAMENTALS ON VON NEUMANN ALGEBRAS

such ideals are of this form Mz. As a consequence, a factor only has trivial
two-sided w.o. closed ideals.

PROPOSITION 2.4.15 (Two-sided ideals). Let I be a two-sided ideal in
a von Neumann algebra M.
(i) I is self-adjoint.
(iii) Let x € I+ = I N My and t €]0,4+00[. The spectral projection e; of
x relative to [t,+oo] belongs to I.

(iii) Assume in addition that I is w.o. closed. Then there exists a unique
projection z € Z(M) such that [ = Mz.

PRrROOF. (i) Given = € I, we have |z| € I. Indeed, consider the polar
decomposition x = u|z|. Then |z| = u*z € I. It follows that z* = |z|u*
belongs to I; hence, the ideal I is self-adjoint.

(ii) Denote by f the bounded Borel function on the spectrum of x with
f(s) =0for s < tand f(s) = s ! for s >t Since sf(s) = 1j o0[(s) for
every s, the bounded Borel functional calculus results tell us that zf(z) = ¢
and so e; belongs to the set P(I) of projections in I.

(iii) The support of 2 € I, which is \/,. e, belongs to I when I is
w.0. closed. We set z = VpE'P(I) p. We have z € I, whence Mz C I. But 2
majorizes the left support of every « € I, and so I C Mz.

Finally, being a two-sided ideal, I = ulu*, and therefore z = uzu* for
every unitary operator u € M, so that z € Z(M). O

2.5. Continuity and order

As before, without further mention, M is a von Neumann algebra on
a Hilbert space H. Recall that a linear functional w on M is said to be
positive if w(My) C Ry. We introduce a notion of continuity for w which is
expressed in term of the order on the space of self-adjoint elements.

DEFINITION 2.5.1. Let w be a positive linear functional on M. We say
that

(i) w is normal if for every bounded increasing net (z;) of positive
elements in M, we have w(sup, z;) = sup, w(z;);

(ii) w is completely additive if for every family {p; : i € I} of mutually
orthogonal projections in M, we have w(}_, pi) = > w(pi).

Complete additivity is reminiscent of the analogous property for integrals
in measure theory.

REMARKS 2.5.2. (a) It is a straightforward exercise to show that when-
ever w is normal, every positive linear functional ¢ with ¢ < w is normal.

(b) Every w.o. continuous positive linear functional is normal (see The-
orem 2.4.1). However, there exist normal positive linear functionals which
are not w.o. continuous. For instance, assume that H is separable and in-
finite dimensional. Let (e,) be an orthonormal basis of H and set w(z) =
> o1 12 {€n, x€y) for € B(H). Then w is normal but not w.o. continuous.
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Otherwise, by Proposition 2.5.4 below there would exist 7y, ...,n € H with
w(x) = Zle (ni, xn;). If p denotes the orthogonal projection on the linear
span of {n; : 1 <i < k} then 1—p is a non-zero projection with w(1—p) = 0.
This is impossible, since w is a faithful linear functional on B(H).

(c) Recall that every w.o. continuous linear functional is a linear com-
bination of at most four positive w.o., and so normal, linear functionals.

We will provide in Theorem 2.5.5 several characterisations of normality.
Before then, we give the general form of a w.o. continuous positive linear
functional. For that, we need the following elementary Radon-Nikodym type
lemma.

LEMMA 2.5.3. Let w be a positive linear functional on M and & € H
such that w(x) < (&, 2€) for x € My. There exists ' € M such that
w(z) = ((2'),x(2'€)) for all x € M.

PRrOOF. The Cauchy-Schwarz inequality gives, for x,y € M,
w(z*y)|* < w(z*z)w(y'y) < ||z€]* lyéll*.

Therefore, we get a well-defined bounded sesquilinear form on M¢ by setting

(@€|y€) = w(z™y).
Hence, there exists a positive operator z on the Hilbert space M¢ such that
w(x*y) = (z€, zy§). For z,y,t € M, we have
(€, 2ty€) = w(a*ty) = w((E2)'y) = ('2E, 24€) = (€, t2ye),

so that tz = zt on Mé&. We denote by p the orthogonal projection onto M¢
and we let 2’ be the square root of the positive element zp in M’. Obviously,

w(x) = (& xzp€) = (¢'¢, xa’€)
for all z € M. O

PROPOSITION 2.5.4. Let w be a w.o. continuous positive linear functional
on M. Then there exist (i, ...,(n € H such that w = > | we,.

PROOF. By Proposition 2.1.1, w is of the form 7" ; wy, ¢. Thanks to
the classical trick by which we replace H by H®" and M by 0(M) where
0(x)(C1,---5Gn) = (21, ..., (), it suffices to consider the case w = wy ¢.
But since w is positive, we have, for y € M,

4(n,y&) = ((n+&),y(n+ &) — ((n—E&),y(n—£))
<{(n+8&),y(n+¢)).

The conclusion follows from Lemma 2.5.3. O

THEOREM 2.5.5. Let w be a positive linear functional on M. The fol-
lowing conditions are equivalent:
(1) w is normal;
(2) w is completely additive;
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(3) w is the limit in norm, in the dual M* of M, of a sequence of
w.o0. continuous positive linear functionals;

(4) the restriction of w to the unit ball of M is w.o. continuous;

(5) the restriction of w to the unit ball of M is s.o. continuous.

PrROOF. We show that (1) = (2) = (3) = (4) = (5) = (1). The only
non-immediate implication is (2) = (3).

Assume that w is completely additive. Let (p;)ier be a maximal family
of mutually orthogonal projections in M such that, for every ¢, there exists
& € piM with w(z) = (&, z&) on p;Mp;. Note that ||&| = w(p;)'/?. We put
g = >_pi. Lemma 2.5.6 below, applied to w restricted to (1 — ¢)M (1 — q),
shows that Y p; = 1. Thanks to the complete additivity of w, we have
> wpi) = w(l) < 400, and therefore the subset Iy of indices i for which
w(p;) # 0 is countable.

By the Cauchy-Schwarz inequality, we have, for x € M,

jw(zpi)| < w(1)!Pw(piaep)'? = w(1)/?||2&])- (2.3)
It follows that z¢; — w(xp;) is a well-defined and bounded linear functional
on M¢;. Hence, there exists n; € M¢; such that w(xzp;) = (n;, x&;) for x € M.

For every finite subset F' of Iy, we set qr = >, p; and denote by wr the
positive linear functional z +— w(grxqr) on M. We have, for x € M,

wr(z) = wlgeep) = (grmi, 1),
i€F ieF
Therefore, wr is w.o. continuous. Moreover, limp [|w — wp|| = 0, where the
limit is taken along the net of finite subsets of [y. Indeed,

w(@) = wr(@)| < |w(e) —wlagr)| + |war) - wgrzar)
< Jwla(l = ge))| + |w((1 - ar)aqr)]
< 2w(1)" (1 — gp)'"?,
so that [jw — wp|| < 2w(1)Y2w(1 = gp)'/2. But limpw(l — gr) = 0. O

LEMMA 2.5.6. Let ¢ be a completely additive positive linear functional
on M. There exist a non-zero projection p € M and £ € pH such that
p(x) = (&, x§) for every x € pMp.

PROOF. We choose a vector € H such that ¢(1) < (n,n). It suffices to
prove the existence of p such that p(x) < (n,zn) for € (pMp). Then the
conclusion will follow from Lemma 2.5.3. Let (p;) be a maximal family of
mutually orthogonal projections with ¢(p;) > (n, p;n) for all i. The complete
additivity of ¢ implies that

w(Zpi) > (1, (Zpi)m.

We put p = 1 — ) . p;. Observe that p # 0 since ¢(1) < (n,1). By the
maximality of (p;), we have ¢(q) < (n,qn) for every non-zero projection
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g < p. Using spectral theory, we approximate z € (pMp);, in norm, by
appropriate linear combinations of its spectral projections, with positive
coefficients, and we get ¢(x) < (n,zn), since ¢ is norm continuous. O

REMARK 2.5.7. With more effort”, we can get that the conditions of
Theorem 2.5.5 are also equivalent to the condition (3’) which is stronger

than (3):

(3) w=3", we, with 3, [[¢all® < +00 ;
Let us give a proof that (2) implies (3’) when w is a trace. We keep the
notation of the proof of (2) = (3) in Theorem 2.5.5. Using the equality
w(zp;) = wpizp;) we get |w(zp;)| < wp;)/?||z&|| instead of the inequality
(2.3) and so now we have ||n;|| < w(p;)*/2. We have

‘w(m) - Zw(xpi) 2 <w((1- Zpi)x*x(l - Zpi))w(l — Zpl)

1€l i€EF 1€l i€EF

< Jalfo)wd =) p)-

el

Passing to the limit, we get

LL)(.’E) = Z <n27$§l>7

icly

with Zielo ||m||2 < Zielo w(p;) = Ziefo ||§z||2 < 4o00. To conclude that
w = Y we, with Y||Gi[|* < +oo, we argue as in the proof of Proposition
2.5.4.

We say that a linear map ® from a von Neumann algebra (M, H) into a
von Neumann algebra (N, K) is positive if ®(My) C Ny. We say that such
a positive linear map is normal if for every bounded increasing net (x;) of
positive elements in M, we have ®(sup; z;) = sup; ®(x;).

PropPOSITION 2.5.8. Let ® : M — N be a positive linear map. The
following conditions are equivalent:

(1) @ is normal;

(2) wo @ is a normal positive linear functional on M for every such
functional w on N;

(3) the restriction of ® to the unit ball of M is continuous with respect
to the w.o. topologies.

Whenever ® is a homomorphism, the above conditions are also equivalent
to:

(4) the restriction of ® to the unit ball of M is continuous with respect
to the s.o. topologies.

Tsee [Dix81, Theorem 1, page 57]
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PROOF. (1) = (2) is obvious. Assume that (2) holds. To show that
the restriction of ® to the unit ball (M); is continuous with respect to the
w.o0. topologies, we have to check that z — w o ®(x) is w.o. continuous
on (M); for every w.o. continuous linear functional w on N. But we may
assume that w is positive. Then w o ® is a normal positive linear functional
and the assertion (3) follows from Theorem 2.5.5.

(3) = (1). We now assume the w.o. continuity of the restriction of ® to
the unit ball of M. Let (x;) be an increasing net of positive elements in the
unit ball of M. Its supremum =z is the w.o. limit of (z;) and therefore ®(z)
is the w.o. limit of (®(z;)). But then, ®(x) = sup; ®(z;), and therefore ¥ is
normal.

Assume now that ® is a homomorphism. If lim; x; = z strongly in
(M)y, then lim;(x — z;)*(z — z;) = 0 in the w.o. topology and so, if (3)
holds we have lim; ®((x — z;)*(x — x;)) = 0 in the w.o. topology. Since
O((x —x)"(x — x;)) = P(x — 23)"P(x — x;), we see that lim; P(x;) = P(x)
strongly. Therefore (3) implies (4). The proof of (4) = (1) is similar to that
of (3) = (1). O

Although an isomorphism between concretely represented von Neumann
algebras needs not be continuous with respect to the w.o. topologies, or
s.0. topologies (see Exercise 1.3), it has the following continuity property.

COROLLARY 2.5.9. FEvery isomorphism o : M — N is normal.

PRroOOF. Obviously, a preserves the positivity in M, and since it is an
isomorphism, we have a(sup,; x;) = sup; a(x;) for every bounded increasing
net (x;) of positive elements in M. O

REMARK 2.5.10. The w.o. topology on a von Neumann algebra depends
on the Hilbert space on which it acts (see Exercise 1.3). However, Corollary
2.5.9 implies that the w.o. topology on its unit ball is intrinsic. The same
observation applies to the s.o. topology.

PROPOSITION 2.5.11. Let w and v be positive linear functionals on von
Neumann algebras M and N respectively, and let ® : M — N be a positive
linear map such that ¢ o ® < w. We assume that w and ¢ are normal and
that ¢ is faithful. Then ® is normal.

ProOOF. We set ¢ = 1 o . Since ¢ < w, we see that ¢ is normal.
Now, let (z;) be a bounded increasing net of positive elements in M and put
y = ®(sup; ;). We have y > sup, (z;) and

sup () = p(sup x;) = ¢ o ®(sup ;)
= P (y) = (sup ©(z;)) = sup (P (z;)) = sup p(z;).
Since 1 is faithful, we deduce that y = sup; ®(z;). O

PROPOSITION 2.5.12. Let w: M — B(K) be a normal unital homomor-
phism. Then w(M) is a von Neumann algebra on K.
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PROOF. Let us show that (M) is w.o. closed. We first claim that the
kernel of 7 is a w.o. closed two-sided ideal of M. Indeed, let x be in the
w.0. closure of Ker7 with |z| < 1. By the Kaplansky density theorem,
there exists a net (z;) in the unit ball of Ker 7 that converges to x in the
w.0. topology. It follows that 7(z) = 0. Proposition 2.4.15 shows that Ker 7
is of the form Mz where z is a projection in Z(M). Now the restriction of
m to M (1 — 2) is an injective homomorphism, and so is an isometry. Since
the unit ball of M (1 — z) is w.o.compact, its image under 7, namely the
unit ball of w(M) is also w.o. compact and 7(M) is w.o. closed by Corollary
2.3.2. O

REMARK 2.5.13. Let the abelian von Neumann algebra L*(X, p) act
on L?(X,pu). Let w =", we,, with 3 [¢all3 < 400, be a positive normal
linear functional on L (X, i) (see Remark 2.5.7). Setting &€ = > [¢a|* €
LY (X, u)4, we see that

w(f) = /Xffdu = <§1/27f§1/2>

for every f € L>°(X, ). It follows that the positive normal linear functionals
on L*(X,pu) are w.o. continuous and that they are exactly the positive
o(L*(X, n), L' (X, p))-continuous linear functionals. We deduce from this
observation that a positive linear map ® : L*>°(X, u) — L>®(Y,v) is normal
if and only if it is continuous with respect to the weak* topologies defined
by the L'-L> duality.

2.6. GNS representations

Just as L>°(X, 1) has a natural representation on L?(X, i), we will see
that every tracial von Neumann algebra (M, 7) has a priviliged normal faith-
ful representation®, called the standard representation.

2.6.1. The GNS construction. Since a tracial von Neumann alge-
bra is given with a specific state, it is natural to study the corresponding
Gelfand-Naimark-Segal representation. We begin by recalling this construc-
tion.

Let M be a von Neumann algebra, or more generally a unital C*-algebra,
and let ¢ be a positive linear functional on M. We define a sesquilinear form
on M by

(z,y), = p(z"y).
Let N, = {x € M : p(z*x) = 0}. Using the Cauchy-Schwarz inequality, we
see that N, is the space of all z € M such that (z, y>(p =0 for every y € M,
and therefore it is a linear subspace of M. We define H,, as the completion
of the pre-Hilbert space M /N, with respect to the inner product

(2,9), = o(z"y),

8A homomorphism 7 : M — B(K) is also called a representation. We say that 7 is
faithful if it is injective.
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where & denotes the class of z in the quotient. We set ||z, = o(a*z)l/2,
For x,y € M, we put

—

W@(x)?] =Y.
We have

o ()35, = 79Il = ey e ay)
< llz*zlle(y™y) = |91
It follows that 7, () extends to an element of B(H,,), still denoted m, (). It

is easy to check that 7, is a homomorphism from M into B(#H,). Moreover,
if we put §, = 1, we have, for z € M,

p(z) = <f<p777@0($)5<ﬂ>@' (2.4)

We say that (7,, Hy, &) is the Gelfand-Naimark-Segal (GNS) representation
associated with ¢. Note that the vector &, is cyclic for m,(M).

If we start from a faithful state ¢, it follows from Equation (2.4) that
T, is an injective homomorphism and that £, is separating for 7, (M). In
this case we will identify M with m (M) and write z§ for m,(z)§. Also, we
identify z € M with z§, and view M as a dense subspace of H,. Sometimes,
we will write £ instead of x = x{, to emphasize the fact that z is seen as
an element of H,. If we start from M = L*°(X,u) and ¢ = 7, then m,
is the representation by multiplication on the Hilbert space L?(X,p). For
that reason, in general we write L2(M, ¢) for the Hilbert space H,, and ||-||,
instead of ||-|[,.

2.6.2. Normal GNS representations. Returning to the general case,
it is of course important for us to know when 7,(M) is a von Neumann
algebra on H,.

THEOREM 2.6.1. Let ¢ be a state on a von Neumann algebra M and let
Ty, Hoy &) be the GNS construction. The state ¢ is normal if and only if
@) Ty S
7, is normal. Moreover, in this case m,(M) is a von Neumann algebra on
He.

ProoF. Obviously, if 7, is normal, so is ¢ by Equation (2.4). Con-
versely, assume that ¢ is normal. Then for a,b € M, the map

T — (a@,,mp(:c)bﬁ@w = @(a*zb)
is w.o. continuous on the unit ball (M); of M, and thanks to the density of
Tp(M)&p in Hy, we see that x — (§, mp(x)n),, is w.o. continuous on (M),
for every £, € H,. So m, is normal. Proposition 2.5.12 tells us that in this
case m,(M) is a von Neumann algebra. O

DEFINITION 2.6.2. Let (M,7) be a tracial von Neumann algebra. Its
GNS representation on L2(M,7) is called the standard representation®.

IWe will see in Proposition 7.5.1, that this representation does not depend on the
choice of the trace.
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REMARK 2.6.3. For a detailed study of this representation, the reader
may go directly to Chapter 7. We only note here that for x,y € M we have
19Z |5 < |2l ]|Fll5s s that M acts also to the right on L*(M, 7) by §x = yz
(see Subsection 7.1.1). Obviously, &, is cyclic relative to this action. Since
this action commutes with the left one, we conclude that &, is separating
for (M) (in addition to being cyclic).

2.6.3. An abstract characterisation. We sometimes meet the situ-
ation where M is a unital C'*-algebra equipped with a faithful tracial state 7
and we want to know whether 7, (M) is a von Neumann algebra on L?(M, 1)
(see for instance Section 5.4). A useful answer is provided by the study of
the metric dp defined by the norm ||z||, = ||z&-||, on the unit ball (M); of
M. Note that since ||zg]|, < ||yl ||z&-||,, the topology induced on (M)1 by
the s.o. topology of B(L*(M,T)) is the same as the topology defined by the
metric da. This no longer holds on M (Exercise 2.13).

PROPOSITION 2.6.4. Let M be a unital C*-algebra equipped with a faith-
ful tracial state 7. Then M (identified with 7 (M)) is a von Neumann
algebra on L?(M,T) if and only if its unit ball (M)y is complete with respect
to the metric dy induced by the norm ||-||,. Moreover, T is normal when this
condition is satisfied.

PROOF. Assume first that M is s.o. closed in B(L?(M,7)). Let () be
a Cauchy sequence in ((M);,ds). Since

1209 = 2mdll - < Yllcollzn — mll

whenever y € M, we see that the sequence (z,7) is convergent in L?(M, 7).
Setting xg = lim,, z,,, we define an element z € B(L*(M, 7)) with [jz| < 1.
Obviously, (x,) converges to x in the s.o. topology, so € M. Of course,
we have lim, ||z, — x|, = 0.

Conversely, assume that (M )1, equipped with the metric dg, is complete.
Let N be the closure of M in the s.o. topology. We extend 7 to a normal
tracial state on N by setting 7(z) = (&, x&;) for every z € N. Due to the
inequality [|zg|, < ||yl ||z&-],, which is still valid for x € N and y € M,
we see that 7 is faithful on N. By the Kaplansky density theorem, (M) is
s.o. dense in the unit ball (N); of N. Since the s.o. topology coincides with
the ||-||, topology on (N)1, we see that (M); = (N);, whence M =N. O

2.6.4. Separable tracial von Neumann algebras.

DEFINITION 2.6.5. We say that a von Neumann algebra is countably
decomposable (or o-finite) if every family of mutually orthogonal non-zero
projections is at most countable.

Of course, every tracial von Neumann algebra is countably decompos-
able. We now introduce a stronger form of separability.

DEFINITION 2.6.6. We say that a von Neumann algebra is separable if
it has a faithful normal representation on a separable Hilbert space.
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PROPOSITION 2.6.7. Let (M, 7) be a tracial von Neumann algebra. The
following conditions are equivalent:
(i) M is separable;
(ii) The unit ball (M)y contains a s.o. dense sequence (equivalently,
dense in the metric induced by ||-||5);
(iii) L2(M, ) is a separable Hilbert space.

PROOF. (i) = (ii). Assume that M acts on a separable Hilbert space
H. Then on (M); the s.o. topology is second countable and therefore (M),
contains a s.o. dense countable subset.

(ii) = (iii). Let D C (M); be countable and dense in (M); in the
topology defined by ||-||,. Since M is dense in L?(M, 1) we see that QD is
dense in L2(M, ).

(iii) = (i) is obvious. O

Exercises

EXERCISE 2.1. Let (M, ) be a von Neumann algebra and (z;); € I be a
family of mutually orthogonal projections in Z(M) such that >, ; z; = 1.
Show that (M, H) is (isomorphic to) the direct sum "7 (z; M, z/H).

EXERCISE 2.2. Let M be a finite dimensional von Neumann algebra.
Show that M is isomorphic to a finite direct sum of matrix algebras.

EXERCISE 2.3. Let M and N be two von Neumann algebras on a Hilbert
space K. Show that (M NN) = (M’'UN")" and conclude that M is a factor
if and only if (M U M")" = B(K).

EXERCISE 2.4. Let e be a projection in M with central support 1 and
let p be a non-zero projection in M. Show that there is a non-zero partial
isometry v € M with v*u < e and uu* < p.

EXERCISE 2.5. Let e be a projection in M and let (f;) be a maximal
family of mutually orthogonal projections in M such that f; =< e for every
i. Show that ), f; is the central support of e.

EXERCISE 2.6. Let M be a von Neumann algebra, p € M a minimal
projection and z(p) its central support. Show that Mz(p) is a type I factor,
i.e., is isomorphic to some B(K).

EXERCISE 2.7. Let M be a type 11y factor, N a subfactor of type I,
and « an automorphism of M. Show that there is a unitary element v € M
such that a(x) = uzu* for every z € N.

EXERCISE 2.8. Let M be a von Neumann algebra, = € Mg, and t € R.
Denote by A¢ the ordered set of continuous functions f : Sp(x) — [0, 1] such
that f(s) = 0 for s > t. Show that (f(x))sea, converges in the s.o. topology
to the spectral projection E(] — 0o, t[) of = (along the net A;).
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EXERCISE 2.9. Let M be a von Neumann algebra on H and let =,y €
M, with y < z. Show that there exists a unique element a € B(#H) with
y'/?2 = az'/? and s,(a) = s(z). Show that a € M.

EXERCISE 2.10. Let I be a two-sided ideal in a von Neumann algebra
M.
(i) Let x € I+ and let y € M with 0 < y < x. Show that y € 1.
(ii) Show that I is linearly generated by I,.

EXERCISE 2.11. Let I be a two-sided ideal in a von Neumann algebra
M.
() We assume that T"° = M. Let p be a non-zero projection in M.
Show that there is a non-zero projection ¢ € I with ¢ < p.
(ii) Show that T = M if and only if there is an orthogonal family (g¢;)
of projections in I such that >, ¢; = 1.
(iii) Assume that T~ = M. Show that every & € M is the least upper
bound of an increasing net of elements of 1.

EXERCISE 2.12. Let (M, T) be a tracial von Neumann algebra, acting on
L3(M, 7).
(i) Show that the s.o. topology on the unit ball of M coincides with
the topology induced by the norm x + ||z||, = 7(z*z)'/2.
(ii) Show that x — x* is s.o. continuous on the unit ball of M.
(iii) Let A be a x-subalgebra of M. Show that A is dense in M in the
s.0. topology if and only if for every x € M with ||z| < 1, there is
a sequence (ay,) in the unit ball of A such that lim, ||z — ay||, = 0.

EXERCISE 2.13. Find a sequence (f,,) in L*°([0, 1]) such that limy,, || f, ||, =
0 while (f,,) does not converge to 0 in the s.o. topology.

EXERCISE 2.14. Let o : M — N be an isomorphism between two von
Neumann algebras and let M be a *-subalgebra of M. Show that M is
s.0. dense in M if and only if (M) is s.o. dense in N (thus, s.o. density of
M is intrinsic).

EXERCISE 2.15. Let (M;,7;), i = 1,2, be two tracial von Neumann
algebras and M; a x-subalgebra s.o. dense in M;. Let a : M1 — M be a *-
isomorphism such that 7 oa(x) = 71(z) for every x € M;. Show that there
is a unitary operator U : L?(M;, 1) — L?(Mz, 1) such that UzU* = a(z)
for every x € M and therefore that a extends to an isomorphism from M;
onto M.

EXERCISE 2.16. Let My, My be two type II; factors such that there
exist increasing sequences (NF)g>1, (N5)g>1 of matrix algebras, with Nf ~

Né" for every k and UkNikS'O' = M,;, i+ = 1,2. Show that M; and M> are
isomorphic.

EXERCISE 2.17. Let G be a countable group.
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(i) Show that L(G) is the unique (up to isomorphism) tracial von Neu-
mann algebra (M, 7) generated by unitary elements (ug)gec such
that ugup, = ugy, for all g,h € G and 7(uy) = 0 for all g # e.

(ii) Show that if H is a subgroup of G then L(H) is canonically iso-
morphic to the von Neumann subalgebra of L(G) generated by
{up, : h € H}.

(iii) Let G ~ (X, 1) be a p.m.p. action of G. Show that L(G) is canon-
ically isomorphic to the von Neumann subalgebra of L (X, u) x G
generated by its canonical unitaries {u, : g € G}.

Notes

The content of this chapter is the outcome of advances due to von Neu-
mann, Murray and von Neumann, Dixmier, Dye, Kaplansky and many oth-
ers from 1929 up to the early fifties. The bicommutant theorem 2.1.3 is one
of the main results of the pioneering paper [vIN30] of von Neumann on rings
of operators. The Kaplansky density theorem is proved in [Kap51]. Most
of the results about projections are included in [MVN36]. Theorem 2.5.5
is due to Dixmier [Dix53] where the reader will also find the major part
of our sections 2.5 and 2.6. For these facts, we also refer to Dye’s paper
[Dye52].



CHAPTER 3

Abelian von Neumann algebras

As we will see in this chapter, abelian von Neumann algebras are well
understood, and this subject is nothing but a part of classical measure the-
ory. A nice fact is that there exists a unique diffuse separable abelian von
Neumann algebra, up to isomorphism.

For simplicity, in this chapter we limit our study to the case of algebras
acting on separable Hilbert spaces. We leave it to the reader to check where
this assumption is actually necessary.

3.1. Maximal abelian von Neumann subalgebras of B(H)

Let M be a von Neumann algebra on H. Recall that a vector { € H is
cyclic for M if M¢& = H. We say that £ is separating for M if, for x € M,
we have z€ = 0 if and only = = 0.

LEMMA 3.1.1. A wvector £ € H is cyclic for M if and only if it is sepa-
rating for M'.

PRroOF. Obviously, if £ is cyclic for M it is separating for M’'. Con-
versely, assume that ¢ is separating for M’. The orthogonal projection p on
M¢ is in M'. Since (1 — p)§ = 0, we conclude that p = 1. O

Using a maximality argument, H can be written as a Hilbert sum H =
DicrME; of subspaces which are cyclic for M. Moreover, I is countable
whenever H is assumed to be separable.

PRrROPOSITION 3.1.2. Let A be an abelian von Neumann algebra on H.
There exists a cyclic vector for A', hence a separating vector for A.

Proor. We write H = ©,>1A4’&, where the vectors £, have norm-one
and we set & = Zn21 %&L. Let p, € A C A’ be the orthogonal projection
onto A’€,,. We have A’¢,, = 2" A'p, & C A'¢ for every n, whence A’ = H. O

PRrROPOSITION 3.1.3. Ewvery abelian von Neumann algebra A is generated
by a self-adjoint operator.

PROOF. Since the unit ball of A equipped with the w.o. topology is
compact and metrizable, it has a countable dense subset. Therefore there is
a countable family {a,, : n > 1} of self-adjoint operators in A whose linear
span is w.o. dense in A. For each a, there is a countable subset P, of its
spectral projections such that a, belongs to the norm closure of the linear

51
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span of P,. It follows that one may find a countable set {e,, : n > 1} in P(A)
whose linear span is w.o. dense in A. Let B be the C*-subalgebra generated
by 1 and the projections e,, n > 1. Since B is w.o. dense in A, it suffices to
show that B is generated, as a C*-algebra, by a single self-adjoint operator.

The Gelfand transform identifies B with the C*-algebra C'(X) of con-
tinuous functions on the compact spectrum X of B, and each e, with the
characteristic function of a closed and open subset E, of X. We remark
that, since {e, : n > 1} generates B, for every pair of distinct points in X
there exists n such that F, contains one of these points but not the other.
We set Fyy, = Ep, Font1 = X \ B, and

1
F=> on (1, = 1).
n>1
To show that f generates B, it suffices to prove that f separates the points of
X and then apply the Stone-Weierstrass theorem. Let s # ¢ be two distinct
points in X. Let ng be the largest integer such that for n < ng both points
either are in F,, or in X \ F,, and assume for instance that s € F),, and
t ¢ F,,. We have

F8) = £ = g+ 3 g (1m(5) — 15, (1) £ 0. .

n>no

THEOREM 3.1.4. Let (A,H) be an abelian von Neumann algebra. The
following conditions are equivalent:

(i) A= A’ i.e., Ais a mazimal abelian von Neumann subalgebra of
B(H);

(ii) A has a cyclic vector;

(iii) there exist a compact metric space X, a probability measure
on X and a unitary operator U : L*(X,u) — H such that A =
UL>®(X, )U* (where L*=(X, ) is viewed as a von Neumann sub-
algebra of B(L*(X, 1)), as in Proposition 1.2.1).

PROOF. (i) = (ii) is an immediate consequence of Proposition 3.1.2.

(ii) = (iii). Let & be a cyclic vector for A with [|£]] = 1. Let = be a
self-adjoint operator which generates A and let E be the spectral measure
of . We denote by e (= pee) the probability measure Q — (£, E(Q)§)
on the Borel subsets of the spectrum X of x. Let f € By(X) be a Borel
bounded function on X. We have || f(z)¢{| = HfHLQ(XM), so that the map

f — f(z)€ extends to an isometry U from L%(X,pe) into H. This iso-
metry is surjective since £ is cyclic for A. A straightforward computation
shows that f(z) = UM;U* for every f € L*(X, p¢), where M is the mul-
tiplication operator by f. In particular, ® : M; — f(x) is an isometric
w.0. continuous homomorphism from L> (X, pu¢) into A. Since L>(X, u¢) is
a maximal abelian subalgebra of B(L?(X, u¢)) and since ® is a spatial ho-

momorphism, ®(L>(X, pe)) is a maximal abelian von Neumann subalgebra
of B(H), whence ®(L>(X, ue)) = A.
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(iii) = (i) is proved in Proposition 1.2.1. O
Note that the space X may be taken as a compact subset of R.

3.2. Classification up to isomorphisms

We have seen in the proof of the previous theorem that if an abelian
von Neumann algebra A on H has a cyclic vector £, then it is spatially
isomorphic to L>®(X, u¢) acting by multiplication on L?(X, u¢). If £ is only
separating, the next theorem shows that A is still isomorphic to L (X, u1¢),
but the isomorphism needs not be spatial.

THEOREM 3.2.1. Let A C B(H) be an abelian von Neumann algebra with
a separating vector £. Let x be a self-adjoint operator generating A and set
X = Sp(x). Denote by p = g the spectral measure on X associated with &.
Then the Gelfand map f — f(x) extends uniquely to an isomorphism from
L>(X, p) onto A.

PROOF. Let @ : By(X) — A be the x-homomorphism defined by the
bounded Borel functional calculus. For f € By(X), we have ||f|l;2(x ) =
| f(x)¢]|. It follows that f(x) = 0 if and only if f = 0, a.e. Therefore, ®
defines an injective homomorphism from L>®(X, ) into A.! In particular,
® is an isometry.

Since (£, ®(f)&) = [y fdp, we deduce from Proposition 2.5.11 that ®
is normal. Then, Proposition 2.5.12 tells us that ®(L*(X,u)) is a von
Neumann algebra. Now, since ®(L*°(X, 1)) contains x which generates A
as a von Neumann algebra, we see that ®(L>(X, u)) = A.

The uniqueness of ® follows from the fact that the unit ball of C'(X) is
weak™® dense (or equivalently, w.o. dense by Remark 1.2.2) in the unit ball
of L>®(X, u), combined with the continuity of ® on the unit ball relative to
the w.o. topologies. ([

COROLLARY 3.2.2. Let A be an abelian von Neumann algebra (on a
separable Hilbert space) and T a normal faithful state on A. There exist a
probability measure p on a compact subset X of R and an isomorphism «
from A onto L*™°(X, ) such that 7,00 =T.

PROOF. By the previous theorem, there exists an isomorphism « : A —
L>(X,v) where v is a probability measure on some compact subset X of R.
For every Borel subset E of X, we set u(E) = 7oa '(1g). In this way, we
get a probability measure on X, which is equivalent to v since 7 is faithful.
It follows that L*>°(X,v) = L>®(X,u) and 7,00 = 7. O

REMARK 3.2.3. It is not difficult to see that if p; and py are two
probability measures on X such that there exists an isomorphism from
L>(X, 1) onto L>(X, u2) which is the identity on the subalgebra C(X),
then p; is equivalent to po, and the isomorphism is the identity map of
L>®(X, pu1) = L*=(X, u2) (see [Dou98, Theorem 4.55)).

1t follows that the class of w1 is independent of the choice of the separating vector &.
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We can go further in the classification of abelian von Neumann algebras.
We refer to the appendix B for the results used below. Every probability
measure p on X can be uniquely written as p = u. + pg where p. is contin-
uous and pg is discrete. Therefore L°°(X, i) is isomorphic to the product
of L®(X \ T, uc) by L>=(T, pg) where T is the support (necessarily finite or
countable) of pg. Of course, L>(T), pg) is isomorphic to £5° with n integer
or n = 0o0. S0 it remains to consider the case where p is continuous.

Recall that a von Neumann algebra A is diffuse if for any non-zero
projection p € A, there is a non-zero projection ¢ € A with ¢ < p and ¢q # p.
When A is isomorphic to L*°(X, u), this is equivalent to the continuity of
Lb.

THEOREM 3.2.4. Any diffuse abelian von Neumann algebra on a sepa-
rable Hilbert space is isomorphic to L*([0, 1], X), where X is the Lebesgue
measure on [0,1]. Moreover, if a faithful normal state T is given on A, we

may choose the isomorphism « such that T =Thoa :a fol a(a)dA.

PRrROOF. By Theorem 3.2.1, we may assume that A = L*°(X, u) where
X is a compact subspace of R and u is a continuous probability measure.
But then (X, ) is a standard probability measure space and the conclusion
follows from Theorem B.7 in the appendix. ([

3.3. Automorphisms of abelian von Neumann algebras

In the course of the proof of the next theorem, we will use the follow-
ing observation: every isomorphism between two measure space algebras
L>(X, p) and L>®(Y,v) equipped with the weak* topologies (defined by the
duality with the corresponding L!-spaces) is continuous (see Remark 2.5.13).
As already mentioned, these topologies are also the w.o. topologies relative
to the representations of these algebras on the corresponding L?-spaces.

THEOREM 3.3.1. Let (X, u) be a standard probability measure space.

(i) Let 6 be a Borel isomorphism between two co-null subsets of X,
which preserves the measure class of u. Then f — f o6 is an
automorphism of L*°(X, ).

(ii) Conversely, let o be an automorphism of L (X, ). There ezists a
(unique, up to null sets) isomorphism 0 between two co-null subsets
of X which preserves the measure class of p and is such that o f) =
f o0 for every f € L>®(X, pn).

PROOF. (i) is obvious. Let us show (ii) in the interesting case where p
is continuous. We are reduced to consider the case (X, pu) = ([0,1],\). Let
us denote by ¢ the function ¢ — ¢ defined on [0,1]. We set § = «(¢). Since
« is positive, 6 is a measurable function from [0, 1] into itself.

Let us show that [ fd#.A = [ a(f)dA for every bounded Borel function
fon [0,1]. We will use the weak™ density of the unit ball of C([0,1]) into
the unit ball of its bidual (which is the dual of the Banach space of bounded
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measures on [0, 1]) and will identify the space By(]0,1]) of Borel bounded
functions on [0, 1] with a subspace of C([0, 1])**. We deduce from these ob-
servations that for every f € By([0, 1]) there exists a net (g;);er of continuous
functions on [0, 1] such that [|gl|, < [|fll,, for all i and lim; [ g;dv = [ fdv
for every bounded measure v on [0,1]. In particular, if we consider for v
the bounded measures which are absolutely continuous with respect to A,
we see that lim; g; = f in L*°([0, 1], \) equipped with the weak® topology.
Therefore we have lim; a(g;) = a(f) in the weak™ topology.

Since a(t) = ¢ o6, it follows from the Stone-Weierstrass theorem that
a(g) = g o 0 for every continuous function g on [0, 1], and thus

/ ) d) = /goHd)\ /gdH/\

So, we get [a(f)d\ = [ f dO.\ for every f € By([0,1]). In particular,
taking f to be the characteristic function of a Borel subset E of [0, 1], we
see that A\(E) = 0 if and only if (6.\)(E) = 0, since A(E) = 0 if and only if
a(1g) = 0. Therefore, the measures A and 6.\ are equivalent.

Let f € L>(]0,1],\) and let (g;) be a bounded net of continuous func-
tions on X such that lim; g; = f in the weak™ topology, as above. Since
a(gi) = gi o 0 for every i, we conclude that a(f) = f o#.

Similarly, there is a measurable function p from [0, 1] into itself such that
a=1(f) = fop for every f € L>([0,1],)). We have

t=aloall)=a"1(@)=pobh

and similarly ¢ = 0 o p. Therefore, 6 is a Borel isomorphism between two
co-null subsets of X . O

REMARK 3.3.2. It follows that every isomorphism « from L*°(X, u) onto
L>(Y,v) is of the form f — fo#, where 6 :Y — X is a Borel isomorphim
such that 6,v is equivalent to pu.

Let 7, be the integral map f — [y fdu on L>(X, ) and denote by
Aut (L*(X, p), 7,) the group of automorphisms of L> (X, u) which preserve
7,. We recall that Aut (X, p) is the group of p-preserving Borel automor-
phisms of X.

COROLLARY 3.3.3. The map 0 — g, where ag(f) = fo07L, is a group
isomorphism from Aut (X, ) onto Aut (L™°(X, p), 7).

ProoOF. Immediate. (]
In the same way we have:

THEOREM 3.3.4. Let (X, u) and (Y,v) be two standard probability mea-
sure spaces and o« : L>®(X,u) — L>®(Y,v) be a homomorphism such that
fya(f)dv = [y f du for every f € L=(X, ). Then there is a unique (up
to null sets) Borel map 0 :' Y — X such that 0,v = p and of) = f o8 for
every f € L (X, u). Moreover 0 is onto, modulo a set of measure 0, and 0
is an isomorphism if and only if o is a von Neumann algebra isomorphism.
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PrOOF. The ideas are the same as in the previous proof. The main
points to mention are that, since a preserves the integrals, it is injective
and, above all, it is continuous for the weak™ topologies (see Proposition
2.5.11). O

REMARK 3.3.5. Two abelian von Neumann algebras A ~ L (X, ) and
B ~ L*°(Y,v) are thus isomorphic if and only there is a class measure
preserving isomorphism between the spaces X and Y.

Now assume that A and B are represented on separable Hilbert spaces H
and I respectively. Recall that a spatial isomorphism is an isomorphism « :
A — B of the form a — UaU* where U : H — K is a unitary operator. The
classification of abelian von Neumann algebras, up to spatial isomorphism,
involves, in addition to a measure class, a multiplicity invariant as we will
see in Chapter 8.

Exercises

EXERCISE 3.1. Let A be a separable abelian diffuse von Neumann alge-
bra and 7 be a normal faithful state on A.

(i) Show that there is an increasing family (p¢)¢cp,1) of projections in
A with 7(p;) =t for every ¢.

(ii) Show that there is a unitary operator u in A with 7(u™) = 0 for
every n # 0 and such that lim,,—, . ©” = 0 in the w.o. topology.

EXERCISE 3.2. Let (M, 7) be a diffuse tracial von Neumann algebra (for
instance a type II; factor).

(i) Show that every maximal abelian subalgebra A of M is diffuse.

(ii) Assuming moreover that M is separable, show that there exists a
family (pt)o<t<i of projections in M with ps < p; for s < t and
7(pt) =t for every t.

Notes
The main results of this chapter are due to Halmos and von Neumann
[HvN42]. Related previous works of von Neumann are found in [vN32a,

vN32b].



CHAPTER 4

Type II; factors. Some basics

Among the tracial von Neumann algebras, type II; factors are at the
opposite of abelian von Neumann algebras. We show that they are simple
with a unique tracial state.

In the second section, we introduce a first invariant for these factors,
their fundamental group.

4.1. Uniqueness of the trace and simplicity

Given an abelian von Neumann algebra L*°(X, u), the functional 7, :
f=  fdp is a faithful normal tracial state. Of course, in this situa-
tion, it is easy to construct many other such traces. We also observe that
the w.o. closed ideals of L (X, i) are in bijective correspondence with the
measurable subsets of X (up to null sets).

Let us now consider the case of a tracial von Neumann factor!. Recall
that such a factor is either isomorphic to some matrix algebra M, (C) or
is of type II;, depending on its dimension? or, equivalently, depending on
whether or not it has a minimal projection (this follows from Proposition
2.4.13). It is a classical result of linear algebra that M, (C) has only one
tracial state and is simple, i.e., has no non-trivial two-sided ideal. We now
prove that these facts hold for any tracial factor.

We need a preliminary lemma.

LEMMA 4.1.1. Let M be a diffuse factor and let p # 0 be a projection in
M. There exist two projections p1,ps € M with p1 ~ p2 and p1 + p2 = p.

Proor. We first claim that for any non-zero projection e in M there
exist two non-zero equivalent orthogonal projections e, eo with e; + e < e.
Indeed, since e is not minimal, there exists f € P(M) with f < e, f #0
and f # e. We have z(f)z(e — f) = 1 because M is a factor and our claim
follows from Lemma 2.4.7.

Now, we consider the set F of families (p;, q;)ics of pairs of equivalent
projections, majorized by p and such that {p;,q; : i € I} is a set of mutually
orthogonal projections. Let (p;,q;)icsr be a maximal family in F and put
P1 = D ;erPis P2 = ;1 ¢i- Then py and po are equivalent. Moreover, using
the maximality of the family, and applying the first part of the proof to
p — (p1 + p2) if this projection is non-zero, we see that p; + p2 = p. O

ILater, such factors will be called finite factors (see Chapter 6).
2Recall that a type II; factor is an infinite dimensional, tracial factor.
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COROLLARY 4.1.2. Let M be a diffuse factor. For every integer n > 1
there are mutually orthogonal and equivalent projections pi,...,pon Such
that 2?21 p; = 1. In particular, if M carries a tracial state T, we have
T(pi) =27",

Proor. Obvious. U

PROPOSITION 4.1.3. A von Neumann factor M has at most one tracial
state, and then such a tracial state is faithful®.

PrROOF. It is enough to consider the case where M is diffuse. Let q €
P(M), g # 1, and consider p1,...,pan as in the previous corollary. Thanks
to the comparison result 2.4.9, we see that there is a unique integer k such

that
sz' Ja= Z Di-
i<k i<k+1
It follows that for every tracial state 7 on M we have
k k+1

Therefore, the real number 7(q) does not depend on the choice of 7. This
prove the uniqueness of 7, because the linear span of P(M) is dense in M
with respect to the norm topology (see Corollary 2.2.2).

For every non-zero positive element x in M, there is a non-zero projection
q and a number A > 0 such that x > Ag and so 7(z) > Ar(q) > 0 by the
first part of the proof. O

PROPOSITION 4.1.4. Let (M, 1) be a tracial von Neumann algebra. Then
M is a factor if and only if T is the unique normal faithful tracial state on

M.

PROOF. The uniqueness when M is a factor is proved in the previous
proposition. Now, assume that M is not a factor and let z be a non-trivial
central projection. Let o be any number in ]0,1[ with a # 7(2) Then 7
defined on M by

l—«

%T 1_77_(2)7'(3:(1 —z))

is a normal faithful tracial state with 7 # 7. O

T(z) = (xz) +

PROPOSITION 4.1.5. A tracial factor (M, T) contains no non-trivial two-
sided ideal.

PROOF. Let I # 0 be a two-sided ideal and let z be a non-zero positive
element in I. We take t > 0 small enough so that the spectral projection
e of x relative to [t,+oo[ is non-zero. We have e € I (see Proposition
2.4.15). Since the normal tracial state 7 on M is faithful we have 7(e) # 0,

3As already said, it is also automatically normal, but this is much more difficult to
show (see Theorem 6.3.5).
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and thus any maximal family of mutually orthogonal projections in M,
all equivalent to e, is finite. Therefore, we can find mutually orthogonal
projections p1 = e,po,...,pr with 1 = Zlepi, p; ~ e for i < k and
pr Z e. There exist partial isometries wuq,ug, ..., u; in M with u;ew) = p;
fori=1,...,k. It follows that p; € I for all 7, whencel € T and [ = M. [

We have seen in Corollary 2.4.11 that any two projections of a tracial
factor (M, ) are equivalent if and only if they have the same trace. If M is
isomorphic to M, (C), then 7(P(M)) = {0,1,...,n}. For type II; factors,
we have:

PROPOSITION 4.1.6. Let M be a type 117 factor and T its tracial normal
state. Then p — 7(p) induces a bijection from the set of equivalence classes
of projections in M onto [0, 1].

PrROOF. We only need to show that for that for every ¢ €]0,1[ there
is a projection p € P(M) with 7(p) =t. Let t = >, 27" be the dyadic
expansion of t. Using the comparison theorem of projections in a factor and
the fact that M has projections of trace 2™" for every n since it is diffuse,
we construct by induction a sequence of mutually orthogonal projections
P1,D2, - Dk, - - . such that 7(pg) = 27" for every k. We set p = >, py.
Since 7 is normal, we get 7(p) = t. ]

The number 7(p) is viewed as the “dimension of p”. It is a very impor-
tant feature of type II; factors that their projections have a continuum of
dimensions.

4.2. The fundamental group of a type II; factor

Let M be a von Neumann algebra on a Hilbert space H. We consider
a projection p € M and we set £ = pH. Then pMp = {pzp:z € M}
is obviously a von Neumann algebra on IC. It is called the reduced von
Neumann algebra® of M with respect to p. Starting from a factor, one gets
a factor, as a consequence of the following fact.

ProproSITION 4.2.1. Let M and p as above. Let e be a projection in
Z(pMp). Then e = z(e)p where z(e) is the central support of e in M. It
follows that Z(pMp) = Z(M)p.

PrROOF. We have (p —e)Me = (p — e)pMpe = 0 and therefore
(p—e)ueu™ =0

for every u € U(M). It follows that (p —e)z(e) = 0, hence e = z(e)p.
The inclusion Z(pMp) C Z(M)p is then a consequence of Corollary
2.2.3. The opposite inclusion Z(M)p C Z(pMp) is obvious. O

PROPOSITION 4.2.2. Let M be a von Neumann on a Hilbert space H.

40ne also says that pMp is a corner of M. Whenever p is in the center of M, one
says that pMp = pM is a direct summand of M.



60 4. TYPE II; FACTORS. SOME BASICS

(i) Let q be a projection in M'. Then Mq = {xq:x € M} is a von
Neumann algebra on K = qH, called the induced von Neumann
algebra of M with respect to q. The commutant (Mq)' of Mq in
B(qH) is ¢M'q.

(ii) Let p be a projection in M. Then (pMp) = pM'.

PRrROOF. (i) The fact that Mg is a von Neumann algebra on C follows
from Proposition 2.5.12. Of course we have Mq C (¢M’q)’. Let now u be
a unitary element of (¢M’q)’. Denote by Ky the norm closure of the linear
span of M'K. The following computation shows that there is an isometry v
on Kp, well defined by v(d>"" ; ;&) = >y xi(u;). Indeed,

n 2
Z riu&l|| = Z (xiu&;, l"jufj>
i=1

i,J
= > (u(gzjmig)uéi, &) = Y (axfwigki, &)
i,j Y]

A 2
= (#hwi&, &) = ||>_ zi&i
1, i=1

We extend v to a partial isometry w on ‘H by setting wé = 0 if £ is orthogonal
to KC1. The orthogonal projection from H onto Ky belongs to Z(M). Then
we easily see that w € M and wqg = u. To complete the proof of the
inclusion (¢M’'q)" C Mgq, we recall that every element of (¢M'q)’ is a linear
combination of unitary operators in (¢M’q)’.

(ii) is a consequence of (i), by using the bicommutant theorem 2.1.3. [

For every integer n > 1, we may as well enlarge the Hilbert space H and
introduce the algebra M, (M) of n x n matrices with entries in M, acting on
H®". A routine proof shows that M, (M) is a von Neumann algebra, whose
commutant is the algebra of diagonal matrices with constant diagonal entries
in M’. Writing H®" as the Hilbert tensor product C" @ H, the algebra
M,, (M) appears as the algebraic tensor product M, (C) ® M. Embedding
M, (M) into M, +1(M) (as (n + 1) x (n + 1) matrices with coefficients 0
placed in the last line and the last column), we introduce the *-algebra

M(M) = UnZan(M)'

We may view the elements of M (M) as matrices [m; j]; j>1 such that there
exists n with m;; = 0 whenever ¢ > n or j > n. This algebra acts on
HP>® = (2(N) ® H in an obvious way. It is not w.o. closed. Its closure is
the von Neumann tensor product B(¢£?(N))®M to be defined in the next
chapter.

