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Abstract

This thesis is concerned with the analysis and design of cryptographic hash func-
tions, MAC algorithms and block ciphers. Hash functions are versatile crypto-
graphic building blocks, with applications such as the protection of the authen-
ticity of information and digital signatures. The first part of this thesis gives an
overview of existing hash functions and the different methods of designing these.
Next, strategies for the cryptanalysis of hash functions are examined where we
focus mainly on the popular algorithms based on the well-known MD4-design.
The use of techniques similar to those introduced by H. Dobbertin in the mid-
1990’s (a combination of differential cryptanalysis and the solving of systems of
non-linear equations), leads to the first known attack on the HAVAL algorithm.
Besides that, a new method is developed for the cryptanalysis of the hash mode
of Panama, a cryptographic module which can be used for both hashing and
stream encryption.

The second part considers hash functions which are based on a secret key
(these are also known as message authentication codes or MAC algorithms). We
propose a new design, Two-Track-MAC, based on the two-trail construction that
underlies the hash function RIPEMD-160. Our evaluation of this algorithm shows
that it offers a high security level against all known strategies of attack. Another
advantage is the efficiency, especially in applications where short messages are
hashed or where the key is frequently changed. In those cases Two-Track-MAC
performs better than other known constructions such as HMAC and MDx-MAC.
We submitted our algorithm to the European NESSIE project, which had the goal
of proposing a portfolio of secure cryptographic algorithms of the next generation.
In February 2003 the NESSIE consortium announced that Two-Track-MAC is
selected for the portfolio. Finally, the relation between hash functions and block
ciphers is examined, and an attack is demonstrated on the block cipher ICE. This
attack is a key-dependent variant on the technique of differential cryptanalysis.

iii



iv



Samenvatting

Dit proefschrift behandelt de analyse en het ontwerp van cryptografische hash-
functies, MAC-algoritmen en blokcijfers. Hashfuncties vormen veelzijdige bouw-
blokken in de cryptografie, die ondermeer gebruikt worden voor de bescherming
van de authenticiteit van informatie en voor digitale handtekeningen. Het eerste
deel van dit proefschrift geeft een overzicht van bestaande hashfuncties en de ver-
schillende ontwerpmethoden. Vervolgens worden mogelijke strategieën voor de
cryptanalyse van hashfuncties bestudeerd, voornamelijk gericht op de populaire
algoritmen die gebaseerd zijn op het bekende MD4-ontwerp. Het gebruik van
technieken gelijkaardig aan deze die halverwege de jaren negentig gëıntroduceerd
werden door H. Dobbertin (een combinatie van differentiële cryptanalyse en het
oplossen van stelsels niet-lineaire vergelijkingen), leidt tot de eerste gekende aan-
val op het HAVAL-algoritme. Daarnaast wordt een nieuwe methode ontwikkeld
voor de cryptanalyse van de hashmode van Panama, een cryptografische module
die gebruikt kan worden voor zowel hashen als stroom-encryptie.

Het tweede deel behandelt hashfuncties die gebaseerd zijn op een geheime sleu-
tel (MAC-algoritmen). We stellen een nieuw ontwerp voor, Two-Track-MAC, dat
gebaseerd is op de tweelijnsconstructie van de hashfunctie RIPEMD-160. Onze
evaluatie van dit algoritme toont aan dat het een hoge veiligheidsgraad bezit tegen
alle gekende aanvalsstrategieën. Een ander voordeel is de efficiëntie, voornamelijk
in toepassingen waar korte berichten gehasht worden of waar de geheime sleutel
regelmatig veranderd moet worden. In deze gevallen presteert Two-Track-MAC
beter dan andere bekende constructies zoals HMAC en MDx-MAC. We hebben
ons algoritme ingediend als kandidaat voor het Europese NESSIE project, dat
als doelstelling had om een portfolio samen te stellen met een nieuwe generatie
van veilige cryptografische algoritmen. In februari 2003 maakte het NESSIE con-
sortium bekend dat Two-Track-MAC geselecteerd is voor de portfolio. Tenslotte
wordt het verband bestudeerd tussen hashfuncties en blokcijfers en een aanval
voorgesteld voor het blokcijfer ICE. Deze aanval is een sleutelafhankelijke variant
op de techniek van differentiële cryptanalyse.
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Chapter 1

Introduction

1.1 Confidentiality and Authenticity

In modern society information has become a valuable commodity. It is often
necessary to protect its confidentiality, which means that it should be infeasible
for unauthorised people to learn the content. On the other hand it can be equally
important to protect the authenticity of information. This has two aspects: it
should be possible to check who the author is of a certain piece of information
(data origin authentication) and that it has not been modified by anyone else
(data integrity).

In former days this protection of information was achieved by a combination
of physical security and trust: paper documents can be sealed in an envelope
(which allows detection of disclosure) or in a locked safe (which should prevent
disclosure). The protection of authenticity depends on the difficulty of forg-
ing documents and/or signatures. In the electronic age letters, contracts and
other documents are replaced by sequences of binary digits but the demands for
confidentiality and authenticity remain the same. The risks are often greater:
unprotected data residing on open and untrusted networks (e.g., the Internet)
can be easily accessed, copied or modified.

The same can be said for the protection of communications. In face-to-face
communication between people it is relatively easy to create circumstances in
which eavesdropping is infeasible. It also has the inherent aspect of authenticity
because one can visually verify who the communication partner is. Nowadays
many people use telecommunication networks as an efficient, cheap and reliable
means of communication. It is however easy to tap messages transported over
easily accessable channels, and in some cases the messages can even be modified
along the way.

1



2 Chapter 1. Introduction

Cryptographic techniques have been used for many centuries to protect mili-
tary and diplomatic secrets (a comprehensive account of this history is given by
D. Kahn in [68]). Most of these techniques are encryption schemes that convert
a message into a cryptogram by an invertible operation (encryption) depending
on a small piece of secret information (the key). The cryptogram is unintelligible
for an unauthorised person who intercepts it, but can be reconverted (decrypted)
into the message by an authorised receiver who has been given knowledge of the
key.

Throughout history cryptology (the study of cryptographic techniques) has
concentrated mainly on the problem of confidentiality. It was in fact believed that
by protecting the secrecy of information one would also automatically protect its
authenticity. The reasoning is as follows: if decryption of a cryptogram results
in a meaningful message it must have been constructed by someone who knows
the secret key. However it is not always necessary to know the key (or break
the encryption scheme) in order to falsify messages: the protection of integrity
strongly depends on the encryption scheme and on the mode in which it is used.
A famous example is the Vernam cipher or modulo 2 one-time pad [129]: this
cipher offers unconditional secrecy but an attacker only needs to change a binary
digit (bit) of the cryptogram in order to change the corresponding bit of the
message.

Whereas in the past cryptology was more of an art practised by few, the
publication of the Data Encryption Standard [54] and the invention of public-key
cryptography [38] in the 1970’s caused it to develop into a scientific research area.
The introduction of new concepts and definitions resulted in a clear separation
of the problems of confidentiality and authenticity and established the develop-
ment of cryptographic schemes for the protection of authenticity as an important
research topic. These schemes now have many commercial applications, for ex-
ample to provide security for electronic commerce and wireless communication
systems.

1.2 Cryptography and Cryptanalysis

Cryptology comprises two complementary fields of research: cryptography and
cryptanalysis. A cryptographer is concerned with the development of new schemes
or algorithms, providing security services such as confidentiality and authentic-
ity. A cryptanalyst on the other hand is concerned with the development of
attack methodologies that break a cryptographic algorithm, allowing, for ex-
ample, unauthorised people access to secret information or the ability to forge
documents. There is a strong relation between these two fields. A cryptographer
who designs a new algorithm needs to evaluate the security of his design against
all methods of attack available to the cryptanalyst. Furthermore, in order to
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attain a sufficiently high level of confidence from users, new cryptographic algo-
rithms should be evaluated not only by their designer but also by independent
cryptanalysts. They can only be recommended for use in critical applications
after having been studied for a sufficient amount of time, by a reasonably large
group of experienced cryptanalysts who cannot find any weaknesses.

1.2.1 The NESSIE project

The relation between the fields of cryptography and cryptanalysis can be illus-
trated by means of the NESSIE project [135]. NESSIE, which stands for “New
European Schemes for Signatures, Integrity, and Encryption”, was a project
within the Information Society Technologies (IST) Programme of the European
Commission. The main goal of the project was the establishment of a portfolio of
strong cryptographic algorithms, obtained after an open call and evaluated using
a transparent and open process. The portfolio would comprise several categories
of algorithms useful for encryption, authentication and digital signatures.

Forty-two cryptographic algorithms (belonging to the different categories)
were submitted in response to the call issued by NESSIE. Researchers inside
and outside the project then tried to attack these algorithms during a period
of more than two years. After a first evaluation phase a subset of twenty-four
algorithms was selected for further study (allowing to focus the attention on the
most promising candidates), and at the end of the project twelve of these were
chosen for the portfolio (together with five existing standard algorithms). The
submitters of the algorithms were allowed to propose minor changes to their
designs at the end of the first phase of the evaluation, which gave them the
opportunity to improve their designs and to address any minor weaknesses that
had been found. The algorithms selected by NESSIE are not standards but the
amount of evaluation they received and the fact that no weaknesses were found,
means that they carry a reasonable amount of confidence. It is expected that
at least several of them will be adopted by standardisation bodies in the near
future.

1.3 This Thesis

The main focus of this thesis is on the analysis and design of one particular
category of algorithms: cryptographic hash functions. These are algorithms that
take inputs of arbitrary length (e.g., a digital document or message) and produce
as output a short string of bits. Their most important use is for the protection of
data authenticity, but they are a versatile building block, used also in conjunction
with digital signature schemes and for many other applications such as password
protection and pseudo-random string generation.
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Cryptographic hash functions come in two types: those that depend on a
secret key for their computation and those that do not. The first type are often
called message authentication codes or MAC algorithms. From the cryptanalytic
point of view we spend most of our attention on a particular class of unkeyed
hash functions: custom-designed algorithms based on the ideas first introduced
by R. Rivest for the MD4 hash function [114]. The motivation for this is the
popularity of these hash functions which is due to their efficiency on common
desktop computers based on 32-bit architectures. We also present a new design
for a message authentication code derived from one of the hash functions based
on MD4. Our algorithm, called Two-Track-MAC, was submitted to the NESSIE
project and it has been selected for the NESSIE portfolio. Finally we study
block ciphers (a category of cryptographic algorithms used for encryption), and
we discuss the relation between block ciphers and hash functions.

It may be noted that cryptographic hash functions have received much less
attention from the cryptologic community than encryption schemes. This is clear
from the NESSIE project where seventeen block ciphers and six stream ciphers
were submitted as candidates (both are categories of encryption schemes), but
only one unkeyed and two keyed hash functions. Another example is the open
competition used by the National Institute of Standards and Technology (NIST)
in the United States to decide on the block cipher to be used as Advanced En-
cryption Standard [52]. This competition had fifteen candidates out of which the
Rijndael block cipher [31] was finally chosen. On the other hand, for its hash
function standard [51] NIST simply chose the SHA hash functions, designed by
the NSA without disclosure of their design strategy or any supporting cryptan-
alytic results.

1.4 Outline and Main Contributions

The outline of this thesis is the following:

– Chapter 1 motivates our research on cryptography in general, and on cryp-
tographic hash functions and MAC algorithms in particular.

– Chapter 2 explains the basic concepts of cryptographic hash functions and
MAC algorithms, and discusses some of the most important applications.
We give an overview of the use of hash functions in schemes for digital
timestamping. This application was studied in the framework of the Belgian
TIMESEC project [134] and the results have been published in [127].

– Chapter 3 gives an overview of the different design methods for unkeyed
hash functions and lists the most important algorithms. Several of these
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are discussed in more detail in Chapters 4 and 5. Standardisation efforts
in this field are also briefly discussed.

– Chapter 4 gives a detailed overview of the design ideas used for the pop-
ular hash functions of the MDx-class (algorithms based on MD4). It also
discusses the cryptanalytic results published in the literature for these hash
functions. The main contribution of this chapter is the new attack that has
been developed for the HAVAL hash function. This is a joint work with
A. Biryukov and has been published in [123]. Another contribution is the
variant of the attack on MD4 which shows alternatives to the approach used
by H. Dobbertin for his analysis [42] of this hash function. An overview
related to this chapter was published in [126].

– Chapter 5 describes Panama, a cryptographic module that can be used for
both hashing and stream encryption. Our contribution is the development
of a new attack method for the hash mode of Panama. This is a joint work
with V. Rijmen and has been published in [112].

– Chapter 6 discusses the design of MAC algorithms (hash functions that
are based on a secret key) and lists the most important algorithms. The
main contribution of this chapter is the proposal of a new design, Two-
Track-MAC, a joint work with B. den Boer that was published in [37]. The
algorithm was submitted to NESSIE [124] and has been selected for the
portfolio of the project.

– Chapter 7 discusses the relation between hash functions and block ciphers.
Our contribution is the cryptanalysis of the block cipher ICE, a joint work
with L. R. Knudsen and V. Rijmen that was published in [125].

– Chapter 8 concludes, and suggests some topics for further research.

– The Appendices give detailed descriptions for some of the algorithms (Two-
Track-MAC, MD4, HAVAL) discussed in this thesis, as well as supporting
cryptanalytic results for Panama.
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Chapter 2

Basic Concepts

2.1 Introduction

This chapter explains the basic concepts of cryptographic hash functions. We
describe different types of hash functions, provide definitions and discuss the se-
curity provided by these algorithms. The use of hash functions in schemes that
protect the authenticity of information is explained. Some other applications are
described, in particular the use of hash functions for optimising digital signa-
ture schemes, and their use in schemes for digital timestamping. An overview
of timestamping systems and the role of hash functions therein has been pub-
lished in [127]. For a more detailed discussion on hash functions and information
authentication, we refer to the treatment of B. Preneel in [98, 99].

2.2 Cryptographic Hash Functions and MACs

Hash functions are functions that compress an input of arbitrary length into a
fixed number of output bits, the hash result. If such a function satisfies additional
requirements it can be used for cryptographic applications, for example to protect
the authenticity of messages sent over an insecure channel. The basic idea is that
the hash result provides a unique imprint of a message, and that the protection of
a short imprint is easier than the protection of the message itself (see Sect. 2.4.1).
An illustration of the use of a hash function is shown in Fig. 2.1.

Related to hash functions are message authentication codes (MACs). These
are also functions that compress an input of arbitrary length into a fixed num-
ber of output bits, but the computation depends on a secondary input of fixed
length, the key. Therefore MACs are also referred to as keyed hash functions. In
practical applications the key on which the computation of a MAC depends is

7



8 Chapter 2. Basic Concepts

This thesis deals with the cryptanalysis and design of
one particular category of algorithms: cryptographic
hash functions. These algorithms generally take inputs
of arbitrary size (e.g., a digital document or message)
and produce as output a short string of bits, the hash
result. Their most important use is for the protection
of data authenticity, but they are a versatile building
block, used also in conjunction with digital signature
schemes and for many other applications such as pass-
word protection and pseudo-random string generation.
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Figure 2.1: Compression with a cryptographic hash function. The message input
can have any length, but the number of output bits is fixed.

kept secret between two communicating parties, as explained in Sect. 2.4.3. In
the remainder of this section we give informal definitions of (unkeyed) hash func-
tions and message authentication codes, and of their cryptographic properties.
We also refer to a more formalised theoretical treatment of these algorithms.

2.2.1 Cryptographic hash functions

For an (unkeyed) hash function, the requirement that the hash result serves as
a unique imprint of a message input implies that it should be infeasible to find
colliding pairs of messages (i.e., messages that hash to the same result). In
some applications however it may be sufficient that for any given hash result
it is infeasible to find a corresponding message, or that, given a message, it is
infeasible to find another message hashing to the same result. Depending on
these requirements Preneel [96] provides the following informal definitions for
two different types of hash functions. A one-way hash function is a function
h that satisfies the following conditions:

1. The input X can be of arbitrary length and the result h(X) has a fixed
length of n bits.

2. Given h and an input X, the computation of h(X) must be ‘easy’.

3. The function must be one-way in the sense that given a Y in the image of h,
it is ‘hard’ to find a message X such that h(X) = Y (preimage-resistance),
and given X and h(X) it is ‘hard’ to find a message X ′ 6= X such that
h(X ′) = h(X) (second preimage-resistance).

A collision-resistant hash function is a function h that satisfies the following
conditions:
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1. The input X can be of arbitrary length and the result h(X) has a fixed
length of n bits.

2. Given h and an input X, the computation of h(X) must be ‘easy’.

3. The function must be one-way, i.e., preimage-resistant and second preimage-
resistant.

4. The function must be collision-resistant: this means that it is ‘hard’ to find
two distinct messages that hash to the same result (i.e., find X and X ′

(X 6= X ′) such that h(X) = h(X ′)).

2.2.2 Message authentication codes

For a message authentication code, the computation (and therefore the output
or MAC result) depends on a secondary input, the secret key. The main idea is
that an adversary without knowledge of this key should be unable to ‘forge’ the
MAC result for any new message, even when many previous messages and their
corresponding MAC results are known. The following informal definition was
given by Preneel [96]. A message authentication code orMAC is a function
h that satisfies the following conditions:

1. The input X can be of arbitrary length and the result h(K,X) has a fixed
length of n bits. The function has as secondary input the key K, with a
fixed length of k bits.

2. Given h, K and an input X, the computation of h(K,X) must be ‘easy’.

3. Given a message X (but with unknown K), it must be ‘hard’ to determine
h(K,X). Even when a large set of pairs {Xi, h(K,Xi)} is known, it is
‘hard’ to determine the key K or to compute h(K,X ′) for any new message
X ′ 6= Xi (∀i).

2.2.3 Formal definitions

Hash functions and message authentication codes can be formally defined in the
following manner.

Definition 2.1 A hash function is a function h : D → R where the domain
D = {0, 1}∗, and the range R = {0, 1}n for some n ≥ 1.

Definition 2.2 A MAC is a function h : K ×M → R where the key space
K = {0, 1}k, the message space M = {0, 1}∗, and the range R = {0, 1}n for
some k, n ≥ 1.
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Formal definitions are also needed for the security properties of hash functions
and MACs. Such definitions provide an upper bound for the probability of success
of an algorithm executed by an adversary to find a preimage, second preimage or
collision for a hash function, or to find a forgery for a MAC. The probability of
success, or advantage, for an adversary A is denoted Adv(A). If one maximises
this over all adversaries whose resources are bounded by R one obtains Adv(R),
and this is a good quantitative measure of the strength of an algorithm (with
respect to a certain property).

S. Goldwasser and M. Bellare provide a theoretical treatment of MACs based
on this approach in [57] (see also the work of Bellare et al. in [12]). Here it
is assumed that the actions of the adversary are divided into two phases. The
first is a learning phase where the adversary is able to make a number of queries
to an oracle. These queries consist of a message, and the oracle returns the
corresponding MAC result. The key K for the MAC computations is chosen a
priori and at random, and is unknown to the adversary. Next comes the forgery
phase where the adversary outputs a pair consisting of a message M , different
from all the messages contained in his queries to the oracle, and a result Y . If
Y is the correct MAC result for M under the key K the adversary has been
successful. The strength of the MAC algorithm against forgery attacks is defined
as the maximum probability of success (advantage) for all adversaries whose
resources are bounded by (t, q, µ). Here t is the running time of the adversary, q
is the number of oracle queries he is allowed to make, and µ is the total length
(in bits) of all oracle queries plus the length of the message in the output forgery.

A similar theoretical treatment of the different notions of hash function se-
curity is provided by P. Rogaway and T. Shrimpton in [117]. For a preimage or
second preimage attack it is assumed that the adversary first receives a challenge.
This is the point in the range for which a preimage must be found, or the point in
the domain for which a second preimage must be found. Next, the adversary out-
puts a guess for the (second) preimage. The level of (second) preimage-resistance
of a hash function is defined as the maximum probability of success (advantage)
for all adversaries whose resources are bounded by t (the running time). However
there are some complications to this treatment, and different types of preimage
and second preimage-resistance can be defined. Firstly, there are different ways
to determine the challenge. In particular, one can define the advantage of the
adversary for a challenge chosen at random, or alternatively one can define the
advantage for a specific value of the challenge and maximise over all possible
values. Furthermore, for reasons outlined below, one usually considers the more
generic concept of a hash function family, that is a finite set of hash functions
with common domain and range. The advantage of the adversary then depends
on the manner in which one chooses a particular hash function from the hash
function family: the hash function can be a fixed function or a random element
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from the set of functions.
The theoretical treatment for collision attacks on hash functions is somewhat

different. First of all, there is no challenge to the adversary. Secondly, because
the adversary has no input to his attack and because there is no secret infor-
mation involved in the computation of a hash function, a formal definition of
collision-resistance only makes sense for a random element of a hash function
family, and not for a fixed hash function. The reason is that, in theory, for a
fixed hash function there always exists an adversarial algorithm that immedi-
ately outputs a pair of messages for some fixed collision (although in practice
it may be very difficult to actually construct such a collision-finding algorithm).
To summarise the results of [117], Rogaway and Shrimpton formally define seven
different notions of hash function security: three types of preimage-resistance,
three types of second preimage-resistance, and one type of collision-resistance.
They also discuss relations between these different notions of security.

2.3 A Practical Approach to Security

The theoretical framework for the security of hash functions and MACs, discussed
in the previous section, has its limitations. In practice, it is very difficult to
prove an upper bound for the probability of success of an algorithm executed
by an adversary to find a preimage, second preimage or collision for a hash
function, or to produce a forgery for a MAC. While some results are known in the
area of provable security, for most real-world applications the design of efficient
algorithms can only be obtained by a practical approach. Such an approach is
based on methods that evaluate the security of an algorithm by estimating the
computing power needed by an adversary to break it. This leads to a definition
of security that is based on heuristic arguments: the estimates for the required
computing power are based on the results of known attacks.

When assessing the security of an algorithm, different types of attack need
to be considered. The first type are generic attacks. These can be applied to
any algorithm and their complexity depends only on generic parameters: the
size of the output space (that is, the number of different hash results or MAC
results that can be generated by the function), and for MACs also the size of
the key space (that is, the number of possible key values). The second type are
short-cut attacks. In this case the attacker analyses the internal structure of
an algorithm and tries to find a weakness that allows him to develop an attack
which is more efficient than the best generic attack. A cryptographic algorithm
is usually considered broken if there exists a short-cut attack that is faster than
the best generic attack.

Both generic and short-cut attacks may have different goals. For hash func-
tions, the goal of the attacker may be to find a preimage or second preimage,
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or to generate a collision. It may be noted here that the property of collision-
resistance implies second preimage-resistance, because an attacker who is capable
of generating second preimages, would also be capable of generating collisions.
For most practical hash functions the property of collision-resistance also implies
preimage-resistance (in [117] Rogaway and Shrimpton show that this depends on
how much the hash function compresses). It may also be noted that when a hash
function is used for purposes other than which it was originally designed for, ad-
ditional properties may be required. For example, when a hash function is used
for the generation of pseudo-random strings (starting from a secret seed), one
needs to consider attacks that analyse the pseudo-randomness of the generated
output.

For message authentication codes the adversary will try to produce a forgery.
In the case of an existential forgery the adversary determines the MAC result for
at least one message, but has no control over the content of this message so it
may be random or nonsensical. In the case of a selective forgery on the other
hand, the adversary determines the MAC result for a particular message chosen
a priori by him. In practice, it may be required that a forgery is verifiable, which
means that the adversary knows that his forgery is correct with probability close
to 1. An adversary may also perform a key recovery attack on a MAC algorithm.
If successful, such an attack determines the value of the secret key, and this is
more powerful than a forgery, since it allows for arbitrary selective forgeries.

The computation of a message authentication code involves secret data. As
mentioned before, it is assumed that for his attack the adversary has knowledge
of a set of pairs, consisting of messages and their corresponding MAC results. A
number of different attack scenarios can be distinguished, based on the manner
in which this information becomes available to the adversary. In a known text
attack the adversary has access to a number of messages and their corresponding
MAC results. In a chosen text attack the adversary is able to choose a set of
messages and subsequently obtains a list of MAC results corresponding to these
messages. Finally, in an adaptive chosen text attack the adversary can make the
choice of a message depend on the outcome of previous queries. Note that an
adaptive chosen text attack may not always be feasible in practice, but for a
cryptographer who designs a MAC algorithm it is best to be conservative and
require that the algorithm resists against the strongest possible attack, that is
an existential forgery under an adaptive chosen text scenario.

2.3.1 Generic attacks on cryptographic hash functions

Below we discuss two generic attacks that can be applied to any hash function.
The first attack can be used to find a preimage or second preimage, the second
attack for generating collisions. Note that short-cut attacks on hash functions
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are examined in Chapters 3, 4 and 5.

Random (second) preimage attack

In this attack the adversary simply selects a random input and hopes that a given
hash result occurs. If the hash function has a ‘random’ behaviour, his probability
of success equals 1/|R|, where |R| denotes the number of elements in the range
of the hash function (i.e., the size of the output space). The success probability
can be increased by selecting additional inputs and checking the hash results. It
is expected that a (second) preimage will be found after r = O(|R|) operations.
For example, for r = 0.7 · |R|, the success probability is about 50%, and for
r = |R| it is about 63%.

In practice the attack can be carried out in parallel, by distributing the com-
putational effort over a (possibly large) number of machines. Depending on the
application in which the hash function is used, it may also be possible for a crypt-
analyst to target a number of different hash values simultaneously, trying to find
a preimage for one of them.

Birthday attack

This attack is based on the idea that for a group of 23 people the probability that
at least two of them have the same birthday, is larger than 50% [47]. Because
most people intuitively think that the group would need to be much larger, this
is called the birthday paradox. It can be explained as follows. A year has 365
days. The probability that in a group of r people all of them have a different
birthday, can be calculated as follows:1

q =
365 · 364 · . . . · (365− r + 1)

365r
=

r−1
∏

i=0

(1− i

365
) .

Hence, the probability that at least two people in the group have the same birth-
day is p = (1 − q). For r = 23 the probability p ≈ 0.507. Note that the
probability of a common birthday increases rapidly as the group becomes larger,
e.g., for r = 46 we get a probability p ≈ 0.948.

In a birthday attack on a hash function the adversary selects a set of r random
inputs and hopes that at least two of these inputs have the same hash result (this
means that a collision is found). The probability can be calculated in the same
manner as above where the value 365 is replaced by |R| (it is assumed that the
hash function has ‘random’ behaviour). If r = O(

√

|R|) and |R| → ∞, then the

1The existence of leap years is ignored and it is assumed that birthdays are randomly
distributed over the year. As this is not the case the real probability is even higher.
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probability of a collision can be approximated as follows:

p ≈ 1− exp(− r2

2 · |R| ) .

P. Flajolet and A. Odlyzko [55] have shown that the expected number of inputs
needed for a collision is:

rcol =

√

π · |R|
2

.

There is also a variant of the birthday attack where the adversary selects two
distinct sets and tries to find a collision between their elements. Let the first set
contain r1 inputs, and the second set r2 inputs. If r = r1 = r2, r = O(

√

|R|) and
|R| → ∞, then the probability of a collision between the sets can be approximated
by:

p ≈ 1− exp(− r2

|R| ) .

For r = r1 = r2 =
√

|R| this probability is about 1− exp(−1) or 63%.
Based on this variant of the birthday attack, G. Yuval [130] proposed the

following practical attack scenario.2 The adversary generates r1 variations on
a genuine message and r2 variations on a fraudulent message. The probability
that there is a genuine message and a fraudulent message with the same hash
result is about 63% when r = r1 = r2 =

√

|R|. In order to find the collision, the
adversary stores the hash results corresponding to one set of messages in a table.
After sorting of the data in the table (which can be done in O(r log r) time), he
computes the hash results for the messages of the other set until a match is found
in the table.

The main problem for a practical implementation of the attack by Yuval is
the memory requirement: space is needed for the storage of about O(r) messages.
J.-J. Quisquater and J.-P. Delescaille [107] demonstrated an alternative method
which needs only very little memory. The main idea is to generate a random walk
through the hash result space, and to use an efficient cycle-finding technique to
find a collision. The storage of a number of distinguished points limits the number
of steps that are executed after the repetition starts. In [122] P. van Oorschot
and M. Wiener show that this method can be fully parallelised.

2.3.2 Generic attacks on message authentication codes

Below we discuss two generic attacks that can be applied to any message authen-
tication code. Other attacks on MACs are examined in Chapter 6.

2This attack is directed towards a digital signature scheme, see Sect. 2.4.4.
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Guessing of the MAC

In order to produce a selective forgery an adversary can choose a particular
message and subsequently guess the corresponding MAC result. There are two
ways of doing this: the adversary either guesses the MAC result directly, or he
guesses the secret key and then computes the MAC result. If the output length
(that is, the length of the MAC results) is equal to n bits, and the length of the
secret key is equal to k bits, the probability of success is p = max(2−n, 2−k).
Note however that the attack is non-verifiable: the adversary does not know a
priori whether his guess was correct. For each trial he submits a guess for the
MAC result to the system which performs the verification. This implies that
the attack can only be executed on-line. The number of possible trials for an
attacker is strongly application-dependent: typically only a limited number of
errors is allowed (the errors correspond to wrong guesses for the MAC result).

Exhaustive Key Search

This is a key recovery attack where the adversary tries one-by-one possible values
for the secret key until the correct key value has been chosen. The expected
number of trials is 2k−1 (a search through half of the key space), and the attack
can be verified when dk/ne known text-MAC pairs are available: for each guess of
the secret key the adversary checks the correspondence between text and MAC
result for each of the pairs; when dk/ne pairs are available for checking it is
expected that only the correct guess for the secret key satisfies all checks. In
contrast to the previous attack, this attack is carried out off-line and it yields
a complete break of the MAC algorithm. Note that the key search can also be
parallelised, by distributing the computational effort over a number of machines.

2.4 Applications of Hash Functions and MACs

2.4.1 Message authentication based on a hash function

We consider the problem of the protection of the authenticity of information.
This problem has two aspects: data integrity and data origin authentication.
The following definitions were given by A. Menezes et al. [84]:

Definition 2.3 Data integrity is the property whereby data has not been al-
tered in an unauthorised manner since the time it was created, transmitted, or
stored by an authorised source.

Definition 2.4 Data origin authentication is a type of authentication whereby
a party is corroborated as the (original) source of specified data created at some
(typically unspecified) time in the past.
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By definition, data origin authentication includes data integrity (information
which has been modified effectively has a new source).

Let us now consider a situation where an originator wants to send a message
to a recipient over an insecure channel. For this setting the problem of authen-
ticity is also called message authentication. It means that it should be possible
to determine the source of the message and to assure that the message is not
modified in any way during the transmission. As mentioned in Sect. 2.2 the
main idea of the use of a cryptographic hash function is to reduce the problem of
protecting a (possibly long) message to the problem of protecting a short imprint
of the message (the hash result).

message M -

@
@@

¡
¡¡

h - h(M) - authentic channel

- insecure channel

Figure 2.2: Message authentication using a hash function.

Fig. 2.2 shows the basic mechanism by which this can be achieved. It is as-
sumed that an authentic channel is available for the transmission of short message
imprints. Information sent over this authentic channel cannot be changed (eaves-
dropping may be possible so secrecy is not guaranteed). Moreover, the recipient
knows from whom the information on this channel originates. An example may
be a telephone link where the authenticity is offered by voice recognition. The
originator of the message M uses a cryptographic hash function h to compress
his message into a short bit string h(M) (the hash result), and this value is trans-
mitted to the recipient via the authentic channel (even for a telephone link this
should be no problem, a hash result can typically be expressed by a few dozens of
digits). The message itself is sent over the insecure channel. An active adversary
may be able to modify the message M before it reaches the recipient. However,
the recipient independently hashes the message he receives (using the same cryp-
tographic hash function) and accepts the message only if the result agrees with
the value h(M). In order to cheat the system the adversary must create a modi-
fied message M ′, with the property that h(M ′) = h(M). For this he must find a
second preimage, which should be infeasible for a one-way or collision-resistant
hash function. The system works by transferring the authenticity of the message
to the authenticity of the hash result.



2.4. Applications of Hash Functions and MACs 17

2.4.2 Authentication combined with encryption

We mentioned in Sect. 1.1 that the use of encryption is not sufficient to protect
the integrity of data. In the case of additive stream ciphers (which can be seen as
practical approximations of the Vernam cipher), an attacker can change any bit
of the plaintext by modifying the corresponding bit of the ciphertext. For block
ciphers the modification of a bit of the ciphertext affects a larger part of the
plaintext in an unknown way. This depends on the error propagation character-
istics of the mode in which the block cipher is used (see Chapter 7, Sect. 7.2.3),
and makes it more difficult to modify ciphertexts with their decryption remaining
meaningful.

However, the protection of integrity also depends on the inherent redundancy
of the information. If the plaintext corresponding to a given ciphertext contains
no redundancy (e.g., a random key), all decryptions of the (possibly modified)
ciphertext are meaningful. Therefore some form of redundancy is always needed
for the protection of integrity. One can use a cryptographic hash function to add
sufficient redundancy to information before encrypting it. Fig. 2.3 shows a simple
mechanism that allows for message authentication combined with encryption.

message M -
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h

??
message M h(M)

?

