
Data Abstraction & Problem
Solving with C++

Seventh Edition

Frank M. Carrano
University of Rhode Island

Timothy M. Henry
New England Institute of Technology

PEARSON

Boston Columbus Indianapolis Hoboken New York San Francisco

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS: Marcia

J. Horton

Executive Editor: Tracy Johnson (Dunkelberger)

Editorial Assistant: Kristy Alaura

Program Manager: Carole Snyder

Project Manager: Robert Engelhardt

Media Team Lead: Steve Wright

R&P Manager: Rachel Youdelman

R&P Senior Project Manager: William Opaluch

Senior Operations Specialist: Maura Zaldivar-Garcia

Inventory Manager: Meredith Maresca

Marketing Manager: Demetrius Hall

Product Marketing Manager: Bram Van Kempen

Marketing Assistant: Jon Bryant

Cover Designer: Marta Samsel

Cover Art: © Jeremy Woodhouse/Ocean/Corbis

Full-Service Project Management: John Orr, Cenveo

Publisher Services / Nesbitt Graphics, Inc.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this

textbook appear on the appropriate page within text.

© 2017 Pearson Education, Inc.

Hoboken, New Jersey 07030

All rights reserved. Printed in the United States of America. This publication is protected by Copyright, and

permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval

system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or

likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson

PLC, Permissions Department, 330 Hudson St, New York, NY 10013.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and the publisher was aware of a trademark

claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include

the development, research, and testing of theories and programs to determine their effectiveness. The author

and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the

documentation contained in this book. The author and publisher shall not be liable in any event for incidental

or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London

Pearson Education Australia Ply. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Education de Mexico, S.A. de C.V.

Pearson Education-Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Hoboken, New Jersey

Library of Congress Cataloging-in-Publication Data on file

10 9 8 7 6 5 4 3 2 1

PEARSON
www.pearsonhighered.com

ISBN-JO: 0-13-446397-8

ISBN 13: 978-0-13-446397-I

Contents

Review of C++

Fundamentals

A.I Language Basics 714
A.1.1 Comments 714
A.1.2 Identifiers and Keywords 715
A.1.3 Primitive Data Types 715
A.1.4 Variables 716
A.1.5 Literal Constants 716
A.1.6 Named Constants 717
A. I. 7 Enumerations 718
A.1.8 The typedef Statement 718
A.1.9 Assignments and Expressions 719

A.2 Input and Output Using iostream 721
A.2.1 Input 721
A.2.2 Output 722
A.2.3 Manipulators 723

A.3 Functions 724
A.3.1 Standard Functions 727

A.4 Selection Statements 728
A.4.1 The if Statement 728
A.4.2 The switch Statement 729

A.5 Iteration Statements 729
A.5.1 ThewhileStatement 730
A.5.2 The for Statement 730
A.5.3 The do Statement 731

A.6 Arrays 732
A.6.1 One-Dimensional Arrays 732
A.6.2 Multidimensional Arrays 733

A. 7 Strings 735
A.8 Vectors 737

714 Appendix A Review ofC++ Fundamentals

Each C++ program
must contain a
function main

Each comment line
begins with two
slashes

A.9 Classes 738
A.9.1 The Header File 739
A.9.2 The Implementation File 741
A.9.3 Using the Class Sphere 743
A.9.4 Inheritance 744

A.to Libraries 745
A.11 Namespaces 748

Summary 748

Prerequisite
Knowledge of a modern programming language

This book assumes that you already know how to write programs in a modern program­
ming language. If that language is C++, you can probably skip this appendix, returning to it
for reference as necessary. If instead you know a language such as Python, Java, or C, this
appendix will introduce you to C++. Also, Appendixes K and L compare C++ to Java and
Python, respectively.

It isn't possible to cover all of C++ in these pages. Instead this appendix focuses on the
parts of the language used in this book. First we look at the basics of data types, variables,
expressions, operators, and simple input/output. We continue with functions, decision
constructs, looping constructs, arrays, and strings. Various C++ Interludes, which appear
throughout the book as needed, will cover classes, pointers, exceptions, iterators, and the
Standard Template Library.

A.1 Language Basics

Let's begin with the aspects of the language that allow you to perform simple computations.
For example, the C++ program in Figure A-1 computes the volume of a sphere. Running this
program produces the following output, where the user's response appears in blue:

Enter the radius of the sphere: 19.1

The volume of a sphere of radius 19.1 is 29186.927734

A typical C++ program consists of several modules, some of which you write and some of
which you use from standard libraries. C++ provides a source-inclusion facility, which allows
the system to include the contents of a file automatically at a specified point in a program before
the program is compiled. For example, our sample program uses a standard library to perform
input and output operations. The first line of this program is an include directive that names
a standard header i ost ream, which enables the program to use input and output statements.

A C++ program is a collection of functions, one of which must be called main. Program
execution always begins with the function main. The following paragraphs provide an overview
of the basics of C++ and refer to the simple program in Figure A-1 by line number. Note that
the only function this simple program contains is main.

A.1.1 Comments

Each comment line in C++ begins with two slashes / / and continues until the end of the line.
You can also begin a multiple-line comment with the characters/* and end it with* I. However,

Language Basics 715

FIGUREA-1 A simple C++ program

1. Enables input and output------------> #include <i ostream>

2. Begins the function main------------> int main ()

3. Begins body of function -------------->
4. A comment ----------------------------->
5. Defines a constant -------------------->
6. Declares a variable -------------------->

7. Displays a prompt to the user ------->

8. Reads radius ------------------------->

// Computes the volume of a sphere of a given radius

canst double PI= 3.14159;

double radius;

std: :cout << "Enter the radius of the sphere: ";

std: :cin >> radius;

9. Declares and computes volume--->

10. Displays results------------------------->

11. Statement continues------------------>

12. Statement continues ----------------->

double volume = 4 • PI • radius • radius • radius/ 3;

std: :cout << "The volume of a sphere of radius "

<< radius << • inches is • << volume

<< • cubic inches.\n";

13. Normal program termination-------> return O;

14. Ends body of function ----------------> // end program

a comment that begins with / • and ends with • / cannot contain another comment that begins
with I* and ends with •I.

Appendix I talks about documentation comments that begin with I*• and end with • /.
We use this style of comment in this book at the beginning of classes, methods, and functions.

A.1.2 Identifiers and Keywords

AC++ identifier is a sequence of letters, digits, and underscores that must begin with either a
letter or an underscore. C++ distinguishes between uppercase and lowercase letters, so be care­
ful when typing identifiers.

You use identifiers to name various parts of the program. Certain identifiers, however, are
reserved by C++ as keywords, and you should not use them for other purposes. A list of all

C++ reserved keywords appears inside the cover of this book. The keywords that occur within
C++ statements in this book appear in color.

A.1.3 Primitive Data Types

The primitive data types in C++ are organized into four categories: boolean, character, integer,
and floating point. With the exception of boolean, each category contains several data types.
For most applications, you can use

bool
char
int
double

for boolean values
for character values
for integer values
for floating-point values

C++ is case­
sensitive

716 Appendix A Review of C++ Fundamentals

When possible,
avoid uninitialized
variables

FIGUREA-2 Primitive data types

Category Available Data Types by Category
Boolean
Character
Signed integer
Unsigned integer
Floating point

bool
char
short
unsigned short
float

signed char
int
unsigned
double

unsigned char
long
unsigned long
long double

Most of the data types are available in several forms and sizes. Although you will probably
not need more than the four types given previously, Figure A-2 lists the available primitive data
types for your reference.

A boolean value can be either true or false. Characters are represented by their ASCII inte­
ger values, which are listed in Appendix J. Integer values are either signed, such as -5 and +98,
or unsigned, such as 5 and 98. The floating-point types are used for real numbers that have both
an integer portion and a fractional portion. Boolean, character, and integer types are called
integral types. Integral and floating-point types are called arithmetic types.

The size of a data type affects the range of its values. For example, a 1 ong integer can have
a larger magnitude than a short integer. The sizes of-and therefore the specific ranges for-a
data type depend on the particular computer and version of C++ that you use. C++, however,
provides a way to determine these ranges, as you will see later in Section A. I .6.

A.1.4 Variables

A variable, whose name is a C++ identifier, represents a memory location that contains a value
of a particular data type. You declare a variable's data type by preceding the variable name with
the data type, as in

double radius; // Radius of a sphere

Note that you can write a comment on the same line to describe the purpose of the variable.
This declaration is also a definition in that it assigns memory for the variable radius. The

memory, however, has no particular initial value and so is said to be uninitialized. The pro­
gram in Figure A-1 declares radius without an initial value and later reads its value by using
std: : ci n >> radius.

When possible, you should avoid uninitialized variables of a primitive data type. That is,
you should initialize a variable when you first declare its data type or, alternatively, declare a
variable's data type when you first assign it a value. For example, vo 1 ume appears for the first
time in line 9 of Figure A-1 in the statement

double volume = 4 * PI * radius * radius * radius/ 3;

Because we did not declare volume's data type earlier in the program-thus avoiding an unini­
tialized value-we declare its data type and assign it a value in the same statement.

A.1.5 Literal Constants

You use literal constants to indicate particular values within a program. The 4 and 3 in line 9 of
Figure A-1 are examples of literal constants that are used within a computation. You can also
use a literal constant to initialize the value of a variable. For example, you use true and fa 1 se
as the values of a boolean variable, as mentioned previously.

You write decimal integer constants without commas, decimal points, or leading zeros. The
default data type of such a constant is either int, if small enough, or 1 ong.

You write floating-point constants, which have a default type of double, with a decimal
point. You can specify an optional power-of-10 multiplier by writing e or E followed by the
power of 10. For example, 1 . 2e-3 means 1.2 x 1 o-3

•

Character constants are enclosed in single quotes-for example, 'A' and '2 '-and have a
default type of char. You write a literal character string as a sequence of characters enclosed
in double quotes.

