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Differentiation of Discrete Multidimensional Signals
Hany Farid and Eero P. Simoncelli, Senior Member, IEEE

Abstract—We describe the design of finite-size linear-phase
separable kernels for differentiation of discrete multidimensional
signals. The problem is formulated as an optimization of the
rotation-invariance of the gradient operator, which results in a
simultaneous constraint on a set of one-dimensional low-pass
prefilter and differentiator filters up to the desired order. We also
develop extensions of this formulation to both higher dimensions
and higher order directional derivatives. We develop a numerical
procedure for optimizing the constraint, and demonstrate its use
in constructing a set of example filters. The resulting filters are
significantly more accurate than those commonly used in the
image and multidimensional signal processing literature.

Index Terms—Derivative, digital filter design, discrete differen-
tiation, gradient, steerability.

I. INTRODUCTION

ONE OF THE most common operations performed on sig-
nals is that of differentiation. This is especially true for

multidimensional signals, where gradient computations form
the basis for most problems in numerical analysis and simu-
lation of physical systems. In image processing and computer
vision, gradient operators are widely used as a substrate for the
detection of edges and estimation of their local orientation. In
processing of video sequences, they may be used for local mo-
tion estimation. In medical imaging, they are commonly used to
estimate the direction of surface normals when processing vol-
umetric data.

Newton’s calculus provides a definition for differentiation of
continuous signals. Application to discretized signals requires
a new definition, or at the very least a consistent extension of
the continuous definition. Given the ubiquity of differential al-
gorithms and the ever-increasing prevalence of digital signals, it
seems surprising that this problem has received relatively little
attention. In fact, many authors that describe applications based
on discrete differentiation do not even describe the method by
which derivatives are computed. In this paper, we define a set
of principled constraints for multidimensional derivative filter
design, and demonstrate their use in the design of a set of high-
quality filters.
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A. One-Dimensional (1-D) Derivatives

The lack of attention to derivative filter design probably
stems from the fact that the most natural solution—the differ-
ence between adjacent samples—appears at first glance to be
completely acceptable. This solution arises from essentially
dropping the limit in the continuous definition of the differential
operator

(1)

and holding fixed at the distance between neighboring sam-
ples. These “finite differences” are widely used, for example,
in numerical simulation and solution of differential equations.
But in these applications, the spacing of the sampling lattice
is chosen by the implementor, and thus can be chosen small
enough to accurately represent the variations of the underlying
signal. In many digital signal processing applications, however,
the sampling lattice is fixed beforehand, and finite differences
can provide a very poor approximation to a derivative when the
underlying signal varies rapidly relative to the spacing of the
sampling lattice.

An alternative definition comes from differentiating a contin-
uous signal that is interpolated from the initial discrete signal.
In particular, if one assumes the discrete signal, , was ob-
tained by sampling an original continuous function containing
frequencies no higher than cycles/length at a sampling
rate of samples/length, then the Nyquist sampling theorem
implies that the continuous signal may be reconstituted from the
samples

(2)

where is a (continuous) “sinc”
function, is the continuous-time signal, and is its dis-
cretely sampled counterpart. Assuming that the sum in the above
equation converges, we can differentiate the continuous func-
tion on each side of the equation, yielding

(3)

where is the derivative of the sinc function
. Note that

the derivative operator is only being applied to continuous
functions, and .
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Fig. 1. The ideal interpolator (sinc) function (left) and its derivative (right). Dots indicate sample locations.

One arrives at a definition of discrete differentiation by sam-
pling both sides of the above equation on the original sampling
lattice

(4)

where is the -sampled sinc derivative. Note that the right
side of this expression is a convolution of the discretely sampled
function , with the discrete filter , and thus the contin-
uous convolution need never be performed. If the original func-
tion was sampled at or above the Nyquist rate, then convolution
with the sampled derivative of the sinc function will produce
the correct result. In practice, however, the coefficients of the
sinc derivative decay very slowly, as shown in Fig. 1, and accu-
rate implementation requires very large filters. In addition, the
sinc derivative operator has a large response at high frequen-
cies, making it fragile in the presence of noise. Nevertheless,
this solution (and approximations thereof) are widely used in
1-D signal processing (e.g., [1]–[4]).