From now on in this section, M will be a type II; factor and, as usual,
T is its trace. We observe first that each M, (M) is a type II; factor. We
denote by Tr, ® 7 its (non-normalized) trace defined by (Tr, ® 7)([z;;]) =
> T(x;;) and by Tr ® 7 the trace on M(M) whose restriction to M, (M)
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is Tr, ® 7 for every n. Since any two projections p,q € M(M) belong
to some M, (M), we see that there exists u € M(M) such that u*u = p
and uu* = ¢ if and only if (Tr ® 7)(p) = (Tr ® 7)(¢). It follows that the
spatial isomorphism class of pM(M)p = pM,,(M)p only depends on the real
number ¢ = (Tr ® 7)(p). We set M* = pM,,(M)p, which is, as such, well
defined up to isomorphism. Usually, M, (C) ® M is called an amplification
of M, and so, more generally, we will say that any M! is an amplification of
M. Moreover, since {(Tr ® 7)(p) : p projection € M, (M)} = [0, n] for every
n, we see that M! is defined for every ¢t > 0.

Given two von Neumann algebras M and NV, recall that we write M ~ N
whenever they are isomorphic.

LEMMA 4.2.3. Let M be a type 111 factor and s,t be two real numbers
> 0. Then (M®)t ~ M*t.

PrROOF. We take M* = pM,,(M)p with
p € P(Mn(M)), (Trpm @7)(p) = s,
and (M*)t = q(M,(M?*))q with
q € P(Mp(M*)), (Tr, @ 7s)(q) =t,

where 75 = (1/s)(Trp, ® 7)), We view ¢ as a projection in M, (C) ®
Mp,(C) ® M smaller than 1y, () ® p. Then (M*)t = qM(M)q with
(Trpm ® 7)(q) = st. O

DEFINITION 4.2.4. Let M be a type II; factor. We denote by F(M)
the subset of RY formed of the positive real numbers ¢ such that M b M.
The previous lemma shows that F (M) is a subgroup of R* . It is called the
fundamental group of M.

It is immediate that F(M) is the set of 7(p)/7(q), where p and ¢ run
over the non-zero projections in M such that pMp and gM q are isomorphic.
The computation of this invariant (up to isomorphism) is one of the major
problems in the theory of type II; factors.

The next proposition shows that M ~ MY™ @ M, (C).

PROPOSITION 4.2.5. Let M be a type 111 factor and let p € P(M) with
7(p) = 1/n. Then M is isomorphic to M, (pMp).

ProOOF. Using the comparison theorem of projections, we find mutu-
ally orthogonal and equivalent projections pi,p2,...,p, with p;1 = p and
S pi=1. Let u;, i = 1,...,n, be partial isometries such that ufu; = p;
and w;u; = p;. Then

x = [ujzushicij<n
is an isomorphism from M onto M, (pMp). Note that (uju;)i<ij<n is a
matrix units in M.

O
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PROPOSITION 4.2.6. The hyperfinite type 117 factor R can be embedded
as a von Neumann subfactor of any type 111 factor M.

ProoF. Using the previous proposition we construct an increasing se-
quence (@) of subalgebras of M such that @, is isomorphic to Man(C)
for every m. Then the s.o. closure of U,>1@)y, is isomorphic to R (Exercise
2.16). U

Notes

The fundamental group is one of the three invariants introduced by
Murray and von Neumann in [MvIN43| in order to distinguish between
type II; factors. They proved that the fundamental group of the hyperfinite
factor R is R% (see Remark 11.2.3) but the existence of type II; factors
with fundamental group distinct from R% was only established in 1980 by
Connes [Con80a] (see Section 14.3). It is only in 2001 (results published
in [Pop06a]) that the first explicit computations were achieved, providing
examples with fundamental groups reduced to {1} (see Chapter 18). Notice
that such examples M are not isomorphic to M, (M) for any integer n > 2.



CHAPTER 5

More examples

We have now the sufficient background to introduce new constructions
of tracial von Neumann algebras, and in particular type II; factors: tensor
products, general crossed products, free products and ultraproducts.

We will need later to have some basic knowledge of the structure of tra-
cial von Neumann algebras beyond the now familiar case of abelian ones and
factors. In the last section of this chapter we provide elementary informa-
tions on this subject and examples.

5.1. Tensor products

Given two abelian von Neumann algebras L™ (X, 1;), i = 1,2, the clas-
sical notion of product in measure theory gives rise to the abelian von Neu-
mann algebra L>°(X; x Xa, p1 X pg). This construction is extended to the
general setting of von Neumann algebras in the following way.

5.1.1. Tensor product of two von Neumann algebras. Let (M, H;)
and (Ma,H2) be two von Neumann algebras. The algebraic tensor product
M; ® My of My and My acts on the Hilbert tensor product Hi ® Ho as
follows:

Vai € My, V6 € Hii=1,2, (21 ® 22) (61 ® &2) = (#161) ® (7262).
The s.o. closure of M7 ® My is denoted M1®&@My and (M1@May, Hi ® He) is
called the von Neumann tensor product of (My,H;) by (Ma, Hs).

One may wonder how the von Neumann tensor product Mi1®@Msy de-

pends on the given spatial representations. In fact, it is intrinsic, up to
isomorphism (see Exercise 8.13 for the case of type II; factors).

EXAMPLES 5.1.1. (a) Starting from (M;, H;) = (L>(X;, i), L* (X, i),
1 =1,2, one gets

(Mi®Ma, Hi @ Ha) = (L°(X1 x Xo, 1 X p2), L (X1 x Xo, pu1 X pi2)).

(b) We take M; = B(¢*(N)) and My = M acting on H. Then the von
Neumann tensor product B(¢?(N))®M acts on £2(N)@H = HP>. We denote
by u; : H — HP® the isometry sending £ € H onto the sequence (&,) with
&, = 0 for all n but n = i where & = £. Any bounded operator T' on H®>®
may be written as the infinite matrix [T; ;; jen with T;; = uTu; € B(H).
The set N of all bounded operators with entries in M is w.o. closed because
T +— T; ; is continuous with respect to the w.o. topology. A decomposable
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operator [t; ;] ® z € B(*(N)) ® M is identified to the matrix [t; j] and so
belongs to N. Clearly, the *-algebra M (M) consisting in the matrices [7; ;],
with entries in M and such that there exists some integer n with T; ; = 0
whenever i > n or j > n, is contained in B(¢*(N)) ® M and is s.o. dense in
N. From these observations we deduce that N = B(¢£?(N))@M.

Obviously, N can be replaced by any set I and so ¢?(N) can be replaced
by any Hilbert space K. Note in particular that B(K)QB(H) = B(K @ H).

The simplest case is I = {1,...,n}. Then, for any von Neumann algebra
M, the von Neumann tensor product M,,(C)®M coincides with the algebraic
tensor product (denoted M, (C)® M rather than M, (C)® M) and with the
von Neumann algebra M, (M) of n x n matrices with entries in M.

Let (Mj,H1) be a von Neumann algebra and #Hy a Hilbert space. We
leave as an exercise to check that (M; ® Idy,)" = M{®B(H2) and that
(M1@B(Hz)) = M| @ Idy,.!

When (M, 1) and (Ma, m2) are two tracial von Neumann algebras, we
implicitely consider them as represented on L?(My, 1) and L?(Ms, 7o) re-
spectively, in order to define their von Neumann tensor product.

PROPOSITION 5.1.2. With the above assumptions, M1®Ms is in a natu-
ral way a tracial algebra: it carries a unique tracial normal state T such that
T(z1 ® x2) = T1(21)T2(22) for x1 € My, 2 € M, and this trace is faithful.
Moreover the Hilbert spaces L*(My, 1) ® L?(Ms, 73) and L?(My@Ma, T) are
canonically isomorphic. We write 7 =11 Q 7.

PROOF. The vector 1y, ® 1y, € L*(Mi,71) ® L*(Ms, ) is cyclic for
M1®Ms. Moreover, using Remark 2.6.3, we see that this vector is cyclic for
the right action of My ® Ms and therefore separating for M1®@Ms. It defines
the faithful tracial normal state of the above statement. ([

Clearly, for My®MS> to be a factor, each component needs to be a factor.
Conversely:

PROPOSITION 5.1.3. M1®M5 is a tracial factor when My and My are
tracial factors. This factor is of type 111 whenever My or Ms is, in addition,

of type I1;.
PROOF. We only have to show that M;®@Ms is a factor. We set H; =
L?(M;,7;), i =1,2. We claim that
(@MY N (MEM)) = BH1)EB(Ha) = B(My © Ha).
The left handside contains M;®Idy, and M{®Idy, and so it contains
(M; U M{)"®1dy, = B(H1)®1dy,.

More generally, given (M1, H1) and (M2, H2), it is true that (M1®@M2) = M{QMs;.
In this generality it is a deep result that was obtained in the 1960s, using Tomita’s theory
of modular Hilbert algebras (see [Tak70] for details and history and [Tak02, Theorem
5.9] for a simplified proof).



5.2. CROSSED PRODUCTS 65

Similarly we see that it contains Idy, ® B(H2).
Since B(H1)®Idyy, Uldy, ®B(H2) generates B(H1)@B(Hz), our claim is
proved. ([l

PROPOSITION 5.1.4. The von Neumann tensor product (M, 1) of (M1, 1)
by (Ma,2) is characterized, up to isomorphism, in the following way: it
is the unique tracial von Neumann algebra (M, T) containing My ® My as
a s.o. dense subalgebra, and such that 7(x1 ® x2) = T(x1)7(22) for every
x1 € My, x9 € M>.

Proor. Let (]Téf ,7) be another tracial von Neumann algebra with the
same properties. Then there is a unitary operator

U: L*(M,7) = L*(My, 1) © L*(Ma, 1)

which induces a spatial isomorphism from (M, 7) onto (M1@Ms, 71 ® T2)
(see Exercise 2.15). O

5.1.2. Infinite tensor products. The construction of Section 1.6 rela-
tive to infinite tensor products of matrix algebras is easily extended to the
case of tracial von Neumann algebras. So let (M;, 7;);en be a sequence of
such algebras. We set (N, ¢r) = (@fZOMi,@)f:lTi) and we embed Vi into
Ni41 in the obvious way. Then M = UgenNy is equipped with the unique
trace 7 such that 7(z) = pi(z) for any k such that x € Ni. As in Section
1.6 we introduce the completion H of M with respect to the inner product
(x,y) = 7(z*y) and we denote by 7 the corresponding representation of
M on H. It is obviously injective and the s.o. closure of m(M) is written
®;enM;. Again, exactly as in Section 1.6, we see that 7 extends in a unique
way to a normal faithful tracial state on ®;enyM;. The tracial von Neumann
algebra (®;enM;, 7) is called the infinite tensor product of (M;, T;)ieN.

It remains to check that ®;enM; is a factor whenever each component
is so. To that purpose, we claim that 7 is the unique normal faithful tracial
state on ®;enM; (see Proposition 4.1.4). This is an immediate consequence
of the fact that each Ny is a factor and so its tracial state is unique (Propo-
sition 4.1.3).

Given a finite subset F' of N, the von Neumann tensor product ®;cpM;,
when viewed as a von Neumann subalgebra of ®;enM;, will be denoted
(@ierM;) @ Td®MF.

5.2. Crossed products

In the first chapter, we introduced the group measure space von Neu-
mann algebra associated with a probability measure preserving action G ~
(X, ), or equivalently to a trace preserving action of the countable group
G on (L*™°(X, p), 7). This construction extends easily to the case of a trace
preserving action of G on any tracial von Neumann algebra.

Let (B, 7) be a tracial von Neumann algebra and let Aut (B, 7) be the
group of automorphisms of B which preserve 7. We observe that every
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o € Aut (B, 7) extends to a unitary operator of L?(B,), still denoted a,
such that -

Ve € B, «a2)=a(zx).
A trace preserving action G ~ (B, 7) is a group homomorphism o from G
into Aut (B, 7). The crossed product B x G associated with this action is
defined exactly as in Section 1.4. We introduce the algebra B[G] of finitely

supported formal sums
> bytg

geG
with b, € B, the product and involution being defined by
(brtg) (b2un) = brog(b)ugn,  (bug)” = 041 (5" )uy 1.
Of course, B will be identified with the subalgebra Bu, of B[G]. We repre-
sent B[G] in the Hilbert space
H =L*B,7) ® (*(G) = (*(G,L*(B,))
by the formula
(bug)(§ @ 0n) = (bog(£)) @ dgn-

Again, we find it convenient to write {uy, instead of £ ® &, € H, so that the
previous formula becomes

(bug)(§un) = bog(&)ugh.
The s.o. closure of B[G] in B(H) is B x G, by definition. We may similarly
let B[G] act to the right on H by

(§un)(bug) = Eon(b)ung.

Let us state briefly the main properties of this construction, which are
proved exactly as in the commutative case. The vector v, = 1 ® J. is
cyclic and separating for B x (G. Therefore, the map x — xu. identifies
B x G with a subspace of L?(B,T) ® *(G). So, we write z under the form
> geG Tgllg € L*(B,7) ® ?(G).2

The trace 7 on B extends to a trace on B x (G, that will still denote by
7, by the formula

T(x) = (Ue, TUe)qy = T(xe) for x= Z zgug € BxG.
geG
This trace is normal and faithful. Note that
T(atz) =) Tlahmg) = ”%H%%B,T) = |22 L2 (8.1
geG geG

Again the z, are called the Fourier coefficients of x and the u, are the cano-
nical unitaries of the crossed product. The convergence of the expansion
T =3 ,eq Tglg holds in L?*(B,7) ® (*(G) with its Hilbert norm.

2The notation £u, for £ ® 8, is compatible with the inclusion of BI[G] into L*(B,7)®
22(@).
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We end this section with the definitions of the non-commutative ana-
logues of freeness and ergodicity.

DEFINITION 5.2.1. Let B be a von Neumann algebra and « an automor-
phism of B. We say that « is free or properly outer if there is no element
y € B, other than 0, such that ya(z) = zy for every x € B.

The reader will easily check that whenever B is a factor, « is properly
outer if and only if it is outer (i.e., not inner, that is, not of the form
x — uzu* for some unitary operator u € B).

DEFINITION 5.2.2. Let o be a homomorphism from a countable group
G into the group Aut (B) of automorphisms of a von Neumann algebra B.
We say that the action o is
(a) ergodic if Clp = {x € B : 04(x) = x,Vg € G}.
(b) free or properly outer if for every g # e, the automorphism oy is
properly outer.

Here is the non-commutative version of Proposition 1.4.5, whose proof
is similar.

PROPOSITION 5.2.3. Let (B, 1) be a tracial von Neumann algebra, and
let 0: G~ (B, 1) be a trace preserving action.
(i) B'N (B x G) = Z(B) if and only if the action is properly outer.
(ii) Assume that the action is properly outer. Then B x G is a factor
(and thus a type 11y factor) if and only if the action on the center
of B is ergodic.

EXAMPLE 5.2.4. Let G be a countable group and let (N, 7) be a tracial
von Neumann algebra. Let (B = ®geqNy, 79¢) be the tensor product of
copies of N indexed by G. The Bernoulli shift action on B is well defined
by

(O—Q(J"))h = Tgh
for every x = (®g4erty) ® 1A\ F finite subset of G.

This action is ergodic. Even more, it is mizing: for =,y € B, we have
limg_yo0 7(z04(y)) = 7(2)7(y). This is easily seen by approximating x,y by
elements in some (®,crN,) ® A2\ where F is a finite subset of G.

Moreover, for every g # 0, the automorphism o, is properly outer. In-
deed, let b € B with ||b]|, = 1 and boy(y) = yb for every y € B. We fix a
non-trivial projection p in N. Given ¢ > 0, there exists a finite subset £’ of
G and V' € (RperNi) @ Id®N with ||b — ¥/||, < &. Then we have

Ib'og(y) = yt'll, < 2¢

for every y in the unit ball (B); of B. Let h ¢ F U gF, and let y be the
element of B whose only non-trivial component is p in the position A. Then
we have

122 > |[Hoy (y) — yb'||2 = ||V (04 () — )2 = 2||V'||2(+(p) — 7(p)?),
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with ||0/[|, > 1 —e. It follows that 7(p) — 7(p)? < 2e%(1 — ¢)~2 for every
e €]0, 1], hence 7(p) € {0,1}, a contradiction.

5.3. Free products

5.3.1. Free subalgebras. Given two groups GG1, G2, the von Neumann
algebra associated with their product G1 x G» is the tensor product:

L(Gl X GQ) = L(Gl)@L(Gg).

There is another familiar and useful construction in group theory, namely
the free product G = G1 * G2. Recall that G is generated by G; and Go
and is such that, given any group H and any homomorphisms f; : G; — H,
i = 1,2, there is a (unique) homomorphism f : G — H with f|Gi = fi.
Every element s in G \ {e} is an irreducible word s = sj---sp, that is,
si € Gy, \ {e} with k; # ki1 for i = 1,...n — 1. The product is defined
by concatenation and reduction. We are interested in the construction of
L(G1 * G2) from L(G;) and L(G2). Let 7 be the canonical tracial state on
L(G). Let z1,...,zy, in L(G) be such that z; € L(Gy,), with k; # ki1 for
i=1,...,n—1, and 7(z;) = 0 for all i. A straightforward computation
shows that 7(z1z2---x,) = 0. This means that L(G;1) and L(G2) sit as
freely independent subalgebras of L(G) in the following sense (compare with
the tensor product L(G1)®L(G2)).

DEFINITION 5.3.1. Let M, Ms be two von Neumann subalgebras of a
von Neumann algebra M equipped with a faithful normal state ¢. We
say that My, My are free with respect to ¢ if p(z1x9---x,) = 0 whenever
x; € My, with ki # ko # --- # ky and ¢(z;) = 0 for all i. We say that two
elements a1, as of M are free with respect to ¢ if the von Neumann algebras
they generate are free.

PROPOSITION 5.3.2. Let My, Ms be two von Neumann subalgebras of M
that are free with respect to a faithful normal state . We assume that M
is generated (as a von Neumann algebra) by My U M.

(i) ¢ is completely determined by its restrictions to My and M.
(ii) If each restriction is a trace, then ¢ is a trace.

Proor. Given z; € My, with ki # ko # --- # ky, we claim that
o(x129 -+ xy) is uniquely determined. This will conclude the proof of (i)
since the linear span M of such products is a w.o. dense *-subalgebra of M
and ¢ is normal. We proceed inductively on n. We write z; = p(x;)1+ 7.
Note that gp(%z) = (0. Replacing each x; by its expression, expanding, and
using the fact that @(10‘11%2 aozn) = 0, we see that we are reduced to
computations involving at most n — 1 products.

Assume now that the restrictions of ¢ to M7 and Ms are tracial. It
suffices to show that the restriction of ¢ to M is a trace, and even, by
linearity, that p(xy) = ¢(yz) for x = x129- - 2, and y = y1ya - - - Yy, where
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T € My, yj € My; with ky # ko # -+ # kp, 1 #lo # -+ # ln, n <m, and
o(x;) = 0= p(y;) for all 4, j.

First, we obviously have that ¢(xy) = 0 whenever ky, # ;. Assuming
km =11 we get

o(xy) = e(x1 - Tm-1(@my1 — @(@my1))y2 - yn) +
O(Tmy1) (1 Tm—1Y2 -+ Yn)
= p(Tmy)e(z1- - Tm_1Y2- - Yn)-

Iterating this computation we see that ¢(xy) = 0, except possibly when
n=m and k; = l,,—;4+1 for every i, and then we have

o(ry) = o(T1Yym)P(T2Ym—1) - - (Tmy1).

Similarly, we see that ¢(yx) = 0 except possibly in the same conditions as
above and then we have

o(yr) = o(y12m)e(Yorm—1) - - - @(Ym1).

The conclusion follows from the tracial property of the restrictions of ¢ to
M1 and MQ. O

PROPOSITION 5.3.3. Let (M1, 11), (Ma,m2) be two tracial von Neumann
algebras. There exists (up to isomorphism) at most one triple (M, 1), ¢1, ¢2),
where T is a normal faithful tracial state and ¢; : M; — M, i = 1,2, are
homomorphisms, satisfying the following properties:

(i) m=7o¢; fori=1,2;
(il) ¢1(M1), p2(Ma2) sit in M as free von Neumann subalgebras with
respect to T and M is generated by ¢1(My) U po(Ma).

PRrOOF. Note first that any homomorphism ¢; satisfying Condition (i)
is normal by Proposition 2.5.11 and so ¢;(M;) is a von Neumann subalgebra
of M by Proposition 2.5.12.

Let (M, 7p) and (N, 7n) be two solutions. We denote by ¢; : M; — M
and v¢; : M; — N the trace preserving inclusions (i = 1,2). Let M and
N be the x-algebras generated by ¢1(M;) U ¢o(Ms) and 1 (M7) U o(Ms)
respectively.

There is a well defined *-homomorphism « from M onto A such that
a(pi(x)) = i(x) for x € M;, i = 1,2. Indeed, for y = ¢g, (z1) - - - ¢k, (n)
with x; € My,, we set a(y) = g, (x1) - - - ¥g, (), and whenever y is a linear
combination of such terms we extend a by linearity. Of course, such an
expression of y is not unique. If y = Y] and y = Y5 are two such expressions,
to see that a(Y7) and «(Y2) defined in this way coincide, we observe that,
by Proposition 5.3.2 (i), we have

TN (Vry (1) - Pk, (T0)) = Tar (D, (1) <+ - P, (T0))

whenever x; € My, i =1,...,n. It follows that
0=my((Y1 —Y2)" ("1 = ¥2)) = 7 ((a(Y1) — a(Y2))"(a(Y1) — a(Y2))).
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Since the trace 7 is faithful, we conclude that a(Y7) = a(Y3).
Finally, since 7y o « = 73y on M, it follows that « extends (uniquely)
to a trace preserving isomorphism from M onto N (Exercise 2.15). O

DEFINITION 5.3.4. Let (Mj, 1), (Ma,T2) be two tracial von Neumann
algebras and let ((M,7), ¢1,¢2) be such that the conditions (i) and (ii) of
the previous proposition are satisfied. Then we say that (M, ) is the free
product of (M, 1) and (Ma, 2) and we write (M, 1) = (My,71) * (M2, 72)
or simply M = Mj x Ms. Usually, we identify M; and Ms with their ranges
in M.

For instance, (L(G1),71) and (L(G2),72) (with their canonical tracial
states) satisfy the conditions of Proposition 5.3.3 with respect to L(G1*G2)
equipped with its trace 7 and so (L(G1*G3), 7) is isomorphic to (L(G1), 1) *
(L(G2), 72)-

We now prove the existence of (M, 11) * (Ma, 72) for any pair of tracial
von Neumann algebras.

5.3.2. Construction of M; x M>. For i = 1,2 we set H; = LQ(M,-,TZ-)
and & = 1p,. The first step is to represent M7 and M on the Hilbert space
free product of (H1,&1) by (Ha, &2).

o

We denote by H; the orthogonal complement of C&; in H;. The Hilbert
space free product (H1,&1) * (Hz,&2) is (H,&) given by the direct hilbertian

suin
o

o
nH=cto@P( PH Hi,o--0H,),
n2l d1FiaFFin
where £ is a unit vector. We set

Hz(i)zcg@@( a 70{i1®~~®7(22~n>,

n>1 iy Fig# Fin
i1

and we define a unitary operator V; : H; ® H;(i) — H as follows:
§i®E—¢
&GO, Vn €My ©-- @ Hy, i A
n@E s, Y M
nen =y, v e’fti,n’ 67(-)[11 ®---®7(-)lin,i1 # 1.
Similarly, we set

’Hr(i):C&B@( a 7%@--@7%),

n>1 iy Fig#-Fin
i

and we define the corresponding unitary operator W; : H,.(i) @ H; — H.
We faithfully represent M; on H by

Vz € M;, Al(x) = V;(:C ® IdHl(i))Vz’*v
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and similarly, we represent faithfully the commutant M/ of M; (in B(H,;))
by
pz(x) = Wi(IdHT(i) & .%')VV;k
A straightforward computation shows that A;(z)p;(y) = p;(y)Ai(x) for
every T € M;,y € M]’-7 i,7 € {1,2}. So, if we set M = ()\1(M1) U /\Q(Mg))”,
and N = (pi(Mq) U pg(Mé))”, we see that these von Neumann algebras
commute. We will see in Subsection 7.1.3 (d) that N = M".

o (0] o
We set M ;= ker 7;. Note that H; is the norm closure of M;£;. Moreover,
(o]

we have \;(x)¢ = x§; whenever x €M;, and an easy induction argument
shows that

Ay (1) -+ Ay ()€ = 218y, @ -+ - @ Ty, EHpy, @+ @ Hp,w  (5.1)

for z; EJ\(ZTki with ki # ko # -+ # k,. It follows that £ is cyclic for M.
Similarly, it is cyclic for N, and finally we get that £ is cyclic and separating
for both algebras.

In particular, the vector state we is faithful on M. We claim that
(M, we), A1, A2) satisfies the conditions stated in Proposition 5.3.3. Since
V¢ = & ®¢&, a straightforward computation shows that we o A\; = 7;. More-
over, we deduce immediately from Equation (5.1) that the von Neumann
algebras A1 (M1) and Aa(Ma) are free with respect to we. Since we is a tra-
cial state (by Proposition 5.3.2), we denote it by 7. Hence (M, 7) is the free
product of \j(M7) and A2(M3) we were looking for.

REMARK 5.3.5. Since £ is separating for M, the map x € M +— x£ is
injective and so we may identify M with a subspace of H. In particular, we
o o

identify A, (z1) -+ A, () With 21 ® -+ - @ a2, EM g, ® - - ® My, , thanks to
(5.1). We set

o o
M:m@@( D Mi1®---®Min>. (5.2)
n>1 7/17£7/27£7£17L
Then M is a x-subalgebra of M, w.o. dense, called the algebraic free product
of My and M>. We observe that the components of the decomposition of M
in (5.2) are mutually orthogonal with respect to the inner product defined
by 7.

We end this section by giving a sufficient condition for the free product
of two tracial von Neumann algebras to be a factor. We make use of the
notion of conditional expectation defined in Chapter 9 and the reading of
the proof of the next lemma may be postponed.

LEMMA 5.3.6. Let (My,71), (Ma,T2) be two tracial von Neumann alge-
bras and set (M, 7) = (My,11) * (M, 72). Let Q be a diffuse von Neumann
subalgebra of My. Then Q"N M C M. In particular, M is a type II; factor
whenever My is so.
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PRrROOF. We denote by E), the trace preserving conditional expectation
from M onto M; (see Theorem 9.1.2). Let (u,) be a sequence of unitary
operators in @ such that lim,, u,, = 0 in the w.o. topology (see Exercise 3.1).
We claim that for z,y € M such that Eyy, () = Ep, (y) = 0, we have

lim || Ear, ()|, = 0. (5.3)

o
A crucial observation is that Ejs, (z) = 0 whenever z ¢ M is an alternated

product? of elements in M ;. This follows from the fact that 7 (mi Ep, (2)) =
T(miz) = 0 for every m; € M, where the latter equality results from
straightforward computations.

Let us prove (5.3). Using the Kaplansky density theorem (and the obser-
vation preceding Proposition 2.6.4), we see that x is the limit in ||-||,-norm
of elements of M. Moreover, since Ey, (x) = 0 and Eyy, is ||-||,-continuous

o

we may assume that these elements have no component on C1¢ M= M;.
The same argument apphes to y and finally it suffices to consider the case

where x,y are in some M“ Mzn, i1 £l FE - # zn, n>2, or in M2 So
we write z = x1ab and y = dey;, where b,d € {1}U Ml, a c EMQ, and z7
(resp. u1), if # 1, is an alternated product of elements in M i, ending (resp.

o
beginning) with some element in M ;. Then, we have

zuny = (r10)(bund)(cy1)
= (z1a) (bund — Tl(bund)l) (cy1) + 71(bupd)(z1acyr).

We set v = bu,d — 71(bupd)l and note that Fyp (x1avey;) = 0 by our
previous observation. It follows that Eys (zuny) = 71(bund)Epy (z1acyy).
But lim,, 71 (bu,d) = 0, and our claim (5.3) is proved.
Now let x € Q'NM. Subtracting Eyy, (z), we may assume that Eyy, (z) =
0. Then, we have
Eny, (zunz™) = up Epy, (z2™)

and ||un Enr, (22*)]| = || En, (x2*)]],. Together with (5.3), this implies that
En (zz*) = 0 and thus z = 0 since Eyy, is faithful. O

REMARK 5.3.7. The same proof applies to the case where 1g # 1p: if
Q C M, is diffuse, then Q" N1gM1lg C M;.

COROLLARY 5.3.8. Let (My,71), (M2, ) be two tracial von Neumann

algebras. We assume that My is diffuse and that Ms is non-trivial. Then
(M, 1) = (M, 1) * (Ms,72) is a type 11y factor.

Proor. We keep the notation of Section 5.3.2. By the previous lemma,
we have Z(M) C Z(M;). Let z € Z(M) with 71(2) = 0 and let y be a

o
3An alternated product is of the form x1 ... 2, with xx €My, , i1 # 2 # -+ # in.
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non-zero element in My with 75(y) = 0. We have on the one hand ||zy€||, =
12&1 |5 ]|y&2ll by (5.1) and, on the other hand,

l2y€lls = T(y"2"zy) = T(z"y*2y) = 0.
It follows that z£; = 0 and thus z = 0. Therefore we get Z(M) =C1. O

5.4. Ultraproducts

As we will see later, the technique of ultraproducts is a very useful
tool when studying the behaviour of families of sequences. We fix a free
ultrafilter w. Recall that w is an element of SN\ N, where SN is the Stone-
Cech compactification of N, i.e., the spectrum of the C*-algebra ¢>°(N). For
any bounded sequence (c¢,) of complex numbers, lim, ¢, is defined as the
value at w of this sequence, viewed as a continuous function on SN.

Let (M, ) be a sequence of tracial von Neumann algebras. The pro-
duct algebra [],~; My is the C*-algebra of bounded sequences x = (zp)n
with x,, € M, for every n, endowed with the norm ||z|| = sup,, ||z,||. The
(tracial) ultraproduct 1], M, is the quotient of [[,~; M, by the ideal I,
of all sequences (), such that lim, 7,(z}x,) = 0. It is easily seen that
I, is a normed closed two-sided ideal, so that [[ M, is a C*-algebra. If
x,, denotes the class of x € [[, -, M,, then 7,(z,) = lim, 7,(z,) defines
without ambiguity a faithful tracial state on [], M,. We set yllaw =
70 (y*y)'/? whenever y € [, M.

When the (M, 7,) are the same tracial von Neumann algebra (M, 1),
we set M =[] M, and we say that (M¥,1,) is the (tracial) ultrapower of
(M, 1) along w.

ProposITION 5.4.1. ([[, My, 7w) is a tracial von Neumann algebra.
Moreover, if the M, are finite factors such that lim, dim M, = +oo, then
[, M, is a type 11y factor®.

PRrOOF. For simplicity of notation, we deal with the case M*“, the proof
in the general case being the same. We use the characterisation given in
Proposition 2.6.4, and show that the unit ball of M“ is complete for the
metric induced by |||, - Let (z(p)), be a sequence in M* such that, for
every p 7

le@)lo <1 e +1) = 2(@)lly, <277,

We choose inductively a representing sequence (z,,(p))n for z(p) such that
sup [ (p) | < 1, sup an(p+ 1) —a(p) < 270,
n n

Then, for each n € N, the sequence (z,(p)), is a Cauchy sequence in the unit
ball (M), of M equipped with the |-||, metric, and therefore converges to

4This factor is not separable in general. It is the only example where we really need
to work with non separable type II; factors in this monograph.
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some z,, € (M);. Now, we have ||z, — z,(p)||, < 27P, whence, if 2 denotes
the class of the sequence (xy,)n,

[ = z(p)llg,, = lim [lzn — zn(p)lly < 277,

Assume now that M is a factor. We claim that any two projections
p,q € M* are comparable and so M is a factor (see Remark 2.4.10). Indeed,
using the lemma to follow, we choose representatives (p,) and (g,) of p, ¢
respectively, consisting in sequences of projections such that 7(p,) = 7,(p)
and 7(¢n) = 7Tw(q) for every n. Assume that 7,(p) < 7,(q). Since M
is a factor, there exists a partial isometry u, in M with w;u, = p, and
upu) < @n. Let u, be the class of the sequence (uy),. Then we have
usu, = p and u,ul, < q. (]

LEMMA 5.4.2. Let (M, T) be a tracial von Neumann algebra, w a free
ultrafilter and p a projection in MY .

(i) There exists a representative (py) of p such that p, is a projection
for every n.
(i1) Ifin addition M is a factor, we may choose the py, such that (py,) =

Tw(p) for every n.

PRrOOF. (i) Let (z,,) be a representative of p such that 0 < z, < 1 for
every n. We have lim,, HiL‘n — :L%H2 = 0. We may assume that Hxn — x%HQ =
0, < 1/4. Let p, be the spectral projection of z,, relative to the interval
1— 5}/2, 1). Then lim,, ||z, — pn|l, = 0 by Lemma 5.4.3 below.

(ii) We only consider the case where M is a type II; factor, the case of
matrix algebras being trivial. We set 7,(p) = A\. Let g be a projection in M
with 7(¢) = A. We have either ¢ = p, or p, = q. We choose a projection
qn € M with 7(g,) = X and either ¢, < p, or p, < ¢,. Then we have

g —ang =|7(gn — )| = [A — 7(pn)|
and so limy, ||gn, — pnlly = 0. O

LEMMA 5.4.3. Let 0 < x < 1 be an element of a tracial von Neumann
algebra such that Hx — :U2H2 =0 < 1/4. Let p be the spectral projection of

relative to [l —/5,1]. Then we have ||z — pl|, < (36)'/2.

PRrROOF. Let i be the spectral probability measure of z associated with
the vector 1 € L?(M, 7). We have

/1(15 _ 22 dpu(t) = /1(15 C2RALED) = o - 2| = 62
0

0
Put §; = §/2. We have

1—01
52 > /5 (t— 22 dp(t) > (61 — 62)u((61,1 — 81]),

1
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hence p([01,1 — 61]) < §(1 — 61)2. It follows that

01 1-61 1
lo—pl3= [ Eaut+ [P+ [ - 0tdu)

01 1-41
<204 (1 —61)*u([61,1 — 1)) < 30. O

REMARK 5.4.4. Let M be a separable type II; factor. One may won-
der whether the ultraproduct M“ depends on the free ultrafilter w. Ge
and Hadwin proved that, assuming the Continuum Hypothesis, all these
ultraproducts are isomorphic [GHO1]. It has been proved more recently
by Farah, Hart and Sherman that, conversely, if all these ultraproducts are
isomorphic then the Continuum Hypothesis holds [FHS13|.

5.5. Beyond factors and abelian von Neumann algebras

A tracial factor is either isomorphic to some matrix algebra or is of
type II; depending on the existence or not of a minimal projection (see
Corollary 2.4.14). In the non-factor case, the distinction is made via the
existence of non-zero abelian projections, which generalize the notion of
minimal projection.

DEFINITION 5.5.1. Let M be a von Neumann algebra. A projection
p € M is called abelian if p # 0 and the reduced von Neumann algebra pMp
is abelian.

A useful feature of abelian projection is the following one.

PROPOSITION 5.5.2. Let p,q be two projections in a von Neumann al-
gebra M. We assume that p is abelian and that p < z(q) where z(q) is
the central support of q. Then we have p = q. In particular, two abelian
projections with the same central support are equivalent.

PROOF. Since there exists a central projection z such that zp =< zq and
(1—-2)g 2 (1 —2)p, it suffices to show that (1 — z)g ~ (1 — z)p. So, we may
assume that ¢ ~ ¢1 < p < 2(q).

Since p is abelian, we have ¢q; = pe where e € Z(M) (see Proposition
4.2.1). Then we have

e > z(q1) = 2(q) = 2(p)

and so p = pe = . O

DEFINITION 5.5.3. We say that a von Neumann algebra is of type I if
there exists an abelian projection whose central support is 1. A finite von
Neumann algebra® without any non-zero abelian projection is said to be of
type I1;.

S5Finite von Neumann algebras will be defined in the next chapter. They are products
of tracial von Neumann algebras and, in the separable case, they are exactly the von
Neumann algebras which have a faithful normal tracial state (Exercise 6.2). There is
almost no loss of generality to deal with tracial von Neumann algebras instead of finite
ones.
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Observe that these definitions are compatible with the definitions of type
I and type II; given in the case of factors.

EXAMPLES 5.5.4. (a) For instance, any tensor product L> (X, u)®@B(H)
is easily seen to be of type I. Such an algebra M is said to be d-homogeneous
where d is the dimension of H. The cardinal d only depends on M (see
Exercise 5.5 for countable cardinals).

More generally, every product of the form [[,.; A;®B(H;) where the
A;’s are abelian is still of type L.

(b) Let (N,7) be a type II; factor and L*°(X, u) an abelian von Neu-
mann algebra. Then M = L (X, u)®N is a type II; von Neumann algebra.
Indeed, assume that M has an abelian projection p. Let (e, ) be a decreasing
sequence of projections in N such lim,, 7(e,) = 0. Since the central support
of 1 ® ey is 157 (Exercise 5.4 (ii)), we deduce from the previous proposition
that p 2 1 ® e, and so

(Tu ®7)(p) < (Tu R@T)(1®en) =T(en)

for every n, in contradiction with the fact that p # 0.
More generally, every product [],.; A;®@N; where the A;’s are abelian
and the N;’s are type Il factors is a type II; von Neumann algebra.

REMARK 5.5.5. Every type I von Neumann algebra can be written as
[Lic; Ai®B(H;) where the A;’s are abelian(see [Tak02, Theorem V.1.27]).
Finite type I von Neumann algebras are exactly those with dim H; < +o0
for all 4.

On the other hand, not every type II; von Neumann algebra is of the
form [],c; Ai®N; where the A;’s are abelian and the N;’s are type II; factors,
but separable type II; von Neumann algebras are direct integral of type II;
factors (see [Dix81, Chapitre II, §3 and §5]).

THEOREM 5.5.6. Every von Neumann algebra M has a unique decompo-
sition as a direct sum My @& Mo where My is a type I von Neumann algebra
and My is without abelian projection (with possibly one of the two compo-
nents degenerated to {0}).

PROOF. Assume that M has at least an abelian projection (otherwise
there is nothing to prove). Let (p;)ic; be a maximal family of abelian pro-
jections p; in M whose central supports z(p;) are mutually orthogonal and
set p = > icrPi» 2 = D ;cr2(pi). Then p is an abelian projection whose
central support is z. Moreover, thanks to the maximality of (p;);cs, we see
that M (1 — z) has no abelian projection. So M = (Mz) & (M(1 — z)) is a
decomposition of M as a direct sum of a type I von Neumann algebra by a
von Neumann algebra without any abelian projection.

Let M = (Mz1) @ (M(1— 21)) be another such decomposition. We have
z1 < z. Indeed, let p; be an abelian projection having z; as central support.
If 21(1 — 2z) # 0, then p;z1(1 — 2) is an abelian projection in M (1 — z), but
this cannot occur. Similarly, we see that z < z;. O
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We have seen in Corollary 4.1.2 that in any diffuse factor, for all n > 1
every projection is the sum of 2" equivalent projections. This result extends
to any von Neumann algebra without abelian projections.

PROPOSITION 5.5.7. Let M be a von Neumann algebra without abelian
projection. Then any projection in M is the sum of two equivalent orthogonal
projections and therefore is the sum of 2" equivalent orthogonal projections
for allmn > 1.

ProoF. It suffices to show that for any non-zero projection e in M there
exist two non-zero equivalent orthogonal projection ey, eo with e; + eg < e.
Then the end of the proof will be exactly the same as that of Lemma 4.1.1.

The crucial observation is that eMe it not abelian. So, there is a projec-
tion f in eMe but not in Z(eMe). Therefore we have fM(e— f) # 0. Then,
it follows from Lemma 2.4.7 that there exist non-zero projections e; < f and
eo < e — f that are equivalent. O

Exercises

EXERCISE 5.1. We keep the notation of Example 5.1.1 (b).

(i) Prove the assertions stated in this example.

(ii) Let T" = [T;;] be a matrix with coefficients in M. For every n
we denote by T'(n) the matrix with T'(n); ; = T;; if ¢, < n and
T(n);; = 0 otherwise. Show that T € B(¢*(N))®@M if and only if
the sequence (||T'(n)|])y is bounded.

(iii) Extend these results, when N is replaced by any set I.

EXERCISE 5.2. Let M be a von Neumann algebra and let (p;);er be a
family of mutually equivalent projections such that ), ; p; = 1. Show that
M is isomorphic to B(¢2(1))®(pi, Mpi,) with ig € I.

EXERCISE 5.3. Let M; and Ms be two factors. Show that
(1a, @Mo) N (M1@Ms) = M1 @1y, .

EXERCISE 5.4. Let (X, ) be a probability measure space and (N, H) a
factor.

(i) Show that the commutant of L™ (X, u)®1g(3) in B(L*(X, p) @ H)
is L®(X, n)@B(H).
(ii) Show that the center of L*°(X, u)®N is L®(X, u)®1y.
More generally, one shows that the center of a tensor product of two von

Neumann algebras is the tensor product of their centers (see [Tak02, Corol-
lary IV.5.11]).

EXERCISE 5.5. Let M be a von Neumann algebra and let (e;)icr, (fj)jecs
be two countable families of abelian projections having 1 as central support
and such that } ;. e; =1 =3 .., f;. Show that all these projections are
equivalent and that card I = card J.
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EXERCISE 5.6. We set /2, = ¢2(N*) and ¢? denotes the canonical Hilbert
space of finite dimension i. Let I, J be two subsets of N*U{oco} and (A;)er,
(Bj)jes be two families of abelian von Neumann algebras. Let

a: Z ABB(6) %Z B@B(6)

be an isomorphism. Show that I = J and that o(A;Q@B(¢7)) = B;QB({?)
for every i € 1.

EXERCISE 5.7. An automorphism of a von Neumann algebra M is said
to be inner if it is of the form Ad (u) :  — uxu* for some unitary operator
u € M. When M is a factor, show that o € Aut (M) is inner if and only
if their exists a non-zero element y € M such that ya(x) = zy for every
r e M.

EXERCISE 5.8. Let (B, 7) be a tracial von Neumann algebra and o :
G ~ B a trace preserving action of a countable group G. Show that B x G
is spatially isomorphic to the von Neumann algebra of operators on H =
L*(B,7) ® (*(G) = (*(G, L*(B, 1) generated by {m(B)}U{l® )\, :g € G}
where 7(b) is defined by (7(b)f)(g) = 0,-1(b) f(g) for b€ B and f € H (see
Exercise 1.9 for the case where B is abelian).

EXERCISE 5.9. Let (B, 7) be a tracial von Neumann algebra and o :
G ~ B a trace preserving action of a countable group G. Show that the
crossed product B x G is the unique (up to isomorphism) tracial von Neu-
mann algebra (M, 7) generated by a trace preserving copy of B and unitary
elements (ug)q4eq satisfying the following properties:

ugbuy = 04(b) for all g € G,b € B, ugup = ugyy, for all g,h € G,
T(bug) =0 for all b € B,g # e.

EXERCISE 5.10. Let G be an ICC group and let 0 : G ~ (B, 7) be a
trace preserving action. We identify L(G) in the obvious way with a von
Neumann subalgebra of B x G (i.e. the von Neumann subalgebra generated
by the ug,g9 € G).

(i) Show that L(G) N (B x G) = BY (the algebra of G-fixed elements
in B).

(ii) Show that B x G is a (type 1I;) factor if and only if the G-action
on the center of B is ergodic.

EXERCISE 5.11. Let G be a finite group and ¢ : G ~ B a properly outer
trace preserving action on a tracial von Neumann algebra (B, 7). For g € G,
we denote by v, the unitary operator on L?(B,7) defined by v,@ = E(?)
for every z € B. Let M be the *-subalgebra of B(L?(B, 7)) generated by
BU{vg:9€ G} Let ¢ : Bx G — M by defined by ¢(3_ cqbgug) =
ZgEG bgvg-

(i) Show that ¢ : B x G — B(L*(B, 7)) is a normal *-homomorphism.
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(ii) Show that ¢ injective (Use the fact that the center of B x G is
contained in Z(B)).
(iii) Conclude that M is a von Neumann algebra isomorphic to B x G.

EXERCISE 5.12. Let M be a type II; factor and w a free ultrafilter on
N.

(i) Let f',...,f* be mutually orthogonal projections in M%. Show
that we can find, for i = 1,...,k, a representative (f)nen in
(N, M) of f* 5 such that for every n, the f., i = 1,... k, are
mutually orthogonal projections in M. Show that these projec-
tions can be chosen mutually equivalent whenever one starts with
mutually equivalent projections in M“.

(ii) Let u be a partial isometry in M“ and set f! = u*u, f? = uu*.
Choose representatives (f),en of fi, i = 1,2, such that for every
n the projections f} and f2 are equivalent. Show that u can be
lifted into a sequence (uy), satisfying uu, = f} and u,u’ = f2
for every n.

(iii) Show that every matrix units in M“ can be lifted to a sequence of
matrix units in M.

EXERCISE 5.13. Let M be a von Neumann algebra. Show the equivalence
of the following two conditions:
(i) M is of type I;
(ii) every non-zero projection of M majorizes an abelian projection.

Notes

The tensor product of two von Neumann algebras was introduced in the
first joint paper of Murray and von Neumann [M'VIN36]. Infinite tensor
products of von Neumann algebras were defined by von Neumann [vIN39]
very soon after. This subject was developed later by the Japanese school,
in particular by Takeda [Tak55]. Crossed products for a group action on a
tracial von Neumann algebra also originate from this school [NT58, Suz59],
in the late fifties.

The notion of free product of two von Neumann algebras appears for
the first time in [Chi73], but was developed and used in its full strength by
Voiculescu, his students and others. It gave rise in the eighties to the very
active and powerful theory of free probability (see [Voi85] for the beginning).

Ultraproducts constructions appeared in model theory in the fifties.
However, they are already implicit the operator algebras setting in Wright’s
paper [Wri54] and later in Sakai’s notes [Sak62] although these authors do
not use the ultrapower terminology. Ultraproducts are a crucial ingredient
in McDuff’s characterisation of those type I1; factors M that are isomorphic
to M®R (the so-called McDuff factors [McD70]), in Connes’ characterisa-
tion of full factors [Con74] (see Chapter 15) and in his celebrated work
on the classification of injective factors [Con76]. Ultraproduct techniques
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are nowadays a classical useful tool when one wants to replace approximate
properties by some precise version.



CHAPTER 6

Finite factors

It is now the time to clarify the definition of type II; factors. We have
introduced them in term of the existence of an appropriate trace. The main
purpose of this chapter is to give an equivalent definition, which relies on the
behaviour of the projections. The notion of dimension function will be the
key of the proof of the equivalence. We will also see that whenever a factor
has a tracial state, this trace is automatically normal. It is also faithful and
unique, as shown in Chapter 4.

6.1. Definitions and basic observations

DEFINITION 6.1.1. A projection p in a von Neumann algebra M is finite
if p is not equivalent to a projection ¢ strictly smaller than p. In other terms,
p is finite if for any partial isometry u € M with v*u = p and uwu* < p, then
uu® = p.

If p is not finite, we say that p is infinite.

Every projection ¢ € M smaller than a finite projection p € M is also
finite. Indeed, if there exists a partial isometry v € M with v*u = ¢ and
uu* < ¢ then v = u + (p — ¢) will be a partial isometry with v*v = p and
vu* < p, a contradiction. In particular, when the unit element 1 of M is a
finite projection, every projection in M is finite.

DEFINITION 6.1.2. We say that a von Neumann algebra M (in particular
a factor) is finite if 1 is a finite projection. Otherwise, we say that M is
infinite.

Obviously, abelian von Neumann algebras are finite. Every von Neu-
mann algebra which has faithful tracial state 7 is finite. Indeed, let u be a
partial isometry in M such that v*u = 1. Then 7(1 —uu*) = 7(1—u*u) =0,
so that 1 = uu* since 7 is faithful.

Whenever p ~ ¢, it is not true in general that 1 — p ~ 1 — q. This can
be observed for instance in the von Neumann algebra B(¢2(N)).

On the other hand, when 1 is finite we have:

LEMMA 6.1.3. Let M be a finite von Neumann algebra.

(i) Letp,q € M be two projections such that p ~ q. Then 1—p ~ 1—q.
In particular, there exists a unitary v € M with upu® = q.

(ii) Let v € M be a partial isometry. There exists a unitary operator u
with v = u(v*v).

81
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PROOF. (i) The comparison theorem 2.4.8 tells us that there exists a
projection z € Z(M) with (1-p)z 3 (1—¢g)z and (1—q)(1—2) 3 (1—p)(1—=2).
By considering separately the situations in Mz and M (1—z), we may assume
for instance that 1 —p 31 —¢q. f 1 —p ~r <1 — ¢, we have

1>g+r~p+(1-p)=1

so that g4+ r =1, whence 1l —p~1—gq.

Let v € M be a partial isometry with v*v = p, vv* = ¢ and let w € M
be such that w*w =1 —p, ww* =1—¢. Then v = v+ w is a unitary which
has the required property.

(ii) is immediate from (i). O

In contrast with the case of finite projections, any infinite projection in
a factor can be cut up in two pieces equivalent to itself.

PROPOSITION 6.1.4. Every infinite projection p in a factor M can be
written as p = p1 + p2 where p1, p2 are projections in M such that py ~ p ~
p2-

ProOOF. Replacing M by the factor pMp we may assume that p = 1.
Let e; € P(M) be such that e; ~ 1 with e; # 1 and let u € M be such that
w*u =1and uu* =e;. Weputeg =1, e, = u™(u")* forn > 0. Then (ep)n>0
is a strictly decreasing sequence of projections which are all equivalent to 1.
Morever the projections f, = e, — en11, n > 0, are equivalent, since, if we
set vy, = u(e, — eny1), we have viv, = €, — ept1 and VLV = €n41 — €nta.

Let (gi)ier be a maximal family of mutually orthogonal and equivalent
projections, which contains the sequence {f, : n € N}. Since M is a factor,
the maximality of the family implies that ¢ =1—)_,.; ¢ < ¢;. We consider
a partition I; U s of I into two subsets of the same cardinal as I and we put
D1 =D ier, @G> P2 = D _ier, 4 + ¢- We have p1 +p2 = 1 and due to the fact
that the cardinal of I is infinite, we immediately see that p; ~py ~ 1. O

We remark that, by using a partition of I into a countable family of
subsets of the same cardinality, we even get p = Y -, p, where the p, are
all equivalent to p. -

It follows from this proposition that an infinite factor has no tracial
state. Indeed, if 1 is infinite, we may write 1 = p; + po where p1,ps are
two projections equivalent to 1. Assuming that M has a tracial state 7, we
obtain the contradiction

L =7(p1) +7(p2) = 2.