Several characters have names that use a backslash notation, as given in Figure A-3. This
notation is useful when you want to embed one of these characters within a literal character
string. For example, the program in Figure A-1 uses the new-line character \n in the string
"cubic inches. \n" to end the line of output. Any additional output will appear on the next
line. You will see this use of \n in the discussion of output later in this appendix. You also use
the backslash notation to specify either a single quote as a character constant (' \ ' ') or a
double quote within a character string.

rfl Programming Tip: Do not begin a decimal integer constant with zero. A constant

L!..J that begins with zero is either an octal constant or a hexadecimal constant.1

FIGUREA-3 Some special character constants

Constant Name

\n New line

\t Tab

\ ' Single quote

\" Double quote

\0 Zero

A.1.6 Named Constants

Unlike variables, whose values can change during program execution, named constants have
values that do not change. The declaration of a named constant is like that of an initialized
variable, but the keyword con st precedes the data type. For example, the statement

const double PI = 3.14159;

declares PI as a named floating constant, as is the case in the sample program in Figure A-1 . Once
a named constant such as PI is declared, you can use it, but you cannot assign it another value. By
using named constants, you make your program both easier to read and easier to modify.

The standard header file c 1 i mi ts contains named constants such as I NT _MIN and LONG_MAX

that specify installation-dependent maximum and minimum values for the integral data types.
Likewise, the standard header file cfl oat contains named constants that specify installation­
dependent maximum and minimum values for the floating data types. You use the include

directive to gain access to these header files.

' Octal and hexadecimal constants are also available, but they are not used in this book. An octal constant begins with 0,

a hex constant with Ox or OX.

Language Basics 717

Do not begin a

decimal integer

constant with zero

The value of a

named constant

does not change

Named constants
make a program

easier to read and

modify

718 Appendix A Review of C++ Fundamentals

Enumeration
provides another
way to name
constants

You can create an
integral data type by
naming an
enumeration

The typedef
statement gives
another name to an
existing data type,
making your
program easier to
change

The typedef
statement does not
create a new data
type

A.1.7 Enumerations

Enumeration provides another way to name integer constants. For example, the statement
enum {SUN, MON, TUE, WED, THU, FRI, SAT};

is equivalent to the statements
const int SUN= O;
const int MON = 1;

const int SAT = 6;

By default, the values assigned to the constants---called enumerators-begin with zero and are
consecutive. You can, however, assign explicit values to any or all of the enumerators, as in

enum {PLUS = '+', MINUS = '-'};

By naming an enumeration, you create a distinct integral type. For example,

enum Season {WINTER, SPRING, SUMMER, FALL};

creates a type Season. The variable whi chSeason, declared as
Season whichSeason;

can have values WINTER, SPRING, SUMMER, or FALL. This use of named enumerations instead of
int can make your program easier to understand.

A.1.8 The typedef Statement

You use the typedef statement to give another name to an existing data type. In this way, you
can make your program easier to modify and to read. For example, the statement

typedef double Real;

declares Real as a synonym for double and allows you to use Real and double interchangeably.
Suppose that you revise the program in Figure A-1 by using Real as follows:

int main()
{

typedef double Real;
const Real Pl= 3.14159;
Real radius = 0.0;

std: :cout << "Enter the radius of the sphere: ";
std: : cin >> radius;
Real volume = 4 * PI * radius * radius * radius/ 3;

At first glance, this program does not seem to be more advantageous than the original version,
but suppose that you decide to increase the precision of your computation by declaring PI,

radius, and volume as 1 ong double instead of double. In the original version of the program
(Figure A- l), you would have to locate and change each occurrence of doub 1 e to 1 ong doub 1 e.
In the revised program, you simply change the typedef statement to

typedef long double Real;

Realize that typedef does not create a new data type, but simply declares a new name for
an existing data type. A new data type requires more than a name; it requires a set of opera­
tions. C++, however, does provide a way to create your own data types, as described in C++
Interlude 1.

A.1 .9 Assignments and Expressions

You form an expression by combining variables, constants, operators, and parentheses. The
assignment statement

volume = 4 * PI * radius * radius * radius / 3;

assigns to the previously declared variable volume the value of the arithmetic expression on the
right-hand side of the assignment operator =, assuming that PI and radius have values. The
assignment statement

double volume = 4 * PI * radius * radius * radius / 3 ;

which appears in line 9 of Figure A- 1 , also declares vol ume's data type, since it was not declared
previously.

The various kinds of expressions that you can use in an assignment statement are discussed next.

Arithmetic expressions. You can combine variables and constants with arithmetic operators
and parentheses to form arithmetic expressions. The arithmetic operators are

+ Binary add or unary plus
- Binary subtract or unary minus
• Multiply

/ Divide
% Modulo (remainder after division)

The operators * , /, and % have the same precedence,2 which is higher than that of + and -; unary
operators3 have a higher precedence than binary operators. The following examples demon­
strate operator precedence:

a - b / C

-5 I a

a I -5

means a - (blc)
means (-5)/a
means a/(-5)

(precedence of / over -)
(precedence of unary operator -)
(precedence of unary operator -)

Arithmetic operators and most other operators are left-associative. That is, operators of
the same precedence execute from left to right within an expression. Thus,

a I b * c

means

(a / b) * C

The assignment operator and all unary operators are right-associative, as you will see later. You
can use parentheses to override operator precedence and associativity.

Relational and logical expressions. You can combine variables and constants with parentheses;
with the relational, or comparison, operators <, <=, >=, and >; and with the equality operators ==
(equal to) and ! = (not equal to) to form a relational expression. Such an expression is true or false
according to the validity of the specified relation. For example, the expression 5 == 4 is false because
5 is not equal to 4. Note that equality operators have a lower precedence than relational operators.

You can combine variables and constants of the arithmetic types, relational expressions,
and the logical operators && (and) and 1 1 (or) to form logical expressions, which are either true
or false. C++ evaluates logical expressions from left to right and stops as soon as the value of

2 A list of all C++ operators and their precedences appears inside the cover of this book.
3 A unary operator requires only one operand; for example, the - in --5. A binary operator requires two operands; for
example, the + in 2 + 3 .

Language Basics 719

Operators have a
set precedence

Operators are either
left- or right­
associative

Logical expressions
are evaluated from
left to right

720 Appendix A Review of C++ Fundamentals

Sometimes the
value of a logical
expression is
apparent before it is
completely
examined

Conversions from
one data type to
another occur
during both
assignment and
expression
evaluation

Use a static cast to
convert explicitly
from one data type
to another

the entire expression is apparent; that is, C++ uses short-circuit evaluation. For example, C++
determines the value of each of the following expressions without evaluating (a < b) :

(5 -- 4) && (a < b) / / Fal se s i nce (5 == 4) i s fal se
(5 == 5) I I (a < b) // True s i nce (5 == 5) i s t rue

[TI
Programming Tip: Remember that = is the assignment operator; == is the
equality operator.

Conditional expressions. The expression

expression1 ? expression2 : expression3

has the value of either expression2 or expression3 according to whether expression 1 is true or
false, respectively. For example, the statement

larger = ((a > b) ? a : b) ;

assigns the larger of a and b to 1 arger, because the expression a > b is true if a is larger than b
and false if not.

Implicit type conversions. Automatic conversions from one data type to another can occur dur­
ing assignment and during expression evaluation. For assignments, the data type of the expres­
sion on the right-hand side of the assignment operator is converted to the data type of the item
on the left-hand side just before the assignment occurs. Floating-point values are truncated­
not rounded-when they are converted to integral values.

During the evaluation of an expression, any values of type char or short are converted to
i nt . Similarly, any enumerator value is converted to int if i nt can represent all the values of
that particular enum; otherwise, it is converted to unsi gned. These conversions are called integral
promotions. After these conversions, if the operands of an operator differ in data type, the data
type that is lower in the following hierarchy is converted to one that is higher (i nt is lowest):

int -+ unsigned -+ long -+ unsi gned long -+ float -+ double -+ long double

For example, if a is l ong and b is fl oat , a + b is float. Only a copy of a's l ong value is con­
verted to fl oat prior to the addition, so that the value stored at a is unchanged.

Explicit type conversions. You can explicitly convert from one data type to another by using
a static cast, with the following notation:

stat i c_cas t <type> (expression)

which converts expression to the data type type. For example, stati c_cast<i nt> (14 . 9) con­
verts the double value 14.9 to the i nt value 14. Thus, the sequence

double volume = 14 . 9 ;
std : : cout << stati c_cast<i nt> (vol ume) ;

displays 14 but does not change the value of volume.

Other assignment operators. In addition to the assignment operator =, C++ provides several
two-character assignment operators that perform another operation before assignment. For
example,

a += b means a = a + b

Input and Output Using iostream 721

Other operators, such as -=, • =, / =, and %=, have analogous meanings.
Two more operators, ++ and --, provide convenient incrementing and decrementing operations:

a++ means a += 1 , which means a = a + 1

Similarly,

a-- means a -= 1 , which means a = a - 1

The operators ++ and -- can either follow their operands, as you just saw, or precede them.
Although ++a, for instance, has the same effect as a++, the results differ when the operations are
combined with assignment. For example,

b = ++a means a = a + 1 ; b = a

Here, the ++ operator acts on a before assigning a's new value to b. In contrast,

b = a++ means b = a ; a = a + 1

The assignment operator assigns a's old value to b before the ++ operator acts on a. That is, the
++ operator acts on a after the assignment. The operators ++ and -- are often used within loops
and with array indices, as you will see later in this appendix. When we use these operators with
arithmetic variables, we write the operator after the variable.

In addition to the operators described here, C++ provides several other operators. A sum­
mary of all C++ operators and their precedences appears inside the cover of this book.

A.2 Input and Output Using i ost ream

A typical C++ program reads its input from a keyboard and writes its output to a display. Such
input and output consist of streams, which are simply sequences of characters that either come
from or go to an input or output (1/0) device.

The data type of an input stream is i st ream, and the data type of an output stream is
ost ream. The i ost ream library provides these data types and three default stream variables:
ci n for the standard input stream, cout for the standard output stream, and cerr for the stand­
ard error stream, which also is an output stream. Your program gains access to the i ost ream
library by including the i ost ream header file. This section provides a brief introduction to
simple input and output.

A.2.1 Input

C++ provides the input operator » to read integers, floating-point numbers, and characters
into variables whose data types are any of the primitive data types. The input operator has the
input stream as its left operand and the variable that will contain the value read as its right
operand. Thus,

std : : c i n >> x ;

reads a value for x from the standard input stream. The » operator is left-associative. Thus,
std : : ci n >> x >> y

means
(std : : c i n >> x) » y

That is, both of these expressions read characters for x from the input stream and then read
subsequent characters for y .