E key K¾ - private/authentic channel

?
ciphertext EK(M‖h(M)) - insecure channel

Figure 2.3: Message authentication combined with encryption.

The originator of a message M uses a cryptographic hash function h to com-
pute the hash result h(M). He appends this to the original message resulting in
a string M‖h(M). Next, he uses an encryption algorithm E based on a secret
key K to encrypt this information, and he sends the ciphertext EK(M‖h(M))
over the insecure channel. The recipient, who also knows the secret key, de-
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crypts the ciphertext. He separates the recovered message from the recovered
hash result and checks the correspondence using the hash function h (in other
words, the recipient checks the redundancy of the decrypted ciphertext). For an
adversary who does not know the secret key used in the encryption, it should be
infeasible to change the ciphertext sent over the channel without disrupting the
correspondence between the recovered message and the recovered hash result.

The mechanism of Fig. 2.3 works by transferring the secrecy and authenticity
of the message to the secrecy and authenticity of the key that is used. A private
and authentic channel is needed for the exchange of the secret key between the
sender and the recipient. This channel may have a small capacity because the
same key can be used for the encryption of many messages. A disadvantage of
this mechanism is that the protection of authenticity depends on the protection
of secrecy. If the encryption algorithm is weak, the authenticity is compromised
as well because the adversary would be able to decrypt the ciphertext, change
the information into M ′‖h(M ′) and re-encrypt it.

2.4.3 Message authentication based on a MAC

An alternative solution to the problem of message authentication is the use of a
MAC algorithm. The originator of a message M uses a MAC algorithm h based
on a secret key K to compress the message into a short bit string h(K,M). He
appends this to the original message resulting in a string M‖h(K,M), which
he sends over the insecure channel as illustrated in Fig. 2.4 below. An active
adversary may be able to change the data on the insecure channel. The recipient
of the data separates the recovered message from the recovered MAC result,
and obtains two strings M ′ and Y ′. He then uses the MAC algorithm based
on the same secret key to check the correspondence, that is he verifies whether
Y ′ = h(K,M ′). If the equation is satisfied he accepts the data as authentic, that
is, he assumes M ′ = M (the data sent by the originator).

For this mechanism a separate channel is needed for distribution of the se-
cret key between sender and receiver. This channel must offer both privacy and
authenticity, but it may have a small capacity because the same key can be
used for the authentication of many messages. For an adversary who does not
know the secret key K it should be infeasible to change the message M into a
modified version M ′ 6= M , because he is unable to compute the corresponding
MAC result h(K,M ′). The difference with the mechanism based on a hash func-
tion (Sect. 2.4.1) is that the message imprint can now be sent over the insecure
channel, because the algorithm that is used for the compression of messages into
message imprints, depends on secret data.

MAC algorithms can also be used for applications that require authentication
combined with encryption. A similar mechanism can be used as the one described
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Figure 2.4: Message authentication using a MAC.

in Sect. 2.4.2 (Fig. 2.3), but where the hash function is replaced by a MAC algo-
rithm based on a secret key. This has the advantage that the integrity is protected
even when the security of the encryption is compromised. A drawback is that the
application must handle two separate keys, one for the MAC algorithm and one
for the encryption scheme. One should not use the same key for both purposes
as weaknesses may arise due to the interaction. Moreover, the procedures for
key management are normally different for authentication and encryption keys.
A formal analysis of the security of authenticated encryption schemes, for three
different composition methods, is given by Bellare and Namprempre in [13].

2.4.4 Optimisation of digital signature schemes

Digital signature schemes are a different type of cryptographic primitive. They
are used for the protection of authenticity but, in addition, they also offer the
service of non-repudiation. This implies that it is impossible for an originator
who sends an authenticated message, to dispute at a later time having sent this
message. Digital signatures are based on public-key cryptography. All users of a
public-key cryptosystem have a public key, known to everyone else and linked by
some mechanism to the correct identity. Every user also has a private key which
should not be disclosed to anyone else (this may be assured when the private key
is stored in tamper-resistant hardware).

Fig. 2.5 gives an example of how a digital signature scheme (e.g., one based on
RSA [116]) may be used in combination with a cryptographic hash function. The
user A has a key pair (SA, PA) where SA denotes his private (secret) key, and PA
denotes his public key. He first compresses his message M with the hash function
h. The hash result h(M) is sent as input to the signature algorithm. This algo-
rithm depends on the private key SA and computes a value signSA

(h(M)) which



20 Chapter 2. Basic Concepts

we denote in shorthand as s(M). The user then concatenates the signature s(M)
to his message and sends the information M‖s(M) over the insecure channel.

message M -

@
@@

¡
¡¡

h - h(M) - sign

?

SA

??
message M s(M) - insecure channel

Figure 2.5: Digital signature scheme using a hash function.

Fig. 2.6 shows the procedure followed by the recipient of the signed message.
He uses the signature s(M) as input to the verification algorithm. This algorithm
depends on the public key PA, and computes the value verPA

(s(M)). The signa-
ture and verification algorithms are designed in such a way that verP (signS(X)) =
X when a correct key pair (S, P ) is used.3 Therefore the output of the verifica-
tion algorithm should be h(M) if no interference occured on the channel. The
recipient also computes an independent hash of the message he receives. If the
outcome of this is the same as the output of the verification algorithm, he accepts
the message and signature as genuine.

The use of a cryptographic hash function in a digital signature scheme as
shown above, has the advantage that the signature and verification algorithms
have only short data strings to work with (the size is independent of the length of
the message). This is important because public-key cryptography is much slower
(several orders of magnitude) than conventional symmetric key algorithms or
hash functions. Furthermore, the use of a hash function prevents attacks that
exploit the algebraic structure of the message space in a signature scheme (see
for example [46]).

For an adversary it should be impossible to modify the information on the
channel with the signature of user A remaining valid. If he replaces the message
by M ′, he cannot change the signature into s(M ′) because he does not have the
private key SA. He can only try to find a modified message with the property
h(M ′) = h(M) (in this case the signature remains the same), but this involves
finding a second preimage for the hash function.

3Note that other digital signature schemes use a slightly different method for verification.
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Figure 2.6: Verification of a digital signature.

The main difference between a digital signature scheme and the authentication
mechanisms described in Sect. 2.4.1 and Sect. 2.4.3, is that it is possible for a third
party to distinguish between the sender and recipient of an authenticated (signed)
message. In the scheme of Sect. 2.4.1 the two parties usually have the same access
to the authentic channel, and in the scheme of Sect. 2.4.3 the two parties share
the same secret key. For a digital signature scheme however, each user has his
own private key to authenticate his messages. This allows the service of non-
repudiation, but it is important to notice that the hash function used must be
collision-resistant (not only preimage and second preimage-resistant). Otherwise
a dishonest user of the system might be able to construct a genuine message M
and a fraudulent message M ′ with the same hash result, i.e., h(M) = h(M ′). At
a later time he would be able to dispute having generated a signature for M , and
claim that he generated a signature for M ′ instead.

2.4.5 Applications as one-way function

One-way functions are similar to one-way hash functions, except that the length
of the input is fixed rather than arbitrary. They can be constructed from a
cryptographic hash function but also from other cryptographic algorithms such
as block ciphers. Below we briefly describe some interesting applications of one-
way functions.

Identification with passwords

For identification systems based on passwords a one-way function of each user
password is stored in the password file (instead of the user password itself). In
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order to verify a user-entered password (for identification), the system applies
the one-way function to this password and compares the result to the stored
entry for the stated user-id. The use of the one-way function makes it infeasible
to derive a valid password from an entry in the password file. Therefore this
file must be only write-protected. Note that passwords usually have a fixed or
maximum length, but sometimes passphrases of arbitrary length are used. A
related application (also useful for identification) is confirmation of knowledge.
Here a party proves that it has knowledge of a secret S without revealing the
secret itself, by submitting a one-way function of S to another party (who also
knows this secret).

Pseudo-random string generation

One-way functions can be used to generate pseudo-random bit sequences, e.g., by
first selecting a random seed s and then applying the function to the sequence of
values s, s+1, s+2, etc. For a function f the output sequence then corresponds
to f(s), f(s+1), f(s+2), etc. Note that if part of the output sequence is known
and if the function can be inverted, an attacker would be able to compute the
remainder of the output sequence which is a violation of the design intentions.

Key derivation and one-time passwords

A one-way function can be applied to compute a sequence of keys that are used
for the protection of successive communication sessions. Starting from a master
key K0 the first session key is computed as K1 = f(K0), the second session key
is K2 = f(K1), etc. A typical example is the procedure for key derivation used
by payment systems (in point-of-sale terminals), where it is important that the
disclosure of a currently active key does not compromise the security of previous
transaction keys (this property is called forward security [14]). A related example
is the generation of a password sequence to be used in a one-time password
system. Here the sequence of passwords that has been generated should be used
in reverse order. In that way a current password can be verified by applying
the one-way function to it and checking whether the result matches the previous
password. The one-way property prevents an adversary who knows the current
password from computing any future passwords.

2.5 Digital Timestamping Schemes

For further evidence of the versatility of cryptographic hash functions we give an
overview of the role they have in digital timestamping schemes. Digital times-
tamping is a service that provides temporal authentication. In particular, a digital
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timestamp provides proof that a certain piece of information existed prior to the
date and time indicated on the timestamp. This has applications in the protec-
tion of intellectual property rights and for secure auditing procedures, e.g.:

– a researcher wants to establish his first-to-invent or first-to-file claims;

– a company wants to prove the integrity of its electronic business records,
showing that these have not been tampered with or backdated.

Timestamping is also vital for a true non-repudiation service. For signed
documents with a long lifetime, it may be necessary that the signature can be
verified again at a later point in time. However, the lifetime of a digital signature
is limited for various reasons:

– the private signing key may be compromised;

– the certificate that proves the link between the user and his public key,
expires at a certain point in time;

– the cryptographic algorithm that is used in the signature scheme, may be
broken.

This problem can be solved when a secure timestamping service is in place. A
user who creates a signature over a document, requests a timestamp of the signed
information, proving that the signature was generated before the time indicated
in the timestamp (and, e.g., before a compromise of his private signing key at a
later point in time).

In the following we give an overview of several techniques for digital times-
tamping. This overview is based on a study that was made for the Belgian
TIMESEC project [134], and was published in [127]. Timestamping schemes
were first described in detail by S. Haber and W. S. Stornetta [58], and further
developed in [10, 59]. In our overview we focus on the different uses that are
made of cryptographic hash functions.

2.5.1 Simple system based on a trusted third party

A basic solution for timestamping relies on the use of a trusted third party,
the Time Stamping Authority (TSA). A client C who wants a timestamp for a
document X first uses a hash function h1 to compress his document. He then
sends a request to the TSA including his identity IDC and the hash result h1(X).
The TSA appends to the request a serial number and the current time, and he
digitally signs the result to produce the following timestamp which is returned
to the client:

timestamp = signTSA(IDC , h1(X), n, tn) .
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Note that the channel between the client and the TSA should provide mutual
authentication and message integrity, but secrecy is not required. The use of
the hash function preserves the secrecy of the document (even the TSA does not
know X). It also reduces the bandwidth and storage requirements.

If the client or another party wants to validate the timestamp he needs to
verify the signature using the public key of the TSA. Furthermore it must be
verified that the hash included in the timestamp corresponds to the document
to which the timestamp is attached. Obviously, if documents are to be securely
and uniquely represented by their hash value, a collision-resistant hash function
must be used in the system. The choice of hash function should be imposed by
the TSA.

2.5.2 Linking timestamps into a temporal chain

The limitation of the previous system is that the third party TSA must be com-
pletely trusted. There is no protection against a malicious TSA that issues
backdated timestamps. Furthermore, if the private signing key of the TSA is
compromised all issued timestamps become useless. In order to offer additional
assurance the TSA can use a hash function h2 (this can be the same function as
h1 or a different one) to link all timestamp requests in a one-way fashion.

Assume that the nth client sends a timestamp request for a hash value Hn =
h1(Xn). The TSA concatenates the value Hn with a linking value Ln−1 and
computes a new linking value Ln = h2(Ln−1‖Hn). This is repeated for every
timestamp request, as illustrated in Fig. 2.7 (note that the computation starts
from an initial value L0).

t0

L0
- L1

6

H1

- L2

6

H2

- . . . - Ln−1

6

Hn−1

-

tn

Ln

6

Hn

Figure 2.7: Linking timestamp requests into a temporal chain.

When a collision-resistant hash function h2 is used, this procedure creates an
unforgeable temporal chain. For example,

Ln = h2(Ln−1‖Hn) = h2(h2(Ln−2‖Hn−1)‖Hn) ,
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therefore the hash value Hn must have been processed after the value Hn−1. If
the TSA keeps all values available on an online server, the temporal chain can
be recomputed as part of the procedure for timestamp validation. In addition,
the TSA should periodically publish some of the linking values in some widely
available and unmodifiable media (e.g., a newspaper). Assume that, in the ex-
ample of Fig. 2.7, the linking values L0 and Ln are published at time t0 and tn
respectively. For the ith timestamp request with 0 < i < n (corresponding to
hash value Hi), it can be checked that this request has been processed between
time t0 and tn. On the other hand it is not possible to insert a false (backdated)
timestamp for a document hash H ′ in the chain: for a collision-resistant hash
function h2 no other computation path can be found from the value L0 to the
value Ln.

Note that the use of a linking scheme provides relative temporal authentica-
tion: for every pair of timestamps it can be determined which one comes first.
This can be combined with the absolute temporal authentication provided by the
digital signature of the TSA as described in Sect. 2.5.1. The advantage of the
linking scheme is that it does not depend on the private key of the TSA. If a user
has a timestamp and its position in the temporal chain is between two published
values, this can no longer be changed (not even by the TSA).

2.5.3 Aggregation based on a Merkle tree

The system described above is not very practical for real-world applications be-
cause the TSA will have to store a huge number of timestamp requests. Fur-
thermore, the computation path between two trusted (published) linking values
can be very long. To solve this, the TSA collects all timestamp requests that
it receives during a certain period of time. At the end of the period the TSA
computes a Merkle tree [85] based on these requests.

Fig. 2.8 illustrates how a Merkle or binary authentication tree is constructed.
The computation starts from the leaves H1 to H8. These are the hash values
included in the timestamp requests received during the current round (period of
time). A hash function h3 is used to compute each parent node in the tree from
its two children, e.g., H1−2 = h3(H1‖H2). This is repeated until a single value,
the root of the tree, is obtained (H1−8 in the example of Fig. 2.8). The procedure
is called aggregation.4

For every round the TSA constructs a Merkle tree from the received times-
tamp requests, and the root values for successive rounds are linked using the
procedure described in Sect. 2.5.2. This means that a new linking value is com-
puted after every round. For example, let the root value of the Merkle tree for

4Note that if the number of leaves is not a power of 2, a number of dummy hash values need
to be inserted into the tree such that the described procedure can be used.
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Figure 2.8: Aggregation based on a Merkle tree.

round n be Rn = H1−8. Then the new linking value is Ln = h2(Ln−1‖Rn).

At the end of a round, the TSA also returns a timestamp for every request
that it received. Such a timestamp includes the round number, the root value
for the round, and the information that is needed to rebuild the branch of the
tree to which the request belongs. For example, the hash value H3 will result in
a timestamp with the information (n,Rn, H4, H1−2, H5−8).

For validation of a timestamp, the verifier first checks that the timestamp
belongs to the specified round. In the case of the timestamp for the hash H3

he computes Y1 = h3(H3‖H4), Y2 = h3(H1−2‖Y1), Y3 = h3(Y2‖H5−8), and he
verifies that Y3 corresponds to the root value Rn. The next step for the verifier is
to check the linking between different round values Ri (which should be available
online). The temporal chain should be checked until trusted values (published in
reliable media) are encountered.

An adversary who wants to produce a false (backdated) timestamp for a
document hash H ′, needs to construct a false tree branch from H ′ to the root
value of a certain round. This is infeasible when a collision-resistant hash function
h3 is used.

The use of aggregation in this system allows a significant reduction of the
length of the temporal chain (and of the verification time). If the average num-
ber of requests in a round is m, a reduction with a factor of m is obtained. The
tradeoff is that every timestamp must include the information needed for rebuild-
ing the corresponding tree branch (in order to check that the timestamp belongs
to the specified round). For a binary tree with m leaves, the size of this infor-
mation (and the time needed for verifying it) is O(log m). Another disadvantage
of aggregation is that all timestamps of the same round are simultaneous. For
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example in Fig. 2.8 there is no proof that H3 was processed earlier than H4.
Therefore the duration of a round should not be too long (e.g., in a practical
system this could be one second).

2.5.4 Other timestamping schemes

Further research on timestamping schemes is due to H. Lipmaa [80] and A. Bul-
das et al. [26, 27]. The use of graph theory, in particular directed acyclic graphs,
allows the definition of timestamping schemes with a reduced length of the ver-
ification chain. Moreover, these schemes allow relative temporal authentication
for timestamps of the same round. The drawback of these schemes is that they
are more complex.

2.6 Conclusions

This introductory chapter presented practical definitions for one-way and collision-
resistant hash functions (we also referred to more formal definitions). The se-
curity of these algorithms was discussed, and some generic techniques to find
preimages or collisions. A survey was given of different applications of hash func-
tions, the most important being message authentication and the optimisation of
digital signature schemes. The description of the different uses of hash functions
in systems for digital timestamping (published in [127]) illustrates the versatility
of these cryptographic algorithms.
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Chapter 3

Design of Cryptographic

Hash Functions

3.1 Introduction

This chapter discusses the design of (unkeyed) cryptographic hash functions.
First the required output length for these algorithms is considered. Next we
describe the general model of an iterated hash function and discuss the security
properties. The main part of the chapter is an overview of different approaches
to the design of hash functions, and of the most important algorithms. Several of
these algorithms are described and analysed in more detail in Chapters 4 and 5.
Finally, a brief overview is given of standardisation efforts in this area. For a more
detailed discussion on the different design strategies we refer to the treatment of
B. Preneel in [98, 99].

3.2 Required Output Length

In Sect. 2.3 of the previous chapter we described the generic attacks that can
be applied to any hash function. It was shown that the time complexity of the
random preimage attack isO(|R|) operations, and that the time complexity of the
birthday attack is O(

√

|R|) operations. Here |R| denotes the number of points
in the range of the function, and the ‘operations’ correspond to the computation
of the hash result for a random input.

Assume now that the output space of a hash function consists of all n-bit
strings, that is R = {0, 1}n (see Def. 2.1 in Chapter 2). Such an n-bit hash
function is said to have ideal security if the following holds:

29
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1. producing a preimage or second preimage requires about 2n operations;

2. producing a collision requires about 2n/2 operations.

This corresponds to the complexities of the random preimage and birthday at-
tacks respectively (note that |R| = 2n, and

√

|R| = 2n/2). In other words, for
an ideal hash function these are the best known attacks.

The question remains which output length n is required to make these attacks
infeasible for a practical design. In [122] P. van Oorschot and M. Wiener discuss
the cost of implementing the birthday attack for the popular MD5 [115] hash
function, which has an output length of n = 128 bits (so about 264 operations
are needed to produce a collision). The analysis, which dates from 1995, leads to
an estimate that collisions for MD5 can be found in 21 days using a customised
10M$ machine. Considering ‘Moore’s law’, which states that the computing
power available for a given cost doubles every 18 months, it is clear that an
output length of n = 128 bits is not sufficient for collision-resistance. This
result is confirmed by other studies. In 1996 M. Blaze et al. [23] estimated
that cryptanalytic attacks with a complexity of 275 operations were just out of
reach (of powerful adversaries such as an intelligence agency). This corresponds
to about 280 operations today. Therefore, a collision-resistant hash function
should have an output length of at least n = 160 bits. For a one-way hash
function (which only needs to be preimage and second preimage-resistant) the
output length should be at least n = 80 bits. For long-term security larger output
lengths should be chosen (e.g., 192 or 96 bits respectively). In the case of one-way
hash functions, larger output lengths may also be required in applications where
a random preimage attack can target many different hash values simultaneously.

3.3 Iterated Hash Functions

In Chapter 2 hash functions were defined as functions that take an input of
arbitrary length, producing an output of a fixed length of n bits. As it is not
easy to design a function with inputs of variable length, all known hash functions
are based on a compression function with fixed size input. This function is used
in an iterative manner: the input to the hash function is divided into blocks of
a specific length and every block is processed by the compression function in a
similar way. X. Lai and J. Massey [79] call the resulting algorithm an iterated
hash function.

An example of such an iterative hash computation is shown in Fig. 3.1. Here,
the algorithm computes the hash result for an input X that is divided into three
blocks X0, X1, X2. A compression function f is used which takes two inputs: a
chaining variableHi and a blockXi. The chaining variable input for the first iter-
ation is equal to an initial value IV . For the next iterations the chaining variable
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Figure 3.1: Example of an iterative hash computation.

input corresponds to the previous compression function output. The result H3

from the last application of the compression function is sent to an output trans-
formation g which computes the hash result h(X) = h(X0‖X1‖X2) = g(H3).

More generally, for an input X consisting of t blocks X0, X1, . . . Xt−1 the
iterative computation of the hash result can be described as follows:

H0 = IV ,

Hi+1 = f(Hi, Xi) for 0 ≤ i < t ,

h(X) = g(Ht) .

In Chapter 2 hash functions were formally defined by Def. 2.1. In the same
way we can give a formal definition for iterated hash functions. For this we first
need to define a compression function and an output transformation.

Definition 3.1 A compression function is a function f : D → R where D =
{0, 1}a × {0, 1}b and R = {0, 1}c for some a, b, c ≥ 1 with a+ b ≥ c.

Definition 3.2 An output transformation is a function g : D → R where
D = {0, 1}a and R = {0, 1}n for some a, n ≥ 1 with a ≥ n.

Definition 3.3 Suppose that a compression function f : ({0, 1}c × {0, 1}b) →
{0, 1}c and an output transformation g : {0, 1}c → {0, 1}n are given. Then the
iterated hash function is the hash function h : ({0, 1}b)∗ → {0, 1}n defined by
h(X0 . . . Xt−1) = g(Ht) where Hi+1 = f(Hi, Xi) for 0 ≤ i < t. The input blocks
Xi (0 ≤ i < t) ∈ {0, 1}b and the initial chaining value H0 = IV ∈ {0, 1}c.

From this definition it can be seen that the chaining values Hi have a length of
c bits and the input blocks Xi have a length of b bits. If the total number of input
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bits is not a multiple of b, a padding rule must be specified. A typical example is
to pad the input data on the right with a single 1-bit, followed by the smallest
number of 0-bits which makes the total length of the padded data a multiple of
b bits. This padding rule is unambiguous: it is possible to determine where the
original input data ends and where the padding bits begin. In Sect. 3.3.1 we will
see that for security reasons it is common practice that the padding bits also
include a representation of the length of the unpadded input.

The output transformation is often omitted in an iterated hash construction,
in other words the identity function is often chosen for g (g(Ht) = Ht). In this
case the output length is equal to the length of the chaining variable, that means
n = c. Those iterated hash functions which do employ an output transformation,
use it to reduce the length of the hash result, that means n < c. This can be
done either by simply selecting n out of c bits (e.g., the n leftmost bits) or by
applying some folding technique.

3.3.1 Security of iterated hash functions

There are two elements in the definition of an iterated hash function, which have
an important influence on the security of the scheme: the choice of the IV and
the choice of the padding rule.

For the example of Fig. 3.1 assume that an attacker replaces the value IV
by H1 and that he deletes the first input block X0, in other words he computes
the hash for the input X = X1‖X2 starting from an initial chaining variable H1.
Then it is easy to see that the same hash result is obtained, which means that
producing second preimages or collisions is a trivial task. To prevent this, the
initial value IV should be fixed. The exact value of IV is usually defined in the
specification of an algorithm.

Another important security measure is the use of a padding rule which in-
cludes the length of the original input data into the padding bits. This prevents
attacks based on fixed points, where the attacker tries to produce second preim-
ages or collisions by inserting extra blocks into the input (see Sect. 3.3.2). We
can now make the following statement regarding the relation between an iterated
hash function h and the underlying compression function f with respect to the
property of collision-resistance.

Theorem 3.4 (Merkle-Damg̊ard) If the IV is fixed and if the padding pro-
cedure includes the length of the input into the padding bits, then h is collision-
resistant if f is collision-resistant.

The proof for this theorem was given independently by R. Merkle [86] and
I. Damg̊ard [32]. It is based on the argument that a collision for h would imply
a collision for f at some stage. The inclusion of the length into the padding
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bits is needed for this reasoning. The procedure of fixing the IV and adding a
representation of the length is called MD-strengthening.

Related work by Lai and Massey [79] discusses the relation between an iter-
ated hash function and the underlying compression function with respect to the
property of second preimage-resistance.

Theorem 3.5 (Lai-Massey) Assume that the IV is fixed and that the padding
procedure includes the length of the input into the padding bits. Moreover, let
the input X contain at least 2 blocks (without padding). Then finding a second
preimage for h requires 2n operations if and only if finding a second preimage for
f , with an arbitrary chaining variable input, requires 2n operations.

The fact that the condition on f is necessary is based on the following argument:
if it takes on average 2s operations to find a second preimage for f (with s < n),
then one can use a meet-in-the-middle attack to produce a second preimage for
h in about 2 · 2(n+s)/2 operations. This is discussed in more detail in Sect. 3.3.2.

The previous results imply that breaking an iterated hash function is at least
as hard as breaking the underlying compression function. Therefore the security
of a hash function can be examined by analysis of its compression function and
the designer can focus his attention on this compression function. If an attack
exists for the compression function this does not necessarily mean that the hash
function can be broken. If preimages or collisions can be found for f , with the
computation starting from a pre-specified chaining value H, an attack on h can
be derived. For a collision-attack on f where the computation starts from an
arbitrary chaining value H this is not the case. Another attack which cannot
be extended is one that finds collisions for f with the two computations starting
from different chaining values H and H ′. Table 3.1 below summarises these
different types of attacks. In Sect. 3.3.2 below we will show that preimages,
second preimages and collisions can be extended from the compression function
to the hash function with a correcting block attack, and that pseudo-preimages
can be exploited in a meet-in-the-middle attack. On the other hand random IV
or pseudo-collisions do not lead to an attack on the hash function. However
if such an attack can be applied to the compression function, this is usually
considered as an undesirable property and as a certificational weakness for the
hash function.

3.3.2 Chaining attacks

Chaining attacks are based on the iterative nature of hash functions. They focus
on the compression function rather than on the overall hash function. Below we
describe different types of chaining attacks.
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Table 3.1: Different types of attacks on a compression function.

Type of attack Given Find Property

preimage H,Y X f(H,X) = Y
second preimage H,X X ′ f(H,X) = f(H,X ′)
collision H X,X ′ f(H,X) = f(H,X ′)
pseudo-preimage Y H,X f(H,X) = Y
random IV collision - H,X,X ′ f(H,X) = f(H,X ′)
pseudo-collision - H,H ′, X f(H,X) = f(H ′, X)

Fixed point attack

A fixed point for a compression function f is a pair H,X for which f(H,X) =
H. This property allows an attacker to produce second preimages or collisions
by inserting an arbitrary number of blocks with the value X at a point in the
computation where the chaining variable has the required value H. The attack
is only possible if the initial chaining value is not fixed (the attacker chooses
IV = H), or if fixed points can be found for a significant fraction of all chaining
values. Moreover, the attack only works when the padding procedure does not
include the length of the input into the padding bits. A generalisation of this
attack is the case where fixed points occur after more than one iteration of the
compression function.

Correcting block attack

Assume that a cryptanalyst is searching a second preimage for a given input X
consisting of t blocks. In other words, he needs to find an alternative input X ′

with the property h(X ′) = h(X). In a correcting block attack the cryptanalyst
chooses one of the input blocks Xi, and replaces it with an alternative block X ′i
so that f(Hi, X

′
i) = f(Hi, Xi). If all other blocks of the alternative input X ′ are

equal to the corresponding blocks of X, the same hash result will be obtained
and a second preimage has been found.

If the size of the chaining variable is c bits, and the size of the input blocks is b
bits with b > c, then the number of blocks X ′i satisfying the property f(Hi, X

′
i) =

f(Hi, Xi) is approximately 2b/2c = 2b−c. The challenge is that such blocks are
a small subset of all possible blocks, and for an ideal iterated hash function
about 2c operations are needed to find one. The attack is possible in the case
when preimages can be found for the compression function with the computation
starting from a pre-specified chaining value. That is, given the chaining values
Hi, Hi+1 the attacker must be able to (efficiently) find a block X ′i such that
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f(Hi, X
′
i) = Hi+1.

In the case of a collision attack the cryptanalyst can choose both X and X ′.
The blocks Xj = X ′j are chosen arbitrarily for j 6= i. A collision must then
be found for the compression function starting from the pre-specified chaining
value Hi, i.e., the attacker must find two distinct blocks Xi and X ′i so that
f(Hi, Xi) = f(Hi, X

′
i). This will give a collision in the hash result.

Meet-in-the-middle attack

This attack is a variation on the birthday attack (see Sect. 2.3.1), but instead of
comparing the hash result, one compares intermediate chaining variables. When
applicable, a meet-in-the-middle attack enables the cryptanalyst to construct
second preimages, which is not possible for a simple birthday attack. Assume
that a second preimage is searched, for a given input X. Both the initial chaining
value (H0 = IV ) and the hash result h(X) are fixed. The cryptanalyst identifies
an attack point somewhere in the chain between two blocks of a candidate input
X ′. He then generates r1 variations on the first part of X ′ and r2 variations on
the last part. Starting from the initial value IV and going backwards from the
hash result h(X ′) = h(X), the probability for a matching intermediate chaining
variable is given by p = 1− exp(−r1 · r2/2n).

For the attack to work, the cryptanalyst must be able to efficiently go back-
wards through the chain. This means that he must be able to invert the compres-
sion function in the following manner: given a value Hi+1, find a pair Hi, Xi such
that f(Hi, Xi) = Hi+1 (this is called a pseudo-preimage). Lai and Massey [79]
show that if it takes on average 2s operations to invert f in this way, it is possible
to find second preimages for h using a meet-in-the-middle attack with a complex-
ity of about 2 · 2(n+s)/2 operations. J.-J. Quisquater and J.-P. Delescaille [108]
show that the use of cycle finding techniques allows meet-in-the-middle attacks
with negligible storage, in the same way as for birthday attacks (see Sect. 2.3.1).

3.4 Hash Functions Based on Block Ciphers

From Sect. 3.3 it follows that a designer can focus his attention on the compres-
sion function. However, the design of a secure compression function is not an
easy task. A possible approach is to base the compression function on an existing
cryptographic primitive, such as a block cipher. This has the advantage that ex-
isting implementations (in software or hardware) can be reused. For applications
which require both encryption and hashing, the size of the implementation can
be minimised by using a block cipher for both purposes. Another argument is
that some block ciphers — such as the DES [54] and AES [52] algorithms — have
received a lot of public scrutiny, and thereby trust in their security properties. A
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disadvantage is that hash functions based on a block cipher are less efficient than
the dedicated proposals discussed in Sect. 3.6. Also, the use of a block cipher
for a purpose for which it was not designed may reveal weaknesses which are not
relevant in the case of encryption.

In our discussion below we write the encryption operation as Y = EK(X).
Here X denotes the plaintext, Y the ciphertext, and K the key. The size (in bits)
of plaintext and ciphertext corresponds to the block length of the cipher and is
denoted by b. The key length (in bits) is denoted by k. Typical values for these
parameters are b = 64 and k = 56 for DES, or b = 128 and k = 128 for AES.1

For more information on block ciphers we refer to Chapter 7.

3.4.1 Single block length constructions

Single block length hash functions are hash functions based on a block cipher,
which produce a hash result with length equal to the block length of the cipher.
In other words, the output length of the hash function is n = b. From the
discussion in Sect. 3.2 it follows that for such constructions a block length of 64
bits is too short. A block length of 128 bits is sufficient for preimage-resistance
but not for collision-resistance.

Two dual constructions are those attributed to Matyas-Meyer-Oseas and
Davies-Meyer [83]. In each step of the iterated hash computation the current
value of the chaining variable (Hi) and the input block to be processed (Xi) serve
as key and plaintext of the encryption function (or vice versa). The plaintext
input is then added to the output from the encryption function, which consti-
tutes a feed-forward operation. The result from the feed-forward serves as the
new chaining value for the next iteration. The computation of the compression
function f depends on the encryption function E in the following manner for the
two schemes:

– Hi+1 = f(Hi, Xi) = Ez(Hi)(Xi)⊕Xi (Matyas-Meyer-Oseas);

– Hi+1 = f(Hi, Xi) = EXi
(Hi)⊕Hi (Davies-Meyer).