6.2. Construction of the dimension function

The aim of the rest of this chapter is to prove that a finite factor carries a
(normal) tracial state. Since a finite factor which has a minimal projection
is isomorphic to some matrix algebra M, (C) (see Proposition 2.4.13) we
only have to deal with finite diffuse factors. The first step is to construct
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a function which, like tracial states, measures the dimension of projections.
We begin by the introduction of a kind of dyadic expansion for projections.

PROPOSITION 6.2.1. Let M be a diffuse factor. There exists a sequence
(Pn)n>1 of mutually orthogonal projections in M such that
n+1
Pryl ~ 1—21% for n>0.
i=1
PRrOOF. By Proposition 4.1.1 we find two equivalent projections p1, g1 €
M with p; + ¢1 = 1. By the same argument, we find two equivalent projec-
tions po, g2 with po + go = 1 — p1 and therefore 1 — p; — po ~ ps. Repeating
this process, we get a sequence (pp)n>1 of projections with the required
properties. ([

REMARK 6.2.2. We observe that 1 is the orthogonal sum of two pro-
jections equivalent to p; and that every p, is the orthogonal sum of two
projections equivalent to py41.

We now turn to the case of finite factors.

PROPOSITION 6.2.3. Let M be a diffuse finite factor and let (p,) be as
wn Proposition 6.2.1.
(i) Let p € P(M) be such that p = pp for everyn > 1. Then p = 0.
(ii) We have Y32 pr = 1, and therefore > | p ~ py forn > 1.
(iii) If p is a non-zero projection in M, there exists an integer n such
that pp, = p.

PROOF. (i) Suppose p # 0. We have p ~ g, < p,, for all n. Setting

q= Z gn and q/:ZQm

nodd n>1

we have ¢ ~ ¢ and ¢ < ¢/, in contradiction with the fact that ¢’ is finite.
(ii) f we put p=1— Z;ZOOI Pk, we get p = p,, for every n and so p = 0.
(iii) follows immediately from (i). O

DEFINITION 6.2.4. A projection p € M which is equivalent to one of the
above constructed projections p,,n > 1, is called a fundamental projection.
We denote by FP(M) the set of fundamental projections in M.

The (equivalence classes of) fundamental projections play, for projec-
tions, the role of dyadic rationals for numbers in [0, 1].

PROPOSITION 6.2.5. Let M and (py) be as above and let p € M be a
non-zero projection. There exists a unique increasing sequence ni < ng <
coe < my < --- of integers and a sequence (Plnk)kzl of mutually orthogonal
projections in M with the following properties:

() Py ~ Py for cvery k> 1;
(ii) p= Zj_:of p;u"
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PROOF. We first observe that condition (ii) is equivalent to

k
P=> Py Zpn, for k>1. (i)
=1
Indeed, (ii’) implies that
0o k
P= Pp SP= D P 3Py 3P
i=1 i=1

for all k, and so p = ., p;,. by Proposition 6.2.3 (i). Conversely, if (ii)
holds, then we have, for all k&,

k 0o
P=> Ph~ Y Pui 3 Pup
=1

We may assume that p # 1 since for 1 = Z,jf{ pr the only possible
choice is np = k for all k. By Proposition 6.2.3 we see that there exists
n such that p, = p, and we define ny to be the smallest integer with this
property. Let p,,, ~ pp, be such that pj, < p. We have p — p},, < pn,,
otherwise we would have p,, X p — p},,, and n; would not be the smallest
integer with p, 3 p. In case p — p),, = 0, we have, by Proposition 6.2.3,

o0
p=>_ i
k=ni1+1
where the projections are mutually orthogonal, with pj ~ pj for every k >
n1 + 1. We easily see that it is the only possible infinite expansion, up to
equivalence of projectionsl.

If p— p;ll # 0, we repeat the process and we choose ns to be the small-
est integer with pp, < p — pj,,. By induction, we get a strictly increasing
sequence (ny)g>1 of integers and a sequence (p;,, ) of mutually orthogonal
projections with the required properties (i) and (ii’), where we make the
convention that if we get at some stage the equality p = Zle p;“, then we
choose the expansion of the form

k—1 )
P=Y At Y P
i=1 i=ng+1
with pl ~ p; for every i > ng + 1.
The uniqueness of the sequence (ng)r>1 is also easily checked by induc-
tion. O

By a slight abuse of language, we will say that p = >, p;” is the dyadic
expansion of p.

IThis choice of an infinite decomposition is similar to the convention of choosing the
infinite expansion of a dyadic rational number instead of the finite one.
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We now define the notion of dimension function and prove its existence
and uniqueness.

DEFINITION 6.2.6. Let M be a diffuse finite factor. A dimension function
on M is amap A : P(M) — [0, 1] such that
(i) A1) =1
(i) p~ g = Alp) = Ag);
(iii) A(p+ q) = A(p) + A(q) for every pair (p, q) of orthogonal projec-
tions;
(iv) A is completely additive, i.e., for any family (g;);e; of mutually
orthogonal projections in M, we have A(D ;. qi) = > icr Algi)-

THEOREM 6.2.7. Let M be a diffuse finite factor. There exists a unique
dimension function A : P(M) — [0,1]. It is defined by A(0) = 0 and for
p # 0 by the expression

1
i=1
where p =2, Py, is the dyadic expansion of p. Moreover we have
(1) A(p) =0 if and only if p=0;
(2) p 2 q if and only if A(p) < A(q) and therefore p ~ q if and only if
Alp) = Alg)

PrOOF. We first prove the uniqueness of A. We keep the notation of
Proposition 6.2.1. Using Remark 6.2.2, we see that we must have A(p,) =
27" for every n. Therefore, using the complete additivity of A, we obtain
that A(p) must be given by the expression (6.1) if p # 0..

So, we define A by this expression. Obviously, we have A(p) = 0 if and
only if p = 0.

We check first that whenever p = ¢, then A(p) < A(q). Let p =
Yoot Py 4 = Diey G, be the dyadic expansions of p and ¢. Assume that
A(p) > A(g). Then we denote by ig the smallest integer ¢ with n; # m;.
We have n;, < m;,. By Proposition 6.2.3 (ii), we get

o oo
Proy ™ Prig 5 0 Pra ™ Y,
i=ip i=ig
and we deduce the contradiction p > q.

Let us show now that A is a dimension function. Condition (ii) of
Definition 6.2.6 is immediate. We claim that A(p + q) = A(p) + A(q) when
pq = 0. We first consider the case where p is a fundamental projection,
say p ~ pn. Let ¢ = > 72, q,,, be the dyadic expansion of g. Then either
n & {m; :i> 1} and then p+ 377, q;,. is the dyadic expansion of p+ ¢ and
we get immediately the additivity, or there is m;, with n = m,,. In this case,
p+ q;m() ~ pn—1 and we iterate the argument with (p + q;m()) + D itio Do,
In a finite number of steps we get the dyadic expansion of p+ ¢, from which
we again deduce the additivity.
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We now study the general case where p has the dyadic expansion > >, p;li.
For every k, we write p = Zle Py, +rrand ¢ = Zle qy,, + 7}, and we notice
that 7z 3 ph, j pr and 77, 3 g, 3 Pk, S0 that ry + 7, 3 pr—1. From the
above observations, we see that

k k
Ap+a) = AP, +Dd) + (e +11))
1=1 i=1

k

Aph,) + Y Algy,) + A +11,)
1 =1

with 0 < A(ry, +173,) < 5r=1-
It follows that

Alp+q) =Y Alpn,)+ D> Algn,) = Alp) + Alg).
=1 =1

I
]~

— e
Il

It is now easy to prove (2). Assume that A(p) < A(q) and that ¢ ~ ¢’ <
p. Then A(p) = A(q) + A(p — ¢'), so that p = ¢’ and p ~ q.

It remains to show the complete additivity. Let (¢;);er be a family of
mutually orthogonal projections in M and set ¢ = ) ;.; g;. For every finite
subset F' of I we have ) .. A(g;) < A(g) and hence ), ; A(g;) < A(q).
Since the sum } ;. ; A(g;) is finite, the set of indices ¢ with ¢; # 0 is countable
and we may assume that [ = N.

Assume that > -, A(gn) < A(g) and choose an integer k with

275+ Algn) < Alg):
n>1

Let r € FP(M) with A(r) = 27%. We construct, by induction, a sequence
(rn)n>0 of mutually orthogonal projections with ro ~ r, 7, ~ ¢, for n > 1
and r, < ¢ for n > 0. First, since A(r) < A(q), there is ro ~ r with 7o < gq.

Suppose now that we have constructed rg,71,...,r,_1. We have
n—1 n—1 o]
Ag=3"r) = A) = YA = S Ala) > Alga).
i=0 i=0 i=n
Thus we have
n—1
G 34— )7
i=0

and therefore there exists r,, ~ ¢, with r, < g — Z?:_()l ri.

Finally, we obtain

o0 [e.9] o0
QZZ%’NZW<ZT¢§Q
i=1 i=1 i=0

which is impossible since ¢ is a finite projection. O
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6.3. Construction of a tracial state

We keep the assumptions and notations of Theorem 6.2.7. We show that
the dimension function extends in a unique way to a normal faithful tracial
state on M.

LEMMA 6.3.1. Let ¢ and ¢ be two non-zero completely additive maps
from P(M) into Ry. We assume that ¢ is faithful, i.e., p(e) # 0 whenever
e #0. Given e > 0, there is a non-zero fundamental projection p € FP(M)
and a constant 8 > 0 such that for every projection q < p, we have

0p(q) < ¥(q) < O(1+€)p(q). (6.2)

PROOF. We may assume that o(1) = ¥(1) # 0. We first show that
there exists a non-zero fundamental projection e such that ¢(e1) < ¥(ey)
for every fundamental projection e; < e.

Suppose, on the contrary, that for every non-zero e € FP(M) there
exists e; € FP(M) with e; < e and ¢(e1) > #(e;). Take a maximal
family (e;)ier of mutually orthogonal fundamental projections such that
@(e;) > v(e;). Using Proposition 6.2.3 (iii) we see that ), ;e; = 1, whence

P(1) =) ple) > > ler) = (1),
iel iel
thanks to the complete additivity of ¢ and ).
Therefore there exists e with the required property. We set

0 =sup{n : np(e1) < (er),Ver <e,er € FP(M)}.

We have 6 € [1,+oo[ and Op(e1) < 1(ey) for e € FP(M) and e; < e.
Let us assume now that for every non-zero projection p € FP(M) with
p < e there exists a non-zero fundamental projection e; < p with

0(1 +e)p(er) < tp(er).

Using a maximality argument as above, but in the von Neumann algebra
pMp, this would imply that 0(1 + £)p(p) < ¥(p), in contradiction with the
definition of 6.

Hence there exists a non-zero fundamental projection p < e such that
0(1 4+ e)p(e1) > 1(ey) for every fundamental projection e; < p, and the
inequality fO¢(e1) < 1(eq) is of course satisfied. Thanks to the dyadic ex-
pansion of any projection ¢ < p and the complete additivity of ¢ and 1, we
get (6.2). O

LEMMA 6.3.2. Let ¢ be a positive linear functional on M and e > 0 such
that
Vg e P(M), Alg) <¥(q) < (1+¢e)A(g).

Then for every x € My and every unitary operator uw in M, we have

P(uzu®) < (1+¢e)y(x). (6.3)
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PRrROOF. For ¢ € P(M), we have

Ylugqu”) < (1+¢e)A(uqu”) = (14 ¢)A(g) < (1+€)v(q).
By Corollary 2.2.3, every x € M, is the sum ) 27"g, of a series which

converges in norm, with the g, € P(M). The inequality (6.3) follows imme-
diately. O

A positive linear functional 1 is called an e-trace if it satisfies the in-
equality (6.3) for every x € M, and u € U(M). Note that we have then

Yye M, Y(yy*) < (1+e)vy'y), (6.4)

because the polar decomposition of y and Lemma 6.1.3 imply that y may
be written as y = uly| with v € U(M). Then

Yyy*) = P(ulyPu’) < 1+ )y (lyl?) = (1 +e)d(y"y).
Conversely, the property (6.4) easily implies that v is an e-trace.

LEMMA 6.3.3. Let M be a diffuse finite factor and let A be its dimension
function. Then for every € > 0 there is a normal e-trace 1. such that

Alg) < ¥=(q) < (1 +¢)*A(q) (6.5)

1+¢
for all ¢ € P(M).

Proor. We apply Lemma 6.3.1 with ¢ = A and @ a non-zero normal
linear functional w. Replacing w by @ 'w we obtain the existence of a non-
zero fundamental projection p such that for any ¢ € P(M) with ¢ < p, we
have

A(g) <w(q) < (1+¢)A(g). (6.6)
Applying Lemma 6.3.2 to the diffuse factor pMp instead of M, we see that
w restricted to pMp is a normal e-trace. Now, since p is a fundamental
projection, there exists an integer n and fundamental projections qi, ..., qgan
such that 21221 ¢ =1, ¢t = p and ¢; ~ p for every i. Let w; be a partial
isometry with wfw; = p and w,w} = ¢;. We set ¢.(z) = Z?ilw(wfmwi).
Then we have, for y € M,

-
Yelyy®) = w(w]y Z% )y wi)
=1

= Z (w;jyw;)( w’-kywj)*)

3,j=1
27’1/
<(1+e) Y w((wiy w)(wiyw;))
ij=1

= (L +e)v=(y"y),
and therefore 1) is an e-trace. Moreover 1. # 0 since 1:(p) = w(p) > A(p).
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It remains to show that the inequalities (6.5) are satisfied. Let ¢ €
P(M) and let ¢ = > ;5 pj,, be its dyadic expansion. By comparing the
fundamental projections p,. with the fundamental projections ¢; we first
see that there is a unitary operator u € M such that up;liu* commutes with
q; for every i,j5. We set ¢’ = ugu*. This projection commutes with each
q;. Then w;fq’wj is a projection in pMp and furthermore, the projections
w;q'w; and ¢'q; are equivalent via the partial isometry ¢'w;. The inequality
(6.6) gives

A(d'q5) = Awjq'w;) < wwjq'w;)
< (1+e)A(wjq'w)) = (1 +)A(d'g)),
and after addition,
A(q) £ ¢:(d) < (1 +e)A(d).
Since 9. is an e-trace, we get
Pe(q) < 1+ e)e(q) < (1 +)*Ad) = (1 +)°Alq),

and
1 1 1

Ye(q) > 1Jrgws(cz’) > 1+EA(Q/) =\nr;

THEOREM 6.3.4. Let M be a diffuse finite factor. Its dimension function
extends in a unique way to a normal faithful tracial state on M.

A(q). O

PROOF. Let (g,) be a decreasing sequence of positive real numbers with
lim, e, = 0. By Lemma 6.3.3, there is a sequence of normal &,-traces 1,
such that

A0 4n(0) < (L4 20)*Alg)

for every ¢ € P(M). In particular, we have lim,, ¢, (¢) = A(g). In fact, this
sequence (¢,), converges uniformly on the unit ball of M. Indeed, writing
any z of the unit ball of M as ¢ = (21 —x2)+i(x3—x4) where the 0 < z; <1,
it suffices to consider the case 0 < x < 1. By Corollary 2.2.3, we can write
rasasum y -, %qn with ¢, € P(M) for all n. Then we have, for n > m,

[9n(@) = Ym(@)] < 3 S ltn(an) — m(a)
k=1

<Y et (@4 en? - )

1
< ((1+em)?— > .
< ((H+em) 14 em
It follows that (1),) is a Cauchy sequence and therefore converges in norm
to a linear functional 1) on M.
We easily check that ¢ is a normal tracial state. Let us show that
is faithful. Let z € M, with ¢(xz) = 0. For every real number ¢ > 0, we
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denote by e; the spectral projection relative to the interval [t, +oo[. Since

te; < x, we get A(er) = (er) = 0 and so e; = 0. Hence, we have z = 0.
The uniqueness of the extension of the dimension function follows from

the expansion = ) 7, Q%qn of every 0 < x < 1, obtained in Corollary

2.2.3. U

THEOREM 6.3.5. Let M be a factor. The following conditions are equiv-
alent:

(i) M has a normal tracial state;
(i) M has a (norm continuous) tracial state;
(iii) 1 4s a finite projection (i.e. M is finite).

Moreover, the tracial state, when it exists is unique and faithful.

Proor. It suffices to consider the case where M is diffuse.

(i) = (ii) is obvious and (ii) = (iii) is an immediate consequence of
Proposition 6.1.4. That (iii) = (i) follows from the previous theorem.

The uniqueness has been proved in Proposition 4.1.3. O

Thus, for an infinite dimensional factor, to say that it is of type II; or
finite is the same.

6.4. Dixmier averaging theorem

Let M = M,,(C) be a matrix algebra. We observe that its unique tracial
state 7 can be obtained by averaging over the compact group U, (C) of
unitary n x n matrices, with respect to its Haar probability measure, that
is,

T(z)l = / uzu® du. (6.7)
Un(C)

Consider now a type II; factor M. We will extend formula (6.7) to this
setting, in an appropriate way (see Corollary 6.4.2).
For x € M, we denote by C, the ||-||,-closed convex hull of

{uzu* : v e U(M)}

in L?(M, 7). We may assume that ||z||,, < 1. Then by Proposition 2.6.4,
C, is contained in the unit ball of M. Let y € M be the unique element of
C, with smallest ||-||,-norm. This element commutes with the unitary group
of M, and so is scalar, say y = al. Since the tracial state 7 is constant on
C,, we see that o = 7(z). Therefore, we have C; NC1 = {7(x)1}.

In fact, we have a stronger result, where the |[|-||,-closure of the convex
hull is replaced by its ||| -closure, a smaller set. This result relies on the
following useful averaging theorem.

THEOREM 6.4.1 (Dixmier averaging theorem). Let M be a factor.
Given x € M and € > 0, there are unitaries uy,...,u, € U(M) and o € C
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such that

<e.

n
1 *
— g uizu; — al
n-

=1

PRrROOF. We first consider the case z = x* and we may of course assume
x ¢ C1. We denote by Sp(z) its spectrum and set

c=minSp(z), C =maxSp(z), t=(c+C)/2.

We introduce the spectral projection p = E(] — 0o, t]) of . We remark that
since ¢ # C, we have 0 < p < 1. By the the comparison theorem 2.4.9, we
have either p 3 1—por 1 —p = p. Let us assume for instance that p < 1—p,
the other case being treated similarly.

Let v be a partial isometry in M such that p = v*v ~ vv* <1 —p. We
set p’ = vv* and

o0

w=v+v"+(1-p-—7p).

Then w is a unitary operator. The main point in the proof is the evaluation
of the diameter of the spectrum of the self-adjoint operator Ty, (z) = 3(z +
wrw*). We claim that

diam Sp(Ty(z)) < Zdiam Sp(z) = ?l(C — o). (6.8)
Since Ty, () < C1, it suffices to show that x + wxw* > (¢t + ¢)1. Using the
functional calculus, we see that

cp<ap<tp and t(l-p)<z(l-p)<C(l-p).
We will also use the facts that w = w* and wpw* = p’, so that
w(l—p—-pHw'=1-p-yp.
It follows that
T + wrw* > (t(l —p)+ cp) + (wcpw* +tw(l—p—p + p')w*)
=t(l—p)+ep+cp +t(l—p—p)+tp
={t+co)p+ (t+e)p +2t(1—p—p)
> (t+ o)1,

which proves our claim.
We now put w; = w and choose n such that (3)"diamSp(z) < e. By
applying the preceding process n times, we get unitaries wy,...,w, such

that .
diam Sp(Tw,, - - - T, (7)) < (Z) diam Sp(z) < e.

We put
1 &
y="Ty, .. Ty (x)= Q—nZuzxuf
i=1

and o = 1 (min Sp(y) + max Sp(y)) € R. Then we have
ly — ol < diamSp(y) < e.
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Let now = be an arbitrary element of M. Applying the first part of the

proof to R(z) = 1(z + 2*) and /2, we get unitaries wy, ..., wg in M and
a € R with
Lk
z Z wiR(z)w; —all| <e/2.
=1 o)
We set y = %Zle w;S(z)w;, where §(z) = £ (z — z*), and apply the
first part of the proof to the self-adjoint element y and £/2, to get unitaries
wy,...,w; and o € R. Since z = R(z) + iY(x), we finally obtain
T
k—zz twizw] ()" — (a+id)1|| <e/2+¢e/2=¢. O
j=li=1 9]

Given z in a von Neumann algebra M, we will denote by K, the ||-|| -
closure of the convex hull of {uzu*:u e U(M)}.

COROLLARY 6.4.2. Let 7 be a tracial state on a von Neumann factor M.
Then, for every x € M, we have

K, NCl = {r(z)1}.

PrOOF. Theorem 6.4.1 tells us that for every n > 1, there exists y, € K,
and «, € C such that ||y, — a,1l|| < 1/n. The sequence (o) is clearly
bounded, so we may assume that it converges to some « € C. Then, (y,) is
a Cauchy sequence, and so it converges to an element y € K, and of course
y = al. Therefore, we have K, N C1 # ().

We remark now that since 7 is tracial and norm continuous, it takes the
constant value 7(z) on K. It follows that K, N C1 = {r(z)1}. O

Note that this gives another proof of the uniqueness of a tracial state on
a factor.

REMARKS 6.4.3. (a)The results of this section can be extended to the
case where M is only assumed to be finite (with possibly a non-trivial cen-
ter). In particular, we still have K, N Z(M) # 0 (see [Dix81, Chapter III,
§5]).

(b) We also mention the following characterisation of finite von Neu-
mann algebras.

THEOREM 6.4.4. Let M be a von Neumann algebra. The following con-
ditions are equivalent:
(i) M is finite;
(i) M has sufficiently many normal traces, i.e., for every non-zero
x € My there is a normal trace T on M with T(x) # 0.

A proof of this result is given in [Dix81, Chapter III, §8]. For another
proof, using the Ryll-Nardzewski fixed point theorem, we refer to [Tak02,
Chapter V, Theorem 2.4].
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Exercises

EXERCISE 6.1. Let 7 be a normal trace on a von Neumann algebra M.
Show that
{z eM:1(z"z) =0}
is a w.o. closed ideal of M, hence of the form Mz where z is a projection
in the center of M. Check that z is the largest projection p in M such that
7(p) = 0. The projection 1 — z is called the support of .

EXERCISE 6.2. Let M be a von Neumann algebra.

(i) If M is a direct sum of tracial von Neumann algebras, show that
M is finite.

(ii) If M is finite, show that there is a family (p;);cs; of mutually orthog-
onal projections in Z(M) such that ", ;p; = 1 and each p;M is
tracial, so that M is a direct sum of tracial von Neumann algebras
(Hint: consider a maximal family of normal traces with mutually
orthogonal supports, and use Theorem 6.4.4).

(iii) If M is finite, show that M is countably decomposable if and only
if it is tracial.

EXERCISE 6.3. Let M be a finite factor and F' a finite subset of M.
Given ¢ > 0, show that there exist unitaries u1,...,u, in M such that

1 n
= z;uzxuf —7(x)l|| <e
1=

for x € F.

Notes

The essential ideas of this chapter come from [MVIN36, MvN37|.
Later, the results were extended by Dixmier [Dix49] to the case of any
finite von Neumann algebra (not necessarily a factor). In particular, the
content of Section 6.4 was established in [Dix49].






CHAPTER 7

The standard representation

In this chapter, we show that a tracial von Neumann algebra (M, 7)
behaves in many respects as any commutative one (L>(X,pu),7,). The

set M of closed densely defined operators affiliated with M on L*(M, 1)
forms a x-algebra analogous to the *-algebra of complex-valued measurable
functions on X. The Hilbert space L?(M,7) is embedded into M as the
space of square integrable operators. We also introduce the Banach space
LY(M, 1) of integrable operators, whose dual is M. Classical results such as
the Holder inequalities or the Radon-Nikodym theorem are extended to this
setting and we prove the Powers-Stgrmer inequality, which is specific to the
non-commutative case.

Finally, we show that the group Aut (M) of automorphisms of M has
a canonical implementation by unitaries in B(L?(M, 7)), a generalisation of
the Koopman representation in the commutative case.

7.1. Definition and basic properties

One of the main features of the representation of (M,7) in L?(M,T)
that we study below is that it makes M anti-isomorphic to its commutant.
It plays a crucial role in the study of all normal representations M, as we
will see in the next chapter.

7.1.1. The standard representation. The GNS representation
(77, LQ(Ma 7),&7)

of the tracial von Neumann algebra (M, 7) has been introduced in Section
2.6. It is called the standard representation of (M, 7). We also say that
M is in standard form on L?>(M, 7). We recall from Section 2.6 that 7, is
a normal faithful representation. In particular, Theorem 2.6.1 implies that
7-(M) is a von Neumann algebra on L?(M, 7). We will identify 2 € M and
() and write x€ for m-(z)¢. Also, we identify = with z&; and view M as
a dense subspace of L?(M, 7). Finally, we use the notation & when we want
to stress the point that x is considered as an element of L?(M, 7). Its norm
7(x*z)Y/? will be written ||z|,, ||£[ly, |2, or even ||Z|, . depending on the
context. ’

Since for z,y € M, we have m.(z)§ = Zy, it is natural to view 7. ()
as the operator of multiplication to the left by x and to denote it by L.

95
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Similarly, the map ¢ — g is continuous:
9215 = 7(z*y*yx) = 7(yza*y*) < [|l=[*|9]5-

We denote by R, the extension of this operator to L?(M,7). Then z +
R, is an injective homomorphism from the opposite algebra! M9 into
B(L?(M,7)). We usually write £z instead of R ¢. The ranges of L and
R are respectively denoted by L(M) and R(M). Clearly, these two alge-
bras commute. Note that L(M) = 7, (M) = M.

The operator J : & — 7* is an antilinear isometry from M onto itself,
which extends to an antilinear surjective isometry of L?(M,7) still denoted
by J (or Jys in case of ambiguity). We say that J is the canonical conjugation
operator on L?(M, 7). A straightforward computation shows that JL,J =
R~ for every x € M, whence JL(M)J = R(M). We will prove that L(M) =
R(M)" and give simultaneously another description of these algebras L(M)
and R(M).

Let £ € L?(M, 7). We define the following two operators from M into
L*(M,T):

Le() = Ry(§) = &y,
Rg(9) = Ly(8) = y¢.-

These operators are not bounded in general, but they are closable. Let
us show for instance this property for Lg. Let (x,) be a sequence in M such

that lim,, z,, = 0 and lim,, Lg(fﬁ) = 1. Then, for y € M, we have, on one
hand,

(n.3) = lim (LY(7).5)
and, on the other hand,

[(LAT), 9)

= (R, & 9) = [(& B2, 9)
= (& v2h )| < I€lallyaily

< éllallyllcollzrlly = €2yl lIZnlls-

It follows that lim,, <L2(§;), g]> = 0, whence (n,9) = 0 for every y € M and

son=0.2

We will denote by L¢ and R¢ the closures of Lg and Rg respectively.
Whenever L¢ is a bounded operator, we say that L¢ (or &) is a left convolver
or that the vector & is left bounded. The set of left convolvers is denoted by
LC(M). Similarly, we define the set RC(M) of right convolvers. We have
the following generalisation of Theorem 1.3.6. It tells us in particular that

IThe opposite algebra M°P of M is M as a vector space, the involution is the same,
but the multiplication in M°? is defined by z -y = y=x.
20One may also observe that M is contained in the domain of (L)*.
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JMJ = M’ hence M and its commutant in B(L?(M, 7)) “have the same
size”.
THEOREM 7.1.1. Let (M, T) be a tracial von Neumann algebra. Then
L(M)=LC(M)=R(M)
JL(M)J = R(M)=RC(M) = L(M)'.
In particular, for € € L*(M, ), the closed densely defined operator Le (resp.
R¢ ) is bounded if and only if £ € M.

PROOF. We have obviously L(M) C LC(M) and R(M) C RC(M). Let
us show that L¢ o R,y = R, 0 L¢ for £ € LC(M) and n € RC(M). Let (xy)
and (y,) be sequences in M such that lim, z,, = £ and lim,, y, = . Then
for a,b € M, we have

(b.wniyy) = ( Rows Lath )-
50 that limp e <B,mnayp> = (Ry(JE), L(a)n). But
lim <13, xnayp> ~ lim <B, Raypfg;>
- <z3, Raypg> — <B, Lg(@> - <L§13, Lagj,,>
and therefore we have

lim lim <l;, xndyp> Dt <LEI;, Rnd>.
P n
Similarly, we get
lim li <z§, i > - <R*6,L >
im i, £nayp by Lea
It follows that

(b, LeRyi) = (b, RyLea)
and we conclude that L¢ and R, commute. Hence we have
L(M)c LC(M) C RC(M) c R(M)
and R(M)C RC(M)cC LC(M) c L(M)'.

Let us show that R(M) C LC(M). We take T € R(M)" and put £ = T1.
Then for x € M, we have

Ti =TR.1=R,T1=R.{=¢x = L.

Hence T = Lg on M and therefore T = L¢ since T' is bounded and L is
the closure of its restriction to M. Thus we have shown that LC (M) =
R(M) = RC(M)" and similarly we have RC(M) = L(M) = LC(M)'. We
conclude the proof, using the bicommutant theorem, as we did in the proof
of Theorem 1.3.6. (]
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7.1.2. The standard bimodule. We now introduce the notion of bi-
module over a pair of von Neumann algebras. As we will see in the sequel,
this is nowadays an essential tool in the study of these algebras.

DEFINITION 7.1.2. Let M and N be two von Neumann algebras.

(i) A left M-module is a Hilbert space H, equipped with a normal
unital homomorphism 7; : M — B(H).

(ii) A right N-module is a Hilbert space H, equipped with a normal
unital anti-homomorphism 7, : N — B(#) (i.e., a normal unital
representation of the opposite algebra N°P).

(iii) A M-N-bimodule is a Hilbert space H which is both a left M-
module and a right N-module, such that the representations
and 7, commute.

We will sometimes write p;H, Hy and pyHy to insist on the side of the
actions. Usually, for € € H, x € M and y € N, we will just write z€y instead
of (), (y)€.

The Hilbert space L?(M, 7) is the most basic example of M-M-bimodule.
It is called the trivial (or identity) or standard M -M -bimodule. Its structure
of M-M-bimodule is given by:

Vr,y € M,V¢ € L*(M,7), xfy= L,R,&=aJy*JE.

7.1.3. Examples of standard representations. Let (M, 7) be a tra-
cial von Neumann algebra and let m be a normal representation on a Hilbert
space H, and suppose that there exists a norm-one cyclic vector & in H
such that wey, = 7. Then 7 is naturally equivalent to the standard repre-
sentation. More precisely, let U be the operator from 7(M)&y into L*(M, )
sending 7(z)&y onto . Then U extends to a unitary operator, still denoted
by U, from H onto L*(M, 7) such that Un(x)U* = 7, (x) for every x € M.
Viewed as acting on H, the canonical conjugation operator is defined by
Jm(z)§o = m(z*)&o-

In particular, we remark below that the main examples of von Neumann
algebras given in Chapter 1 were indeed in standard form. We keep the
notation of this chapter.

(a) First, let us consider the case of the group von Neumann algebra
L(G) acting by convolution on ¢?(G) (see Section 1.3). The natural tracial
state 7 on L(G) is defined by the cyclic and separating vector d. € £2(G).
Therefore, L(G) is in standard form on ¢2(G). In this example, J is defined

by JE(t) = &(t71) and, for every t € G, we have JA(t)J = p(t). It follows
that JL(G)J = R(G) and we retrieve the fact that R(G) = L(G)'.

(b) Second, let M be the crossed product L>®(X,u) x G = L(A,G)
relative to a probability measure preserving action G ~ (X, u), where we
put A = L>®(X, u). We use the following convenient notation introduced in
Section 1.4: for f € L?(X, u),

Jug=f®d4 € L*(X, 1) @ £2(G).
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The vector u, = 1 ® 4§, is cyclic for M and defines the canonical trace on M
which is therefore in standard form on L?(X,u) ® ¢?(G). The conjugation
operator J is defined by

Jfug =041 (f)ug-1.

and it is also straightforward to check that

JL( Z agug)J = R( Z uyay) = R( Z ag(az,l)ug).

geG geG geG

This shows that L(A,G) = R(A, G).
When L%(X, p) ® £2(G) is identified with L2(X x G, u ® \) (where A is
the counting measure on G), we have

Jg(ZC, t) = §(t_11‘> t_l)'

For group actions which are free, this is the formula given in the next para-
graph, after identification of X x G with the graph of the orbit equivalence
relation.

(c) Let us consider now the case of a countable probability measure
preserving equivalence relation R on (X, u). With the notation of Section
1.5.2, the representation of L(R) on L?(R,v) introduced there is standard
since 1A is a cyclic vector which defines the canonical trace on L(R). For
¢ € L?(R,v) we have J¢(x,y) = £(y,x) and, given F € My(R), one sees
that JLpJ = Rp~. Therefore we obtain the equality L(R)" = R(R).

(d) For our last example, we keep the notation of Section 5.3.2. Let
(M, 71), (M3, 12) be two tracial von Neumann algebras. The representation
of (M,7) = (My,71) * (M2, 72) on the Hilbert space H constructed in this
section is standard since there is a vector £ € H which induces the trace 7
and is cyclic.

The canonical conjugation operator J is defined by J¢ = £ and

J(@1&ry @ -+ @ Tnék,) = Tk, @ -+ - @ Ty,

o
for x; e My, with ky # ko # -+ # ky. For x € M;, we have J\;(x)J =
pi(JizJ;), where J; is the canonical conjugation operator on L?(M;, 7;). It
follows that M’ = JM.J is the von Neumann algebra N defined in Section
5.3.2.

7.2. The algebra of affiliated operators

Let (M, T) be a tracial von Neumann algebra on a Hilbert space H. We
show in this section that the closed densely defined operators on H affiliated
with M behave nicely.
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7.2.1. Closed densely defined operators. We recall here a few im-
portant facts concerning unbounded operators and the spectral theory of
(unbounded) self-adjoint operators®.

Let x be a self-adjoint operator on a Hilbert space H, that is, a densely
defined operator (possibly unbounded) such that z = z*. Its spectrum Sp(z)
is a closed subset of R. The bounded Borel functional calculus defines an
algebraic *-homomorphism f — f(z) from the algebra B, (Sp(z)) of bounded
Borel complex-valued functions on Sp(z), into B(H).

This functional calculus enables the construction of the spectral measure
E:Q — E(Q) = 1g(z) of z, defined on the Borel subsets of Sp(x). As in
Section 2.2, setting E} = E(] — 00, t]), we use the notation

f(x) = /S Jwas,

The functional calculus may be extended to the algebra B(Sp(z)) of all
Borel complex-valued functions on Sp(z), as follows. Let f € B(Sp(z)).
Then f(x) is the operator with domain

Dom (f(z)) = {77 €EH: IF (&) dln, Em) < +OO}, (7.1)

Sp(z)
and defined, for £ € H and n € Dom (f(z)) by

(&, Flaym) = / £(t) A€, Evn).

Sp(z)
We get a closed densely defined operator, which is self-adjoint whenever f is
real-valued. Again, we write f(z) = fsp(x) f(t) dE;. In particular, we have
T = fsp(x) t dE;. It is useful to have in mind the following formula:

¥ € Dom (f(2)), |If(z)nll” :/s ( )If(t)lzd(n,Em% (7.2)
p(z

We say that y € B(H) commutes with an unbounded operator z if yz C
zy, that is, Dom (yz) C Dom (zy) and zy = yz on Dom (yz). Equivalently,
we have y(Dom (z)) C Dom (z) and 2y = yz on Dom (z). An operator
y € B(H) commutes with a self-adjoint operator z if and only if it commutes
with all its spectral projections F(£2), and if so, it commutes with f(z) for
every f € B(Sp(x)).

As in the bounded case, the polar decomposition is a useful tool.

PROPOSITION 7.2.1. Let x be a closed densely defined operator on H.
Then

(i) =*x is a positive self-adjoint operator;
(ii) there exists a unique partial isometry u such that r = u|x| and
Ker z = Keru where, by definition, |z| = (z*z)'/2.

3For more details we refer to [RS80, Chapter VIII].
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The expression x = wu|z| is called the polar decomposition of x. The
delicate part of the proof is to show that z*z is a self-adjoint operator?.
Morever z*x is positive, that is (§,z*z{) > 0 for £ € Dom (z*x). Then
|z| is defined via the functional calculus, and the rest of the proof is easy®.
We recall that u*u is the projection s,(x) on (Kerz)! and that uu* is the
projection s;(x) on the norm closure of Imz. These projections s,(z) and
si(x) are called respectively the right and left support of x.

Note also that an operator y € B(H) commutes with z if and only if it
commutes with u and |z|.

7.2.2. Operators affiliated with a tracial von Neumann algebra.

DEFINITION 7.2.2. Let M be a von Neumann algebra on a Hilbert space
H. We say that an (unbounded) operator x is affiliated with M, and we
write z € M, if for every unitary operator u € U(M'), we have uxr = zu.

This means that the operators uxz and xu have the same domains and
coincide on this common domain. In particular, we have

u(Dom (z)) = Dom ()

for every u € U(M’). Since every y € M’ is a linear combination of four
unitary operators in M’, we see that x € M if and only if 2 commutes with
every y € M. -

We denote by M the set of all closed densely defined operators affili-
ated with M. Let us record the following consequence of the bicommutant
theorem and of the results recalled in the previous section.

ProPOSITION 7.2.3. Let M be a von Neumann algebra on H. Let x
be a closed densely defined operator on H and let x = wu|z| be its polar

decomposition. Then x € M if and only if w and the spectral projections of
|z| are in M.

In particular, when = € M, its left and right supports s;(z) and s,(z)
belong to M.

We now consider the case where M is equipped with a faithful normal
tracial state 7. We will see that, under this assumption, behaves nicely.

PROPOSITION 7.2.4. Let (M, T) be a tracial von Neumann algebra on H
and let x,y € M be such that x Cy. Then r =1y.

PROOF. Recall that x C y means that Dom (z) C Dom (y) with x =
YlDom (z)- Let G(x) = {(§,2€) : § € Dom (z)} be the graph of z. Note that =
is a closed operator precisely when G(x) is a closed subspace of H&H = HP2.
Similarly, we introduce the graph G(y) of y. Let [G(z)] and [G(y)] be the
orthogonal projections of H®2 onto G(z) and G(y) respectively.

4Gee for instance [Yos95, Theorem 2, p. 200].
5For another proof see [RS80, Theorem VIII.32].
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The algebra Ma(M) of two by two matrices with entries in M is a von
Neumann subalgebra of B(H®?). Its commutant is

My(M) = {(8 2) La€ M’}.

We claim that the projections [G(x)] and [G(y)] are in My(M). Indeed,
since x € M, for every u' € U(M') we have u'z = zu/, from which we get

(5 o)icwi=cwi(y 1)
It follows that [G(x)] € Ma(M)"” = My(M) and similarly for [G(y)].

(1) 8) € My(M). Then p; is the left support of p1[G(x)] and
[G(z)] is its right support. The same observation holds for [G(y)]. It follows
that, in Ma(M),

Set p1 = <

[G(2)] ~ p1 ~ [G(y)].
Now, since x C y, we have G(z) C G(y) and therefore [G(z)] < [G(y)].
Since My(M) has a faithful tracial state, we conclude that [G(x)] =
that is, G(z) = G(y), whence = = y.

Let z, y be two closed densely defined operators on H. Then
Dom (z + y) = Dom (z) N Dom (y).
In general this space is not dense in H and can even be reduced to 0 (see

Exercise 7.3). When z,y € M , we will see that « 4 y is a densely defined

closable operator and we will be able to define an addition in M. Similarly,
we will define a product. These facts rely on the following lemmas.

LEMMA 7.2.5. Let x € M. Then, for every € > 0, there exists a projec-
tion p € M such that pH C Dom (x) and 7(1 —p) < e.

PROOF. Let x = u|z| be the polar decomposition of z and denote by p,
the spectral projection of || relative to [0, n]. Then, we have p,H C Dom (z)
and lim,, 7(p,) = 1. We choose n large enough so that 1 — 7(p,,) < e. O

LEMMA 7.2.6. Let V' be a vector subspace of H such that for every e > 0,
there exists a projection p € M with pH C V and 7(1 —p) <e. Then V is
dense in H

PROOF. It suffices to construct an increasing sequence (g,) of projec-
tions with \/, ¢, = 1 and ¢,{ C V. For every integer k > 1, we choose a
projection p, € M such that ppH C V and 7(1 — pi) < 27%. We put

gn = /\ Dk
k>n
Then we have ¢, H C V and

P =7 (V- p0) < Y- p < T2k =2

k>n k>n k>n
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by Lemma 7.2.7 below. Since 7 is normal, we get 7(1 —\/,, ¢») = 0, whence
\/n qn = 1' l:'

LEMMA 7.2.7. Let (p;)ier be a family of projections in (M, 7). Then

(\/p) <D 7o), (7.3)

il icl
PRrOOF. Given two projections p,q € M, by Proposition 2.4.5 we have

T(pVg—p)=7(@—pAq),

and therefore 7(p V q) < 7(p) + 7(¢q). By induction, we get the inequality
(7.3) when [ is a finite set, and the general case uses the normality of 7 and

the fact that
\/Pi = \/( \/ pi)

icl F icF
where F' ranges over the finite subsets of I. O

THEOREM 7.2.8. Let (M,7) be a tracial von Neumann algebra on a
Hilbert space H.
(i) Let x € M. Then, z* € M.
(ii) Let z,y € M. Then z + y and xy are closable and densely defined,
and their closures belong to M.
(iii) M, equipped with the three above operations, is a *-algebra.

PROOF. (i) is obvious. Let us show that if z,y € M, then z + y is
densely defined. To that purpose, we show that Dom (z + y) satisfies the
condition stated in Lemma 7.2.6. Given € > 0, let p,q € P(M) such that
pH C Dom (z), ¢H C Dom (y), and 7(1 —p) < ¢e/2, 7(1 — q) < ¢/2. Then
we have

(pAq@H =pHNgH C Dom () N Dom (y) = Dom (z + y),
and

Tl=pAg)=7((1-p)V(l-q)
<7t7(1l-p)+7(1—9q) <e.

Hence = + y is densely defined and of course affiliated with M. Since
x* and y* are also affiliated with M, we get that x* 4+ y* is densely defined.
Since x+y C (z* +y*)*, we see that x +y is closable. We denote by z+vy its
closure. It is a routine verification to check that the closure of an operator
afiliated with M retains the same property. Therefore, x+y € M.

To prove that xy is closable, we consider the projections p,q as above.
The operator yq is closed and everywhere defined, hence bounded. Let r
denote the projection on the kernel of (1 —p)yq. Then rH C Dom (zyq) and
thus (¢ Ar)H C Dom (zy). Note that 1 —r 31 —p. It follows that

Tl=(gAr)=7(1-¢)v(Q-r) <7(l-g)+7(l-p) <e
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Thus, zy is densely defined, and we conclude as for z +y that zy is closable.
Its closure 'y belongs to M. s

It remains to show that these operations give to M the structure of a *-
algebra. Let us explain for instance how to prove the distributivity property
z (y+2) = (z'y)+(2"2). From the inclusion xy + 22 C z(y + 2), we deduce
that (zy)+(z2) C ' (y+2). Then we use Proposition 7.2.4 to deduce the
equality. O

For simplicity of notation, in the sequel, we will often write x +y instead
of z+y, and similarly for the product.

EXAMPLE 7.2.9. Let M = L*>(X, ) where (X, p1) is a probability mea-
sure and take for 7 the integral with respect to . We consider the standard
representation of M on L?(M,u). Let f : X — C be a measurable func-
tion. Denote by M the multiplication operator by f, with Dom (My) =
{¢ e L*(M,p): f& € L>(M,p)}. Then My is closed, densely defined, and
affiliated with M. Conversely, every closed densely defined operator affil-
iated with M is of this form® Therefore, M can be identified with the
x-algebra of complex-valued measurable functions on X (modulo null sets).

In particular, the spaces LP(X, u), p € [1,400], are canonically embed-

ded in M. This property still holds for any tracial von Neumann algebra.
We will study this fact for L? in the next section.

7.3. Square integrable operators

In this section, (M, 7) is a tracial von Neumann algebra represented in
standard form on L%(M, ).

7.3.1. Square integrable operators.

DEFINITION 7.3.1. A closed densely defined operator x on L?(M,T) is
said to be square integrable if it is affiliated with M and is such that 1 €
Dom ().

Given ¢ € L*(M,7), we have introduced in Section 7.1.1 the closed
densely defined operator L¢ and proved (Theorem 7.1.1) that this operator

is bounded if and only if £ € M C L?(M,7). In the general case, the
operator L¢ has the following characterisation.

THEOREM 7.3.2. For every ¢ € L?(M,T), the operator L¢ is square
integrable. Moreover, the map & v L¢ is a linear bijection from L?(M,T)
onto the space of square integrable operators.

PROOF. Let & € L?(M, 7). Every unitary operator in M’ = R(M) is of
the form R,, where u € U(M). Then, for x € M, we have

RuLe¢(R,)*# = RyLezu* = RyRyu+€ = Ryru€ = Ro = Lei.

6See [KR97, Theorem 5.6.4).
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Since M is an essential domain of both operators RyL¢(Ry)* and L, they
coincide. Therefore, L¢ is affiliated with M. Moreover, 1 is in the domain
of L¢, whence L is square integrable.

Let us show that the map § = L¢ is linear. For §,n € L?(M,7), we have

L¢pn = L+ Ly C LetLy,

and therefore the closure L¢y, of Lg 4y I8 such that Leyy C L¢+Ly,. Then,
Proposition 7.2.4 implies the equality. R
The map § — L¢ is obviously injective since § = L¢1. It remains to show

the surjectivity. Let 7" be a square integrable operator, and set &€ = T'1. Then
for x € M, we have

L¢i = R,T1=TR,1 =T4.
We deduce that Lg C T and again L¢ = T', thanks to Proposition 7.2.4. [

We will freely consider the elements of L?(M,7) as operators. Under
this identification, for x € M and ¢ € L?(M,7), we may view z€ and £z
as the product of two operators in M. The adjoint corresponds to the

conjugation operator J introduced in Section 7.1.1: for & € L?(M, 1), we
have (L¢)* = Lje. Indeed, let z,y € M. Then,

(& Lei) = (@ By6) = (a0,)
= (J&.ya" ) = (RoJE,§) = (Lued, §).

We deduce that Lje C (L¢)*, whence Lje = (L¢)* by Proposition 7.2.4.
It is therefore natural to write J&¢ = £* and to say that £ is self-adjoint
if £ = J¢, or equivalently if Le = (L¢)*.
PROPOSITION 7.3.3. Let € € L?>(M,7). The following conditions are
equivalent:
(i) & is self-adjoint;
(ii) (&,Z) € R for every x € My, ;
(iii) there exists a sequence (xy) in Msq such that limy, ||z, — £, = 0.

PROOF. For & € L2(M, 1) and z € M, 4, we have

(6, 1) = (J€, 2)
from which we immediately deduce the equivalence between (i) and (ii).
Let us now show that (i) = (iii). Let £ = J¢ € L?(M, 7). There exists a
sequence (zy,) in M such that lim,, ||z, — &||, = 0. We put y, = (zp+2z},)/2 €
Ms.,. Since ‘ s — J§H2 = ||z, — &||5, we see that limy, ||y, — ||, = 0. The

converse is also straightforward. ([

Hence, the real subspace L?(M, 7)s., of self-adjoint elements is the norm

—_—
closure of M,,.
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We say that an element ¢ € L?(M, 7) is positive if the corresponding ope-
rator L¢ is self-adjoint and positive, i.e., (n, Lgn) > 0 for all n € Dom (Lg).
We will denote by L?(M, ) the subset of such &.

PROPOSITION 7.3.4. Let &€ € L?>(M,7). The following conditions are
equivalent:
(i) € is positive;
(ii) (z,£) > 0 for every x € M, ;
(iii) there exists a sequence (xy) in My such that lim,, ||z, — &||, = 0.

ProOF. We remark that ¢ is positive if and only if (&, L¢Z) > 0 for every
x € M. We write x € M, as x = yy*, and get

<i'7 5) = <Q> LE@)?

from which we deduce the equivalence between (i) and (ii).

Let us prove that (iii) = (i). Suppose that there exists a sequence (z,,)
in M such that limy, ||z, — £||, = 0. Then we have £ = J¢ by the previous
proposition. Morever, if we write z,, as x,, = y);y, we have, for every x € M,

(T,20,2) = (YnT, YnT) > 0,
and
(#, Lex) = (T, Rp§) = lim (%, Ryy) = lim (&, 2, &) > 0.

It remains to show that (i) = (iii). Assume that ¢ is positive and for
n € N, denote by e, the spectral projection of ¢ relative to [0,n]. Then
ené € M, and we have lim, |le,§ — ||, = 0. O

We remark that the polar decomposition & = u|¢| allows to write any
element in L2(M, 7) as the product of a partial isometry in M and an element
of L?(M, 7). Let us observe also that if ¢ € L?(M, 1) is self-adjoint, then
¢, and & are in L?(M,7),. Thus, every element of L?(M) is a linear
combination of for elements in L?(M),.

REMARK 7.3.5. Let 2 € M and let E be the spectral measure of |z].
Then z is square integrable if and only if 1 € Dom (|z|), that is, if and only
if

/m? dr(E;) = / t]* (1, By1) < +oo,
R R

and then, after having identified x with z1, we have

]2 = /R 2 dr(E) (7.4)

(see (7.1) and (7.2)).
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7.3.2. The Powers-Stgrmer inequality. For a € M, we will denote
by 7, the linear functional = + 7(ax) defined on M. Note that 7, = wy ;. If
a € M., then 7, is a positive linear functional and we have 7, < ||a||, since

7a(2) = 7(¢'az'?) < J|a|7(x)
for every x € M. We have the (easy) Radon-Nikodym type converse.