The operators ++
and -- are useful for
incrementing and
decrementing a
variable

The input operator
>> reads from an
input stream

722 Appendix A Review of C++ Fundamentals

The input operator

>> skips whitespace

Use get to read
whitespace

The output operator
<< writes to an

output stream

The input operator » skips whitespace, such as blanks, tabs, and new-line characters, that
might occur between values in the input data line. For example, after the program segment

i nt i a = 0 ;

i nt i b = 0 ;

doubl e da = O ;

doubl e db = O ;

std : : ci n >> i a >> da >> i b ;

std : : ci n >> db ;

reads the data line

21 -3.45 -6 475 . 1 e -2 <eol>

the variable i a contains 21, da contains -3.45, i b contains -6, and db contains 4.751. A sub­
sequent attempt to read from ci n will look beyond the end of the line (<eol>) and read from
the next data line, if one exists. An error occurs if no data exists for a corresponding variable
processed by » or if the variable's data type does not match the type of the data available. For
example, after the previous program segment reads the data line

-1 .23 456 . 1 e -2 -7 8 <eol>

the variable i a contains -1, da contains 0.23, i b contains 456, and db contains 0.001. The rest
of the data line is left for a subsequent read, if any. As another example, if the segment at­
tempts to read a data line that begins with . 21 , the read would terminate because i a is i nt and
. 2 1 is not.

An expression such as std : : ci n » x has a value after the read operation takes place. If
the operation is successful, this value is true; otherwise the value is false. You can examine this
value by using the selection and iteration statements that are described later in this appendix.

You can also use the » operator to read individual characters from the input stream into
character variables. Again, any whitespace is skipped. For example, after the program segment

char ch1

cha r ch2

char ch3

= I I ,

_ I I ,- '
_ I I ,- '

std : : ci n >> ch1 >> ch2 >> ch3 ;

reads the data line

xy z

ch1 contains 'x ', ch2 contains ' y ' , and ch3 contains 'z ' .

You can read whitespace when reading individual characters into character variables by
using the C++ method get. Either of the statements

std : : ci n. get (ch1) ;

or

ch1 = std : : ci n .get () ;

reads the next character, even if it is a blank, a tab, or a new-line character, from the input
stream into the char variable ch1 .

Section A.7, later in this appendix, describes how to read character strings.

A.2.2 Output

C++ provides the output operator « to write character strings and the contents of variables
whose data types are any of the primitive ones. For example, the program segment

Input and Output Using iostream 723

i nt count = 5;
double aver ag e = 20 . 3;
st d: : cout << "Th e aver ag e of t h e " << count

<< " dist an ces read is " << averag e
<< " m i l es . \ n " ;

produces the following output:
Th e aver ag e of t h e 5 dist an ces r ead is 20. 3 m il es.

Subsequent output will appear on the next line. Like the input operator, the output
operator is left-associative. Thus, the previous statements append the string "Th e averag e
of t h e " to the output stream, then append the characters that represent the value of count,
and so on.

Note the use of the new-line character \n, which you can conveniently embed within
a character string. Observe also that the output operator does not automatically introduce
whitespace between values that are written; you must do so explicitly. The following statements
provide another example of this:

int X = 2;
int y = 3;
ch ar ch = ' A ' ;
st d : : cout << x << y << ch << "\n "; I I Di s pla ys 23A

Although you can use the output operator to display individual characters, you can also
use the put method for this task. Further, you can specify a character either as a ch ar variable
or in ASCII. Thus, the statements

char ch = I a ' ;

st d : : cout . put (ch) ; I I Di spl ays a
st d : : cout . put (' b ') ; I I Di spl ays b
st d : : cout . put (99) ; I I Di spl ays C , wh i ch i s 99 i n ASC I I
st d: : cout . put (ch+3) ; I I D i spl ays d
st d : : cout . put ('\ n ') ; I I Carriage return

display abe d followed by a carriage return.
Section A. 7, later in this appendix, provides further information about writing character strings.

A.2.3 Manipulators

C++ enables you to gain more control over the format of your output and the treatment of
whitespace during input than the previous discussion has indicated. Most of these techniques
apply to the format of output.

Suppose, for example, that you have computed your grade point average and you want to
display it with one digit to the right of the decimal point. If the floating variable g pa contains
4.0, the statement

st d : : cout << " My GPA is " << g pa << "\n " ;

writes 4 without a decimal point. A number of manipulators affect the appearance of your
output. You can use these with cout :

st d : : cout « st d : : manipulator ;
where manipulator has any of the values listed in Figure A-4. A manipulator is a predefined
value or function that you use with the input and output operator. For example,

st d : : cout << st d : : sh ow point;

uses the sh ow poi nt manipulator and causes all floating-point output to appear with a decimal point.

You n eed to
explicitly introduce
n ew-lin e ch aracters
an d whitespace
where desired in a
program's output

Use m anipul ators to
specify th e
appearance of a
program's output

724 Appendix A Review of C++ Fundamentals

A C++ program is a
collection of
functions

A function definition
implements a
function's task

FIGUREA-4 Stream manipulators

Manipulator

endl

fixed

1 eft

right

scientific

setfill(f)

setprecision(n)

setw(n)

showpoint

showpos

ws

Meaning

Insert new line and flush stream

Use fixed decimal point in floating-point output

Left-align output

Right-align output

Use exponential (e) notation in floating-point output

Set fill character to f

Set floating-point precision to integer n

Set field width to integer n

Show decimal point in floating-point output

Show + with positive integers

Extract whitespace characters (input only)

Even if you use the showpoi nt manipulator, gpa will likely appear as 4.00000 instead of
4.0. You can specify the number of digits that appear to the right of the decimal point by using
the manipulator function setpreci si on, and you can insert a new-line character and flush the
output stream by using the manipulator endl. Thus,

std : : cout << std : : showpoint ;
std: : cout << std: : setpreci si on (1) << gpa << std : : endl ;

displays 4.0 followed by a carriage return.
The effect of setpreci si on on the output stream remains until another setpreci si on is

encountered. Except for setpreci si on, however, a manipulator affects the appearance of only
the next characters on which « (or ») operates. For example,

std : : cout « std: :right; // Ri ght - a l i gn output
std: :cout << " abc " << std: : setw(6) << "def " << "ghi" ;

displays

abc defghi

Although manipulator values, such as endl, are available when you include i ostream in your
program, you must also include i omani p to use any of the manipulator functions setfi 1 1 ,
setpreci si on, and setw. Note that all of the manipulators are in the C++ standard namespace.

A.3 Functions

As was mentioned earlier in this appendix, a C++ program is a collection of functions. Usu­
ally, each function should perform one well-defined task. For example, the following function
returns the larger of two integers:

int maxOf(i nt x , i nt y)
{

i f (x > y)
return x;

el se
return y;

// end maxOf

A function definition, like the one just given, has the following form:
type name (parameter-declaration-list)
{

body

The portion of the definition before the left brace specifies a return type, the function name,
and a list of parameters. The part of the definition that appears between the braces is the func­
tion's body.

The return type of a valued function-one that returns a value-is the data type of the
value that the function will return. The body of a valued function must contain a statement of
the form

return expression;

where expression has the value to be returned.
Each parameter represents either an input to or an output from the function. You declare

a parameter by writing a data type and a parameter name, separating it from other parameter
declarations with a comma, as in

int x , i nt y

When you call, or invoke, the function maxOf, you pass it arguments that correspond to the param­
eters with respect to number, order, and data type. For example, the following statements con­
tain two calls to maxOf:

int a = O;
int b = O ;
int c = 0;
std : : cin >> a >> b >> c;
int largerAB = maxOf (a , b) ;
std : : cout << "The largest of " << a << " , " << b << " , "

<< " and " << c << " is " << maxOf(largerAB , c) << " . \n" ;

As written, the definition of maxOf indicates that its arguments are passed by value. That
is, the function makes local copies of the values of the arguments-a and b, for example-and
uses these copies wherever x and y appear in the function definition. Thus, the function cannot
alter the arguments that you pass to it. This restriction is desirable in this example because x and y
are input parameters, which maxOf does not change.

Alternatively, arguments can be passed by reference. The function does not copy such
arguments; rather, it references the argument locations whenever the parameters appear in the
function's definition. This allows a function to change the values of the arguments, thus imple­
menting output parameters.

For example, consider the following function computeMax:
void computeMax (int x , i nt y , int& larger)
{

larger = ((x > y) ? x : y) ;
1 / end computeMax

computeMax is a void function instead of a valued function. That is, its return type is void, and it does
not return a value by using a return statement.4 Instead, computeMax returns the larger of x and y
in the output parameter larger. The & that follows l arger's data type int indicates that l arger

4 Whereas valued functions must contain a statement of the form return expression, void functions cannot contain

such a statement. A void function can, however, contain return without an expression. Such a statement causes the

function to return to the statement that follows its call. This book does not use return with void functions.

Functions 725

A valued function
must use return to
return a value

When you call a
function, you pass it
arguments that
correspond to the
parameters in
number, order, and
data type

An argument
passed by value is
copied within the
function

An argument
passed by reference
is not copied but is
accessed directly
within the function

A void function does
not use return to
return a value

726 Appendix A Review of C++ Fundamentals

An output argument
should be a
reference argument

An input argument
should be either a
value argument or a
constant reference
argument

An argument that is
both an input to and
an output from a
function is passed
by reference

A function
declaration ends

is a reference parameter. Thus, computeMax will access and alter the argument that corresponds
to 1 arger, whereas the function will make and use copies of the values of the arguments that
correspond to the value parameters x and y.

The following statements demonstrate how to invoke computeMax:

i nt a = 0;
i nt b = O;
i nt largerAB = O;
std: : ci n >> a >> b;
computeMax (a , b , largerAB) ;
std: : cout << "The larger of • << a << • and • << b

<< • i s • << largerAB << " . \n" ;

If a function's input argument is a large object, like the objects you will encounter in this
book, you might not want the function to copy it. Thus, you would not pass the argument by
value. Because it is an input argument, however, you do not want the function to be able to
alter it. A constant reference parameter is a reference parameter that is tagged as const. The
function uses the actual argument that is passed to such a parameter, not a copy of it, yet can­
not modify it.

For example, for the function f that begins

voi d f (const i nt& x , i nt y , i nt& z)

x is a constant reference parameter, y is a value parameter, and z is a reference parameter. Here
x and y are suitable as input parameters because f cannot change them, while z is an output
parameter. Note that z can also be an input parameter. That is, the argument corresponding
to z can both provide a value to the function and return a value from the function. Such argu­
ments must be passed by reference.