Note that these schemes do not use an output transformation. Therefore the
length of the chaining variable is equal to the output length (c = n = b). If
the key length of the block cipher is different from its block length, the Matyas-
Meyer-Oseas scheme needs a function z(·) to transform the chaining value Hi to
a key suitable for E (z is a mapping from {0, 1}b to {0, 1}k). The feed-forward
operation is based on modulo 2 addition (exclusive-OR), and has the purpose of
making the compression function uninvertible. Without feed-forward it would be
trivial to find a pair Hi, Xi so that f(Hi, Xi) = Hi+1 for a given Hi+1 (simply

1Other key lengths, in particular k = 192 or 256 are possible for AES [52].
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select the key and compute the inverse of the encryption operation). A graphical
representation of the Matyas-Meyer-Oseas and Davies-Meyer schemes is shown
in Fig. 3.2.
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Figure 3.2: Two dual single block length hash functions.

The Matyas-Meyer-Oseas and Davies-Meyer schemes are not the only possible
single block length constructions. In [102] Preneel et al. consider 64 possible
schemes, and show that 12 of them are secure (including Matyas-Meyer-Oseas
and Davies-Meyer). This means that finding a (second) preimage requires about
2n operations, and finding a collision about 2n/2 operations. Formal proofs for
the security of these schemes, under a black-box model for the block cipher, were
given by J. Black et al. in [22]. An important (and secure) variant of Matyas-
Meyer-Oseas, is the Miyaguchi-Preneel scheme [101, 88] which has the following
compression function:

– Hi+1 = f(Hi, Xi) = Ez(Hi)(Xi)⊕Xi ⊕Hi (Miyaguchi-Preneel).

Note that for these block cipher based hash functions a new key is used in
each step of the iteration. Practical block ciphers have an internal key scheduling
algorithm which converts the key into a sequence of round keys to be used in the
internal operation of the cipher. When a cipher is used for encryption the key
schedule only needs to be computed when a new encryption key is supplied (the
same key can be used for many encryptions). In the hash modes described above
however, the key schedule needs to be recomputed for each step of the iteration.
This has a significant effect on the efficiency, especially for block ciphers with a
slow key scheduling algorithm.2

2To give an idea, [92] gives the following performance figures (software implementation on
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3.4.2 Double block length constructions

For most block ciphers the schemes discussed in Sect. 3.4.1 result in hash functions
with an output length that is too short, especially with respect to collision-
resistance. An alternative is the use of double block length hash functions, which
produce a hash result with length equal to twice the block length of the cipher.
In other words, the output length of the hash function is n = 2 · b. This means,
e.g., that DES will result in a 128-bit hash function, and AES in a 256-bit hash
function.

The best known schemes in this class are MDC-2 and MDC-4, designed by
B. Brachtl et al. [25, 87]. The compression function of MDC-2 uses two parallel
computations of the Matyas-Meyer-Oseas (single block length) scheme. Let CL

and CR denote the left and right b/2-bit halves of a b-bit value C. Then the
compression function of MDC-2 can be described by

Hi+1‖H̃i+1 = f(Hi‖H̃i, Xi) ,

which depends on the following computations:

Ci+1 = Ez(Hi)(Xi)⊕Xi ,

C̃i+1 = Ez̃(H̃i)
(Xi)⊕Xi ,

Hi+1 = CL
i+1 ‖ C̃R

i+1 ,

H̃i+1 = C̃L
i+1 ‖CR

i+1 .

Note that if the switch of the left and right halves would be omitted, the two
chains would be independent and they could be attacked separately. There is
no output transformation, so the length of the chaining variable is equal to the
output length (c = n = 2 · b).

The compression function of MDC-4 consists of two sequential executions of
the MDC-2 compression function. For the second MDC-2 compression, the keys
are derived from the outputs (chaining variables) of the first MDC-2 compression,
and the plaintext inputs are the outputs (chaining variables) from the opposite
sides of the previous MDC-4 compression.

The best known preimage attacks on MDC-2 and MDC-4 require respectively
23n/4 and 2n operations. For the best known collision attacks 2n/2 operations
are needed for both MDC-2 and MDC-4. The preimage attack on MDC-2 shows
that this construction does not have ideal security. Moreover, pseudo-preimages
and pseudo-collisions can be found for the MDC-2 compression function with a

Pentium III/Linux) for DES: 472 cycles for encryption of a block and 883 cycles for the key
schedule. In the case of AES with 128-bit key the figures are: 400 cycles for encryption of a
block and 504 cycles for the key schedule.
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complexity of about 2n/2 and 2n/4 respectively. Pseudo-collisions for the MDC-
4 compression function can be found with a complexity of 23n/8. Even better
attacks apply when DES is used as block cipher (b = 64, k = 56) for MDC-2 or
MDC-4. For more information we refer to the work of Knudsen and Preneel [75].

An important parameter describing the efficiency of these constructions is the
rate of the block cipher based hash function. The rate is defined as the number
of b-bit input blocks that can be processed with a single encryption. For MDC-2
and MDC-4 the rate is respectively 1/2 and 1/4. Note that the single block length
hash functions described in Sect. 3.4.1 have a rate of 1 (except for Davies-Meyer
where it is equal to the ratio k/n). Several double block length hash functions
with rate 1 have been proposed but these have been broken [74].

3.4.3 Attacks based on properties of the underlying cipher

For block cipher based hash functions weaknesses in the cipher may lead to
an attack on the hash function. Differential cryptanalysis [18] is a technique
commonly applied to block ciphers, which studies the relation between input and
output differences (see also Chapter 7). For the single block length hash functions
of Sect. 3.4.1 it is easy to see that, if one finds a difference in the plaintext
which yields the same difference in the ciphertext, a collision is obtained in the
compression function output (chaining variable). The schemes which use the Xi

blocks as plaintext input (Matyas-Meyer-Oseas and Miyaguchi-Preneel) are most
vulnerable to such attacks because an attacker has complete control over these
blocks. Preneel and Rijmen [96, 111] have studied differential attacks on block
cipher based hash functions.

Obviously the best approach for a designer is to base his hash function on
a block cipher which has received a substantial amount of analysis and which
is believed to be secure. However, one must still be very careful because weak-
nesses which have no impact on the security of a block cipher when it is used for
encryption, may have a serious effect on the security of a hash function based
on this cipher. For DES several properties have been identified which may be of
concern: fixed points, weak keys, key collisions and the complementation prop-
erty. Whether these weaknesses can be exploited depends on the design of the
hash function. In the case of DES the problems with weak keys and the comple-
mentation property can be solved by fixing bits 2 and 3 of the key input to “01”
or “10”, but this reduces the size of the key space and consequently the security
level against preimage and collision attacks. For more information we refer to
[89, 96].
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3.5 Hash Functions Using Modular Arithmetic

A cryptographic hash function can also use modular arithmetic as the basis of
its compression function. This allows the reuse of existing implementations of
modular arithmetic (such as in public-key cryptosystems). An advantage of these
schemes is that it is easy to scale the security level by choosing a modulus M of
appropriate length. A significant disadvantage is that hash functions based on
modular arithmetic are very slow, even when compared to the block cipher based
constructions of Sect. 3.4. Also, many specific proposals were broken in the past.

Experience has led to the design of two variants of the MASH hash function
[64]. The compression function of MASH-1 is based on a modular squaring
operation, where the modulus M is chosen as a composite of sufficient bitlength
m to make it infeasible to factor M . Typical values are m = 1024, 1536, . . . For
an input block Xi and a chaining value Hi, the compression function computes a
new chaining value Hi+1 in the following manner. The block Xi is first expanded
with redundancy bits to a block X̃i of double length (the four most significant
bits of every byte in X̃i are set equal to “1111”). This block X̃i is added modulo
2 (exclusive-OR) to the chaining value Hi. Both X̃i and Hi have bitlength c,
chosen as the largest multiple of 16 less than m. Next the modular square is
computed and a feed-forward is applied with the chaining value Hi. This results
in the following expression for the compression function:

Hi+1 = ((((Hi ⊕ X̃i) ∨A)2 mod M) a c)⊕Hi .

Here A is the constant f00 . . . 00x. The Boolean OR operation with A forces
the four most significant bits of Hi ⊕ X̃i to “1”, prior to squaring. a c denotes
truncation of the result of the squaring to the c least significant bits.

After the last iteration of the compression function there is an output transfor-
mation which reduces the length of the hash result to n = c/2 bits (or less). This
transformation consists of a number of applications of the compression function
(see [64] for details). The security of MASH-1 depends in part on the difficulty
of extracting modular roots for a composite of unknown factorisation. It can be
shown that the scheme would be totally insecure without the redundancy bits
that are added to the blocks Xi. The hash function MASH-2 is a variant of
MASH-1, where the only difference is that a modular exponentiation with expo-
nent e = 28 + 1 is used (instead of modular squaring with e = 2). This provides
an additional security margin. The best known preimage and collision attacks
on MASH-1 and MASH-2 require respectively 2n and 2n/2 operations.
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3.6 Dedicated Hash Functions

Dedicated hash functions are algorithms which are designed for the explicit pur-
pose of hashing. This means that they are not constrained to the reuse of existing
components such as block ciphers or modular arithmetic, and that they can be
designed with optimised performance in mind. The hash functions of this type
which have received the most attention in practice are those based on the MD4
algorithm. MD4 is a hash function proposed by R. Rivest in 1990 [114]. It was
designed specifically towards software implementation on 32-bit platforms. Due
to security concerns Rivest designed a more conservative variant, called MD5
[115], shortly afterwards. Other important hash functions based on the same
principles are HAVAL [131], and the RIPEMD [100] and SHA [51] families of
hash functions. Chapter 4 is devoted to this group of algorithms and gives an
extensive overview of design principles and cryptanalytic results.

Other notable hash functions include Tiger [1], an algorithm targeted towards
64-bit processors (it uses look-up tables with 8 input and 64 output bits), and
Whirlpool [9], an algorithm based on an internal block cipher (b = k = 512)
used in the Miyaguchi-Preneel mode. Other dedicated algorithms have been
proposed, many of which have been broken. A special case is Panama [30], a
cryptographic module that can be used for both hashing and stream encryption.
In Chapter 5 we describe Panama and show a cryptanalysis of its hashing mode.

3.7 Standardisation of Algorithms

Several organisations are active in the standardisation of cryptographic algo-
rithms. The International Organization for Standardization (ISO) and the Inter-
national Electrotechnical Commission (IEC) develop standards in the joint tech-
nical committee ISO/IEC JTC 1. The American National Standards Institute
(ANSI) develops standards. The National Institute of Standards and Technology
(NIST) develops Federal Information Processing Standards (FIPS), for use by
U.S. federal government departments.

The most notable hash function standards are the following. ISO/IEC has
developed standard 10118 for hash functions, with separate parts for different
classes of hash functions. Part 2 of ISO/IEC 10118 [62] details hash functions
based on an (unspecified) block cipher, more specifically the Matyas-Meyer-Oseas
construction, MDC-2 and two more functions producing a hash value of double
and triple block length respectively. Part 3 of ISO/IEC 10118 [63] specifies seven
dedicated algorithms: two of the RIPEMD-family, four of the SHA-family, and
Whirlpool. Part 4 of ISO/IEC 10118 [64] includes the MASH-1 and MASH-2
hash functions based on modular arithmetic. ANSI has adopted hash functions in
its public-key based banking standards: standard X9.30 [3] specifies the dedicated
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algorithm SHA-1 as a mandatory part of the Digital Signature Standard (DSS);
standard X9.31 [4] specifies MDC-2 to be used in conjunction with an RSA-based
digital signature scheme. The NIST standard FIPS 180-2 [51] includes several of
the dedicated hash functions of the SHA-family (see Sect. 4.7 of the next chapter
for details).

We also mention the efforts of the NESSIE project here (see Sect. 1.2.1).
NESSIE published an open call for the submission of cryptographic algorithms
(one-way and collision-resistant hash functions were among the requested cate-
gories). The Whirlpool hash function was submitted in response to this call.
Further, NESSIE also evaluated the hash functions included in the NIST stan-
dard FIPS 180-2. All of these algorithms are recommended by NESSIE and are
included as part of the NESSIE portfolio of cryptographic primitives.

3.8 Conclusions

We have given an overview of the different approaches that are used for the
design of cryptographic hash functions. All known hash functions are based on
the iteration of a compression function, and we have explained that a designer can
focus his attention on building a secure compression function. For the design of
a compression function one can either use existing cryptographic building blocks
such as block ciphers, or start from scratch and build a function specific for the
purpose of hashing. In the next chapter we discuss several of these dedicated
hash functions in detail.



Chapter 4

Dedicated Hash Functions

of the MDx-class

4.1 Introduction

In this chapter we give an extensive overview of a group of dedicated hash func-
tions that are all based on similar design ideas. The first of these hash functions
was the MD4 algorithm [114], proposed by R. Rivest in 1990. MD4 was a novel
design, oriented towards software implementation on 32-bit architectures (as in
most common desktop processors), and it achieved a remarkable performance:
it is for example more than 10 times faster than the DES block cipher. In the
meantime it has been shown that MD4 is not a secure hash function, but several
other algorithms have been derived from MD4 (with improved strength); these
are often called the MDx-class. Included in the MDx-class are the MD5 algo-
rithm [115] (another design of Rivest), the HAVAL algorithm [131] (proposed by
a group of researchers in Australia), the SHA algorithms [51] (U.S. hash function
standards of the NIST), and the RIPEMD algorithms [44] (originally developed
in the framework of the European RIPE project). These hash functions are the
most popular in use today, due to their performance and because of the trust
gained from cryptanalytic efforts. Figure 4.1 below gives a timeline showing the
history of the MDx-class.

In the following we first give generic comments on the design and cryptanal-
ysis of this type of hash functions. Next we describe the algorithms and discuss
their security, and we conclude with a comparison of both security and perfor-
mance of the different algorithms. An overview on the security of MDx-class hash
functions has been published in [126], and the cryptanalysis of HAVAL presented
in Sect. 4.5 below has been published in [123].
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Figure 4.1: History of the MDx-class.

4.2 Design Principles

The hash functions of the MDx-class are iterated constructions, following the
model described in Chapter 3 (Sect. 3.3). This means that hashing is based on
the iteration of a compression function, taking a chaining variable and a message
block as inputs and producing a new value for the chaining variable as output.
An initial value is defined for the chaining variable, and the message to be hashed
is first pre-processed by adding some padding bits and dividing it in blocks of
equal length (b bits). We can make the following observations on the manner in
which the iterated model is used for the MDx-class hash functions.

Message pre-processing. A padding scheme is used which appends a single
1-bit to the message, followed by a number d of 0-bits, and finally a number of
bits containing a representation of the length of the original message. Here d is
chosen as the smallest number (possibly zero) for which the length of the padded
message is a multiple of the block length b.
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Chaining variable and hash result. The lengths of the chaining variable
and the hash result are equal (c = n bits). Furthermore, the hash result is taken
as the final value of the chaining variable, obtained after the last application of
the compression function. This means that there is no output transformation.1

Collision-resistance of the compression function. The compression func-
tion is designed to be collision-resistant. From the iterated model, and from the
fact that the padding bits contain a representation of the length of the message,
this would imply that the hash function is also collision-resistant (according to
the Merkle-Damg̊ard theorem, Sect. 3.3.1).

Word-orientation. Hash functions from the MDx-class are word-oriented.
This means that all data (chaining variable and message blocks) are divided into
words of a specified length (w bits), and the compression function uses only op-
erations on words of this length. MDx-class hash functions have a word length of
w = 32 or w = 64 bits. Note that algorithms with word length w are well-suited
for implementation on w-bit architectures.

Little-endian or big-endian conversion. The message to be hashed and the
output from the algorithm are usually represented as strings of bytes. Therefore
conversions must be made between strings of bytes and sequences of words (or
vice-versa). For interoperable implementations on different processors, an unam-
biguous convention must be specified for these conversions. Consider a string of
bytes bi with increasing memory addresses i, and assume that we have to con-
vert this to a sequence of 32-bit words. Each substring of four consecutive bytes
(e.g., b0, b1, b2, b3) is converted to a 32-bit word W as follows. In a little-endian
architecture the byte with the lowest memory address (b0) is the least significant
byte of the word: W = 224 · b3 + 216 · b2 + 28 · b1 + b0. In a big-endian archi-
tecture the byte with the lowest memory address is the most significant byte:
W = 224 · b0 + 216 · b1 + 28 · b2 + b3. Note that algorithms based on the little or
big-endian convention are best suited for implementation on little or big-endian
architectures respectively (the correct conversions are made automatically).

Sequential structure. The compression function of MDx-class hash functions
is of a sequential nature. This means that it consists of a large number of step
operations that are executed sequentially (the result of a step must be known
in order to proceed to the following step). Furthermore, the elementary step
operations have a simple structure. For the parameters c (chaining length) and

1Some MDx-class hash functions have an optional output transformation for shorter hash
results (n < c).
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w (word length) the chaining variable consists of c/w words (of w bits each). The
values of one or two of these words are updated in a step operation. Each step
depends on one w-bit word of the message block that is being processed. Only
simple operations on w-bit words are used.

Message expansion. For a block length of b bits, the message blocks that are
processed by the compression function consist of b/w words (of w bits each). As-
sume now that the compression function has a structure consisting of s sequential
step operations. As mentioned above every step depends on one message word,
so s of these words are needed in total. Here s > b/w for MDx-class hash func-
tions. Therefore a procedure must be specified for expanding the b/w words of
the message block input to a block of s words. Some hash functions use a very
simple expansion where each of the b/w message words is used multiple times in
a number of different steps ( s

b/w times to be precise), but other hash functions

have a more complex procedure for expansion, based on a linear code.

4.3 Methods of Cryptanalysis

In this chapter we give an overview of attacks published in the literature for
MDx-class hash functions. Most of these attacks try to find collisions for the
hash function, that is two different messages which are hashed to the same re-
sult. Because of the iterated construction, and the Merkle-Damg̊ard theorem,
the cryptanalyst can focus his attention on the compression function and try to
find two message blocks which are processed to the same output chaining vari-
able. Here the input chaining variable must be equal to the initial value that is
specified for the hash function. That is, the attacker tries to find two message
blocks M0 and M ′0 such that f(IV,M0) = f(IV,M ′0). This can be extended to a
collision for the hash function in a trivial manner: one simply appends a number
of common trailing blocks to M0 and M ′0 (these blocks should include the rep-
resentation of the length). There are a number of concepts that are related to
collisions (see also Sect. 3.3.1).

Random IV collisions. These are collisions for the compression function
where the computation starts from an arbitrary value H for the input chaining
variable: f(H,M0) = f(H,M ′0). Such a collision can not be extended to the hash
function itself, except if one is able to find a message block M−1 which connects
the value H with the initial value IV for the chaining variable: f(IV,M−1) = H.
However, this would involve finding a preimage for the compression function.
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Pseudo-collisions. These are collisions for the compression function, where
a common message block M0 is used, but two different values for the chaining
variable input: f(H,M0) = f(H ′,M0). In order to use this for a collision of the
hash function one would need to find two message blocks M−1 and M ′−1 which
connect the IV with H and H ′ respectively. This again requires the finding of
preimages.

The importance of random IV and pseudo-collisions. Although it is clear
that these types of collisions for the compression function do not bring us closer
to finding collisions for the hash function itself, their existence means that the
Merkle-Damg̊ard theorem, which states that a hash function is collision-resistant
if its compression function is collision-resistant, cannot be applied. Therefore,
this is regarded as an undesirable property of the compression function, and as
a certificational weakness for the hash function.

Almost-collisions. Some attacks are able to find almost-collisions for a com-
pression function. This means that two message blocks are found for which the
difference between the outputs has a low Hamming weight (say u bits). For an
n-bit hash function, one expects that the outputs from the compression function
for two distinct message blocks are different in n/2 bits on the average. The
case u ¿ n/2 is considered significant, because it means that the compression
function does not have random behaviour.

Inner (almost-)collisions. These are collisions or almost-collisions for the
temporary values of the chaining variable (for two distinct message blocks), at
some stage of the compression function (for example after s1 step operations
where s1 < s). This may be helpful for an attacker who tries to generate a
collision in the output of the compression function.

Cryptanalytic techniques

Different methods, and sometimes a combination of them, have been proposed
for the analysis of hash functions. Differential cryptanalysis [18] is a probabilis-
tic technique that studies the relation between input and output differences for
a function. For hash functions collisions are obtained when the difference at the
output of the compression function is equal to zero. Note that the input differ-
ence can be either in the message block or in the chaining variable input to the
compression function. In the latter case pseudo-collisions are obtained and this is
in fact similar to differential attacks applied on block ciphers, because there the
input difference is in the plaintext and the output difference in the ciphertext.
For more information we refer to Chapter 7 where we demonstrate a differential
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attack on a block cipher, and where we also discuss the relation between hash
functions and block ciphers. We will see in this chapter that many collision at-
tacks on MDx-class hash functions work with very small differences during the
computation of the compression function. This makes it easier to assure that
differences have no effect because they can be cancelled out in a further stage of
the compression function. We will also see that many attacks require the solving
of a system of non-linear equations where the unknowns are a number of chaining
variable words at some stage of the compression function. Both of these ideas
were introduced by H. Dobbertin [41]. Finally note that many attacks on hash
functions exploit very specific properties, and internal details, of the compression
function under analysis.

4.4 The MD4 and MD5 Algorithms

The MD4 and MD5 algorithms were both designed by Rivest. MD4 was first
proposed in 1990. It was a novel design and its most attractive feature was
that it achieves very good performance in software implementations on 32-bit
architectures. However it was soon discovered that its security level was much
lower than expected, as demonstrated by some attacks on reduced versions of the
algorithm. This prompted the design of MD5 (1991), intended as an improved
variant of MD4. The questions regarding the security of MD4 were confirmed
when Dobbertin, in 1996, demonstrated a very practical collision-finding attack
on the full MD4 algorithm. Furthermore, some serious weaknesses have been
shown in MD5 as well.

In this section we give an extended security analysis of MD4, both because of
the historical significance of this algorithm and because it allows us to develop
our techniques for cryptanalysis which we apply on other hash functions of the
MDx-class. We will also discuss more briefly the security weaknesses of MD5.

4.4.1 Description of the MD4 algorithm

The MD4 algorithm [114] computes hash results of 128 bits, for messages of
arbitrary length. The algorithm has a word length of 32 bits, therefore the
chaining variable is divided into four registers (A,B,C,D) of 32 bits each. The
compression function works on message blocks of 512 bits, a block is divided into
sixteen 32-bit words denoted by Wj for j = 0, 1, . . . , 15.

Internally, the compression function consists of 48 sequential steps, where each
step is used to update the value of one of the four registers. Another distinction
that can be made is into rounds: round 1 consists of the first sixteen steps, round
2 of the middle sixteen steps and round 3 of the last sixteen steps. The step
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Table 4.1: Word processing order for the three rounds of MD4.

Round 1 W0 W1 W2 W3 W4 W5 W6 W7

W8 W9 W10 W11 W12 W13 W14 W15

Round 2 W0 W4 W8 W12 W1 W5 W9 W13

W2 W6 W10 W14 W3 W7 W11 W15

Round 3 W0 W8 W4 W12 W2 W10 W6 W14

W1 W9 W5 W13 W3 W11 W7 W15

operation of MD4 is of the following form:

A← (A+ fr(B,C,D) +Wj + Ur)
¿vs .

Here we consider a step that updates the value of the A register. The operation
depends on the other three registers (B,C,D), and on the following:

– a message word Wj from the set j = {0, 1, . . . , 15};

– a Boolean function fr that depends on the round;

– an additive constant Ur that depends on the round;

– a rotation constant vs that depends on the step.

Note that the additions in the step operation are performed modulo 232.
The Boolean functions used in the three rounds of the compression function

are the selection, majority and exor functions respectively. These functions oper-
ate at bit level and are implemented with the Boolean AND, OR, exclusive-OR
and NOT operations. Each of the three rounds of the compression function uses
every wordWj from the set j = {0, 1, . . . , 15} exactly once but the order in which
the sixteen message words are applied in a round is different in every round as
shown in Table 4.1.

A graphical representation of the step operation of MD4 is given in Fig. 4.2.
Note that the registers change place after the step operation. Therefore four con-
secutive steps update the values of the registers A,D,C,B respectively. After
four steps the complete chaining variable has been updated. A round of the com-
pression function consists of four sequences of four steps. Hence, each register is
updated four times in every round, and twelve times in the complete compression
function (three rounds).

Note that the step operation of MD4 is reversible. For example, the previous
value of the A register can be computed by

Aprev = AÀvs
new − fr(B,C,D)−Wj − Ur .
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Figure 4.2: Step operation for MD4.

However after execution of all 48 steps, the compression function uses a feed-
forward operation which adds the initial values of the registers (the values at the
start of the compression function) to their final values (obtained after 48 steps).
The result is the chaining variable output from the compression function. Due to
the feed-forward at the end the compression function cannot be inverted. An out-
line of the compression function including the feed-forward is shown in Fig. 4.3.
Inputs are a 4-word chaining variable (A,B,C,D) and a 16-word message block
{Wj}j=0...15. Output is a new value for the chaining variable.

For a detailed description of MD4, and for an explanation of the notations
that we use in our analysis below, we refer to Appendix B.
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Figure 4.3: Outline of the MD4 compression function.

4.4.2 Analysis of MD4 reduced to two rounds

We first consider a variant of MD4 where the compression function has been
reduced to the first two rounds (step 1 up to step 32, see Appendix B), and we
develop a technique for finding collisions for this reduced variant. The analysis
is based on a modification of the first part of Dobbertin’s attack [42] on the
complete MD4 algorithm (see Sect. 4.4.4).
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Outline of the attack

The goal of our attack is to find two distinct message blocks {Wj} and {W ′j}
(0 ≤ j ≤ 15) which are mapped by the compression function to the same output
value, where the computation for the two message blocks starts from the same
128-bit input chaining value (A0, B0, C0, D0). We find such a collision for two
message blocks with a small difference in only one of the words, more specifically:

W ′12 = W12 + 1 ,

W ′j = Wj (j 6= 12) .

The compression function reduced to two rounds updates each of the four
registers of the chaining variable eight times (four times in a round). We denote
these values by (Ai, Bi, Ci, Di) with 1 ≤ i ≤ 8. The output of the reduced
compression function is then computed with a feed-forward as (A0 + A8, B0 +
B8, C0 + C8, D0 +D8).

It can be seen that the word W12, respectively W ′12 (which contains the only
difference between the two message blocks), is applied two times, in step 13 and
in step 20 (see Appendix B). Before step 13 all values of the registers are equal
for the two message blocks; a collision will be obtained if the values of all registers
are equal again after execution of step 20 (hereafter all message words that are
used are the same for both message blocks so no new differences will occur in
any computed register value). We can make our attack succeed if we control the
differences in registers between step 13 and step 20 very carefully.

The first use of the word W12, respectively W ′12, is in step 13 (round 1 of
the compression function) where a new value is computed for the A register.
This means that the first computed register value which is not equal for the two
message blocks, is the value A4, respectively A′4. At this point we require the
following correspondence between the registers for the two message blocks:

A4 = A′4 − 1 B3 = B′3 C3 = C ′3 D3 = D′3 .

The next use ofW12, respectivelyW
′
12, occurs in step 20 (round 2 of the compres-

sion function) where a new value is computed for the B register. For a collision
we need the following correspondence between register values at this point:

A5 = A′5 B5 = B′5 C5 = C ′5 D5 = D′5 .

Table 4.2 below shows the difference propagation used in the attack. We use
the notations ∆A = A − A′,∆B = B − B′,∆C = C − C ′,∆D = D −D′ where
(A,B,C,D) are the values of the registers at this point for message block {Wj},
and similarly (A′, B′, C ′, D′) for {W ′j}. Note that the differences are defined with
respect to the modular addition operation. The difference values shown are the
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values after the corresponding step has been executed. We also list the message
word applied in each step. Entries in bold face show which register has been
updated in a particular step. Note that we write the value −1 as shorthand for
−1 mod 232 = 232 − 1. This corresponds to a 32-bit quantity where all the bits
are set equal to 1.

Table 4.2: Overview of the difference propagation through the registers for rounds
1 and 2 of MD4 (for an inner collision).

Step ∆A ∆B ∆C ∆D word

13 − 1 0 0 0 W12(+1)
14 −1 0 0 0 W13

15 −1 0 0 0 W14

16 −1 1 0 0 W15

17 0 1 0 0 W0

18 0 1 0 0 W4

19 0 1 0 0 W8

20 0 0 0 0 W12(+1)

In step 13 which uses the word W12, respectively W ′12, a difference in the A
register is introduced: A4 − A′4 = −1. For steps 14 and 15 we require that the
difference in the A register does not spread to the D and C registers: D4−D′4 =
C4−C ′4 = 0. We then let the difference in the A register spread to the B register
in step 16: B4−B′4 = 1. For step 17 we require that the differences in the A and
B registers interact in such a way that the difference in the A register disappears:
A5 − A′5 = 0. Now we have only a difference in the B register which should not
spread to the D and C registers in steps 18 and 19: D5 − D′5 = C5 − C ′5 = 0.
Finally in step 20 where the words W12, respectively W ′12, are used again we
require that the difference in the B register disappears: B5 −B′5 = 0.

Constructing a system of difference equations

For each step in turn, we now look at the difference which is obtained after
computing the new register value for the message blocks {Wj} and {W ′j}.

Step 13. In this step we have a difference in the applied message word W12,
respectively W ′12. Using the definition of the step operation (see Appendix B),
the equalities A′3 = A3, B

′
3 = B3, C

′
3 = C3, D

′
3 = D3, and W ′12 = W12+1 we get

the following equations

A4 = (A3 + f1(B3, C3, D3) +W12)
¿3 ,
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A′4 = (A3 + f1(B3, C3, D3) +W12 + 1)¿3 .

Note that the Boolean function f1 is the selection function used in round 1 of
the compression function. To simplify the analysis we choose A4 = −1. It can be
seen that this implies that A3+f1(B3, C3, D3)+W12 = AÀ3

4 = −1 and therefore
that A′4 = (−1 + 1)¿3 = 0. This agrees with the difference A4 −A′4 = −1.

Step 14. From the definition of the step operation we get

D4 = (D3 + f1(A4, B3, C3) +W13)
¿7 ,

D′4 = (D3 + f1(A
′
4, B3, C3) +W13)

¿7 .

We require that D4 −D′4 = 0 which leads to the condition

f1(A4, B3, C3)− f1(A
′
4, B3, C3) = 0 . (4.1)

Step 15. We require that C4 − C ′4 = 0. It can be seen that this leads to the
condition

f1(D4, A4, B3)− f1(D4, A
′
4, B3) = 0 . (4.2)

Step 16. In this step we need to obtain the right difference B4 − B′4 = 1. We
have the following equations:

B4 = (B3 + f1(C4, D4, A4) +W15)
¿19 ,

B′4 = (B3 + f1(C4, D4, A
′
4) +W15)

¿19 .

If we now freely choose a value of B4 = Q1 and set B′4 = Q1 − 1 (to satisfy the
difference B4 −B′4 = 1), this leads to the condition

f1(C4, D4, A4)− f1(C4, D4, A
′
4) = QÀ19

1 − (Q1 − 1)À19 . (4.3)

Step 17. This is the first step of round 2 of the compression function so the
majority function f2 is used in the step operation (and an additive constant U2,
see Appendix B):

A5 = (A4 + f2(B4, C4, D4) +W0 + U2)
¿3 ,

A′5 = (A′4 + f2(B
′
4, C4, D4) +W0 + U2)

¿3 .

We require that A5 − A′5 = 0. By inserting the values A4 = −1 and A′4 = 0 we
derive the condition

f2(B4, C4, D4)− f2(B
′
4, C4, D4) = 1 . (4.4)
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Step 18. For this step we require D5 −D′5 = 0. This is satisfied when

f2(A5, B4, C4)− f2(A5, B
′
4, C4) = 0 . (4.5)

Step 19. We require C5 − C ′5 = 0 which is satisfied when

f2(D5, A5, B4)− f2(D5, A5, B
′
4) = 0 . (4.6)

Step 20. In this step the message word W12, respectively W
′
12 is applied again:

B5 = (B4 + f2(C5, D5, A5) +W12 + U2)
¿13 ,

B′5 = (B′4 + f2(C5, D5, A5) +W12 + 1 + U2)
¿13 .

We require that B5 −B′5 = 0 which is satisfied because B′4 = B4 − 1.

Solving the system of equations

To summarise our analysis, a collision for the two rounds of the reduced com-
pression function is obtained by setting the register values

A4 = −1 A′4 = 0 B4 = Q1 B′4 = Q1 − 1 ,

and satisfying the system of equations (4.1) to (4.6). This is a system with six
equations and six unknown variables B3, C3, C4, D4, A5, D5.

By using the definition of the selection function f1 and inserting the values
of A4 and A′4 it can be seen that equations (4.1) and (4.2) are equivalent to

B3 = C3 , D4 = 0 .

In a similar way, inserting also the value D4 = 0, equation (4.3) can be rewritten
as

C4 = QÀ19
1 − (Q1 − 1)À19.

From the definition of the majority function f2 it can be seen that equations (4.5)
and (4.6) are satisfied when

D5 = A5 = C4 .

In fact D5 = A5 = C4 only needs to be satisfied in those bit positions where B4

is different from B′4 (B4 = B′4 + 1, so they usually differ in only one or a few bit
positions, depending on the carry associated with the modular addition). At the
other positions the bits of A5 and D5 can be freely chosen.