ProprosITION 7.3.6 (Little Radon-Nikodym theorem). Let ¢ be a
positive linear functional on M and assume the existence of A € Ry such
that o < At. Then there exists a unique a € M with ¢ = 7,, and we have
0<a<AlL

PrROOF. We may assume that A = 1. We define a linear functional ¢ on
M by ¥ (&) = ¢(x). By the Cauchy-Schwarz inequality, we have

(@) < p(Dp(az) < r(a*z) = || &5,

and so ¢ extends to a continuous linear functional on L?(M, 7), still denoted
by 9. Therefore, there exists ¢ in L?(M,7) such that 1 (n) = (¢, n) for every
n € L?(M, ), and in particular ¢(x) = (¢,2). Using Proposition 7.3.4, we
see that ¢ is positive. Similarly, we have

(I-¢i)=1(2)—p(z) 20
for all z > 0, and so 1 — & > 0. Since 0 < &€ < 1, we get that £ = G with
a € M and 0 < a <1, whence ¢ = 7,.

Assume that ¢ = 7, for another b € M. We get 7((a — b)(a — b)*) =0,
and therefore a = b. O

The element « is called the Radon-Nikodym derivative of ¢ with respect
to 7.

For ¢ € L?(M,T), recall that we is the positive linear functional x
(&, z€) on M. The following very useful result is a substitute for the obvious
fact in the commutative case, saying that whenever &£, are two positive
functions, then |£ — 77|2 < ‘§2 — 772‘.

THEOREM 7.3.7 (Powers-Stgrmer inequality). We have

1€ = 1ll3 < llwe = wnll < 1€ = nllall€ + 7l (7.5)
for every &,n € L*(M, 7).

PrOOF. The right hand side inequality follows immediately from the

identity
we = wy = (1/2)(We—pe1n + Wesne—n)-
Let us prove the left hand side inequality. We begin by the study of the case
where { = a and 1 = b with a,b € M. Then wg = 7,2, w, = 72 and we
have to prove that
la = b]13 < 72 — 72 .

Let p, g be the spectral projections of @ — b corresponding respectively to the
intervals [0, +oo[ and | — 00, 0[ so that a —b = (p — ¢)|a — b|.
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Since ||p — ¢|| < 1, we get the inequality
[7((@® = 0*)(p = )| = (722 = 12) (0 — D)| < 702 = 72
The goal of the rest of the proof is to establish the inequality
la = Bl13 < |7 ((a® = 6*)(p - @))]-
We first claim that
7((a* = b*)p) > 7((a — b)?p). (7.6)
Indeed we have
7'((&2 — b2)p) — T((a — b)2p) = T(b(a — b)p) + T((a — b)bp)
=27 (b"(a — b)pb/?) > 0,

since (a — b)p > 0.
Similarly, we get

7((b* — a?)q) > 7((b - a)*q). (7.7)

Adding up (7.6) and (7.7), we obtain

7((a* = 0*)(p — q)) = 7((a® = V*)p) + 7((* = a*)q)
>7((p+a)a—0)?) =7((a—b)?) = la—bl3.

We now consider the general case. We chose sequences (ay,) and (by,) in
M such that lim, ||a, — £||2 = 0 and lim, ||b, — 1|2 = 0. Passing to the
limit in the inequality

lan — ball3 < llwa — wyll
gives the first inequality of (7.5). O

The following theorem says that any normal positive linear functional
on M is canonically written as a vector state.

THEOREM 7.3.8. The map & + we is a homeomorphism from L3(M,7)4
onto the cone of all normal positive linear functionals on M.

PROOF. The injectivity is a consequence of the left inequality in (7.5).
Let us prove the surjectivity. Let ¢ be positive normal linear functional on
M. We first claim that for every € > 0, there is @ € M such that ||p—w;|| <
e. Indeed, by Theorem 2.5.5 (3) there exist &1, ...,&, in L?(M, 7) such that
lo—> i, we, || < e/2 and so we see that we may find ay, ..., an € M with

m
o= wal < e

k=1

But > " wa = 7 with b = >3 agaj > 0. To conclude our claim it
suffices to put a = b/2.
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Now, we take a sequence (by,) in M such that lim, w;~ = ¢. Thanks to

~

the Powers-Stgrmer inequality, we see that (b,) is a Cauchy sequence which,
therefore, converges to an element ¢ € L?(M,7)y, and then ¢ = we. ([

As a consequence, a positive normal linear functional is w.o continuous
on M in standard representation, (and not only when restricted to its unit
ball).

PROPOSITION 7.3.9. Let (M, 7) be a tracial von Neumann algebra and
let Z be its center. The restriction of the trace to Z is still denoted by 7. We
identify L*(Z,7) to a subspace of L*(M, 7). The map & € L*(Z,7)+ — we
is a bijection onto the cone of normal traces on M. In particular, if 7 and
T are two normal traces on M with the same restriction to Z, then 1 = 7.

PROOF. We leave it as an exercise for the reader to show that, for £ €
L*(M, 7)., the functional we is a trace if and only if the positive (possibly
unbounded) operator £ commutes with M. One only needs to observe that,
forx € M and uw € U(M),

e () = wyegul()

with u*zu € L?(M, 7). The proposition follows immediately. O

7.4. Integrable operators. The predual
Still, (M, 7) is a tracial von Neumann algebra represented in standard
form on L?(M, 7).

DEFINITION 7.4.1. Let 2 € M and let E be the spectral measure of |z].
We say that z is integrable if

/yty dT(Et):/\t\d<i,Eti> < +o.
R R

We denote by L'(M,7) the set of integrable operators. More generally,
for p > 1, we may define LP(M, 7) as the set of x € M with [, [t|’ dr(E;) <
+o00. Of course, we set L>°(M,7) = M. These LP-spaces behave as in the
commutative case. In the previous section, we have studied the case p = 2.
The additional case p = 1 will be enough for our needs. Obviously, we have

M c L*(M,T) C L*(M, 7).
We will see that L'(M,7) is a Banach space whose dual is M.

7.4.1. Integration on ]\7+. First, we extend Thar, toamap 7 : M+ —
[0, +00], by the formula

7(z) :/R+td7'(Et) :/R+td<i,Eti>,

where E is the spectral measure of z and E; corresponds to the interval
| — o0, t].
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LEMMA 7.4.2. For x,y € MJF and A > 0, we have
T(x+y)=71(x)+7(y), 7(Az)=AI(2).
Moreover, for every x € ]\7, we have
T(z*z) = T(xx™). (7.8)

PRrROOF. We denote by e, the spectral projection of = + y corresponding
to the interval [0, n]. Then we have

T(x+y) = ligbn T((x+y)en) = lirrln T(epzen + enyen).
But the operators e,xe, and e,ye, are bounded and thus
T(x+y) = liTan(T(enxen) + 7(enyen))

= li7£n7(en:cen) + li7£n7(enyen)

_ hfln <m1/2€m x1/2€n> 4 hTEn <yl/2eAn, y1/2€n>‘
When 7(z) < +00 then 2'/2 € L?(M, ) and we get

1i7rln7'(en:ven) = <x1/2,x1/2> = 7(x).

Therefore we see that 7(x 4+ y) = 7(z) + 7(y) when 7(x) < +00 and 7(y) <
+00. Whenever 7(x) = 400 we claim that lim,, 7(e,ze,) = +00. Otherwise,
(2'/2¢6,,) is a Cauchy sequence in L?(M, 1), thus converging to some &. Since
21/2 is a closed operator, we deduce that 1 is in its domain with 2/21 = &,
a contradiction. Then, since

T(en(z +y)en) > T(enxey),

we get that 7(x + y) = +o0 = 7(z) + 7(y).

The proof of 7(Az) = Ar(z) is immediate. Finally, given z = u|z| € M
where u € U(M) (by Lemma 6.1.3), to see that 7(z*z) = 7(zz*), or equiv-
alently that 7(|z|*) = 7(ulz|?u*), it suffices to observe that E,(u|z|*u*) =
wEy(|z|*)u*, where Ey (k) is here the spectral projection of k € M, relative to
| — 00, t]. Tt follows that 7(Ey(u|z[*u*)) = 7(uE,(|z[*)u*) = 7(E(|z]?). O

We set

n= {:r eM:7(zz) < —i—oo},
n
m= {szyz PTG, Y € ﬂ}
i=1
LEMMA 7.4.3. Let 7: M, — [0, +00] as above. Then

(a) n and m are linear self-adjoint subspaces of M which are stable
under left and right multiplications by elements of M ;
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(b) mN M, = {x €M, :7(z) < —f—oo} and m is linearly generated by

mn M+ 5
(c) the restriction of T to m N M extends in a unique way to a linear
functional on m (still denoted 7) and we have T(z*) = 7(x) for

every r €m;
(d) 7(zy) = 7(yx) if either x,y € n or x € M and y € m.

PRrROOF. (a) Let z,y € n. We have

(z+y)" (@ +y) + (@ —-y) @ -y = 2"z +y7y),
whence 7((z + y)*(z + y)) < 4+o00. Thus, n and m are linear self-adjoint

subspaces of M. Obviously, ux € n for every u € U(M), and so, n and m
are M-bimodules.
(b) Let z =377, a7

7y; with zj,y; € n. Since

n 3
4z = Z Zi*k(xj + iy (2 + iMyj)

we see that m is linearly spanned by m N M+. Whenever z is self-adjoint,

we get,
n n

4= (x5 + ) (@ ) — > (x5 — ;) (25— yy)-

Jj=1 Jj=1

So z is the difference of two elements of m N ]\7+. Moreover we have

n
2 <> (x5 +yy) (5 + ),
j=1
and it follows that m N M, C {x €M, : T(z) < —i—oo}. The opposite inclu-

sion is obvious.

(c) Every element = € m is written as x1 — xo + i(x3 — x4), where the x;
are in mN M. Then we sct 7(z) = 7(x1) — 7(x2) + (7 (23 — 7(24)). Since 7
is additive on M+, we see that this definition is not ambiguous. Moreover,
this extension 7 is linear and self-adjoint.

(d) The equality 7(xy) = 7(yz) for z,y € n is deduced from (7.8), by
polarization. Finally, for x € M and y1,y2 € n, we get

T(2(y1y2)) = 7((2y1)y2) = 7(y2(2y1)
= 7((g22)y1) = 7(y1(y27)) = T((412))-
The second assertion of (d) follows by linearity. O

Observe that, by Remark 7.3.5, we have n = L?(M, 7) and that ||¢]|, =
€]l = T(£%€)'/? when ¢ € L*(M, 7). So, by polarization we get

Vf, ne L2(M7 T)’ 7'(5*77) = <§7 77>L2(M) (79>
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In particular, we , is the linear functional x € M — 7(£*xn).
On the other hand, we see that

m={zeM:r(a]) < +oo} = LM, 7),

after writing = as z = (u|:n|1/2)(|:x|1/2). Moreover, L'(M,7) is the set of
products of two elements of L2(M, 7).

7.4.2. The predual of M. Given a € L'(M, ), we set |al|; = 7(|a|).
Moreover, we denote by 7, the linear functional z — 7(az) defined on M.
This is compatible with the definition of 7, previously introduced when
a € M. We also observe that we, = 7+ for every &,n € L*(M,7). In

1/2

particular, 7, = we, with £ = |a|”/” and n = u|a|1/2 is w.o. continuous.

THEOREM 7.4.4. Let (M, T) be a tracial von Neumann algebra acting on
L?(M,T).
(i) The map a — 7, is linear, injective, from L*(M,T) onto the space
M, of w.o. continuous linear functionals on M, and we have
I7all = 7(lal) = lall;. (7.10)
Moreover, the linear form 1, is positive if and only if the operator
aisin LY(M,7),.
(ii) (LY(M,7),|]|l;) is a Banach space whose dual is M when x € M
is viewed as the functional a — 7(ax).

(iii) The topology o(M, M.,) is the w.o. topology associated with the stan-
dard representation.

PROOF. (i) Let us prove Equality (7.10), which will imply the injectivity
of the map a — 7,. Let a = ula| be the polar decomposition of a. For xz € M,
the Cauchy-Schwarz inequality gives

r(\a|1/2(m‘a|1/2))‘ _ <\a|1/2,:cu|a\1/2>
= H’“‘UZHQHJ“’”|“|1/2H2 < 7(|la))?|| x| 7 (|a]) /2

< 7(la) |2l

[7a ()| =

whence ||7,]| < 7(|a|). Taking x = u* we get 7,(u*) = 7(|a]), and so the
equality in (7.10).

The map is surjective since every positive element in M, is of the form
we = T¢2 with § € L*(M,7)4+ (see Theorem 7.3.8) and since M, is linearly
generated by its positive elements.

We will identify M, and L'(M, 7). Using the polar decomposition a =
ula|, we observe that every ¢ = 7, € M, may be written ¢ = we, with
¢ =1al'?,n = ula|'’* and so €]}, = [lnll, = Il

(ii) We claim that M, is closed in M*. Let w be in the norm closure of
M,. We have w = > 22, ¢ where ¢y, is w.o. continuous and [|py| < 2%
for k > 2. So, by the first part of the proof, we get w = >, we, ., With
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SLlIERls < +oo and 3, |k ll5 < 4o0c. By polarization, we see that w is a
linear combination of positive normal linear functionals, and so w € M, (by
Theorem 7.3.8). As a consequence, M, is complete and so is L!(M, 7).

Finally, we prove that M is the dual of L'(M,7), or of M,. For x € M
let Z be the linear functional w +— w(x) defined on M,. It is easily checked
that ||z|| = ||| for x € M. Now, let v € (M,)*. The map (§,7n) — (v,we )
is sesquilinear and continuous and therefore there exists an operator = €
B(L?*(M, 1)) such that

<v7w5771> = <£7x77>

for every &, € L?(M, 7). Given y € M’, the functionals induced on M by
we,yn and wy=¢ , are the same. It follows that z commutes with y, whence
x € M, and finally 7 = v.

(iii) is obvious. O

REMARK 7.4.5. Note that M is naturally embedded in L'(M, 7). Since
M is the dual of L'(M, 7), to show the density of this embedding, it suffices
to check that if x € M satisfies 7,(x) = 0 for all @ € M, then z = 0. This
is obvious, because 7 is faithful: taking a = z*, we get 7(z*z) = 0 and so
x = 0. So L'(M,7) may be defined abstractly as the completion of M for
the norm ||-||;.

REMARK 7.4.6. Observe that M, is the subspace of M™ linearly gener-
ated by the positive normal linear functionals, which coincide in the standard
representation with the w.o. continuous positive ones. Since normality only
depends on the ordered cone M, we see that M, does not depend on the
choice of 7. It is called the predual of M.

More generally, for any von Neumann algebra M we may introduce
the subspace M, of M™ linearly generated by the positive normal linear
functionals. One of the basic results in the subject states that M is cano-
nically identified to the dual of M,, that M, is a closed subspace of M* and
that M, is the unique predual of M, up to isomorphism [Dix53, Sak56].
In addition to the example of tracial von Neumann algebras just studied,
we mention the well-known fact that the von Neumann algebra B(H) is the
dual of the Banach space S'(#H) of all trace-class operators, i.e., operators
T on H such that Tr(|7]) < +oo (see [Ped89, Section 3.4]).

REMARK 7.4.7. It is a classical fact that the unit ball of M, is weak*-
dense in the unit ball of its bidual M*. Moreover, every (norm continuous)
state 1) on M is the weak™ limit of a net of normal states. Indeed, if ¢ in not
in the closure of the convex set C' formed by the normal states, the Hahn-
Banach separation theorem implies the existence of a self-adjoint element
x € M and a real number « such that ¢(z) > a and p(z) < « for every
¢ € C. But then x < al, so that ¢(z) < «, a contradiction.

The general non-commutative version of the Radon-Nikodym theorem is
contained in the statement of Theorem 7.4.4. Let us spell out this important
result.
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THEOREM 7.4.8 (Radon-Nikodym theorem). Let (M, T) be a tracial
von Neumann algebra. For every ¢ € M, there is a unique a € L'(M,T)
such that ¢ = 74. The operator a is called the Radon-Nikodym derivative of
@ with respect to T.

For further use, we also record in another form the Hélder inequalities
(Exercise 7.6):

Va € L'(M, ),V € M, |r(az)| < azl; < |lall ]|zl (7.11)
vé,me LA(M,7), [r(&n)| < €nlly < lI€lnll,, (7.12)

and the Powers-Stormer inequality:

Ve e LAM, 1)y, 1€—nl3 <€ =2, < € —nlullé+nll, (7.13)

(recall that for & € L?(M ), we have we = 7¢2).
Finally, note that given &, € L?(M, 7), the classical inequality

1€l = [nlllz < 1€ =l
is no longer true in the non abelian case, but is replaced by the following
one:

LEMMA 7.4.9. For &,n € L*(M,7) we have
el — Inlll3 < 2 max(lElly, [l )11E = nll,-

PROOF. As a consequence of the Powers-Stgrmer inequality we get

2 2 2
1€l = bl < (1612 = ]|
= llwgr — wpe
< 1€+ 1l 1€ = 7l

whence the wanted inequality. U

7.5. Unitary implementation of the automorphism group

ProPOSITION 7.5.1. Let 71 and 1o be two normal faithful tracial states
on a von Neumann algebra M. There exists one, and only one, unitary
operator U from L?>(M, 1) onto L?(M,Ts) with the following properties:

(i) U is M-M linear (with respect to the structures of M -M -bimodules)
and intertwines the canonical conjugation operators Jy and Jo rel-
ative to 11 and 1o respectively;

(i) U(LA(M,m)), C L*(M, 7).

PrROOF. The Radon-Nikodym theorem implies the existence of a positive
element h in L'(M, 72) such that 7 = 73(h-) and since 71 is a trace, we see
that h is affiliated with the center Z(M) acting on L?(M,72).

Let U : M — L?*(M,7y) be defined by U(m) = h'/?m. We have
17y, = th/QﬁlHZTQ, and so U extends to an isometry from L?(M,7y)

into L2(M, 7). The space hl/2M is stable under the right action of M
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and therefore is of the form pL?(M, ) for some projection p € M. Since
(1—=p)h =0, we get 71(1 —p) =0, whence p =1 and U is an isometry from
L?*(M, ) onto L*(M,13).
Obviously, U is M-M linear. Moreover, for m € M, we have
Uo Jy(m) = h'?m* = m*h'/? = Jy o U (i),
whence U o J; = JyoU.

We claim that U(L*(M,71)4) = L*(M, 72)+. Indeed, using Proposition
7.3.4 we get U(My) C L*(M,72)+ and then U(L*(M, 1)+ C L*(M, 7).
This proposition also gives U* (L*(M, 72)4) C L*(M, 1) because (U*¢, m) =
(&, Um) >0 for £ € L*(M,79)4 and m € M.

Finally, let V' be a unitary operator with the same properties. Then
V*U = W is a unitary operator in the center of M. The equality J; o W =

W o Jy gives W = W*. In addition, W is a positive unitary operator since
W1 e L*(M,r)y. It follows that W = 1. O

Thus, the standard form of a tracial von Neumann algebra is unique, up
to isomorphism. This is why we will often write L?(M) instead of L?(M, 7).

7.5.1. Unitary implementation of Aut (M). We recall that Aut (M)
is the group of automorphisms of M.

PROPOSITION 7.5.2. Let (M, ) be a tracial von Neumann algebra. There
exists a unique group homomorphism o — ug from Aut (M) into the unitary
group of B(L*(M, 7)) such that, for every o € Aut (M),

(1) a(z) = uqzu}, for every x € M;
(ii) wad = Jua, and ua(L*(M,7)4) = L*(M,7)4.

The map « +— u,, is called the unitary implementation of Aut (M).

PROOF. Let u,v be two unitary operators that satisfy conditions (i) and
(ii) above. Then v*u € M’', and since Jv*uJ = v*u, we also have v*u € M.
Moreover, v*u(L?*(M,7);) C L*(M,7)4 and thus u = v by Proposition
7.5.1.

Now, given o € Aut (M), let v : L2(M, 7oa) — L?(M,7) be the unitary
operator such that v(m) = a(m) and let w : L?(M,7) — L*(M,T o a) be
defined in Proposition 7.5.1 with 71 = 7 and 79 = 7 o . It is a routine
verification to check that vw fulfills the above conditions (i) and (ii). O

REMARK 7.5.3. More generally, let (M, ) and (Ma, 72) be two tracial
von Neumann algebras and let o be an isomorphism from M; onto Mo.
There exists a unique unitary U : L?(My, 1) — L?(Mz, 72) such that a(x) =
UxU* for x € My, UJy = JoU and U(LQ(M1,71)+) C L*(Ma,m2) 4.

REMARK 7.5.4. The unitary implementation is an isomorphism from
Aut (M) onto the subgroup of unitary operators u on L?(M,7) such that
uMu* = M, uJ = Ju, and u(LQ(M, 7')+) = L*(M,7);. The subgroup
Aut (M, 1) of trace preserving automorphisms is sent on those unitaries
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which in addition satisfy ul = 1. We observe that for a € Aut (M, 1),

the unitary operator u, is defined, for m € M, by uy(m) = a(m). We also
note that the subgroups of U(B(L?*(M,7))) corresponding to Aut (M) and
Aut (M, 7) are closed with respect to the s.o. topology (or the w.o. topology).

REMARK 7.5.5. Let M = L*°(X, u) equipped with its canonical tracial
state 7,. Given any Borel automorphism ¢ of X such that 6, is equivalent
to p, the map o : f € L°(X, u) — fo# is an automorphism of M and every
automorphism of M is of the form (see Theorem 3.3.4). If r denotes the
Radon-Nikodym derivative df,u/du, we immediately see that u,& = /1 £of
for ¢ € L?(X,u). This unitary implementation of Aut (M) is sometimes
called its Koopman representation.

7.5.2. Aut (M, ) is a Polish group when M is separable. We equip
Aut (M, ) with the topology for which a net («;) € Aut (M, 7) converges
to « if for every x € M we have

lin s (@) = a(z) |, = 0.

Then Aut (M, 1) is a topological group.

As seen above, the unitary implementation of o — ug of Aut (M, 7) is an
an isomorphism onto a closed subgroup of the unitary group of B(L?(M)),
equipped with the s.o. topology. Moreover, for a, 8 € Aut (M, 7) and x € M
we have

(@) = B(@)ly = lluat — upi]],,

and therefore o — uy is a homeomorphism.

Recall that a Polish group is a topological group whose topology is Polish,
that is, metrizable, complete and separable. In particular, the group U(H)
of unitary operators on a separable Hilbert space H, equipped with the s.o.

topology is a Polish group. Indeed, let {&,} be a countable dense subset of
the unit ball of H. Then

1
d(u,v) = Y o (lun = véa + [|u*én — v"6nl))

is a metric compatible with the s.o. topology on U (H ), and U(H) is complete
and separable with respect to this metric. As a consequence, Aut (M, 7) is
a Polish group when M is separable.

Exercises

EXERCISE 7.1. Let G ~ (B, T) be a trace preserving action of a count-
able group on a tracial von Neumann algebra. Show that M = B x G is on
standard form on L?(B,7) ® ¢*(G). Spell out the conjugation operator J
and the right action of M.

EXERCISE 7.2. Show that a vector ¢ € L?(M, ) is separating for M if
and only if it is cyclic.
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EXERCISE 7.3. Let H = L?([~1/2,1/2], A) (where ) is the Lebesgue mea-
sure) equipped with the orthonormal basis (e, )nez, with e, (t) = exp(2mint).
Let x be the function on [-1/2,1/2] such that x(¢) = —1if t € [-1/2,0]
and x(t) = 1 otherwise. We denote by u the multiplication operator on H
by x. Finally, let 2 be the self-adjoint operator such that ze, = exp(n?)e,
for n € Z.

(i) Show that Im (x~1) Nulm (=) = 0 (Hint: if
Zexp(—n2)anen = XZexp(—nQ)ﬁnen,

consider the entire functions f(z) =, exp(—n?)anen(z) and g(2)

= 3", exp(—n?)Bpen(z) and compare their restrictions to [-1/2,1/2]).
(ii) Show that the intersection of the domains of the self-adjoint ope-

rators x and uxwu is reduced to 0.

EXERCISE 7.4. Show that M is separable if and only if L'(M,7) is a
separable Banach space.

EXERCISE 7.5. Let (M, 7) be a tracial von Neumann algebra. Show that

every normal trace 71 on M is of the form 7(h-) where h € LY(M,7)y is
affiliated with Z(M).

EXERCISE 7.6. Let (M, 7) be a tracial von Neumann algebra, a € L'(M, 1),
reM, & ne L?(M,T).
(i) Show that [|az{|, < [la[ (x|, llzall, < [[zll[lall;-
(ii) Show that [|€n]l; < [I€[lylInll,-

EXERCISE 7.7. Let (M, 7) be a tracial von Neumann algebra. Show that
that the topology on (M, 7) defined in Section 7.5.2 is also defined by the
family of semi-norm a — || o || where ¢ ranges over M,.

Notes

The subject of this chapter dates back to the seminal paper [MVN36]
of Murray and von Neumann, which contains many of the results presented
here, and in particular the fact that the set of all closed densely defined
operators affiliated with a type II; factor is a *-algebra. The theory of
non-commutative integration was completed by many authors, among them
Dixmier [Dix53] and Segal [Seg53] for finite or semi-finite von Neumann
algebras. The Radon-Nikodym theorem is due to Dye [Dye52]. Nowadays,
the subject goes far beyond (see [Tak03, Chapter IX] for instance).

The notion of standard form has been extended to the case of any von
Neumann algebra in [Haa75]. The very useful Powers-Stgrmer inequality
was proved in [PS70] for Hilbert-Schmidt operators and in [Ara74, Haa75]
in the general case.






CHAPTER 8

Modules over finite von Neumann algebras

We now study the right (or equivalently the left) modules H over a tracial
von Neumann algebra (M, 7).} They have a very simple structure: they
are M-submodules of multiples of the right M-module L?(M). It follows
that, up to isomorphism, there is a natural bijective correspondence between
them and the equivalence classes of projections in B(¢£2(N))®M. This latter
algebra is not finite in general, but belongs to the class of semi-finite von
Neumann algebras, that we study succintly.

The set B(H ) of operators which commute with the right M-action on
‘H is a semi-finite von Neumann algebra, equipped with a canonical semi-
finite trace 7, depending on 7. In the particular case M = C, then B(Hys) =
B(#) and 7 is the usual trace Tr.

In the general case, T may be defined with the help of appropriate or-
thonormal bases, made of M-bounded vectors, generalising the usual or-
thonormal bases of a Hilbert space. The dimension of H as a M-module is
by definition 7(1) which, unfortunately, is not intrinsic, except when M is
a factor, where 7 is unique. In this case, a M-module is determined, up to
isomorphism, by its dimension, which can be any element in [0, +oc] and
there is in particular a well understood notion of finite M-module. The
general case will be studied in the next chapter.

8.1. Modules over abelian von Neumann algebras.

Let M be a von Neumann algebra. Recall that a left M -module (resp. a
right M -module) (w,H) is a Hilbert space H equipped with a normal unital
homomorphism (resp. anti-homomorphism) 7 of M. When 7 is faithful, we
say that (m,H) is a faithful M-module.

DEFINITION. We say that two left M-modules (m;, H;), i = 1,2, are
isomorphic (or equivalent) if there exists a unitary operator U : Hi — Ha
such that Umy(z) = ma(x)U for every x € M.

Our purpose is to describe the structure of these modules (assumed to be
separable), up to isomorphism, for separable tracial von Neumann algebras.

1Except in Section 8.3, for simplicity of presentation, we limit ourselves to the sepa-
rable case: von Neumann algebras as well as modules will be separable. The reader will
easily make the necessary changes without these assumptions. We make explicit these
assumptions when they are necessary.

119



120 8. MODULES OVER FINITE VON NEUMANN ALGEBRAS

We first consider the classical case of abelian von Neumann algebras, which
amounts to the multiplicity theory for self-adjoint operators.

Let M be a separable abelian von Neumann algebra. We have seen in
Theorem 3.2.1 that M is of the form L (X, u) where (X, p) is a standard
probability measure space. For every Borel subset Y of X, the Hilbert space
L?(Y, ) is obviously a M-module, when equipped with the representation
by multiplication of functions. We may add such representations. More
precisely, a more general way to construct M-modules is as follows. Let
n : X — NU{oo} be a measurable function and set X = {t € X : n(t) = k}.
If E% denotes the canonical Hilbert space of dimension k, then the direct
Hilbert sum H(n) = >_i%; (¢ ® L?(X, 1)) has an obvious structure of M-
module. We say that n is the multiplicity function of the module H(n). In
fact, this is the most general construction of M-modules.

THEOREM 8.1.1. Let (w,H) be a M-module where M = L*(X,pu).
There ezists a unique (up to null sets) measurable function n : X — NU{oco}
such that H is isomorphic to H(n).

ProoOF. Consider first the case where (7, H) is a cyclic M-module, i.e.,
there exists { € H with 7(M)§ = H. Let E be the Borel subset of X
such that kerm = 15L>°(X, ) and set Y = X \ E. The restriction of 7 to
L*>®(Y, p) is faithful and, as in Theorem 3.1.4, we see that # is isomorphic
to the M-module L?(Y, p).

In the general situation, H is a Hilbert sum of cyclic modules and is
therefore isomorphic, as a M-module, to some Hilbert sum 2%1 L3(Yy, 1),
where the Y, are Borel subsets of X, not necessarily disjoints. We can build
a partition (Xj) of X, to the price of introducing multiplicity, in order to
show that H is of the form Y ¢o, (2 ® L%(Xy, p)). We set

Xi =W \vaY), Xo= |J ((enY)\UjsgaYs), -
k (KA1}
We leave the details as an easy exercise.

Let us show that H(n) is completely determined by its multiplicity
function. Let n,n’ : X — N U {co} be two multiplicity functions and
U:(m,H(n)) = (7',H(n')) be an isomorphism between the two correspon-
ding L>°(X, p1)-modules. We write H(n) as S % (2@ L?(Xy, 1)) and H(n')
as Y1, (2 ® L*(X}, ). Then AdU induces an isomorphism between the
commutants of the two L (X, y1) actions, i.e., from > s, B(E2)®L® (X}, 1)
onto %, B(2)®L> (X}, u). But then, for every k we have

AdU (B(R)BL™® (X, p)) = BUZ)SL>® (X, 1)
U

for f € L®(X, ).
Taking f = 1x,, it follows that for £ € £2 @ L*(Xy, p),

(
(see Exercice 5.6). Moreover, we have Un(f) = 7'(f)
m'(1x, )UE =UE =Un(1x, )6 =n'(1x, )UE = m

/(]—XkﬂXk/ )va
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and therefore Xy C Xj. Similarly, we get the opposite inclusion. O

REMARK 8.1.2. Let M = L*®°(X,p) as above. By Theorem 3.2.1, we
may take X = Sp(z), where Sp(z) is the spectrum of a self-adjoint operator
x which generates M. Then the classification of the faithful M-modules may
be viewed as a consequence of the classification of self-adjoint operators, up
to unitary equivalence. In this case, n(t) expresses the multiplicity of ¢ in
the spectrum of z. For this subject, we refer to [RS80, Theorem VIIL.6],
and to [Nel69, §6] for a readable complete proof.

EXAMPLE 8.1.3. Take M = C™ = L*°(X, ) with X = {1,...,m} and
u any fully supported probability measure. The classification of faithful M-
modules is then the classification, up to unitary equivalence, of self-adjoint
operators with spectrum X. Of course, the complete invariant is the multi-
plicity function k& € X +— n(k) of the eigenvalues.

8.2. Modules over tracial von Neumann algebras

Let (M, 7) be a separable tracial von Neumann algebra. We have seen
in the previous chapter that L?(M) is a left M-module (and a right M-
module as well). We will use here the notation L,¢ for z§ and R, for {x
and denote by L(M) and R(M) the ranges of L and R respectively. Recall
that R(M) is the commutant of L(M). We keep these notations to avoid
confusion with M’ and M when M will be concretely represented on some
Hilbert space H, other then L?(M). The direct sum of countably many
copies of L2(M) is still a left M-module, in an obvious way. It is denoted by
(*(N) ® L}(M). Given a projection p in the commutant of Idp2 vy ® L(M)
in B(#?(N) ® L%(M)), the restriction to p(¢2(N) @ L?(M)) of the left action
of M defines a structure of left M-module on this Hilbert space. We will
see now that this is the most general type of separable left M-module. As
in the proof of Theorem 8.1.1, we first consider the case of a cyclic module.

LEMMA 8.2.1. Let m : M — B(H) be a normal unital representation.
with a cyclic vector €. There exists an isometry U : H — L?*(M) such that
Un(z) = L U for every x € M. If we set U =0, the range Mn of U is of
the form pL*(M) with p € R(M) = L(M)'.

PROOF. We define a normal positive functional on M by setting p(z) =
(¢, m(x)€). By Theorem 7.3.8, it is is of the form ¢ = w, for some n €
L*(M)4. Then U : w(z)¢ — L extends to an isometry with the required
properties. ([

PROPOSITION 8.2.2. Let m : M — B(H) be a normal unital repre-
sentation. There exists an isometry U : H — (*(N) ® L?(M) such that
Un(x) = (Idp(N) ® LI)U for every x € M.2 Moreover, we may choose U

2Without the separability assumption, N has to be replaced by some (not necessarily
countable) set I.
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such that the projection on the range of U is of the diagonal form ®gpy with
pr € R(M).

PROOF. We write (7, H) as a the direct sum of cyclic sub-representations
(7, H, &), k € N. For each k, we define Uy : Hy, — ppL?(M) as in the
previous lemma. Then, the partial isometry

U:H=eayHy — &(pL?*(M)) C P(N)® L*(M)

defined in the obvious way intertwines 7 and the diagonal left representation
of M on (*(N) ® L*(M). O

PROPOSITION 8.2.3. Let m : M — B(H) be a normal unital repre-
sentation. There is a projection p in the commutant of Idsp ) ® L(M)
into B({2(N) ® L?(M)) such that H is isomorphic, as a left M-module, to
p(F?(N) ® L?(M)). This correspondence defines a bijection between the set
of left M -modules, up to equivalence, and the set of projections of the com-
mutant of Ide ) ® L(M), up to equivalence classes of projections in this
commutant.

Proor. With the notation of Proposition 8.2.2; it suffices to set p =
UU*. The second part of the statement is immediate. O

If we write the elements of B(¢?(N) ® L?(M)) as matrices with entries in
B(L?(M)), with lines and columns indexed by N, the commutant of Idgn®
L(M) is the subalgebra B(¢*(N))@R(M) of those matrices with entries in
R(M). So, to go further, we need tools to detect when two projections of
such a von Neumann algebra are equivalent. This algebra belongs to the
class of semi-finite von Neumann algebras that we briefly introduce now.

8.3. Semi-finite von Neumann algebras

8.3.1. Semi-finite tracial weights. Recall first that the cone B(H)+
of all positive operators on H comes equipped with a trace Tr (or Try in
case of ambiguity) defined as follows. Let (¢;) be any orthonormal basis of
H. For every x € B(H)+, we put Tr(z) = > (¢j,x¢;) € [0,400]. This
element is independent of the choice of the orthonormal basis and is called

the trace of z. It is a faithful normal semi-finite trace in the following sense.

DEFINITION 8.3.1. Let M be a von Neumann algebra. A map Tr :
M, — [0, 4] is called a trace® if it satisfies the following properties:
(a) Tr(z +y) = Tr(z) + Tr(y) for all z,y € M;
(b) Tr(Az) = ATr(x) for allz € M, and A € R, (agreeing that 0-+o00 =
0);
(¢) Tr(x*z) = Tr(xzzx*) for all z € M.

It is called semi-finite if, in addition,

3We sometimes say tracial weight to insist on the fact that it is not necessarily finite.
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(d) for every non-zero x € M there exists some non-zero y € My with
y <z and Tr(y) < +o0.
If
(e) Tr(sup; z;) = sup; Tr(x;) for every bounded increasing net (z;) in
M, we say that Tr is normal.
It is called faithful if, for x € M,
(f) Tr(x) = 0 if and only if x = 0.

Whenever Tr(1) < +oo then, since M is linearly generated by My, Tr
extends uniquely to a linear functional on M, which is a trace in the usual
sense.

DEFINITION 8.3.2. A von Neumann algebra M is said to be semi-finite
if there exists on M, a faithful, normal, semi-finite trace Tr.

The class of semi-finite von Neumann algebras encompasses finite von
Neumann algebras.

Factors with a minimal projection are isomorphic to some B(H) (see
2.4.13), hence semi-finite. They form the class of type I factors. Diffuse semi-
finite factors split into two classes: we find those such that Tr(1) = +oo,
called type Il factors, and those such that Tr(1) < +oco, our now familiar
type II; factors?.

Let us give a basic way to construct semi-finite non-finite von Neumann
algebras. Let (N,7) be a tracial von Neumann algebra on A and I an
infinite set. Consider the von Neumann tensor product M = B(¢*(I))@N
on 2(I) @ H. As usually, we write its elements as matrices [m; ;] with lines
and columns indexed by I and entries in N. The diagonal entries of the
elements of My are in Ni. Let Tr be the usual normal faithful semi-finite
trace on B(¢%(I))+. For m = [m; j] € M, we set

Too(m) = (Tr @ 7)(m) = Y _ 7(m ). (8.1)
el

Then 7 is a normal faithful semi-finite trace on M, with 7o,(1) = +00. The
two first conditions of Definition 8.3.1 are obvious. Using matrix multiplica-
tion, we also easily check that 7o (mm*) = 7o (m*m) and that 7oc(m*m) = 0
if and only if m = 0. Furthermore, 7, is semi-finite. Indeed, denote by p;
the projection on the subspace Cd; ® H. Given a non-zero m € M, , there
is i € I such that p;mp; # 0. Then, we have

Too(ml/Qpiml/Q) = Too(Pimp;) < +00,

with ml/Qpiml/2 < m and ml/meLl/2 #0.
Finally, let (m) be an increasing net of elements in My with \/, m, =
m. We easily get that 7o (m) = sup,, Too(my) by observing that for every i €

4This definition is not ambiguous since the faithful, normal, semi-finite trace Tr on a
semi-finte factor is unique, up to multiplication by a positive real number (see Propositions
4.1.3 and 8.3.6).
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I, the net of diagonal entries (p;mp;) is increasing with p;mp; as supremum.

If in addition N is a factor, then M is a type Il factor. Exercise 8.1
shows that every Il factor is of this form.

ProposiTiON 8.3.3. Let M be a tracial von Neumann algebra on a
Hilbert space H. Then M’ is a semi-finite von Neumann algebra.

PROOF. We may assume that H = p(¢2(I) ® L?>(M)) where p is a pro-
jection in B(¢*(I))@R(M), so that M’ = p(B(¢*(I))®@R(M))p. Then we
observe that the reduction of a semi-finite von Neumann algebra remains
semi-finite. O

We end this section with some basic facts on type Il factors.

LEMMA 8.3.4. Let M be a factor with a normal faithful semi-finite trace
Tr. Let p,q € P(M), such that Tr(p) = +o00 and 0 < Tr(q) < +oc. There
exists a family (q;)ier of mutually orthogonal projections in M with q; ~ q
for every i, > .crqi = p. The set I is infinite and whenever M is separable
it 1s countable.

ProoOF. Obviously, we have ¢ = p. Using a maximality argument, we
see that there exists (¢;);er, where the projections ¢, are mutually orthogonal
and equivalent to ¢, with ¢; < p for every i and p — >, .; ¢; 3 ¢. Since the
set I is infinite, the projections p and ), ; ¢; are equivalent. Indeed, if we
set po =p— ;7 ¢; and fix ig € I, using the existence of a bijection from I
onto I\ {ig}, we get

p=> di+po~ Y d+p3Y d.
iel iel\{io} i€l
Let u be a partial isometry in M such that u*u = p and vu* =", ; ¢;. To
conclude, we set ¢; = u*q/u for i € I. O

We may write I = I1 U, where I; and I are disjoint and have the same
cardinal as I. Then p is the sum of the two mutually orthogonal projections
pj = Zielj qi, j = 1,2, which are equivalent to p. In particular, p is infinite.
We easily deduce the following corollary.

COROLLARY 8.3.5. Let M be a factor with a normal faithful semi-finite
trace Tr. A projection p € M is infinite if and only if Tr(p) = +oo.
PROPOSITION 8.3.6. Let M be a type Il factor and Tr a normal faithful
semi-finite trace on M.
(i) We have {Tr(p) : p € P(M)} = [0, +0o0].
(ii) Let Try be another normal semi-finite faithful trace on My. There
exists a unique A > 0 such that Try = \Tr.

ProOOF. (i) Let ¢ be a projection such that 0 < Tr(q) < +o0co. Then
qMgq is a factor (see Proposition 4.2.1) which is diffuse and finite and so

{Tr(p) : p € P(gMq)} = [0, ]
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where ¢ = Tr(q), by Proposition 4.1.6. Since 1 is the sum of infinitely many
projections equivalent to ¢, we easily deduce the statement of (i).

(ii) Let p be a projection such that Tr(p) = 1 and set A = Tri(p). Then,
by uniqueness of the tracial state on pMp, we have Tri(x) = ATr(z) for
every x € (pMp)4. Let g be the sum of finitely many projections equivalent
to p. For z € My we have

Try (22qz'/?) = Try (qug) = ANTr(qzq) = ATr(z'/2qz'/?),

since g¢M g is isomorphic to some pMp ® M, (C). Using the normality of the
traces, and Lemma 8.3.4, we get the conclusion. O

DEFINITION 8.3.7. Let M be a type Il factor and Tr a normal faithful
semi-finite trace on M. Given 6 € Aut (M), the number A > 0 such that
Tro 6 = ATr (independent of the choice of Tr) is called the module of 6 and
denoted by mod(6).

PROPOSITION 8.3.8. Let M be a separable type 1l factor and let Tr be
a normal faithful semi-finite trace on M. Let p,q € P(M). Then p 32 q if
and only if Tr(p) < Tr(q).

ProoF. Clearly, if p = ¢ then Tr(p) < Tr(q). Conversely, assume that
Tr(p) < Tr(q). The only non trivial case to consider is when both p and
g have an infinite trace. But then, given any non-zero projection e € M
with Tr(e) < 400, we see from Lemma 8.3.4 that there exists two sequences
(Pr)ken and (gr)ren of projections equivalent to e with p = >, px and
q = Y_pen k> Whence the equivalence of p and ¢. The fact that we get here
sequences follows from the separability. O

This proposition solves the comparison problem of projections in a sepa-
rable semi-finite factor. In the non-factorial case, we need more sophisticated
tools (see Proposition 9.2.4).

REMARK 8.3.9. So far, we have introduced the following types of factors:
I, IT; and II,. There are factors which do not belong to these classes, those
which do not carry any normal non-zero semi-finite trace. They are called
type III factors. They will not be considered in this monograph.

8.4. The canonical trace on the commutant of a tracial von
Neumann algebra representation

In the rest of this chapter, (M, 7) is a tracial von Neumann algebra. Until
now, we have only considered left M-modules. We may study, equivalently,
right M-modules, which are nothing else than left M°’-modules. In the fol-
lowing we will more often consider right M-modules since we are rather inter-
ested in the commutant (that we let act to the left) of the right structures.
The commutant of Iy ® R(M) in B(/*(N) @ L*(M)) is B(£*(N))@M,
the von Neumann algebra of operators which, viewed as infinite matrices,
have their entries in M (identified with L(M)). The analogue of Proposi-
tion 8.2.3 provides a bijective correspondence between the set of equivalence
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classes of right M-modules and the set of equivalence classes of projections
in B(/2(N))@M.

Given two right M-modules H and K, we denote by B(Hs, Kyr) the
space of right M-linear bounded maps from H into . We set B(Hy) =
B(Har, Har). This semi-finite von Neumann algebra (Proposition 8.3.3) is
a generalisation of B(?) which corresponds to M = C. It carries a specific
tracial weight 7 (equal to Tr when M = C), depending on 7, that we define
now.

8.4.1. First characterisation of 7. Let H be a right M-module. Ob-
serve that, given S, T in B(L?(M)ar, Har), we have S*T' € M and TS* €
B(Har).

LEMMA 8.4.1. The linear span F(Hur) of
{TS*:T,S € B(L*(M)n, Har) }
is an ideal of B(Hpr), dense in the w.o. topology.

PROOF. The elements of F(Hjs) are analogous, for M-modules, to fi-
nite rank operators for Hilbert spaces. The only non trivial fact is the
density of F(Hpas). Let z be the projection of the center of B(Hjys) such
that F(Har) = B(Ha)z. Then (1 — 2)H is a right M-module. Assume
that there exists ¢ # 0 in (1 — 2)H. By Lemma 8.2.1, the M-module éM
is isomorphic to pL?(M) for some projection p € M. After identification of
these two modules, we see that the map m — pm extends to a non-zero el-
ement T € B(L?(M) g, Hays) with 2T = 0. Tt follows that TT* is a non-zero
element of F(Hys) with 27'T* = 0, a contradiction.

O

PROPOSITION 8.4.2. Let H be a right M -module. The commutant B(Hr)
is a semi-finite von Neumann algebra which carries a canonical normal faith-
ful semi-finite trace T characterized by the equality

T(TT*) =7(T"T) (8.2)
for every right M -linear bounded operator T : L*(M) — H.

PROOF. Let U : H — ¢?(N) ® L?(M) be a right M-linear isometry. For
x € B(Hum)+ we set

T(x)=(Tre7)(UzU"),
where Tr is the usual trace on B(¢*(N));. Then, 7 is a normal faithful
semi-finite trace. Moreover, if V : H — ¢*(N) ® L?(M) is another M-linear
isometry, we have
(Tr@ ) (UzU*) = (Tro ) ((UVH)V2VH(VUY))
=(Tre@r)(VzV*(VU*)(UVY)) = (Tr@ 7)(VaV™).

Hence, 7 is independent of the choice of U.
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Let us prove Equation (8.2). We may assume that
H = p(C*(N) @ L*(M)),

where p is a projection in B(¢2(N))@M. Let T € B(L*(M)y, Har) and write
T1 = Zkzl O ® &k. For m € M, we have

2 ~ 112 21112
> lgemlls = ITm|* < |T|*(|m]5-
keN

Theorem 7.1.1 implies that &, = 7y, € M. Moreover we have

S mpmy < 7)1

keN
where the convergence is with respect to the w.o. topology. Straightforward
computations show that 7T = >, mimy, and that TT™ is the matrix
[mim}]; . It follows that 7(T1T*) = 7(T*T). By polarization, we get that
7(TS*) = 7(S*T) for every S, T € B(L*(M)ys,Har). That 7 is characterized
by (8.2) follows from its normality, together with Lemma 8.4.1 and Exercise
2.11. [l

We leave it to the reader to check that 7 is the usual trace Tr on B(H)
when M = C. We note that Tr is defined via any orthonormal basis of .
Likewise, there is a useful notion of orthonormal basis with respect to a M-
module, which can be used to define the canonical trace on the commutant.
We need first the notion of bounded vector.

8.4.2. Bounded vectors.

DEFINITION 8.4.3. Let (M, 7) be a tracial von Neumann and H a right
M-module. A vector ¢ € H is said to be left (M-)bounded® if there exists
¢ > 0 such that ||(z|| < c||z]|, for every € M. In other words, the map
T +— &x extends to a bounded operator Lg¢ from L*(M) into H.

We denote by H° the set of left bounded vectors. Obviously, & — L¢ is
a bijection from H® onto B(L?(M)ar, Har). We have seen in Theorem 7.1.1
that L2(M)? = M.

PROPOSITION 8.4.4. Let H be a right M-module. Then H is a dense
linear subspace of H which is stable under the actions of M and of its com-
mutant B(Har). Moreover, for € € H°, x € M and y € B(Har) we have
Lyew = yLex - m — y(§xm).

PROOF. We only prove the density of H?, the rest of the statement being
obvious. Let & € H. We have seen in Lemma 8.2.1 that the M-module EM

is isomorphic to pL?(M) for some projection p € M. The space p]\//j is made
of left bounded vectors and is dense in pL?(M). O

5We warn the reader that this notion, and therefore the notion of orthonormal basis
defined in the next section, depends on the choice of 7.
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We now observe that for &,n7 € H°, the operator Lan commutes with
the right M-action on L?(M) and so belongs to M. We set LiLy = (§,n)

since, as we will see now, this operation behaves like an inner-product, but
with value in M.

LEMMA 8.4.5. Given &1 € H°, we have

(i) (€,&)p =0 and (£,€),, =0 if and only if £ =0;

(i) (&ma)™ = s
(111) <£ 775E> <§>77>M$; <£$777>M = x*<£777>M fO’f’ 6’[)6’/":[/ HANS M;
(iv) 7((€1)27) = (€eme) 3 for cvery « € M;

(V) (Le)*(zn) = (& xn)yy for every x € B(Hu).
PRrROOF. Straightforward verifications. U

Given a left M-module K, we may similarly introduce the space °K
of right bounded vectors. It satisfies the properties stated in Lemma 8.4.5
translated to left modules. More precisely, if n € K, we denote by R,
L?*(M) — K the corresponding bounded right M-linear operator and, for
& e K, we set J(R;Ry)J =m(§;m). Note that (§,m) = (€, n) is linear
with respect to the first variable and antilinear with respect to the second
one.

LEMMA 8.4.6. Given &,n € °KC, we have

(1) m(€,€) >0 and p(§, &) =0 if and only if § = 0;

(i) (€ m)* = m(n, §);
(iii) <~”U§ n) =z (& n), (& an) = m(E,m)a* for every x € M;
(iv) T(amfx&,m)) = (0, x&) for every x € M.

8.4.3. Orthonormal bases.

DEFINITION 8.4.7. Let H be a right M-module over a tracial von Neu-
mann algebra (M, 7). An orthonormal basis (or Pimsner-Popa basis) for
this M-module is a family (&;) of non-zero left bounded vectors such that

S &M =H and (&,&5),, = 6i;p; € P(M) for all i, j. Hence, H = &; &M

Let ¢ € H? such that (£,€),, = LiLe =p € P(MLThen & = &p and
LELE is the orthogonal projection on the M-submodule £M. The verification
is straightforward. The following consequence is immediate.

LEMMA 8.4.8. Let (&) be a family of left bounded vectors. Then (&) is
an orthonormal basis if and only if (§;,&;),, = dijp; € P(M) for alli,j and
>, Le LY, = 1y,

LEMMA 8.4.9 (Polar decomposition). FEvery left bounded vector £ in

a right M -module H can be written in a unique way as & = &'(€, §>}v/[27 where

¢’ is left bounded and is such that (£',£'),, is the range projection of (€, f)}v/[?
Moreover &M = EM.
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PROOF. Let L¢ = u(g, f)jl\//ﬁ be the polar decomposition of L¢ viewed as
a bounded operator from L?(M) into EM. We set &' = u(1). The end of the
proof is immediate. U

The decomposition & = £'(€, §>}V/[2 is called the polar decomposition of £.