Note: Use reference parameters with caution, as you might inadvertently change
an argument. On the other band, constant reference parameters are safe to use.

If you write another function f that calls computeMax, you must either place the definition
of f after the definition of computeMax or precede f's definition with a function declaration
for computeMax. For example, you can use either of the following statements to declare the
function computeMax:

voi d computeMax (int x , int y , int& max) ;

with a semicolon or

Declarations for
each function
usually appear at
the beginning of a
program

void computeMax (int , int , int&) ;

A function declaration provides the data types of the function's parameters and its return
type. Parameter names are optional in a function declaration, although they are helpful stylis­
tically. However, parameter names are required in the function's definition. Although a func­
tion declaration ends with a semicolon, a semicolon does not appear in a function definition.

A typical C++ program contains a function declaration for every function used in the pro­
gram. These declarations appear first in the program, usually with comments that describe each
function's purpose, parameters, and assumptions. The program in Listing A-1 demonstrates
the placement of a function declaration, function definition, and main function:

LISTING A-1 A program that contains a f!IIlction declaration

1 #incl ude <i ostream>
2
3 / * * Returns the l arger of two gi ven i ntegers.
4 @par am x An i nteger .
5 @pa ram y An integer .
6 @return The l arger of x and y . * /
7 int maxOf (int x , int y) ; / / A f uncti on decl aration
8
9 int mai n ()

1 0

1 1 int a = 0 ;

1 2 i nt b = 0 ·
1 3 std : : cout << " Pl ease enter two i ntegers : " ;
1 4 std : : cin >> a >> b;
1 5

1 6 int l argerAB = maxOf (a , b) ;
1 7 std : : cout << "The l arger o f • << a << • and • << b

1 8 << • i s • << l argerAB << " . \ n " ;
1 9 / / end mai n
20

21 / / A functi on def i n i tion
22 int maxOf (i nt x , int y)
23 {

24 return (x > y) ? x : y;
25 / / end maxOf

A.3.1 Standard Functions
C++ provides many standard functions, such as the square root function sqrt and the input
function get. Appendix H provides a summary of the standard functions and indicates which
header file you need to include in your program to gain access to them. For example, the stand­
ard functions listed in Figure A-5 facilitate character processing and require the header file
cctype. Thus, you need to include the statement

#i ncl ude <cctype>

in your program when you want to use functions such as i supper and toupper. For the char­
acter variable ch, i supper (ch) is true if ch is an uppercase letter, and toupper (ch) returns the
uppercase version of the letter ch without actually changing ch.

FIGURE A-5 A selection of standard functions

(a) Standard classification functions

Function

i sal num (ch)

isa l pha { ch)

i sdigit (ch)

isl ower (ch)

isupper (ch)

Returns true if ch is

A letter or digit

A letter

A digit

A lowercase letter

An uppercase letter

(b) Standard conversion functions

Function

tol ower (ch)

toupper (ch)

toascii (ch)

Returns

Lowercase version of ch

Uppercase version of ch

int ASCII code for ch

Functions 727

Standard functions
provide many
common operations
and require a
specific header file

728 Appendix A Review of C++ Fundamentals

An i f statement
has two basic forms

Parentheses around
the expression in an
i f statement are
required

You can nest i f
statements

A.4 Selection Statements

Selection statements allow you to choose among several courses of action according to the
value of an expression. In this category of statements, C++ provides the ; f statement and the
swi tch statement.

A.4.1 The i f Statement

You can write an ; f statement in one of two ways:
i f (expression)

or
statement]

i f (expression)
statement]

el se

statement2
where statement] and statement2 represent any C++ statement except a declaration. Such
statements can be compound; a compound statement, or block, is a sequence of statements
enclosed in braces. If the value of expression is true, statement] is executed. Otherwise, the first
form of the i f statement does nothing, whereas the second form executes statement2. Note that
the parentheses around expression are required.

For example, the following i f statements each compare the values of two integer variables
a and b, and copy the larger value to the integer variable l argerAB:

i f (a > b)
std : : cout << a << " i s l arger than " << b << " . \ n " ;

std : : cout << "Thi s statement i s al ways executed . \ n " ;
i f (a > b)
{

l argerAB = a ;
std : : cout << a << " i s l arger than " << b << " . \ n " ;

el se

{
l argerAB = b ;
std : : cout << b << " i s l arger than " << a << " . \ n " ;
I I end i f

std : : cout << l argerAB << " i s the l arger val ue . \ n " ;

You can nest i f statements in several ways, since either statement] or statement2 can itself
be an i f statement. The following example, which finds the largest of three integer variables a,
b , and c, shows a common way to nest i f statements:

i f ((a >= b) && (a >= c))
l argest = a ;

el se i f (b >= c) / / a i s not l a rgest a t t h i s poi nt
l argest = b ;

el se
l argest = c ;

� �ote: An arithm�tic expression whose value is not zero is treated as true; one hav­
� mg a value of zero 1s false.

Selection Statements 729

A.4.2 The swi tch Statement

When you must choose among more than two courses of action, the if statement can become
unwieldy. If your choice is to be made according to the value of an integral expression, you can
use a switch statement.

For example, the following statement assigns the number of days in a month to the previ­
ously defined integer variable daysinMonth. The int variable month designates the month as an
integer from 1 to 12 , and the boolean variable l eapYear is true if the year is a leap year.

switch (month)
{

' 30 days hath Sept . Apr , June , and Nov .
case 9 : case 4 : case 6 : case 11:

dayslnMonth = 30 ;
break ;

/ / A l l the rest have 31
case 1 : case 3 : case 5 : case 7:
case 8 : case 1 0 : case 1 2 :

dayslnMonth = 31 ;

break ;
Ex .ept February
case 2 : / / Assume l eapYear i s true if a l eap year , el se i s fal s e

i f (l eapYear)
daysinMonth = 29 ;

else
dayslnMonth = 28 ;

break ;

default:
std : : cout << " Incorrect value for month . \n " ;
end swi tch

Parentheses must enclose the integral switch expression-month, in this example. The case
labels have the form

case expression :

where expression is a constant integral expression. After the switch expression is evaluated,
execution continues at the case label whose expression has the same value as the switch
expression. Subsequent statements execute until either a break statement is encountered or the
switch statement ends.

Unless you terminate a case with a break statement, execution of the switch statement
continues. Although this action can be useful, omitting the break statements in the previous
example would be incorrect.

If no case label matches the current value of the switch expression, the statements that
follow the default label, if one exists, are executed. If no default exists, the switch statement
exits.

A.5 Iteration Statements

C++ has three statements that provide for repetition by iteration, that is, loops: the while,
for, and do statements. Each statement controls the number of times that another C++ state­
ment-the body-is executed. The body cannot be a declaration and is often a compound
statement.

A switch
statement provides
a choice of several
actions according to
the va lue of an
integral expression

Without a break
statement,
execution of a case
will continue into the
next case

730 Appendix A Review ofC++ Fundamentals

A whi 1 e statement
executes as long as
the expression is
true

A for statement
lists the initialization,
testing, and
updating steps in
one location

A.5.1 The whi l e Statement

The general form of the whi 1 e statement is

whi le (expression)
statement

As long as the value of expression is true, statement is executed. Because expression is evaluated
before statement is executed, it is possible that statement will not execute at all. Note that the
parentheses around expression are required.

Suppose that you wanted to compute the sum of positive integers that you enter at the
keyboard. Since the integers are positive, you can use a negative value or zero to indicate the
end of the input. The following whi 1 e statement accomplishes this task:

i nt nextValue = O ;
i nt sum = O ;
std : : cin >> nextValue ;
whi le (nextValue > 0)
{

sum += nextValue ;
std : : cin >> nextValue ;
I I end whi l e

If O was the first value read, the body of the whi 1 e statement would not execute.
Recall that the expression std : : ci n » next Value is true if the input operation was suc-

cessful and false otherwise. Thus, you could revise the previous statements as

i nt nextValue = O ;
i nt sum = O ;
whi le ((std : : cin >> nextValue) && (nextValue > 0))

sum += nextValue ;

This loop control is difficult to maintain, and so we do not recommend it.

A.5.2 The for Statement

The for statement provides for counted loops and has the general form

for (initialize ; test ; update)
statement

where initialize, test, and update are expressions. Typically, initialize is an assignment expression
that initializes a counter to control the loop. This initialization occurs only once. Then if test,
which is usually a logical expression, is true, statement executes. The expression update executes
next, usually incrementing or decrementing the counter. This sequence of events repeats, begin­
ning with the evaluation of test, until the value of test is false.

For example, the following for statement displays the integers from I to n:

for (i nt counter = 1 ; counter <= n ; counter++)
std : : cout << counter << • " ;

std: : cout << std: : endl ; I I Th i s statement i s a l ways executed

If n is less than 1, the for statement does not execute at all. Thus, the previous statements are
equivalent to the following whi 1 e loop:

i nt counter = 1 ;
whi le (counter <= n)
{

Selection Statements 731

std : : cout << counter << " " ·
counter++ ;

end whi l e
std : : cout << s td : : endl ; / / Th i s s t atement i s a l ways executed

In general, the logic of a for statement is equivalent to

initialize ;
whi le (test)
{

statement;
update;

Note that in a for statement the first expression initialize must have either an arithmetic
type or a pointer type.5 Note that char in the following example is considered an arithmetic
type:

for (char ch = 'z' ; ch >= ' a' ; ch--)
I , ch ranges f rom ' z ' to ' a '

The initialize and update portions of a for statement each can contain several expressions
separated by commas, thus performing more than one action. For example, the following loop
raises a floating-point value to an integer power by using multiplication:

F . oa t i ng - po 1 n t power equa l s fioa t i ng - po 1 nt x rai sed to i nt n ;
a s s umes i nt expon

for (power= 1 .0, expon = 1; expon <= n ; expon++)
power ·= x ;

Both power and expon are assigned values before the body of the loop executes for the first time.
The comma here is an example of the comma operator, which evaluates its operand expressions
from left to right.

When compared to a whi 1 e statement, the for statement can make it easier to understand
how the loop is controlled because the initialization, testing, and updating steps of the loop are
consolidated into one statement. C++ programmers use for statements for loops that process
collections or sequences of data.