Hence, we solve the system of equations by setting the register values B3, C3,
C4, D4, A5, D5 as specified above (we can freely choose a value Q2 and assign
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it to B3 = C3). We have not yet considered equation (4.4), but because of the
values of C4, D4 and B4 − B′4 it turns out that this equation is satisfied with a
probability close to 1 (for a random choice of B4 = Q1).

2

Performing the attack

Above we have shown that a collision is obtained by selecting a suitable set of
register values B3, C3, A4, B4, C4, D4, A5, D5 for message block {Wj} and a
set B′3, C

′
3, A

′
4, B

′
4, C

′
4, D

′
4, A

′
5, D

′
5 for message block {W ′j} (note that only A′4

and B′4 are different). Now we need to determine the message words themselves.
It can be seen that some of these words are already fixed because of the register
values that are fixed, for example from step 15

C4 = (C3 + f1(D4, A4, B3) +W14)
¿11 ,

where the only unknown variable is W14, we can compute the following value:

W14 = CÀ11
4 − C3 − f1(D4, A4, B3) .

In the same way we have the following fixed message words

W15 = BÀ19
4 −B3 − f1(C4, D4, A4) ,

W0 = AÀ3
5 −A4 − f2(B4, C4, D4)− U2 ,

W4 = DÀ5
5 −D4 − f2(A5, B4, C4)− U2 .

For any choice of the remaining twelve message words a collision can be gener-
ated (by defining the second message block withW ′12 = W12+1 andW ′j = Wj for
j 6= 12). When all message words have been chosen we can compute backwards
in round 1 starting from register values C3, B3, A4, D4. For example, choosing
W13 and inverting step 14 gives us

D3 = DÀ7
4 − f1(A4, B3, C3)−W13 .

In this way we finally obtain the register values A0, B0, C0, D0. This means that
we have obtained a collision for the compression function starting from a random
initial chaining variable.

It is easy to extend our attack so that we can find collisions for the compres-
sion function starting from a specified initial chaining variable (and consequently
also for the hash function, see Sect. 3.3). For example we can choose eight mes-
sage words W1, W2, W3, W5, W6, W7, W8, W9 and compute forwards from the
specified (A0, B0, C0, D0) (remember that W0 and W4 are already fixed). In this

2It may be noted that equation (4.4) is not satisfied (and therefore the attack does not work)
for the choice B4 = Q1 = 0 and B′4 = Q1 − 1 = −1.
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way we obtain the register values C2, B2, A3, D3. We also know the register val-
ues C3, B3, A4, D4 so now we can compute the required values for the remaining
four message words as follows:

W10 = CÀ11
3 − C2 − f1(D3, A3, B2) ,

W11 = BÀ19
3 −B2 − f1(C3, D3, A3) ,

W12 = AÀ3
4 −A3 − f1(B3, C3, D3) ,

W13 = DÀ7
4 −D3 − f1(A4, B3, C3) .

Complexity and flexibility of the attack

Our attack on the first two rounds of MD4 has negligible complexity. We con-
struct a solution for the system of equations by selecting suitable values for some
of the register values. We then compute four message words, choose eight other
message words, and compute the remaining four message words. The message
words are computed from simple equations derived from the step operations.

The flexibility of our attack can be measured by means of the total number
of different collisions which can in theory be generated by the attack. When we
have a solution for the system of equations we can freely choose eight message
words of 32 bits, this leads to 28·32 = 2256 different collisions. Furthermore, many
different solutions for the system of equations can be found: there are two 32-bit
values Q1 and Q2 that can be freely chosen (64 bits combined), and most of
the bits of A5 and D5 can also be chosen (on average more than 60 of the 64
bits can be chosen). Hence the number of possible solutions for the system of
equations can be estimated by 264+60 = 2124, and the total number of collisions
by 2124 · 2256 = 2380.

4.4.3 Analysis of the complete MD4 algorithm

Now we will extend our analysis to the complete MD4 algorithm which uses
a compression function of three rounds. Applying the attack described in the
previous section would give us an inner collision for rounds 1/2 of the compression
function, but this does not help us in finding collisions after three rounds. The
reason is that in round 3 the message word W12, respectively W ′12, is applied
once more and this introduces a difference in the register values which cannot be
compensated.

The solution to this problem is that we generate an inner almost-collision for
rounds 1/2 (this means that there is a small difference after round 2). As in the
first attack we use message blocks that differ only in the word W12, respectively
W ′12. The small difference after round 2 must be chosen in such a way that there
is a significant probability that it propagates to a difference in round 3 which is
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compensated when the word W12, respectively W ′12, is used for the third time.
So we combine the technique of the previous attack (constructing and solving a
system of difference equations) with the technique of differential cryptanalysis.
The attack which we describe in this section is a simplified variant of the attack
described by Dobbertin in [42]. In particular, the procedure for solving the system
of difference equations has been simplified (see also Sect. 4.4.4).

Outline of the attack

As in the previous attack we generate a collision for two message blocks {Wj}
and {W ′j} (0 ≤ j ≤ 15) with a small difference in only one message word:

W ′12 = W12 + 1 ,

W ′j = Wj (j 6= 12) .

Note that the compression function of the complete MD4 algorithm has three
rounds, so it updates each of the four registers of the chaining variable twelve
times (four times in a round). We denote these values by (Ai, Bi, Ci, Di) with
1 ≤ i ≤ 12. The output of the compression function is then computed with a
feed-forward as (A0 +A12, B0 +B12, C0 + C12, D0 +D12).

The word W12, respectively W ′12, is applied three times, in steps 13, 20 and
36. Before step 13 all values of the registers are equal for the two message blocks;
a collision is obtained if the values of all registers are equal again after execution
of step 36.

In phase I of the attack we generate an inner almost-collision after step 20
(round 2). This is similar to the inner collision generated by the attack described
in Sect. 4.4.2, except that we look for the following correspondence between
register values after step 20:

A5 = A′5 B5 = B′5 + 1¿25 C5 = C ′5 − 1¿5 D5 = D′5 .

In phase II of the attack we perform a differential cryptanalysis from step
20 to step 36. We require that the differences in the C and B registers do not
spread to the A and D registers. Furthermore, the differences in the C and B
registers after step 19 and step 20 have been chosen such that the difference in
the C register disappears in step 35, and to compensate the difference in the B
register in step 36 by means of the message word W12, respectively W ′12. This
results in a collision in the output of the compression function.

In order to generate an inner almost-collision (phase I of the attack) we need
to fix a few of the words Wj in the message blocks. We can then randomly
choose the remaining words in phase II and see if the differential attack works.
The success probability of the differential attack is around 2−22, so a collision
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can be found by randomly choosing the remaining words Wj and computing
the difference after step 36 (which should be zero for all registers). This will
succeed after, on average, 222 trials. There is one more complication: matching
the specified initial chaining variable (A0, B0, C0, D0). This can be done with a
small adaptation of the differential attack.

Phase I: Finding an inner almost-collision for rounds 1/2

We first analyse the part of the compression function between step 13 and step
20. Table 4.3 below shows the difference propagation used in this phase of the
attack. In step 13 which uses the word W12, respectively W ′12, a difference in
the A register is introduced: A4 − A′4 = −1. For step 14 we require that the
difference in the A register does not spread to the D register: D4 −D′4 = 0. In
step 15 we let the difference in the A register spread to an unspecified difference
in the C register (C4 − C ′4 = ∆c), and in step 16 the differences in the A and C
registers spread to an unspecified difference in the B register (B4 − B′4 = ∆b).
For step 17 we require that the difference in the A register is compensated by the
differences in the B and C registers so that A5 −A′5 = 0. For step 18 we require
that the differences in the B and C registers do not spread to the D register:
D5 −D′5 = 0. Finally in steps 19 and 20 (note that the word W12, respectively
W ′12, is used again in step 20) we need to obtain the specified differences in the
C and B registers: C5 − C ′5 = −1¿5 and B5 −B′5 = 1¿25.

Table 4.3: Overview of the difference propagation through the registers for rounds
1 and 2 of MD4 (for an inner almost-collision).

Step ∆A ∆B ∆C ∆D word

13 −1 0 0 0 W12(+1)
14 −1 0 0 0 W13

15 −1 0 ∆c 0 W14

16 −1 ∆b ∆c 0 W15

17 0 ∆b ∆c 0 W0

18 0 ∆b ∆c 0 W4

19 0 ∆b −1¿5 0 W8

20 0 1¿25 −1¿5 0 W12(+1)

We construct a system of difference equations in a manner similar to the
attack described in Sect. 4.4.2. We again choose the values A4 = −1 and A′4 = 0
(this satisfies step 13) and obtain the following system of equations3 (∆c denotes

3Compared to the attack of Sect. 4.4.2, there is one additional equation for step 20.
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C4 − C ′4 and ∆b denotes B4 −B′4):

f1(A4, B3, C3)− f1(A
′
4, B3, C3) = 0 (4.7)

f1(D4, A4, B3)− f1(D4, A
′
4, B3) = CÀ11

4 − C
′À11
4 (4.8)

f1(C4, D4, A4)− f1(C
′
4, D4, A

′
4) = BÀ19

4 −B
′À19
4 (4.9)

f2(B4, C4, D4)− f2(B
′
4, C

′
4, D4) = 1 (4.10)

f2(A5, B4, C4)− f2(A5, B
′
4, C

′
4) = 0 (4.11)

f2(D5, A5, B4)− f2(D5, A5, B
′
4) = CÀ9

5 − C
′À9
5 −∆c (4.12)

f2(C5, D5, A5)− f2(C
′
5, D5, A5) = BÀ13

5 −B
′À13
5 −∆b + 1 (4.13)

We simplify the analysis by choosing B3 = C3 = 0. If we insert the values of
A4, A

′
4, B3 and C3 and use the definition of the selection function f1 we see that

equation (4.7) is satisfied and equation (4.8) is equivalent to:

D4 = CÀ11
4 − C

′À11
4 . (4.14)

This equation can be satisfied by assigning suitable values to C4 = Q1, C
′
4 = Q2

and D4 = Q3. This is done independently from the other equations of the system,
but a suitable choice for Q1, Q2, Q3 must be made so that the functions f1 and
f2 are easy to manipulate in equations (4.15) and (4.16) below. Now we add an
additional equation to our system:

BÀ13
5 −B

′À13
5 −∆b + 1 = 0 ,

and rewrite the system of equations as follows (using the values of A4, A
′
4, C4,

C ′4, D4 and the relations C ′5 = C5 + 1¿5 and B′5 = B5 − 1¿25):

f1(Q1, Q3,−1)− f1(Q2, Q3, 0) = BÀ19
4 −B

′À19
4 (4.15)

f2(B4, Q1, Q3)− f2(B
′
4, Q2, Q3) = 1 (4.16)

f2(A5, B4, Q1)− f2(A5, B
′
4, Q2) = 0 (4.17)

f2(D5, A5, B4)− f2(D5, A5, B
′
4) = CÀ9

5 − (C5 + 1¿5)À9 −∆c (4.18)

f2(C5, D5, A5)− f2((C5 + 1¿5), D5, A5) = 0 (4.19)

BÀ13
5 − (B5 − 1¿25)À13 −∆b + 1 = 0 (4.20)

The resulting system has six unknown variables B4, B
′
4, A5, D5, C5 and B5. We

propose the following procedure for solving this system of equations:

1. Determine the unknowns B4 and B
′
4 from equations (4.15) and (4.16). This

can be done by trying random values for B4, computing for each value of
B4 a corresponding value for B′4 from equation (4.15), and repeating this
until equation (4.16) is satisfied.



4.4. The MD4 and MD5 Algorithms 61

2. Determine the unknown A5 from equation (4.17). Simply try random values
for A5 until the equation is satisfied.

3. Determine the unknowns D5 and C5 from equations (4.18) and (4.19). This
is done by trying random values for both D5 and C5 until the equations
are satisfied. Note that ∆c is known (∆c = Q1 −Q2).

4. Determine the unknown B5 from equation (4.20). This is done by trying
random values for B5 until the equation is satisfied. Note that ∆b is known
(∆b = B4 −B′4, and B4 and B′4 have been determined).

The solution for this system of equations is more complicated compared to
the solution for the inner collision in Sect. 4.4.2. However, the procedure that
we propose is still very efficient. Because of the special form of the difference
equations, and because the differences in the registers for the two message blocks
are small, it turns out that they are satisfied with a high probability and a few
trials are sufficient in each step of the procedure. There is however one more
complication. The inner almost-collision that is found is only useful as a starting
point for the next phase of the attack if the following condition is satisfied:

f2(B5, C5, D5) = f2(B
′
5, C

′
5, D5) (4.21)

Because the differences B5−B′5 and C5−C ′5 are small, there is a high probability
for this condition to be true. Therefore, the procedure for solving the system of
equations (4.15) to (4.20) is repeated a few times until equation (4.21) is satisfied.
Such a solution is called an admissable inner almost-collision. The complexity for
this phase of the attack is negligible compared to the complexity of the differential
attack that we describe below.

We have now determined a suitable set of register values B3, C3, A4, B4, C4,
D4, A5, D5, C5, B5 for message block {Wj} and a set B′3, C

′
3, A

′
4, B

′
4, C

′
4, D

′
4,

A′5, D
′
5, C

′
5, B

′
5 for message block {W ′j} (note that only A′4, B

′
4, C

′
4, B

′
5 and C ′5

are different). It can be seen that this implies that six of the message words are
now fixed, more specifically:

W14 = CÀ11
4 − C3 − f1(D4, A4, B3) ,

W15 = BÀ19
4 −B3 − f1(C4, D4, A4) ,

W0 = AÀ3
5 −A4 − f2(B4, C4, D4)− U2 ,

W4 = DÀ5
5 −D4 − f2(A5, B4, C4)− U2 ,

W8 = CÀ9
5 − C4 − f2(D5, A5, B4)− U2 ,

W12 = BÀ13
5 −B4 − f2(C5, D5, A5)− U2 .
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Phase II: Differential attack on rounds 2/3

In this phase of the attack we consider the part of the compression function
between step 20 and step 36. We have an input difference in the B and C registers
from the first phase of the attack (B5 − B′5 = 1¿25 and C5 − C ′5 = −1¿5) and
we require that all differences have disappeared after step 36. Table 4.4 below
shows the difference propagation for this phase of the attack. For the B register
we have the following differences: B5 − B′5 = 1¿25, B6 − B′6 = 1¿6, B7 − B′7 =
1¿19, B8 − B′8 = 1, B9 − B′9 = 0. For the C register we have the following
differences: C5 − C ′5 = −1¿5, C6 − C ′6 = −1¿14, C7 − C ′7 = −1¿23, C8 − C ′8 =
−1, C9 − C ′9 = 0. Note that the different rotation amounts for these differences
are due to the rotation that is performed when the B or C register is updated in
a step operation. Also note that all differences for the A and D registers must
be zero.

Table 4.4: Overview of the difference propagation through the registers for rounds
2 and 3 of MD4 (differential attack).

Step ∆A ∆B ∆C ∆D prob. word

21 0 1¿25 −1¿5 0 1 W1

22 0 1¿25 −1¿5 0 1/9 W5

23 0 1¿25 −1¿14 0 1/3 W9

24 0 1¿6 −1¿14 0 1/3 W13

25 0 1¿6 −1¿14 0 1/9 W2

26 0 1¿6 −1¿14 0 1/9 W6

27 0 1¿6 −1¿23 0 1/3 W10

28 0 1¿19 −1¿23 0 1/3 W14

29 0 1¿19 −1¿23 0 1/9 W3

30 0 1¿19 −1¿23 0 1/9 W7

31 0 1¿19 −1 0 1/3 W11

32 0 1 −1 0 1/3 W15

33 0 1 −1 0 1/3 W0

34 0 1 −1 0 1/3 W8

35 0 1 0 0 1/3 W4

36 0 0 0 0 1 W12(+1)

For each step we give the probability in Table 4.4. Note that because we start
from an admissable inner almost-collision, the probability of step 21 is equal to
1. For inner almost-collisions that are not admissable the values of the registers
are not suitable at the start of the differential attack.
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Steps 21 to 32 are part of round 2 of the compression function and use the
majority function f2 in the step operation, steps 33 to 36 are part of round 3 and
use the exor function f3 in the step operation. The probabilities associated with
these steps can be computed: it is required that differences are cancelled by the
majority function, or that they compensate each other in the exor function. For
more details we refer to the analysis of Dobbertin in [42]. It is interesting to note
that we are not able to perform this differential attack on the last two rounds
using a difference in only one of the four registers. This is due to the properties
of the exor function f3 which is applied in round 3 of the compression function.

By combining the probabilities for all steps we can estimate the global prob-
ability for the propagation from step 20 up to step 36 as p2036 ≈ 2−30. The
real probability is much higher however. The reason is that the probabilities
for consecutive steps strongly depend on each other (because every step changes
the value of only one out of four registers). Experiments show that the global
probability p2036 ≈ 2−22.

The differential attack can be performed as follows. In phase I of the attack
we saw that message words W0, W4, W8, W12, W14 and W15 are already de-
termined in order to obtain an admissable inner almost-collision. We can now
randomly choose the remaining ten message words and compute forwards to step
36, starting from the known register values A5, D5, C5, B5 (or C ′5, B

′
5 for the

second message block). If the difference after step 36 is equal to zero for all
registers then we have a collision and this happens on average after 222 trials.
There is however one more complication which we describe below.

Matching the initial value

When all message words Wj are determined we can also compute backwards in
round 1 of the compression function, starting from the known register values C3,
B3, A4, D4. In this way we obtain the register values A0, B0, C0, D0. This
means that we have obtained a collision for the compression function starting
from a random initial chaining variable.

The attack can be extended so that we find collisions for the compression
function starting from a specified initial chaining variable (and consequently also
for the hash function, see Sect. 3.3). First we observe that the straightforward
approach used in Sect. 4.4.2 for matching the IV cannot be used. The reason is
that there is no sequence of four message words, applied in consecutive steps of
round 1, that we can still freely choose in phase II of the attack. A solution to
this problem is described in [42]. The basic idea is to match the initial values
for the B, C and D registers using the words W9, W10 and W11. Message word
W8 has already been determined before, however it is possible to match the
initial value for the A register using words W6 and W7 and manipulating the
properties of the selection function f1. The differential attack now works by
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choosing random values for message words W1, W2, W3, W5, W13, computing
the remaining message words so that the initial chaining values are matched and
checking if the difference after step 36 is zero for all registers. This succeeds after
on average 222 trials.

Complexity and flexibility of the attack

The attack on the complete MD4 hash function has a complexity of about 222

computations of the compression function (this complexity is determined by the
probability for the differential attack on the last two rounds). A programme that
implements this attack takes only a few seconds on an Athlon 600 MHz processor.
For each admissable inner almost-collision we can generate in theory about 2138

collisions (five message words of 32 bits can be freely chosen in the differential
attack and the probability of success is 2−22). The number of admissable inner
almost-collisions is more difficult to estimate, but it is less than 2160 (we can
randomly choose five words in the procedure for solving the system of difference
equations). Therefore, the total number of collisions is less than 2160 ·2138 = 2298.

Example collision for the MD4 algorithm

We give an example of two message blocks that are hashed by the compression
function of MD4 to the same output value. For both message blocks the compu-
tation starts from the initial value specified for the algorithm (see Appendix B):

A0 = 67452301x B0 = efcdab89x C0 = 98badcfex D0 = 10325476x .

The first message block is:

W0 = 238f9f19x W1 = db18463fx
W2 = 58fbbe89x W3 = e67bc739x
W4 = 2842db84x W5 = 46113e5ax
W6 = 81b9080ax W7 = eb9d3337x
W8 = 0d8da57bx W9 = 79f28417x
W10 = 3cbb0fc0x W11 = 210c3d70x
W12 = 1250d4e9x W13 = ef44937ax
W14 = ffffbffbx W15 = 6eb32ef3x

and the second message block is determined by

W ′12 = W12 + 1 ,

W ′j = Wj (0 ≤ j ≤ 15, j 6= 12) .

For these two message blocks, the compression function computes the follow-
ing common output value (note that this computation includes the feed-forward
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operation at the end):

A = e044225ax B = f07f7932x C = ac7d9007x D = 91348c2fx .

The complete hash function includes an additional application of the compres-
sion function, starting from the output value given above. For both messages the
same padding block is used as message input for this final application of the
compression function, therefore a collision is obtained in the final hash result:

A = c7294cf7x B = 15daf73cx C = 9dca10d0x D = dd0d66c5x .

Note that the algorithm converts this set of words into a string of sixteen
bytes, starting with the least significant byte of A and ending with the most
significant byte of D (see Appendix B).

4.4.4 Other weaknesses in MD4

In this section we give a brief overview of other weaknesses that have been found
in the MD4 hash function. First we note that it may be possible to develop
a similar attack on MD4 where the difference in the message blocks is not in
the word W12 but in some other word Wj . The word W12 has been chosen for
the attack described in Sect. 4.4.3 because it gives a good trade-off between the
complexities of the two phases of the attack. The number of steps between the
applications of Wj in round 1 and round 2 should not be too high (otherwise
we don’t have enough free variables for the second phase of the attack). On
the other hand the probability of the differential propagation characteristic (in
rounds 2 and 3) must be high enough. In particular, the number of steps in the
characteristic where the exor function f3 is used must not be too high because
of the fast diffusion of this function.

Dobbertin’s collision attack on the complete MD4 algorithm

The attack we described in the previous section is a simplification of the attack
described by Dobbertin in [42]. Dobbertin’s collision attack finds more general
solutions for the first phase of the attack (the generation of an inner almost-
collision). In particular, it does not impose the condition that D4−D′4 = 0. The
resulting system of equations is more difficult to solve, and a technique called
“continuous approximation” is introduced to achieve this. The resulting attack
is more flexible: our variant of the attack produces only a subset of all possible
inner almost-collisions. The time complexity is the same, it is determined by the
probability for the differential analysis in the second phase of the attack. Finally,
it is noted in [42] that the attack can be improved, it is even possible to generate
collisions for meaningful messages (messages that contain only a limited number
of random bytes).
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Collisions for a 256-bit extension of MD4

Extended-MD4 [114] is a variant of the MD4 algorithm, intended for applications
which require an output of 256 bits. It consists of the following procedure. Two
copies of MD4 are executed in parallel over the message input. The first copy is
the standard MD4, and the second copy is a slightly modified version: it uses a
different initial value for the chaining variable, and different additive constants
in rounds 2 and 3 of the compression function. Furthermore, after every 16-word
message block has been processed, the values of the A registers in the two copies
are exchanged. The final hash result is obtained by concatenating the results of
the two copies.

According to [42] collisions can be generated for the compression function of
this extended version. The two copies of MD4 can be attacked simultaneously,
but the attack only works when the two copies start from the same (random or
specified) initial value for the chaining variable. Therefore, it does not lead to
collisions for the hash function itself.

Preimage attacks on reduced versions of MD4

Cryptanalysis of hash functions has dealt almost exclusively with collision-finding
attacks so far. However, it has been shown that for MD4 with its compression
function reduced to two rounds, it is also possible to find preimages. In [43]
Dobbertin demonstrates such a preimage attack on the first two rounds of MD4.
In a preimage attack we start from specified initial values (A0, B0, C0, D0) and
specified output values (A0 + A8, B0 +B8, C0 + C8, D0 +D8) for the registers.4

This means that the register values (A8, B8, C8, D8) are also fixed. The goal is
to determine a suitable message block {Wj} (with 0 ≤ j ≤ 15). The main idea
is to separate the values of the B register from the other registers by exploiting
the properties of the majority function which is used in the second round of the
compression function (the B register is chosen because of the order in which the
message words are applied, as explained below). It can be seen that if two of the
inputs to the majority function are equal, then the value of the third input has
no impact on the output of the function:

f2(Bi, Q,Q) = f2(Q,Bi, Q) = f2(Q,Q,Bi) = Q . (4.22)

Table 4.5 below shows the register values for the end of round 1 and for
round 2 of the compression function. The shown values are the values after the
corresponding step has been executed. We also list the message word applied
in each step. Entries in bold face show which register has been updated in a
particular step.

4Remember that the output values are computed with a feed-forward.
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Table 4.5: Overview of the register values for a preimage attack on the first two
rounds of MD4.

Step A B C D word

13 Q B3 C3 D3 W12

14 Q B3 C3 Q W13

15 Q B3 Q Q W14

16 Q B4 Q Q W15

17 Q B4 Q Q W0

18 Q B4 Q Q W4

19 Q B4 Q Q W8

20 Q B5 Q Q W12

21 Q B5 Q Q W1

22 Q B5 Q Q W5

23 Q B5 Q Q W9

24 Q B6 Q Q W13

25 Q B6 Q Q W2

26 Q B6 Q Q W6

27 Q B6 Q Q W10

28 Q P Q Q W14

29 A8 P Q Q W3

30 A8 P Q D8 W7

31 A8 P C8 D8 W11

32 A8 B8 C8 D8 W15

We start the attack by choosing two random values P and Q, and we specify
that B7 = P and Ai = Ci = Di = Q for 4 ≤ i ≤ 7 (note that A4, C4, D4 are
the values for registers A, C and D at the end of round 1). It can be seen that
message words W0,W1, . . . ,W11 are now determined. They are computed from
steps 17–19, 21–23, 25–27, and 29–31 in round 2. For example, step 17 leads to
the following equation:5

Q = (Q+ f2(B4, Q,Q) +W0 + U2)
¿3 ,

from which the value of message word W0 is computed as

W0 = QÀ3 −Q− f2(B4, Q,Q)− U2 = QÀ3 − 2 ·Q− U2 .

Because of property (4.22) of the majority function, the values of B4, B5, B6,

5Remember that U2 denotes the additive constant used in round 2.
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and consequently the values for message words W12,W13,W14 do not need to be
known for these computations.

Message word W15 is also determined. Step 32 leads to the equation

B8 = (P + f2(C8, D8, A8) +W15 + U2)
¿13 ,

from which the value of message word W15 is computed as

W15 = BÀ13
8 − P − f2(C8, D8, A8)− U2 .

Using the values for message words W0,W1, . . . ,W11 we can compute for-
wards in round 1 of the compression function, starting from the initial values
(A0, B0, C0, D0). In this way we obtain the values for (A3, B3, C3, D3). Now we
are able to determine the values that are needed for W12,W13,W14. They are
computed from steps 13–15 in round 1: the values (A3, B3, C3, D3) are known,
and also the values A4 = C4 = D4 = Q.

Finally we use the value of W15 to compute B4 in step 16, and we use the
values of W12,W13,W14 in steps 20, 24, 28 (round 2) to compute B5, B6, B7. If
the computed value of B7 is equal to the value B7 = P which we chose at the
start of the attack, we have obtained a valid preimage. This happens with a
probability of 2−32. Otherwise we repeat the procedure for new randomly chosen
values P,Q and, on average, we succeed after 231 trials. It can be seen that
the attack reduces the problem of matching a 128-bit value to the problem of
matching a 32-bit value (for register B only).

In [77] H. Kuwakado and H. Tanaka describe an alternative preimage attack
on the first two rounds of MD4. This attack is based on the same principle, but
it exploits the properties of the selection function instead (this function is used
in round 1 of the compression function). The attack can also be applied on MD4
using only rounds 1 and 3 in the compression function.

It may be noted that both of the preimage attacks [43, 77] depend not only
on the properties of the Boolean functions used by MD4, but also on the order in
which the message words are applied in the different rounds of the compression
function.

Alternative collision attacks on reduced versions of MD4

In Sect. 4.4.2 we have described a collision attack, with negligible complexity,
on the first two rounds of MD4. Alternative collision attacks have been demon-
strated on reduced versions of MD4. In [35] B. den Boer and A. Bosselaers
describe a collision attack on the last two rounds of MD4. The attack exploits
the fact that the same set of message words is used in the middle eight steps of
rounds 2 and 3. A collision is constructed from two separate inner collisions, in
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round 2 (step 21 to step 28) and in round 3 (step 37 to step 44) of the compression
function.

In [128] S. Vaudenay describes a collision attack on the first two rounds of
MD4. This attack uses a similar strategy as the preimage attack of Dobbertin
described above: it uses property (4.22) of the majority function to isolate the
B register from the other registers. In this way the problem of finding a 128-bit
collision is reduced to the problem of finding a 32-bit collision (for register B
only). Moreover, if this attack is applied to the complete MD4 compression func-
tion (three rounds), one obtains almost-collisions (the average Hamming distance
between the outputs from the compression function for a pair of message blocks
is only 16¿ 64).

4.4.5 Description of the MD5 algorithm

The MD5 algorithm [115] was designed as a strengthened variant of MD4. The
algorithm computes hash values of 128 bits so the chaining variable is divided
into four registers (A,B,C,D) of 32 bits each. The design of MD5 is very similar
to MD4 but with the following changes:

– The compression function now consists of 64 sequential steps, divided into
four rounds (MD4 has only 48 steps and three rounds).

– The step operation is slightly different: each step now adds in the result of
the previous step.

– The order in which the message words Wj are applied in round 2 and round
3 is different from MD4.

– The Boolean function in round 2 has been changed from the majority func-
tion to a selection function (different from the selection function used in
round 1). A new Boolean function is introduced for round 4.

– Every step now uses a unique additive constant (so there are 64 different
additive constants).

– The rotation constants are changed, different rounds never use the same
value for a rotation constant.

The step operation of MD5 is of the following form:

A← (A+ fr(B,C,D) +Wj + Us)
¿vs +B .

Here we consider a step that updates the value of the A register. The operation
depends on the other three registers (B,C,D), and on the following:
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– a message word Wj from the set j = {0, 1, . . . , 15};

– a Boolean function fr that depends on the round;

– an additive constant Us that depends on the step;

– a rotation constant vs that depends on the step.

A graphical representation of this step operation is given in Fig. 4.4. Four
consecutive steps update the values of the registers A, D, C, B respectively,
and this is repeated four times in a round. Hence, each register is updated
sixteen times by the compression function (four rounds). It can be seen that (for
example) when the A register is updated, the final operation is an addition of the
B register which was updated in the previous step. The motivation for this final
addition is that it assures that differences which are introduced in one register,
propagate quickly to the other registers in the following steps.

The step operation of MD5 is reversible. For example, the previous value of
the A register can be computed by

Aprev = (Anew −B)Àvs − fr(B,C,D)−Wj − Us .

However after execution of all 64 steps, the compression function uses a feed-
forward operation which adds the initial values of the registers (the values at the
start of the compression function) to their final values (obtained after 64 steps).
The result is the chaining variable output from the compression function. Due
to the feed-forward at the end the compression function cannot be inverted.

For a detailed description of MD5 we refer to [115].

4.4.6 Weaknesses in MD5

We give a short overview of weaknesses found in the MD5 algorithm. Both of the
attacks described below analyse the complete compression function of MD5, but
they do not lead to an attack on the hash function itself. However, these attacks
point to significant weaknesses in the design of the compression function and also
imply that the theorem of Merkle-Damg̊ard, which derives the security of a hash
function from its underlying compression function (see Sect. 3.3.1), cannot be
applied for MD5.

Pseudo-collisions for the compression function

In [36] B. den Boer and A. Bosselaers describe an attack that finds pseudo-
collisions for the compression function of MD5. This means that two different
initial chaining values are found, producing the same output value for a certain
message block. More specifically, the attack searches an initial value (A,B,C,D),
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Figure 4.4: Step operation for MD5.

and a message block {Wj} (0 ≤ j ≤ 15), such that complementing the most
significant bit of each of the four registers A,B,C,D has no influence on the
output of the compression function. We refer to [36] for the details, but it is
important to note that the attack works because the step operation of MD5 adds
in the result of the previous step. Hence, a similar attack does not work for
MD4. Although pseudo-collisions do not bring us closer to finding collisions for
the hash function, this attack points to some undesirable characteristics in the
design of the compression function of MD5.
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Collisions for the compression function

In [39] Dobbertin demonstrates an attack that finds collisions for the compression
function of MD5. This means that two different message blocks, {Wj} and {W ′j}
(0 ≤ j ≤ 15), are found that produce the same output value, for a certain initial
chaining value (A,B,C,D). The attack applies similar techniques as those used
in the cryptanalysis of MD4. Collisions are found for two message blocks with a
small difference in only one of the words:

W ′14 = W14 + 1¿9 ,

W ′j = Wj (j 6= 14) .

The general outline of the attack is as follows:

1. find an inner collision for rounds 1/2 (step 15 to step 26);

2. find an inner collision for rounds 3/4 (step 36 to step 51);

3. connect the two inner collisions.

The finding of inner collisions in the first two parts of the attack involves the
construction and solution of a system of difference equations, as in the analysis of
MD4. The analysis of MD5 is more complicated because a simultaneous solution
must be found for the different parts of the attack, and because there is a great
overlap between the message words that are involved in these different parts.
Techniques related to differential cryptanalysis and continuous approximations
are used. The complexity of the attack corresponds to about 234 computations
of the compression function.

At the end of the attack the message blocks {Wj} and {W ′j} are determined,
and also the values of the registers at the end of step 14. Hence, it is possible to
compute backwards in round 1 and obtain the register values (A0, B0, C0, D0).
This means that a collision has been found for the compression function starting
from a random initial chaining variable. In order to generate collisions for the
hash function itself, it would be necessary to extend the attack in such a way
that the prescribed initial value (A,B,C,D) = IV , as defined in the specification
of MD5, is matched.