B. Multidimensional Derivatives

For multidimensional signals, the derivative is replaced with
the gradient: the vector of partial derivatives along each axis
of the signal space. Consideration of this problem leads to an
additional set of constraints on the choice of derivative filters.
Assume again that the sampled function has been formed by
uniformly sampling a continuous function above the Nyquist
rate. As before, we can reconstruct the original continuous
function as a superposition of continuous interpolation func-
tions. In two dimensions, for example, we have the following:

(5)

where is the sample spacing (assumed to be identical along
both the and axes), is the continuous function,

is the discretely sampled function, and the interpolation
function is a separable product of sinc functions

(6)

Again assuming that the sum in (5) converges, we can differ-
entiate both sides of the equation. Without loss of generality,
consider the partial derivative with respect to

(7)

where indicates a functional that computes the partial
derivative of its argument in the horizontal direction. Again, one
arrives at a definition of the derivative of the discrete function
by sampling both sides of the above equation on the original
sampling lattice

(8)

where -sampling the sinc function gives the Kroenecker delta
function and is the -sampled sinc derivative. Once
again, however, the coefficients of this filter decay very slowly
and accurate implementation requires very large filters.

Furthermore, the resulting two-dimensional (2-D) filter does
not take into consideration the primary use of derivatives when
applied to signals of more than one dimension (e.g., images
or video). In the field of computer vision, directional deriva-
tives are used to compute, for example, local edge orientation,
motion (optical flow), or depth from stereo. In these applica-
tions, one relies on the linear algebraic property of gradients that
the derivative in an arbitrary direction can be computed from a
linear combination of the axis derivatives

(9)

where is a unit vector [5]–[7]. In this regard,
the separable sinc seems somewhat odd, because the resulting
2-D -derivative filter has nonzero samples only along a row
of the input lattice, whereas the -derivative filter has nonzero
samples only along a column. The directional derivative at an
angle of will contain nonzero samples from a single row
and column, as illustrated in Fig. 2.
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Fig. 2. Illustration of sinc-based 2-D differentiators. Shown are: (a) horizontal; (b) vertical; and (c) oblique (45 ) differentiation filters. The last of these is
constructed from a linear combination of the on-axis filters, as specified by (9).

Thus, both local differences and approximations to sinc
derivatives seem inadequate as discrete extensions of differ-
ential operators. The solution to this dilemma is to consider
alternative interpolation functions in (5). Two alternative
interpolation solutions appear commonly in the literature: fit-
ting polynomial approximations (e.g., [8]–[13]), and smoothing
with a (truncated) Gaussian filter (e.g., [14]–[17]). These
choices are, however, somewhat arbitrary, and the primary
topic of this paper is the development of a more principled
choice of interpolator function. We formulate the desired
constraints for first-order differentiation, with the second-order
and higher order constraints building upon this constraint. We
then develop a practical design algorithm for interpolator filters
with matched derivative filters of arbitrary order and length.

II. DERIVATIVE FILTER CONSTRAINTS

We start with an assumption that the interpolation function
should be separable. This both simplifies the design

problem, and improves the efficiency of subsequent derivative
computations. We have also explored nonseparable filters,
but the marginal improvement in accuracy appears to be not
worth the considerably higher computational expense. We also
assume that the interpolator is symmetric about the origin.
Finally, we assume that all axes should be treated the same. In
summary, the interpolator function is a separable product of
identical symmetric 1-D functions.

Thus, for example, the 2-D interpolator is written as a sepa-
rable product . The partial derivative (with
respect to ) of this interpolator is

(10)

where is the derivative of . With this interpolator, the
sampled derivative (as in (8)) becomes

(11)

The discrete derivatives are computed using two discrete 1-D
filters, and , which are the -sampled versions of
and , respectively. More precisely, differentiation in is
accomplished by separable convolution with the differentiation
filter along the -dimension and with the interpolator
in the -dimension.

How then do we choose ? Rather than trying to approximate
the sinc, which is virtually impossible with short filters, we
directly impose the constraint of (9). That is, we seek filters such
that the derivative in an arbitrary direction can be computed
from a linear combination of the axis derivatives. This type of
rotation-invariance property was first examined by Danielsson,
who compared various standard filter sets based on a similar
criterion [5]. It is important to note that giving up the sinc
approximation means that the interpolator, , will not be
spectrally flat. Thus, the resulting derivative filters will not
compute the derivative of the original signal, but of a spectrally
reshaped signal.