A.5.3 The do Statement
Use the do statement when you want to execute a loop's body at least once. Its general form is

do
statement

whi 1 e (expression) ;

Here, statement executes until the value of expression is false.
For example, suppose that you execute a sequence of statements and then ask the user

whether to execute them again. The do statement is appropriate, because you execute the state­
ments before you decide whether to repeat them:

char response;
do
{

1 1 A sequence of s t atement s

; C++ Interlude 2 introduces pointer types.

A for statement is
equivalent to a
wh i 1 e statement

For counted loops, a
for statement is
usually favored over
the while
statement

A do statement
loops at least once

732 Appendix A Review of C++ Fundamentals

An array contains
data that has the
same type

You can access
array elements
directly and in any
order

Use an index to
specify a particular
element in an array

An array index has
an integer value
greater than or
equal to 0

You can use an
enumerator as an
array index

std : : cout << "Do it agai n?";
std : : c i n >> response;
wh i l e ((response == 'Y') I I (response

A .6 Arrays

' y ')) ;

An array contains data items, or entries, that have the same data type. An array's memory loca­
tions, or elements, have an order: An array has a first element, a second element, and so on, as
well as a last element. That is, an array has a finite, limited number of elements. Therefore, you
must know the maximum number of elements needed for a particular array when you write
your program and before you execute it. Because you can access the array elements directly and
in any order, an array is a direct access, or random access, data structure.

A.6.1 One-Dimensional Arrays

When you decide to use an array in your program, you must declare it and, in doing so, indicate
the data type of its entries as well as its size, or capacity. The following statements declare a one­
dimensional array, maxTemps, which contains the daily maximum temperatures for a given week:

canst i nt DAYS_PER_WEEK = 7;
doubl e maxTemps [DAYS_PER_WEEK] ;

The bracket notation [] declares maxTemps as an array. This array can contain at most seven
floating-point values.

You can refer to any of the floating-point entries in maxTemps directly by using an expres­
sion, which is called the index, or subscript, enclosed in square brackets. In C++, array indices
must have integer values in the range O to size - 1, where size is the number of elements in
the array. The indices for maxTemps range from O to DAYS_PER_WEEK - 1. For example, the fifth
element in this array is maxTemps [4] . If k is an integer variable whose value is 4, maxTemps [k l
is the fifth element in the array, and maxTemps [k+1] i s the sixth element. Also, maxTemps [k++]

accesses maxTemps [k l before adding 1 to k. Note that you use one index to refer to an element
in a one-dimensional array.

Figure A-6 illustrates the array maxTemps, which at present contains only five temperatures.
The last value in the array is in maxTemp [4] ; the elements maxTemps [5] and maxTemps [6] are not
initialized and therefore contain unknown values.

You can use enumerators as indices because they have integer values. For example, con­
sider the following definition:

enum Day {SUN, MON , TUE , WED , THU , FRI, SAT};

Given this definition, maxTemps [TH U] has the same meaning as maxTemps [4] . You can also use
the enumerators within a loop that processes an array, as in the following for statement:

for (Day day ! ndex = SUN; day! ndex <= SAT ; day! ndex++)
std : : cout << maxTemps [dayi nde x] << std : : endl ;

Clearly, before you access an element of an array, you must assign it a value. You must
assign values to array elements one at a time by using the previously described index notation.
Note that, if a and b are arrays of the same type, the assignment a = b is illegal.6

6 C++ enables you to define your own array data type and array operators so that this assignment would be valid. To do

so, you need to use classes (C++ Interlude I) and overloaded operators (C++ Interlude 6).

FIGURE A-6 A one-dimensional array of at most seven elements

0 2 3 4 5 6 - Index
maxTemps I 74. 1 98.6 32.0 54.3 I 82.4 I ? I ?

maxTemps[4] J �
Unused at present

The data type of maxTemps is a derived type, which is a type that you derive from the primi­
tive types by using a declaration operator such as [] . Naming a derived type by using a typedef
is often useful. Thus, you can write

const i nt DAYS_PER_WEEK = 7 ;
typedef doubl e ArrayType [DAYS_PER_WEEK] ;
ArrayType maxTemps ;

and make ArrayType available for use throughout your program.
Initialization. You can initialize the elements of an array when you declare it for the first time.
For example,

doubl e maxTemps [DAYS_PER_WEEK] = {82 . 0 , 71 . 5 , 61 . 8 , 75 . 0 , 88 . 3 } ;

initializes the first five elements of maxTemps to the values listed and the last two elements to zero.
Passing an array to a function. If you wanted a function that computed the average of the first n
entries in a one-dimensional array, you could declare the function as

doubl e getAverageTemp (doubl e temperatures [] , i nt n) :

Because the compiler does not know the number of entries that the array can hold, you must
also pass the function either the size of the array or the number of array entries to process.
Traditionally, the array is listed as the first parameter and the number of entries as the second.
You can invoke the function by writing, for example,

doubl e avg = getAverageTemp (maxTemps , 5) ;

where maxTemps is the previously defined array.
An array is never passed to a function by value, regardless of how you write its param­

eter. An array is always passed by reference. This restriction avoids the copying of perhaps
many array entries. Thus, the function getAverageTemp could modify the entries of the array
maxTemps, even though it is an input to the function. To prevent such alteration, you can
specify the array parameter as a constant reference parameter by preceding its type with
canst, as follows:

doubl e getAverageTemp (const doubl e temperatures [] , i nt n) ;

A.6.2 Multidimensional Arrays

You can use a one-dimensional array, which has one index, for a simple collection of data. For
example, you can organize 52 temperatures linearly, one after another. A one-dimensional array
of these temperatures can represent this organization.

Arrays 733

You can initialize an
array when you
declare it

Arrays are always
passed by reference
to a function

734 Appendix A Review of C++ Fundamentals

An array can have
more than one
dimension

In a two-dimensional
array, the first index
represents the row,
the second index
represents the
column

FIGURE A-7 A two-dimensional array
Columns

0 5 1

0

Rows

6

You can also declare multidimensional arrays. You use more than one index to designate
an element in a multidimensional array. Suppose that you wanted to represent the minimum
temperature for each day during 52 weeks. The following statements declare a two-dimensional
array, mi nTemps:

const i nt DAYS_PER_WEEK = 7 ;
const i nt WEEKS_PER_YEAR = 52 ;
doubl e mi nTemps [DAYS_PER_WEEK] [WEEKS_PER_YEAR] ;

These statements specify the ranges for two indices: The first index can range from O to 6, while
the second index can range from O to 5 1 . Most people picture a two-dimensional array as a
rectangular arrangement, or matrix, of elements that form rows and columns, as Figure A-7
indicates. The first dimension given in the declaration of mi nTemps is the number of rows. Thus,
mi nTemps has 7 rows and 52 columns. Each column in this matrix represents the seven daily
minimum temperatures for a particular week.

To reference an element in a two-dimensional array, you must indicate both the row and
the column that contain the element. You make these indications of row and column by writing
two indices, each enclosed in brackets. For example, mi nTemps [1] [51] is the element in the 2nd

row and the 52nd column. In the context of the temperature example, this element contains the
minimum temperature recorded for the 2nd day (Monday) of the 52nd week. The rules for the
indices of a one-dimensional array also apply to the indices of multidimensional arrays.

As an example of how to use a two-dimensional array in a program, consider the following
program segment, which determines the smallest value in the previously described array mi nTemps.
We use enumerators to reference the days of the week.

enum Day { SUN , MON , TUES , WED , THURS , FRI , SAT} ;
/ / I n i t i a l l y , as sume the l owest temperature i s first i n the a rray
doubl e l owestTemp = mi nTemps [O] [O] ;

Day dayOfWeek = SUN ;
int weekOfYear = 1;

, (J rch array for l owest temperature
for (int weeklndex = O ; weeklndex < WEEKS_PER_YEAR ; weeklndex++)
{

for (Day day!ndex = SUN ; day!ndex <= SAT ; day!ndex++)
{

if (lowestTemp > mi nTemps [dayindex] [weekindex])
{

lowestTemp = minTemps (dayindex] (weekindex] ;
dayOfWeek = day!ndex ;
weekOfYear = weeklndex + 1 ;

end i f
end for

end for

At th i s poi n t , l owes tTemp i s the smal l est val ue i n mi nTemps and
occurs on the day and week g i ven by dayOfWeek and weekOfYear ,
that 1 s , l owes tTemp == m1 nTemps (dayOfWeek] [weekOfYear - 1] .

Although you can declare arrays with more than two dimensions, generally more than
three dimensions is unusual. The techniques for working with such arrays, however, are analo­
gous to those for two-dimensional arrays.

[]]
Programming Tip: When referencing an element of a multidimensional array,
do not use comma-separated indices. For example, myArray [3, 6] does not reference
the array element my Array [3 J [6 J . The expression 3, 6 is a comma expression whose
value is that of the last item listed, namely 6. Thus, although my Array [3, 6] is legal,
its meaning is myArray [6] , which references the element myArray [O J [6] .

Initialization. You can initialize the elements of a two-dimensional array just as you initialize a
one-dimensional array. You list the initial values row by row. For example, the statement

i nt X [2] [3] = { { 1 , 2 , 3} ,
{ 4 , 5 , 6 } } ; / / 2 rows , 3 columns

initializes the two-dimensional array x so that it appears as

2 3
4 5 6

That is, the statements initialize the elements x [o J [o] , x [o] [1] , x [o J [2 J , x [1 J [o J , x [1 J [1 J , and
x [1 J [2 J in that order. In general, when you assign initial values to a multidimensional array, it
is the last, or rightmost, index that increases the fastest.

A .7 Strings

Earlier, you saw that C++ provides literal character strings such as
"This i s a string . "

You can declare and use variables that contain such strings, and then manipulate the strings
as naturally as you manipulate integers by using familiar operators. Our presentation includes
only some of the possible operations on strings.

Strings 735

736 Appendix A Review of C++ Fundamentals

Exam pl es of true
expressions

Use substr to
access part of a
string

The C++ Standard Library provides the data type st ring. To use st ring in your program,
you precede it with the statement

#in clude <string>

Note that string is in the st d namespace. We will discuss libraries and namespaces later in this
appendix.