4.4.7 Conclusions for MD4 and MD5

We have given an extensive overview of the design and security of the MD4
and MD5 algorithms. MD4 has clearly been broken with respect to collision-
resistance: a very practical attack exists which can even be adapted in order
to give collisions for meaningful messages. Even with respect to the preimage-
resistance of MD4 some weaknesses have been shown (on reduced versions of
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the algorithm), therefore it is advised that MD4 should no longer be used for
applications requiring a secure one-way or collision-resistant hash function.

For MD5 only weaknesses in the compression function have been demon-
strated so far. While these weaknesses cannot be exploited for an attack on the
hash function in any normal applications, the security margin is small and the
properties of the compression function are undesirable for a hash function which
should be collision-resistant (the theoretical results for iterated hash functions,
explained in Chapter 3, can no longer be used). Furthermore, the output length
of 128 bits is now considered as insufficient for resistance against birthday attacks.

4.5 The HAVAL Algorithm

The HAVAL algorithm [131] was proposed by Y. Zheng et al. in 1992. Its has
a structure that is quite similar to the MD4 and MD5 algorithms. In contrast
to MD4 and MD5, HAVAL allows the computation of hashes of variable length.
The specification of the algorithm allows for a trade-off between efficiency and
security by means of a parameter, the number of rounds, which can be chosen
equal to 3, 4 or 5.

In this section we give an extended security analysis of HAVAL. Our attack
on the three-round version of HAVAL (for all possible output lengths) is the first
known attack on a complete version of the HAVAL algorithm. This result has
been published in [123].

4.5.1 Description of the HAVAL algorithm

The HAVAL algorithm computes hash values of variable length, more specifically
128, 160, 192, 224 or 256 bits. The algorithm has a word length of 32 bits and uses
a chaining variable that is divided into eight registers (A,B,C,D,E, F,G,H) of
32 bits each. The compression function works on message blocks of 1024 bits each,
a block is divided into thirty-two 32-bit words denoted by Wj for j = 0, 1, . . . , 31.

Internally, the compression function consists of a number of rounds. This
number can be chosen equal to 3, 4 or 5 (a larger number of rounds increases the
security but decreases the efficiency of the algorithm). Each round itself consists
of 32 sequential steps. Therefore, the total number of steps in the compression
function is 96, 128 or 160. Each step updates the value of one of the eight
registers. The step operation of HAVAL is of the following form:

A← AÀ11 + (fr(B,C,D,E, F,G,H))À7 +Wj + Us .

Here we consider a step that updates the value of the A register. The operation
depends on the other seven registers (B,C,D,E, F,G,H), and on the following:
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Table 4.6: Word processing order for the first three rounds of HAVAL.

Round 1 W0 W1 W2 W3 W4 W5 W6 W7

W8 W9 W10 W11 W12 W13 W14 W15

W16 W17 W18 W19 W20 W21 W22 W23

W24 W25 W26 W27 W28 W29 W30 W31

Round 2 W5 W14 W26 W18 W11 W28 W7 W16

W0 W23 W20 W22 W1 W10 W4 W8

W30 W3 W21 W9 W17 W24 W29 W6

W19 W12 W15 W13 W2 W25 W31 W27

Round 3 W19 W9 W4 W20 W28 W17 W8 W22

W29 W14 W25 W12 W24 W30 W16 W26

W31 W15 W7 W3 W1 W0 W18 W27

W13 W6 W21 W10 W23 W11 W5 W2

– a message word Wj from the set j = {0, 1, . . . , 31};

– a Boolean function fr that depends on the round;

– an additive constant Us that depends on the step.

Each round of the compression function uses every word Wj from the set
j = {0, 1, . . . , 31} exactly once but the order in which the thirty-two message
words are applied in a round is different in different rounds. This is shown for
the first three rounds in Table 4.6 below.

A graphical representation of the step operation of HAVAL is given in Fig. 4.5.
Note that the registers change place after the step operation. Therefore eight
consecutive steps update the values of the registers A,B,C,D,E, F,G,H re-
spectively. After eight steps the complete chaining variable has been updated.
A round of the compression function consists of four sequences of eight steps.
Hence, each register is updated four times in every round.

Compared to MD4 the main difference in HAVAL is that the chaining variable
has 256 bits instead of 128 bits. Therefore, the number of registers has been
doubled (eight instead of four). The size of the message blocks has been doubled
as well (thirty-two words instead of sixteen), and consequently also the number
of steps in each round of the compression function.

Another important difference with MD4 is that the Boolean functions of
HAVAL take seven words of input (instead of only three). A great deal of at-
tention has been paid to the design of these Boolean functions, which satisfy the
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Figure 4.5: Step operation for HAVAL.

following properties:6

– they are 0-1 balanced;

– they are highly non-linear;

– they satisfy the strict avalanche criterion;

– the different functions are linearly inequivalent in structure;

– the different functions are mutually output-uncorrelated.

6See [109] for more information on the cryptographic properties of Boolean functions.
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This is very different from the MD4 algorithm which uses simple Boolean func-
tions (selection, majority, exor) on three inputs. These simple functions satisfy
only the property of being 0-1 balanced. The exor function used in round 3 of
the MD4 compression function is even linear.

Note that the step operation of HAVAL is reversible. For example, the pre-
vious value of the A register can be computed by

Aprev = (Anew −Wj − Us − (fr(B,C,D,E, F,G,H))À7)¿11 .

However after execution of all 96, 128 or 160 steps, the compression function
uses a feed-forward operation which adds the initial values of the registers (the
values at the start of the compression function) to their final values (obtained
after 96, 128 or 160 steps). The result is the chaining variable output from the
compression function. Because of the feed-forward at the end, the compression
function cannot be inverted.

When the compression function has been used for the last time (on the last
block of the padded message), the 256-bit output is sent to an output transforma-
tion and the result of this transformation is the hash result of the message. For
256-bit hash results the output transformation is simply the identity transfor-
mation. For other output lengths (128, 160, 192 or 224 bits) it applies a folding
technique. For a detailed description of HAVAL, and for an explication of the
notations used in our analysis below, see Appendix C.

4.5.2 Analysis of three-round HAVAL

In this section we describe a collision attack on the HAVAL algorithm with three
rounds in the compression function (that is the minimum number allowed by the
algorithm specification). This attack has been published in [123]. The overall
strategy is similar to the strategy used for the attack on MD4 (see Sect. 4.4.3).
First we generate an inner almost-collision for rounds 1/2 of the compression
function (this means that there is a small difference after round 2). We use
message blocks that differ only in the word W28. The small difference after
round 2 must be chosen in such a way that there is a significant probability that
it propagates to a difference in round 3 which is compensated when the wordW28

is used for the third time. We combine the technique of constructing and solving
a system of difference equations with the technique of differential cryptanalysis.

Outline of the attack

The goal of our attack is to find two distinct message blocks {Wj} and {W ′j} (0 ≤
j ≤ 31) which are mapped by the compression function to the same output value,
where the computation for the two message blocks starts from the same 256-bit
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input chaining value (A0, . . . , H0). We find such a collision for two message blocks
with a small difference in only one of the words:

W ′28 = W28 + 1 ,

W ′j = Wj (j 6= 28) .

The three-round compression function updates each of the eight registers
of the chaining variable twelve times (four times in a round). These values are
denoted by (Ai, . . . , Hi) with 1 ≤ i ≤ 12. The output of the compression function
is then computed with a feed-forward as (A0 +A12, . . . , H0 +H12).

During the execution of the compression function some intermediate values
for the registers will be different for the message blocks {Wj} and {W ′j}. We
define the difference after step j as

∆j = (A−A′, B −B′, C − C ′, D −D′, E − E′, F − F ′, G−G′, H −H ′) ,

where (A, . . . ,H) are the values of the registers at this point for message block
{Wj}, and similarly (A′, . . . , H ′) for {W ′j}. Note that this difference is defined
with respect to the modular addition operation.

It can be seen that the word W28, respectively W ′28 (which contains the only
difference between the two message blocks), is applied three times, in steps 29,
38 and 69. Before step 29 all values of the registers are equal for the two message
blocks; a collision will be obtained if the values of all registers are equal again
after execution of step 69 (hereafter all message words that are used are the same
for both message blocks so no new differences will occur in any computed register
value). In order to give our attack a chance of success we need to control the
differences in registers between step 29 and step 69 very carefully.

In phase I of the attack we concentrate on the first two rounds of the com-
pression function, more specifically the part between steps 29 and 38. The first
use of the word W28, respectively W ′28, is in step 29 (round 1 of the compression
function) where a new value is computed for the E register. This means that the
first computed register value which is not equal for the two message blocks, is the
value E4, respectively E′4. At this point we have the following correspondence
between the registers for the two message blocks:

A4 = A′4 B4 = B′4 C4 = C ′4 D4 = D′4
E4 = E′4 + (W28 −W ′28) F3 = F ′3 G3 = G′3 H3 = H ′3 .

So the difference after step 29 is:

∆29 = (0, 0, 0, 0,W28 −W ′28, 0, 0, 0) = (0, 0, 0, 0,−1, 0, 0, 0) .

The next use of W28, respectively W ′28, occurs in step 38 (round 2 of the com-
pression function) where a new value is computed for the F register. We will
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generate an inner almost-collision with the following correspondence between
register values at this point:

A5 = A′5 B5 = B′5 C5 = C ′5 D5 = D′5
E5 = E′5 + 1¿12 F5 = F ′5 G4 = G′4 H4 = H ′4 .

So we want only a small difference in register E after the execution of step 38.
That is,

∆38 = (0, 0, 0, 0, 1¿12, 0, 0, 0) .

In phase II of the attack we concentrate on the last two rounds of the com-
pression function, more specifically the part between steps 38 and 69. As seen
above we have only a small difference in the E register after step 38. We
are now ready to perform a differential cryptanalysis on the following steps.
The last occasion where the word W28, respectively W ′28, is used is in step 69
(in round 3 of the compression function). For 39 ≤ j ≤ 68 we require that
∆j = (0, 0, 0, 0, E − E′, 0, 0, 0). That is, we require that the difference in the E
register after step 38 does not spread to any of the other registers. Furthermore,
the difference in the E register after step 38 has been chosen in such a way that
the use of W28, respectively W ′28, in step 69 compensates the difference in the
E register at that point. That means ∆69 = (0, 0, 0, 0, 0, 0, 0, 0). This will also
result in a collision in the output of the compression function.

In order to generate an inner almost-collision (phase I of the attack) we need
to fix a few of the words Wj in the message blocks. We can randomly choose the
remaining words in phase II and see if the differential attack works. We found
that the success probability of our differential attack is about 2−29, so a collision
can be found by randomly choosing the remaining words Wj and computing the
difference after step 69 (which should be zero for all registers). This will succeed
after, on average, 229 trials. There is one more complication: matching the
specified initial chaining variable (A0, . . . , H0). This can be done with a small
modification of the differential attack.

Phase I: Finding an inner almost-collision for rounds 1/2

We first analyse the part of the compression function between step 29 and step
38. As noted above we require that ∆29 = (0, 0, 0, 0,−1, 0, 0, 0) and that ∆38 =
(0, 0, 0, 0, 1¿12, 0, 0, 0). Table 4.7 below shows the difference propagation used in
this phase of the attack. We use the notations ∆A = A − A′,∆B = B − B′,
etc. where (A,B,C,D,E, F,G,H) are the values of the registers at this point
for message block {Wj}, and similarly (A′, B′, C ′, D′, E′, F ′, G′, H ′) for {W ′j}.
The shown difference values are the values after the corresponding step has been
executed. We also list the message word applied in each step. Entries in bold
face show which register has been updated in a particular step.
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In step 29 a difference in the E register is introduced: E4−E′4 = W28−W ′28 =
−1. We let this difference spread to the F register in step 30, more specifically
F4−F ′4 = 1. From step 31 up to step 36 we require that the differences in the E
and F registers do not spread to any of the other registers: G4−G′4 = H4−H ′4 =
A5 − A′5 = B5 − B′5 = C5 − C ′5 = D5 − D′5 = 0. Then, in step 37, we need an
interaction of the differences in the E and F registers, in such a way that the
right difference E5 − E′5 = 1¿12 is obtained. Finally, the difference in the F
register has to disappear in step 38 where the word W28, respectively W ′28, is
used again: F5 − F ′5 = 0.

Table 4.7: Overview of the difference propagation through the registers for rounds
1 and 2 of HAVAL (for an inner almost-collision).

Step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H word

29 0 0 0 0 −1 0 0 0 W28(+1)
30 0 0 0 0 −1 1 0 0 W29

31 0 0 0 0 −1 1 0 0 W30

32 0 0 0 0 −1 1 0 0 W31

33 0 0 0 0 −1 1 0 0 W5

34 0 0 0 0 −1 1 0 0 W14

35 0 0 0 0 −1 1 0 0 W26

36 0 0 0 0 −1 1 0 0 W18

37 0 0 0 0 1¿12 1 0 0 W11

38 0 0 0 0 1¿12 0 0 0 W28(+1)

For each step in turn, we now look at the difference which is obtained after
computing the new register value for the message blocks {Wj} and {W ′j}. To
simplify the analysis we first make the following specific choices:

E4 = −1 , E′4 = 0 , F4 = 0 , F ′4 = −1 .

Note that these choices agree with the differences E4−E′4 = −1 and F4−F ′4 = 1.
The values 0 and −1 (modulo 232) correspond to 32-bit quantities where all the
bits are set equal to 0 or 1 respectively.

Step 29. In this step we have a difference in the applied message word W28,
respectivelyW ′28. From the definition of the step operation (see Appendix C) and
using E′3 = E3, F

′
3 = F3, G

′
3 = G3, H

′
3 = H3, A

′
4 = A4, B

′
4 = B4, C

′
4 = C4, D

′
4 =

D4, it follows that
E4 − E′4 = W28 −W ′28 = −1 .

Step 30. From the definition of the step operation it follows that

F4 − F ′4 = (f1(G3, H3, A4, B4, C4, D4, E4))
À7 −
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(f1(G3, H3, A4, B4, C4, D4, E
′
4))
À7 .

If we now use the definition of the non-linear function f1 (see Appendix C) and
insert the values of E4, E

′
4, F4, F

′
4 we can rewrite this as

1 = (G3⊕B4C4⊕H3D4⊕A4C4⊕A4)
À7−(B4C4⊕H3D4⊕A4C4⊕A4)

À7 . (4.23)

Step 31. We require that G4 −G′4 = 0. That means,

(f1(H3, A4, B4, C4, D4, E4, F4))
À7 − (f1(H3, A4, B4, C4, D4, E

′
4, F

′
4))
À7 = 0 .

Using the definition of f1 and inserting the values of E4, E
′
4, F4, F

′
4 we get

(A4 ⊕ C4D4 ⊕B4D4 ⊕B4)
À7 = (H3 ⊕ C4D4 ⊕B4D4 ⊕B4)

À7 .

This equation is satisfied when

A4 = H3 . (4.24)

Step 32. We require that H4 −H ′4 = 0. That means,

(f1(A4, B4, C4, D4, E4, F4, G4))
À7 − (f1(A4, B4, C4, D4, E

′
4, F

′
4, G4))

À7 = 0 .

In the same manner as above we can derive the following equation:

D4 ⊕ C4 = B4 . (4.25)

Step 33. We require that A5 − A′5 = 0. Note that this is the first step of
round 2 of the compression function so the non-linear function f2 is used (see
Appendix C for the definition of the function f2):

(f2(B4, C4, D4, E4, F4, G4, H4))
À7 − (f2(B4, C4, D4, E

′
4, F

′
4, G4, H4))

À7 = 0 .

We obtain the equation

C4H4 ⊕ C4 = C4G4 ⊕H4 . (4.26)

Step 34. We require that B5 −B′5 = 0. That means

(f2(C4, D4, E4, F4, G4, H4, A5))
À7 − (f2(C4, D4, E

′
4, F

′
4, G4, H4, A5))

À7 = 0 ,

which is satisfied when
D4A5 ⊕H4 = 0 . (4.27)
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Step 35. We require that C5 − C ′5 = 0. That means

(f2(D4, E4, F4, G4, H4, A5, B5))
À7 − (f2(D4, E

′
4, F

′
4, G4, H4, A5, B5))

À7 = 0 ,

which is satisfied when

G4B5 ⊕H4A5 ⊕G4 ⊕D4 = 0 . (4.28)

Step 36. We require that D5 −D′5 = 0. That means

(f2(E4, F4, G4, H4, A5, B5, C5))
À7 − (f2(E

′
4, F

′
4, G4, H4, A5, B5, C5))

À7 = 0 ,

which is satisfied when

H4C5 ⊕A5B5 ⊕H4 ⊕G4 = −1 . (4.29)

Step 37. In this step we need to obtain the right difference E5 − E′5 = 1¿12.
From the definition of the step operation it follows that

E5 − E′5 = EÀ11
4 − E

′À11
4 + (f2(F4, G4, H4, A5, B5, C5, D5))

À7 −
(f2(F

′
4, G4, H4, A5, B5, C5, D5))

À7 .

Using the definition of f2 and inserting the values of E4, E
′
4, F4, F

′
4 we get

1¿12 = −1 + (G4A5D5 ⊕G4B5C5 ⊕G4A5 ⊕A5C5 ⊕G4H4 ⊕B5D5 ⊕
B5C5)

À7 − (G4A5D5 ⊕G4B5C5 ⊕G4A5 ⊕A5C5 ⊕G4H4 ⊕
B5D5 ⊕B5C5 ⊕G4 ⊕−1)À7 . (4.30)

Step 38. Finally, in this step we require that the difference in the F register
disappears: F5 − F ′5 = 0. From the definition of the step operation we see that

F5 − F ′5 = FÀ11
4 − F

′À11
4 +W28 −W ′28 +

(f2(G4, H4, A5, B5, C5, D5, E5))
À7 −

(f2(G4, H4, A5, B5, C5, D5, E
′
5))
À7 .

Because FÀ11
4 − F

′À11
4 = 1 and W28 −W ′28 = −1, the requirement F5 − F ′5 = 0

leads to the equation

(f2(G4, H4, A5, B5, C5, D5, E5))
À7 − (f2(G4, H4, A5, B5, C5, D5, E

′
5))
À7 = 0 ,

which is satisfied when
B5H4 ⊕ C5 = 0 . (4.31)
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Solution for the system of equations

The equations (4.23) to (4.31) which we derived above, need to be satisfied in
order to obtain an inner almost-collision. Therefore, we need a solution for an
underdetermined system of nine equations in twelve variables. It can be seen
that the following set of register values constitutes such a solution:

G3 = 1¿7 H3 = 0 A4 = 0 B4 = 0 C4 = 0 D4 = 0
G4 = 0 H4 = 0 A5 = −1 B5 = −1 C5 = 0 D5 = 1¿18 .

Note that G3 = 1¿7 is a solution to GÀ7
3 = 1, and D5 = 1¿18 is a solution to

−1 +DÀ7
5 − (D5 ⊕−1)À7 = 1¿12. These two equations are derived from (4.23)

and (4.30) respectively by inserting the values given for the other variables.

As previously seen we also have E4 = −1 and F4 = 0. Fixing these 14 register
values, in order to generate an inner almost-collision, also determines the values
of some words of the message block {Wj}, in particular:7

W30 = G4 −GÀ11
3 − (f(H3, A4, B4, C4, D4, E4, F4))

À7 ,

W31 = H4 −HÀ11
3 − (f(A4, B4, C4, D4, E4, F4, G4))

À7 ,

W5 = A5 −AÀ11
4 − (g(B4, C4, D4, E4, F4, G4, H4))

À7 − U0 ,

W14 = B5 −BÀ11
4 − (g(C4, D4, E4, F4, G4, H4, A5))

À7 − U1 ,

W26 = C5 − CÀ11
4 − (g(D4, E4, F4, G4, H4, A5, B5))

À7 − U2 ,

W18 = D5 −DÀ11
4 − (g(E4, F4, G4, H4, A5, B5, C5))

À7 − U3 .

Note that we get the same values W ′j = Wj when we use the alternative register
values G′3, H

′
3, A

′
4, B

′
4, C

′
4, D

′
4, E

′
4, F

′
4, G

′
4, H

′
4, A

′
5, B

′
5, C

′
5, D

′
5 in the computations

(only E′4 and F ′4 are different). Six words of the message blocks {Wj} and {W ′j}
are now determined. We still have a free choice for the remaining 26 words of
these message blocks in phase II of the attack, as described below.

Other solutions for the system of equations

As an alternative for the solution given above, different solutions for the system
of equations (4.23) to (4.31) can be found. In general, for an arbitrary choice of
two 32-bit values Q1 and Q2, the following set of register values is a solution for
the system of equations (and leads to an inner almost-collision):

7U0, U1, U2, U3 denote the additive constants used in steps 33–36 of round 2.
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G3 = (1 +QÀ7
1 )¿7 ⊕Q1 G4 = (QÀ7

2 − 1¿12 − 1)¿7 ⊕Q2 ⊕−1
H3 = Q1 H4 = 0
A4 = Q1 A5 = (QÀ7

2 − 1¿12 − 1)¿7 ⊕Q2

B4 = 0 B5 = −1
C4 = 0 C5 = 0
D4 = 0 D5 = Q2 .

Note that for Q1 = 0 and Q2 = 1¿18 this reduces to the solution given earlier.
For any choice of Q1 and Q2 a specific set of register values is obtained, and
hence also a specific set of message words W30, W31, W5, W14, W26, and W18.
However, in those cases where bit 12 of Q2 is equal to 1 (starting the count from
the least significant bit which is called bit 0), the differential attack in phase II
does not work. Solutions with bit 12 of Q2 equal to 0 (leading to a successful
differential attack), are called admissable inner almost-collisions. 263 different
admissable inner almost-collisions can be generated, but only one of them is
needed for phase II of the attack. The complexity of finding an admissable inner
almost-collision is negligible compared to the complexity of the differential attack
which we describe below.

Phase II: Differential attack on rounds 2/3

In this phase of the attack we consider the part of the compression function be-
tween steps 38 and 69. We have an input difference ∆38 = (0, 0, 0, 0, 1¿12, 0, 0, 0)
(from phase I of the attack) and we require that ∆69 = (0, 0, 0, 0, 0, 0, 0, 0). Ta-
ble 4.8 below shows the difference propagation for this phase of the attack. For
the E register we have the following differences: E5 − E′5 = 1¿12, E6 − E′6 =
1¿1, E7 − E′7 = 1¿22, E8 − E′8 = 1¿11, E9 − E′9 = 0. For the other registers all
differences must be zero.

There are two cases for the computation of the probability of a difference
propagation through a step. The content of the E register is updated in steps
45, 53, 61 and 69. In step 45 for example we compute

E6 = EÀ11
5 + (f2(F5, G5, H5, A6, B6, C6, D6))

À7 +W1 + U12 ,

E′6 = E
′À11
5 + (f2(F5, G5, H5, A6, B6, C6, D6))

À7 +W1 + U12 .

Hence, we see that the difference

E6 −E′6 = EÀ11
5 − E

′À11
5 ,

and we require E5 − E′5 = 1¿12 and E6 − E′6 = 1¿1 (the difference gets rotated
by 11 bit positions to the right). This happens with a probability which is close
to one. In the other steps we require that the difference in the E register does
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Table 4.8: Overview of the difference propagation through the registers for rounds
2 and 3 of HAVAL (differential attack).

Step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H word

39 0 0 0 0 1¿12 0 0 0 W7

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

44 0 0 0 0 1¿12 0 0 0 W22

45 0 0 0 0 1¿1 0 0 0 W1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

52 0 0 0 0 1¿1 0 0 0 W9

53 0 0 0 0 1¿22 0 0 0 W17

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

60 0 0 0 0 1¿22 0 0 0 W13

61 0 0 0 0 1¿11 0 0 0 W2

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

68 0 0 0 0 1¿11 0 0 0 W20

69 0 0 0 0 0 0 0 0 W28(+1)

not spread to a different register. In step 46 for example we compute

F6 = FÀ11
5 + (f2(G5, H5, A6, B6, C6, D6, E6))

À7 +W1 + U13 ,

F ′6 = FÀ11
5 + (f2(G5, H5, A6, B6, C6, D6, E

′
6))
À7 +W1 + U13 .

Here the difference F6 − F ′6 =

(f2(G5, H5, A6, B6, C6, D6, E6))
À7 − (f2(G5, H5, A6, B6, C6, D6, E

′
6))
À7 ,

and we require that F6 − F ′6 = 0 which is equivalent to

f2(G5, H5, A6, B6, C6, D6, E6) = f2(G5, H5, A6, B6, C6, D6, E
′
6) .

Using the definition of f2 we can derive the following condition:

E6B6H5 ⊕ E6C6 = E′6B6H5 ⊕ E′6C6 ,

which is satisfied when B6H5⊕C6 = 0 at those bit positions where E6 is different
from E′6. Because E6 = E′6 + 1¿1 and the carry associated with the modular
addition operation, this happens with a probability of about 1/3 ( 1

22 +
1
42 +

1
82 +

· · · ≈ 1
3 ).

By combining the probabilities for all steps we can estimate the global prob-
ability for the propagation from step 38 up to step 69 as p3869 ≈ (1/3)27 ≈ 2−42.8.
The real probability is much higher however. This is partly because of the values
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of the registers at the start of the differential attack.8 Furthermore, the proba-
bilities for consecutive steps strongly depend on each other (because every step
changes the value of only one out of eight registers). If we consider a sequence of
eight steps, experiments show that the probability is about 2−9 which is better
than (1/3)7 ≈ 2−11.1. For the complete propagation from step 38 up to step 69
we found the estimation

p3869 ≈ 2−29 .

The differential attack can be performed as follows. In phase I of the attack
message words W30,W31,W5,W14,W26, and W18 were determined in order to
get the right input difference ∆38. We can now randomly choose the remaining
26 words and compute forwards to step 69, starting from the known register
values E4, F4, G4, H4, A5, B5, C5, D5 (or E′4, F

′
4 for the second message block).

If the difference after step 69 is equal to zero for all registers then we have a
collision and this happens on average after 229 trials. There is however one more
complication which we describe below.

Matching the initial value

When all message words Wj are determined we can also compute backwards in
round 1 of the compression function, starting from the known register values G3,
H3, A4, B4, C4, D4, E4, F4. This is done by inverting the step operations. For
example, inverting step 30 gives us

F3 = (F4 − (f1(G3, H3, A4, B4, C4, D4, E4))
À7 −W29)

¿11 .

In that way we finally obtain the register values (A0, . . . , H0). This means that
we have obtained a collision for the compression function starting from a random
initial chaining variable.

We can easily extend our attack so that we find collisions for the compression
function starting from a specified initial chaining variable (and consequently also
for the hash function, see Sect. 3.3). First note that there is one sequence of
eight message words, which are applied in consecutive steps in round 1 of the
compression function, and none of which have been determined in phase I of the
attack (for obtaining an inner almost-collision). This sequence of message words
is the sequence of W6,W7, . . . ,W13 (which are used in steps 7 up to 14). These
words will be used to match the initial chaining variable.

In our differential attack we randomly choose values for 18 message words (as
before but excluding the eight words needed to match the initial value). We also
know the fixed values for the words W30,W31,W5,W14,W26,W18 (determined in

8Related to this, the reason that not all inner almost-collisions lead to a successful differential
attack is that in some cases the values of the registers are not suitable at the start of the
differential attack.
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phase I of the attack). Now we compute backwards in round 1 of the compression
function down to the (inverted) step 15 where W14 is applied. In this manner we
derive the register values (G1, H1, A2, B2, C2, D2, E2, F2). Next we compute
forwards starting from the specified (A0, . . . , H0) and up to step 6 where W5 is
applied. This gives us the register values (G0, H0, A1, B1, C1, D1, E1, F1) and
now we can compute the required values for the message words W6,W7, . . . ,W13.
For example,

W6 = G1 −GÀ11
0 − (f1(H0, A1, B1, C1, D1, E1, F1))

À7 .

After we have matched the specified initial values for all registers (and thereby
determined the values for all 32 message words Wj) we check the differential
attack between steps 39 and 69 as before and repeat the procedure until a collision
has been found. On average we succeed after 229 trials, where a trial can be
abandoned as soon as the difference propagation in a register is not correct.

Complexity and flexibility of the attack

Our attack on three-round HAVAL has a complexity of about 229 computations
of the compression function (this complexity is determined by the probability for
the differential attack on the last two rounds. A programme that implements the
attack runs on average in less than one hour on an Athlon 600 MHz processor.
The number of collisions which can be generated, at least in theory, starting from
a given admissable inner almost-collision, is equal to 2547, since we can freely
choose 18 words (that is a maximum of 2576 trials), and the success probability is
about 2−29. Because there are 263 different admissable inner almost-collisions to
start from, the total number of collisions which can be generated by our attack
is equal to 2547+63 = 2610.

Example collision for three-round HAVAL

We give an example of two message blocks that are hashed by the compression
function of three-round HAVAL to the same output value. For both message
blocks the computation starts from the initial value defined in the algorithm
specification (see Appendix C):

A0 = ec4e6c89x B0 = 082efa98x C0 = 299f31d0x D0 = a4093822x
E0 = 03707344x F0 = 13198a2ex G0 = 85a308d3x H0 = 243f6a88x .

The first message block is:
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W0 = 94c0875ex W1 = dd25f63ex
W2 = f5d09361x W3 = b51db8b2x
W4 = b00c36e4x W5 = bad7de19x
W6 = 32a68bb5x W7 = c5aff25dx
W8 = ad0dea24x W9 = a7e1ee7cx
W10 = 617b92ddx W11 = f9da283dx
W12 = b2844d83x W13 = b8d498ebx
W14 = c72fec88x W15 = 8f467c05x
W16 = 507ea2c1x W17 = c2d94121x
W18 = cb1af394x W19 = 036daf20x
W20 = bba7fb8cx W21 = 6daee6aax
W22 = 04fc029fx W23 = d37c05f4x
W24 = 993aea13x W25 = 3ccfab88x
W26 = 41ab9931x W27 = 3c7cae0cx
W28 = f704bafcx W29 = b60635dex
W30 = f0000000x W31 = 00000000x

and the second message block is determined by

W ′28 = W28 + 1 ,

W ′j = Wj (0 ≤ j ≤ 31, j 6= 28) .

For these two message blocks, the compression function computes the follow-
ing common output value (note that this computation includes the feed-forward
operation at the end):

A = 1f46758cx B = 7618c292x C = e5220b62x D = 77ea845bx
E = ef9fd8dex F = 41ec28afx G = 5205cb85x H = 260412c4x .

The complete hash function includes an additional application of the compres-
sion function, starting from the output value given above. For both messages the
same padding block is used as message input for this final application of the
compression function, therefore a collision is obtained in the final hash result:

A = 7d476278x B = f603a907x C = 6d985fefx D = 4b5e66b7x
E = b6541db5x F = 16ccd71dx G = e8f9cf7cx H = 141e38e2x .

Note that the algorithm converts this set of words into a string of 32 bytes,
starting with the least significant byte of H and ending with the most significant
byte of A (see Appendix C).
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4.5.3 Other weaknesses in HAVAL

It may be noted that collisions are easily found for reduced two-round versions
of HAVAL. Instead of an inner almost-collision, it is also possible to generate an
inner collision for rounds 1 and 2 of the compression function. For example, an
inner collision is obtained when we choose the register values

G3 = 1¿7 H3 = 0 A4 = 0 B4 = 0 C4 = 0 D4 = 0
G4 = 0 H4 = 0 A5 = −1 B5 = −1 C5 = Q1 D5 = 0

in phase I of the attack described in the previous section (the value Q1 can be
freely chosen). The complexity of a collision attack on two rounds of HAVAL is
negligible (no differential cryptanalysis is needed).

An alternative attack on reduced two-round versions of HAVAL

P. Kasselman and W. Penzhorn [69] describe a collision attack on rounds 2 and
3 of the compression function, where the difference between the two messages is
in word W19. In this case there are only eight steps between the two applications
of the chosen message word.9 The corresponding attack works as follows (the
compression function consists of rounds 2 and 3, that is steps 33 up to 96):

1. In step 57 message word W19, respectively W ′19, introduces a difference in
register A.

2. For steps 58 to 64 it is required that the difference does not spread to any
of the other registers.

3. In step 65 message word W19, respectively W ′19, is applied again and it
compensates the difference in register A.

Similar to our attack, a system of equations can be constructed and a solution
is easily found. Furthermore, a special choice must be made for the difference
W19−W ′19. It can be shown that the following four values for this difference lead
to a successful attack:

55555555x , 55555556x , aaaaaaaax , aaaaaaabx .

Note that a similar attack can be tried on rounds 1 and 2 of the compression
function, by using a difference in message word W26 (this word is applied in steps
27 and 35). However, it turns out that such an attack does not work because the
system of equations which is constructed, contains two conflicting equations and
therefore has no solutions.

9For our attack there are nine steps between the two applications of message word W28.
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4.5.4 Conclusions

An extensive overview has been given of the design and security of the HAVAL
algorithm. We have shown a practical attack for generating collisions in three-
round HAVAL. This version of the algorithm should no longer be used in appli-
cations requiring a secure collision-resistant hash function.