LEMMA 8.4.10. Assume that H = nM. Then there exists a left bounded
vector & such that (£,€),, € P(M) and H = (M.

PROOF. Indeed, let U be an isomorphism of M-modules from H onto a
sub-module of L?(M), say pL?*(M) with p € P(M) (see Lemma 8.2.1). It
suffices to set & = U~ (pl). O

ProrosITION 8.4.11. Every right M -module H has orthonormal bases.

PrOOF. Let {&} € HO be a maximal family with the property that
(§i, &)y = Gijp; € P(M) and set K =), M. If IC # H, by the previous
lemma the right M-module K1 contains a non-zero left bounded vector

¢, which can be chosen such that (¢,&),, € P(M). This contradicts the
maximality of the family {&;}. O

REMARK 8.4.12. An orthonormal basis (§;) is indeed a basis in the fol-
lowing sense: every n € H° has a unique expression as

n= Z &im
where m; € p; M and the series convezrges in norm. Indeed, we have
n=> LeLin=>Y &l& )y (83)
i i
Moreover, if n = ). &m; then
(&ompy = LE Lyl = LEn =Y (&5, &) pyma = pym;.
i

LEMMA 8.4.13. Let H be a right M-module and let (&;) be an orthonor-
mal basis. Let &, m be two left bounded vectors. Then the series

D & nm iy

is convergent in M with respect to the s.o. topology and we have

<mm=%m=2%%%m=ZQQM@mf

(2

PRrROOF. Obvious since -, L¢, Ly, = Idy. O

REMARK 8.4.14. As already mentioned in Lemma 8.4.1, the linear span
F(Hpr) of the set of operators LeLy, &n € 10 is a w.o. dense two-sided
ideal of B(Hs). It is the ideal of finite rank operators in case M = C1. So,
in the general case, it is useful to view the elements of F(Hjs) as “finite
rank” operators.
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8.4.4. Second characterisation of 7. We may now state our second
characterisation of 7.

PRrOPOSITION 8.4.15. Let H be a right module over a tracial von Neu-
mann algebra (M, T) and let (&) be an orthonormal basis of this module.
Then, for every non-negative element v € B(Hyr), we have

7(x) =Y (&2 p) = Y (& akidyy. (8.4)
Proor. We set p; = (&,&),,.- Let U be the isometry from H into
?*(N) ® L?(M) such that
U(&im) = 6; @ pim = 6; @ Lg, (§m).
We know that for x € B(Hus)+,
(o) = (Tr@7)(UaU*) =Y 7(UaU");,),
and we have (UzU*);; = in (&) = (&, x&i) py- O

REMARK 8.4.16. From Lemma 8.4.13 and the expression (8.4) we get
another proof that 7 is a trace. Indeed, given & € B(H ;) we have

F(a*x) —Z (@&, &) p) = Y (26, &) 1,(& 2&) )
1,J

Z (276, 6y (€861} ) = F(az”).

PROPOSITION 8.4.17. Let &, be two left bounded vectors. We have
T(LeLy) = m((n,&)pr) = 7(Ly Le) = (1, &)y (8.5)
ProOOF. We have

F(LeLy) = Z (&, (LeLy)Si), = > (Lt L3&i) 2 an)

[

—Z (€ &dars (0, &) ar) r2ary = T((0,€)ap) = T(Ly Le).

8.5. First results on finite modules

DEFINITION 8.5.1. Let (M, 7) be a tracial von Neumann algebra. We
say that a right M-module H is finitely generated if there exists a finite set
{m,...,nn} of elements of H such that H =", 7; M

The following orthonormalisation process will imply that {n,...n,}
may be chosen to be an orthonormal basis.
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LEMMA 8.5.2 (Gram-Schmidt orthonormalisation). Let ni,...,n,
be some elements of a right M -module. There exists an orthonormal family
£1,..-,&n (i-e., such that (§;,&;) ,, = 0ijpj € P(M)) such that {n1,..., .} C
S &M

Proor. Using lemma 8.4.10, we may assume that the 7; are left M-
bounded. Let 11 = £ymy be the polar decomposition of 1, and set 1, = 72 —
&1(&1,m2) - We have (&1,75),, = 0. We consider the polar decomposition
ny = &amg of 1. Then ny € &M + &M and (€1,&2),, = 0 since 0 =

(€1,&2) pyme and thus 0 = (&1,62) 3, (&2, &2) )y = (€1,&2) - Iterations of this
process prove the lemma. O

PROPOSITION 8.5.3. Let ‘H be a right module over a tracial von Neumann
algebra M. The following conditions are equivalent:
(i) H is finitely generated;

(i) there exist n € N and a projection p € M, (C) @ M = M, (M) such
that H is isomorphic to the right M-module p(f2 @ L?*(M));

(ili) there exist n € N and a diagonal projection p € M,(C) @ M =
M, (M) such that H is isomorphic to the right M-module p({? ®
L2(M));

(iv) H has a finite orthonormal basis;

(v) F(Ha) = B(Hum)-

PROOF. (iv) = (iii) = (ii) = (i) are obvious and (i) = (iv) is a conse-
quence of the previous lemma.

(iv) = (v). Let (&1,...,&,) be an orthonormal basis of H. Then Idy =
Z?:l Lﬁiin € F(Hm).

(v) = (i). Assume that Idy = i L¢, Ly, . Then, for £ € H we have

o= Z L&(Ln )
i=1

and therefore H is finitely generated, since Lg, (L; (£)) € & M. O

DEFINITION 8.5.4. Let (M, ) be a tracial von Neumann algebra and H a
right M-module. The M -dimension of H is the number 7(1) or, equivalently
the number (Tr ®7)(p), where p is any projection in B(¢2(N)® L?(M)) such
that H is isomorphic to p(¢2(N) ® L?(M)). Tt is denoted by dim(Hy).

One defines similarly the dimension dim(3/K) of a left A-module K. In
particular, dim(L2(M)y) = 1 = dim(3, L2(M)).

The right module H is said to be finite if dim(# /) is finite.

Note that dim(Hs) depends on the choice of 7 and so the notation may
be, unfortunately, misleading.

Given an orthonormal basis (§;) of the module #, or more generally any
family (&;) of left bounded vectors such that E L¢, L, = 1dy, we have

dim(Har) = Y 7((& &) Z 1615, (8.6)

7
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Indeed, this follows from Proposition 8.4.17, since 7(1) = >, 7(L¢, L, ).
In particular, if H and K are two right M-modules and H & K is their
Hilbert direct sum, we have

dim((H & K)ar) = dim(Har) + dim(Kar).

PROPOSITION 8.5.5. Let H be a module on a tracial von Neumann alge-
bra M. Consider the following conditions:
(i) H is finitely generated;
(i) dim(Has) < +00;
(iii) the commutant B(Har) of the right representation is a finite von
Neumann algebra.

Then we have (i) = (ii) = (iii).
PRrROOF. Obvious. U

In the non-factor case, the situation is quite subtle. The three above
conditions are not equivalent (see Exercise 8.12). Moreover, the number
dim(Hs) does not determine the isomorphism class of the corresponding
right module. These questions will be clarified in the next chapter. We only
consider below the easy case where M is a type II; factor.

8.6. Modules over type II; factors

PROPOSITION 8.6.1. Let M be a separable type 11y factor. The map
Har — dim(Hys) induces a bijection from the set of equivalences classes of
right M -modules onto [0, +00].

PROOF. We observe that p(¢2(N)® L?(M)) and ¢(¢*>(N)® L?(M)) are iso-
morphic if and only if the projections p and g are equivalent in B(¢?(N))®@M,
thus if and only if (Tr ® 7)(p) = (Tr ® 7)(q) (see Proposition 8.3.8).

Finally, the M-dimension can be any element of [0, +oc] since

{(Tr@7)(p) : p € P(BI(N)@M)} = [0, +00].
0

PROPOSITION 8.6.2. When M is a factor, the three conditions of Propo-
sition 8.5.5 are equivalent.

ProOOF. Immediate, since B(Hys) is a factor. Indeed, whenever B(H )
is a finite factor, it is isomorphic to some p(B(¢*(N))®@M ) p with (Tr®7)(p) <
+00; so p is equivalent to a projection in some M, (C) ® M and Condition
(ii) of Proposition 8.5.3 holds. O

REMARK 8.6.3. Let M be a type II; factor on a Hilbert space H such
that M’ is also finite. In [M'VIN36, Theorem 10], Murray and von Neumann
proved the deep fact that the number 73/ ([M'€])/mar ([ME]) is independent
of the choice of the non-zero vector { € ‘H (where )y and 7y are the tracial
states on M and M’ respectively). They used this number as a tool to
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compare M and M’. Tt is called the coupling constant (between M and M’).

We leave it as an exercise to check that this coupling constant is equal
to dim(prH).

Exercises

EXERCISE 8.1. Let M be a type Il factor and Tr a normal faithful
semi-finite trace on M. Let p € P(M) be such that Tr(p) < +oo.
(i) Show that pMp is a type II; factor.
(ii) Show that there exists a family (p;)icr, where I is an infinite set
of indices, of mutually orthogonal projections, equivalent to p and
such that ), ;p; = 1.
(iii) Show that M is isomorphic to B(¢2(1))®(pMp).
(iv) Show that I is countable if and only if M is countably decompos-
able.

EXERCISE 8.2. Let M be a von Neumann algebra and let Tr be a trace
on M,. We set
n={x e M: Tr(z"z) < +o0}

n
m= {Zﬂﬁiyiixi,% Eﬂ}

i=1

and

Prove the following assertions:

(i) n and m are two-sided ideals of M.
(i) mN My ={z € My : Tr(z) < 400} and m is linearly generated by
mn M+.
(iii) the restriction of Tr to mN M extends in a unique way to a linear
functional on m (still denoted by Tr).
(iv) Tr(zy) = Tr(yx) if either z,y € nor x € M and y € m.

The proof is similar to that of Lemma 7.4.3. One says that m is the
ideal of definition of Tr. When Tr is the trace on B(#)+, then m and
n are respectively the ideals of trace class operators and Hilbert-Schmidt
operators.

EXERCISE 8.3. Let M be a von Neumann algebra and let Tr be a trace
on M+.
(i) Show that Tr is semi-finite if and only if n (or m) is w.o. dense in
M.
(ii) Assume that Tr is normal. Show that for m € m,, the positive
linear functional x +— Tr(zm) is normal on M.

EXERCISE 8.4. Let Tr be a normal semi-finite tracial weight on a von
Neumann algebra M. Show (with the help of Exercise 2.11) that there
exists a family (¢;) of positive normal linear functionals on M such that
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Tr(z) = ), @i(z) for & € M. Conclude that Tr is lower semi-continuous
in the sense that for every ¢ > 0 the set {x € M, : Tr(x) < ¢} is w.o. closed.

EXERCISE 8.5. Let M be a von Neumann algebra and let Tr be a normal
faithful semi-finite trace on My. On the two-sided ideal

n={zx e M:Tr(z"z) < +o0},

we define the inner product (z,y) = Tr(z*y). We denote by L?(M,Tr) the
corresponding completion of n. Show that L?(M, Tr) has a natural structure
of M-M-bimodule. Observe that whenever M = B(H) with its usual trace,
L?(M, Tr) is the space S?(H) of Hilbert-Schmidt operators on H.

EXERCISE 8.6. Let H be a right M-module on a type II; factor M.
Assume that dim(#s) = ¢ with n < ¢ < n+ 1. Show that A is isomorphic,
as a M-module to L?(M)®" @ pL?(M) with p € P(M) and 7(p) = ¢ — n.

EXERCISE 8.7. Let (M, 7) be a tracial von Neumann algebra and let
H = C"® L*(M) be a right M,,(M)-module in the obvious way. Show that

EXERCISE 8.8. Let H be a right M-module on a type II; factor M such
that dim(Hys) < +o0o. Let p be a projection in the commutant B(H )
of the right action. Show that dim((pH)n) = T8(3,,)(p) dim(Has), where
TB(#H,,) 15 the unique tracial state on B(Har).

EXERCISE 8.9. Let M be a type II;-factor, H a right M-module and let
p be a projection in M. Show that dim(H ) = 7(p) dim((Hp)parp)-

EXERCISE 8.10. Let H be a right M-module on a type II; factor M such
that dim(#H,s) < +oc. Show that dim(Has) dim(gey, H) = 1.

EXERCISE 8.11. Let M be a type II; factor and let H be a right M-
module.

(i) Show that H has a cyclic vector if and only if dim(# ) < 1.
(ii) Show that H has a separating vector if and only if dim(#s) > 1.

EXERCISE 8.12. Let f : [0,1] — N be a Borel function such that f €
LY([0,1],\) but f &, L>=([0,1], \), where X is the Lebesgue measure on [0, 1].
For each integer n we chose a projection p, of rank n in B(¢£?(N)). Let p be
the projection in L°°([0,1], \)®@B(¢*(N)) defined by p(z) = py if f(z) = n.
Show that the right module pL2([0, 1], \) ® £2(N) over L>([0, 1], \) is finite
but is not finitely generated.

EXERCISE 8.13. Let My, My be two type II; factors and m; : M; : B(H;),
1 = 1,2 be a normal representation. Recall that M;®M> has been defined
in Section 5.1.1. Show that that there is a unique isomorphism 7 from
M1®@My onto 1 (M)®ma(Ms) such that m(xy @ xg) = m1(x1) ® ma(x2) for
every x1 € Mj, xo € My (use the structure result about M-modules).
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EXERCISE 8.14. Let M be a separable type II; factor. We set My, =
B(/*(N))®M and 7 is the canonical normal faithful semi-finite trace on
M. Recall from Section 4.2 that the fundamental group F (M) of M is the
set of Too(p) where p runs over the set of projections p € My, such that M
and pMop are isomorphic. Show that F(M) = {mod(f) : § € Aut (M)}

EXERCISE 8.15. Let M be a type II; factor on a Hilbert space H such
that M’ is also finite. Show that the coupling constant between M and M’
is equal to dim(yH).

Notes

The study of the structure of modules over factors goes back to [MVIN36,
MvN43]. In particular, the coupling constant, or in other terms the dimen-
sion of a module, had be investigated in details in [MIVIN36|.

Since the eighties, this subject has been developed by many authors,
mainly in view of the study of subfactors and of the ergodic theory of group
actions and their associated crossed products. A major impetus is due to
the influential work of V.F.R. Jones on the index of subfactors [Jon83b].
A large part of the above exercises is borrowed from this paper. The idea
of using orthonormal bases to compute dimensions of modules comes from
[PP86] where indices of subfactors were computed in terms of Pimsner-Popa
bases (see Propositions 9.4.7 and 9.4.8 in the next chapter).






CHAPTER 9

Conditional expectations. The Jones’ basic
construction

In this chapter, we consider a tracial von Neumann algebra (M, ) and
a von Neumann subalgebra B. We study in details the right B-module
L?(M)pg. An important tool is the trace preserving conditional expectation
Ep : M — B that we introduce first.

Having this notion at hand, we focus on the conditional expectation Ey
where Z is the center of M. It is tracial and intrinsic, and we call it the
center-valued trace. When M is only assumed to be semi-finite, there is a
more technical notion of center-valued tracial weight, which is essentially
unique and plays the same role as Ez. We use this notion to clarify the
relations between the various possible definitions of a finite module over a
tracial von Neumann which is not a factor.

Then we come back to the case of L?(M)p. The von Neumann algebra
B(L?*(M)pg) of operators commuting with the right B-action is the algebra
the basic construction which plays an important role in many contexts. In
this framework we translate the general results about modules obtained in
the first part of this chapter and in the previous chapter

9.1. Conditional expectations

We extend to the non-commutative setting the notion of conditional
expectation which is familiar in measure theory.

DEFINITION 9.1.1. Let M be a von Neumann algebra and B a von Neu-
mann subalgebra. A conditional expectation from M to B is a linear map
E : M — B which satisfies the following properties:

(i) B(My) C B ;
(ii) E(b) =b for b € B;
(iii) E(bizbe) = biE(x)by for by,by € B and x € M.

Hence F is a positive projection from M onto B, and is left and right
B-linear. Moreover, for x € M we have

It follows that E(z)*E(z) < E(z*z) and, since z*z < |z||*1, we have

|E()|? < |E(z*z)| < ||z||*. Hence E is a norm-one projection from M
onto B. All this holds as well in the setting of C*-algebras.

137
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Conversely, every norm-one projection is a conditional expectation (see
Theorem A.4 in the appendix).

9.1.1. Existence of conditional expectations.

THEOREM 9.1.2. Let (M, T) be a tracial von Neumann algebra and let B
be a von Neumann subalgebra. There exists a unique conditional expectation

Ep from M onto B such that T o Eg = 7. Moreover, Eg is normal and
faithful'.

PROOF. We remark that L?(B,7,) is a Hilbert subspace of L*(M, 7).
For simplicity of notation, we denote these spaces by L?(B) and L?(M)
respectively. We denote by ep the orthogonal projection onto L?(B). Of
course, we have eB(l;) = b for b € B. Thanks to Proposition 7.3.4 we see
that eg(L?(M),) C L*(B)y. Now, given x € M with 0 < x < 1, we get
0 < ep(z) < 1, whence ep(@) € Bjr, and thus we deduce the inclusion
63(1\7) C B. We identify M and M and define E to be the restriction of
ep to M. We leave it as an exercise for the reader to check that Ep is a
conditional expectation with 7 o Eg = 7. In particular, Eg is faithful.

We now show the uniqueness of EFp. If E is another conditional expec-
tation with 7o E = 7, then for x € M and b € B, we have

7'(($ — E(;U))b) = T(E((x - E(x))b) =0,

e, & — 17(;) and B are orthogonal. Hence, E has to be the orthogonal
projection from M C L?(M) onto B C L?(B).
The normality of Ep follows from Corollary 2.5.11. O

REMARK 9.1.3. Note that Ep(x) is the unique element y in B such that
7(zb) = 7(yb) for every b € B. Another way to introduce Ep is to use the
Radon-Nikodym theorem 7.3.6 (see Exercise 9.1). We also remark that Ep
is the restriction to M of the orthogonal projection eg from L?(M) onto
L?*(B), when M and B are identified to subspaces of L?(M) and L?(B)
respectively.

9.1.2. Examples. Of course, EFp depends on the choice of the trace 7.
Usually, this choice is implicit and we do not mention it.

(1) Take M = M,,(C) and let B be the subalgebra of diagonal matrices.
Then Ep is the application sending a matrix x to its diagonal part.

More generally, let (M, 7) be a tracial von Neumann algebra, and let B =
>, Ce; be generated by non-zero projections e, ..., e, with Y ;" ; e; = 1.
Then, for z € M,

Ep(z) = Z Mei.

prlAC)

Hp case of ambiguity, we will write EY for Fp.
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(2) We keep the same notations. Then
n
Epnyp(z) = Z €;Te;.
i=1

(3) Let (ei;)1<ij<n be a matrix units of a von Neumann subalgebra B
of (M, ) (so that B is isomorphic to M, (C)). Then

Ep(z)= ) nr(zejeis.

1<ij<n

(4) Let G ~ (B, ) be a trace preserving action and set M = B x G.
Let 7 still denote the natural tracial state on M defined by

T( Z 379“9) = 7(Te)
geG
(see Section 5.2). Then EB(deG xgug) = z.. It follows that the Fourier
coefficient xg of x = 3 ; wgug is given by x4 = Ep(zuy).

(5) Let R be a p.m.p. countable equivalence relation on (X, ). We
keep the notation of Section 1.5.2. We have seen that the von Neumann
algebra L(R) may be identified with a subset of L?(R,v). Its natural trace
7 is defined by

T(F)z/XF(a;,x) dp(z).

Recall that B = L*°(X, 1) embeds into L(R), as its diagonally supported
elements. For F' € L(R), we readily check that Eg(F) is the restriction of
F to the diagonal subset of R.

9.1.3. Extensions of conditional expectations to L'-spaces. Let
(M,T) be a tracial von Neumann algebra and let B be a von Neumann
subalgebra. For b € B and m € M, we have

[T(bEp(m))| = [r(om)| < [|b]lc[Iml];,
whence ||[Eg(m)|; < |ml/;. It follows that Ep extends to a bounded li-
near projection from L!(M) onto L!(B), still denoted Eg. Observe that
7(bEp(£)) = 7(b¢) for every ¢ € LY (M) and b € B.2

By definition, Ep extends to the orthogonal projection ep : L?(M) —
L?(B), that we also denote by Ep, for consistency reasons.

LEMMA 9.1.4. Let (M, 1) and B as above.
(i) The restriction of Eg : L*(M) — LY(B) to L?>(M) is the projection
EB =e€p: L2(M) — LQ(B),'

2In other terms, when L' (M) and L'(B) are identified to M. and B. respectively
(see Theorem 7.4.4), then Ep is the map sending a functional in M, to its restriction to
B.
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(i) Ep(LP(M)1) = LP(B); and so Ep(€") = Ep(€)* for € € LP(M),

p=12;

(iii) Ep(bf) = bER(E), Ep(éb) = Ep(§)b for b € B and £ € LP(M),
p=12;

(iv) Ep(né) = nEg(&), Ep(én) = Ep(&)n for n € L*(B) and & €
L*(M);

(v) Whenever D is a von Neumann subalgebra of B, we have Ep =
Epo Ep.

PRrROOF. We leave the straightforward proofs to the reader. O

9.1.4. Center-valued traces.

DEFINITION 9.1.5. A center-valued trace on a von Neumann algebra M
is a conditional expectation E from M onto its center Z(M) such that
E(xy) = E(yz) for every xz,y € M.

PROPOSITION 9.1.6. Let (M, T) be a tracial von Neumann algebra and
Z = Z(M) its center. Then Ez is a center-valued trace. It is normal and
faithful, and it is the only normal center-valued trace on M.

PROOF. Given z € Z, we have
T(2Ez(zy)) = 7(22y) = 7(x2y) = 7(2y2) = 7(2E2(y7)),

whence Ez(xy) = Ez(yz).

Let E be a normal center-valued trace on M. Then 7o F is a normal trace
on M which has the same restriction to Z as 7. It follows from Proposition
7.3.9 that 7 = 7 o F and therefore £ = E. O

The following result generalizes the corollary 2.4.11.

PROPOSITION 9.1.7. Let Ez be the normal center-valued trace on (M, T).
Given two projections p, q in M, we have p = q if and only if Ez(p) < Ez(q).

PROOF. Assume that Ez(p) < Ez(q) and that there exists a projection
z in Z such that gz < pz. Since E is faithful, we have

Ez(q)z = Ez(qz) < Ez(pz) = Ez(p)z,

in contradiction with the fact that Ez(p) < Ez(q). It follows that pz =< gz
for every projection z € Z, and the comparison theorem for projections
implies that p =< q. O

REMARK 9.1.8. More generally, any finite von Neumann algebra carries
a unique normal faithful center-valued trace (see [Tak02, Theorem 2.6]).
9.2. Center-valued tracial weights

A von Neumann algebra which carries a faithful normal center-valued
trace is finite since it has obviously sufficiently many normal traces in the
sense of Theorem 6.4.4. For semi-finite von Neumann algebras we may use,
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instead, center-valued tracial weights, which generalize both center-valued
traces and tracial weights.

In this section and the following one, we only consider separable von
Neumann algebras acting on separable Hilbert spaces.

Let M be a (separable) von Neumann algebra. We identify its center Z
with L>°(X, u) where (X, p) is a standard probability measure space. We
denote by Z. the cone of measurable functions from X into [0, 4+oc], where
two functions which coincide almost everywhere are identified. This set has
an obvious order, which extends the natural order on L®(X, 1), C Z. In
2+ every increasing net has a least upper bound.

DEFINITION 9.2.1. A center-valued tracial weight on M, is a map Tryz :
M, — 2+ such that
(a) Trz(z+vy) = Trz(x) + Trz(y) for z,y € M, ;
(b) Trz(zx) = 2Trz(x) for z € Z, and x € My ;
(c) Trz(z*z) = Trz(xx*) for x € M.
It is called semi-finite if, in addition,

(d) for every non-zero z € M, there exists some non-zero y € M
with y <z and Trz(y) € Z4.

If

(e) Trz(sup;z;) = sup,; Trz(x;) for every bounded increasing net (x;)
in My, we say that Trz is normal.

The notion of faithful center-valued tracial weight is defined in the ob-
vious way. Whenever Trz(1) € Z (or equivalently Trz(x) € Z; for every
x € M), one says that Tryz is finite. In particular, if Trz(1) = 1, then Tryz
extends uniquely to a center-valued trace on M.

It is easily seen that a von Neumann algebra M which admits a normal,
faithful, semi-finite center-valued tracial weight is semi-finite. Conversely,
we have:

THEOREM 9.2.2. Let M be a semi-finite von Neumann algebra and Z =
L>®(X, u) be its center®.

(1) There exists a normal faithful semi-finite center-valued tracial weight
on M.

(2) LetTrzy and Trzz be two such center-valued tracial weights. There
exists a unique (up to null sets) Borel function f : X — (0,4+00)
such that Trz1 = fTrzs.

PROOF. (1) Let Tr be a normal faithful semi-finite tracial weight on M.
For y € My, we denote by Tr, the map z — Tr(yz) from Z into [0, +o0].
We write Tr as a sum ) ¢, of finite normal functionals (see Exercise 8.4).
The classical Radon-Nikodym theorem applied to z — ¢, (zy) gives f,(y) €

3The assertions to follow, which only involve properties up to null sets, do not depend
on this choice.
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LY(X, p)+ such that ¢, (2y) = [ fu(y)zdu for every z € L™(X, y1). We set
®(y) =, fn(y). Then we have:

Vz e Zy, Tr(zy) = / O(y)zdp.
X

It is a routine exercise to check that ® is a normal faithful semi-finite center-
valued tracial weight on M .

(2) Set Tri(xz) = [y Trzi(z)dpu for x € My, i = 1,2. Then f is the
Radon-Nikodym derivative of Tr; with respect to Tro (see Exercise 9.12
for the only case we will need, where one of the center-valued weights is
finite)?. O

EXAMPLE 9.2.3. Let (M, 7) be a tracial von Neumann algebra with
center Z and let Ez be its center-valued trace. We identify the center

Idg2y) @ Z of B(£?(N))®M with Z. For x € (B(EQ(N))®M)+, we set

(Tr® Eg)([z:;]) = Y Bz(wi3) € Zy.
1€N
It is easily checked that Tr® E 7 is a normal faithful semi-finite center-valued
tracial weight on (B(EZ(N))®M)+.

Given a faithful normal semi-finite tracial weight Tr on a separable semi-
finite von Neumann algebra M, we may have Tr(p) = Tr(q) despite the fact
that the projections p and ¢ are not equivalent. In contrast, center-valued
tracial weights prove to be a useful tool in the classification of projections.
The next result generalizes Proposition 8.3.8.

PROPOSITION 9.2.4. Let Try be a normal faithful semi-finite center-
valued tracial weight on a separable semi-finite von Neumann algebra M

and let p,q € P(M). Then p 3 q if and only if Trz(p) < Trz(q).

PROOF. When one of the two functions Trz(p) or Trz(q) is finite almost
everywhere, the proof is similar to that of Proposition 9.1.7. We admit the
general case, that we do not really need in this monograph®. ([

PROPOSITION 9.2.5. We keep the notations of the previous proposition.
A projection p € M s finite if and only if Trz(p) < 400 almost everywhere.

PROOF. Assume that Trz(p) < 400 almost everywhere and that p ~
p1 < p. Then Trz(p —p1) = 0 and so p = p;. Conversely, assume that p
is finite. We identify the center pZ of pMp with ¢Z, where q is the central
support of p. The restriction of 7rz to (pMp)+ has its range into qZ\Jr and
is a center-valued normal faithful semi-finite tracial weight. Replacing M
by pMp, we may assume that p = 1. Let Ez be the center-valued trace
on the finite von Neumann algebra M. By Theorem 9.2.2 (2) we have

4We refer to [Dix81, Chapter III, §4]) for a complete proof.
5For the general case we refer the interested reader to [Dix81, Chapter III, §4, Exer-
cise 4] combined with [Dix81, Chapter III, §1, Exercise 15].
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Tryz = fEz where f is finite almost everywhere, hence the conclusion since

f="Trz(1). O

COROLLARY 9.2.6. Let p, q be two finite projections in a semi-finite von
Neumann algebra. Then pV q is a finite projection.

9.3. Back to the study of finite modules

We have seen that the modules over type 11 factors are classified by their
dimension 7(1) where 7 is the canonical tracial weight on the commutant of
the representation, and is intrinsic here.

In the general case of a tracial von Neumann algebra (M, 7), we must
replace the tracial weight 7 by a center-valued tracial weight in order to get
a complete invariant for M-modules. Let Z = L*°(X, u) be the center of
M, where p comes from the restriction of 7 to Z, and let Ez be the trace-
preserving conditional expectation from M onto Z. Given a right M-module
H, let U : H — (?(N) ® L2(M) be a M-linear isometry. Then we define a
normal, faithful, semi-finite center-valued tracial weight £ on B(Har)+ by
the formula ~ R

Ez(z) = (Tr® Ez)(UzU") € Zy.

We easily see, as in the proof of Proposition 8.4.2, that EZ does not
depend on the choice of U. Furthermore, E7 does not depend on 7 since
FE 7 is intrinsic.

The same proof as that of Proposition 8.4.2 gives

E,(TT*) = Ez(T*T) (9.1)

for every bounded, right M-linear operator T : L?(M) — H.
Note that, for x € B(H)+,

o) = /X By(x) dp. 9.2)

The function Ez(1) = (Tr @ Ez)(UU*) = (Tr ® Ez)(p), where p is any
projection in B(¢*(N) ® L?(M)) such that H is isomorphic to p(£*(N) ®
L?(M)), should be considered as the “dimension” of the module H. It is
independent of 7 and is a complete invariant (under our separability as-
sumptions): two projections p and ¢ in B(¢£?(N) ® L?(M)) are equivalent if
and only if (Tr ® Ez)(p) = (Tr ® Ez)(q), by Proposition 9.2.4.

REMARK 9.3.1. When M has no abelian projection then for every z € 2+
there is a projection p € B(£2(N))®@M such that Ez(p) = z (see [Dix81,
Exercise 1, page 250]). In this case, right M-modules (up to isomorphism)
are thus in bijective correspondence with 2+. When M is a type I1; factor,
this result applies with Z, = [0, +0o0).

On the other hand, when M = L*(X,p), the clement Ez(1) of Z,
corresponding to the M-module H = @ (62 ® L*(Xj, p)), where (Xj) is
a partition of X, is the multiplicity function n : X — [0, +oc] such that



144 9. CONDITIONAL EXPECTATIONS. BASIC CONSTRUCTION

n(t) = k for t € Xj (which is thus a complete invariant). Note that we
only get measurable functions from X — NU{oo} in this case (see Theorem
8.1.1).

We now clarify the statement of Proposition 8.5.5, in term of the be-
haviour of the “dimension” Ez(1).

PROPOSITION 9.3.2. Let H be a right M-module. We set Z = L= (X, p),
where p is the probability measure defined by 7. Let d = Ez(1) € Z.

(i) H is a finitely generated M-module if and only if d € L>®(X, ).
(ii) H is a finite right M-module if and only if [y d(t)du(t) < +oo
(i.e., d € LY(X, p)).
(iii) The commutant B(Hr) of the right representation is finite if and
only if d < +00 a.e.

PRrOOF. (i) Obviously, d is bounded whenever # is finitely generated.
Conversely, assume that d < n. For simplicity we consider the case n = 1.
By Proposition 8.2.2, we may take H = @p,L?(M) with p, € P(M) for all
k and we have ), Ez(py) = d < 1. Using Proposition 9.1.7, we see that we
may choose the projections pg to be mutually orthogonal in M. Then the
right module H is isomorphic to gL?(M), where ¢ = >, pg, and is therefore
generated by ¢q.

(ii) is obvious since (Tr®7)(p) = [ d(t) du(t) and (iii) is a consequence
of Proposition 9.2.5. O

Observe that only the property stated in (ii) depends on the choice of 7.
A finitely generated M-module is finite. The converse is not too far from
being true.

COROLLARY 9.3.3. Let H be a finite right M -module. There is an in-
creasing sequence (zy) of projections in Z such that lim, z, = 1 in the
s.o0. topology and such that Hzy, is a finitely generated right M -module for
every n.

Proor. Take d as in the previous proposition and let z, by the charac-
teristic function of {t € X : d(t) < n}. Since z,d is bounded, the M-module
Hz, is a finitely generated. Moreover, lim, z, = 1 in the s.o. topology
because d is p-integrable (in fact, d < +o0 a.e. would be enough). O

9.4. Jones’ basic construction

In this section, we are given a tracial von Neumann algebra (M, 7) in
standard form, i.e., M C B(L?*(M)), and a von Neumann subalgebra B.
Then L2(M) has an obvious structure of right B-module, which will be our
object of study.
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9.4.1. Definition and first properties.

DEFINITION 9.4.1. Let (M, 7) be a tracial von Neumann algebra and
let B be a von Neumann subalgebra. The von Neumann algebra (M, ep)
generated by M and the projection ep in B(L?(M)) is called the extension
of M by B, or the von Neumann algebra of the (Jones’) basic construction
for BC M.

We give below a list of some fundamental properties of this basic con-
struction. Recall that J is the canonical conjugation operator on L2(M).
Assertion (4) states that (M, ep) is the commutant B(L?(M)pg) of the right
B-action.

PROPOSITION 9.4.2. Let B C M be as above. Then

) eprep = Ep(x)ep for every x € M;

2) JeB = eBJ;

3) B=Mn {GB},;

4) (M,ep)=JB'J = (JBJ);

5) the central support of ep in (M,eg) is 1;
6)

7)

(1
(
(
(
< w.o

(6) (M,ep) = span{zepy : x,y € M}

(7) B 2 b+ bep is an isomorphism from B onto eg(M,ep)ep.

PROOF. The proof of statements (1) to (4) is straightforward and left to
the reader. The central support of ep in (M, ep) is the orthogonal projec-
tion from L?(M) onto (M, eg) eBLZ(M)”.H2 which is obviously L?(M). So,
assertion (5) is immediate.

Using (1), it is easily seen that span{zepy: x,y € M} is a x-subalge-
bra of (M,ep) and a two-sided ideal of the x-algebra generated by M U
{ep}. Thus, I = span{zepy :z,y € M} is a w.o. closed two-sided ideal
of (M,ep). Since I contains ep whose central support is 1, we get (6) (see
Proposition 2.4.15).

Finally, to prove (7), we observe that B 5 b + bep is a normal homo-
morphism from B into eg(M,ep)ep by (3). It is injective since bep = 0

implies 0 = begl = b. Moreover, for z,y € M, we have eg(zepy)ep =
Ep(x)Ep(y)ep, so the surjectivity is a consequence of (6). O

Since (M, ep) is the commutant of the right action of B, it is a semi-
finite von Neumann algebra equipped with its canonical normal semi-finite
faithful center-valued tracial weight EZ and its tracial weight 7, where Z
is here the center of B and where the restriction to B of the trace on M
is still denoted by 7. Let us make explicit these objects. Given xz € M,
denote by L, LQ(B) — L2(M) the right B-linear bounded operator such
that L (b) — zb for b € B. We have (Ly)*(m) = ep(z*m) for m € M and
thus

Va,y € M, LoL};=uwepy*, L;L,=E}(yx).
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It follows from the equality (8.2) that
T(zepy) = T(xy) (9.3)
whenever z,y € M. By item (6) of the previous proposition, this characte-
rizes T.
Similarly, using the equality (9.1), where now Z is the center of B (as-
sumed to be separable), we get

Ez(wepy) = EZ o Ef (zvy) = E} (ay), (9-4)

since Eg o E]]y = E%

We now translate the results of Sections 8.5, 8.6 and 9.3 in the setting
of the right B-module L?(M)pg. The elements of M are left B-bounded
but the space (L?(M)g)° of left B-bounded vectors can be strictly larger.
Let £ € (L?(M)p)° and denote by L¢ : L?(B) — L*(M) the corresponding
operator. Then we have, for n € L?(M),

Lg(n) = Ep(&™n). (9.5)
Indeed, for b € B, we have

<L2(77)>3>L2(B) = <77>§b>L2(M) = <Uan*Jf>L2(M) = (b"J¢, J77>L2(M)
= (€5,00%) p2(an) = T(EDNT) = T(1*Eb) = T(EE (11°€)b).
It follows that for &, € (L?(M)p)?,

(&;mp=L¢ly=Ep({™n) € B, (9.6)
LyLi =noepof, (9.7)

where noepo&* is the bounded operator on L?(M) such that noegof*(m) =
nEp(£*m) for every m € M.

As said in Remark 8.4.14, the operators Lan may be viewed as “finite
rank” operators, and therefore the elements of the norm closure Zy({M, eg))
of the vector space they generate are “compact” operators. We will come
back to this subject in Section 16.3.

PROPOSITION 9.4.3. The space Zo({(M,ep)) defined above is the norm-
closed ideal of (M, ep) generated by ep.

PROOF. Observe first that Zo((M, ep)) is a norm-closed ideal which con-
tains ep = L1L] On the other hand, L¢L; = (Leep)ep(Lyep)* sits in the
ideal generated by ep, since L¢ep and Lyep belong to (M, ep). This con-
cludes the proof. O

PROPOSITION 9.4.4. Let (M,7) and B as above and let (&;) be an or-
thonormal basis of L*>(M)g.

(i) We have dim(L*(M)g) = 7(1) = 3, 161l 7200y = 20 166 1 £ ary-
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(ii) We have dim(L?(M)p) < +oo if and only if the series >, &&F is
convergent in LY(M). Then >, &EF is the Radon-Nikodym deriv-
ative of 7|, with respect to T and so is affiliated to the center of
M.

PROOF. (i) is Formula (8.6).
(ii) Assume that the series >, &&F is convergent in L!'(M). By Propo-
sition 8.4.15 we have, for m € M,
F(m) =) (&, m&i) 12 (v = D r(m&g) = T(m(d_&E)).
It follows that 7 is finite and that ), &£ is the Radon-Nikodym derivative
of 7},, with respect to 7. This operator is affiliated to the center of M since
7 is tracial. O

9.4.2. Case where M is a type II; factor.

PropoOSITION 9.4.5. Let M be a type 11y factor and B C M a von
Neumann subalgebra such that diim(L?(M)p) < +oo. For every x € (M, ep)
there exists a unique m € M such that xeg = mep.

PROOF. Our assumption is that 7 is a normal faithful finite trace on
(M,ep). Wesetd =7(1). Then7),, = dr. Let E) be the unique conditional
expectation from (M, ep) onto M such that 7o Eyy = 7. For m € M, we
have

dr(mEy(ep)) = T(mep) = 7(m),
whence dEy(eg) = 1.

If zep = mep with m € M, we get m = dEj(xep), hence the unique-
ness of m. Let us prove its existence. We first consider the case x = miegmao,
with mq, mo € M. Then, we have

miepmoep = mi1Eg(ma)ep

which proves our assertion in this case. The conclusion for any x follows from
(6) in Proposition 9.4.2 and the continuity property of Fj; with respect to
the w.o. topology. O

COROLLARY 9.4.6. Let M be a type 111 factor and B C M a von Neu-
mann subalgebra such that dim(L?(M)g) < +o0o. The set of left B-bounded

vectors in L2(M)p coincides with M.

PROOF. Let £ be a left B-bounded vector. Then L¢ep belongs to
(M,ep), and by the previous proposition, there exists m € M such that
L¢ep = mep. It follows that £ = Leep(l) = mep(l) = m. O

This fact non longer holds in general (see Exercise 9.17).
As a consequence of the corollary, we see in the next proposition, that
whenever M is a factor with dim(L?(M)pg) < +oo, the elements &; of Propo-

sition 9.4.4 are in M.
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PROPOSITION 9.4.7. Let M be a type 11y factor and B C M a von
Neumann subalgebra. Then d = dim(L?*(M)g) < +oo if and only if there
exists a family (m;) in M such that

(i) Eg(mim;j) = 6;p; € P(B) for alli,j;
(ii) >, miepm} =1 (convergence in the w.o. topology);

(iii) Y=, mym} converges in L'(M).

Whenever these conditions hold, we have ), m;ym; = d1. In particular,
the convergence of this series also holds in the w.o. topology. Moreover,
L*(M)p = ®;m; B (orthogonal Hilbert sum).

PROOF. Assume the existence of a family (m;) € M satisfying conditions
(i), (ii) and (iii) of the above statement. It is an orthonormal basis. In
particular, since the projections m;egm; are mutually orthogonal with range
m; B, we have L?>(M)p = @®;m;B.

By Proposition 9.4.4, we get that ) . m;m; is a scalar operator d 1 with
dim(L?(Mp)) = d < +oo. But then, d1 is the least upper bound in M of
the family of finite partial sums of the series, whence the convergence in the
w.o. topology.

Conversely, assume that dim(L?(Mp)) = d < +oco. Then the “only if”
part follows from Proposition 9.4.4 and Corollary 9.4.6. O

ProproOSITION 9.4.8. Let M be a type 11y factor and B C M a von
Neumann subalgebra. Then L*(M)g is finitely generated if and only if there
exists mi,...,my, € M such that

(i) Eg(mim;j) = 6;p; € P(B)for alli,j;
(i) X 1<icn mienm; = 1.
Whenever these conditions hold, we have 3, ., mim; = dim(L?(M)p)1
and x =3 i, milEp(m;x) for every x € M.
PROOF. Assume that L2(M)p is a finitely generated B-module. By

Proposition 8.5.3, we know that it has a finite orthonormal basis. We con-
clude thanks to Corollary 9.4.6. The converse is obvious. ([

Recall from Remark 8.4.12 that every m € M has a unique expression
of the form m = >""" | m;b; with b; € p;B. The family (m;)i1<i<y, is called a
Pimsner-Popa basis.

DEFINITION 9.4.9. In case B is a subfactor of a type II; factor M, the
Jones’ indez® of B in M is the number

[M : B] = dim(L*(M)3p).

It is finite if and only if (M, ep) is a type II; factor and also if and only if
L*(M)p is finitely generated (see Proposition 8.6.2). We set

J(M)={[M : B]: BC M, subfactor of finite index}.

6For the explanation of the terminology, see Exercise 9.5.
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REMARK 9.4.10. We observe that since L?(B) C L%(M), we have [M :
Bl > 1and [M : B] =1 if and only if M = B. It is also easy to see that
{n?:n>1,neN} CI(M) (see Exercise 9.6). A remarkable result is that

J(M) C {4(:05(7r/n)2 :n € N,n>3}U[4,+oo[=I(R), (9.8)
where R is, as always, the hyperfinite type I1; factor.

9.4.3. An example. Let 0 : G ~ (B, T) be a trace preserving action of
a countable group G and let M = B x G be the corresponding crossed prod-
uct. We keep the notation of Section 5.2. We observe that M is in standard
form on H = L?(B) ® ¢*(G), which is therefore also written L?(M). This
was noticed in Section 7.1.3 whenever B is commutative, and the general
case is dealt with similarly.

We want to describe the extension (M, ep). Recall that the canonical
unitary ug € M is identified with T® 0y and that we write {uy for £ ® d,.
Now, we note that

§Ug = f & 59 = (5 02y 56)“9 = ug(ag*1€ & 56)'

This allows us to write L?(M) as the Hilbert direct sum > gec L*(B)uy, as

we did until now, but also as > .. uy,L%(B). The latter decomposition is

geG
more convenient to study the structure of right B-module of L?(M). Indeed,
(ug)gec is an orthonormal basis of the B-module L?(M)p. The right action
of B is diagonal and so, clearly B(¢*(G))®B is the commutant (M, eg) of B
acting to the right on L?(M). Furthermore, ep is the matrix y with entries
equal to 0 except Y. = 1p. It is also easy to check that the canonical trace
on (M, eg) is Tr ® 7, where Tr is the usual trace on B(£2(G))..

Note also that since (ug)gec is an orthonormal basis of L?(M) g, we get

that dim(L?(M)p) is the cardinal of G.

Exercises

EXERCISE 9.1. Let (M, 7) be a tracial von Neumann algebra. Given
x € M, consider the linear positive functional ¢ : b — 7(bz) defined on B.
Show that Ep(x) is the Radon-Nikodym derivative of ¢ with respect to the
restriction of 7 to B.

EXERCISE 9.2. Let (M, 7) be a tracial von Neumann algebra. Given
x € M, we denote by C,, the |[|-||,-closed convex hull of {uzu* : v € U(M)}.
Show that C; N Z = {Ez(z)}.

EXERCISE 9.3. Let (M, 7) be a tracial von Neumann algebra with center
Z and let p be a projection in M. Show that whenever Ez(p) is a projection
we have p = pEz(p) = Ez(p) and conclude that Ez(p) is a projection if and
only if p € Z.

EXERCISE 9.4. Let (M, 7) be a tracial von Neumann algebra, A a von
Neumann subalgebra of M and p a projection in M. Show that the set
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of projections ¢ in A such that ¢ = p has a maximal element (Hint: use
Proposition 9.1.7).

EXERCISE 9.5. Let H be a subgroup of a countable group GG. Show that

EXERCISE 9.6. Let M be a type II; factor. Recall (Proposition 4.2.5)
that for any integer n > 1 there is a type II; factor N such that M is
isomorphic to N®M,(C).

(i) Show that [N®M,(C) : N ® 1] = n?.
(ii) Conclude that {n?:n >1,n € N} C J(M).

EXERCISE 9.7. Let N C M be an inclusion of type II; factors and let
H be a finite right M-module. Show that dim(Hy) < +oo if and only if
[M : N] < +o0 and that in this case

dim(Hy) = [M : N]dim(Har).

EXERCISE 9.8. Let N C M be an inclusion of type II; factors with
[M : N] < 400 and let p be a non-zero projection in N’ N M. Show that

[pMp : Np] = [M : N]1as(p)7ae(p)

where N’ is the commutant of N acting on L?(M) and 7y, T/ are the
normalized traces on M and N’ respectively (Hint: use Exercises 9.7, 8.8

and 8.9).

EXERCISE 9.9. Let N C M as in the previous exercise and let p1,...,pn
be pairwise orthogonal non-zero projections in N'NM such that > | p; = 1.
Show that

[M: N =" mvi(pi) " [piMpi : Npil,
i=1

and conclude that [M : N] > n?.

EXERCISE 9.10. Let M be a type II; factor and r € F(M), the fun-
damental group of M. Let t €]0,1] be such that ¢t(1 —¢)™1 = r (so M!
and M'~! are isomorphic) and let p € P(M) with 7(p) = t. We consider
an isomorphism 6 from pMp onto (1 — p)M(1 — p) and we introduce the
subfactor N = {z + 0(x) : x € pMp}. Show that [M : N| =1/t +1/(1 —1).

EXERCISE 9.11. Let (&;) be an orthonormal basis of a right M-module H
and let Ez be the canonical center-valued tracial weight on B(Hs). Show
that Ez(1> = ZZ EZ(LZiLEi)'

EXERCISE 9.12. Let M be a separable tracial von Neumann algebra and

Z = L*>®(X,u) its center. Let Ey be its center-valued trace and let Try
be a normal faithful semi-finite tracial weight on M. For x € M, we set

Tr(z) = fX Trz(z)du(x) and 7(x) = fX Ez(x)du(z) = 1,0 Ez(z).
(i) Show that Tr is a normal faithful semi-finite trace on M.
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(ii) Let (pn) be an increasing sequence of projections in M with \/ p, =
1 and Tr(p,) < +oo for every n. Let ¢, € P(Z) be the central
support of p,. Show the existence of f, € L'(X,u), with (1 —
dn) frn = 0 such that

Tr(pnzpn) Z/anEz(anUpn)dﬂ

for every © € M.
(iii) Deduce the existence of a mesurable function f : X — [0, 400] such
that, for x € M,

Te(r) = /X fE2(z)dp.

(iv) Show that Trz(x) = fEz(z) and that 0 < f < 400 almost every-
where.

EXERCISE 9.13. Let H be a right module on a separable tracial von
Neumann algebra (M, 7). We denote by Zo(B(Hs)) the norm closure of the
ideal F(Hys) (defined in Lemma 8.4.1) into B(Has). We set Z = Z(M) =
L>(X, ). Let p be a projection in B(Hay).

(i) Show that p is finite if and only if Ey (p) < 400 almost everywhere.
(ii) Show that 7(p) < +oo if and only if Ex(p) € L*(X, ).
(iii) Show that p € Zo(B(Hay)) if and only if Ez(p) € Z.

EXERCISE 9.14 (Compact operators). Let (M, Tr) be a von Neumann
algebra equipped with a faithful normal semi-finite trace. Let Z(M) (resp.
J(M)) be the norm-closed two-sided ideal of M generated by the finite
projections (resp. the projections p with Tr(p) < +00) of M.

(i) Let p € P(M). Show that p € Z(M) (resp. J(M)) if and only if p
is finite (resp. Tr(p) < +00).

(ii) Show that = € M belongs to Z(M) (resp. J(M)) if and only if the
spectral projections es of |x| relative to [s,+oo[, s > 0, are finite
(resp. such that Tr(es) < +00).

EXERCISE 9.15 (Compact operators). We keep the notation of Exer-
cises 9.13. Let Z(B(Har)) (resp. J(B(Har))) be the norm-closed two-sided
ideal of B(Hs)) generated by the finite projections (resp. the projections p
with 7(p) < +00) of B(H).

(i) Show that z € B(Hs) belongs to Zo(B(Hs)) if and only if the
spectral projections es of |x| relative to [s,+oo[, s > 0, are in
Zo(B(Hm)).-

(ii) Show that Zo(B(Har)) C J (B(Har)) € Z(B(Har)).

When M = C, these three ideals are the same, namely the usual
ideal of compact operators.

When B is a von Neumann subalgebra of a tracial von Neumann
algebra (M, 7) then Zo(B(L?*(M)g) = (M, eg) (Proposition 9.4.3).
Therefore, we have (M, ep) C J(B(L*(M)p)) C Z(B(L*(M)g)).
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EXERCISE 9.16. Let B be a subfactor of a type II; factor M, such that
[M : B] =d < 4o00. Let n be the integer part of d. Show that there exists
an orthonormal basis my, ..., my, 1 of L?(M)p such that Ep (mfm;) =1 for
i <n and Eg(m;,mny1) is a projection with trace d — n.