You can declare a string variable t it 1 e and initialize it to the empty string by writing

st d: :string title; I f In i ti al i zati on ·i s prov i d ed by stri ng ' s defaul t cons t nic tor

You can initialize a string variable to a string literal when you declare i t by writing

std: : string title = "Walls an d M irrors";

You can subsequently assign another string to t it 1 e by using an assignment statement
such as

t it le = "J P erf ect ' s D iary ";

In each of the previous examples, t itle has a length of 17. You use either of the methods
1 eng th or siz e to get the current length of a string. Thus, t it 1 e . 1 ength () and t it 1 e . siz e()
are each 17.

You can reference the individual characters in a string by using the same index notation
that you use for an array. Thus, in the previous example, t it 1 e [o] contains the character J and
t it 1 e [1 6] contains the character y.

You can compare strings by using the familiar comparison operators. Not only can you see
whether two strings are equal, but you can also discover which of two strings comes before the
other. The ordering of two strings is analogous to alphabetic ordering, but you use the ASCII
table instead of the alphabet. Thus, the following relationships are all true:

" dig " < " dog "
"Star" < "star"
"start" > "star"
11d 11 > "abc "

(because ' S ' < ' s ')

You can concatenate two strings to form another string by using the + operator. That is,
you place one string after another to form a third string. For example, if

std: :string st r1 = "Com";

the statement

std: :string str2 = st r1 + " puter";

forms the string "Comput er" and assigns it to st r2 . Similarly, you can append a single character
to a string, as in

st r1 += ' s ' ;

You can manipulate a portion of a string by using the method

subs t r (position , length)

The first argument specifies the position of the beginning of the substring (remember that 0
is the position of the first character in the string). The second argument is the length of the
substring. For example,

t it le. substr(2 , 7)

is the string "Perf ect" .

To perform input and output with C++ strings, you must include the library i ostream by
beginning your program with the statement

#i nclude <i ostream>

For example, you then can display the contents of a string variable by executing

t i tle = " Walls and Mi rrors " ;
std : : cout << t i tle << " \ n " ;

The result is Walls and Mi rrors. The operator « writes the entire string, including the blanks.
You can read a string of characters into a string variable. For example, when the statement

std : : c i n >> t i tle;

reads the data line

Jam i e Perfect's Di ary

it assigns the string "Jam i e " to title. Whitespace in the input line terminates the read opera­
tion for a string. To read the entire line of input, including its blank characters, you write

getli ne(std : : ci n , t i tle) ;

A .8 Vectors

Another way to hold data items of the same type is by using a vector. A vector is similar to a
one-dimensional array, but vectors provide additional features for the programmer not found
in a simple array. A vector is an object of a standard C++ class named vector. This class is a
part of the Standard Template Library, or STL. The STL is a library of template classes that
provide data types you can use in your programs. These data types are not part of the official
C++ language, but they have been added to the built-in data types. Section A.10 discusses li­
braries such as the STL and their usefulness. C++ Interlude 8 explores the STL in more detail.

To use a vector in your program, you must begin it with the following statement:

#i nclude <vector>

You can declare a vector in one of three ways:

• If you know how many elements you want in the vector, you can place the type of data it
will hold in angle brackets and the number of elements in parentheses:

std : : vector<double> f i rstVector(1 0) ; / / Vector to ho l d 10 doubles
std: : vector<std : : stri ng> myVector(1 2) ; / / Vector to hol d 12 s tri ngs

The size you specify when declaring the vector is only its initial size. As you will see, a vec­
tor can grow in size when you add entries. Note that both vector and stri ng are in the
std namespace. Section A.11 of this appendix discusses namespaces.

• You can place initial values into a vector when you declare it by writing a second argument:

std : : vector<int > i ntVector(5 , - 1) ; I I Vector to hol d 5 i ntegers , i n i t i al l y -1

When the elements in the vector are allocated, they are given the value of the second argument.
• You can also create an empty vector-a vector with no elements-by omitting its size and

the parentheses:

std : : vector<char> letterVector ; / / An empty vect o r of characters

Vectors 737

You can use << to
display a string

You can use >> to
read a string without
whitespace

738 Appendix A Review of C++ Fundamentals

Access vector
entries using [] just
as you would an
array

s i ze returns the
number of elements
in the vector

push_back places
its argument into a
new element at the
back of a vector

pop_back removes
the last element
from a vector

cl ear removes all
elements from a
vector so it has a
size of 0

You can store or access the entries in a vector by using the [J operator, just as you
would when using an array. As for an array, the subscripts that identify elements in a vector
start at o and go to s - 1, where s is the current size of the vector. The following statements
are examples of accessing an existing value in a vector and changing the value of an exist­
ing entry:

doubl e x = fi rstVector [5] ; / / Get s s i x t h en t ry i n x
myVector [3] = "Th i s i s a sample stri ng. " ; / Set s -Fou � t h entry ' s "al ue

Using [] stores a value in an existing element. If you are not sure how many elements the vector
has, you can call the method s i ze, as in the following example:

std: : cout << i ntVector . si ze () « std : : endl; / / D1 spl 'lys 'he cap-c t y of 1 r>•v,, + �

By calling the s i ze method, you can find out whether the vector is full. This is an important
advantage that a vector has over an array.

If the vector is either full or has no elements-that is, if it was created without elements,
as 1 etterVector was previously-you can still add new values by using the method push_back.
The push_back method accepts an argument and adds it after the last element of the vector. In
other words, it pushes the value onto the back of the vector.

Earlier, we declared a ten-element vector fi rstVector that could hold data of type double.
If that vector was full, and we needed to add the additional values 2.3 and 3.4, we could use
the push_back method:

f i rstVector . push_back (2 . 3) ; / / Grow vector and s tore val u(
f i rstVector . push_back (3. 4) ; / / Grow vector and store val ue

At this point, calling the si ze method would return 12, since two additional elements have been
added to the vector.

You also can reduce the size of a vector by removing either its last element or all of its
elements. To remove only the last element, you can use the pop_back method. This method
shortens the vector but does not give you the entry in the removed element. You must save
that entry before calling pop_back. For example, the following statements get the current size
of the vector myVector, save the value in the last element, and then remove the last element
from the vector:

i nt length = myVector . s i ze () ; / / F i nd the current number of e l emAnts
std: : stri ng last = myVector [length - 1) ; / / Get t he s t r i ng i n t he l ast e l P.ment
myVector . pop_back () ; / / Reduce the numbe r of 0 l emen t s t,y 1

A subsequent call to myVector . s i ze() would return 1 ength - 1, since the last element was
removed.

To remove all elements from a vector and leave the vector empty, you use the method c 1 ear:

myVector . cl ear () ; / / myVec tor i s now an empty vec tor

After a vector has been cleared, you must use the method push_back to add new entries.
C++ Interlude 8 provides more information about vector, including these and other

methods.

A .9 Classes

Object-oriented programming, or OOP, views a program not as a sequence of actions but as
a collection of components called objects that interact to produce a certain result. A group of
objects of the same kind belong to a class, which is a programming construct that defines the

object's data type. Chapter 1 talks more about OOP; here we want to discuss how to write a
class in C++.

An object contains data and can perform certain operations on or with that data. The class
associated with a particular object describes its data and its operations. That is, a class is like a
blueprint for creating certain objects. An object's operations, or behaviors, are defined within
the class by methods, which are simply functions within a class. These methods, together with
the class's data are known as the class's members.

We could use a ball as an example of an object. Because thinking of a basketball, vol­
leyball, tennis ball, or soccer ball probably suggests images of the game rather than the object
itself, Jet's abstract the notion of a ball by picturing a sphere. A sphere of a given radius has
attributes such as volume and surface area. A sphere as an object should be able to report its
radius, volume, surface area, and so on. That is, the sphere object has methods that return
such values.

In C++, a class has the following form:

cl ass Sphere
{
pri vate :

<Declarations of private data members and methods>
<Definitions of private methods>

publ i c :

<Definitions of public methods>

} ; / / Note t he sem i co l on

By default, all members in a class are private-they are not directly accessible by any program
that uses the class-unless you designate them as public. However, explicitly indicating the pri­
vate and public portions of a class is a good programming practice and one that we will follow
in this book. You should always declare a class's data members as private.

Most methods are public, but private methods-which only the class can call�an be
helpful, as you will see. The definition of a class's method can call any of the class's other meth­
ods or use any of its data members, regardless of whether they are private or public.

Classes have special methods, called constructors and destructors, for the creation and
destruction of its objects. A constructor creates and initializes new objects, or instances, of a
class. A destructor destroys an object by freeing the memory assigned to it, when the object's
lifetime ends. A typical class has several constructors, but only one destructor. For many classes,
you can omit the destructor. In such cases, the compiler will generate a destructor for you. For
now, the compiler-generated destructor is sufficient. C++ Interlude 2 discusses how and why
you would write your own destructor.

In C++, a constructor has the same name as the class. Constructors have no return
t y p e -not even voi d-and cannot use return to return a value. Constructors can have argu­
ments. We discuss constructors in more detail shortly, after we look at an example of a class
definition.

A.9 .1 The Header File

You should place each class definition in its own header file or specification fi l e -whose name by
convention ends in . h. The header file Sphere . h shown in Listing A-2 contains a class definition
for sphere objects.

Classes 739

A C++ class defines
a new data type

An object is an
instance of a class
A constructor
creates and
initializes an object

A destructor
destroys an object

7 40 Appendix A Review of C++ Fundamentals

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

Comments i n the 1 7
header file specify 1 8
the methods 1 9

20

2 1

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

LISTING A-2 The header file Sphere . h

/ * * @f i l e Sphere . h * /
const doubl e PI = 3 . 1 41 59 ;

/ * * Defi n i t i on of a c l ass of Spheres . * /
cl ass Sphere

{
pri vate :

doubl e theRad i us ; / / The sphere ' s rad i us

publ i c :

/ * * Defau l t const ructor : Creates a sphere and i n i t i a l i zes i t s rad i us
to a defau l t va l ue .
Precond i t i on : None .
Postcond i t i on : A sphere of rad i us 1 ex i sts . * /

Sphere () ;

/ * * Constructor : Creates a sphere and i n i t i a l i zes i t s rad i us
Precond i t i on : i n i t i al Rad i us i s the desi red radi us .
Postcond i t i o n : A sphere of rad i us i n i t i a l Rad i u s exi sts . ' /

Sphere (double i n i t i a l Radi us) ;

/ * * Sets (a l ter s) the rad i us of th i s sphere
Precondi t i on : newRadi us i s the desi red rad i u s .
Postcond i t i on : The sphere ' s radi us i s newRad i u s * /

voi d setRadi us (doubl e newRadi us) ;

/ * * Gets th i s sphere ' s radi us .
P recondi t i on : None .
Postcond i t i on : Returns the radi us . * /

doubl e getRad i us () canst ;

/ * * Gets th i s sphere ' s d i ameter .
P recondi t i on : None .
Postcond i t i on : Returns the d i ameter . * /

doubl e getDi ameter () const ;

/ * * Get s th i s sphere ' s c i rcumference .
Precond i t i on : PI i s a named constant .
Postcondi t i on : Returns the c i rcumference . * /

doubl e getCi rcumference () const ;

/ * * Get s th i s sphere ' s su rface area .
Precondi t i on : PI i s a named constant .
Postcond i t i on : Ret urns the sur face a rea . * I

doubl e getArea () const ;

/ * * Get s th i s sphere ' s vol ume .
P recond i t i on : P I i s a named constant .
Postcond i t i on : Returns the vol ume . * /

doubl e getVol ume () const ;

/ / The compi l er - generated dest ructor i s suffi c i ent .
} ; / / end Sphere
/ / End of header f i l e .