The strategy for our attack is quite similar to the strategy used for the attack
on MD4 (see Sect. 4.4.3). Surprisingly, our result shows that the use of highly
non-linear functions, which is the main focus of the design of HAVAL, does not
result in a hash function which is significantly stronger compared to MD4 (note
that the compression function of MD4 also has three rounds but only 16 steps in
each round). For MD4, the linear exor function which is used in round 3 of its
compression function increases the complexity of the differential attack because
this function makes it necessary to work with a difference in two of the registers.
For HAVAL on the other hand, we are able to use a differential propagation
characteristic with a difference in only one of the registers. Because of this
the probability of the characteristic is only slightly lower than the probability
of the characteristic used for MD4 (2−29 compared to 2−22) even though the
characteristic extends over many more steps (31 steps compared to 16).

We conclude that the structure of HAVAL is certainly not stronger than the
structure of MD4 (for the same number of rounds). Note also that the security
level of HAVAL should be much higher than the security level of MD4 because
the hash results which are generated, are up to 256 bits long, compared to 128
bits for MD4. It remains an open problem to extend our techniques in order to
find weaknesses in the four-round or five-round versions of HAVAL.

4.6 The RIPEMD Family

The RIPEMD hash function was designed in 1992 in the framework of the Euro-
pean RIPE project [113]. The design of RIPEMD is based on MD4; its compres-
sion function consists essentially of two parallel versions of the MD4 compression
function. In 1996 Dobbertin found a collision attack on versions of RIPEMD
reduced to two rounds out of three. This prompted a redesign resulting in the
hash functions RIPEMD-128 and RIPEMD-160 (proposed by Dobbertin et al.).
The RIPEMD-160 algorithm has the advantage of longer hash values (160 bits
instead of 128). In this section we explain the design of this family of hash func-
tions, and discuss the weaknesses which have been found in reduced versions of
the original RIPEMD.
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4.6.1 Description of the RIPEMD algorithm

The RIPEMD algorithm [113] computes hash values of 128 bits, for messages
of arbitrary length. The algorithm has a word length of 32 bits, therefore the
chaining variable is divided into four registers (A,B,C,D) of 32 bits each. The
compression function works on message blocks of 512 bits, a block is divided into
sixteen 32-bit words denoted by Wj for j = 0, 1, . . . , 15.

Internally, the compression function consists of two trails that are executed
in parallel. Each of these trails is a slightly modified version of the compression
function of MD4 (without the feed-forward operation), consisting of 48 sequential
steps divided into three rounds (see Sect. 4.4.1 for a description of MD4). The
two trails of RIPEMD differ from MD4 as follows:

– The order in which the message words are applied in round 2 and round 3
is different.

– The rotation constants are changed.

– One trail uses the same additive constants as MD4 but the other trail uses
different additive constants. This is the only difference between the two
trails of RIPEMD.

In Fig. 4.6 below we give an outline of the compression function of RIPEMD.
The chaining variable (A,B,C,D) serves as starting value for both the left and
right trails. These two trails are executed in parallel and update the registers
through 48 sequential steps (three rounds). At the end the two trails are com-
bined with each other and with the chaining variable input (a feed-forward op-
eration intended to make the compression function uninvertible). The result is
the chaining variable output from the compression function. More specifically,
if we denote the chaining variable input with (A0, B0, C0, D0), the output from
the left trail with (AL, BL, CL, DL) and the output from the right trail with
(AR, BR, CR, DR), then the chaining variable output is computed as:

(A,B,C,D) = (B0 + CL +DR, C0 +DL +AR, D0 +AL +BR, A0 +BL + CR) .

For a detailed description of RIPEMD we refer to [113].

4.6.2 Analysis of reduced versions of RIPEMD

We give a short overview of attacks found for reduced versions of RIPEMD.
First we note that the structure of RIPEMD is very similar to the structure
of Extended-MD4 (see Sect. 4.4.4). Both use two parallel instances of MD4.
The main difference is that RIPEMD combines the two trails after processing
each message block, whereas Extended-MD4 only exchanges the values of the A
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Figure 4.6: Outline of the RIPEMD compression function.

registers between the two trails. Another difference is that Extended-MD4 uses
the same additive constant in round 1 of the two trails, but RIPEMD does not.
Both algorithms share an important weakness: the message words are applied in
the same order for both trails. This weakness is exploited in the second attack
described below.

Collisions for the separate trails of RIPEMD

In [34] C. Debaert and H. Gilbert analyse the two trails of RIPEMD separately.
RIPEMDL and RIPEMDR are defined as hash functions with a compression
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function consisting of only the left or right trail respectively, followed by a feed-
forward. Note that the trails of RIPEMD are slightly modified versions of the
48 steps (three rounds) of the MD4 compression function, with some changes
in the rotation (and additive) constants and in the order of the message words.
It is shown that these changes introduce some additional constraints for the
attack, but collisions can still be found with a time complexity comparable to the
attack on MD4 (see Sect. 4.4.3). These observations provide arguments that the
collision attack on MD4 is not due to a particularly weak selection of parameters
(constants, order of message words). The selection made for the separate trails
of RIPEMD does not result in a stronger algorithm.

Collisions for RIPEMD reduced to two rounds

In [41] Dobbertin describes a collision attack on versions of RIPEMD with two
parallel trails in the compression function but only two rounds (32 steps) in each
trail. A collision is found for two message blocks with a difference ∆ in only one
of the words:

W ′13 = W13 +∆ ,

W ′j = Wj (j 6= 13) .

The general outline of the attack is as follows:

1. find a simultaneous inner collision for the left and right trail (analyse step
14 up to step 19 in both trails);

2. find a backwards collision, that is a common starting value (A,B,C,D) for
the two trails (analyse step 1 up to step 13 in both trails);

3. match the right initial value (meet-in-the-middle attack).

We refer to [41] for the details of this attack. Specific solutions are given for
the first part of the attack, and a probabilistic algorithm which solves the second
part. The second part of the attack involves the construction and solution of a
system of difference equations. This is done with techniques similar to those used
for the cryptanalysis of MD4 in [42]. Note that in this case the differences are
defined by a comparison of the register values in the left and right trails, whereas
for MD4 the differences are defined by a comparison of the register values for the
two different message blocks. The first two parts of the attack allow us to find
collisions for the compression function (reduced to two rounds). The third part
extends the attack and finds collisions for the hash function. This is done by
means of a meet-in-the-middle attack which matches the correct initial chaining
variable (A,B,C,D) = IV , as defined in the specification of RIPEMD. The
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basic idea of the meet-in-the-middle attack is to search for a suitable block of
message words {Vj} (0 ≤ j ≤ 15), such that the messages M = {Vj}||{Wj}
and M ′ = {Vj}||{W ′j} produce the same hash result. The complexity of the
collision attack on the reduced RIPEMD is determined by the second part and
corresponds to about 231 computations of the (two-round) compression function.

4.6.3 Description of RIPEMD-128 and RIPEMD-160

The RIPEMD-128 and RIPEMD-160 algorithms are strengthened variants of
RIPEMD [100]. The cryptanalytic results obtained on the original RIPEMD
algorithm reduced to two rounds, have been taken into account for their design.
The main lesson that has been learned from RIPEMD is that the two trails of
the compression function have to be more different from each other in order
to prevent a cryptanalyst from attacking them both simultaneously. Therefore
RIPEMD-128 and RIPEMD-160 have the following differences between the two
trails of their compression function:

– as in the original RIPEMD the additive constants used in the two trails are
different;

– the order in which the message words are applied is different for the two
trails;

– the two trails do not apply the same Boolean function in the same round.

Furthermore, the number of rounds in the compression function has been in-
creased (compared to the original RIPEMD): RIPEMD-128 uses four rounds (64
sequential steps) and RIPEMD-160 uses five rounds (80 sequential steps) in both
trails of the compression function. It can also be noted that the Boolean func-
tions that are used, are not the same as in RIPEMD. In particular, the majority
function is no longer used.

RIPEMD-128 computes hash results of 128 bits so its chaining variable is
divided into four registers (A,B,C,D) of 32 bits each. The step operation is of
the same form as the step operation of RIPEMD and MD4 (see Sect. 4.4.1 for a
description). The feed-forward operation and the combination of the two trails
at the end of the compression function are also the same as in RIPEMD (see
Sect. 4.6.1).

RIPEMD-160 on the other hand computes hash results of 160 bits, in order to
increase the resistance against birthday attacks. Therefore the chaining variable
is divided into five registers (A,B,C,D,E) of 32 bits each. The step operation
of RIPEMD-160 is of the following form:

A ← (A+ fr(B,C,D) +Wj + Ur)
¿vs + E ,

C ← C¿10 .
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So every step computes a new value for two of the five registers. In this case we
consider a step that updates the value of the A register and also rotates the value
of the C register by ten bit positions to the left. The operation that updates the
A register depends on the other four registers B, C, D, E, and on the following:

– a message word Wj from the set j = {0, 1, . . . , 15};

– a Boolean function fr that depends on the round and on the trail;

– an additive constant Ur that depends on the round and on the trail;

– a rotation constant vs that depends on the step.

A graphical representation of this step operation is given in Fig. 4.7 below.
Note that five consecutive steps update the values of the registers A, E, D, C, B
respectively, and also rotate the values of the registers C, B, A, E, D respectively
by ten bit positions to the left. After five steps the complete chaining variable
has been updated. Hence, in both trails of the compression function the five
registers are updated sixteen times.

The step operation of RIPEMD-160 is reversible. For example, the previous
values of the A and C registers can be computed by

Cprev = CÀ10
new ,

Aprev = (Anew −E)Àvs − fr(B,Cprev, D)−Wj − Ur .

At the end of the compression function the two trails are combined and a feed-
forward operation is used to make the compression function non-invertible. If
we denote the chaining variable input with (A0, B0, C0, D0, E0), the output
from the left trail with (AL, BL, CL, DL, EL) and the output from the right trail
with (AR, BR, CR, DR, ER), then the chaining variable output of the compression
function of RIPEMD-160 is computed as:

A = B0 + CL +DR ,

B = C0 +DL + ER ,

C = D0 + EL +AR ,

D = E0 +AL +BR ,

E = A0 +BL + CR .

For a detailed description of RIPEMD-128 and RIPEMD-160 we refer to [100].
No weaknesses have been shown in these algorithms so far.
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Figure 4.7: Step operation for RIPEMD-160.

4.6.4 Extension to RIPEMD-256 and RIPEMD-320

In [44] the designers of RIPEMD-128 and RIPEMD-160 also indicate how these
hash functions can be extended in order to give a hash result of 256 or 320
bits respectively. The compression functions of RIPEMD-128 and RIPEMD-160
contain two parallel lines, therefore the length of the hash results can be doubled
(to 256 or 320 bits respectively) by omitting the combination of the two lines at
the end of the compression function (both lines now use a simple feed-forward at
the end of the compression function). Note that the hash functions now require
an initial value for the chaining variable of 256 bits (eight words) or 320 bits
(ten words) respectively. Furthermore, some interaction between the two lines
is introduced: at the end of round 1 the value of register A in the left line is



96 Chapter 4. Dedicated Hash Functions of the MDx-class

swapped with the value of register A in the right line, after round 2 the same is
done with the values of register B in the two lines, etc. More information can be
found in [132].

It must be noted that the security level of the extensions RIPEMD-256 and
RIPEMD-320 is only guaranteed to be the same as the security level of RIPEMD-
128 and RIPEMD-160 respectively. The reason is that the internal structure of
the extended algorithms is not essentially stronger, so if, for example, a collision-
finding attack is found for RIPEMD-128, it is possible that a similar attack of
comparable complexity exists for RIPEMD-256. On the other hand it must be
noted that no shortcut attacks are known for RIPEMD-128 or RIPEMD-160,
and the complexity of a generic birthday attack still depends on the length of the
hash result (2n/2 operations, where n is the length in bits of the hash result).

4.6.5 Conclusions

We have given an overview of the design of the algorithms from the RIPEMD
family. Weaknesses have been shown in reduced versions of the original RIPEMD
hash function, but these have been taken into account for the design of the
strengthened variants RIPEMD-128 and RIPEMD-160. Note that an output
length of 128 bits is now considered as insufficient to resist against birthday
attacks, and an output length of 160 bits does not offer long term security. The
256-bit and 320-bit extended versions can be used, but these do not guarantee a
higher security level.

4.7 The SHA Family

The SHA algorithm was designed by NSA and published by NIST as federal
standard FIPS 180 in 1993 [49]. SHA is another hash function inspired by MD4.
The design of SHA introduces a special procedure for expanding the 16-word
message block input to the compression function to a block of 80 words. The
design principles of SHA were not made public, however in 1994 NIST announced
that a technical flaw had been found in SHA which made the algorithm less
secure than originally thought. No further details were made public, but a small
modification was made to the algorithm resulting in the hash function SHA-
1, and the corresponding standard FIPS 180-1 [50]. In 1998 F. Chabaud and
A. Joux found a theoretical collision attack for the original version of SHA (this
algorithm is often called SHA-0 now). Their analysis supports the change that
was made for the SHA-1 hash function.

In 2002 NIST updated its hash function standard to FIPS 180-2 [51]. This
new standard specifies, besides SHA-1, three new hash functions SHA-256, SHA-
384 and SHA-512. They have larger output lengths in order to offer a security
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level against birthday attacks, which is similar to the security level of the AES
block cipher with 128-bit, 192-bit and 256-bit keys respectively (AES is specified
in FIPS 197 [52]). In 2004 a change notice was added to the standard, specifying
another new hash function SHA-224. It has a security level (against birthday
attacks) which is similar to the security level of the Triple-DES block cipher with
112-bit key (Triple-DES is specified in FIPS 46-3 [54]).

In this section we explain the design of this family of hash functions and we
discuss the collision attack on SHA-0, and a weakness found in SHA-1. We also
give some remarks on the security of SHA-224, SHA-256, SHA-384 and SHA-512.

4.7.1 Description of the SHA-1 algorithm

The SHA-1 algorithm [51] computes hash results of 160 bits, for messages of
any length shorter than 264 bits. The algorithm has a word length of 32 bits,
therefore the chaining variable is divided into five registers (A,B,C,D,E) of 32
bits each. The compression function works on message blocks of 512 bits, a block
is divided into sixteen 32-bit words denoted by Wj for j = 0, 1, . . . , 15.

Internally, the compression function is divided into 80 sequential steps. An-
other distinction that can be made is into rounds: there are four rounds, each
consisting of a sequence of 20 steps. The step operation of SHA-1 is of the
following form:

E ← E + fr(B,C,D) +A¿5 +Wj + Ur ,

B ← B¿30 .

So every step computes a new value for two of the five registers. In this case we
consider a step that updates the value of the E register and also rotates the value
of the B register by 30 bit positions to the left. The operation that updates the
E register depends on the other four registers A, B, C, D, and on the following:

– a message word Wj from the set j = {0, 1, . . . , 79};

– a Boolean function fr that depends on the round;

– an additive constant Ur that depends on the round.

The Boolean functions that are used in the different rounds of the compression
function are the selection, majority and exor functions. The exor function is used
in both round 2 and round 4. The first sixteen words Wj (for j = 0, 1, . . . , 15)
are equal to the message block input of the compression function. The remain-
ing sixty-four words Wj (for j = 16, 17, . . . , 79) are computed by the following
procedure for message expansion:

Wj = (Wj−3 ⊕Wj−8 ⊕Wj−14 ⊕Wj−16)
¿1 .
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The only difference between SHA-1 and SHA-0 (the original version of SHA) is
in this equation. For SHA-0 the rotation by one bit position to the left was not
included.

A graphical representation of the step operation of SHA-1 is given in Fig. 4.8
below. Note that five consecutive steps update the values of the registers E, D,
C, B, A respectively, and also rotate the values of the registers B, A, E, D, C
respectively by 30 bit positions to the left. After five steps the complete chaining
variable has been updated. A round of the compression function consists of four
sequences of five steps. Hence, each register is updated four times in every round,
and sixteen times in the complete compression function (four rounds).
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Figure 4.8: Step operation for SHA-1.

The step operation of SHA-1 is reversible. For example, the previous values
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of the E and B registers can be computed by

Bprev = BÀ30
new ,

Eprev = Enew −A¿5 − fr(Bprev, C,D)−Wj − Ur .

However after execution of all 80 steps, the compression function uses a feed-
forward operation which adds the initial values of the registers (the values at the
start of the compression function) to their final values (obtained after 80 steps).
The result is the chaining variable output from the compression function. Due
to the feed-forward at the end the compression function cannot be inverted. For
a detailed description of SHA-1 we refer to [51].

4.7.2 Security of SHA-1

The hash function SHA-1 is difficult to attack with techniques such as those that
were introduced by Dobbertin for other hash functions of the MDx-class. Due
to the procedure for message expansion it is not possible to apply a difference in
only a few of the message words Wj (j = 0, 1, . . . , 79).10

Preneel [97] has remarked that the message expansion of the original version
SHA-0 (which did not include the bit rotation) operates at bit level as a sys-
tematic linear (80,16,23) code, or a code with length 80, size 16 and minimum
distance 23. This means that at least 23 words in the expanded message block
have a difference. For the message expansion of SHA-1 the analysis is more
complicated because the code no longer operates at bit level: it is a systematic
linear (2560,512) code (the minimum distance is unknown). Below we explain
the collision attack that has been demonstrated for SHA-0, and a weakness of
SHA-1.

Collisions for the original version SHA-0

The original SHA algorithm, now commonly known as SHA-0, has been analysed
by Chabaud and Joux [29], resulting in a theoretical collision-finding attack,
which has a complexity of about 261 computations of the compression function.
Note that SHA-0 is similar to SHA-1; the only difference is in the procedure
which expands the 16-word message block input to a block of 80 words. This
procedure is defined for SHA-0 by:

Wj = Wj−3 ⊕Wj−8 ⊕Wj−14 ⊕Wj−16 .

In contrast to SHA-1 there is no rotation by one bit position to the left.

10On the other hand, in our attack on 3-pass HAVAL, for example, there are only three (of
the 96) step operations where the applied message word has a difference (this happens once in
every round of the compression function, when the word W28 is applied).
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The general strategy of the attack is to track the propagation of local pertur-
bations and to look for differential masks that can be added to the 80-word block
with non-trivial probability of keeping the output of the compression function
unchanged (a differential mask can be added to the 80-word block if it corre-
sponds to a difference pattern in the 16-word message block before expansion).
In [29] a number of simplified variants of SHA-0 are analysed first:

– A first variant, called SHI1, replaces the additions and the Boolean func-
tions fr by the exclusive-OR operation. Single bit errors or perturbations
are introduced to the input of SHI1 and these perturbations are traced
through the compression function. The perturbations are made to disap-
pear by introducing five other bit errors or corrections. This allows a trivial
attack on SHI1 via differential masking.

– A second variant, called SHI2, replaces the additions by the exclusive-OR
operation, but it keeps the Boolean functions fr of SHA-0. However we can
still view the Boolean functions as acting like the exclusive-OR operation
with some probability, and this leads to a probabilistic perturbation attack
on SHI2. The probability for this attack is about 2−24.

– A third variant, called SHI3, uses additions as in SHA-0, but it uses the
exclusive-OR operation instead of the Boolean functions fr. In this case the
additions cause the perturbations to spread out due to carry propagation.
However one is still able to devise a perturbation attack on SHI3 with a
probability of 2−44.

– Finally SHA-0 itself is analysed by taking into account the analyses of SHI2
and SHI3, and it is shown that a perturbation attack can be mounted with
a probability of 2−61. This corresponds to an attack with a time complexity
of about 261 computations of the compression function.

It is important to note that, although SHA-1 and SHA-0 are very similar,
the described perturbation attack cannot be applied to SHA-1. The rotation by
one bit position to the left which is added in the expansion procedure of SHA-1
means that the linear code of the expansion no longer operates at bit level: a
modification of a single bit influences bits at other positions in the words as well.
This makes the attack strategy of [29] ineffective and provides strong evidence
that the transition from SHA-0 to SHA-1 raised the level of security.

Slide attack on SHA-1

In [118] M.-J. Saarinen describes a slide attack on SHA-1. Slide attacks [19, 20]
have been proposed earlier for the cryptanalysis of block ciphers. They exploit
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weaknesses in ciphers which use identical or periodic round functions, and the
most interesting property of these attacks is that they are in many cases inde-
pendent of the number of rounds, and independent of the exact properties of the
round function.

The first observation that is made for the SHA-1 hash function is that the
procedure for message expansion can be slid. Consider two message blocks {Wj}
and {W ′j} (0 ≤ j ≤ 15) that are chosen as follows:

W ′j = Wj+1 (0 ≤ j ≤ 14) ,

W ′15 = (W0 ⊕W2 ⊕W8 ⊕W13)
¿1 .

After message expansion the following is true:

W ′j = Wj+1 (0 ≤ j ≤ 78) .

The second observation is that for twenty steps in each round of the com-
pression function, the Boolean function fr and the additive constant Ur are
unchanged. Hence any two consecutive steps of the compression function are
similar, except for three transitions between different rounds: this happens after
steps 20, 40 and 60.

Suppose now that the hashing computation for {Wj} and {W ′j} starts from
initial chaining variables (A,B,C,D,E) and (A′, B′, C ′, D′, E′) respectively, which
are related as follows:

B′ = A , C ′ = B>>30 , D′ = C , E′ = D .

Then the purpose of the attack is to find two message blocks and corresponding
initial chaining variables for which the same relation (between the registers) still
holds at the end of the compression function. Such a pair of message blocks
and corresponding initial chaining variables is called a slid pair. The general
strategy for the attack is to choose suitable values for the chaining variables at
the end of step 20 and step 40, and perform a meet-in-the-middle match. This
procedure is repeated until the transition for step 60 is also dealt with, which
happens with a probability of 2−32. The attack has a time and space complexity
of the order 232. Although this slide attack does not help in finding collisions
or preimages for the hash function, the analysis demonstrates an unexpected
property of the compression function of SHA-1, which does not have the expected
random behaviour.

4.7.3 Description of the SHA-256 algorithm

The SHA-256 algorithm [51] computes hash values of 256 bits, for messages of any
length shorter than 264 bits. The algorithm has a word length of 32 bits, therefore
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the chaining variable is divided into eight registers (A,B,C,D,E, F,G,H) of 32
bits each. The compression function works on message blocks of 512 bits, a block
is divided into sixteen 32-bit words denoted by Wj for j = 0, 1, . . . , 15.

Internally, the compression function is divided into 64 sequential steps.11 The
step operation of SHA-256 is of the following form:

D ← D +H + f1(E,F,G) + Σ1(E) +Wj + Us ,

H ← H + f1(E,F,G) + Σ1(E) + f2(A,B,C) + Σ2(A) +Wj + Us .

So every step computes a new value for two of the eight registers. In this case we
consider a step that updates the values of the D and H registers. The operation
that updates the D and H registers depends on the other six registers A, B, C,
E, F , G and on the following:

– a message word Wj from the set j = {0, 1, . . . , 63};

– two Boolean functions f1 and f2;

– two functions Σ1 and Σ2;

– an additive constant Us that depends on the step.

The Boolean functions f1 and f2 are the selection and majority functions
respectively. The functions Σ1 and Σ2 compute an output word from an input
word Z as follows:

Σ1(Z) = ZÀ6 ⊕ ZÀ11 ⊕ ZÀ25 ,

Σ2(Z) = ZÀ2 ⊕ ZÀ13 ⊕ ZÀ22 .

The first sixteen words Wj (for j = 0, 1, . . . , 15) are equal to the message
block input of the compression function. The remaining forty-eight words Wj

(for j = 16, 17, . . . , 63) are computed as follows:

Wj = σ1(Wj−2) +Wj−7 + σ2(Wj−15) +Wj−16 ,

where the functions σ1 and σ2 compute an output word from an input word Z
as follows:

σ1(Z) = ZÀ17 ⊕ ZÀ19 ⊕ Z ↪→10 ,

σ2(Z) = ZÀ7 ⊕ ZÀ18 ⊕ Z ↪→3 .

A graphical representation of the step operation of SHA-256 is given in Fig. 4.9
below. Note that four consecutive steps update the values of the registers D and
H, C and G, B and F , A and E respectively. After four steps the complete



4.7. The SHA Family 103

A B C D E F G H

?

?

r r
r

? ? ?
@@ ¡¡f2

??

r

-
¶
µ
³
´Σ2

r r
r

? ? ?
@@ ¡¡f1

??

r

-
¶
µ
³
´Σ1

-

?
Wj¾

?
Us¾

?
r¾

-

A
A
A

A
A
A

XXXXXXXXXXX

@
@
@

A
A
A

A
A
A

XXXXXXXXXXX

((((((((((((((((((((((((((((((

? ? ? ? ? ? ? ?
H A B C D E F G

Figure 4.9: Step operation for SHA-256.

chaining variable has been updated. Hence, each register is updated sixteen
times by the compression function.

The step operation of SHA-256 is reversible. For example, the previous values
of the D and H registers can be computed by

Hprev = Hnew − f1(E,F,G)− Σ1(E)− f2(A,B,C)− Σ2(A)−Wj − Us ,

Dprev = Dnew −Hprev − f1(E,F,G)− Σ1(E)−Wj − Us .

However after execution of all 64 steps, the compression function uses a feed-
forward operation which adds the initial values of the registers (the values at the
start of the compression function) to their final values (obtained after 64 steps).

11Note that for SHA-256 there is no clear distinction into rounds.
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The result is the chaining variable output from the compression function. Due
to the feed-forward at the end the compression function cannot be inverted.

For a detailed description of SHA-256 we refer to [51].

4.7.4 Security of SHA-256

The design of SHA-256 has some similarities to SHA-1, but there are important
differences in the structure. As for SHA-1 the design principles for this algorithm
have not been made public. It must be noted that the number of steps in the
compression function of SHA-256 is lower than for SHA-1 (64 steps compared to
80). On the other hand, two registers are updated in every step of the compression
function where for SHA-1 only one register is updated in a step. SHA-256 uses the
same Boolean functions f1 and f2 in all steps of the compression function, but a
unique additive constant in every step. The Σi functions (in the step operations)
and the σi functions (in the message expansion) achieve a faster diffusion than the
bit rotations which are used in SHA-1. For the message expansion there is also
faster diffusion because modular additions are used instead of exor operations.
H. Gilbert and H. Handschuh [56] have remarked that the Σi and σi functions are
one-to-one mappings (so no internal collisions can be achieved through them).
Note that the slide attack on SHA-1 does not extend to SHA-256 because every
step of the compression function uses a unique additive constant. The collision
attack on SHA-0 is not applicable because of the rotations and shifts in the σi
functions of the message expansion.

In [56] Gilbert and Handschuh point to a weakness in simplified variants of
SHA-256. These variants are obtained by replacing the chaining values at the
input of the compression function, and the additive constants that are used,
by symmetric values (the 32-bit words have equal left and right 16-bit halves).
Furthermore, all modular additions are replaced by exor operations, and the
shifts in the σi functions by rotations. For such a simplified variant of SHA-
256 it can be shown that a message block input to the compression function,
which consists of symmetric 32-bit words, always leads to an output consisting
of symmetric words. Therefore the complexity of a birthday attack is reduced
to 264 operations (instead of 2128), because a collision on the left half of each
output word implies a collision on the whole output word. The observation can
be generalised for simplified variants with symmetric words consisting of four,
eight, . . . equal parts (resulting in even lower complexities for a birthday attack).
It should be noted that the same weakness exists for similarly simplified variants
of SHA-1 and other hash functions of the MDx-class.
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4.7.5 SHA-224, SHA-384 and SHA-512

The SHA-224 algorithm [51] computes hash results of 224 bits, for messages of
any length shorter than 264 bits. SHA-224 is defined in the exact same manner
as SHA-256, with two exceptions: it uses different initial values for the registers
of the chaining variable, and the output from the algorithm (obtained after the
final application of its compression function) is truncated to its leftmost 224 bits.

The SHA-384 and SHA-512 algorithms [51] compute hash results of 384 bits
and 512 bits respectively, for messages of any length shorter than 2128 bits. These
functions have a word length of 64 bits. The chaining variable is 512 bits long,
and divided into eight registers (A,B,C,D,E, F,G,H) of 64 bits each. The com-
pression function of SHA-384 and SHA-512 works on message blocks of 1024 bits,
a block is divided into sixteen 64-bit words denoted by Wj for j = 0, 1, . . . , 15.
The structure of SHA-512 is similar to the structure of SHA-256, except that it
uses 80 sequential steps in the compression function (instead of 64 steps). It can
be seen that this implies that each of the registers is updated twenty times by
the compression function. The main difference between SHA-512 and SHA-256
is the word length (64 compared to 32 bits). Therefore, SHA-512 uses different
initial values for the registers of the chaining variable, and different additive con-
stants. Furthermore, the rotation and shift amounts in the functions Σ1, Σ2, σ1,
σ2 are different. SHA-384 is defined in the same manner as SHA-512 except that
it starts from different initial values for the registers of the chaining variable,
and the output from the algorithm (obtained after the final application of its
compression function) is truncated to its leftmost 384 bits.

For a detailed description of SHA-224, SHA-384 and SHA-512 we refer to
[51]. With respect to the security of these algorithms similar remarks can be
made as for SHA-256. Note that SHA-384 and SHA-512 have more steps in the
compression function (80 steps compared to 64).

4.7.6 Conclusions

We have given an overview of the design of the algorithms from the SHA family.
A theoretical attack has been described on the original SHA algorithm, which
supports the move to SHA-1. The slide attack which was recently shown for
SHA-1 does not impact the security of this algorithm as a one-way or collision-
resistant hash function, but it points to an unexpected property of the compres-
sion function. Note that the output length of SHA-1 (160 bits) does not offer
long term security against birthday attacks. The SHA-224, SHA-256, SHA-384
and SHA-512 algorithms offer larger output lengths. They have been proposed
and standardised only recently by NIST but unfortunately NIST did not use an
open standardisation process for its hash function standard, in contrast to the
standardisation procedure used for the block cipher standard AES. Early crypt-
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analytic results suggest that these algorithms have a high security margin against
known attack strategies.

4.8 Comparison of MDx-class Hash Functions

In this section we summarise the observations made on the different hash func-
tions from the MDx-class. Table 4.9 compares the structure of the different
algorithms, and Table 4.10 summarises the most important attacks which have
been found. We also compare the software performance of most of the algorithms
in Table 4.11. These performance figures are due to the NESSIE project [92],
the implementations are on a Pentium 3 processor running Linux. Other perfor-
mance comparisons can be found in [90, 24]; they lead to comparable results. We
estimate that the performance of five-round HAVAL is close to the performance
of SHA-1 and RIPEMD-160. It may be noted that SHA-384 and SHA-512 per-
form much better on 64-bit platforms. The early proposals of the MDx-class are
more efficient than the more recent proposals, but according to Table 4.10 they
are also less secure.

Table 4.9: Structure of MDx-class hash functions (lengths are given in bits).

Algorithm output length block length word length number of steps

MD4 128 512 32 3× 16
MD5 128 512 32 4× 16
HAVAL 128–256 1024 32 3, 4, or 5× 32
RIPEMD 128 512 32 3× 16 || 3× 16
RIPEMD-128 128 512 32 4× 16 || 4× 16
RIPEMD-160 160 512 32 5× 16 || 5× 16
SHA 160 512 32 4× 20
SHA-1 160 512 32 4× 20
SHA-224/256 224/256 512 32 1× 64
SHA-384/512 384/512 1024 64 1× 80

4.9 Conclusions

In this chapter we have given an extensive overview of the hash functions of
the MDx-class. This class of hash functions is a good example of the interaction
between the fields of cryptography and cryptanalysis: important weaknesses have
been shown in the early proposals, and these have been taken into account for the
design of the newer algorithms (unfortunately at the cost of decreased efficiency).
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Table 4.10: Known attacks for MDx-class hash functions.

Algorithm Weakness
MD4 collisions (also preimages for two-round reduced versions)
MD5 pseudo-collisions and collisions for compression function
HAVAL collisions for three-round version
RIPEMD collisions for two-round reduced versions
SHA theoretical collision attack
SHA-1 slide attack

Table 4.11: Software performance of MDx-class hash functions (PIII, Linux).

Algorithm cycles/byte relative performance
MD4 4.7 1
MD5 7.2 0.65
RIPEMD-160 18 0.26
SHA 15 0.31
SHA-1 15 0.31
SHA-224/256 39 0.12
SHA-384/512 83 0.06

We have given an extensive analysis of MD4, and we have presented the first
attack on a complete version of HAVAL. This result has been published in [123].

Based on our present knowledge RIPEMD-160 and SHA-1 seem the most
interesting hash functions if an output length of 160 bits is sufficient. For larger
output lengths the recent hash functions of the SHA family can be used, although
they should receive more extensive public cryptanalysis.
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Chapter 5

The PANAMA

Cryptographic Module

5.1 Introduction

Panama is a cryptographic module proposed in 1998 by J. Daemen and C. Clapp
[30]. It can serve both as a stream cipher, and as a cryptographic hash function
with hash results of 256 bits. Panama achieves high performance (for large
amounts of data) because of its inherent parallelism. In this chapter we analyse
the security of Panama when used as a hash function, and demonstrate an attack
that finds collisions much faster than a generic birthday attack. Our attack has
been published in [112].