Furthermore, we note that the directional derivative filters
computed using (9) will not necessarily be rotated versions of
a common filter (a property that has been termed steerability in
the computer vision literature [7]). If we were to include a steer-
ability constraint with our assumption that the interpolator be a
separable product of symmetric 1-D functions, then the resulting
interpolator would necessarily be a Gaussian. As such, we chose
not to impose steerability as a primary constraint, although we
discuss its use as a regularizing constraint in the filter design
stage in Section III.

A. First Order

We first compute the Fourier transform of both sides of (9),
relying on the well-known fact that differentiation corresponds
to multiplication by a unit-slope ramp function in the frequency
domain

(12)

where and are the discrete-space Fourier transforms
of the 1-D filters and , respectively [2]

(13)
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This constraint should hold for and for all
orientations, as represented by the unit vector .

We now define an error functional by dropping the factor of
and integrating the squared error in this equality over

the frequency domain, as well as the unit vector that specifies
the direction of differentiation. In addition, in order to make the
error independent of the magnitude of the filters (e.g., to avoid
the trivial zero solution), we divide the expression by the total
Fourier energy of the prefilter as shown in (14), at the bottom of
page. Expanding the square in the numerator, we note that the
cross terms (those containing ) will integrate to zero be-
cause they are anti-symmetric. The remaining error expression
is as shown in the equation at the bottom of page. The integrands
in the numerator differ only by permutation of the axes, and thus
the value of the two integrals will be identical. Combining these
into a single term (and dropping the irrelevant factor of two)
gives

(15)

Finally, noting that is strictly real due to the assumed
symmetry of , we can factor it out of both numerator and
denominator expressions and eliminate it from the quotient

(16)

Thus, the 2-D constraint has been reduced to a 1-D constraint,
in the form of a Rayleigh quotient. Equation (16) is the fun-
damental error functional used within this paper, but we note
that the integral in the numerator can be augmented to include
a weighting function over frequency. For applications in which
the signals to be differentiated are known to occupy a partic-
ular range of frequencies, inclusion of such a weighting function
can improve differentiation accuracy over this range. Before dis-
cussing the optimization method, we show how these same basic

concepts can be generalized to both higher order derivatives and
higher dimensions.

B. Second Order

Similar to the first-order derivative, the constraint embodying
the desired linear-algebraic properties of the second-order
derivative is

(17)

In the Fourier domain, this constraint takes the form

(18)

where and are the Fourier transforms of the
1-D filters , and , respectively. As before, we
define the numerator of our error functional by integrating over
both frequency and orientation variables

(19)

This can again be simplified by noting that cross terms con-
taining and are antisymmetric and will integrate to
zero, leaving

(20)

As in the first-order case, the full error functional is formed by
dividing by the -norm of the prefilter, as shown in (21), at the
bottom of the page. The first term reduces to a 1-D constraint,
but the second term does not, and thus we are forced to optimize
the full 2-D expression.

(14)

(21)
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C. Higher Order and Higher Dimensions

The constraint embodying the desired linear algebraic prop-
erties of the th-order derivative is

(22)

where the right-hand side will require th order derivative filters
. Following the same general framework as in

the previous two sections yields a constraint on the form of the
prefilter and first- through th-order derivative filters.

The problem formulation defined above in two dimensions
extends naturally to higher dimensions. In full generality,
dimensions, th-order derivatives come from expanding the
following expression:

(23)
where we have used a numerical index variable
as an axis label in place of the previous mnemonic labels ( , ).
As before, this can be used to generate an error functional for
filter design.

III. DISCRETE DERIVATIVE FILTER DESIGN

With the desired constraints in place, we now describe a prac-
tical method for designing derivative filters of a given order
and support (length). For notational clarity, we assume the de-
sign of odd-length filters—the formulation for even-length fil-
ters requires only minor modifications. We also assume that
the prefilter and all even-order derivative kernels are symmetric
about the central tap and that all odd-order derivative kernels are
antisymmetric.