You should always place a class's data members within its private section. Typically, you
provide methods-such as setRadi us and getRadi us-to access the data members. In this way,
you control how and whether the rest of the program can access the data members. This design
principle should lead to programs that not only are easier to debug, but also have fewer logical
errors from the beginning.

Some method declarations, such as

doubl e getRadi us() const ;

are tagged with const. Such methods cannot alter the data members of the class. Making get­
Radi us a con st method is a fail-safe technique that ensures that it will only return the current
value of the sphere's radius, without changing it.

A.9.2 The Implementation File

Let's begin implementing the class Sphere by examining its constructors.

Constructors. A constructor allocates memory for an object and can initialize the object's data
to particular values. A class can have more than one constructor, as is the case for the class
Sphere.

The first constructor in Sphere is the default constructor:

Sphere () ;

A default constructor by definition has no arguments. Typically, a default constructor initializes
data members to values that the class implementation chooses. For example, the implementation

Sphere : : Sphere ()
{

theRadi us = 1 . O;
1 1 end defaul t cons t ructor

sets theRadi us to 1.0. C++ Interlude 1 will show you another way to initialize data members
within constructors that is preferable to using assignment statements.

Notice the qualifier Sphere : : that precedes the constructor's name. When you implement any
method, you qualify its name with its class type followed by the scope resolution operator : : to
distinguish it from other methods that might have the same name.

When you declare an instance of the class, you implicitly invoke a constructor. For example,
the statement

Sphere unitSphere;

invokes the default constructor, which creates the object uni tSphere and sets its radius to 1 .0.
Notice that you do not include parentheses after uni tSphere.

The next constructor in Sphere is

Sphere(doubl e i ni ti alRadi us) ;

It creates a sphere object of radius i ni ti al Radius. This constructor needs only to initialize the
private data member theRadi us to i ni ti al Radius. Its implementation is

Sphere : : Sphere(doubl e i ni ti al Radius)
{

theRadius = i ni ti al Radius;
I I end con s t ructor

Classes 741

A class's data
members should be
private

const methods
cannot change a
class's data
members

A default
constructor has no
arguments

7 42 Appendix A Review of C++ Fundamentals

The implementation
fi le contains the
definitions of the
class's methods

You implicitly invoke this constructor by writing a declaration such as

Sphere mySphere(5 . 1) ;

In this case, the object mySphere has a radius of 5 . 1 .
We can make the previous constructor ensure that the given radius is not negative by writ­

ing its definition as follows:

Sphere: : Sphere(doubl e initial Radius)
{

i f (initialRadius > 0)
theRadius = initialRadius;

el se

theRadius = 1 .0; I I Set to default value , i f bad i nput
I I end const ructor

Note: If you omit all constructors from your class, the compiler will generate a
default constructor-that is, one with no arguments-for you. A compiler-generated
default constructor, however, might not initialize data members to values that you
will find suitable. If you define a constructor that has arguments but you omit the
default constructor, the compiler will not generate one for you. Thus, you will not be
able to write statements such as

Sphere defaultSphere ;

Typically, you place the implementation of a class's constructors and other methods in an
implementation file whose name ends in . cpp. Listing A-3 contains an implementation file for
the class Sphere. Notice that within the definition of a method, you can reference the class's
data member or invoke its other methods without preceding the member names with Sphere : : .
In particular, notice how the constructor calls the method setRadi us to avoid duplicating the
code that ensures a positive radius.

LISTING A-3 The implementation file Sphere . cpp

1 I * * @file Sphere . cpp * I
2 #include "Sphere . h " I I Include the header f i le
3

4 Sphere : : Sphere ()
5 {

6 theRadius = 1 .0;
7 I I end default const ructor
8

9 Sphere: : Sphere (doub l e initialRadius)
1 0 {

1 1 setRadius (initialRadius) ; I I Sphere : : not needed here
1 2 I I end constructor
1 3

1 4 voi d Sphere : : setRadius (double newRadius)
15 {
1 6 i f (newRadius > 0)
1 7 theRadius = newRadius;

1 8 el se
1 9 theRad i us = 1 . O ;
20 / ' end s et Rad i u s
21

22 doubl e Sphere : : getRad i us () const
23 {
24 return theRadi us ;
25 I end getRadi us

Classes 743

A local variable
such as
radi usCubed
should not be a data

26 member
27 doubl e Sphere : : getDi ameter () const
28 {

29 return 2 . 0 * theRad i us ;
30 end getD i ameter
31

32 doubl e Sphere : : get Ci rcumference () const
33 {

34 return PI * getDi ameter () ;
35 / / end getCi rcumference
36

37 doubl e Sphere : : getArea () const
38 {
39 return 4 . 0 * PI * t heRad i us * theRad i us ;
40 end getArea
41
42 doubl e Sphere : : getVol ume () const
43
44
45

46
47

doubl e radi usCubed = theRad i us * theRadi us * theRadi us ;
return (4 . 0 * PI * rad i usCubed } / 3 . 0 ;
I I end getVol ume
End of i mp l ementat i on f i l e

Note: Local variables
You should distinguish between a class's data members and any local variables that
the implementation of a method requires. It is inappropriate for such local variables
to be data members of the class.

A.9.3 Using the Class Sphere

The following simple program demonstrates the use of the class Sphere:

i ncl ude <i ost ream>
#i ncl ude " Sphere . h "
i nt mai n ()

{
Sphere uni tSphere ; / / Rad i us i s 1 . 0
Sphere mySphere (5 . 1) ; / / Rad i u s i s 5 . 1
mySphere . setRadi us (4 . 2) ; / / Reset s rad i u s to 4 . 2
std : : cout « mySphere . get Di ameter () « std : : endl ;

return O ;
end mai n

7 44 Appendix A Review of C++ Fundamentals

A class derived from
the class Sphere

An object such as mySphere can, on request, reset the value of its radius; return its radius;
and compute its diameter, surface area, circumference, and volume. These requests to an object
are called messages and are simply calls to methods. Thus, an object responds to a message by
acting on its data. To invoke an object's method, you qualify the method's name with the object
variable. For example, we wrote mySphere.getDi ameter () in the previous program.

Notice that the previous program included the header file Sphere . h, but did not include the
implementation file Sphere . cpp. You compile a class's implementation file separately from the
program that uses the class. The way you tell the operating system where to locate the compiled
implementation depends on the particular system. Section A. IO of this appendix and C++
Interlude l provide more information about header and implementation files.

The previous program is an example of a client of a class. A client of a particular class is
simply a program or module that uses the class. We will reserve the term user for the person
who uses a program.

A.9.4 Inheritance

A brief discussion of inheritance is provided here, because it is a common way to create new
classes in C++. Further discussions of inheritance occur in C++ Interludes 1 and 5 , and as
needed throughout the book.

Suppose we want to give our spheres a color, knowing that we have already developed the
class Sphere. Instead of writing an entirely new class of spheres that have a color, we can reuse
the Sphere implementation and add color characteristics and operations by using inheritance.
Here is a declaration of the class Sphere I nCo l or that uses inheritance:

#i ncl ude " Sphere . h "
enum Col or { RED , BLUE , GREEN , YELLOW} ;
cl ass Spherel nCol or : publ i c Sphere
{
pri vate :

Col or sphereCol or ;
publ i c :

Spherel nCol or (Col or i n i t i al Col or) ;
Spherel nCol or (Col or i n i t i al Col or , doub le i n i t i al Radi us) ;
voi d setCol or (Col or newCol or) ;
Col or getCol or () const ;

} ; I I end SphereinCol or
The class Sphere is called the base class or superclass, and Spherel nCol or is called the derived

class or subclass of the class Sphere.
Any instance of the derived class is also considered to be an instance of the base class

and can be used in a program anywhere that an instance of the base class can be used. Also,
when the keyword publ i c precedes the name of the base class in the new class's header,
any of the publicly defined methods or data members that can be used with instances of
the base class can be used with instances of the derived class. The derived class instances
also have the additional methods and data members that are publicly defined in the derived
class definition.

The implementation of the methods for the class Spherei nCol or is as follows:

Spherel nCol or : : Spherel nCol or (Col or i n i t i al Col or) : Sphere ()
{

sphereCol or = i n i t i al Col or ;
I I end con st ructor

SphereinColor : : SphereinColor (Color initialColor , doubl e initialRadius)

sphereColor = i n i t i alColor;
' end con st ructor

void SphereinColor : : setColor (Color newColor)
{

sphereColor = newColor ;
end setColor

Color SphereinColor : : getColor () const

{
return sphereColor;

end getCol or

: Sphere(i n i t i alRadius)

Notice how the constructors for the class SphereinColor invoke the base-class construc­
tors Sphere () and Sphere (i ni ti al Radius) . The derived class needs the initialization of the
data members in the base class that the base-class constructors can provide. The derived-class
constructors then add initializations that are specific to the derived class.

Here is a function that uses the class SphereinCol or:

void useSpherei nColor ()
{

Spherei nColor ball (RED) ;
ball . setRadi us (S . O) ;
std : : cout << "The ball diameter i s " << ball . getDi ameter () ;
ball . setColor (BLUE) ;

/ end useSphere i nCol or

This function uses the constructor and the method set Co 1 or from the derived class Sphere I nCo l or.
It also uses the methods setRadi us and get Di ameter that are defined in the base class Sphere.