5.2 Description of PANAMA

The Panama stream/hash module [30] is based on a finite state machine with
two types of internal memory: the state and the buffer. The module is used
in an iterative manner, where each step of the iteration updates both the state
and the buffer. There are two different modes for the iteration function, called
push and pull mode. The push mode takes an input and has no output, the pull
mode has no input but generates an output. A graphical representation of these
modes is given in Fig. 5.1 and Fig. 5.2 respectively. Below we only describe how
to use Panama as a hash function, we refer to [30] for a full specification of the
cryptographic module.

The state of Panama consists of 544 bits, divided into seventeen 32-bit words
a0, a1, . . . , a16. We will also use the notation as and at to refer to the set of words

109
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a1 to a8, and a9 to a16 respectively. In this way the state can be denoted by a
3-tuple (a0, a

s, at), where a0 represents the first 32-bit word, and as and at each
represent a value of 256 bits (eight words). The buffer of Panama is a linear
feedback shift register (LFSR), containing 32 stages of 256 bits (eight words)
each. An 8-word stage is denoted by bj and its words by bji (0 ≤ j ≤ 31 and
0 ≤ i ≤ 7).

In order to use Panama as a hash function, the message inputM is converted
into a string M̃ with a length that is a multiple of 256 bits. This is done by
appending a single 1-bit followed by the smallest number of 0-bits (possibly none)
resulting in a length that is a multiple of 256 bits. The string M̃ is then divided
into message blocks of 256 bits each. We denote this by M̃ = m0 ‖m1 ‖ . . . ‖mn.

Before the hashing starts all the internal memory bits (of the state and the
buffer) are set to zero. Next, for each message block mk (0 ≤ k ≤ n), the
following steps are executed (push mode with mk as input). First, the state is
updated by applying the non-linear transformation ρ (which is composed of three
specific transformations θ ◦ π ◦ γ, see Sect. 5.2.1 below):

(a0, a
s, at)← ρ(a0, a

s, at). (5.1)

Secondly, the message block mk and b16, the contents of the buffer stage 16, are
exored into the state. The least significant bit of the word a0 is flipped. These
three operations are denoted here1 by σ:

(a0, a
s, at)← σ(a0, a

s, at) = (a0 ⊕ 1, as ⊕mk, at ⊕ b16). (5.2)

Thirdly, the message block mk is fed into the buffer and the LFSR is stepped
once. The buffer updating function λ is slightly more complex than in an ordinary
LFSR, b← λ(b) is defined by:

bj ← bj−1 if j 6∈ {0, 25} ,
b0 ← b31 ⊕mk ,
b25i ← b24i ⊕ b31i+2 mod 8 for 0 ≤ i ≤ 7 .

(5.3)

When all the message blocks have been processed, 33 extra iterations are
performed (pull mode), but now the message input to the buffer is replaced by
the state (part as), and the message input of σ is replaced by b4 (the contents
of the buffer stage 4). The outputs from the first 32 of these extra iterations
are discarded, and the 256-bit hash result is defined as the output from the last
iteration, this corresponds to part at of the final state value.

1Our notation differs from the one in [30], where σ is included in ρ.
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5.2.1 Components of PANAMA

We describe here the different components of the non-linear state updating trans-
formation ρ = θ ◦ π ◦ γ (see equation (5.1)). We also make some preliminary ob-
servations which will be useful for our analysis in Sect. 5.3. The transformations
operate on the seventeen words of the Panama state, where each word consists
of 32 bits. Below we denote the input words for a transformation with ai, and
the output words with ci, where 0 ≤ i ≤ 16. Note that the ‘+’ operations used
in the indices should be taken modulo 17.

The transformation θ

The linear transformation θ is defined as follows:

c = θ(a)⇔ ci = ai ⊕ ai+1 ⊕ ai+4 . (5.4)

We have computed the inverse transformation θ−1:

ai = ci+1 ⊕ ci+2 ⊕ ci+5 ⊕ ci+9 ⊕ ci+10 ⊕ ci+11 ⊕ ci+12 ⊕ ci+14 ⊕ ci+16 . (5.5)

The transformation π

The transformation π which combines bit rotations with a permutation of the
word positions is defined below. Here [j] (0 ≤ j ≤ 31) denotes the bit position
in a word, the multiplication 7i in the index is modulo 17, and the addition of
s(i) = i · (i+ 1)/2 is modulo 32 and corresponds to a bit rotation.

c = π(a)⇔ ci[j] = a7i[j + s(i)] . (5.6)

The transformation γ

The transformation γ is the only non-linear component. We will analyse this
transformation at bit level. Because γ does not mix bits with different positions
in the words, it can be considered as a parallel application of 32 transformations
γb.

We study the differential properties of γ. Let a and a ⊕ d denote two 17-bit
vectors that are input to γb. Note that the inputs a and a ⊕ d contain one bit
from each of the seventeen state words, for a certain bit position [j]. Let c and
c ⊕ e denote the corresponding outputs: c = γb(a), c ⊕ e = γb(a ⊕ d). From the
definition of γ, we have the following:

ci = ai ⊕ (ai+1 ∨ (1⊕ ai+2)) , (5.7)

ci ⊕ ei = ai ⊕ di ⊕ ((ai+1 ⊕ di+1) ∨ (1⊕ ai+2 ⊕ di+2)) . (5.8)
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Using De Morgan’s law, (5.7) can be transformed into

ci = ai ⊕ ai+1ai+2 ⊕ ai+2 ⊕ 1 . (5.9)

Doing the same with (5.8) and combining the result with (5.9), we get

ei ⊕ di ⊕ di+2 ⊕ di+1di+2 = ai+1di+2 ⊕ ai+2di+1 . (5.10)

Table 5.1 below lists the solutions to this equation, in a format that is useful for
our analysis in Sect. 5.3. It shows the relation between the absolute value of the
input (a), the input difference (d) and the output difference (e). Note that an x
or y in the column of a means that this bit can take two values, e.g., (x, 1 ⊕ x)
means ‘both (0, 1) and (1, 0) are possible’.

Table 5.1: The transformation γb: relation between input difference (d), output
difference (e) and absolute value of the input (a).

di ⊕ ei di+1 di+2 (ai+1, ai+2)
0 0 0 (x, y)
0 0 1 (1, x)
0 1 0 (x, 0)
0 1 1 (x, x)
1 0 0 -
1 0 1 (0, x)
1 1 0 (x, 1)
1 1 1 (x, 1⊕ x)

5.2.2 Observations on the design

The design of the Panama hash function differs significantly from the design of
the hash functions of the MDx-class, which we discussed in Chapter 4. Panama

can also be described in the iterated hash model of Chapter 3 (Sect. 3.3), but it
differs from the MDx-class hash functions in the following ways:

– Length of the chaining variable: The MDx-class hash functions have a
chaining variable of the same length as the hash result (128 to 512 bits, de-
pending on the algorithm). For Panama the chaining variable corresponds
to the internal state and buffer, with a total length of 544+8192=8736 bits.
The hash result is only 256 bits long.
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– Nature of the iteration function: The MDx-class hash functions are
based on the iteration of a compression function, consisting in itself of a
sequence of a large number of (simple) step operations. In Panama the
iteration function, used to update the state and buffer, has a parallel (rather
than a sequential) structure: for each of the transformations γ, π, θ and σ
the seventeen state words a0 to a16 can in principle be updated in parallel.

– Presence of an output transformation: For MDx-class hash functions,
the hash result is the final value of the chaining variable. Panama first
processes all message blocks using the iteration function in push mode,
and then applies 33 extra iterations in pull mode, which form an output
transformation mapping the value of the chaining variable (state and buffer)
to the hash result (part of the final state).

These differences are the consequence of a different design strategy. For the
MDx-class hash functions, the compression function is designed to be collision-
resistant in itself, and the iteration mechanism ensures that the resulting hash
function is collision-resistant (according to the Merkle-Damg̊ard theorem, see
Sect. 3.3.1). In order to find collisions a cryptanalyst targets the compression
function, and hence a single message block (see for example the attacks on MD4
and HAVAL in Chapter 4).

For the Panama hash function, the diffusion and non-linearity realised by
successive applications of the iteration function are expected to prevent crypt-
analysis. In Sect. 5.3 below we will see that in a collision attack on Panama

the attacker needs to target a message stream consisting of many blocks. Note
also that the state updating transformation of Panama is invertible. Therefore
a meet-in-the-middle attack can be used to find preimages, but this is not faster
than a brute-force preimage search because the state (544 bits) is more than
twice as long as the hash result (256 bits).

Performance aspects

The design of Panama is oriented towards software implementation on 32-bit
architectures. According to [30] the per-byte workload of Panama is similar to
that of MD4, the fastest member of the MDx-class. Furthermore, it is shown that
the performance of Panama can substantially benefit from processors capable of
a high degree of instruction-level parallelism. On the other hand, the performance
of Panama decreases significantly when hashing short messages. This is due to
the overhead of the output transformation (33 pull iterations), which is equivalent
to the hashing of about 1 Kbyte.
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5.3 Analysis of PANAMA in Hashing Mode

In this section we describe a method to produce collisions for the Panama hash
function. A collision occurs when two different messages are hashed to the same
result. The output length of the Panama hash function is 256 bits, which means
that a generic birthday attack would need about 2128 hash computations to find
a colliding pair of messages. We will show that with our method a collision can
be found with significantly less operations and a small amount of memory. This
result has been published in [112].

We will use the following notation: a message stream is denoted bym0,m1, . . .
mn, where m0 is the first message block and mn the last. Each block mk corre-
sponds to a set of eight 32-bit words. Furthermore, let X be a set of eight 32-bit
words Xi, then Y = r(X)⇔ Yi = Xi+2 mod 8 (0 ≤ i ≤ 7).

5.3.1 Message format for collisions

As seen in Sect. 5.2, the hash result of Panama is taken from the state, part at.
This means that the buffer content is not present in the output. Hence, there
are two types of collisions for Panama: collisions in the state only, and collisions
in both the buffer and the state. The 33 pull iterations after the processing of
the last message block have as function to make it difficult to produce collisions
of the first kind. We will try to find collisions of the second kind. The linear
updating function of the buffer imposes strict conditions on the format of colliding
messages.

Collisions for the buffer

Because of the linear feedback in the buffer, a difference pattern in a single
message block gives rise to an infinite difference propagation in the buffer. Only
difference patterns that meet a particular condition cause a finite difference prop-
agation, that is a collision, in the buffer.

It can be seen from definition (5.3) of the buffer updating function λ that the
simplest collision for the buffer is obtained from the following difference pattern
in the message stream:

dX, 0, 0, 0, 0, 0, 0, r(dX), 24 zero stages, dX . (5.11)

Furthermore, all difference patterns for buffer collisions are composed by adding
shifted versions of pattern (5.11).
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Collisions for the state

For a difference pattern of type (5.11), there will be five occasions where the
input difference of the state is non-zero: the first two non-zero blocks are each
injected twice into the state: once when they are the current message block and
once when they pass through the buffer stage 16 (this follows from the definition
of the transformation σ, see Sect. 5.2). The last non-zero block cancels out all
differences in the buffer, but is injected once into the state.

We are going to use a strategy of immediate compensation in the state: every
time a difference is introduced into the state, we will try to let it die out as quickly
as possible. A collision can then be seen as consisting of five sub-collisions, where
a sub-collision is defined as a collision in the state only. This is also observed
by the designers of Panama in [30]. The five sub-collisions are related because
they are based on the same set of input difference words dXi (0 ≤ i ≤ 7). This
is shown in Table 5.2 below.

Table 5.2: Differences introduced into the state by the transformation σ.

sub-collision a0 as at

1 - dX -
2 - r(dX) -
3 - - dX
4 - - r(dX)
5 - dX -

Since the state updating function ρ is invertible, a difference dX which is
introduced can only disappear under the influence of another difference dY . An
intuitive choice for the format of the colliding messages is as follows:

dX, dY, 0, 0, 0, 0, 0, r(dX), r(dY ), 23 zero stages, dX, dY . (5.12)

Since this format is the addition of two shifted copies of difference pattern (5.11),
it will produce a collision in the buffer. The strategy of immediate compensa-
tion demands that the differences introduced into the state by the ‘dX’ values,
are compensated by the ‘dY ’ values. The difference propagation in the state
(a0, a

s, at) should be as follows:

(0, 0, 0)
σ−→ (0, dX, 0)

ρ−→ (0, dY, 0)
σ−→ (0, 0, 0)

(0, 0, 0)
σ−→ (0, r(dX), 0)

ρ−→ (0, r(dY ), 0)
σ−→ (0, 0, 0)

(0, 0, 0)
σ−→ (0, 0, dX)

ρ−→ (0, 0, dY )
σ−→ (0, 0, 0)

(0, 0, 0)
σ−→ (0, 0, r(dX))

ρ−→ (0, 0, r(dY ))
σ−→ (0, 0, 0)

(5.13)
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Note that the first propagation path applies to the first and the fifth sub-collision.
The difference propagation through σ is satisfied automatically, but a solution
must be found for the difference propagation through ρ. It turns out that due
to the interaction between the buffer updating function and the state updating
function, there are no solutions dX, dY for (5.13). A proof is given in Appendix D.

Therefore we will use a difference pattern of the following form:

dX, 0, dY, 0, 0, 0, 0, r(dX), 0, r(dY ), 22 zero stages, dX, 0, dY . (5.14)

Table 5.3 below gives a schematic overview of the difference values in the buffer
and the state during the attack. The values shown for the buffer and the state
are the values after the message block mk has been processed. The non-zero
differences in the state during subcollision l are denoted with zl. Because of the
strategy of immediate compensation, the differences in the state are zero most of
the time.

5.3.2 Overview of the procedure

We will use differences where the bits of a 32-bit difference word are all set or
all unset.2 This allows to denote a difference pattern in the state with seventeen
bits, one for each word. Furthermore, it means that the bit rotation in π has no
effect on the difference values. We make this choice mainly because it is easier
to think about differences of this format.

A collision will be found by combining the results of the searches for the five
sub-collisions. The method we present here to find a sub-collision works for any
value of the state at the start of the procedure. Note that in every sub-collision,
the message input of σ is ‘fresh’: it can be chosen freely. Since the message words
are added to the state words a1 to a8, it is easy to control part as of the state.
The state word a0 is exored with the constant 00000001x so we have no direct
control over its value. The buffer input of σ is added to the state words a9 to
a16. This input is influenced by the values of message blocks which have been
injected into the state earlier on.

It seems difficult to make use of the fact that the buffer can be controlled:
changing the buffer would require a recomputation of the current state. Our
method assumes that only the message input can be controlled. Because the
message input of σ influences only eight of the seventeen state words, we have
not enough degrees of freedom if we vary the current message block only. There-
fore, we will also have to select values for the common message block before the
message blocks with difference dX or r(dX).

2Note that these differences are defined with respect to the exclusive-OR operation, that is
x = y ⊕∆ with ∆ = 00000000x or ffffffffx.
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Table 5.3: Schematic overview of the difference propagation through the buffer
stages and the state.

k mk Buffer State
0 · · · 16 · · · 24 25 · · · 31 a0 as at

0 0 0 0 0 0 0 0 0 0
1 dX dX 0 0 0 0 0 dX 0
2 0 0 0 0 0 0 z1 z1 z1
3 dY dY 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0
8 r(dX) r(dX) 0 0 0 0 0 r(dX) 0
9 0 0 0 0 0 0 z2 z2 z2
10 r(dY ) r(dY ) 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0
17 0 0 dX 0 0 0 0 0 dX
18 0 0 0 0 0 0 z3 z3 z3
19 0 0 dY 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0
24 0 0 r(dX) 0 0 0 0 0 r(dX)
25 0 0 0 dX 0 0 z4 z4 z4
26 0 0 r(dY ) 0 dX 0 0 0 0
27 0 0 0 dY 0 0 0 0 0
28 0 0 0 0 dY 0 0 0 0
29 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0
32 0 0 0 r(dX) 0 dX 0 0 0
33 dX 0 0 0 0 0 0 dX 0
34 0 0 0 r(dY ) 0 dY z5 z5 z5
35 dY 0 0 0 0 0 0 0 0
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For every sub-collision we use the following notation. The state will be de-
noted by the capitals A to N , according to the timeline (5.15). The corresponding
difference values are dA to dN .3

K
σ0−→ L

γ−→M
π−→ N

θ−→ A
σ1−→ B

γ−→ C
π−→ D

θ−→ E

E
σ2−→ F

γ−→ G
π−→ H

θ−→ I
σ3−→ J

(5.15)

We consider in total four σ operations, σk denoting the σ operation with message
block Pk (k = 0, 1, 2, 3). Here P0 to P3 correspond to m0 to m3 for the first
sub-collision, P0 to P3 correspond to m7 to m10 for the second sub-collision, etc.
(see Table 5.3). Message blocks P0 and P2 are equal for both messages of the
collision. For sub-collisions 1, 2 and 5 the block P1 has the ‘dX difference’, and
the block P3 the ‘dY ’ difference. For the other two sub-collisions these differences
are imposed by the contents of the buffer stage 16 in σ1 and σ3. The states K to
A are equal in both messages, the common block P0 is used to bring the state to
a value that allows a sub-collision to happen. It can be seen that the exact values
of the P3 blocks (for the two messages of the collision) have no importance, we
only require that for every sub-collision the difference in the state I is canceled
by the difference in P3 (or by the difference in the buffer stage 16 for σ3).

5.3.3 The chosen difference format

We give here a difference pattern that is a solution of (5.14). We describe the
propagation of the difference from state B to state I for every sub-collision. As
noted above the pattern is described by seventeen bits, one bit for each word of
the state (0 ≤ i ≤ 16).

The difference propagation through the linear transformations π and θ does
not depend on the exact values of the state (for the two messages of the collision),
only on the difference. The transformation σ2 doesn’t change the difference at
all. The difference propagation through the non-linear transformation γ does
depend on the exact values of the state and this imposes a set of conditions on
the value of the state at ‘time’ B and F . These conditions, which can be derived
using the results from Table 5.1, must be satisfied for the sub-collisions to occur.
Note again that we can work with single bits because γ can be seen as 32 parallel
transformations γb.

Table 5.4 below shows the required difference propagation for sub-collision
1 (and for sub-collision 5). In this table state B has the difference dX in part
as (dB6 = dB7 = 1), as imposed by the message block P1. State I has the
difference dY in part as (dI2 = dI3 = dI5 = dI8 = 1), which will be canceled by

3Furthermore, the state words a0 . . . a16 for state A to N are denoted A0 . . . A16 to
N0 . . . N16. The corresponding difference words are dA0 . . . dA16 to dN0 . . . dN16.
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the difference in the message block P3. Parts a0 (i = 0), as (i = 1, . . . 8) and at

(i = 9, . . . 16) of the state are clearly separated in the table. Table 5.1 has been
used to derive the following conditions on B and F for the difference propagation
of Table 5.4.4 Note that these conditions are at bit level, they must be satisfied
for every bit position [j] (0 ≤ j < 32).

B5 = 1 , B6 ⊕B7 = 1 , B8 = 0 , (5.16)

F0 ⊕ F1 = 1 , F2 = 1 , F3 = 0 , F5 = 0 , F6 = 0 , F7 = F8 , F8 ⊕ F9 = 1 ,
F10 = 0 , F11 = 0 , F12 = F13 = F14 , F15 = 1 , F16 = 1.

(5.17)

Table 5.4: The required difference propagation for sub-collision 1 (and 5).

i dB dC dD dE = dF dG dH dI

0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0
2 0 0 0 0 1 1 1
3 0 0 0 0 0 1 1
4 0 0 0 1 1 0 0
5 0 1 0 0 1 1 1
6 1 1 0 0 0 1 0
7 1 1 0 1 0 0 0
8 0 0 1 1 1 1 1
9 0 0 0 1 1 1 0

10 0 0 0 0 1 1 0
11 0 0 0 0 0 1 0
12 0 0 0 1 1 1 0
13 0 0 1 1 0 0 0
14 0 0 0 1 1 0 0
15 0 0 0 0 0 0 0
16 0 0 0 0 1 1 0

For the other sub-collisions we refer to the similar Tables D.1, D.2 and D.3,
and the corresponding conditions (D.16) to (D.21) in Appendix D. All these
sub-collisions are related because in every case state B contains the difference
dX or r(dX) in part as (imposed by the message) or part at (imposed by the

4For example, dB4 ⊕ dC4 = 0, dB5 = 0, dB6 = 1 implies B5 = 1. We use Table 5.1 where B
is the input a, dB is the input difference d and dC is the output difference e.
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buffer stage 16), while state I must contain the difference dY respectively r(dY )
in the corresponding part of the state.

Other solutions for the difference format are possible. We have chosen one
which results in the minimum number of conditions on B and F . It is not clear
how to make an optimal choice for an easy solution of these conditions in the
next step of the attack.

5.3.4 Producing collisions

In order to generate each of the sub-collisions we need to solve the conditions
for the state values at ‘time’ B and F as given in Sect. 5.3.3 and Appendix D.
Values for the state words a1 to a8 (part as) can be met by a suitable choice of
the message block used at the corresponding time: P1 for B and P2 for F . To
meet the values for the other state words (a0 and a9 to a16) we need to compute
backwards to the previous message block: P0 for B and P1 for F . In this way
the problem of finding a sub-collision can be solved in three steps:

1. Solve a system of equations in the unknowns L1, . . . L8; this determines the
message block P0.

2. Solve a system of equations in the unknowns B1, . . . B8; this determines the
message block P1.

3. Solve a system of equations in the unknowns F1, . . . F8; this determines the
message block P2.

The difficulty in solving these systems of equations is that when we compute
backwards to the previous message blocks, we obtain increasingly non-linear
equations because of the transformation γ. In our approach we only go back
through one application of γ. To explain how we solve the problem, we will first
describe the solution of the first sub-collision in some detail. After that we will
summarise the procedure for the other sub-collisions and discuss the complexity
of the attack.

Producing sub-collision 1 (and 5)

From (5.17) it can be seen that there are seven conditions which include the
unknowns F1, . . . F8. Let [j] denote the bit position in a word, then we have the
following equations for 0 ≤ j < 32:

F0[j]⊕ F1[j] = 1 , F2[j] = 1 , F3[j] = 0 , F5[j] = 0 ,
F6[j] = 0 , F7[j] = F8[j] , F8[j]⊕ F9[j] = 1 .

(5.18)

These conditions are easy to satisfy because F1, . . . F8 are obtained by bitwise
addition of E1, . . . E8 and message block P2 which can be freely chosen.
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In (5.17) we have 6 remaining conditions on F0, F9, . . . F16, which can be
transformed into equations in the unknowns B1, . . . B8. These have to be added
to the 3 conditions we already have in these unknowns from (5.16),

B5[j] = 1 , B6[j]⊕B7[j] = 1 , B8[j] = 0 , (5.19)

resulting in an overdetermined system of nine equations (and 32 bit positions).
Generally such a system of equations has no solution, unless one of the equations
is dependent on the other eight. If there is no hidden structure in these equations,
we can assume that we will need 232 trials before we can solve them. Experimental
evidence confirms this assumption.

To compute backwards from state F to state B we apply the transformations
σ, θ, π and γ, which lead to the following equations. Here mbi[j] = b16i−9[j] for
9 ≤ i ≤ 16, mb0[j] = 0 for 0 ≤ j ≤ 30 and mb0[31] = 1.

Fi[j] = Ei[j]⊕mbi[j] (i = 0, 9 . . . 16) ,
Ei[j] = Di[j]⊕Di+1[j]⊕Di+4[j] ,
Di[j] = C7i[j + s(i)] ,
Ci[j] = Bi[j]⊕Bi+1[j]Bi+2[j]⊕Bi+2[j]⊕ 1 .

(5.20)

Using these equations, for example the condition F10[j] = 0 can be transformed
into the following equation in the unknowns B2, B3 and B4:

B2[j + 23]⊕B3[j + 23]B4[j + 23]⊕B4[j + 23]
⊕ B9[j + 2]⊕B10[j + 2]B11[j + 2]⊕B11[j + 2]
⊕ B13[j + 9]⊕B14[j + 9]B15[j + 9]⊕B15[j + 9]
⊕ mb10[j]⊕ 1 = 0 .

(5.21)

It is because of the different bit rotations in this equation (and others), that we
need to solve the equations bit per bit.

In order to simplify the system of nine equations in B1, . . . B8, we impose an
extra condition B0[j] = 0, which can be transformed into the equation:

L0[j]⊕ L1[j]L2[j]⊕ L2[j]
⊕ L7[j + 1]⊕ L8[j + 1]L9[j + 1]⊕ L9[j + 1]
⊕ L11[j + 10]⊕ L12[j + 10]L13[j + 10]⊕ L13[j + 10]
⊕ mb0[j]⊕ 1 = 0 ,

(5.22)

in the unknowns L1, L2, L7 and L8. Starting from an arbitrary but specified
state K and buffer, the values L0, L9, . . . L16 are fixed, and condition (5.22) can
easily be satisfied by picking random values for L1, . . . L6, L8 and computing
the required value of L7. This determines message block P0, and allows us to
compute the values of the states M , N , A and B0, B9, . . . B16.
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Returning to the system of equations in B1, . . . B8 we have already seen that
there is a requirement on 32 bits (because the system is overdetermined). It turns
out that there is another complication because by replacing B6[j] by B7[j] ⊕ 1
(see (5.19)), we end up with an equation in two bit positions of the same state
word B7, of the form:

B7[j + 27]⊕B7[j + 1] = . . . ,

which translates to two requirements, one for bitwise addition of all values ob-
tained with even j, and one for bitwise addition of all values obtained with odd
j. This can be seen as a requirement on two bits. Hence the probability that a
solution for this system of equations can be found is 1/232+2. We can try random
values of the initial state K until this happens and at that time message blocks
P0 and P1 are determined. We can then compute the values of the states C, D,
E and F0, F9, . . . F16, and choose a suitable value of message block P2 to satisfy
(5.18) (the conditions on F1, . . . F8).

The complexity to find sub-collision 1 (or 5) with this procedure is 234 trials.
Each trial requires one computation of the state updating transformation θ◦π◦γ
(to bring the state from L to A). Furthermore, equation (5.22) is used to find
a suitable set L1, . . . L8; B0, B9, . . . B16 are computed (part of the σ transforma-
tion), and a few equations are used to determine if a suitable set B1, . . . B8 can
be found.

Producing the other sub-collisions

Sub-collision 2. In this case there are six conditions in the unknowns F1, . . . F8,
which can easily be met by choosing the message block P2. The seven remain-
ing conditions on F0, F9, . . . F16, are added to the three existing conditions in
the unknowns B1, . . . B8, resulting in an overdetermined system of ten equations,
which leads to a requirement on 2 · 32 = 64 bits. The system is simplified by
specifying B0[j] = B9[j] = 0. This leads to two extra conditions in the unknowns
L1, . . . L8, which are easily satisfied with a suitable choice of message block P0. It
turns out that there are two more requirements that need to be satisfied in order
for a solution to exist for the system of equations in the unknowns B1, . . . B8:
one requirement on two bits (similar to the case for sub-collision 1), and an-
other requirement on sixteen bits. This last requirement comes from a non-linear
equation in the unknown B8 of the following form:

B7[j + 27]B8[j + 27]⊕B8[j + 27] = . . . ,

where B7 has already been solved. It can be seen that for B7[j + 27] = 0 we can
compute B8[j+27], but for B7[j+27] = 1 all unknowns drop from the equation.
On average this happens for sixteen bits and we end up with a requirement that
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has to be satisfied in order to get a solvable system of equations. Hence the
probability that a solution can be found is 1/232+32+2+16, and the complexity
for finding this sub-collision is 282 trials.

Sub-collision 3. There are seven conditions in the unknowns F1, . . . F8, which
can easily be met by choosing the message block P2. The seven remaining
conditions on F0, F9, . . . F16, lead to seven equations in the unknowns B1, . . . B8.
We simplify the system by specifying B0[j] = 0. Added to the three existing
conditions in B9, . . . B16, this leads to a system of four equations in the unknowns
L1, . . . L8, which are easy to solve with a suitable choice of the message block P0.
The system of equations in B1, . . . B8 can be solved with two requirements on
16 and 32 bits respectively. The 16-bit requirement is due to the non-linearity
(similar to the case for sub-collision 2), and the 32-bit requirement comes from
the fact that one equation specifies the same unknown as a set of three other
equations. The complexity for finding this sub-collision is 216+32 = 248 trials.

Sub-collision 4. This case is similar to the previous one, except there are only
four conditions in the unknowns F1, . . . F8, and the system of four equations in
the unknowns L1, . . . L8 imposes another requirement of 32 bits, which raises the
complexity to 216+32+32 = 280 trials.

Complexity of the attack

As seen above the complexities for finding the five sub-collisions correspond to
234, 282, 248, 280 and 234 trials respectively. There is no problem in connecting
the sub-collisions, as we only need an arbitrary initial state for each, which can
be obtained by choosing random message blocks between the sub-collisions. So
the total complexity for our collision-finding attack is determined by sub-collision
2 (which is the most difficult to find). This complexity is 282 trials which cor-
responds to about 282 computations of the transformation σ ◦ ρ. An outline of
the attack has been given in Table 5.3 above. Note that an arbitrary number
of common message blocks (with zero difference) can be hashed before block m0

(this defines a random value for state K in sub-collision 1 in our attack). Fur-
thermore, an arbitrary number of common message blocks can be hashed after
block m35 (this defines the final hash result).

We tested the attack for a reduced version of Panama where all the words
have a length of eight bits instead of 32 bits (this version has 64-bit hash results),
and this confirmed the given complexities (for the 8-bit version the complexity
of the attack is about 222 trials). Sub-collisions 1, 3 (and 5) were also tested for
a 16-bit version which again confirmed the complexity.
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The complexity of our attack is too high to actually find collisions for Panama,
but it is much faster than a generic birthday attack which would require about
2128 hash computations. We believe that improvements to our attack are pos-
sible. First of all better methods to solve the systems of non-linear equations
can be looked for. Furthermore, our attack still has a lot of freedom. We can
compute further backwards which has the advantage that we get more unknowns,
but the difficulty that we get more complex non-linear equations.

5.3.5 Improving PANAMA

In order to improve the security of the Panama hash function, the design could
be altered in such a manner that the message influences a smaller part of the
state (e.g., exor only four message words into the state at every application of
σ). Instead, more buffer words could be used as input of σ. The consequence
for the attacker would be that he has a smaller degree of freedom, and therefore
needs to go further backwards in the attack to obtain enough unknowns, which
gives him more complex equations to solve. Preferrably, the different buffer
stages that would be used as input of σ, should be selected in such a way that
the different sub-collisions can no longer be treated independently. Of course,
changing the design of Panama in this manner would decrease the performance
of the algorithm. Furthermore, there still is a fundamental problem that we have
the freedom to choose message blocks, and are able to go backwards in the attack
by choosing message blocks before the sub-collisions.

5.4 Conclusions

In this chapter we have discussed the design of the Panama cryptographic mod-
ule, and we have presented a method for producing collisions for the Panama

hash function. This attack has been published in [112]. Our result has no im-
pact on the security of the Panama stream cipher. In the stream cipher mode
of Panama two push operations are used to load a 256-bit secret key and a
256-bit diversification parameter. Next 32 pull operations are performed where
the outputs are discarded, and finally an arbitrary number of pull operations to
generate the keystream (256 bits at every step). No independent cryptanalysis
of this stream cipher mode has been published so far.
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Chapter 6

Design of Message

Authentication Codes

6.1 Introduction

In this chapter we discuss the design of message authentication codes. First
the required output length and key length for these algorithms is considered.
All known constructions are based on the iteration of a compression function
with fixed size input, in the same way as for cryptographic hash functions (see
Chapter 3). We explain that for an iterated construction one needs to con-
sider forgery attacks based on internal collisions. The most common approach
of designing MAC algorithms is to base the compression function on an existing
cryptographic primitive, either a block cipher or an unkeyed hash function. The
main part of the chapter and a contribution of ours is the proposal of a new
design, called Two-Track-MAC. We published this design in [37], and submit-
ted it to the NESSIE project [124], which selected it as part of its portfolio of
cryptographic algorithms.

6.2 Output and Key Length

For a MAC algorithm the output length (that is, the length of the MAC results)
may be shorter than for a cryptographic hash function, because the security
requirements are different. The relevance of attacks where the adversary guesses
the MAC result (see Sect. 2.3.2) depends strongly on the application: one has
to consider the total number of trials a system is subject to during its lifetime,
and the consequences of a successful forgery. Output lengths of n = 32, 64, . . .
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bits may be sufficient in practice. The key length must be chosen appropriately
to protect against exhaustive key search attacks (Sect. 2.3.2). Considering the
analysis of M. Blaze et al. [23] (see Sect. 3.2), a length of at least k = 80 bits is
recommended.

6.3 The Iterated Model

Practical MAC constructions are based on the same iterated model as the one
defined for cryptographic hash functions, see Sect. 3.3. The difference is that the
secret key may be used in the initial value, in the compression function, and/or
in the output transformation. For a message input X that consists of t blocks
X0, X1, . . . , Xt−1 (after padding), the iterative computation for a key K can be
described as follows:

H0 = IVK ,

Hi+1 = fK(Hi, Xi) for 0 ≤ i < t ,

h(K,X) = gK(Ht) .