A. First Order

In order to design a filter of length , we define a parameter
vector of length containing the independent pre-
filter samples (the others are determined by the symmetry as-
sumption). Similarly, we define a parameter vector of length

containing the independent derivative kernel sam-
ples (the remaining samples determined by antisymmetry of the
kernel). We construct a discrete version of the error functional
in (16)

(24)

where and are matrices whose columns contain the real
(symmetric) and imaginary (asymmetric) components of the
discrete Fourier basis of size , such that gives the
discrete Fourier transform (DFT) of the (symmetric) prefilter,

TABLE I
EXAMPLE FILTER TAPS FOR OPTIMAL DIFFERENTIATORS OF VARIOUS ORDERS

AND SIZES. SHOWN ARE HALF OF THE FILTER TAPS, THE OTHER HALF ARE

DETERMINED BY SYMMETRY: THE PREFILTER AND EVEN-ORDER DERIVATIVES

ARE SYMMETRIC AND THE ODD-ORDER DERIVATIVES ANTI-SYMMETRIC

ABOUT THE ORIGIN (SAMPLE NUMBER 0)

and gives the DFT of the (antisymmetric) derivative filter.
This may be bundled more compactly as

(25)

with concatenated matrices , ,
and vector . This error function is in the form of a
Rayleigh quotient, and thus the solution may be found using
standard techniques. Specifically, we solve for the generalized
eigenvector associated with the minimal eigenvalue of and

(i.e., ). This eigenvector is then rescaled so
that the resulting prefilter has unit sum, and the prefilter and
derivative filters are then constructed by symmetrizing or anti-
symmetrizing the corresponding portions of (i.e., the prefilter
is constructing by concatenating a reversed copy of with it-
self, and the derivative filter is constructing by concatenating a
reversed and negated copy of with itself). We note that it would
be preferable to introduce the unit-sum constraint directly into
the error function, but this would destroy the Rayleigh quotient
and would lead to a less elegant solution.

1) Uniqueness: The uniqueness of the solution depends on
the isolation of the minimal eigenvalue. In experimenting with
the design procedure, we found the minimal eigenvalue comes
within the machine tolerance of zero when designing filters of
length samples. For larger filters, the second eigen-
value also approaches zero. Thus, for filters of length ,
an additional constraint must be invoked to uniquely constrain
(i.e., regularize) the solution. As mentioned earlier, our primary
design constraint does not guarantee that directional derivative
filters will be steerable. The sinc-based derivative filters are ex-
treme examples of the failure of this property, as shown in Fig. 2.
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Fig. 3. Shown are: (a) horizontal; (b) vertical; and (c) oblique (30 ) differentiation filters. The last of these is constructed from a linear combination of the on-axis
filters, as specified by (9). These filters should be compared with those of Fig. 2.

One possible secondary constraint is that the low-pass filter be
as flat as possible over the entire frequency range [4]. But we
choose instead a constraint that is more consistent with our em-
phasis on rotation-invariance. In particular, we have chosen to
use steerability as a secondary constraint in order to choose from
amongst those filters that satisfy the primary constraint. Specif-
ically, we seek a solution of the form

(26)

where is any solution of minimizing (25) and is a ma-
trix containing the zero-eigenvalue eigenvectors from (25). The
parameter vector is chosen to minimize the steerability error
functional

(27)

where is the 2-D rotation operator (implemented on a
discrete lattice using bicubic interpolation), and is the 2-D
Fourier operator. Note that this secondary steerability constraint
does not interfere with the primary constraint of (25), since
the two constraints are imposed in complementary orthogonal
subspaces. This nonlinear minimization is initialized with
an optimally designed 11-tap filter padded with zeros to
accommodate the desired filter length. A gradient descent min-
imization is then performed on in order to optimize, across
all orientations, the steerability constraint of (27). The resulting
minimization yields a pair of stable filters that perfectly satisfy
the original constraint of (16) and are maximally steerable.

B. Second Order

Unlike the first-order filter design problem, the second-order
error functional (21) does not have a closed-form solution. As
such, we have adopted an iterative approach whereby first-order
filters are used to initialize the design of the second-order filters.
Specifically, assuming the first-order solutions for the prefilter

and the derivative filter , the error functional given in (21)
may be simplified to

(28)

As before, a discrete version of the error functional on the filter
values is written as

(29)

where contains one half of the full filters taps. The minimum
of this quadratic error function is easily seen to be

(30)

This filter, along with the previously designed prefilter and first-
order filter, are used to initialize a gradient descent minimization
of the full error functional of (21).

