
CSC2/458 Parallel and Distributed Systems

Distribute Computing – Other Programming

Models

Sreepathi Pai

April 03, 2018

URCS



Outline

Abstractions for Distributed Computing

Spark’s Abstractions

The Spark Runtime

Layering on top of Spark



Outline

Abstractions for Distributed Computing

Spark’s Abstractions

The Spark Runtime

Layering on top of Spark



Abstractions for Shared Memory Programming

• Shared address space

• One Address, One Value

• Shared memory

• Disk

• RAM

• Coherent Caches

• Disk Cache (OS)

• Processor Cache (Processor)

• Locking

• Libraries

• Hardware Atomics

• Resilience

• ECC (Hardware)



Abstractions for Distributed Computing

• Distributed Name Space

• e.g. ?

• Distributed Shared Memory

• Distributed File Systems

• Distributed Caching

• e.g. memcached

• Distributed Concurrency Control

• i.e. locking and consistency

• Data Distribution and Marshalling

• e.g. ntoh, hton

• Distributed Execution

• Resilience

• e.g. ?



Provided by most OS

• Sockets



Provided by MPI

• Distributed Name Space (Ranks)

• Send/Recv

• Communication Primitives

• Distributed Execution (SPMD)

• No:

• distributed shared memory

• distributed file system

• caching

• locking and consistency

• resilience

• marshalling



Erlang/Elixir

What is Erlang?

Maybe, now, we should ask what is Elixir?



What is Erlang? Part I

Verbatim from the Erlang FAQ: Introduction

• Erlang provides a simple and powerful model for error

containment and fault tolerance (supervised processes).

• Concurrency and message passing are a fundamental to the

language. Applications written in Erlang are often composed

of hundreds or thousands of lightweight processes. Context

switching between Erlang processes is typically one or two

orders of magnitude cheaper than switching between threads

in a C program.

http://erlang.org/faq/introduction.html


What is Erlang? Part II

Verbatim from the Erlang FAQ: Introduction

• Writing applications which are made of parts which execute

on different machines (i.e. distributed applications) is easy.

Erlang’s distribution mechanisms are transparent: programs

need not be aware that they are distributed.

• The Erlang runtime environment (a virtual machine, much like

the Java virtual machine) means that code compiled on one

architecture runs anywhere. The runtime system also allows

code in a running system to be updated without interrupting

the program.

http://erlang.org/faq/introduction.html


Hadoop

What is Hadoop?



What does Hadoop give us?

• Distributed File System

• HDFS

• MapReduce programming model

• distributed execution

• marshalling

• caching

• Resilience

• Always writes to stable storage

• Reruns failed jobs

• No need for:

• distributed name space

• distributed shared memory

• concurrency control



Perspective

MapReduce

?

Erlang/Elixir

MPI

Sockets



Outline

Abstractions for Distributed Computing

Spark’s Abstractions

The Spark Runtime

Layering on top of Spark



A Spark of an idea

• Apache Spark

• “fast and general engine for large-scale data processing.”

• Translation: Write more than MapReduce programs easily

• Compared to MPI

• 100x faster than Hadoop

• “In-memory”

• You can write your own data processing engine on top of

Spark



What Spark Provides

• Distributed File system

• Reuses HDFS

• Distributed Execution

• Data Partitioning

• Marshalling

• Resilience

• Distributed Caching

• No coherence required (or supported)

• No:

• Distributed Concurrency Control (not supported)

• Distributed Shared Memory (fine-grained)



Spark Programming Model: 10000ft overview

• Spark is a limited programming model

• Built on observation that:

• “Many parallel applications naturally apply the same

operations to multiple data items”

• i.e. data-parallel model, e.g. SIMD, SPMD, etc.

• Provides a distributed data structure

• Resilient Distributed Datasets (RDDs)

• Like a huge table, but could be anything really

• Programs (you write) operate on RDDs in a coarse-grained
fashion

• They always operate on entire RDDs

• I.e. on all elements in a RDD

• Constrast with DSM which allows fine-grained accesses

• Java/Python/Scala



Resilient Distributed Datasets (RDD)

• A RDD is a

• “read-only, partitioned set of records”

• Can only be built by “deterministic operations”
(transformations) on:

• data in stable storage

• or other RDDs

• RDDs “remember” the operations that were used to create
them

• paper calls this “lineage”

• RDDs exist “lazily” in memory

• the operations are only applied when needed (database lingo:

materialized)

• can be stored on disk too

• Why are these properties important?



Comparison to DSM



Spark Example

lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

errors.count()



Spark Transformations



Spark Actions



Outline

Abstractions for Distributed Computing

Spark’s Abstractions

The Spark Runtime

Layering on top of Spark



Spark Scheduler

• Spark Programs are
DAGS/dependence graphs

• directed acyclic graphs

• nodes are RDDs

• edges are operations

• Scheduler executes in order
of dependencies

• prioritizes edges whose

inputs already in memory



Scheduler Optimizations

• Narrow operations pipelined

• i.e. loop coalescing

for(r in RDD) for(r in RDD) {
out1 = op1(r) out1 = op1(r)

out2 = op2(r)
for(r in RDD) }

out2 = op2(r)

• Operations scheduled on machines based on locality

• similar to “owner-computes”



Handling Failure

• Each RDD knows how to recreate itself

• Ultimately from stable storage

• Recreation may use RDDs from other machines

• “Wide” operations

• e.g. join

• Or from the same machine

• “Narrow” operations

• e.g. map

• Can run in parallel

• RDDs are immutable



Outline

Abstractions for Distributed Computing

Spark’s Abstractions

The Spark Runtime

Layering on top of Spark



MapReduce

• RDD.map()

• RDD.reduceByKey()



DryadLINQ and SQL

• RDD.select()

• RDD.groupby()

• etc.



Pregel

• Google Pregel is a graph query engine

• operates on graphs: vertices and edges

• Each operation is applied to a vertex in parallel

• Each vertex can send messages to other vertices

• Example Pregel in Spark:

• RDD.flatMap()

• RDD.join()



Your programming model here

• You need to implement transformations

• And actions

• Spark will take care of the rest...



Conclusion

• Spark provides a somewhat general distributed computing

programming model

• Operations on immutable, partitioned datasets

• Partitioning, scheduling, marshalling, resilience, etc. for free

• Immensely popular programming model


	Abstractions for Distributed Computing
	Spark's Abstractions
	The Spark Runtime
	Layering on top of Spark