A .10 Libraries

One of the advantages of modular programming is that you can implement modules inde­
pendently of other modules. You might also find it possible for several different programs to
use a particular module. As a result, you can build a library of modules-that is, classes and
functions-that you can include in future programs.

Any library-a C++ standard library or one that you write-has a corresponding header
that provides information about the contents of the library. For standard libraries, the header
is simply an abstraction that the compiler either maps to a filename or handles in a different
manner. Thus, when using the standard libraries, you do not see the . h extension that ends the
names of our own header files.

You have already seen some standard libraries, such as the one that provides input and
output services. To use the modules contained in a library, you use the inc 1 ude directive with
the name of the header associated with the library. For example, you write

#i nclude <i ostream>

Appendix H provides a list of some of the available headers.
User-defined libraries are typically organized into two files. One file, the header file, con­

tains a definition for each class in the library that is available to your program. This file could

Libraries 745

An instance of a
derived class can
invoke public
methods of the base
class

7 46 Appendix A Review of C++ Fundamentals

also contain, for example, function declarations, constant definitions, typedef statements, enu­
merations, and other include statements. By convention, the name of a header file associated
with a user-defined library ends in . h. The other file-the implementation file-contains defini­
tions of the class methods that the header file declares. Typically, the name of an implementa­
tion file ends in . cpp.

The assumption, of course, is that the files are in source form-that is, they need to be
compiled. It certainly would be more efficient to compile the method definitions once, indepen­
dently of any particular program, and then later merge the results of the compilation with any
program that you desire. In fact, you should compile the implementation file and then include
the header file in source form in your program by using an incl ude directive such as

#include "MyHeader . h "

You use double quotes instead of angle brackets to enclose the name of a header file that
you have written. The mechanics of incorporating the compiled implementation file into your
program are system dependent.

Thus, your program can use previously compiled C++ statements, which are no longer
available to you in source form. Maybe you did not even write these statements, just as you did
not write the standard C++ functions such as sqrt. That is, you use a library in the same spirit
in which you use standard functions. Because the header file indicates what is available to you,
you must think of a library in terms of what it can do for you and not how it is implemented.
You should think of all of your modules in this way, even if you eventually implement them
yourself.

Note: The C++ Standard Library
The C++ Standard Library is a collection of standard classes and functions that you
can use in your C++ programs. This library provides us with such features as input
and output services, strings, and functions to perform certain mathematical tasks.

Note: The C++ Standard Template Library (STL)
The C++ Standard Template Library, or STL, is a collection of classes and functions
that is a part of the C++ Standard Library, and you can use in your C++ programs
with any data type-either built-in or user-defined. To achieve this flexibility, this
library uses templates, which are a construct that we will discuss in C++ Interlude 1.
Note that vector is a template class within the STL.

A .11 Namespaces

Since different libraries can use the same names for their classes and functions, C++ organizes
these names into namespaces. A namespace is a named group, or category, of identifiers that
enables you to differentiate among identical identifiers. For example, if the namespaces x and y
each contain the identifier z, x : : z and y : : z are different identifiers.

Earlier when we used strings in a program, we included the standard class of strings by
writing

#i nclude <string>

The names of the classes and functions in the C++ Standard Library are organized into the
namespace std. You can write the directive

usi ng namespace std;

to tell the compiler to look for string in the C++ Standard Library if it does not find its defini­
tion in our program. Another library might also contain a class named string, but it would be
associated with a different namespace. Analogous comments apply to vector, as described in
Section A.8, since it also is in the std namespace.

The following program contains a using directive for the namespace std:

#include <iostream>
#include <string>

usi ng namespace std;

i nt main ()
{

string title = "Walls and Mirrors" ;
cout << title << endl;

return O;
I I end mai n

The program can reference all of the classes in the std namespace, including iostream and
string, without preceding their names with std : : .

rn
Programming Tip: The previous using directive lets the compiler see all of the
names in the std namespace. You might use a name in your program that is also in
the std namespace and defined in the C++ Standard Library. The compiler would
be faced with two definitions for the same identifier, yours and the library's. To avoid
this confusion and the chance for hard-to-detect errors, professional programmers
do not use this directive; we will not use it within the chapters of this book.

One way to omit the using directive for the std namespace is to precede the identifiers in
that namespace with the namespace indicator std : : . For example, we can write the previous
program as follows:

#include <iostream>
#i nclude <string>

int main ()
{

std : : string title = "Walls and Mirrors" ;
std : : cout << title << std : : endl;

return O;
I I end mai n

Although writing a namespace indicator is often the best way to proceed, you might find it
tedious. In such an event, you could write usi ng declarations as follows:

#include <iostream>
#i nclude <string>

i nt main ()
{

Namespaces 747

7 48 Appendix A Review of C++ Fundamentals

SUMMARY

usi ng std: : stri ng ; / / stri ng i s i n the std namespace
usi ng std: : cout; I I cout i s i n the std names pace

I I You can use stri ng and cout wi thout an std : : prefix
string title = "Walls and Mirrors" ;
cout << title << std: : endl;
return O ;

} / / end ma i n

After the using declarations, you can write string and cout without needing to precede them
with std: : .

1 . A comment in C++ can begin with
•

•

•

I I as a single line or at the end of a C++ statement .

I • • , end with • I , and occupy several lines at the beginning of a method, function, or class .

I* , end with • / , and occupy several lines anywhere within a program .

2. AC++ identifier is a sequence of letters, digits, and underscores that must begin with either a letter or an
underscore.

3. You can use a typedef statement to declare new names for data types. These names are simply synonyms
for the data types; they are not new data types.

4. You define named constants by using a statement of the form

const type identifier = value ;
5. Enumeration provides another way to name integer constants and to define an integral data type, as in

enum Day { SUN , MON , TUE , WED , THU , FRI , SAT } ;

6. C++ uses short-circuit evaluation for expressions that contain the logical operators && (and) and I I (or).
That is, evaluation proceeds from left to right and stops as soon as the value of the entire expression is
apparent.

7. The output operator « places a value into an output stream, and the input operator » extracts a value
from an input stream. You can imagine that these operators point in the direction of data flow. Thus, in
cout « myVar, the operator points away from the variable myVar-data flows from myVar to the stream­
whereas in ci n » myVar, the operator points to the variable myVar--data flows from the stream into
myVar.

8. The general form of a function definition is

type name (parameter-declaration-list)

body
}

A valued function returns a value by using the return statement. Although a void function does not
return a value, it can use return to exit.

9. When invoking a function, the actual arguments must correspond to the parameters in number, order,
and type.

Summary 749

10. A function makes local copies of the values of any arguments that are passed by value. Thus, the argu­
ments remain unchanged by the function. Such arguments are, therefore, input arguments. A function
does not copy arguments that are passed by reference. Rather, it references the actual argument locations
whenever the parameters appear in the function's definition. In this way, a function can change the values
of the arguments, thus implementing output arguments. However, a function does not copy and cannot
change a constant reference argument. If copying an input argument would be expensive, make it a con­
stant reference argument instead of a value argument.

1 1 . The general form of the i f statement is
i f (expression)

statement
1

el se

statement
2

If expression is true, statement1 executes; otherwise statement2 executes.
12. The general form of the switch statement is

swi tch (expression)
{

case constant 1 :

statement
1

break ;

case constant
statement
break ;

defaul t :

statement

n

n

The appropriate statement executes according to the value of expression. Typically, break follows the
statement or statements after each case. Omitting break causes execution to continue to the statement(s)
in the next case.

13. The general form of the whi 1 e statement is
whi 1 e (expression)

statement

As Jong as expression is true, statement executes. Thus, it is possible that statement never executes.
14. The general form of the for statement is

for (initialize; test; update)
statement

where initialize, test, and update are expressions. Typically, initialize is an assignment expression that
occurs only once. Then if test, which is usually a logical expression, is true, statement executes. The
expression update executes next, usually incrementing or decrementing a counter. This sequence of events
repeats, beginning with the evaluation of test, until test is false.

15. The general form of the do statement is
do

statement
whi l e (expression) ;

750 Appendix A Review ofC++ Fundamentals

Here, statement executes until the value of expression is false. Note that statement always executes at least
once. Also note the required semicolon.
An array contains items that have the same data type. You can refer to these items by using an index that
begins with zero. Arrays are always passed to functions by reference.
You must be careful that an array index does not exceed the size of the array. C++ does not check the
range of array indices. Similar comments apply to strings.
An object encapsulates both data and operations on that data. In C++, objects are instances of a class,
which is a programmer-defined data type.
A string is an object of the standard C++ class string. It represents a sequence of characters. You can
manipulate the entire string, a substring, or the individual characters.
A vector is an object of the standard C++ class vector. It holds items of the same data type. A vector
behaves like a high-level array.
A C++ class contains at least one constructor, which is an initialization method, and a destructor, which
is a cleanup method that destroys an object when its lifetime ends.
If you do not define a constructor for a class, the compiler will generate a default constructor- that is,
one without arguments-for you. If you do not define a destructor, the compiler will generate one for
you. C++ Interlude 2 and Chapter 4 describe when you need to write your own destructor.
Members of a class are private unless you designate them as public. The client of the class-that is, the
program that uses the class--cannot use members that are private. However, the implementations of
methods can use them. You should make the data members of a class private and provide public methods
to access some or all of the data members.
Because certain classes have applications in many programs, you should take steps to facilitate their use.
You can define and implement a class within header and implementation files, which a program can
include when it needs to use the class.
A typical C++ program uses header files that you incorporate by using the include directive. A header
file contains class definitions, function declarations, constant definitions, ty pedef statements, enumera­
tions, and other incl ude statements. The program might also require an implementation file of function
definitions that have been compiled previously and placed into a library. The operating system locates
the required implementation file and combines it with the program in ways that are system dependent.

	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_01
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_02
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_03
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_04
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_05
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_06
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_07
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_08
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_09
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_10
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_11
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_12
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_13
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_14
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_15
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_16
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_17
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_18
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_19
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_20
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_21
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_22
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_23
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_24
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_25
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_26
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_27
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_28
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_29
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_30
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_31
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_32
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_33
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_34
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_35
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_36
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_37
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_38
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_39
	Carrono_Apndx-A_Data_Abstraction_and_Problem_Solving_Page_40