C. Higher Order

It is relatively straightforward to generalize the filter design
from the previous two sections to filters of arbitrary order.
Specifically, the design of a set of first- through th-order
derivative filters begins by designing a prefilter and first-order
derivative pair (Section III-A). The second- through th-order
filters are then designed in an iterative fashion, each ini-
tialized with the design of the previous orders. In general,
given the prefilter and first- through -1st derivative fil-
ters, the error functional in (23) reduces to the constraint

, from which the th-order derivative
filter is initially estimated as

(31)

for even-order derivatives; for odd-order, the estimate is given
by . This estimate, along with the lower order
derivative filters, are used to initialize a gradient descent
minimization of the (nonlinear) error functional that describes
the desired derivative relationships [e.g., (23)].
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Fig. 4. First order derivatives: Fourier magnitude, plotted from �� to �. The dashed line corresponds to the product of a ramp and prefilter. The solid line
corresponds to the derivative filter.

D. Summary

A summary of the algorithm is as follows.

1) Choose dimensionality D, order N, and

kernel size L.

2) Choose number of Fourier samples K � L.

3) Precompute the Fourier matrices Fs and Fa.

4) Solve for first-order filters of size

min(L; 11), using (25).

5) If L > 11, solve for unique filters of size

L by numerically optimizing (27), initial-

ized with the L = 11 solution.

6) For each order n = 2 up to N:

a) solve for the nth-order filter using

(31);

b) numerically optimize (23) over all

filter orders 1 through n, initial-

izing with solution from part a), to-

gether with the filters designed for

order n � 1.

IV. RESULTS

We have designed filters of various sizes and orders—some
example filter taps are given in Table I.1 Each design produces
a set of matched 1-D differentiation filters that are meant to be
used jointly in computing the full set of separable derivatives
of the chosen order. Note that when designing, for example,
a second-order derivative, the accompanying first-order differ-
entiation filter is not necessarily optimal with respect to the
first-order constraint in isolation. Note also that although we
have constrained all differentation filters in each set to be the
same size, there is no inherent reason why different filters could
not be designed with a different number of taps.

1Source code (MATLAB) is available at: [Online] http://www.cs.dart-
mouth.edu/farid/research/derivative.html.
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Fig. 5. First-order derivatives: errors in estimating the orientation of a sinusoidal grating of varying spatial frequencies and orientations. The intensity image in
the left column shows the orientation error (brighter pixels correspond to larger errors) across all spatial frequencies—the axes span the range [��; �]. The plots
in the second and third columns correspond to the indicated radial and angular slices through this 2-D frequency space.

Shown in Fig. 3 are the horizontal and vertical derivatives and
the synthesized directional derivative at an angle of . Note
that these filters are much closer to being rotation invariant than
the sinc-based derivatives of Fig. 2. In the following sections, the
accuracy of these filters is compared with a number of standard
derivative filters.

A. First Order

Shown in Fig. 4 is the frequency response of several
first-order derivative filters and the product of an imaginary

ramp and the frequency response of their associated prefilters.
If the filters were perfectly matched, as per our design cri-
teria, then these responses should be identical. Shown are
the responses from our optimally designed 3-, 5-, and 7-tap
filters. For comparison, we show the responses of a variety of
commonly used differentiators: a standard (binomial) 2-tap
( , ), a standard (binomial) 3-tap
( , ), a 3-tap Sobel operator
[18] ( , ), a 5- and 7-tap
Gaussian ( , ), and a
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Fig. 6. First-order derivatives: errors in estimating the orientation of a sinusoidal grating of varying spatial frequencies and orientations (see caption of Fig. 5).
Note that the scaling of the truncated sinc filter errors is different than the others.
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Fig. 7. Second-order derivatives: Fourier magnitudes, plotted from �� to �. Left side: first-order filter (solid line), compared with product of a ramp and the
prefilter (dashed line). Right side: second-order filter compared with product of squared ramp and prefilter.