EXERCISE 9.17. Let Y = {neN:n>1} and X =Y x {0,1}. We
endow X with the probability measure v such that v({n,1}) = (1/n)27"
and v({n,0}) = (1 —1/n)27" and let p be the image of v under the first
projection.

(i) Show that the L>°(Y, u)-module L?(X,v) is finitely generated, and
compute its dimension.

(ii) Show the existence of L>°(Y, u)-bounded vectors which are not in
L>®(X,v).

EXERCISE 9.18. Let 0 : G ~ (B, 7) be a trace preserving action of a
countable group G and set M = B x G. Let £ = deG ugny be an element
of L2(M) = > geG ugL?(B). Show that ¢ is left B-bounded if and only
it n, € B for every g and deG bgbg converges in B with respect to the
s.o. topology.

Notes

The definition of conditional expectations in tracial von Neumann alge-
bras was introduced in [Ume54]. More general notions had been previously
studied in [Dix53]. Center-valued traces and tracial weights have been in-
vestigated in [Dix49, Dix52, Seg53].

The basic construction appears in [Ska77, Chr79]. Given a subfactor
B of a type II; factor M, Jones [Jon83b] made the crucial observation that
the index of B in M is the same as the index of M in (M, ep). His deep
analysis of this fact allowed him to prove his celebrated result (9.8), stated
in Remark 9.4.10, on the restriction of the possible values of the index. This
is quite suprising, compared with the continuum of possible values (i.e.,
10, 4+00]) of dimensions for general B-modules.

The result stating that the index of B in M is finite if and only if M
is a finitely generated projective module on B is due to Pimsner and Popa
[PP86], as well as the computation of the index from any basis of this
module.
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CHAPTER 10

Amenable von Neumann algebras

The most tractable groups are certainly the so-called amenable ones. We
briefly recall their definition and give, for a countable group G, a condition
on its von Neumann algebra L(G) equivalent to the amenability of G. This is
the starting point for the definition, in full generality, of an amenable tracial
von Neumann algebra. We give several equivalent characterisations of this
notion, analogous to well-known equivalent definitions of amenability for a
group: existence of a hypertrace and a Fglner type condition, in particular.
The main results are Theorems 10.2.9 and 10.3.1. The proof of Theorem
10.2.9 uses the Powers-Stgrmer inequality and a convexity argument due to
Day. For the proof of Theorem 10.3.1 we need Connes’ non-commutative
version of a trick from Namioka.

10.1. Amenable groups and their von Neumann algebras

10.1.1. Amenable groups. Recall that a countable group G is ame-
nable if there exists a left invariant mean m on G, that is a state m on
(>(G) such that m(sf) = m(f) for every s € G and f € (*°(G), where
(sf)#) = f(s7't) for all t € G.

ExampPLEs 10.1.1. (1) Every finite group G is amenable. Indeed, the
uniform probability measure m on G (i.e., the Haar measure) is an invariant
mean.

(2) Let G be a locally finite group, that is, be the union G = U,,G,, of
an increasing sequence of finite subgroups G,. Then G is amenable. To
construct a left invariant mean on G we start with the sequence (m,,) of
Haar measures on the subgroups and we take an appropriate limit of the
sequence. To this end, we fix a free ultrafilter w. Recall that, for any
bounded sequence (¢y,) of complex numbers, lim,, ¢, is defined as the value
at w € BN\ N of this sequence, viewed as a continuous function on the
Stone-Cech compactification SN of N. Given f € £*°(G), we set

m(f) = limma(flc,).

It is easily checked that m is an invariant mean on G.

A basic example is the group S, of all finite permutations of N.

(3) The simplest example of non-amenable group is the free group Fo
with two generators a and b. Indeed, for x € {a, ba™ !, b_l} let us denote by
E, the set of reduced words beginning by the letter x. We have Fy = {e} U
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E,UEyUE,—1UE,-1, together with Fo = E,UaE,-1 and Fo = E, UbE}-1.
This makes impossible the existence of a left invariant mean.

A remarkable fact is that amenability admits many equivalent charac-
terisations. We recall below several of them®.

ProrosSITION 10.1.2. Let G be a countable group. The following condi-
tions are equivalent:
(i) G is amenable;
(ii) there exists a sequence (&,) of unit vectors in ¢*(G) such that, for
every g € G,

tim | Ac(9)6n — Eull, = 0:

(iii) there exists a sequence of finitely supported positive definite func-
tions on G which converges pointwise to 1;

(iv) there exists a sequence (Ey) of finite, non-empty, subsets of G such
that, for every g € G,

hTan TN 0.

Condition (ii) means that the left reqular representation A of G almost
has invariant vectors in the sense of Definition 13.3.4, or in other terms,
that the trivial representation tq of G is weakly contained in the left reqular
representation Ag (see Proposition 13.3.5). The notion of positive definite
function on a group is recalled in Section 13.1.3. A sequence satisfying
Condition (iv) is called a Folner sequence. This condition means that in (ii)

we may take for &, the normalized characteristic function |E,|'/?1g, .

10.1.2. The von Neumann algebra of an amenable group.

PROPOSITION 10.1.3. Let G be a countable group and M = L(G). Then
G is amenable if and only if there exists a conditional expectation E from
B(L*(M)) onto M.

PROOF. As always, the us, s € G, are the canonical unitaries of L(G).
Assume first the existence of E. Given f € (>°(G), we denote by My the
multiplication operator by f on ¢*(G). We set m(f) = 7(E(Mjy)), where 7
is the canonical trace on M. Since usMyu; = M s for every s € G, we see
that the state m is left invariant.

Conversely, assume that G is amenable, and let m be a left invariant
mean on £*(G). Given &1 € (2(G), and T € B(L?*(M)), we introduce the
function defined by

FE,(5) = (& p(s)Tp(s~")m)
where p is the right regular representation of G. Obviously, fg plsa bounded
function on G with

e < ITNEN -

Ior details, see for instance [BAIHVO08, Appendix G].
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We define a continuous sesquilinear functional on ¢2(G) by the formula

(& m) =m(fL,)-
It follows that there is a unique operator, denoted by E(T'), with

(& B(T)n) =m(fL,)

for every &,m € £2(G).

The invariance property of m implies that p(g)E(T)p(g~ ') = E(T) for
all g € G. Therefore, E(T) commutes with p(G), whence E(T) € L(G). It
is easily checked that F is a conditional expectation. ([

10.2. Amenable von Neumann algebras
The previous proposition motivates the next definition.

DEFINITION 10.2.1. We say that a von Neumann M is amenable, or
injective, if it has a concrete representation as a von Neumann subalgebra of
some B(H) such that there exists a conditional expectation® E : B(H) — M,

Injectivity is a more usual terminology. This is justified by the following
proposition which also shows that the definition is independent of the choice

of H.

PRrROPOSITION 10.2.2. Let M be a von Neumann algebra. The following
conditions are equivalent:

(i) M is injective;

(ii) for every inclusion A C B of unital C*-algebras, every unital com-
pletely positive map ¢ : A — M extends to a completely positive
map from B to M ;

(iii) for any B(H) which contains M as a von Neumann subalgebra,
there is a conditional expectation from B(H) onto M.

PROOF. (i) = (ii). Assume that M is a von Neumann subalgebra of
B(H) and that there exists a conditional expectation E : B(H) — M. We
extend ¢ to a completely positive map ¢ : B — B (#H), using Arveson’s exten-
sion theorem, which says that B(#) is an injective object in the category of
C*-algebras with completely positive maps as morphisms (see Theorem A.5
in the appendix). Then E o qg : B — M is a completely positive extension
of ¢.

(ii) = (iii). Let M C B(#H). We apply (ii) with A = M, B = B(H)
and the identity map Idy;. Then there exists a completely positive map
¢ : B(H) — M whose restriction to M is Idy;. Such a map is automatically
a conditional expectation (see Proposition A.4).

(iii) = (i) is obvious. O

2or equivalently a norm-one projection, by Proposition A.4
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We will rather use the name amenable for such von Neumann algebras to
emphasize the analogy with amenability for groups. Indeed, by the previous
section, a countable group G is amenable if and only if its von Neumann
algebra L(G) is amenable.

REMARK 10.2.3. As a consequence of Propositions 10.1.3 and 10.2.2, if
G is a non-amenable ICC group, for instance G = F,,, n > 2, the type 1I;
factor L(G) is not isomorphic to the type II; factor L(S«).

10.2.1. Example: the hyperfinite type II; factor.
THEOREM 10.2.4. The hyperfinite factor R is amenable.

PROOF. By definition, R = U,>1Q,," ", with Q,, = Max(C). Let J be
the conjugation operator in L?(R). For n > 1 and T € B(L*(R)) we set

E,(T) = J(/ uJT Ju* du)J,

Upn
where du is the Haar probability measure on the (compact) group Usn of
unitary 2" x 2™ matrices. Then (FE,(T)), is a norm bounded sequence of
operators in B(L?(R)). Note that whenever T’ € R, this sequence is constant,
with value 7.

We will construct a conditional expectation E : B(L?(R)) — R by taking
the limit of the sequence of maps E,, along a free ultrafilter w. Using the
Riesz representation theorem, we check that there exists a unique bounded
operator, that we denote by E(T), such that

(& E(T)n) = lim (§, E,(T)n), V&n € L*(R).
Since E,(T) € J@,,,J for n > ng, we see that
E(T) € Npoz1JQlJ = R.

We have E(T) = T if T € R. It is also obvious that E(T) > 0if T €
B(L?(R))y and that E(zT) = xE(T), E(Txz) = E(T)x for + € R and
T € B(L*(R)). O

As for groups, amenability of von Neumann algebras can be defined in
many equivalent ways. This is the matter of the rest of this chapter and we
will come back to this subject in Section 13.4.

10.2.2. Hypertraces. Let (M, 7) be a tracial von Neumann algebra.
A state ¢ on B(L?(M)) is called a hypertrace (for (M, 7)) if ¥(2T) = ¢(Tx)
for every € M and T € B(L*(M)) and ¢,, = 7. Note that this latter
condition is automatic when M is a type II; factor. A hypertrace can be
viewed as the analogue of an invariant mean on an amenable group.

PRrROPOSITION 10.2.5. Let (M,7) be a tracial von Neumann algebra.
Then M is amenable if and only if it has a hypertrace.
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Proor. If E: B(L?(M)) — M is a conditional expectation, then 7o E
is a hypertrace.

Conversely, suppose that 1 is a hypertrace. Given T' € B(L?(M)), we
define a positive linear functional ¢ on M by ¢(x) = ¢(Tx). For x € M,
we have

o(@)? = [p@ 2T < (@272 V2)y(2)
< |IT|Pw ()

Since 1y,, = 7, we get p(z) < [|T||7(x) for z € M. In particular, ¢ is
normal. Using the Radon-Nikodym theorem 7.3.6, we see that there is an
element E(T') € M, such that, for every x € M,

(Tx) =7(E(T)x).

Then, it is easily seen that F extends to a conditional expectation from
B(L?*(M)) onto M. a

10.2.3. Another characterisation. We will prove in Theorem 10.2.9
the analogue for von Neumann algebras of the property (ii) in Proposition
10.1.2. This will be made more specific later in Section 13.4.

In order to establish this new characterisation of amenability, we need
two preliminary results.

Let ‘H be a Hilbert space. Recall that the predual of B(H) is isometric
to the Banach space S'(H) of trace-class operators: each T € S'(H) is
identified to the linear functional ¢, : x € B(H) + Tr(T'z) where Tr is the
usual trace on B(#H). We denote by S(B(H)) the state space of B(H), i.e.,

SBH)) ={peB(H)": ¢ >0,¢(1) = 1}.
We will often write B instead of B(H) for simplicity.

LEMMA 10.2.6. We denote by K the set of ¢, where T runs over the set
of positive finite rank operators on H with Tr(T) = 1. Then Ky is contained
in S(B(H)) and is dense in S(B(H)) in the weak™ topology (i.e., the o(B*, B)
topology).

PRrROOF. The closure Ky of Ky in the o(B*, B)-topology is a o(B*, B)-
compact convex subset of S(B). Assume that there is an element ¢ € S(B)
which does not belong to Ky. By the Hahn-Banach separation theorem,
there is an a > 0 and a o(B*, B)-continuous linear functional on B*, that
is an element z € B, with R(z,¢) > a and R(z,v) < « for all P € K.
Replacing « by its real part, we may assume that x = z*. Hence, we have
¢(x) > a and Tr(2T) < « for every positive finite rank operator 7' on H
such that Tr(T") = 1.

Taking 7" to be the rank one projection n — (£, 7)€ where ¢ is a norm-one
vector in H, we get

VEeH, gl =1, (&8 <a,
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and therefore z < aIdy, so that

p(r) < ap(ldy) = q,

which is a contradiction. O

The second result we need it the original Powers-Stgrmer inequality.
Given a Hilbert-Schmidt operator T', we write ||T'[|yp, = Te(T*T)Y/? its
Hilbert-Schmidt norm.

THEOREM 10.2.7. Let T,S be positive finite rank operators in B(H).
Then

1T = SIl3, 7, < | THT? ) = TH(S? )| = [0 — 9]

The proof is similar that of Theorem 7.3.7. At the same time, we also
record here the following more general inequality, that we will be useful in
the next chapter?.

THEOREM 10.2.8 (Powers-Stgrmer inequality). Let (M, Tr) be a
semi-finite von Neumann algebra equiped with a normal faithful semi-finite
trace. Let z,y be two elements of My with Tr(x?) < +o00 and Tr(y?) < +oo0.
Then we have

= yll3 7 < || Tr(2®-) = Tr(y?-)|)-

The theorem below uses two main ingredients in order to show its condi-
tion (2) assuming the existence of a hypertrace: the above Powers-Stgrmer
inequality and a convexity argument due to Day in the framework of groups.

THEOREM 10.2.9. Let (M, 7) be a tracial von Neumann algebra. The
following conditions are equivalent :

(1) M is amenable.
(2) For everye > 0 and every finite set F' of unitaries in M there exists
a positive finite rank operator T on L*(M) with |T]lg, 4 = 1 such

that
max ||uT — Tul|y . <& and (10.1)
uel ’
sup | Tr(aT?) —7(z)| < e. (10.2)
zeM,||z||<1

(3) For everye > 0 and every finite set F' of unitaries in M there exists
a Hilbert-Schmidt operator T on L*(M) with Tl 7 = 1, which
satisfies (10.1) and

max | Tr(T*uT') — 7(u)| < e.
uel

3Both Theorems 7.3.7 and 10.2.8 are particular cases of [Haa75, Lemma 2.10].
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PrOOF. We still set B = B(L?(M)).

(1) = (2). Let ¢ be a hypertrace and consider ¢ > 0 and a finite set
F = {ui,...,up} of unitaries in M. We identify the dual of (B)" x M.,
with B™ x M by

n+1
<(<P1, SERE) (10?1+1)7 (Tla v 7Tn+1)> = Z SOZ(T:L)
i=1

We set

C = {((urpu} = @),.... (unpus — @), (plpr — 7)) 1 ¢ € Ko},

where (upu*)(x) = @(u*zu) and Ky is as in Lemma 10.2.6. Using this
lemma, we see that there is a net (¢;) of elements in K such that lim ¢; = 1
in the o(B*, B)-topology. But then, for every u € U(M) we have

lim up;u™ = wpu™ = ¢ = lim ;.
K3 (2
It follows that (0,...,0) is in the o((Bx)™ x My, B™ x M) closure of C. The
crucial observation is that C' is a convex subset of (B,)" x M, and so this

closure is the same as the norm closure. Hence, there is a positive finite
rank operator S on L?(M) with Tr(S) = 1 and

max [upsu” — @gll S e, log)y, — 7l <e

Now, we set T = S/2. Since (uSu*)"/? = uTu*, we get from the Powers-
Stgrmer inequality that for u € F,

2
T~ T3 g, < 9y — 5l = lupgu’ = o, <.

(2) = (3) is obvious. Let us show that (3) = (1). Let (7;) be a net of
Hilbert-Schmidt operators with || T;[|y 1, = 1, such that for every u € U(M),
we have

lim [[uT; — Thully p, =0,  lim Te(T; uT;) = 7(u).
1 ’ [

For i € I, we introduce the normal state ¢; :  — Tr(TzT;) on B. Let
1 € B* be a cluster point of the net (p;) in the weak* topology. Obviously,
T is the restriction of ¥ to M. Moreover, for u € U(M) and = € B, we have

Y(uzu®) —Y(z) = Um Tr(T; wruw*T;) — lim Tr(7;'2T;) = 0
(2 1
since, using the Cauchy-Schwarz inequality, we get

Te(T}weu™T) — Te(T7aT)| = |(u* Ty, wu* Ty, — (T 2o
< 2flel o Ty — Tyl

So, ¥ is a hypertrace. O
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10.3. Connes’ Fglner type condition

10.3.1. Fglner type characterisation of amenable II; factors. In
this section we assume that M is a type II; factor. Note that in this situ-
ation, Condition (10.2) is unnecessary in the statement of Theorem 10.2.9,
since the restriction to M of any hypertrace is the unique tracial state on M.
The next theorem is an important step in the proof that an amenable separa-
ble type II; factor is hyperfinite (see Chapter 11). It says that in Condition
(10.1), we may take T' to be the normalization of a finite rank projection.
This result corresponds to the Fglner characterisation of amenable groups

Given a positive operator = and t > 0, in the rest of this section, Ef(x)
will denote the spectral projection of x relative to the interval (¢, +00).

THEOREM 10.3.1. A type 11y factor is amenable if and only if for every
finite set F of unitaries in M, there is a finite rank projection P € B(L?(M))
such that

max [[uPu* — Pla. 1 < || Plly.p- (10.3)
uel )

PROOF. Assume that M is amenable. Let n > 0 be given. By Theorem
10.2.9, we know that there exists a positive finite rank operator T"on L?(M)
such that

max [|[uTu* —T'[|20e < 0|15 -
uekl’ 7

We have to show that we can replace T by a projection. This relies on the
so-called Connes’ trick, proved below in Theorem 10.3.4, which implies the
existence of a t > 0 with

ma | B (uTu”) = B{(T) |5z, < (3n0)" 2| B{(T)]5 z,0
and so Ef(T) # 0, where n is the number of elements in F'.
Clearly, we have Ef(uTu*) = uEf(T)u*. We take n = £2/(3n) and set
P = E{(T) to get (10.3). O

REMARK 10.3.2. Let H be a Hilbert space and H’ be a dense vector
subspace. Given a finite rank projection P € B(H) and € > 0, there exists
a finite rank projection @ with QH C H' and ||[P — Q|5 1, < &. Indeed, let
(&1,...,&,) be an orthonormal basis of PH. We can approximate each &
by a vector 1, € H' and we can do so that the projection @) on the linear
span of the 7ny,...,n, satisfies the required inequality. We leave the details
to the reader.

In particular, for H = L2(M), this observation applies to the dense
subspace M. Tt follows that in the previous theorem, we may choose P such
that PL*(M) C M.

We now turn to the statement of Connes’ trick.
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10.3.2. Connes’s trick. It is a non-commutative version of a trick due
to Namioka, that we first explain.

Let 1 ) denote the characteristic function of the interval (¢, +00). The
main point in Namioka’s trick is the following elementary observation:

\V/81, So € R, / ll(t,oo)(sl) — 1(t,oo)<32)‘ dt = |81 — 82‘.
R

Now, given a o-finite measure space (X, p) and f,g € L'(X, p), using Fu-
bini’s theorem, we get

If —gll, = /R VES(f) — Ef(g)| dt

where, in analogy with spectral theory, we write Ef(f) = 1(; )0 f. Applied
with g = 0, this gives

11, = /R |ES(F)l dt.

In particular, if f, g are such that ||f — g||; < €| f||; for some € > 0, we at
once deduce the existence of a ty5 € R with

1E5 (f) — E5 (9l < el E5 (1,
and so Ef (f) # 0.
We want to obtain a non-commutative version of this Namioka’s obser-
vation. The first task is to reduce computations of Hilbert-Schmidt norms
of operators to computations of L2-norms of functions.

ProrosiTioN 10.3.3. Let H be Hilbert space and let x,y be two positive
finite rank operators on H. There exists a positive Radon measure v on Ri

such that for every pair f,g of Borel complex-valued functions on Ry with
f(0) =0=g(0) one has

1f(x) — g(y)

B = [, 1) = 9(®)F dvta. )

+
PrRoor. We write

m n
=1 =1

where the \;’s are the distinct strictly positive eigenvalues of = and the e;’s
are the corresponding spectral projections (and similarly for y). We put
eo=1->" e fo=1-377", f;, and Tr is the usual trace on B(H)+.

X = (Sp(z) x Sp(y)) \ {(0,0)},
and we define a measure v on X (and therefore on R%) by setting
v({(Ni, 15)}) = Tr(eifs)
v({(X:,0)}) = Tr(ei fo)
v({(0,15)}) = Tr(eof;)-
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t

Let f, g be two real-valued Borel functions on R} with f(0) =0 = ¢(0).
Then

F@) =Y fMei, gy) = g(u)f;
i=1 j=1
are still finite rank operators. We have

T (@) = [, F(@)g(3)dvlap).

Te(f2(@) = [ 120)du(a, B), Tr(g*(y)) = /R ¢2(8) dv(a, ),

2 2
R3 ¥

and therefore

1 f(x) — g(v)

S = /}R2 £ (@) — g(B)” dv(a, B). (10.4)

+

O

We are now ready to prove the following non-commutative version of
Namioka’s trick, that is formulated for n elements.

THEOREM 10.3.4 (Connes’ trick). Let z1,...,x, be positive finite rank
elements in B(H) and 0 < e < 1 such that, fori=1,--- n,
i = 21lly, 7 < ellzally, 7 -
Then there is a tog > 0 with
|| Ef, (z:) — B, (21

< (3ne) 2| Ef (21 1<i<n.

M,z M, 7,

ProoF. We apply (10.4) with f = g = 1(;1/2 | ). Then for every pair
x,y of positive finite rank operators we have

HEtcl/Z (.’B) - Etcl/Q(y)H%,Tr = /R2 ‘1(t1/2,+oo)(a) - 1(t1/2,+oo)(6)‘ dy(aw@)a
+
and therefore

o0
/0 VB o () — B (y) |3y

L.

- / o? — B|du(a, B)
RQ

+

< ([, =g avtem) ([

R

(/0 L7240y (@) = L2 o) (B)] dt) dv(a, B)

o+ 8 dv(a, 8))

= ||z - szT\er + yHZ,Tr )
after having again applied (10.4).
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By assumption, for ¢ < 1, we have [|z; + 21|y, < 3[[21][y 5, It follows
that

00 n
/0 S 1B (1) — B (@)l d < 3nela |2,
=1

[o¢]
:an/ 1B 2 (1) ][5 7y .
0

Hence, there is a ty > 0 with

2, Tr*

n
DB (@) — Efy(@1) |30, < 3nel| B (21)]13
=1

O

This theorem holds true for any semi-finite von Neumann algebra (M, Tr)
instead of (B(H), Tr). For later use we record the following particular case.
The details are left to the reader?.

PROPOSITION 10.3.5. Let (M, T) be a tracial von Neumann algebra. Let
€,m be two elements of L>(M)y. There ewists a positive Radon measure v on
Ri such that for every pair f,g of Borel complex-valued functions on R4,
with f(0) =0 = g(0) and f(£),9(n) € L3(M), the functions (o, B) — f(a)
and (a, B) — g(B) are square integrable and

I1£€)~ 9l = [ | 176@) - 9(B)F dv(a. 5)

THEOREM 10.3.6. Let M be a a tracial von Neumann algebra. Let
£1,...,&, be elements of L>(M)y. Let 0 < e < 1 be such that

16 — &illy <elléally, 1<i<n
Then there is a tyg > 0 with

B, (&) — B (6], < Bne) || Ef (&), 1<i<n

Exercises

EXERCISE 10.1. Let M be a finite factor such that there exists an in-
creasing sequence (P, )p>1 of matrix subalgebras P, of M containing 1/, of
type Iyk, , with UnP,”° = M. Show that M is isomorphic to the hyperfinite
factor R.5

4See [ConT6, Section 1.1].
SWe will prove in the next chapter (Theorem 11.2.2) the much more general and
difficult result saying that all separable AFD type II; factors are isomorphic.
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EXERCISE 10.2. Let (M,H) be a von Neumann algebra and let (7, H)
be a representation of an amenable group G such that w(g)Mm(g)* = M for
every g € G. Denote by M© the von Neumann subalgebra of fixed points of
M under this action. Show that there exists a conditional expectation from
M onto M and that M© is amenable whenever M is so.

EXERCISE 10.3. Let G ~ (X,pu) be a p.m.p. action on a standard
probability measure space. Show that the crossed product L>°(X,u) x G
is amenable if and only if the group G is amenable (Hint: represent the
crossed product in standard form (see Example 7.1.3 (b), and show that its
commutant is amenable).

EXERCISE 10.4. Let (M, #) be a von Neumann algebra.

(i) Let p € P(M). Show that pMp is amenable whenever M is
amenable.

(ii) If M is amenable, show that M ®B(K) is amenable for any Hilbert
space K (Hint: consider first the case where K is finite dimensional
and conclude by approximation).

EXERCISE 10.5. Let (M,H) be an amenable von Neumann algebra.
Show that M’ is amenable (Hint: assume that M is tracial and consider
first the case where (M, H) is a standard form; then use Proposition 8.2.2
to deal with the case of a non-standard representation. If M is not tracial,
the proof is the same but requires the general notion of standard form for
which the interested reader may look at [Haa75].).

EXERCISE 10.6. Let M be a von Neumann algebra and let p be a pro-
jection having 1 as central support. Show that M is amenable if and only if
pMp is amenable (Hint: prove first that M’'p is amenable).

EXERCISE 10.7. Show that every von Neumann algebra M has a unique
decomposition as a direct sum M; & My where M, is amenable and M5 has
no amenable corner.

EXERCISE 10.8. Let M; and My be two von Neumann algebras such
that M1®Ms is amenable. Show that M; and My are amenable.

Notes

The main results and techniques presented in this chapter are borrowed
from Connes’ seminal paper [Con76|.

The early stage towards the notion of injective von Neumann algebra
is Property (P) of J.T. Schwartz [Sch63]. A von Neumann (M, #) is said
to have this property if for every T' € B(H) the w.o. closed convex hull
of {uTu*:u e U(M)} has a non-void intersection with M’. In this case,
Schwartz proved the existence of a conditional expectation from B(#) onto
M’. He showed that a group von Neumann algebra L(G) has Property (P)
if and only if G is amenable.
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Later, Hakeda and Tomiyama [HT67] introduced the extension property
for (M,H) by the existence of a norm-one projection from B(?) onto M.
This condition, which is now known as amenability or injectivity, is a priori
weaker than Property (P) (by Exercise 10.5). It has many advantages in
comparison with Property (P): it is easier to establish, is independent of
the Hilbert space on which the von Neumann is represented and enjoys
remarkable stability properties. We will show in the next chapter that, for
tracial von Neumann algebras, amenability implies hyperfiniteness which in
turn, in the separable case, is weaker than Property (P) (Exercise 11.1). So,
finally, amenability is equivalent to Property (P) under these assumptions.
More generally, this is still true for any von Neumann algebra acting on a
separable Hilbert space [Con76].






CHAPTER 11

Amenability and hyperfiniteness

In this chapter, two fundamental results are established. First, any
amenable finite von Neumann algebra can be approximated by finite dimen-
sional algebras, a deep fact due to Connes. Such algebras are said to be
approximately finite dimensional (AFD) or hyperfinite. Second, we show
the theorem due to Murray and von Neumann asserting that there is only
one separable hyperfinite type II; factor, up to isomorphism.

11.1. Every amenable finite von Neumann algebra is AFD

DEFINITION 11.1.1. Let M be a finite von Neumann algebra. We say
that M is approximately finite dimensional (AFD) or hyperfinite if for every
finite subset F' = {x1,...,x,} of M, every normal tracial state 7 and every
€ > 0, there exist a finite dimensional x-subalgebra () C M with 1;; € @ and
Yi,---»Yn in @ such that ||lz; —yill,, < efori=1,...,n, where [z, =
7(z*z)Y/? (although ||, needs not be a norm).

When M has a faithful normal tracial state 7, the above definition is
equivalent to the next one, and does not depend on the choice of the faithful
normal tracial state 7. We use the following notation. If (M, 7) is a tracial
von Neumann algebra, the metric defined by the norm |||, is denoted by
dy. Given € > 0 and two subsets C, D of M, we write C' C®? D if for every
x € C we have da(c, D) < e.

DEFINITION 11.1.2. We say that a tracial von Neumann algebra (M, 7)
is approximately finite dimensional (AFD) or hyperfinite if for every finite
subset F' of M, there exists a finite dimensional *-subalgebra () C M with
1y € @, such that F c®2 Q.

The goal of this section is to show the following celebrated theorem.
THEOREM 11.1.3. Every amenable finite von Neumann algebra is AFD.

In the rest of this chapter we limit ourself to the case of a von Neumann
algebra M equipped with a normal faithful tracial state 7. The proof of the
above theorem in the general case follows from the exercise 11.2. Moreover,
for simplicity of presentation, we will assume that M is separable.

The hardest step is to prove Theorem 11.1.5 which states that such a
von Neumann algebra M has the local approximation property as defined

169
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below. Then a classical maximality argument will imply that M is AFD
(Theorem 11.1.17).

DEFINITION 11.1.4. We say that (M, 7) has the local approxzimation pro-
perty if for every € > 0, every non-zero projection e € M and every finite
subset F' C U(eMe), there exists a non-zero finite dimensional matrix alge-
bra Q in eMe with unit ¢ such that for v € F,

(@) [llg, vllly < ellglly;
(b) da(quvg, Q) < ellqll,-

11.1.1. Amenability implies the local approximation property.

THEOREM 11.1.5. A tracial amenable von Neumann algebra (M, T) has
the local approximation property.

Since eMe is still amenable for every e € P(M), it is enough to take
e = 1 and to prove the following claim.

Claim: given € > 0 and a finite subset {v,...,v;} of unitaries in M there
exists a non-zero finite dimensional matrix algebra () with unit ¢ such that
for 1 <k<lI,

g, vellly <eligll, and  da(queg, Q) < eligll,- (1L.1)

Strategy of the proof. We choose a maximal abelian von Neumann subal-
gebra A of M. We will first apply to (M, e4) the Connes’ non-commutative
version of the Day and Namioka arguments as in the previous chapter, in
order to find a finite projection p € (M, e4) almost invariant under the uni-
taries v,.! After a first approximation, we will show that this projection
can be associated to a finite family z1,...,z,, of elements in M that are
orthonormal with respect to the conditional expectation E4. A local Rohlin
type lemma followed by a technical deformation will allow to construct, from
this elements x1,...,z;,;, a matrix units which generates a matrix algebra
(. Condition (11.1) will be a consequence of the almost invariance of p and
of the local Rohlin type lemma. The maximality of A is only used in the
proof of this local Rohlin type lemma.
We first state a few facts relative to the Jones’ basic construction.

Two formulas in (M, e4). Until Lemma 11.1.11, we only assume that A
is an abelian von Neumann subalgebra of (M, 7). We recall that (M, ey)
is semi-finite and we endow it with the normal faithful semi-finite trace
7 introduced in Section 8.4 (see also Section 9.4). Since (M,ey) is the
commutant of JA.J, we observe that JAJ is the center of (M, e4).

Given a left A-bounded vector ¢ € L?(M),, we denote, as in Section
8.4.2, by L¢ the corresponding A-linear operator from L?(A)4 into L?(M) .
Let p¢ be the orthogonal projection onto the A-submodule EA of L2(M) 4.
We will need to compute 7(JaJpe) for a € A. To that end, we consider

IRecall that (M, e) is the Jones’ basic construction for A ¢ M
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the polar decomposition ¢ = £'(¢, §>114/2 of £ (see Lemma 8.4.9). Then, with
the notations of Section 8.4.3, we see that p; = pg = Lﬁ'LZ" Using the
fact that A is abelian and Lg is A-linear, we get Ja*JLg = Lerqy and thus
Ja*JLE/Lg, = L(&'/a)Lzl. It follows from Proposition 8.4.17 that

T(Jadpe) = T(<§/,§/a*>A).

But (¢/,&') 4 is the range projection of ({,f)i‘m (see Lemma 8.4.9), that is,
the support s((¢,€) 4) of (£,€) 4. Thus we get
T(JaJpg) = T(a*s((§,€) 4))- (11.2)
We note that whenever £ € M C L*(M), then (&,€) 4 = Ea(£*€) (see Section
9.4.1).2
We will also need the following fact: given x,y € M such that F(z*x)
and F4(y*y) are projections in A, then
PaPyPz = JEA( y)Ea(y*z)Jps. (11.3)
This is a straightforward computation using the commutativity of A and
the fact that p,(m) = zE4(z*m) for m € M and z =z or z = y.
11.1.1.1. A Falner type condition.

LEMMA 11.1.6. Assume that M is amenable. Given ' > 0, there exists
a projection p € (M, en) such that T(p) < +oo and

% ’
12/?%(1 Ip = vkpvilla 2 < Elpllgz

PRrOOF. The proof is similar to that of Theorems 10.2.9 and 10.3.1. We

set
C = {(vupv] —¢,...,upv] — )}
where ¢ runs over the normal states on (M,e4) of the form 7(c-) with
c € (M,eq), and T(c) = 1. Using the existence of an hypertrace, we see
that (0,...,0) is in the weak closure of the convex set C. Then, given
0 > 0, the same Day’s convexity argument as in the proof of Theorem 10.2.9
provides a ¢ € (M,ea), with 7(c) =1 and
7 (vrevi) =7 ()|l < 6
for 1 < k < 1. Weset b = c¢'/2. By the Powers-Stgrmer inequality (see
Theorem 10.2.8) we get
* 2 ~ * ~ 2
lobvi = bll5 5 < [F(vkevys) = 7(e)|| < 82[[bll3 4

Now using Theorem 10.3.6, we find a spectral projection p of b such that,

— K 1/2 A
max [lp = vkpvilla < (318)" %Pl

We choose § = (£')?/3l. O

2We identify M to a subspace of L?(M).
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In the next step, we show that we may take p of the form >, p,, where
the x; € M satisfy Ea(zfx;) = 6;pi € P(A).

11.1.1.2. Approzimation of finite-trace projections in (M, e,).

LEMMA 11.1.7. Let p be a projection in (M,e4) such that T(p) < +oo.
Given €' > 0, there exist x1,..., Ty in M with Ex(zfz;) = 0;;p; € P(A)

for every 1,7 and
m
=1

PROOF. We first observe that there exists an increasing sequence (z,) of
projections in the center of (M, e,4) such that lim, z, = 1 in the s.o. topol-
ogy and pz,L?(M) is a finitely generated right A-module for every n (see
Corollary 9.3.3). So, replacing p by pz, for n large enough, we may as-
sume that pL?(M) is finitely generated. By Proposition 8.5.3, we know
that p = 3", pe, where &1,...,&y, is an orthonormal basis of the right A-
module pL?(M). The elements §; are left A-bounded, but are not necessarily
in M. Our technical task is to show that we may replace &1, ...,&, by an
orthonormal basis made of elements in M. We proceed by induction on m.

We set & = 0, 29 = po = 0. Given 0 < ¢ < 1/4, we assume that
we have found o, ...,xp—1 in M such that E(afz;) = 6;;p; € P(A) for

0<i,j<k-—1and HZ?;&pgi — Z;:Olpxi > < 6. We want to show that
there exists x;, € M such that E4(zjay) is a[projection, E(xjx;) = 0 for

i < k and HZ?:OP&' N Zf:opxi
consequence.

We view &, as an operator affiliated to M. It follows that there exists an
increasing sequence (g, ) of projections in M such that ¢,& € M for every
n and lim,, ¢, = 1 strongly. We have

< €.
24

< 262, The lemma is then an easy
2,7

IPgner — Pells < 2Pgne, — npe,nlls + + 2llanpe,an — pe,lls
and
IPgue, — GnPecdnlls 2 = T(Pane) — 27(nPerdn) + T(dnPe, 4nDe,an)
< T(Pgngy.) — T(anpe,an)

)

since pg, ¢, nPey, = nPg-
Moreover, by (11.2), we get

T(Pgntr) = T(5((@n&ks ank) 4)) < T(s((Ek> €k a)) = T (Pg,)-

But limy, 7(gnpe,an) = T(pg,) and limy, [|gnpe,gn — pe, llo » = 0 and so, given
8’ > 0, we can choose n/ such that Hpqn/&c —png2 2 < 5.

We set y = quér, %0 = Yio Pr;(y) and y1 = y — yo. We have
Ex(xfy1) = 0for 0 < i < k—1, but @ = E4(yjy1) may not be a pro-
jection. So, we will need later to modify slightly y;. But before, we want



11.1. EVERY AMENABLE FINITE VON NEUMANN ALGEBRA IS AFD 173

to evaluate [|py, — pyll, ;- We set f = Zf;ol Pz; + Py, and fr_1 = Zf:_ol Das; -
We have p, < f and so f(fx—1 +py) = fe—1 + py. Then

1f = (Fer+p )52 = T(F) = T (a1 +py) + 270y fr1)

k—1 k—1
=7(f) = A(fo1 + py) + 27((py — pe) feo1) + 27(pe, O _pes — > _1e,))
1=0 1=0

< T(py,) — T(py) + 2kY26" + 2,

where, to get the last inequality, we have used the Cauchy-Schwarz inequality

and the fact that || fr—1[ly; < kY2 and [Pe,lly» < 1. We remark that

T(py) = 7(s(Balyin))) < 7(s(Ea(y*y))) < T(py)-

It follows that

Py, = pullz- = IF = (fao1 +py)ll3. < 26128 + 26,

Now, let us explain how we modify y;. Let e, be the spectral projection
of a = EA(yfy1) corresponding to the interval (1/n,4o00). We put xp =
yrena” /2. Then we still have Ea(xfzg) =0 for 0 <i <k —1 and morever
E4(xjxy) = e, is now a projection. Observe also that p;, = pye,. Using
again (11.2), we see that

[Py _pyleanf = [|py, — JenJPyng,+
= T(py,) —7(JenIpy,)
= 7(s(a)) — 7(ens(a)),

where s(a) is the support of a. With n sufficiently large, we can make
|[Py; — Payll, » arbitrary small.

Finally we get that HZLO Pe; — Z?:o Dz

is smaller than
2,7

k—1
pri — fr—1 + Hp&g - pyHQ,-} + ||py — Dyy Hgﬁ + ||py1 - pxk”Qﬁ-
1=0 2,7

<640+ (2k"26" +26)' + |Ipy, — puly 5
<0+ + (2kY28 +26)1/2

for a sufficiently large n. Whenever § < 1/4, we can find ¢’ sufficiently small
such that § 4+ &' + (2k1/26" + 26)1/2 < 261/2, O

Our two last steps before proceeding to the proof of Theorem 11.1.5 are
the local Rohlin type lemma 11.1.11 and the deformation lemma 11.1.12.
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11.1.1.3. A local Rohlin type lemma. We need to show first the ele-
mentary fact that any abelian von Neumann algebra is AFD.

LEMMA 11.1.8. Let (A, 7) be an abelian separable von Neumann algebra.
There exists an increasing sequence (Ay) of finite dimensional von Neumann
subalgebras of A such that UpA,"" = A.

PROOF. Let (a,) be a sequence in the unit ball (A); of A which is dense
in (A)1 equipped with the |[|-||,-metric (see Proposition 2.6.7). We construct
the algebras A, by induction. First, there exist projections eq,...,e; and

al — E?:l ajej‘ < 1/2.
A fortiori we have the same inequality with respect to the [|-||,-norm. We
denote by A; the algebra generated by the projections eq,...,e;. Observe
that ||a1 — Ea,(a1)|l, < 1/2 and that ||Ea,(a1)| < 1.

Assume that we have constructed finite dimensional algebras A1, ... A,
such that A C Ay, C --- C A, and

scalars aq, ..., ay in C such that Z§:1 ej = 1 and ‘

|ai = Ea,(ai)]], <277 for 1<i<j<m. (11.4)
As above, for i = 1,...,m + 1 we can find projection eé- and scalars ozz- such
that
ki
a; — Za;ez < 2~ (m+1)
j=1

Let A,,4+1 be the algebra generated by A,, and the projections 6;-. Then
(11.4) is satisfied with m + 1 instead of m.

We conclude that the unit ball of U, A, is dense in the unit ball of A
with respect to the ||-||,-metric, that is, with respect to the s.o. topology. [

We also need the following continuity property for conditional expecta-
tions.

LEMMA 11.1.9. Let (M, T) be a tracial von Neumann algebra and (B,,) a
decreasing sequence of von Neumann subalgebras. We set B =N, B,,. Then,
for every x € M we have

lim || Ep, (z) — Ep(2)], = 0.

PROOF. The sequence (ep, ) of orthogonal projections eg, : L?(M) —
L?(B,) is decreasing. We set e = Apep,. We have obviously ep < e, and it
remains to show that e < ep. Givenz € M, we have lim,, e, (Z) — e(Z)||, =
0. On the other hand, (Ep, (z)) is a sequence bounded in norm by |z||.
Therefore there is a subsequence (EB% (x))r which converges to some xg €
M in the w.o. topology. It is easily seen that x¢p € B and that

lim (e, (2),7) = (@,7)

for every y € M. It follows that e(Z) = g € B, hence e < ep. O



11.1. EVERY AMENABLE FINITE VON NEUMANN ALGEBRA IS AFD 175

REMARK 11.1.10. The same result holds for an increasing sequence (B,,)
and B = U,B, . We leave it as an exercise.

LEMMA 11.1.11 (Local Rohlin type lemma). Let A be a mazimal abe-
lian subalgebra of (M, 7). Let f € A be a non-zero projection, yi,...,Ym €
M, and & > 0. There exists a projection e € A with e < f and

max. leyie — Xielly < €'lle]],

where \; = 7(ey;e)/T(e).
PROOF. Since A is abelian, using the spectral decomposition of the

EA(y;)’s, we find a non-zero projection f' € A with f* < f, such that
for all 4,

[EaCya) f' = Nif|| < €'/2

for some scalar X, € C.
Let (A;) be an increasing sequence of finite dimensional subalgebras of
Af’ such that U, A, = Af’. Note that

Nu(A,NfMfY=Af'nfMf = Af

since Af’ is a maximal abelian subalgebra of f'M f’. By Lemma 11.1.9 we
have limy, || Earqparg (2) — Eag(z)||, = 0 for every = € f/Mf’. It follows
that there is an integer ng such that

m
ZHE‘AQLOmf’Mf’(f/yif) Eap(f' yzf) < (/22 ||f H2
i=1

If we denote by eq,...,es the minimal projections of A,,,, we get

2
s

Z (ejyie; — Ea(yi)ej|| < (5//2)2Hf/|@

=1 ||j=1 9

(see Example 9.1.2 (2) and since Eap (f'yif’) = Ea(y;) f) and therefore, by
Pythagoras’ theorem,

S

m S
D> lejyies — Balwiesls < (£//2)* Y llesl-

i=1 j=1 j=1
It follows that for some j, and for all ¢, we have
lejyie; — Ea(yielly < ('/2)llejlly

and thus |ejyie; — Nejlly < €'|lejll,-
Since (7(e;yiej)/7(ej))e; is the orthogonal projection of e;y;e; onto Ce;,
we see that e = e; satisfies the statement of the lemma. O
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11.1.1.4. A deformation lemma.

LEMMA 11.1.12. Let (M, T) be a tracial von Neumann algebra. For n
sufficiently small, C > 0 and m € N, there exists 6(n,C,m) (that we simply
write 6(n)) with lim, 0 d(n) = 0 such that, given yi,...,Ym in M and e €
P(M) satisfying

leyiyie = digell, < nllelly
for all 1 <i,j < m and max; ||y;|| < C, then there exist partial isometries
Ul ..., Uy and a projection € in M with ¢’ < e, uju; = d; j¢' and
le = ¢'ll, < a@)lle’]l,,
Vi, lyee” —will, < sm)|€']],:
REMARK 11.1.13. Note that
e — sl < e = €l + e’ — ], < (€ + D],

so we will have (and indeed use) the same result with ||y;e — u;||, in place
of ||yie’ — ;|5 in the second inequality of the lemma.

The proof of this lemma is by induction on m and uses the next lemmas.

LEMMA 11.1.14. Let e be a projection in M and x € (eMe)y such that
le —z||y, < €'|le]ly. Denote by €' the spectral projection of x corresponding
to the interval (1 — V&', 14 /€'). Then we have

e <e |e- €/H2 < Vellell, (11.5)
| — ze'|| < Vel (11.6)

PROOF. Observe that if 7. denote the trace 7/7(e) on eMe then for
y € eMe one has ||y||, = T(e)l/QHyHQ’TE. Therefore it suffices to consider the
case e = 1. The inequality (11.6) is obvious. To prove the second inequality
of (11.5), we consider the spectral probability measure of z associated with
the vector 1 € L2(M). We have

gle— e’H; =u(Ry \ (1 - Ve, 1+Ve)) < / 11—t du(t) < ()2
R4
O
LEMMA 11.1.15. Let e be a projection in M and x € M such that x*x €

eMe and ||z*x —e|| < &’ < 1. If x = u|z| is the polar decomposition of x,
then ||z —ul| <1— (1 -2 < Ve and u*u = e.

PRrROOF. Again, it suffices to consider the case e = 1. We observe that
|z — ul| < |||z| — 1|| and that the spectrum of |#|* = z* is contained in the
interval (1 —¢’,1+¢&'). O

Putting these two lemmas together we get:
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LEMMA 11.1.16. Let e be a projection in M and © € Me such that
|z*x — €|, < €'|le]ly, where e’ < 1. There exist a projection € < e and a
partial isometry u, namely the isometry given by the polar decomposition of
xe' such that v*u = €' and

He - e'H2 < \/g||e||2, Hme' — uH < (&4,
from which it follows that
lell, < (1= V)™’
and
e’ = ully < flze’ = ulllle’ll, < () ]le']l,
Denoting by ¢ the function t — t'/*(1 — \/t)~' we thus have
le=€'lly <e@lell, and [|lze’ = ull, < o()][e'[],-
PrROOF OF LEMMA 11.1.12. As said, we proceed by induction on m.
The step m = 1 follows from the previous lemma where we take x = yje
and ¢’ = 1.

Assume now that we have found a projection e, € P(M) and partial
isometries uq, ..., u; such that

wju; = 0; e, for 1<1i,j <k, (11.7)
lser — willy < Sx(llexlly for 1< <k, (118)
le = eilly < Se(mllexll, and e, < e, (11.9)

where ¢ only depends on 7, C, k, and lim,_,odx(n) = 0. We set ¢ =
1 - Zf:l ’U,Z’U,;k and y;g_i'_l = qyg+1. We have

k
916k = vrrerll, < D lufynrexlls
i=1

k k

< O up = enyyrrrenlly + > llerys yrsrell,
i=1 i=1

< kox(m)lyr-+1llllexlly + kn(1 + dx(n)llexll
< K(Cor(n) + (1 + 6(n)))llexll,-

From this, straightforward computations show that

ler(Whrr) Verrer — exlly < S(mlexll,
where again lim,_,q 0;.(1) = 0.

Using anew Lemma 11.1.16 we find a projection exy1 < e and a partial
isometry uyy1 such that uf jupy1 = epq1, llex — exvilly < ©(03,(0)llenrilly
and Hyfﬂ_lekﬂ - UkHHQ < ©(01.(n))||€x+1]l5- We observe that qugy1 = w41
and so, replacing u; by u;er11, we easily see that Conditions (11.7) to (11.9)
are fulfilled at the step k£ + 1 with an appropriate function g 1. O

We are now ready to prove Theorem 11.1.5
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PrROOF OF THEOREM 11.1.5. We have to prove the claim which follows
the statement of the theorem. We assume here that A is maximal abelian.
Let 6 > 0 be given. By Lemmas 11.1.6 and 11.1.7, there exist x1, ...,z in
M with Ex(z}xz;) = 0, ;fi € P(A) for every 4, j and

*112 2
R 6/l R
1@22{[ ||p UkpkaQ,T < ( / )HpHZT?

where p=3"" p,,. For y € (M, e4) we have

m m
2 2 2 2
22 pvlls =D lpeyllss > llpeypa, |3 -
i=1 =1

Using (11.2) and (11.3), it follows that

lp — vkpvill; lepxl P, VPV |3 2

i=1
m m
> e, — Z PaiPoe, Paill3 2
Zm Til
2 Z 1fi — ZEA T vkx;) Ea(a] Uk$z)fz||g'
=1 7=1
Hence, we get
I m m m
SN (= Balaivey) Balwjvian) £:)°) < dllplly.- = 6> 7(£)
k=1 i=1 j=1 i=1

Since A is abelian, we have an inequality between integrals and therefore
there exists a non-zero projection f € A such that, for every k,

m

Z ZEA ! vka)EA(x VLT fl 2 < 5ZfZ (11.10)

i=1 j=1
Moreover, again because A is abelian, there is a non-zero projection f’ € A,
smaller than f, such that, for every j, either f'f; = f' or f'f; = 0, with
f'fi # 0 for at least one i. Cutting (11.11) by f’, and keeping only the
indices 7 such that f'f; = f’, we may assume that

Z (f - ZEA(x;vkxj)EA(x;‘-vai)f)Z <mof, (11.11)

i=1 j=1
with f;f = f for all 4.
Now, we use the local Rohlin type lemma 11.1.11 to the family

{ajzj, zjope; 1 <i,5 <m,1 <k <I}.
Given n > 0, there exists a projection e € A, with e < f and
leaizse - bigelly < nllell (11.12)
lexivrzje — A jrelly < nllell;- (11.13)
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The deformation lemma 11.1.12, the remark 11.1.13 and Equation (11.12)
provide a projection €’ € M, €' < e, partial isometries u1, ..., u,, in M and
a fonction § : RY — R satisfying lim, .o d(n) = 0 such that for every 1, j,

uju; =65, |le— e’HQ < (5(7})“6’“2 and ||zie — w5 < (5(7])“6’”2.

