• The unit circle is a circle in x - y plane, with center at the origin and radius 1.

• The equation of the unit circle is $x^2 + y^2 = 1$. By this we mean if a point (x, y) on the plane has property $x^2 + y^2 = 1$, then the point is on the circle, and all points (x, y) on the circle have the property

$$x^2 + y^2 = 1$$

Example 0.1. $\ .$

- Which one of the following points are on the unit circle? A: (1,1) $B: (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ C: (1,0) D: (0,0) $E: (\frac{1}{\sqrt{3}}, -\frac{\sqrt{2}}{\sqrt{3}})$
- The point (x, -.3) is on the unit circle. Find x.
- We can assign to each point on the real line an angle; each real number corresponds to a point on the unit circle. We wrap the real line around the unit circle as follows
 - fix 0 on the point (1, 0).
 - The positive real line (numbers) wrap counter clockwise
 - The negative real numbers wrap clockwise.

Example 0.2. Find (x, y) on the unit circle that corresponds to the following points:

 $0, \pi/2, \pi, 3\pi/2$

$-5\pi/4$ 2π 3π $-3\pi/4.$

• Trig functions on the real line: Let t be a real number. To find $\sin t$, we find its corresponding point (x, y) on the unit circle by wrapping the real line around the unit circle. Then

$\sin t = y,$	$\cos t = x$
$\tan t = y/x,$	$\cot t = y/x$
$\sec t = 1/x,$	$\csc t = 1/y$

• Note that how points t and $t\pm 2k\pi$ gets mapped on the unit circle

1 Domain and period of the \sin and \cos functions

• Adding 2π to each value of t in the interval $[0, 2\pi]$ does not effect the value of the trig functions $\sin t$, $\cos t$, $\sec t$, $\csc t$, $\tan t$, $\cot t$.

2 Even and odd trig functions