15-tap truncated sinc function (see Fig. 1). The optimal filters of
comparable (or smaller) support are seen to outperform all of the
conventional filters, usually by a substantial margin. Note that

the standard deviation of the 5- and 7-tap Gaussian filter was
set to 0.96 and 1.12 pixels, respectively. These values minimize
the rms error in the frequency response matching between the
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Fig. 8. Second-order derivatives: errors in estimating the orientation of a sinusoidal grating of varying spatial frequencies and orientations. Note that the scaling
of the 3-tap filter’s errors are different than the others.
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prefilter and derivative filter, and thus are superior to most
Gaussian differentiators used in the literature. For example,
Barron et al. suggest a 5-tap Gaussian of width pixels
[16].

Recall that our filters were designed so as to optimally
respect the linear algebraic properties of multidimensional
differentiation. This property is critical when estimating, for
example, local orientation in an image (by taking the arctangent
of the two components of the gradient). Figs. 5 and 6 show the
errors in estimating the orientation of a 2-D sinusoidal grating,

of size 32 32 with horizontal and vertical spatial
frequency ranging from 0.0078 to 0.4062 cycles/pixel. The
orientation is computed as a least-squares estimate across the
entire 32 32 image. Specifically, we solve for the orientation

that minimizes

where the sum is taken over all image positions. The errors for
our optimal filters are substantially smaller than all of the con-
ventional differentiators.

B. Second Order

Shown in Fig. 7 is the frequency response of several first- and
second-order derivative filters. Also shown for the first-order
(second-order) derivative is the product of a negative parabola
(squared imaginary ramp) and the frequency response of the
prefilter. If the filters were perfectly matched, as per our de-
sign criteria, then these responses should be identical to the fre-
quency responses of the corresponding derivative filters. Shown
are the responses from our optimally designed 3-, 5-, and 7-tap
filters. For comparison, we show the response from a standard
3-tap ( , ,

), and a 5-tap Gaussian (as in the previous
section the width of the Gaussian is 0.96 pixels).

Shown in Fig. 8 are the errors from estimating the orienta-
tion of a 2-D sinusoidal grating, , using second-order
derivatives. As before, orientation estimation was performed
on gratings of size 32 32 with horizontal and vertical spa-
tial frequency ranging from 0.0078 to 0.4062 cycles/pixel.
is computed by applying the first-order derivative filter in the
horizontal and vertical directions, and is computed
by applying the second-order derivative filter in the horizontal
(vertical) direction and the prefilter in the vertical (horizontal)
direction. The orientation is computed using a least-squares es-
timator across the entire 32 32 image. Specifically, we solve
for the angle that minimizes

where the sum is taken over all positions in the image. Note that
the errors for our optimal filters are substantially smaller than
the standard and Gaussian filters.

V. DISCUSSION

We have described a framework for the design of discrete
multidimensional differentiators. Unlike previous methods, we
formulate the problem in terms of minimizing errors in the esti-
mated gradient direction, for a fixed size kernel. This emphasis
on the accuracy of the direction of the gradient vector is advan-
tageous for many multidimensional applications. The result is a
matched set of filters—low-pass prefilter and differentiators up
to the desired order—a concept first introduced in [19].

We have also enforced a number of auxiliary properties,
including a fixed finite extent, symmetry, unit D.C. response
(in the prefilter), and separability. Although we also tested
nonseparable designs (see also [20]), the marginal improvement
in accuracy appears to not be worth the considerably higher
computational expense. Finally, we incorporated steerability as
an orthogonal regularizing constraint for large filters, where the
primary constraint was insufficient to give a unique solution.

A number of enhancements could be incorporated into our
design method. We have ignored noise, and have not incorpo-
rated a prior model on images. Simple spectral models can easily
be included, but a more sophisticated treatment might make the
design problem intractable. We have also not explicitly mod-
eled the image sensing process (e.g., [9], [10]). Again, simple
spectral models could be included, but a more realistic treat-
ment would likely prove impractical. The basic design method
might also be optimized for specific applications (e.g., [21]).

Finally, the basic case of finite finite-impulse response (FIR)
filter design can be extended in several ways. A number of au-
thors have considered infinite-impulse response (IIR) solutions,
for use in temporal differentiation [22], [23]. It would be in-
teresting to consider the joint design of IIR and FIR filters for
differentiation of video signals. It is also natural to combine
multiscale decompositions with differential measurements (e.g.,
[24]–[27]), and thus might be worth considering the problem of
designing a multiscale decomposition that provides optimized
differentiation.
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