We use Equation (11.13) to approximate in ||-||,-norm

Ex(xjvgzj)e = Eq(ex;vgpxje)
by exfvpxje since it implies ||E4(ex]vpxje) — exfupajelly, < 2nllel|y. In turn,
ex;vpxje is approximated by w;viu;.

Therefore, if 7 is chosen sufficiently small, we get from (11.11), where f
is first replaced by e, and then e is approximated by €', that

m m
7((¢' - Zukauju;v?;uif) < mér(e), (11.14)
i=1 j=1

and moreover we get from (11.13) that
e = Xige'll; < @fmlle'|l (11.15)

We set e; ; = uiu;, q= 2111 e;; and we denote by () the matrix algebra
generated by the matrix units (u; ;).
By Pythagoras’ theorem and (11.15), and since

leiivnesj — Nigueijlly = ||ui(uforus — Nijwe )i, = |Juforus — Aijxe]]

we get
2
2
qorg — Y Aigreigl| =Y leivres; — Aijreisl;
i , i

<mé||¢||5 = ollql3,

and so
da(qurg, Q) < 6'2|qll,- (11.16)
It remains to estimate ||q — vrqui|l,. We have, by (11.14),
2
q— Z €i,iVkqULEi || = Z lleii — ei,i”kQ”Z%,i“;
) 2 i

and so
2

q— Z €i iVkqULEii|| = Z He' — uz‘vkqv,’;uiHi < 5mHe’H§ = 5||q||§

A 2 7
(11.17)
An immediate computation shows that
2 2
vkguf = Y erivkauieis|| + || eiivrguiei|| = llorguill = llall;
i 2 i 2
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so that
2

* *
VgpqUy, — § €4,iVkqULE; i
i

2

Z €i,iVkqULEi,i

i
< (2llgll) ("2 lqll),
thanks to (11.17). It follows that

g ei,ivkquei,i

i

)

= (llall, +

) (llall, - ‘

2 2

lg = vrqvilly < (6% + 212614 q]],. (11.18)
Chosing ¢ sufficiently small, (11.16) and (11.18) give our wanted inequalities
(11.1). O

11.1.2. The local approximation property implies the AFD pro-
perty.

THEOREM 11.1.17. Let (M, T) be a tracial von Neumann algebra which
has the local approrimation property. Then M is AFD.

ProoOF. We fix € > 0 and a finite subset F' of the unit ball of M. We
set & = 371/2¢. Recall that every element of M is a linear combination of
at most four unitary elements. So, since M has the local approximation
property, there exists a finite matrix algebra () with unit ¢ such that

llg.all, < llall, and  da(azq. Q) < gl (11.19)

for every x € F.

We denote by Eg the trace preserving conditional expectation from gMgq
onto Q. For x € F, we deduce from (11.19) and from Pythagoras’ theorem,
first that

lgzg — Eq(qzq)ll, < dllqll,,
and next, since qz(1 — q) + (1 — ¢)xq is orthogonal to ¢Mgq, that
Iz — (1 — @)a(1 — @) — Eqlgzq)|l
= llqzq — Eq(qzq)|5 + laz(1 — q) + (1 — g)zq|3
= llgzq — Eq(azq)ll; + llalg, 2] + [, dlal3
= llazq — Eq(qzq)|l5 + 2z, qlll3 < *[lqll3-

Let us consider the set S of all families {Q;},.; of matrix subalgebras
(); whose units g; are mutually orthogonal and are such that

2
Ve e F, |[jz—(1—-qx(l-q) - Es,q(qza)|, <llal3  (11.20)

where ¢ = > ,c; Gi-
By the first part of the proof, S is not empty. Using Remark 11.1.10, a
“passing to the limit argument” easily implies that S is inductively ordered
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by inclusion. We take a maximal element {Q;};.; in S with corresponding
set {qi};c; of units.

We want to show that ¢ = ) ;.; ¢; = 1. Suppose, by contradiction, that
g # 1. We apply the first part of the proof to (1 — ¢)M (1 — ¢), which has
the local approximation property, and to the set {(1 —¢)z(1 —q) : x € F'}.
There exists a non-zero finite dimensional algebra P C (1—¢q)M (1 —gq), with
unit p such that

I(1—q)z(1 —q) — (1 —q—p)a(l — q—p) — Ep(pap)|l5 < €2|lp]l5,

for all x € F. Adding this inequality to (11.20) we get

|z — (1= ¢ —p)z(1 — ¢ — p)—E@,q)epr((a+p)z(g+ )3

<e|lq+pl3

after having observed that

E,0)epr((q+p)v(g+p)) = Eg,q,(q2q) + Ep(pzp)

and using again Pythagoras’ theorem.
This contradicts the maximality of {Q;},c;, and so we have ¢ = 1.
Hence F' is well approximated by elements of @, ; Qi, but @, ; Qi is not
finite dimensional when I is infinite. In this case, given £, < €2, we choose a
finite subset I1 of I such that 7(1—3,c;, @) < &1 and ||z —Eg,., @,(2))[2 <
2¢forz € F. Weset f=1-5,; ¢ and

N=Cfepa:
1€y

For x € F', we have

lz = Ex(@)ll, < lle = Eq,(qiwqi)ll2 +
i€l

<24 /1 < 3e.

T(fzf)
7(f)

f

2

It follows that F' 3¢ N, where N is a finite dimensional unital subalgebra
of M and this concludes the proof. O

11.2. Uniqueness of separable AFD type II; factors

When M is a type II; factor, the following lemma shows that, in the
definition of an AFD factor, we may assume that @ is a matrix algebra of
type Ion for some n.

LEMMA 11.2.1. Let M be an AFD type I factor. Given € > 0 and a
finite subset ' C U(M), there exists, for some n, a type Ian subalgebra N
of M, with 15 = 1p; such that F' C¢ N.

PRrROOF. By definition, there exists a finite dimensional subalgebra @
with 1g = 1y and F C° Q. We have Q = /", Q; where each Q; is
isomorphic to some k; x k; matrix algebra (see Exercise 2.2). We denote by
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¢; the unit of @); and we choose mutually orthogonal minimal projections

1 ki

€,...,€ ' in @, so that their sum is ¢;. We fix an integer n. Dyadic

approximations of the numbers T(ezl), i =1,...,m, allow to build mutually
1

orthogonal projections fij, 1 <i<m1 < j < n; with ff < e; and

7(f]) = 27" for all 4, j, and which are such that
(el — Zfzj) <27
j=1

We select partial isometries wg, 1 <i¢ < m,1 <1 < k; such that
(wh*w! = e} and wl(w!)* = el. We consider the projections w!f/(w!)*
for all possible i, j,l and get in such a way a family of mutually orthogo-
nal projections, each of trace 27". We complete this family by appropriate
orthogonal projections, of trace 27", in such a way that the sum of all the
projections of trace 27" we have built is 1. These projections are minimal
projections of a subalgebra N of type Ion. In order to define N we have
the freedom of the choice of the partial isometries relating these minimal

projections. We do so that this NV contains the partial isometries wﬁ ff for

all i,,1. We set v! :Z;-"‘Llwﬁfg, 1<i<m,1<1<k. Then w! —lisa

i

partial isometry with e} — Z?’:l fz-j as right support. It follows that

i

2 L’ g
,=Tle =) f)<2™,
J=1

and so dQ(’lUf;(’LUé—)*7N) < 21-n/2,
Since the wﬁ(wé)* generate linearly @, it is a routine exercise to see that

if n is large enough, we have F' C% N. O

THEOREM 11.2.2. Let M be a separable type 11y factor. The following
conditions are equivalent:

(1) M is amenable;

(2) M is AFD;

(3) there exists an increasing sequence (Qy) of finite dimensional *-
subalgebras of M , with the same unit as M, such that (UQ,)" = M;

(4) there exists in M an increasing sequence (Qn) of matriz algebras
M, of type Igk, , with the same unit as M, such that (UQy,)" = M;

(5) M is isomorphic to the hyperfinite type 11y factor R.

PRrROOF. (5) = (4) = (3) = (2) is immediate and (5) = (1) has been
proved in the theorem 10.2.4. Theorem 11.1.3 states that (1) = (2). Let
us show (2) = (4). Let {x, : n > 1} be a countable, s.o. dense subset of
the unit ball of M. For every n, Lemma 11.2.1 provides a 2F» x 2¥» matrix
algebra @), with 1); € @, such that

|lzi — Eqg, (xi)|l2 < 27", for 1<i<n.
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The main difficulty is that the matrix algebras @),, obtained in such a way
are not in increasing order. Therefore, we will construct them inductively.
Assume that we have constructed Q1 C --- C @, such that

|lzi — Eq, (zi)|l2 < 27k for 1<i<k, k<n,
each @; being a matrix algebra of type I,x;. We will construct Q41 of type
Ly, with Qn C Qpy1 and
|zi — Eg, .y ()|l < 27T for 1<i<n+1. (11.21)
Then, we will have
A S-0
We consider a matrix units (e; ;) of @, and we set e = eq1. Since eMe
is amenable, hence AFD, given £ > 0, we can find a 2¥ x 2¥ matrix algebra
N C eMe with e € N, and elements z; ;; in N such that
lexizjent — Tigpll, < 227D, (11.22)
for1<j<n+1land1<i k<2,
Let (e%7j)1§i,j§2k be a matrix units of N. Then
leinehers, 1<ij<ob 1<ki<ot)
is a matrix units which generates a 2fn+1 x 25241 matrix algebra Q.1 with

knt1 = kn + k. Obviously, @, is diagonally embedded into Q1.
It remains to check Condition (11.21). Setting

2kn
Ui = Z €i1Ti kel k € Qnyl,

ik=1

we have
2kn
;= wills = > llesizsers — einzijrerls-

ik=1

Since

2
12

lleiizier s — ei,lxi,j,kel,kng <lle1iwjert — i
we get, thanks to the inequalities (11.22),

lzj = yjll; < (2"me2” D)2,

So, if we choose € = 27%» we obtain

5 = Equar (@)l < lwj = yill, <27 for 1<i<n+l

This completes the proof (2) = (4).

It remains to show that (4) = (5), which is the only place where the
factoriality of M is really needed. Note that M and R are of the form
M = (UP,)" and R = (UQ,,)" where (P,) and (Q,,) are increasing sequences
with P, ~ Msn(C) ~ @,,. Then there exists an isometric *-isomorphism ¢
from the x-algebra M = U, P,, onto R = U,@,, which preserves the traces :
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TRoa = Tpr|pm. Since M and R are dense in L?(M) and L?(R) respectively,
there is a unique unitary operator U : L?(M) — L?(R) such that UZ = a(x)
for every x € M. Then z +— UxU* defines an isomorphism from M onto R
which extends a. O

REMARK 11.2.3. It follows from the equivalence between (1) and (3)
that every infinite dimensional subfactor of R is isomorphic to R. Hence R
is the smallest type II; factor in the sense that every type I factor contains
a subfactor isomorphic to R (see Proposition 4.2.6) and that every type II;
subfactor of R is isomorphic to R.

Similarly, we get that eRe is isomorphic to R for any non-zero projection
of R. Hence, R is the fundamental group of R.

Finally, we observe that R appears in many ways, among them as:

e infinite tensor products of matrix algebras;

e L(G) for every ICC amenable countable group G;

e [*°(X) x G for every free ergodic p.m.p. action of an amenable
countable group G.

We say that a separable factor M is approzimately finite dimensional
(AFD) if there exists an increasing sequence (@) of finite dimensional *-
subalgebras of M, with the same unit as M, such that (U,Q,)" = M.
Such algebra is amenable (this can be shown as in Theorem 10.2.4, using a
standard form of M.

COROLLARY 11.2.4. There is a unique separable AFD type 1l factor,
up to isomorphism.

PROOF. We observe first that RRB(¢*(N)) is a separable AFD type
Il factor. Now let M be such a factor, which is therefore amenable. By
Exercise 8.1, we know that M is isomorphic to some N®B(¢?(N)) where N
is a type II; factor. Let p be any finite rank projection in B(¢2(N)). Then
(1®p)(N®B(*(N)))(1 ® p) = N®B(pf*(N)) is amenable, and since there
exists a norm-one projection from N@B(pl?(N)) onto N @ 1 (for instance
the trace preserving one), we get from Theorem 11.2.2 that N is isomorphic

to R. O

Exercises

EXERCISE 11.1. (i) Let (M, H) be a von Neumann algebra and suppose
that there exists an increasing sequence (M,,) of finite dimensional subalge-
bras, with the same unit as M, such that (UM,)” = M. Show that (M, H)
has the property (P) of Schwartz.

(ii) Show that the hyperfinite factor R has the property (P).

EXERCISE 11.2. Let M be a finite von Neumann algebra and write M =
@

ier(M;, 7;) as a direct sum of tracial von Neumann algebras (see Exercise
6.2).

(i) Show that M is amenable if and only if each M; is amenable.
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(ii) Show that M is AFD if and only if each M; is AFD.

Notes

The notion of approximately finite dimensional (AFD) type II; factor
was introduced by Murray and von Neumann? in [MvIN43], therefore in the
early ’40s. The equivalence between Conditions (2) to (5) of Theorem 11.2.2
was proved in this paper. In fact, the equivalence between conditions (2) to
(4) still holds without the factoriality assumption for M and even in more
general situations ([EW76]). In [MvN43], Murray and von Neumann also
showed that the crossed product associated with a free ergodic p.m.p. ac-
tion of a locally finite group is AFD, as well as the group von Neumann
algebra of any ICC locally finite group. In [Dye63], Dye established that
free ergodic p.m.p. actions of groups with polynomial growth also give rise
to this AFD factor. For abelian groups this had been stated by Murray and
von Neumann.

Some 30 years after Murray and von Neumann breakthrough, Connes
obtained ([Con76]) the other major achievement developped in this chap-
ter by showing the remarkable fact that an injective (i.e., amenable) von
Neumann algebra is AFD (the converse being immediate). The simplified
proof that we give in this chapter is borrowed from [Pop86b].

3They rather used the terminology of “approximately finite factor”.






CHAPTER 12

Cartan subalgebras

A central problem in the theory of von Neumann algebras is the clas-
sification, up to isomorphism, of the group measure space von Neumann
algebras L>°(X) x G for free p.m.p. actions of countable groups, in terms of
G and of the group action. The von Neumann subalgebra L>°(X) plays a
crucial role in the study of L (X) x G. It is a Cartan subalgebra (Definition
12.1.11), a notion that has attracted increasing attention over the years.

In the first section we study the abstract properties of Cartan inclusions
A C M, where M is a tracial von Neumann algebra.

In the second section, we address the classification problem of group
measure space von Neumann algebras, and more generally of von Neumann
algebras of countable p.m.p. equivalence relations. We have already ob-
served in Section 1.5.3 that the isomorphism class of L>°(X) x G only de-
pends on the equivalence relation given by the orbits of G ~ X. However
we may have L*°(X;) x G; ~ L(X3) x Gy without the corresponding
equivalence relations being isomorphic (see Section 17.3). One of the main
result of this section is that two free p.m.p. actions G; ~ (X1, p1) and
Ga ~ (Xg, o) are orbit equivalent if and only if the corresponding tracial
Cartan inclusions L (X;) C L*°(X;) x G1 and L™ (Xy) C L*®(X2) x G
are isomorphic (Corollary 12.2.7).

In Section 12.3 we highlight an alternative to the notion of equivalence
relation for the study of Cartan subalgebras, namely the notion of full group:
there is a functorial bijective correspondence between the classes of tra-
cial Cartan inclusions (up to isomorphism) and the classes of full groups
equipped with 2-cocycles (Theorem 12.3.8). In particular, for G ~ (X, u)
the full group [G] generated by G encodes all the information on the orbit
equivalence class of the action (Corollary 12.3.10).

Finally, in the last section we use the background on Cartan subalgebras
developped in the first section and techniques already applied in proving
that amenable tracial von Neumann algebras are AFD (previous chapter)
to give an operator algebraic proof of the fact that every amenable countable
p.m.p. equivalence relation (hence every free p.m.p. action of any amenable
countable group) is hyperfinite.

12.1. Normalizers and Cartan subalgebras

12.1.1. Preliminaries on normalizers of an abelian subalgebra.
Given a von Neumann algebra M and a von Neumann subalgebra A, the

187
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normalizer of A in M is the group Ny (A) of unitary operators u € M such
that uAu* = A. Note that N (A) contains the unitary group U(A) as a
normal subgroup.

When A is abelian, it is useful to introduce the notion of normalizing
pseudo-group, more general than the group of normalizers.

DEFINITION 12.1.1. Let M be a von Neumann algebra and A an abelian
von Neumann subalgebra. The normalizing pseudo-group of A in M (or
quasi-normalizer) is the set GNr(A) of partial isometries v € M such that
vAv* C A and v*Av C A.

Note that if v € GN(A), then vo* and v*v are two projections in A
and vAv* = Avv*, v*Av = Av*v. The map x — vxv* is an isomorphism
from Av*v onto Avv*. The set GNjr(A) is stable under product and adjoint.
So, the linear span of GNj/(A) is an involutive subalgebra of M. The link
between Ny (A) and GNs(A) is described in the next lemma.

LEMMA 12.1.2. Let (M, 1) be a tracial von Neumann algebra and A an
abelian von Neumann subalgebra. A partial isometry v belongs to GNy(A)
if and only if it is of the form uq with u € Ny(A) and ¢ = v*v € A.

PROOF. We may assume that GNy(A)” = M. Given v € GNs(A), let
(vi)ier be a maximal family of elements in GANf(A) such that {v,v} : i € I}
and {v}v; :i € I} are both consisting of mutually orthogonal projections,
with v, = v for some ig € I. Weset e=1—> " v;vf and f=1—) viv;.
Then e and f are two projections in A which are equivalent in the finite
von Neumann algebra M since 1 — e and 1 — f are equivalent. We claim
that e = f = 0. Otherwise, let w be a partial isometry with ww* = e and
w*w = f. We choose ¢ > 0 such that ¢ < |Jwl||,. Let Ay,..., A\, in C and
ULy ..., Uy in G (A) such that

o3, <
j=1

We have Hw — Z;-lzl )\jeuijQ < ¢, so that at least for one j we have eu; f #

0. Then w’ = eu;f belongs to GNjy(A) and is such that ew’ = w' = w'f.
But this contradicts the maximality of (v;);er.
To conclude, we set u =), v;. O

The von Neumann generated by Nys(A) is the w.o. (or s.0.) closure
of the linear span of Nj/(A). It is also the closure of the linear span of

GNum(A).

12.1.2. Case of a maximal abelian von Neumann subalgebra.
In the sequel, (M, 7) will be a tracial von Neumann algebra, assumed to
be separable for simplicity, and A will be a maximal abelian *-subalgebra
(m.a.s.a) of M. This property is equivalent to the fact that A’N M = A.

We begin by some properties of m.a.s.a.’s that will be needed later on.
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PROPOSITION 12.1.3. Let A be an abelian von Neumann subalgebra of a
tracial von Neumann algebra (M, T) and let (A,) be an increasing sequence
of von Neuman subalgebras of A such that U, A, is w.o. dense in A. Then
A is maximal abelian if and only if, for every x € M,

lim || Eay o () — Ea, ()|, = 0.
Moreover, in this case we have, for x € M,

lim [| Ea, s (2) — Ea(@)]|, = 0.

PROOF. Observe first that A}, N M is a decreasing sequence of von Neu-
mann algebras whose intersection is A’ N M. Then by Lemma 11.1.9 and
Remark 11.1.10 we have, for every x € M,

li{n | Eanne (@) = Eann(z)]], = 0 and 117131 |Ea,(z) — Ea(z)||y = 0.

Then, the statement follows immediately since A is maximal abelian if and
only if A=A"NM. O

COROLLARY 12.1.4. Let A be a maximal abelian von Neumann subal-
gebra of a separable tracial von Neumann algebra (M, 7). Then, there is a
sequence (e} )i<k<m,, 7 = 1, of partitions of the unit in A such that for
every x € M,

=0
2

lim
n

mn
Z eprer — Ea(T)
k=1

PROOF. Let (A,) be an increasing sequence of finite dimensional *-
subalgebras of A whose union is w.o. dense in A (see Lemma 11.1.8). By
the previous proposition we have

lim | Eaynne(z) — Ea(z)||, = 0.

We denote by e, k = 1,...,m,, the minimal projections of A,,. It suffices
to observe that Eu () = Do)y efxel. O

PROPOSITION 12.1.5. Let A be a maximal abelian von Neumann subalge-
bra of a separable tracial von Neuman algebra (M, 7) and let v € GNy(A).
Then there exists a non-zero projection f € A such that either fof =0 or
fuof is a unitary element in Af.

PROOF. Assume first that E4(v) # 0 and write E4(v) = ve as in Lemma
12.1.6. Then eve = ve is a unitary in Ae and we take f = e.

Assume now that F4(v) = 0. By the previous corollary, there exists a
partition (ef)1<g<m of the unit in A such that

m m
> llerverll; = || Y exvey
k=1 k=1

2
<1/2.
2
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It follows that there is at least an index k such that ejvey is not a unitary
in Aeg. Then, f = e, — egverv*e; is a non-zero projection in A such that
fvf=0. O

We now turn to the description of some other useful properties of GN s (A).
Recall that we denote by e4 the orthogonal projection from L?(M) onto
L?(A). More generally, if v € GNy(A) the space vL?(A) is closed and
we will denote by e, the corresponding orthogonal projection. We have
eva = veav® € (M,ea) N A" and vL?(A) = L?(A)v.

Recall also that 7 denotes the canonical normal faithful semi-finite trace
on (M,eu) and that T(e,a) = 7(vv*) (see Section 9.4.1).

The restriction of e4 to M is the conditional expectation E, from M
onto A (see Remark 9.1.3). Similarly, the restriction of e, 4 to M is the map
x — vE4(v*z) since © — vE4(v*x) is orthogonal to vA. We set Eya(x) =
vEA(v*x). We establish below some features of these maps F,4 and e,4.

LEMMA 12.1.6. Let vg,v € GNy(A). There exists a unique projection
e € A such that Ey a(v) = ve with e < v*v. In particular Ey,a(v) is a
partial isometry.

PROOF. We consider first the case where vg = 1. We set p = v*v A vv*
and observe that p is greater that the left and right supports of E4(v).
Let E4(v) = wa be the polar decomposition of E4(v) and set e = w*w.
Then we have e < p. For b € A we have F4(v)b = (vbv*)E4(v), that is
wab = (vbv*)wa. It follows that wb = (vbv*)w and therefore v*wb = bv*w.
Thus v*w is a partial isometry which belongs to A since A is maximal
abelian. Moreover, we have

w v = Ey(w*v) = w*Ex(v) = w*wa = a.

We see that a is a positive partial isometry, hence a projection. It follows
that a = e and w = ve.
Let us consider now the general case. By the fist part, we have

Eyoa(v) = voEa(vgv) = vo(viv) f
where f € A is a projection such that f < v*vgvgv. Thus
Eyoa(v) = v(v vovgv) f

and we set e = (vivougv) f = f.
The uniqueness of e is obvious. ([

LEMMA 12.1.7. Let vi,va,v € GNy(A) and suppose that viA and v2 A
are orthogonal. Then the left (respectively right) supports of E, a(v) and
Ey,4(v) are orthogonal.

PROOF. We have E,, 4(v) = ve; and E,,4(v) = ves with e; < v*v and
eo < v*v. Since v1 A and v9 A are orthogonal, we have

0 = 7(e1v*ves) = 7(ere2),

so that 0 = ejes. O
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Let (v;)ier be a family of partial isometries in GNjs(A) such that the
subspaces v; A are mutually orthogonal. We set

g v;iA = {x EM:x= g via;, a; € A, E Hfuiang < —i—oo}.
icl icl icl

We observe that such an expression, if it exists, is unique as long as we
require that v}v;a; = a; for every i since a; = E4(v]x) in this case.

LEMMA 12.1.8. The space Y, v;A is closed in M equipped with the
||-ly-norm. Moreover, for everyv € GNa(A) there exists a unique projection
e € A with e < v*v such that ve € ), ;v;A and v — ve is orthogonal to

Zie[ ’UZ‘A.

PROOF. The closure of _;.; v;A in L*(M) is ®;crv;L*(A). Let z € M.
Its orthogonal projection on @;ev;L%(A) is @icrviEa(vix). It follows that

MN (@iel UZ'LZ(A)) s ZUZA
el
Let now v € GNys(A). Using the two previous lemmas, we get that
E, a(v) = ve; form a unique projection e; € A such tha e; < v*v and
that these projections are mutually orthogonal. Therefore e =} . ;e; is a

projection in A. We have ve = 3, ;ve; € >, v;A and v—wve is orthogonal

Let A be the von Neumann algebra generated by A U JAJ. It is an
abelian von Neumann subalgebra of (M, e4) N A'.

LEMMA 12.1.9. Let A be a mazimal abelian von Neumann subalgebra of
a separable tracial von Neuman algebra (M, 7). Let v € GNp(A). Then
eva € A. Moreover, we have

Aeyq = Aeyq = Aeya.

PROOF. Let us first recall a notation: given a von Neumann subalgebra
N of B(L?(M)) and ¢ € L?(M), then [N¢] € N is the orthogonal projection
on N&. Thus ey = [Al] and for v € GN(A) we have [JAJv] = eya.

Case v = 1. Let x € M. Using Corollary 12.1.4, we see that there is
a sequence (€})1<k<m,, 7 > 1, of partitions of the unit in A such that we
have

mn
: n n _
hén Zekazek — Eaz(z)|| =0.
k=1 2
If we set P, = Y epJeld € A, we get limy, ||P,(z) — ea(z)|, = 0 for

every x € M. It follows that the sequence (P,,), of projections converges to
e4 in the s.o. topology and so eq € A C A'.

We have e4 < [Al] < [A’l], and finally all three projections are the
same since [A’1] is the smallest projection p € A such that p(1) = 1.
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Note that Ae, is a maximal abelian subalgebra of B(L?(A)). Since Aex
is abelian and contains Ae4 we get that Aey = Aey is maximal abelian and
and therefore Aeq = A'e4.

General case v € GNy(A). We set e = v*v and f = vv*. Since v
commutes with JAJ and belongs to the normalizing pseudo-group of A, we
see that z +— vzv* is an isomorphism from Ae onto Af. In particular, we
have e,4 = veav* € A. The rest of the statement also follows by spatial
isomorphism. ([l

REMARK 12.1.10. Given b € A there exists a unique a € A such that
avv* = a and be,q4 = aeya. Moreover we have |lal| < ||b]|. To see this
inequality we take a; € A with ajeq = (v*bv)es. We have |la1| < ||b]|. To
conclude, we observe that a = vajv*.

12.1.3. Cartan subalgebras.

DEFINITION 12.1.11. Let (M, 7) be a tracial von Neumann algebra. A
Cartan subalgebra is a maximal abelian von Neumann subalgebra A of M
such that the normalizer Nj;(A) generates M as a von Neumann algebra.
Then we will also say that A C M is a tracial Cartan inclusion, or simply a
Cartan inclusion.

Note that in this case, the linear span of Aj;(A) and the linear span of
GN(A) are dense in M in the norm ||-[[,.

PRroPOSITION 12.1.12. If A is a Cartan subalgebra of a separable tra-
cial von Neuman algebra (M, T), then A is a maximal abelian subalgebra of

B(L*(M)).

PRrROOF. Since A is a Cartan subalgebra of M the linear span N of
Nu(A) is dense in L*(M). Tt follows that L*(M) = \,cnr,,
sol= \/ueNM(A) eua- Since A'eyq = Aeya € A we see that A = A. O

(A) uj‘”b and

We now show the existence of an orthonormal basis of M over A made
of elements of GNj;(A) when A is a Cartan subalgebra.

PRrROPOSITION 12.1.13. Let A be a Cartan subalgebra of a separable tra-
cial von Neuman algebra (M, 7). There is a family (v;)ier of non-zero partial
isometries in GNy(A) such that the subspaces v;A, i € I, are mutually or-
thogonal and M =y, ; v; A.

PROOF. Let (v;);c; be a maximal family of non-zero partial isometries
in GNys(A) such that the subspaces v;A, i € I, are mutually orthogonal.
Suppose that >, ;v;A # M. Since the linear span of GNy(A) is [|-]|,-
dense in M, there exists v € GNi(A) such that v & >, ;v;A. Let e
be a projection in A such that ve € ), ;v;A and v — ve orthogonal to
Y icr ViA. Then v — ve is a non-zero partial isometry in GNy(A) and (v —
ve)A is orthogonal to v;A for every ¢ € I. This contradicts the maximality
of ('Ui)iel O
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Note that (v;);es is an orthonormal basis of the right A-module L?(M)
and that I is countable since L%(M) is separable. We will say that (v;)scr
is an orthonormal basis over A.

COROLLARY 12.1.14. Let A be a Cartan subalgebra of M and let (vy)n>1
be an orthonormal basis over A as in the previous proposition. Then

A= ZanevnA s ap, € Avpu), sup ||ay|| < oo
n>1 "

Moreover, the above decomposition of every element of A is unique.

PROOF. This is immediate since e,, 4 € A for every n, and ) |, -, €y,4 =
1. It suffices to use Lemma 12.1.9 and Remark 12.1.10. g

12.1.4. Basic examples of Cartan inclusions. In this section, (X, )
will be a standard probability measure space and A = L*°(X, p).

The typical example of a Cartan inclusion is provided by the group mea-
sure space construction. Let M = L>®(X,u) x G where G ~ (X, ) is a
free p.m.p. action. As seen in Chapter 1, L>°(X, ) is a maximal abelian
von Neumann subalgebra of M and M is generated by L°°(X,u) and the
set {uy : g € G} of canonical unitaries. Observe that these unitaries u, nor-
malize L>(X, p) and thus L*°(X, u) is a Cartan subalgebra of M. Such
Cartan subalgebras are called group measure space Cartan subalgebras. Ob-
serve that in this case, Proposition 12.1.13 is obvious: every € M has a
unique expression as ¥ = ) ugag with > ¢ lagll < 4o0.

A more general example is given by p.m.p. equivalence relations. Let R
be a countable p.m.p. equivalence relation on (X, ). Then A = L>®(X, u)
is a Cartan subalgebra of M = L(R). Indeed, we know that A is a maximal
abelian subalgebra of M (Proposition 1.5.5). Moreover, L(R) is generated,
as a von Neumann algebra, by the partial isometries u,, where the ¢’s
are partial isomorphisms between measurable subsets of X, whose graph is
contained into R (see Section 1.5.2). Recall that wu, is the partial isometry
defined by (u,€)(z,y) = &(p~(z),y) if x is in the domain D(p~!) of ¢*
and (uy€)(7,y) = 0 otherwise. For f € A, we have u, fuj, = 1p,-1)f o o1
and therefore u, belongs to GNy(A).

We keep the notation of Section 1.5.2. Recall that the elements of L(R)
may be viewed as elements of L?(R,v) via the identification z = x1A.

LEMMA 12.1.15. Every u € Ny (A) has a unique expression as fug,
where f € U(A) and ¢ € Aut (X, p) is such that x ~g o(x) for a.e. x € X.

PROOF. Let ¢ be the automorphism of (X, 1) induced by the restriction
of Ad(u) to A. Viewing u as an element of L?(R,v), we have, for every
a € A,

u(z,y)aly) = a(p H(x))u(z,y), for ae. (z,y) € R.
Since u is a unitary operator, it follows that for almost every x € X there is
y ~r x with u(z,y) # 0 (by Exercise 1.16) and therefore we have ¢(x) ~x .
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Moreover, since Ad (u)j4 = Ad (uy)ja we see that ulu € U(A). This
concludes the proof, the uniqueness of the decomposition being obvious. [

In the setting of equivalence relations, Proposition 12.1.12 has an easy
proof, as shown below.

ProproSITION 12.1.16. Let R be a countable p.m.p. equivalence rela-
tion on (X,u). We set M = L(R) and A = L>®(X,pu). Then the von
Neumann algebra A generated in B(L?>(M, 7)) by AU JAJ is the von Neu-
mann algebra of multiplication operators by the elements of L>°(R,v) on

L*(M, 1) = L*(R,v).
PRrOOF. We remark that for a € A and ¢ € L?(R,v) we have
(a&)(x,y) = a(x)§(x,y), and (JaJ§)(z,y) = a(y)(z,y),

whence the inclusion A C L*(R,v). We claim that A is a maximal abelian
von Neumann subalgebra of B(L?(R,v)). To this end, by Theorem 3.1.4,
it suffices to show that 4 has a cyclic vector. Let £ be a bounded strictly
positive measurable function on R which belongs to L*(R,v) and therefore
to L?(R,v) as well. Let n € L?>(R,v) be a function orthogonal to A&. We
may assume that X = [0, 1] with its canonical Borel structure. We have

[ e @t i) = 0
[0,1]x[0,1]

for every continuous functions f, g on [0, 1], where we view §ydv as a bounded
measure on [0, 1] x [0, 1]. It follows that n = 0 a.e. on (R,v).
This shows our claim and consequently the lemma. ([

We leave it to the reader to translate Proposition 12.1.13 in the setting
of equivalence relations.

12.2. Isomorphisms of Cartan inclusions and orbit equivalence
Let us begin by recalling some definitions.

DEFINITION 12.2.1. Let R and R2 be two countable p.m.p. equivalence
relations on (X1, p1) and (Xa, ug) respectively.

(i) Let € : (X1, 1) — (X2, p2) be an isomorphism of probability mea-
sure spaces. We say that 6 induces an isomorphism from R onto
Rz (or by abuse of langage that € is an isomorphism from Ry onto
Ra) if (6 x 0)(R1) = R2 (up to null sets). Then we say that R;
and Ro are isomorphic.

(ii) Assume that R; = R, ~x, and Ra = Rgy~x, for p.m.p. actions
G1 ~ (X1,p1) and G ~ (X2, u2). We say that the actions are
orbit equivalent if there exists an isomorphism 6 from Rq onto Ro
(i.e., such that for a.e. x € X, we have 0(G1z) = G26(z). Then 0
is called an orbit equivalence.
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12.2.1. Isomorphisms. Let R and R2 be two countable p.m.p. equi-
valence relations on (X1, p1) and (Xo, uo) respectively. Let 6 : (X, 1) —
(X2, p2) be an isomorphism of probability measure spaces. We denote by 6,
the induced isomorphism f + fo#~! from L>°(X;) onto L>(X3). We have
observed in Section 1.5.3 that 6, extends to an isomorphism from the von
Neumann algebra L(R1) onto L(R2) whenever 6 is an isomorphism from R;
onto Ro. The converse assertion holds true.

THEOREM 12.2.2. Let Ry and Ra be as above and let 6 : (X1,u1) —
(X, p2) be an isomorphism of probability measure spaces. The two following
conditions are equivalent:

(1) 6 induces an isomorphism from R1 onto Ra;
(ii) O, extends to an isomorphism from the von Neumann algebra L(R)
onto L(Rz).

PROOF. It remains to prove that (ii) = (i). We put 4; = L*°(X;) and
M; = L(R;), i = 1,2. We denote by 7; the canonical tracial state on M;. We
recall from Section 7.1.3 (c) that we may identify L?(M;, ;) with L?(R;, v;),
where v; is the o-finite measure on R; defined by j;. For & € L?(R;, v;), the
canonical conjugation operator J; satisfies J;§(z,y) = £(y, x).

Let « be an isomorphism from M; onto Ms which extends 6,. Let
U : L*(My, 7)) — L*(M3,72) be the unitary implementation of a: we have
UmU* = a(m) for every m € M; and U o J; = Jy o U (see Remark 7.5.3).

We denote by A; the von Neumann subalgebra of B(L?(R;,v;)) gener-
ated by A; U J;A;J;. For a € Ay, and & € L2(M2,T2) = LQ(RQ,VQ) we
have

(UaU"€)(@,y) = (a(a)§)(z,y) = a(0™' (2))E(x, y),

and
(UJ1aJ1U*€)(x,y) = (J2UaU* J2€)(x,y)
= (UaU*J26)(y, x)

= a(0- 1 (y)&(x,y) = (J2buaof)(z,y).

By Proposition 12.1.16, we know that A; = L*°(R;, ;). Then, obviously
we have UL*(R1,v1)U* = L*®(Ra,12). Next, by Remark 3.3.2, we see
that there is an isomorphism © : Ry — Ro with O, equivalent to v,
and UMpU* = Mp,e-1 for every F' € L>®(R1,v1), where Mp denotes the
multiplication operator by F. Whenever F'(z,y) = a(z)b(y) with a,b €
L (X3, p2) we have F'(O(z,y)) = F'(0(x),0(y)). Since Ay U By generates
L>®(R2,12) as a von Neumann algebra, we see that O(x,y) = (6(x),0(y)).
Therefore, 6 is an isomorphism from R; onto Rs. O

DEFINITION 12.2.3. We say that two tracial Cartan inclusions A1 C M
and Ay C My are isomorphic if there exists an isomorphism « from M; onto
My such that a(A;) = Az and 79 0w = 71. Then we say that A; and As are
conjugate. If My = M and if « is an inner automorphism, we say that Aj,
As are conjugate by an inner automorphism or unitarily conjugate.
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COROLLARY 12.2.4. Let R1 and Rg be two countable p.m.p. equivalence
relations on (X1, 1) and (Xa, u2) respectively. The two following conditions
are equivalent:

(i) the equivalence relations are isomorphic;
(ii) the tracial Cartan inclusions L*>(X;,u;) C L(R;), i = 1,2, are
isomorphic.

PROOF. Let a : L(R1) — L(R2) be a trace preserving isomorphism
sending L>°(X) onto L*°(X3). Since « is trace preserving its restriction to
L>®(X7) is of the form f +— fof~! where 0 : (X1, 1) — (X2, p2) is a p.m.p.
isomorphism. Then we apply the theorem 12.2.2. ([

COROLLARY 12.2.5. Let R1 be a countable ergodic p.m.p. equivalence
relation on (X1, p1) such that L>(X1) is the unique Cartan subalgebra of
L(R1), up to conjugacy. Then, for any countable ergodic p.m.p. equivalence
relation Ra on some (X2, 2), the von Neumann algebras L(R1) and L(R2)
are isomorphic if and only if the equivalence relations are isomorphic.

PROOF. Let o : L(R2) ~ L(R1) be an isomorphism (automatically trace
preserving since the von Neumann algebras are factors). Then a(L*>(X3)) is
a Cartan subalgebra of L(R1) and therefore there is an automorphism S of
L(R1) such that o a(L>(X3)) = L>(X;). Then the equivalence relations
are isomorphic by Corollary 12.2.4. (]

We now state these results for group actions.

COROLLARY 12.2.6. Let G1 ~ (X1, p1) and Go ~ (Xa, u2) be two free
p.m.p. actions and let 0 : (X1, pu1) — (Xo, p2) be an isomorphism of proba-
bility measure spaces. The two following conditions are equivalent:

(i) 0 is an orbit equivalence between the actions;
(ii) O, extends to an isomorphism from L (X1)x Gy onto L™°(X2)xGs.

Proor. This follows immediately from Theorem 12.2.2; after having
identified L*>°(X;) x G; with L(Rg,~x;) (see Section 1.5.7). O

COROLLARY 12.2.7. Let G ~ (X1, p1) and Go ~ (Xa, ug) be two free
p.m.p. actions. The two following conditions are equivalent:

(i) the actions are orbit equivalent;
(ii) the tracial Cartan inclusions L>(X;) C L>®(X;) x G;, i = 1,2, are
isomorphic.

COROLLARY 12.2.8. Let G1 ~ (X1, 1) be a free ergodic p.m.p. action
such that L>=°(X1) x Gy has L (X1) as unique group measure space Cartan
subalgebra, up to conjugacy. Then, for any free ergodic p.m.p. action Go ~
(Xa, u2), the corresponding crossed products are isomorphic if and only if
the actions are orbit equivalent.
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12.2.2. The automorphism group of an equivalence relation.
Let R be a countable ergodic p.m.p. equivalence relation on (X, u). We set
M = L(R) and A = L*>(X) and we denote by Aut (M, A) the subgroup of
automorphisms o € Aut (M) such that o(A) = A. We denote by Aut (R)
the subgroup of automorphisms 6 € Aut (X, p) such that (6 x 6)(R) = R.
Let o € Aut (M, A). Its restriction to A induces an element of Aut (R) by
Theorem 12.2.2. Moreover, this homomorphism 7 from Aut (M, A) onto
Aut (R) is surjective since every 6 € Aut(R) comes from ap : Lp —
Lpo@-1x9-1)- On the other hand, 7 is not injective. Indeed, let ¢ be a
1-cocycle, that is, a Borel function from R into T such that ¢(z,x) = 1 and
c(x,y) = c(x, z)c(z,y), up to null sets. Let U be the multiplication by ¢ on
L*(R,v). Then ULpU* = L.r and therefore Lp + L.r is an element of
Aut (M, A) whose restriction to A is trivial, and so an element of the kernel
of m.

Note that Aut (R) acts on the abelian group Z*(R, T) of those 1-cocycles
by 6.c = co (0~ x 0~1). Exercise 12.2 shows that ker 7 is canonically identi-
fied to Z!(R,T) and that Aut (M, A) is the semi-direct product Z'(R, T) x
Aut (R).

Let Inn(R) be the normal subgroup of Aut(R) consisting of all ¢ €
Aut (R) such that p(x) ~g x for almost every x € X. The outer automor-
phism group of R is Out (R) = Aut (R)/Inn (R).

The group Inn (R) plays a key role in the study of R and its von Neu-
mann algebra. It is called the full group of R and is more usually denoted by
[R]. Tt follows from Lemma 12.1.15 that the group Ny (A)/U(A) is canon-
ically isomorphic to [R]: to u € Np(A) we associate the unique ¢ € [R]
such that Ad (u) = Ad (u,) and then pass to the quotient.

In the next section we introduce the abstract notion of full group of
measure preserving automorphisms and apply it to the general construction
of Cartan inclusions.

12.3. Cartan subalgebras and full groups

In this section (X, p) is still a standard probability measure space and
A = L*(X, p), equipped with the trace 7 = 7,.

12.3.1. Full groups of probability measure preserving automor-
phisms.

DEFINITION 12.3.1. Let G C Aut (X, 1) be a group of automorphisms of
(X, p). We say that G is a full group if whenever 6 € Aut (X, u) is such that
there exist a countable partition (X,) of X into measurable subsets, and
On € G such that the 6,,(X,) are disjoint with 0| x,, = 6, xy, then 0 € G.

When G is viewed as a subgroup of Aut (A, 7), the notion of full group
can be expressed in this setting: if § € Aut (A, 7) is such that there exist a
countable partition of 1 by projections p, € A and automorphisms 6,, € G
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such that the 6, (p,) are mutually orthogonal with 6(a) = )", 0, (apy) for
a € A, then 0 € G. We will equally use the two formulations.

ExaMPLE 12.3.2. Assume that A is a Cartan subalgebra of a tracial
von Neumann algebra M. Then {Ad (u) : u € Nj(A)} is a full group. It
is denoted by [Nas(A)]. Note that this group is canonically isomorphic to
Nar(A)JU(A).

In the case where A = L>®(X) C M = L(R), then [Na(A)] is canoni-
cally isomorphic to [R].

REMARK 12.3.3. There is also a natural notion of full pseudo-group of
partial measure preserving isomorphisms of (X, u). In the case of a countable
p.m.p. equivalence relation R on (X, u), the pseudo-group [[R]] of such
isomorphisms whose graph is contained in R is an example of full pseudo-

group.

LEMMA 12.3.4. Let G be a subgroup of Aut (A, 7). We denote by [G]
the set of automorphisms 0 € Aut (A, ) with the property that there exist a
countable partition of 1 by projections p, € A and automorphisms 0, € G
such that the 0,,(p,) are mutually orthogonal with 6(a) = ), 0,(apy,) for

a € A. Then [G] is a full group and it is the smallest full group that contains
G.

Proor. Immediate. O

The group [G] is called the full group generated by G.

REMARK 12.3.5. Let M = L*®(X,u) x G where G n~ (X, p) is a free
p.m.p. action. Then [G] = [Np(A)]. We use the fact that every element of
[Nar(A)] is of the form Ad (up) with 6 € [Rg~x]-

12.3.2. Equivalence relations, full groups and Cartan inclu-
sions. A natural problem is to understand what is the most general con-
struction of Cartan inclusions. There are two approaches of this problem.

12.3.2.1. From equivalence relations to Cartan inclusions. Let R be a
countable p.m.p. equivalence relation on (X, ). The construction of L(R)
can be generalized by including a twist by a 2-cocycle. For n > 1, we
denote by R(™) ¢ X™*1 the Borel space of all (n + 1)-tuples (zq,...,z,) of
equivalent elements. We equip R(™ with the o-finite measure (™ defined
by

V(€)= [ Iy (@) N Clana).

where C is a Borel subset of R(™ and mo(Zo, ..., Tn) = Tp.
A 2-cocycle for (R, i) is a Borel map ¢ : R®®) — T such that

c(x1, x2, x3)c(x0, X1, 23) = c(T0, T2, T3)(X0, T1,X2), a.c. (12.1)
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We assume that c is normalized, that is, it takes value 1 as soon as two of its
three variables are the same. Two 2-cocycles ¢, ¢ are cohomologous if there
exists a Borel map h : R — T such that h(z,z) =1 a.e. and

d(z,y,2z) = h(z,y)h(z, 2) " h(y, 2)c(z, y, 2), a.e. (12.2)

We fix a 2-cocycle ¢ and keep the notations of Section 1.5.2. Then, given
F € My(R), we define a bounded operator L} on L*(R,v) by

Ly ©)(@,y) = ) F(@,2)¢( y)e(, 2,9).
ZRx

It is straightforward to check that the von Neumann algebra L(R,c) gene-
rated by these operators L, F' € My(R), retains exactly the same proper-
ties as L(R). In particular, A = L*°(X) is a Cartan subalgebra of L(R,c).
It is also immediately seen that, whenever ¢, ¢’ are cohomologous as in (12.2),
there is a spatial isomorphism from L(R,c¢) onto L(R, ), induced by the
unitary W : & — h&, which preserves the Cartan subalgebra L>°(X). We
have L(R,1) = L(R).

We get in this way the most general example of a pair (M, A) formed
by a separable tracial von Neumann algebra and a Cartan subalgebra. We
will sketch a proof by using the alternative construction via full groups.

12.3.2.2. From full groups to Cartan inclusions. Let us first translate the
previous construction in terms of the full group G = [R]. For ¢ € G, we de-
note by ps € P(A) the characteristic function of the set {x € X : ¢(z) = z}.
Given a € A, we set ¢(a) = ao ¢ '. For p,9p € G and z € X, we set
Vs (@) = e, (@), U Lo (2).

Then v is a map from G x G to U(A) which satisfies the following prop-
erties, for all p,1, @, p1, s € G:

VppUp,o = P(Vy,6)Vp,ue; (12.3)
PorozVorib = Py Vor s Y(Poyr) V001 = V(P ot )V0n, - (124)
PV = Doy P(Dy)Vpp = 0(Dy)s PoyVpyp = Pyrp- (12.5)

The equations in (12.5) are the translation of the fact that ¢ is norma-
lized.

Moreover, if v, v’ are associated with two cocycles ¢, then we easily
check that ¢, ¢ are cohomologous if and only if there exists w : G — U(A)
which satisfies the following conditions, for all ¢, 1, 1,2 € G:

p@lwglwwl = p¢1¢;1w§02, (12.6)

Uiy = WP (W ) Vg Wy (12.7)

DEFINITION 12.3.6. A 2-cocycle for a full group G on (A, 7) is a map

v: G x§G — U(A) which satisfies the conditions (12.3) and (12.4). The
cocycle v is normalized if it satisfies the conditions (12.5). Two cocycles

v,v" are cohomologous if there exists w : G — U(A) which satisfies the
conditions (12.6) and (12.7), and then we write v ~ v'.
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Every 2-cocycle is cohomologous to a normalized one.

Starting now from a general full group G of automorphisms of (A, 7)
together with a normalized two cocycle v let us briefly describe the con-
struction of the attached Cartan inclusion. We consider the vector space
M of finite sums Zs@ ay,u, with a, € A and ¢ € G. On M we define the
product and involution by

(apup)(agu) = app(ag)vp sty (apuy)” =@~ () uy1.

We define a linear functional 7 on M by 7(ay,u,) = 7(ayp,) and a sesquili-
near form by (z,y). = 7(2*y). We easily see that this form is positive. We
denote by #H the Hilbert space completion of M /Z where

IT={zeM:7(z*x) =0}

Observe that M is represented on H by left multiplications.

Finally, we define M = L(G,v) to be the weak closure of M in this
representation. Then 7 defines a normal faithful tracial state on M and
A C M is a Cartan inclusion.

REMARK 12.3.7. Assume that G is the full group generated by a coun-
table group G of automorphisms of (A, 7). Let R be the equivalence relation
implemented by the orbits of G. Equivalently, we have z ~¢ y if and only
if Gx = Gy. Then R is a countable p.m.p. equivalence relation. If ¢ is the
2-cocycle for R such that vy, 4 (z) = c(z, 0 (z), v 1o~ (x)) for a.e. = then
we check that A C L(G,v) = A C L(R,¢).

12.3.2.3. From Cartan inclusions to full groups. We now start from a
Cartan inclusion A C M where M is a tracial von Neumann algebra. We
set G = [Na(A4)]. The main problem is to choose a good section ¢ +— u,
of the quotient map Ny (A) — [Na(A)]. We write G as a well ordered set
{@i 11 €I} with Id4 as a first element. We choose urq, = 1. Let J be an
initial segment of I in the sense that whenever j € J then every smaller
element is in J. We assume that we have chosen u,; implementing ¢; for
Jj € J, in such a way that if 4,5 € J and ¢ € P(A) are so that ¢; and ¢;
agree on Agq, then uy,q = uy,q. Let k be the first element of I\ J. There
is a maximal projection p € P(A) such that the restriction of ¢i to Ap
does not agree with any ¢;, j € J, on Aq for any ¢ € P(Ap). It follows
that ¢ = @je 7 ¥PjlAq; D Pr|ap for some mutually orthogonal projections
q; € P(A) with ZjeJ ¢; = 1—p. Then we set u,, = Zjejuwj%‘ + wp where
w € Ny(A) is any unitary that implements y.

In this manner, we have obtained unitaries u,, ¢ € G such that uiq, = 1,
Ad (uy) = ¢, and uyq = uyq for every projection ¢ € P(A) with ¢,
agreeing on Aq. We set vy, = uwuwu;d) for ¢, € G. It is straighforward to
check that v is a 2-cocycle for the full group G, due to the fact that our choice
of the u, has been carried out in such a way that pg,-1 “w“zzl = Poyp1-
Moreover, the choice of v is unique up to the relation ~.
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Thus, we just have defined a functor from the category of tracial Cartan
inclusions, with morphisms given by isomorphisms, into the category of pairs
(G ~ (A, 7),v/~) consisting of a full group G on an abelian von Neumann
algebra (A,7) and the class of a two cocycle v : G x G — U(A), with
morphisms given trace preserving automorphisms of the abelian algebras
that carries the full groups (resp. the class of 2-cocycles) onto each other.

The functor is one to one and onto, the inverse having been constructed
in the subsection 12.3.2.2. This is summarised in the following theorem.

THEOREM 12.3.8. To every tracial Cartan inclusion A C M is associated
the full group G = [Nar(A)] and the class of a 2-cocycle v: G x G — U(A).
Conversely every pair (G ~ (A, T),v/~) gives rise to a tracial Cartan inclu-
sion. After passing to quotients, we get a functorial bijective correspondence
between the set of isomorphism classes of tracial Cartan inclusions A C M
and the set of isomorphism classes of pairs (G ~ (A, T),v/~).

We can now complete the theorem 12.2.2 as follows.

THEOREM 12.3.9. Let R1 and Ro be two countable p.m.p. equivalence re-
lations on (X1, u1) and (Xa, u2) respectively, and let 0 : (X1, p1) — (Xa, u2)
be an isomorphism of probability measure spaces. The following conditions
are equivalent:

(i) @ induces an isomorphism from Ry onto Ra;
(ii) 0. extends to an isomorphism from the von Neumann algebra My =
L(Rl) onto M2 = L(RQ);
(iii) O[R1]07 = [Ra).

PrROOF. We apply Theorem 12.3.8 with trivial 2-cocycles. [l

Similarly, Corollary 12.2.6 is completed as follows.

COROLLARY 12.3.10. Let G1 ~ (X1,u1) and Go ~ (Xo,p2) be two
free p.m.p. actions and let 6 : (X1,u1) — (Xo,p2) be an isomorphism of
probability measure spaces. The following conditions are equivalent:

(i) 0 is an orbit equivalence between the actions;
(ii) 0. extends to an isomorphism from L*°(X1)xG1 onto L*°(X2)xGo;
(i) 0110~ = [Ga).

12.4. Amenable and AFD Cartan inclusions

Let A be a Cartan subalgebra of (M,7) and let A = (AU JAJ)"” . We
let Na(A) act on A by x — Ad (u)(z) = uzu*. Recall that Ad (u) is an
automorphism of A and fixes each element of JAJ.

DEFINITION 12.4.1. We say that a tracial Cartan inclusion A C M (or
that the Cartan subalgebra A) is amenable if there exists a state on A which
is invariant under the action of N/ (A).
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If (M, ) is a tracial amenable von Neumann algebra (for instance the
hyperfinite factor R), then every Cartan subalgebra A of M is amenable: it
suffices to consider the restriction to A of an hypertrace.

We also observe that if e is a non-zero projection of A, then eAe C eMe
is an amenable Cartan inclusion when A C M is so.

REMARK 12.4.2. Let R be a countable p.m.p. equivalence relation on
(X,p) and take M = L(R) and A = L*™(X, ). We have A = L*°(R,v).
For f € L®(R,v) and ¢ € [R] we set f¢(z,y) = f(¢ '(x),y). Then A
is amenable if and only if there exists a state ® on L*°(R,v) such that
O(f?) = ®(f) for every f € L>®(R,v) and ¢ € [R]. In this case we say that
the equivalence relation is amenable.

DEFINITION 12.4.3. We say that a tracial Cartan inclusion A C M is
approximately finite dimensional (AFD) if for every finite subset F' of M and
every € > 0, there exist matrix units (eﬁj)1§i7j§nk, 1 <k < m, with eﬁj €
GN(A) for every i, j, k, where the m projections ZKKnk eﬁi, 1<k<m,
form a partition of the unit in A, such that if () denotes the finite dimensional
von Neumann algebra generated by the ei ; then |lz — Eq(z)||, < e for every
rzekF.

Of course if the Cartan inclusion A € M is AFD, then M is amenable
and the inclusion is amenable. The aim of this section is to prove the
converse.

THEOREM 12.4.4. Every amenable Cartan inclusion is AFD.

We follow the main steps of the proof that an amenable finite von Neu-
mann algebra is AFD (see Theorem 11.1.3). The principal step is to establish
a local approximation property.

DEFINITION 12.4.5. We say that a Cartan inclusion A C M has the local
approximation property if for every € > 0, every non-zero projection e € A
and every finite subset F = {uy,...w;} C Neae(eA) there exists matrix
units (€; j)1<ij<m in GNepre(eA), such that, if we set ¢ = >, €;4, and if N
denotes the algebra generated by Ag and the e; ;, then qu;q € Q and

2 2
> llaswslls < elall3-
j

REMARK 12.4.6. Let us keep the notation of the previous definition.
Then every element x of () has a unique expression of the form x = Zl ;@i jQij
with a;j € Aej,j'

THEOREM 12.4.7. An amenable Cartan inclusion has the local approxi-
mation property.

We begin with the proof of a Falner type condition.
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LEMMA 12.4.8. Let F = {uq,...w} be a finite subset in Nps(A) and let
e > 0. There exists a projection p € A such that T(p) < +oo and

> lp— Uij;H;% < ellpll3 ;-
J

ProOOF. We proceed as in the proof of Lemma 11.1.6, replacing now
(M,e4) by A, and using the existence of an invariant state under the action
of Mar(A) on A instead of the existence of an hypertrace. O

PROOF OF THEOREM 12.4.7. Since Ae C eMe is an amenable Cartan
inclusion, it suffices to prove that the statement of Definition 12.4.5 holds
with e = 1.

Let p € A with 7(p) < 400 such that

2 2
> llp — wipui |37 < ellpllzz
i

We have p = > ane,,a where a, < v,v;; is a projection in A (by Corol-
lary 12.1.14). Since anpé€y, 4 = €q,0,4, if We set w, = apv, we see that
p = Y, €w,a Where (wy,) is an orthogonal system in GNj/(A), that is
Ex(wfw;) = 01if ¢ # j. Since T(p) < 400, by approximation we may
assume that p is a finite sum > ;. Cw,A-

Thanks to Proposition 12.1.5, we see that there exists a partition of the
unit (s, )n>1 in A such that s, (wujwy)s, is either equal to 0 or is a unitary
element in As, for all 4, j, k,n and such that the s, (w;wy)s, have also the
same property. Using Pythagoras’ theorem, we get

Z (Z Hp - ujpu;anJH;?) < EZ HPJSnJH%,?-

n j n

It follows that there exists at least an index n such that

2 2
Z |p— ujpu;anJﬂz? <ellpIsnd|l 7. (12.8)
J
We choose such a n and set s = s,,. We observe that eqJsJ = segs and
therefore
pJsd = ZwkseAsw,:.
k

Moreover, for every k we have either wys = 0 or s(wjwg)s = s. Thus,
after a suitable relabeling, we may assume that p in (12.8) is of the form
P = ,wreaw; with wiwy = d; ks and wiujwy € As for all 4, j, k. For this
p we have

2 2

>l —wipl; - < ellpllz 7
J
We set ey, = wpw; and ¢ = ) epx, and we denote by @ the algebra
generated by the matrix units (e;;) and Ag. Then, qujq € Aq for every j.
We have

Ipll37 =7 wkeawt) =Y r(wiwy) = ()
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and
Ip — wjpu’ H;? =23 "7(p) — 2 Fwieaw; ujwpeswiul)
i,k
=2r(q) — 2 F(wiEa(wiujwg)eawju)
i,k
= 27(q) — 2" r(wiwfujuwpwiu]) = [|g — wjqus]}
i,k
Thus we have
Z g — wjqui||s < <llall3.
’ |

PROOF OF THEOREM 12.4.4. Let F' = {uy,...w} be a finite subset in
Nu(A). We use a maximality argument. With the notation of the above
proof, we have

ZHu] (1—g¢q u](l—Q)—quzQHQ <5HQ||2

We consider the set S of all families (Q;);er of subalgebras with mutually
orthogonal units g; where each @; is generated by Ag; and a matrix units
(eé‘,k) in GNu(A), such that giujq; € Q; for all j, which satisfies

—(1—gq) Uj (1—q)— Z%Uj% <€HqH§7

J
where ¢ = > ,.;¢;- This set S is not empty and it is inductively ordered
by inclusion. We take a maximal element (Q;);er with corresponding set
of units (¢;)icr. We put ¢ = >,c; ¢;- Using the same arguments as in the
proof of Theorem 11.1.17 we see that ¢ = 1.

The set I needs not to be finite, but we can find a finite subset I; of I
such that if f =1-37,.; ¢ and if N = CAf © P Q; then [lu; — En(u; )],
can be made small enough (see again the proof of Theorem 11.1.17).

Finally, we observe that each N; (and Ny = Af) is finite dimensional
over A. O

Of course the hyperfinite factor R has Cartan subalgebras (Exercise
12.1). Any two of them are conjugate, as seen in the following theorem.

THEOREM 12.4.9. Let M be a separable type 11y factor.

(i) M is isomorphic to the hyperfinite factor R if and only if M has
an amenable Cartan subalgebra.

(ii) If Ay and Az are two Cartan subalgebras of R there exists an au-
tomorphism 0 of R such that (A1) = A,.



EXERCISES 205

PROOF. (i) Suppose that M has an amenable Cartan subalgebra A.
Then A is AFD. By suitably modifying the matrix units (eﬁ j) of Definition
12.4.3, with arguments similar to those that we used in the proofs of Lemma
11.2.1 and of (2) = (4) in Theorem 11.2.2, we construct an increasing se-
quence of 2Fn x 2% matrix algebras @, whose union is s.o. dense in M. It
follows that M is isomorphic to R.

Moreover we can do so that each @, has a matrix units ( fgj)lgi’jSan
satisfying:

(a) fi € GNu(A) and Y, =1
(b) every f'; is the sum of some fznf ! (property arising from a diagonal
embedding of @, into Qp+1).

(ii) Let A be a Cartan subalgebra of R and let us keep the above no-
tation. We denote by Ay the von Neumann subalgebra of R generated by
the projections ezi with 1 <7< 2’“", n > 1. Then Ay is abelian maximal in
Un@n™" = R and since Ag C A we get Ag = A. This shows the uniqueness
of A up to automorphism: there is an automorphism 6 of R which sends A
on D®® defined in the exercise 12.1. O

DEFINITION 12.4.10. Let R be a countable p.m.p. equivalence relation
on (X, u). We say that R is hyperfinite if there exists an increasing sequence
(Ry)n of subequivalence relations, with finite orbits, such that U, R, = R,
up to null sets. If moreover R is ergodic with infinite orbits, we say that R
is a hyperfinite 11 equivalence relation.

Since R can be viewed as the type II; factor defined by a hyperfinite
equivalence relation on the Lebesgue probability measure space (X, u), an-
other formulation of the previous theorem is that an ergodic countable p.m.p.
equivalence relation on (X, ) is amenable if and only if it is hyperfinite.
Moreover there is only one hyperfinite II; equivalence relation up to isomor-
phism.

COROLLARY 12.4.11. Any two ergodic p.m.p actions of countable ame-
nable groups on Lebesgue probability measure spaces are orbit equivalent.

Proor. Let G; ~ (X;,ui), © = 1,2, be two such actions. Then the
equivalence relations Rg,~x, are amenable (Exercise 12.5) and ergodic,
hence isomorphic. O

Exercises

EXERCISE 12.1. Let (M,,7,) be a sequence of tracial von Neumann
algebras, and for every n, let A,, be a Cartan subalgebra of M,. Show that
®nenAy is a Cartan subalgebra of ®,enM,y,.

In particular, if D denotes the diagonal subalgebra of My(C), then D®
is a Cartan subalgebra of M(C)®>,

EXERCISE 12.2. We keep the notation of Section 12.2.2.
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(i) Show that Z'(R,T) is the kernel of 7 (Hint: let a € ker 7 and let
U be its unitary implementation. Show that U is the operator of
multiplication by a Borel function ¢ : R — T. Show that c(z,y) =
c(y,z)~! and that c(z,2)c(z,y) does not depend on z. Conclude
that ¢ or —c is a cocycle.)

(ii) For ¢ € Z}(R,T) (resp. # € Aut(R)) we denote by a. (resp. ap)
the automorphism Lp + Lep (vesp. Lr — Lpog-1x9-1)) of L(R).
Show that (c,6) — «. o ag is an isomorphism from the group
ZY(R,T) x Aut (R) onto the group Aut (M, A).

EXERCISE 12.3. We keep the notation of the previous exercise. We let
[R] act on U(A) by ¢(f) = fop ! where f : X — TisinU(A) and ¢ € [R].
Show that (f,¢) — fu, is an isomorphism from the semi-direct product
U(A) x [R] onto Nas(A).

EXERCISE 12.4. We still set M = L(R) and A = L>®(X) as above.
We denote by Out (M, A) the image of Aut (M, A) into Out (M). Let
BY(R,T) be the subgroup of Z!(R,T) consisting of the function of the
form (z,y) — f(z)f(y)~" where f : X — T is Borel, and set H'(R,T) =
ZYR,T)/BYR,T).

(i) Show that the action of Aut(R) on Z!'(R,T) gives by passing to
the quotient an action of Out (R) on H(R,T).

(ii) Show that the isomorphism from Z*(R, T)xAut (R) onto Aut (M, A)
gives, by passing to the quotient, an isomorphism from H!(R,T) x
Out (R) onto Out (M, A).

EXERCISE 12.5. Let G ~ (X, ) be a measure preserving action of a
countable amenable group. Show that the equivalence relation Rg~x is
amenable.

Notes

The importance of the now so-called Cartan subalgebras in the study
of the structure of finite von Neumann algebras was recognized as early as
in Singer’s paper [Sin55] where one finds the pioneering Corollary 12.2.7.
This led Dye to develop a comprehensive study of group actions up to orbit
equivalence [Dye59, Dye63]. He emphasized the crucial role of the full
group associated with a group action. In fact, he proved more than what
is stated in Corollary 12.3.10: its condition (iii) is indeed equivalent to the
algebraic isomorphism of the full groups. This result is known as Dye’s
reconstruction theorem. Dye’s ideas, as well as the construction of Krieger
[Kri70] of von Neumann algebras associated with non necessarily freely act-
ing groups, were later carried on by Feldman and Moore [FM77a, FM77b]
who provided an exhaustive study of countable non-singular equivalence re-
lations and their von Neumann algebras. The group Aut (M, A), where A is
a Cartan subalgebra of a type II; factor M was studied by Singer for group
actions and by Feldman and Moore for equivalence relations in their above
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mentioned papers. The results obtained in the first section of this chapter
come from [Dye59, Dye63, Pop85]. The notion of Cartan algebra was
also considered by Vershik [Ver71].

As mentioned above, the bases of orbit equivalence theory were laid by
Dye. In his seminal paper [Dye59], he proved that a countable p.m.p. equiv-
alence relation R is hyperfinite if and only if it is isomorphic to some Rz~ y
for a p.m.p. action of the group Z of integers. Moreover, he proved that two
ergodic p.m.p. actions of Z are orbit equivalent, hence the uniqueness of the
ergodic type II; hyperfinite equivalence relations up to isomorphism. In the
paper [Dye63], Dye established that any p.m.p. action of an infinite abelian
group (even of a group with polynomial growth) gives rise to a hyperfinite
equivalence relation. This was extended much later by Ornstein and Weiss
[OWS80] to the case of actions of any countable amenable group. Therefore,
any two ergodic p.m.p. actions of amenable groups are orbit equivalent.

As for the relations with operator algebras, in [MvIN43] Murray and von
Neumann established the hyperfiniteness of the group measure space type
II; factors arising from free ergodic p.m.p. actions of locally finite groups. In
[Dye63], Dye proved that this is the case for any action of any group giving
rise to hyperfinite equivalence relations. It was known at the end of the
'60s that for any free p.m.p. action G ~ (X, i), the von Neumann algebra
L>*(X) x G has the Schwartz property (P) if and only if G is amenable
[Sch67, Gol71]. Zimmer has extended this study to the case of equivalence
relations, for which he defined a notion of amenability. He showed that a
countable p.m.p. equivalence relation R is amenable if and only if L(R) is
an injective von Neumann algebra [Zim77a, Zim77b]'. He also observed
[Zim78] that for a free p.m.p. action G ~ X, the group G is amenable if
and only if Rg~x is amenable.

Finally, this circle of results was beautifully completed by Connes, Feld-
man and Weiss [CFW81] who proved that a countable p.m.p. equivalence
relation is amenable if and only if it is hyperfinite!. As a consequence, for
an ergodic p.m.p. equivalence relation R, the type II; factor L(R) is hyper-
finite if and only if R is hyperfinite, and the uniqueness of the hyperfinite
type II; factor is the operator algebra analogue of the uniqueness of the
type II; hyperfinite equivalence relation. The operator algebraic proof of
the above Connes-Feldman-Weiss result presented in Section 12.4 is taken
from [Pop85, Pop07c|.

n fact, these results are proved in the more general framework of non-singular equiv-
alence relations.






CHAPTER 13

Bimodules

As seen in Chapter 8, the study of M-modules gives few information
on the tracial von Neumann algebra (M, 7). In contrast, the set of M-N-
bimodules that we introduce now has a very rich structure. These modules
play the role of generalized morphisms from M to N, in particular they are
closely connected to completely positive maps from M to N as we will see
in Section 13.1.2.

Particularly useful is the study of the set of (equivalence classes of)
M-M-bimodules. It behaves in perfect analogy with the set of unitary
representations of groups. We observe that to any unitary represention
of a countable group G is associated a L(G)-L(G)-bimodule. The bimo-
dules corresponding to the trivial and the regular representation are easily
identified. The usual operations on representations have their analogues in
the setting of bimodules, as well as the notion of weak containment. As a
consequence, any property of G involving this notion has its counterpart for
tracial von Neumann algebras. For instance, in the last section, the notion of
amenable von Neumann algebra is interpreted in the setting of bimodules, as
well as relative amenability. In Chapter 14, we similarly will use bimodules
to define the very useful notion of relative property (T).

13.1. Bimodules, completely positive maps and representations
13.1.1. Definition and first examples.

DEFINITION 13.1.1. Let M and N be two von Neumann algebras. A
M-N-bimodule is a Hilbert space H which is both a left M-module and a
right N-module, and is such that the left and right actions commute (see
Definition 7.1.2). We will sometimes write p/Hy to make precise which
von Neumann algebras are acting, and on which side, and denote by mys,
mner the corresponding representations, in case of ambiguity. Usually, for
x € M,y € N,& € H, we write x€y instead of mps(z)mnor(y)E.

We say that two M-N-bimodules H; and Ha are isomorphic (or equiv-
alent) if there exists a unitary operator U : H; — Hz which intertwines the
representations.

A M-N-bimodule introduces a link between the von Neumann algebras
M and N. It is also called a correspondence between M and N.

EXAMPLE 13.1.2. Let us begin with the case M = L*(X,p1) and
N = L*°(Xg, ua), where (X, i), i = 1,2, are standard probability measure

209
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spaces. Let v be a probability measure on X7 x Xo whose projections are
absolutely continuous with respect to p1 and uo. Let

n:X1XX2—>NU{OO}

be a measurable function and denote by H(n) the L*>°(X; x Xy, r)-module
with multiplicity n (see Section 8.1). Then H(n) becomes a M-N-bimodule
by setting

fég=(fop)(gop)s, VfeM,ge N,{cHn)

where p1, po denote the projections on X; and X respectively.

This construction provides the most general example of M-N-bimodule.
Indeed, let H be a M-N-bimodule and denote by L*(X,u) the von Neu-
mann subalgebra of B(#H) generated by the images of M and N. A generali-
sation of results mentioned in Remark 3.3.2 implies that, for i = 1, 2, there
exists a Borel map ¢; : X — X, such that g; .u is absolutely continuous with
respect to p;, and which induces the (normal) canonical homomorphism from
L>°(X;, p;) into L*°(X, p). To conclude, it suffices to introduce the image v
of p under g1 X g : X = X7 X X5 and to use Theorem 8.1.1. As explained
by A. Connes', the measure v represents the graph of the correspondence
from M to N defined by the bimodule and n is its multiplicity.

In the rest of this chapter, we only consider tracial von Neumann alge-
bras.

EXAMPLES 13.1.3. L?(M) is the most basic M-M-bimodule, called the
standard or identity or trivial M-M -bimodule. As seen in Chapter 7, it is
independent of the choice of the tracial normal faithful state on M, up to
isomorphism. From it, many interesting bimodules can be built.

(a) The Hilbert tensor product L?(M)®L?(N) equipped with its obvious
structure of M-N-bimodule is called the coarse M -N -bimodule:

@)y = (z§) ® (ny), Vo€ M,ye N,§ € L*(M),n € L*(N).

When M and N are abelian as in the previous paragraph, this bimodule has
multiplicity one and v = p1 ® po.

Let us denote by S%(L?(N), L?>(M)) the Hilbert space of the Hilbert-
Schmidt operators from L?(N) into L2(M), that is, of the bounded operators
T : L*(N) — L*(M) with Tr(T*T) < +oo. It is a M-N-bimodule with
respect to the actions by composition:

tTy=zo0Toy, Yo € M,y € N,T € S*(L*(N), L*(M)).

The map £ ®1 + 0, ¢, where 05, ¢ is the operator 1 € L*(N) — (Jn,m)¢&,
induces an equivalence between the M-N-bimodules L?(M) ® L?(N) and
S*(L*(N), L*(M)).

I1See [Con94, V. Appendix BJ.
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(b) To any normal homomorphism « from M into N is associated the
M-N-bimodule H(«), which is the Hilbert space a(1)L?(N) endowed with
the following actions:

WM(x)WNOP(y)g = OZ(CC)gy, Vz € M>y € Naé € a(l)L2(N)

When M and N are abelian and a : L (X, pu1) — L%(Xa, p2) is defined
by 6 : X5 — X1, then H () can be viewed as L?(X; x X, 1), where v is the
image of pe under the graph map zo — (6(x2), x2).

Going back to the general situation, it is easily seen that H(a;) and
H(ag) are isomorphic if and only if there is a partial isometry u € N with
wu = (1), uu* = ag(l) and uag (x)u* = ag(x) for all z € M.

Specially important is the case where a belongs to the automorphism
group Aut (M) of M. We get that the quotient group Out (M) of Aut (M)
modulo the inner automorphisms embeds canonically into the space of (iso-
morphism classes of) M-M-bimodules.

(c) More generally, let p be a projection in B(£2(I))®N and let «
be a unital normal homomorphism from M into p(B(¢*(I))&N)p. Then,
p(EQ(I) ® LQ(N)) is a M-N-bimodule, when equipped with the actions

xly = a(x)fy Vr € M,y € N,
the right action being the restriction of the diagonal one. We denote by
H(«) this bimodule.

Proposition 8.2.2, applied to right N-modules instead of left M-modules,
implies that this is the most general example of M-N-bimodule.

DEFINITION 13.1.4. A M-N-bimodule H is said to be of finite (Jones’)
index, or bifinite, if it is both a finite left M-module and a finite right N-
module, i.e., dim(H) < 400 and dim(Hy) < +oo.

The terminology comes from the fact that the M-N-bimodule y; L?(M)y
(or equivalently the N-M-bimodule yL?*(M)y;) has finite index if and only
if [M : N] < 400 when N C M is a pair of type II; factors. More generally,
we have:

ProrosITION 13.1.5. Let M, N be type 11y factors. Then a M-N -bimo-
dule H is of finite index if and only if it is isomorphic to H(a) for some
normal unital homomorphism o : M — p(B(E%) ® N)p = pM,(N)p, some
n and some projection p € My(N), such that [pM,(N)p : a(M)] < +oc.
Moreover, in this case we have
[pMn(N)p : o(M)]

(Tr@ 7v)(p)

dim(Hy) = (Tr®@ 7n5)(p) and dim(yH) =

where Tr is the usual trace on M, (C).

Proor. It follows Lemma 8.5.3 and Proposition 8.6.2 that the M-N-
bimodule H is finite as right N-module if and only if it is of the form H(«)
for some normal unital homomorphism « : M — pM,(N)p, some n and
some projection p € M, (N). We apply the result of Exercise 9.7 to the left
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pM,,(N)p-module p(¢£2 ® L%*(N)) and the subfactor a(M) of pM,,(N)p. This
gives the result we are looking for and

dim(yH) = dim (40 p(¢2 @ L2(N)))
= [pM,(N)p : a(M)] dim ( paz, (n)pp(Lr. © L*(N))).

Finally, we have dim (s, (v)pp(lp @ L*(N))) = 1/(Tr@7n)(p) by Exercises
8.9 and 8.7. O

13.1.2. Bimodules and completely positive maps. The previous
examples already give an indication that bimodules may be viewed as gene-
ralized morphisms between von Neumann algebras. This will be made more
precise now.

— From completely positive maps to bimodules. Let (M, 1pr), (N, 7n)
be two tracial von Neumann algebras. Let ¢ : M — N be a normal com-
pletely positive map®. We define on the algebraic tensor product Hy =
M ® N a sesquilinear functional by

(71 @ Yy1,72 @ Y2), = TN (Y1 d(2122)y2), V1,22 € M, y1,y2 € N.

The complete positivity of ¢ implies the positivity of this functional. We
denote by H(¢) the completion of the quotient of Hy modulo the null space
of the sesquilinear functional.

We let M and N act on Hg by

n n
O m@u)y = 2w yiy.
i=1 =1

Using again the complete positivity of ¢, we easily obtain, for & € Hg, and
xr € M,y e N, that

(@€,28) < |12l1P(€,€) g0 (€0, €004 < IYIP(E €,

For instance, the first inequality is a consequence of the fact that in M, (M)
we have [za*xx;); j < ||33H2[:B;k:xj]” for every x1,...,xp,x € M.

It follows that the actions of M and N pass to the quotient and extend
to representations on H(¢). Moreover, these representations are normal,
thanks to the fact that ¢ is normal.

Let « : M — N be a normal homomorphism. The reader will check
that the map = ® y — «a(x)y gives an identification of the bimodule H(«a)
we have just constructed with the bimodule constructed in Example 13.1.3
(b), so that the notations are compatible.

Another important particular case is when ¢ is the trace preserving
conditional expectation Fy from M onto a von Neumann subalgebra N.
Then the map sending x ® y to Ty gives rise to an isomorphism between the
M-N-bimodules H(Ey) and pL?(M) .

2For basic facts related to completely positive maps see Section A.3 in the appendix.
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Let us go back to the general case H(¢). This bimodule comes equipped
with a special vector, namely the class of 13; ® 1y, denoted ;. Note that

|l2€611% = v (d(x*2)) and [|€yl5 = mn (" $(1)y) < [6(1)ll7v (y"y)-
In particular, &4 is left N-bounded. In addition this vector is cyclic in the
sense that span M{yN = Hg. We also observe that ¢(x) = (Lg,)*wLg,
where Lg, : L?(N) — H(¢) is the operator defined by the bounded vector
gqb A pair (H, &) consisting of a bimodule H and a non-zero (cyclic) vector
&o is called a pointed (cyclic) bimodule.

— From bimodules to completely positive maps. Conversely, let us
start from a pointed M-N-bimodule (#,&p) where &y is left N-bounded.
Let T = Lg, : L*(N) — H be the bounded N-linear operator associated
with &. Then ¢ : z — T*mp(2)T is a completely positive normal map from
M into N.

In case & is cyclic, the pair (H(¢),&s) constructed from this ¢ is iso-
morphic to (H,&p) under the unitary operator U : H(¢) — H sending x ® y
onto x&py.

Observe also that if we had started from (#, &) = (H(¢),Es) for some
¢, then we would have retrieved ¢ from this latter construction.

DEFINITION 13.1.6. Let H be a M-N-bimodule. A (right) coefficient of
‘H is a completely positive map ¢ : M — N of the form z — L2$L£ where

€ is a left N-bounded vector®.

DEerFINITION 13.1.7. Let ¢ : M — N be a completely positive map. We
say that ¢ is subtracial if Ty 0 ¢ < 7y and that ¢ is subunital if ¢(1) < 1.

We say that ¢ is tracial if Ty o ¢ = 7p7. Whenever ¢(1) = 1, then ¢ is
unital.

Note that a subtracial completely positive map is normal (by Proposition
2.5.11) and that a subunital completely positive map is equivalently defined
by |l¢|l = [|#(1)]| < 1. The proof of the following lemma is straightforward.

LEMMA 13.1.8. Let (H,&) be a pointed M-N-bimodule with & left N -
bounded. Denote by ¢ : M — N the corresponding coefficient, i.e., ¢(z) =
LixLe for x € M.

(i) ¢ is subtracial if and only if ({,x&) < Tar(x) for every x € M.
(i1) ¢ is subunital if and only if (€,&y) < T~ (y) for every y € N;.

When (i) and (ii) are statisfied, we will say that the vector ¢ is subtracial.
A tracial vector is a vector £ such that (¢, x2&) = mps(x) for every z € M and
(€,&y) = 7n(y) for every y € N. Note that £ is tracial if and only if the
corresponding completely positive map is tracial and unital.

The following result is a generalisation of Lemma 2.5.3. We use it in the
proof of the next corollary that is needed to show Proposition 13.3.11.

3Similarly, we could consider left coefficients 1 : N — M.
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LEMMA 13.1.9. Let ¢ and v be two completely positive maps from M
to N such that b — ¢ is still a completely positive map. We assume that
P(x) = Lszg where £ is a left N-bounded vector in some M -N -bimodule
H. Then there is a left N-bounded vector n € H such that ¢(x) = LyxLy
for every x € M. More precisely, n = S where S : H — H is a M -N-linear
contraction.

PrROOF. We may assume that ¢ is a cyclic vector in the M-N-bimodule
‘H. We observe that 1, and hence ¢, are normal. We define a M-N-linear
contraction T" from H onto H(¢) by

T(Z mzfnl) = Z mlgqgnl

Indeed, we have, since ¥ — ¢ is completely positive,

2
Z mzfd,ni = Z (mz RN, My @ nj>
7: "j
= ZTN n; ¢(mym;)n;) ZTN (n; Lg(mimyg)Leng)
’.7 7]

< Z 7-N Zgnz mjfn]

We set S = |T'| and n = S¢. This vector is left N-bounded and we have, for
reM,

LyxLy, = L{SxSLe = LiT*2TLe = L, xLe, = (),

since S and 1" are M-N linear and T§ = &,.
O

COROLLARY 13.1.10. Let C be the convex set of all subunital completely
positive maps from M to M. Endowed with the topology of pointwise weak
operator convergence, it is compact. Moreover, Idas is an extremal point of
this compact convex set.

PROOF. The first assertion is immediate. Now, suppose that Idy; =
Ap1 + (1 — N)go with ¢1, 09 € C and A €]0,1[. We note first that ¢y (1) =
1 = ¢2(1). Next, we apply the previous lemma with H = L?(M), N = M,
Y = Idys and therefore &€ = 1 € L2(M). We get \p1(z) = Lyz Ly for every
x € M, where 1 belongs to the center of M. Thus, we see that A\¢;(x) = z21,
where z; is in the center of M. But then A = z; and ¢; = Idyy. O

The next lemma allows to approximate vectors by subtracial ones.

LEmMMA 13.1.11. Let ‘H be a M-N-bimodule and & € H. Let Ty €
WM, 1ar) 4 such that (€,2€) = Tar(2Ty) for every x € M and let Sy €

L
LY(N,7n)+ such that (€, &y) = Ta(ySo) for everyy € N. We set T = f(Tp)
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and S = f(Sg) where f(t) = min(1,t=Y2) for t > 0. Then the vector
& =TES is subtracial and we have

2
€ —€|” < 2/1To — 1l +2(1So — 1],
PROOF. Given x € M., we have, since S < 1 and TyT? < 1,
<§’,:L‘§'> <, TxTE) = T (T2TTy) < Tar ().

Similarly, we get the other condition for £ to be subtracial.
Moreover, we have

€ - €||* < 2lle - Te|* +2€ - €S>
<2 ((1 = T)2Tp) + 27w ((1 — S)%Sp)
< 2||Tp — 1l; + 2|10 — 1},
O

REMARK. Note that if £ belongs to a M-M-submodule of H, the same
holds for £’.

13.1.3. Bimodules from representations of groups. As shown a-
bove, bimodules may be seen as generalized morphisms between von Neu-
mann algebras. We now point out that they also play the same role as
unitary representations in group theory. We remind the reader that a uni-
tary representation (m,H) of a group G is a group homomorphism from G
into the unitary group U(B(H)). The trivial representation i is the homo-
morphism s — 1q(s) =1 € C.

— Bimodules and representations. Let G be a countable group and let
M = L(G) be the corresponding tracial von Neumann algebra. Recall that
(%(G) = L*(M), where the M-M-bimodule structure of L?(M) comes from
the left and right regular representations of G: given s,t € GG, we have

usfur = As)p(t™ N f, Vf e ().
Let 7 be a unitary representation in a Hilbert space ;. The Hilbert space
H(r) = 2(G) ® K, is equipped with two commuting actions of G defined
by
us(f & é)ut = (usfut) ® W(S)fa vsvt € Ga f € EQ(G),f € ,Cﬂ"

These actions extend to L(G) and give to H(7) a structure of M-M-bimodule.
This is clear for the right G-action. On the other hand, the left G-action is
equivalent to a multiple of the left regular representation since the unitary
operator defined on £2(G) ® K, by

UG @€) =8 @m(t)¢, VieG,Eeky,
satisfies
U(us @ (s))U* =us @ Id,, Vs eQG,
Obviously, the equivalence class of H(m) only depends on the equiv-
alence class of the representation m. The trivial M-M-bimodule L?(M)
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is associated with the trivial representation of G and the coarse bimodule
L*(M) ® L*(M) corresponds to the left regular representation (Exercise
13.12).

This construction can be easily extended to crossed products. Let (B, 1)
be a tracial von Neumann algebra and let o be a group homomorphism from
G into Aut (B, 7). Now we set M = B x G and keep the notations of Section
5.2. We have L?(M) = (*(G) ® L*(B). Consider again a representation 7
of G. This time, the corresponding M-M-bimodule is

H(r) = *(G) ® L*(B) ® K,
equipped with the commuting actions that are well-defined by
TRy =yR{=1yx¢ VreM{ecK,ye M;
bERE =bERE=br®E, VYoeMEEeKybe B;
us(Z ® &) =us® @m(s) =usx @m(s), Vee M€Ky seQG.

— Completely positive maps and positive definite functions. We have
seen in the previous section that cyclic pointed M-N-bimodules (H, &) (with
&o left N-bounded) are in bijective correspondence with normal completely
positive maps from M to N (up to isomorphism). This is analogous to
the well known fact that positive definite functions on groups correspond to
equivalence classes of unitary representations equipped with a cyclic vector
(i.e., pointed cyclic unitary representations).

Recall that a a complex-valued function ¢ defined on a countable group
G is positive definite (or of positive type) if, for every finite subset {s1,...,s,}
of G, the n x n matrix [p(s; 's;)] is positive definite, that is, for every
Aly..., A € C, we have » 1., Xidjp(s;tsj) > 0. Obviously, given a uni-
tary representation 7 in a Hilbert space H, any coefficient of 7, that is any
function s — (£, m(s)€) with & € H, is positive definite. Conversely, given
a positive definite function ¢ on G there is a unique (up to isomorphism)
triple (Hy, mp, &) (called the GNS construction) composed of a unitary rep-
resentation and a cyclic vector, such that ¢(s) = (§,, m,(5)&,) for all s € G.
These two constructions are inverse from each other?.

Completely positive maps on group von Neumann algebras, and more
generally on crossed products, are closely related to positive definite func-
tions.

PROPOSITION 13.1.12. Let G be a countable group, (B, T) a tracial von

Neumann algebra and o : G ~ (B,T) a trace preserving action. We set
M=BxGd.

(i) Let ¢ : M — M be a completely positive map. Then ¢ : s —
T(p(us)ul) is positive definite.
(ii) Let ¢ be a positive definite function on G. There is a unique normal

completely positive map ¢ : M — M such that ¢(bus) = o(s)bus for

4See for instance [BAIHV08, Theorem C.4.10].
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everyb € B and s € G. More precisely, let (Hy,mp,&,) be the GNS
construction associated with ¢ and let H(w,) be the corresponding
M-M-bimodule. The vector & = Ty ® &, 15 left bounded, and the
completely positive map ¢ : M — M associated with (H(my), o)
satisfies ¢p(bus) = p(s)bus for every b € B and s € G.

(iii) Let H be a M-M-bimodule and & a left bounded vector. We asso-
ciate the unitary representation m of G in K = span{uséou’ : s € G}
defined by

w(s)n = usnus, Vne K.
If ¢ is the positive definite function on G defined by (K, 7, &) and
if ¢ : M — M s the completely positive map defined by (H, &) we
have p(s) = Tar(d(us)uk) for every g € G.

PRrROOF. We leave the easy verifications as an exercise. O

13.2. Composition (or tensor product) of bimodules

The parallel between group representations and bimodules can be car-
ried on further. The classical operations on representations have their ana-
logues for bimodules. First, the addition (or direct sum) of M-N-bimodules
is defined in an obvious way. Second, given a M-N-bimodule H, the con-
tragredient bimodule is the conjugate Hilbert space H equipped with the
actions

y-&-x=1x*y* VYo M,yc N.

The most interesting operation is the composition, or tensor product of
bimodules, which corresponds to the tensor product of representations. For
the notations and properties of bounded vectors used below, we refer to
Section 8.4.2.

13.2.1. Definition of the tensor product.

PropPOSITION 13.2.1. Let M be a tracial von Neumann algebra, let ‘H
be a right M -module and let K be a left M -module. The formula

(€1 ®@m, & ®@n2) = (M1, (€1, 82) y2) (13.1)

defines a positive sesquilinear form on the algebraic tensor product H° ® IC,
where HO is the subspace of left M -bounded vectors.

PROOF. We have to show that for > " ;& ®@n; € H° ® K, the quantity

n

<Zfi ®%Z§j ®77j> = Z (i (& &) p 77j>1c
i=1 j=1

ij=1

is non-negative, or equivalently that the matrix [(&;,&;) /]J1<ij<n € Mn(M)
is positive. Viewing [(&;,&;),,]1<i j<n as an operator acting on L*(M)®" it
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is enough to check that

n

Z <‘fl7 <617§J>M‘fﬂ> 20

ij=1
for x1,...,x, € M. But this is immediate because
n n n
N (@ (6 &)y T) = <Z Lgi@,szj@>

0

We denote by H ®j; K the Hilbert space deduced from H° ® K by
separation and completion relative to the sesquilinear form defined in (13.1).
The image of £ @ n € H O K in H ®j; K will be denoted by £ ®5s 7.

We may perform the analogous construction, starting from H ® °/C. As
such, we obtain Hilbert spaces that are canonically isomorphic, so there is
no ambiguity in the definition.

ProrosITION 13.2.2. Let M be a tracial von Neumann algebra, let ‘H
be a right M-module and let IC be a left M-module. The restrictions to
H ® OK of the sesquilinear forms defined on H° ® K and H ® °K coincide.
Moreover, the three Hilbert spaces obtained by separation and completion
from these spaces are the same.

PROOF. It suffices to show that for &1, & € H® and 11,12 € YK, we have

(1, (€1, §2)armed e = (€1 (s m2), §2) 3
Using Lemmas 8.4.6 and 8.4.5, we get

(1, (€15 Eadprme) e = T (aa{(€15 E2)prm2s M) = 7 (61, §2)as aalm2, 1))
= (&1, &2 M2, M) ) = (§1 0{m1,1m2), §2) 94
This proves our claim. The second part of the statement follows from the
density of H° and °K in H and K respectively. O

ProroSITION 13.2.3. Let M, N, P be three tracial von Neumann algebras
and let H be a M-N-bimodule and K a N-P-bimodule. Then H Qn K is a
M -P-bimodule with respect to the actions given by

(@nmn) = (@) @nn, (E@nny=EanN (ny),
forxz e M,y e P,¢cHOne °K.
PrOOF. We only consider the left action, the other case being dealt with

similarly. Given &1,...,&, € HY and 11 ...,m, € °K, we have

n 2

> (@) @n mi

=1

n

— Z (i, (@&, &) )

ij=1

2
2
< ||z

)

n
> &ann
i=1




13.3. WEAK CONTAINMENT 219

since [(z&;, €;)y] < ||m||2[<§i,§j>N] in M, (N)4. It follows that the left mul-
tiplication by x extends to a bounded operator on ‘H ®xn K. To see that
the representation of M is normal, we remark that, for £, € H°, the map
z = (§,xn) y = LizLy from M into N is w.o. continuous. O

DEFINITION 13.2.4. The M-P-bimodule H ®xy K is called the composi-
tion or (Connes) tensor product of the bimodules pyHy and yKp.

13.2.2. Properties of the tensor product. Below, M, N, P, () are
tracial von Neumann algebras.

PROPOSITION 13.2.5 (Associativity). Let H be a M-N-bimodule, I a
N-P-bimodule and L a P-Q-bimodule. The M-Q-bimodules (H&nK)®@p L
and H @n (K ®@p L)are canonically isomorphic.

PROOF. One easily shows that the map U : (£@n)®@u — £Q(n®pu), with
e Hne K, ue L, extends to an isomorphim of the above mentioned
M-Q-bimodules O

The distributivity of the tensor product with respect to the direct sum
is easy to establish, as well as the canonical isomorphisms

M(H N L2(N))N ~ yHN =~ M(L2(M) Qn H)N-

PROPOSITION 13.2.6. Let H1, Hso be two right N-modules and K1, IKCo be
two left N-modules. Let S : H1 — Ho and T : K1 — Ko be two bounded N -
linear maps. There exists a unique bounded operator S QN T : H1 Qn Ho —
K1 ®n K2 such that (S @y T)(€ @n 1) = SE @y Tn for every & € HY
and n € "Hy. Moreover, if H1,KC1 are M-N-bimodules, Ho, Ko are N-P-
bimodules, and if S, T intertwine all the actions, then SQNT is M -P-linear.

PRrOOF. The straightforward proof is left to the reader. O

PROPOSITION 13.2.7. Let H be a M-N-bimodule and K a N-P-bimodule.
Then the map TRE — &€ @ n defines a linear application from i’ @n "H into
H @n K which extends to an isomorphism of P-M-bimodule from K @n H
onto H®n K.

PROOF. Again, the proof is a straightforward computation. O

13.3. Weak containment

Given a countable group G, the set Rep(G) of equivalence classes of
unitary representations of GG in separable Hilbert spaces contains a lot of in-
formations relative to G. Therefore, given two tracial von Neumann algebras
M and N, it is tempting to study the space Bimod(M,N) of equivalence
classes of M-N-bimodules, which plays the same role as Rep(G). We de-
velop further the similarities between these two spaces and describe below
the analogue for bimodules of the notion of weak containment of group repre-
sentations. We first give a quick survey for the case of group representations.
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13.3.1. Weak containment for group representations.

DEFINITION 13.3.1. Let (7, H) and (p, K) be two unitary representations
of G. We say that 7 is weakly contained in p, and we write m < p, if every
coefficient of 7 can be approximated by finite sums of coefficients of p. More
precisely, m < p if for every £ € H, every finite subset F' of G and every
€ > 0, there exist 71, ...,n, € K such that

n
(&m(@)8) =D (miplg)m)| < e
i=1
forall g € F.

If 7 < pand p < 7, we say that m and p are weakly equivalent and denote

this by m ~ p.

Note that @ < p if and only if every normalized® coefficient ¢ of =
is the pointwise limit of a sequence of convex combinations of normalized
coeflicients of p.

Of course, any subrepresentation of p is weakly contained in p. We also
observe that a representation is weakly equivalent to any of its multiples.

REMARK 13.3.2. Although we will not need this result, we mention the
following equivalent formulation of the notion of weak containment. Remark
first that every unitary representation (m,H) gives rise to a representation
of the involutive Banach algebra ¢*(G) by

vf € H(G), w(f) =) flo)m(g)-
geG
It is a straightforward exercise to deduce from the definition that, whenever
m < p, we have

vfel(G),  ln(HIl < (£l

The converse is true. See for instance [Dix77, Chapter 18] about this fact.

When 7 is irreducible, the definition may be spelled out in the following
simpler way.

PrOPOSITION 13.3.3. An idrreducible representation w of G is weakly
contained in p if and only if every coefficient of w is the pointwise limit of a
sequence of coefficients of p.

SKETCH OF PROOF. First, we observe that on the unit ball of {*°(G)
the weak™ topology coincides with the topology of pointwise convergence.
Denote by @ the set of normalized coefficients of p and let C be the closure
of the convex hull of @) in the weak™® topology. Note that C' is a compact
convex set.

Assume that 7 < p and let ¢ : g — (£, 7(g)&) be a normalized coefficient
of . Then ¢ belongs to C. Since 7 is irreducible, its normalized coefficients

519> (&, 7(g)€) is said to be normalized if (e) = ||€]|* = 1.
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are extremal points of the convex set of all normalized positive definite
functions®. In particular, ¢ is an extremal point of C. To conclude, it
suffices to use the classical result in functional analysis which tells us that

the weak™ closure of the generating set @@ of C' contains the extremal points

of C'7. |

Observe that the trivial representation ¢ of G is contained in (p, K)
if and only if p has a non-zero invariant vector. Similarly, we have the
following simple description of the weak containment of ¢ in (p,K) based
on the notion of almost having invariant vectors, that we recall first.

DEFINITION 13.3.4. Let (m,H) be a unitary representation of a group
G.

(i) Given a finite subset F' of G and € > 0, a vector £ € H is (F,¢)-
invariant if maxger ||7(g)¢ — & < l|€]|-

(ii) We say that (m,H) almost has invariant vectors if m has (F,¢)-
invariant vectors for every finite subset F' C G and every € > 0.

ProposITION 13.3.5. The following conditions are equivalent:

(i) tg is weakly contained in p, i.e., 1 < p;
(ii) there ezists a sequence of coefficients of p converging to 1 pointwise;
(iii) (p,K) almost has invariant vectors.

PRrROOF. Obviously, we have (ii) = (i). The equivalence between (ii) and
(iii) is a consequence of the two following classical inequalities: for any unit
vector &,

Ip(9)€ — €]I* = 2|1 — R(E, p(9)€)| < 21 — (€, p(9)E), (13.2)
11— (& p(9)8)] = (&€= p(9)E)] < |lp(g)E =& (13.3)

Let us show that (i) = (iii) (without using Proposition 13.3.3). Assume
that (iii) does not hold. There exist ¢ > 0 and a finite subset F' of G such
that

> llp(9)é = €lI* = eliél?

geFl

for every & € K. This inequality is still valid when the representation p
is replaced by any of its multiple. It follows that there is no sequence of
coefficients of a countable multiple of p which converges to 1 pointwise, and
thus tg is not weakly contained in p ([

6See for instance [BAIHV 08, Theorem C.5.2].
See [Con90, Theorem 7.8, Chapter V] for instance.
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— The Fell topology on Rep(G). The notion of weak containment is
closely related to the Fell topology on Rep(G), defined as follows. Let (7, H)
be a unitary representation of G. Given € > 0, a finite subset F' of GG, and
&1y, &n € H, let V(m;e, F, &1, ...,&,) be the set of (p,K) € Rep(G) such
that there exist 7y, ...,n, € K with,

These sets V(m;e, F,&1,...,&,) form a basis of neighbourhoods of 7 for a
topology on Rep(G), called the Fell topology.

Obviously, 7 is weakly contained in p whenever 7 belongs to the closure
of {p}. In fact, we have 7 < p if and only if 7 is in the closure of the
infinite (countable) multiple p®> of p 8. However, we note that whenever
is irreducible’, we do have m < p if and only if 7 € {7} This follows from
Proposition 13.3.3 and from the fact that the subsets of the form V (7; ¢, F, §)
where £ is any non-zero vector in H form a basis of neighbourhoods of 7 in
this case. Indeed, any &; € H is as close as we wish to a linear combina-
tion Y, Apm(gr)€. Hence, given V(m;e, F, &1, ..., &), we easily see that it
contains some V (m; &', F', §).

This last observation also shows that the trivial representation ¢ has a
base of neighbourhoods of the form W'(i;e, F') with € > 0, F finite subset
of G, where W'(1;¢, F) is the set of representations (m, H) such that there
exists a unit vector £ € H satisfying

gleagllﬂ(g)f =& <e.

13.3.2. Weak containment for bimodules. Among several equi-
valent definitions, we choose to introduce this notion via the Fell topology

on Bimod(M, N).
— The Fell topology on Bimod(M, N). This topology is defined by the
assignement of the following basis of neighbourhoods

V(H;e,E,F,S)

of each H € Bimod(M, N), with € > 0 and where E, F, S = {&,...,&.}
range over all finite subsets of M, N and H respectively: V(H;e, E, F,S) is
the set of all M-N-bimodules K such that there exist n;,...,n, € K with

(&> 2&5y) — (i xmzy)| < e

foreveryx e E,ye F,1<14,5 <n.

8See [Fel62, Theorem 1.1].
9This applies in particular to the trivial representation t¢a.
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— Neighbourhoods of the trivial bimodule. When H has a cyclic vec-
tor &£, it is easily seen that it has a basis of neighbourhoods of the form
V(H;e, E, F,{{}). This applies in particular, when M = N to the trivial
M-M-bimodule L?(M), where we take ¢ = 1. In this case we may take
E = F and we set

V(L*(M);e, F) = V(L*(M);e, F, F, {1}).

Note that V(L?(M);e, F) is the set of M-M bimodules K such that there
exists n € IC with

— < €.
xgg};lf(wy) (n,zny)| < e

Moreover, by taking F' with 137 € F', we may assume that ||n| = 1.

As we will see in the sequel, it is very important to understand what it
means that L?(M) is adherent to a given bimodule, with respect to the Fell
topology. So it may be useful to have at hand different kinds of neighbour-
hoods of L?(M). We now describe another basis.

Given € > 0 and a finite subset F' of M, we define

W(L*(M);e, F)

to be the set of M-M-bimodules H su