A padding rule must be defined to make the length of the message input a multiple
of the block length. Contrary to hash functions, an output transformation is
frequently applied. The output length n is less than or equal to the length c of
the chaining variable. A general security result, due to M. Bellare et al. [11],
shows that iteration of a finite length pseudo-random function provides a pseudo-
random function with arbitrary length inputs.

6.3.1 Forgeries based on internal collisions

For iterated MAC constructions one needs to consider attacks based on internal
collisions. A collision for a MAC consists of a pair of message inputs X,X ′ with
the same MAC result h(K,X) = h(K,X ′). Note that h(K,X) = gK(Ht) and
h(K,X ′) = gK(H ′t). Internal collisions are those that occur before the output
transformation, which implies that Ht = H ′t. For external collisions Ht 6= H ′t but
gK(Ht) = gK(H ′t).

In [106] B. Preneel and P. van Oorschot show that an internal collision can be
used to obtain a verifiable MAC forgery with a chosen text attack that requires
only a single requested MAC result. The attack is based on the following obser-
vation: given an internal collision pair X,X ′ and an arbitrary message block Xa

we have h(K,X‖Xa) = h(K,X ′‖Xa). Therefore requesting the MAC result for
the single chosen text X‖Xa permits forgery, as the MAC result for X ′‖Xa is the
same (so it can be ‘computed’ without knowledge of K). The following theorem
indicates the difficulty of finding an internal collision for use in this attack:
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Theorem 6.1 (Preneel-van Oorschot) Let h be an iterated MAC algorithm
with c-bit chaining variable and n-bit output. An internal collision for h can be
found using u known text-MAC pairs and v chosen texts. The expected values for
u and v are as follows: u =

√
2·2c/2 and v = 0 if the output transformation gK is a

permutation. If gK is not a permutation, v is approximately 2·(2c−n+b c−nn−1c+1).

The required number u of known text-MAC pairs follows from a simple birthday
attack argument. One can only check if a collision occured by comparing the
MAC results. If the output transformation gK is a permutation (e.g., the identity
transformation) all collisions are necessarily internal collisions, so no further work
is needed. In the case that gK is not a permutation (c > n), one needs to check
for every collision whether it is an internal or an external one. This can be
done by appending the same string to both message inputs of a collision pair
and checking whether the corresponding MAC results are equal (this requires
two additional chosen-text queries). For more details we refer to [106]. There
it is also shown that the attack can be further optimised if the set of text-MAC
pairs has a common sequence of s trailing blocks. Note that the attack cannot
be precluded by including the length of the message input into the padding bits.
It can be precluded by making the algorithm non-deterministic. This means
that every MAC computation should be different, e.g., by including a sequence
number or a random number in the computation.

The attack described above can be applied to any iterated MAC algorithm,
and the complexity depends on the length c of the chaining variable and the
length n of the output. Although the attack improves upon the complexity of
the generic attacks described in Sect. 2.3.2, it must be noted that it is more
difficult in practice than the birthday attack on unkeyed hash functions. The
reason is that the attacker needs an on-line interaction with the key owner who
must produce the MAC results for a huge number of messages (note also that
this does not allow for parallelisation). For values of c ≥ 128 bits the attack
becomes totally infeasible.

6.4 MACs Based on Block Ciphers

The compression function of an iterated MAC algorithm can be based on an
existing cryptographic primitive. The most common way of basing it on a block
cipher is by using the cipher in CBC-mode (cipher block chaining, see Chapter 7,
Sect. 7.2.3). This means that the MAC key is used as cipher key in each step of
the iteration, and the message block to be processed in the current step serves
as plaintext input to the cipher, after being added (modulo 2) to the ciphertext
output from the previous step. If we write the encryption operation as Y =
EK(X) (where X denotes the plaintext, Y the ciphertext, and K the key), then
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the compression function of the CBC-MAC construction can be expressed as
follows (see also Fig. 6.1):

CBC-MAC: Hi+1 = fK(Hi, Xi) = EK(Hi ⊕Xi) .

Xi

?
Hi

- j
?

E

?

K -

Hi+1

Figure 6.1: Compression function for CBC-MAC.

Note that the initial value for the computation is usually chosen as zero, so
H0 = IV = 0. For this construction the length of the chaining variable is equal
to the block length of the cipher that is used, that is c = b. Contrary to hash
functions based on block ciphers (Sect. 3.4), the key schedule of the cipher needs
to be computed only once (for every authentication key K).

CBC-MAC is often defined with an additional output transformation g which
consists of truncating the final chaining value Ht to the n leftmost bits (n ≤ c).
For the choice n = c (g is the identity transformation), the complexity of a
forgery attack based on internal collisions (Sect. 6.3.1) corresponds to a single
chosen message and about 2c/2 known messages. If one chooses n = c/2 an
additional 2c/2 chosen messages are needed. Hence, truncating the output of the
CBC-MAC algorithm makes internal collision based attacks more difficult. There
is a trade-off however because the probability of guessing the MAC result will
increase.

A security proof for CBC-MAC has been given by Bellare et al. [12]. This
proof provides a lower bound on the complexity of breaking the algorithm under
the assumption that the underlying block cipher is a pseudo-random permutation.
This lower bound is close to the upper bound provided by Theorem 6.1 (the
complexity of an attack based on internal collisions). However, it is important
to note that the security proof is only valid when the CBC-MAC algorithm is
used to authenticate messages of a fixed length. If the messages can have a
variable length, existential forgeries can be found with a so-called exor-forgery
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attack. The easiest variant of this attack requires only a single known text-
MAC pair. We consider the CBC-MAC algorithm with g chosen as the identity
transformation, and we assume that the attacker knows a pair X,Y where X
is a message input of a single block and Y is the corresponding MAC result:
Y = h(K,X) = fK(IV,X). Then it follows that h(K,X ‖ (X ⊕ Y ⊕ IV )) = Y .1

This implies that the attacker can construct a new message X ‖ (X ⊕ Y ⊕ IV )
with the same MAC result, which is a forgery. If the algorithm uses a padding
rule which appends the length of the input, a simple extension of the exor-
forgery attack can be used. Truncation of the MAC result to the n leftmost
bits (n < c) is also insufficient: Knudsen [72] has shown that in this case a
variant of the attack is possible, requiring 2(c−n)/2 chosen texts. The use of a
strong output transformation g precludes the exor-forgery attack, an example
is an output transformation which computes the MAC result Y from the final
chaining value Ht by encryption under a key K ′, that is Y = EK′(Ht). The
secondary key K ′ is usually derived from the key K and the resulting algorithm
is known as EMAC (Extended-MAC). A security proof for this construction is
given by E. Petrank and C. Rackoff [95], and contrary to the plain CBC-MAC
it can be used for messages of variable length. Note that if one chooses the
keys K and K ′ independently for EMAC, this does not raise the level of security
because a divide-and-conquer approach allows an attacker to perform separate
key recoveries on these two keys (see Sect. 6.5 for more information on divide-
and-conquer attacks). With respect to performance, and comparing to the plain
CBC-MAC, the EMAC construction needs to perform an additional encryption
(the output transformation), and the key schedule needs to be computed twice
(for the keys K and K ′).

An alternative construction is OMAC (One-key MAC), proposed by T. Iwata
and K. Kurosawa [67]. OMAC is also based on the CBC-mode, has a secu-
rity proof (for variable-length messages) and better performance than EMAC:
it does not require an additional encryption as output transformation, neither
a second computation of the key schedule. Compared to the plain CBC-MAC
this construction requires that some key-derived material is added to the input
Ht−1 ⊕ Xt−1 of the last iteration step. Another provably secure and efficient
alternative is PMAC, proposed by J. Black and P. Rogaway [21]. PMAC has
the advantage of being parallelisable: all block cipher invocations (for different
message blocks) can be computed at the same time. This is in contrast to the
CBC-based constructions EMAC and OMAC, which are inherently sequential.

1This is because H1 = fK(IV,X) = EK(IV ⊕ X) = Y and H2 = fK(Y,X ⊕ Y ⊕ IV ) =
EK(Y ⊕ (X ⊕ Y ⊕ IV )) = EK(X ⊕ IV ) = Y .
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6.5 MACs Based on Hash Functions

As an alternative to the use of a block cipher, a cryptographic hash function can
be used as the basis of a MAC algorithm. Below we first review some of the early
proposals for hash function based MACs, and their weaknesses. Next we discuss
the most popular constructions, HMAC and MDx-MAC.

In the past it has been suggested to simply use an unkeyed hash function hu
and include the secret key in the input. For example one could prepend K to
the message X, resulting in the construction h1(K,X) = hu(K‖X). Suppose
now that an attacker knows the MAC result Y corresponding to a message X,
that is Y = hu(K‖X). Then he is able to compute the MAC result for a mes-
sage X‖Xa, with arbitrary block Xa, because hu(K‖X‖Xa) = fu(Y,Xa). Here
fu is the underlying compression function, Y serves as chaining value for the
further computation and no secret key is involved. Note that the use of MD-
strengthening (inclusion of the length in the padding bits) does not prevent such
an extension attack. An alternative construction appends the key to the message,
that is h2(K,X) = hu(X‖K). This can be seen as an iterated MAC algorithm
where only the output transformation depends on the secret key. An attacker
might use a birthday attack to find collisions for the unkeyed hash function hu,
that is he determines two messages X and X ′ such that hu(X) = hu(X

′). This
can be done off-line and is independent of the key. If the attacker subsequently
obtains the MAC result corresponding to X (one chosen-text query), he also
knows the MAC result for X ′ which is the same because hu(X‖K) = hu(X

′‖K).

The envelope method addresses the weaknesses discussed above. For this
construction a key K1 is prepended and another key K2 is appended to the
message input X, that is h3(K1‖K2, X) = hu(K1‖X‖K2). Usually, the key K1

is extended with padding bits to the length of one block, and the second key
K2 is derived from K1. Bellare et al. [11] provide a security proof for this
construction based on the assumption that the compression function of the hash
function is pseudo-random. This is an interesting result but it must be noted that
the compression function of a hash function is usually evaluated with respect to
preimage and collision-resistance, and not with respect to pseudo-randomness. If
K1 and K2 are chosen independently, and assuming both have a length of k bits,
there exists a divide-and-conquer attack which recovers both keys with a time
complexity of 2k operations, rather than the expected complexity of 22k. This
attack was demonstrated by Preneel and van Oorschot [104]. The main idea is to
first generate internal collisions, using the technique described in Sect. 6.3.1, and
then perform an exhaustive search on the keyK1. All guesses forK1 which do not
result in an internal collision are eliminated, and dk/ce different internal collisions
are sufficient to determine K1 uniquely. Finally, the key K2 can be found with
another (separate) exhaustive search. Although this attack is impractical (it
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requires a large number of known text-MAC pairs to find internal collisions),
it shows that the strength of the construction comes from its individual keys
rather than from their combined length. An improved key recovery attack on
a specific instance of the envelope method, based on the hash function MD5,
was demonstrated by Preneel and van Oorschot in [105]. Some properties of the
padding procedure of MD5 are exploited together with the fact that the key K2

may be divided over the last two input blocks (note that the attack works also for
other MDx-class hash functions used in a similar envelope construction). This
attack is not practical but it represents a certificational weakness for the envelope
method.

6.5.1 The HMAC construction

HMAC, proposed by Bellare et al. [15], uses a nested construction and two keys
K1 and K2 that are first extended (with zero bits) to the length of a block. For
an underlying hash function hu it computes the MAC result in the following
manner:

h(K1‖K2, X) = hu(K2‖hu(K1‖X)) .

The keys K1 and K2 are usually dependent on each other (a specific method
is given in [15]); if they are independent a divide-and-conquer attack applies,
just as for the envelope method. The output length of HMAC is equal to the
output length of the unkeyed hash function that is used (nu bits). Optionally,
the HMAC outputs may be truncated to the n leftmost bits (n ≤ nu). With
respect to performance it may be noted that for a message input X that consists
of t blocks (after padding as defined for the hash function), t + 3 computations
of the compression function are needed (assuming that the length of hu(K1‖X),
that is the output length of the hash function, is smaller than the length of one
block). However, if one precomputes the values fu(IV,K1) and fu(IV,K2) this
can be reduced to t+1 computations of the compression function. Note that the
extra computation represents the output transformation.

There is a security proof for HMAC which relies on weaker assumptions than
those needed for the security proof of the envelope method. In particular it is
shown in [15] that the HMAC construction is secure if the following holds: the
hash function hu is collision-resistant when the initial value is secret; the compres-
sion function fu that underlies the hash function hu is a secure MAC algorithm
for messages of one block (with the secret key in the Hi input, and the message
in the Xi input); the values fu(IV,K1) and fu(IV,K2) cannot be distinguished
from random (fu is a ‘weak’ pseudo-random function, ‘weak’ because the values
K1 and K2 are secret).
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6.5.2 The MDx-MAC construction

MDx-MAC, proposed by Preneel and van Oorschot [104], is a construction that
can be based on the hash function MD5 or similar hash functions such as RIPEMD-
128, RIPEMD-160 or SHA-1 (see Chapter 4). The underlying hash function
(MDx) is converted into a MAC by some small modifications. The secret key
K is first expanded to three 128-bit subkeys K0,K1,K2 (for RIPEMD-160 or
SHA-1 the subkey K0 is 160 bits long). MDx-MAC is then obtained from MDx
with the following modifications:

1. The initial value IV of MDx is replaced by the subkey K0.

2. The subkey K1 is split into four 32-bit values. These values are added to
the additive constants used in the different rounds of each iteration of the
MDx compression function (see [104] for details).

3. After the block that contains the padding bits (as defined for MDx) an
additional complete block is appended. The block is derived from the sub-
key K2 (see [104] for details). The processing of this block represents the
output transformation.

4. The MAC result may optionally be truncated to the n leftmost bits (n ≤
128 for MD5/RIPEMD-128, n ≤ 160 for RIPEMD-160/SHA-1).

With respect to performance it may be noted that for a message input of t
blocks (after padding as defined for the hash function), t + 1 computations of
the compression function are needed. The derivation of the subkeys from the
key K requires six computations of the MDx compression function (see [104] for
details). In order to use MDx-MAC the code of an existing implementation of
the MDx hash function must be modified. In contrast, both the envelope method
and HMAC are black-box constructions which can use an existing hash function
implementation with no modifications.2

Similar to the envelope method, the security of MDx-MAC can be proven
under the assumption that the compression function is pseudo-random. The use
of secret key material in every iteration of the compression function is meant to
make this assumption more plausible. Note that MDx-MAC is not vulnerable
to the certificational attack of [105] on the envelope method, because the subkey
K2 is expanded to a complete final block.

2For HMAC some modifications to the code of the hash function (but not to the compression
function) are needed for precomputation of the values fu(IV,K1) and fu(IV,K2).
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6.6 Other MAC Constructions

Contrary to hash functions, very few dedicated MAC algorithms are known.
This is partly because the constructions based on block ciphers or hash functions
seem adequate, and partly because some algorithms are proprietary and not made
public. One example of a known dedicated MAC is the former ISO standard MAA
(Message Authenticator Algorithm), proposed by D. Davies [33]. Significant
weaknesses were shown for this algorithm by Preneel et al. [103]. Below we
describe two special constructions, and in Sect. 6.8 we will discuss our own design
Two-Track-MAC, which is derived from the RIPEMD-160 hash function.

6.6.1 MACs based on universal hashing

A family of hash functions H = {h : D → R} is a finite set of functions with
common domain D and (finite) rangeR. We may also denote this byH : K×D →
R where HK : D → R is a function in the family for each K ∈ K (the key space).
One chooses a random function h from the family by choosing K ∈ K uniformly
and letting h = HK .

A universal hash function family is a family of hash functions with some
combinatoric property. For example, a hash function family H = {h : D → R}
is ε-almost-universal if for any distinct X,X ′ ∈ D, the probability that h(X) =
h(X ′) is no more than ε, when h ∈ H is chosen at random. This notion was
introduced by J. Carter and M. Wegman [28] and it can be used for message
authentication, for example by hashing a message with a function drawn from a
universal hash function family and encrypting the output of the hash function
with a block cipher (the encrypted hash output serves as MAC result). The
combinatoric property of the universal hash function family is often not difficult
to prove, and it can be shown that the security of the resulting MAC scheme
depends on the security of the cipher that is used. The UMAC algorithm [76] is
an example of a MAC based on universal hashing. It has very good performance,
although the efficiency decreases significantly in the case of short messages and
the algorithm is complex to specify or implement.

6.6.2 MAC based on PANAMA

The Panama stream/hash module has been described and analysed in Chapter 5.
In [30] its authors suggest that the Panama hash function can also be used as a
MAC algorithm by simply including a secret key in the message input. If the hash
function is secure, the resulting MAC scheme should also be secure independent
of the positions of the key bits in the message input. For example, we may
consider a scheme that computes a MAC result for a message input X and secret
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key K by appending the key to the message and computing the 256-bit Panama

hash: h(K,X) = hu(X‖K).

It is easy to show that our collision attack on the hash mode of Panama (see
Sect. 5.3) leads to a forgery attack of comparable complexity on this MAC scheme.
One first generates a collision for two messagesX andX ′: hu(X) = hu(X

′). Note
that this is an internal collision: all contents of state and buffer before the output
transformation are equal for the two messages. This remains so when a common
(unknown) value K is appended to the messages. Therefore, if we request the
MAC result for message X, we also know the MAC result for a ‘new’ message
X ′: h(K,X ′) = h(K,X). The attack can be performed off-line and independent
of the key. A single chosen text query is needed.

6.7 Standardisation of Algorithms

Several organisations have taken initiatives for standardisation of message au-
thentication codes. ISO/IEC has developed standard 9797 for MAC algorithms,
with two separate parts. Part 1 of ISO/IEC 9797 [65] describes MACs based
on an (unspecified) block cipher, more specifically the CBC-MAC construction
and a number of variants including EMAC. Part 2 of ISO/IEC 9797 [66] details
MACs based on an (unspecified) hash function, more specifically the HMAC and
MDx-MAC constructions (and a variant of MDx-MAC to be used for short input
strings). ANSI has adopted the CBC-MAC construction based on the DES block
cipher in its retail banking standard X9.19 [2]. This includes an optional output
transformation, which implies that the last message block is encrypted under
triple-DES. The resulting algorithm is widely known as the retail-MAC. ANSI
has also specified the HMAC construction (for an unspecified hash function) in
standard X9.71 [5]. NIST has developed FIPS 113 [48] for DES-based CBC-MAC
and FIPS 198 [53] for HMAC based on the SHA-1 hash function. Recently, NIST
announced that it intends to propose the OMAC construction based on the AES
block cipher as a possible future standard [121].

We also mention the efforts of the NESSIE project here (see Sect. 1.2.1).
NESSIE requested the submission of message authentication codes in its call
for cryptographic primitives. Two algorithms were submitted: UMAC and our
proposal Two-Track-MAC (see the description in the next section). Further,
NESSIE evaluated the standard constructions EMAC and HMAC. All of these
algorithms are recommended by NESSIE and are included as part of the NESSIE
portfolio of cryptographic primitives.
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6.8 A New MAC Based on RIPEMD-160

In Sect. 6.5 we have discussed several constructions of MACs based on an exist-
ing cryptographic hash function. Now we present our design of a new message
authentication code based on the two-trail construction that underlies the hash
function RIPEMD-160 (see Sect. 4.6). Our algorithm, called Two-Track-MAC
(TTMAC in short), has been submitted as a candidate algorithm for the NESSIE
project [124], and in February 2003 it was announced that TTMAC is selected
as part of the NESSIE portfolio of recommended cryptographic primitives. The
design has also been published in [37]. Below we describe TTMAC, discuss its se-
curity and analyse the strength against known attack strategies. We also look at
performance considerations and give motivations for the use of our design instead
of other constructions based on a hash function (HMAC and MDx-MAC).

6.8.1 Description of Two-Track-MAC

In our description below we first consider the special case where the padded
message input consists of a single block of 512 bits, next we consider arbitrary
length messages and we conclude with some more details and observations on the
design. Note that we only give a high level description here. The internal details
of the two trails used in the compression function can be derived from the source
code given in Appendix A. There we also provide test vectors for TTMAC.

MAC computation for single-block messages

The unkeyed hash function RIPEMD-160 (see Sect. 4.6 and [100]) uses two trails
in its compression function. If we separate those two trails then each trail can
be seen as a transformation of a 160-bit input I, controlled by a message block
M consisting of sixteen words of 32 bits. The 160 bits of the input I (and of the
output) consist of five words of 32 bits. Call the output of the different trails
L(I,M) and R(I,M) (left respectively right trail output for an input I and a
message block M), then our proposal for a MAC on a relatively short message
M (with a length of 512 bits after padding) and a key K of 160 bits is (in short
notation):

TTMAC(K,M) = R(K,M)− L(K,M).

In more detail, suppose that we have a key consisting of five 32-bit words: K =
(AK , BK , CK , DK , EK). Then this key serves as initial value for both the left
and right trails (these are identical to the trails used in the compression function
of RIPEMD-160). The message block M consists of sixteen 32-bit words Wj

(0 ≤ j < 16). Now let (AL, BL, CL, DL, EL) denote the output from the left
trail, and let (AR, BR, CR, DR, ER) denote the output from the right trail (these
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outputs are obtained after five rounds of 16 step operations each). Then the
MAC result is defined by the five-word value:

(A,B,C,D,E) = (AR −AL, BR −BL, CR − CL, DR −DL, ER − EL) ,

where all subtractions are performed modulo 232. Figure 6.2 below gives an
outline of this computation. It differs from a RIPEMD-160 unkeyed hash com-
putation in two points (for a single-block message):

1. Instead of using the initial value specified for RIPEMD-160, the two trails
are initialised with the secret key (AK , BK , CK , DK , EK).

2. At the end we use a different procedure for combining the results of the
separate trails.

MAC computation for longer messages

If the padded message is longer than one block, i.e., M = M0‖M1‖ · · · ‖Mt−1

where each block Mi has a length of 512 bits, we define two new operations L∗
and R∗. The operation L∗ is based on the operation L (left trail), which had
a straightforward inverse operation on the first (160 bits long) argument. This
new operation L∗ has a simple feed-forward with the first argument:

L∗(I,Mi) = L(I,Mi)− I ,

this is five times a subtraction modulo 232. Similarly the operation R∗ is defined
in shorthand as

R∗(I,Mi) = R(I,Mi)− I .

As before, the secret key (AK , BK , CK , DK , EK) serves as initial value for the
two trails. We compute two 160-bit values (5 words each) as follows:

(AL, BL, CL, DL, EL) = L∗((AK , BK , CK , DK , EK),M0) ,

(AR, BR, CR, DR, ER) = R∗((AK , BK , CK , DK , EK),M0) .

Now we introduce a transformation X which takes (AL, BL, CL, DL, EL) and
(AR, BR, CR, DR, ER) as inputs, and which produces two 5-word values, denoted
(A1, B1, C1, D1, E1) and (A2, B2, C2, D2, E2), as outputs, where:

A1 = (BL + EL)−DR ,

B1 = CL − ER ,

C1 = DL −AR ,

D1 = EL −BR ,
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Figure 6.2: Outline of TTMAC for a message of a single block.
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E1 = AL − CR ;

A2 = DL − ER ,

B2 = (EL + CL)−AR ,

C2 = AL −BR ,

D2 = BL − CR ,

E2 = CL −DR .

Here all subtractions and additions are modulo 232. The obtained 5-word values
(A1, B1, C1, D1, E1) and (A2, B2, C2, D2, E2) are the starting values for the left,
respectively, right trail to incorporate the next 512-bit message block M1. If
there are more message blocks Mi the iteration is the same. This leads to the
following algorithm:

(AL, BL, CL, DL, EL) = L∗((AK , BK , CK , DK , EK),M0) ,

(AR, BR, CR, DR, ER) = R∗((AK , BK , CK , DK , EK),M0) ;

((A1, B1, C1, D1, E1), (A2, B2, C2, D2, E2)) =

X ((AL, BL, CL, DL, EL), (AR, BR, CR, DR, ER)) .

From then on iteratively, for i = 1, ..., t− 2:

(AL, BL, CL, DL, EL) = L∗((A1, B1, C1, D1, E1),Mi),

(AR, BR, CR, DR, ER) = R∗((A2, B2, C2, D2, E2),Mi);

((A1, B1, C1, D1, E1), (A2, B2, C2, D2, E2)) =

X ((AL, BL, CL, DL, EL), (AR, BR, CR, DR, ER)) .

For the last message block Mt−1 however, the role of the left and right trails
is interchanged. Moreover, the two trails are combined to produce the 5-word
(160-bit) MAC result TTMAC(K,M) = (A,B,C,D,E):

(AL, BL, CL, DL, EL) = L∗((A2, B2, C2, D2, E2),Mt−1),

(AR, BR, CR, DR, ER) = R∗((A1, B1, C1, D1, E1),Mt−1);

(A,B,C,D,E) = (AR −AL, BR −BL, CR − CL, DR −DL, ER − EL) .

Note again that the subtractions are modulo 232. Figure 6.3 below gives an
outline of the procedure (here Z∗ refers to the set (A∗, B∗, C∗, D∗, E∗)).
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Figure 6.3: High level view of TTMAC for a message of arbitrary length.

Message pre-processing

The same pre-processing rules as in the RIPEMD-160 hash function are used to
format the message input to the algorithm. First the message is padded to a
length which is a multiple of 512 bits. Assume that the message is r bits long.
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Then first a single 1-bit is appended, followed by a number s of 0-bits, where
0 ≤ s < 512 and r+ 1+ s ≡ 448 mod 512. Finally, a 64-bit representation of the
original length r (mod 264) is appended (in the form of two 32-bit words with
the least significant word first). The message is then divided into blocks of 512
bits each, and each block is converted to a sequence of sixteen 32-bit words using
the little-endian convention (see Chapter 4). Likewise, the 160-bit secret key is
converted to a sequence of five 32-bit words using the little-endian convention.

Output transformation

An optional output transformation can be used to reduce the length of the MAC
result (to 32, 64, 96 or 128 bits). This transformation computes the necessary
number of output words, in such a manner that all of the normal output words are
used. Let the normal 5-word result be (A,B,C,D,E), then the final (shortened)
MAC result is computed as follows (note that the additions are modulo 232).

– For a 32-bit MAC result we compute the word:

AT = A+B + C +D + E .

– For a MAC result of 64, 96 or 128 bits we compute respectively the first
two, the first three or all four of the following words:

AT = A+B +D ,

BT = B + C + E ,

CT = C +D +A ,

DT = D + E +B .

Finally the sequence of output words is converted into a string of 32, 64, 96,
128 or 160 bits, by means of the little-endian convention. For example, a 160-
bit MAC result corresponds to the string derived from the concatenated 5-word
value A‖B‖C‖D‖E, starting with the least significant byte of A and ending with
the most significant byte of E.

Observations on the design

The main difference between TTMAC and RIPEMD-160, the hash function on
which it is based, is that for TTMAC we omit the combination of the two trails
at the end of the compression function. Hence the size of the chaining variable
is doubled (320 bits instead of 160). This is in fact similar to the design of
RIPEMD-320 (the extended variant of RIPEMD-160, see Sect. 4.6.4), but a dif-
ferent mechanism is used for interaction between the two trails. To clarify this,
we give a high level description of TTMAC in the iterated MAC model:
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– The 320-bit chaining variable consists of two 160-bit values (Z1, Z2).

– The 160-bit key is expanded to 320 bits and used as initial value for the
chaining variable. That is, in the first application of the compression func-
tion the chaining variable input is: (Z1, Z2) = (ZK , ZK).

– Each application of the compression function uses a 512-bit message block
Mi to compute a new value for the chaining variable (Z1, Z2). The outline
of the compression function is as follows:

ZL = L∗(Z1,Mi) ,

ZR = R∗(Z2,Mi) ,

(Z1, Z2) = X (ZL, ZR) .

– For the last message block Mt−1 a modified version of the compression
function is used (note that the transformation X is not applied):

ZL = L∗(Z2,Mt−1) ,

ZR = R∗(Z1,Mt−1) ,

(Z1, Z2) = (ZR, ZL) .

– An output transformation computes the 160-bit MAC result Z from the
final 320-bit chaining variable (Z1, Z2) as follows:

3

Z = Z1 − Z2 .

Note that for a message that consists of a single 512-bit block (after padding),
the modified version of the compression function is applied on the chaining vari-
able input (Z1, Z2) = (ZK , ZK). In this case, the operations L∗ and R∗ can be
replaced by L and R respectively. The feed-forward (subtraction of the input
ZK) is not needed because the feed-forward in the two trails cancels out in the
output transformation.

6.8.2 Design rationale

The idea for the security is simple: now we have a chaining variable (Z1, Z2)
of 320 bits. This is twice as long as for other MAC constructions (e.g., MDx-
MAC and HMAC) based on the RIPEMD-160 hash function (or on the SHA-1
hash function). The most effective generic attack on MAC algorithms is the
forgery attack based on internal collisions. The complexity to find such internal

3An optional second output transformation can be used to reduce the length of Z.
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collisions with a birthday attack depends on the length of the chaining variable,
and is completely unrealistic for TTMAC.

Another attack is possible if the MAC result of a message contains all the in-
formation (or lacks only a small amount of information) on the internal chaining
variable for a longer message, containing the first message as a prefix. In our case
we have a chaining variable of 320 bits, so we can use 160 bits of information
(the difference Z1 −Z2) as the MAC output without compromising the chaining
variable (an attacker still needs to guess 160 bits which is not easier than guessing
the secret key itself). Furthermore, we use the idea of interchanging the left and
right trails for the last message block as a free extra defence against extension
attacks. It may be noted that other MAC constructions need to apply the com-
pression function with some secret key material at the end of the computation
(as output transformation) in order to prevent these attacks. In our case, the
secret key is only used as initial value for the two trails.

So now the worry for the cryptographer are the two trails of RIPEMD-160
itself. A single trail has one important weakness: it is a bijective operation,
where the attacker can choose the bijection, which is parameterised by the 512-
bit value Mi. But as long as two trails are used, parameterised by the same
512-bit value Mi, and only the difference between the trails will come out in the
open, there is no danger that an attacker can invert the operation. Moreover, we
use feed-forward to counter a straightforward inverting operation on the compres-
sion function. This makes the transformation of the 320-bit chaining variable,
parameterised by a 512-bit message block, a one-way operation. Note that we
do not use feed-forward for single-block messages, because there the feed-forward
from the left trail would cancel out the feed-forward from the right trail, in other
words we do not need feed-forward there. In order to prevent attacks which tar-
get a single trail of the compression function, the transformation X mixes the
outputs from the functions L∗ and R∗. Note that X can be inverted: one can
compute backwards from the output (Z1, Z2) to the input (ZL, ZR). This ensures
that there exist no sets (ZL, ZR),(Z

′
L, Z

′
R) that are mapped by X to a common

value (Z1, Z2).

6.8.3 Security of Two-Track-MAC

The security of TTMAC can be proven under the assumption that the compres-
sion function is pseudo-random. The same proof can be used as the one that ap-
plies for the envelope method [11] (or for MDx-MAC). The compression function
of TTMAC is very similar to the one of RIPEMD-160. Although RIPEMD-160
has been designed towards preimage and collision-resistance rather than towards
pseudo-randomness, its compression function appears to be strong due to the use
of different operations (Boolean functions, bit rotations, additions mod 232), and
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because of the large number of steps in the two parallel trails.
Below we analyse the resistance of TTMAC against known attacks. These in-

clude generic attacks (Sect. 2.3.2), attacks based on internal collisions (Sect. 6.3.1)
and specific attacks which have been used on other hash function based construc-
tions (Sect. 6.5). We show that these attacks are either not applicable or have
unrealistic complexities, and we make some comparisons to other MAC construc-
tions.

Guessing of the MAC

The success probability p of an attack where the adversary simply guesses the
MAC result depends on the length n of the output (p = 2−n). TTMAC supports
values of n = 32, 64, 96, 128 or 160 bits. Note that the length of the secret key is
k = 160 bits, so guessing the key and computing the output is not more effective
than guessing the output directly. The choice of a suitable output length depends
strongly on the application.

Exhaustive key search

Given that TTMAC uses a 160-bit secret key, an adversary would need on average
2159 trials before succesfully guessing the correct key value, and 160/n known
text-MAC pairs for verification of the attack.

Attacks based on internal collisions

The complexity to find internal collisions with a birthday attack depends on the
length of the chaining variable. TTMAC has a chaining variable of 320 bits,
therefore about 2160 known text-MAC pairs are needed to have an internal colli-
sion. Furthermore, due to the output transformation about 2320−n chosen texts
are needed to distinguish this internal collision from all the external collisions.
Note that other MAC schemes, e.g., MDx-MAC and HMAC, based on RIPEMD-
160 or on SHA-1, have a chaining variable of 160 bits (and produce outputs of up
to 160 bits). Therefore these schemes can be attacked with a complexity of about
280 known text-MAC pairs and just a few chosen texts (if the output length is
160 bits).

Other attacks

For TTMAC the (expanded) secret key is used as initial value for the chaining
variable. This implies that there is no danger of a key-independent birthday
attack. An extension attack would seem more natural because the key is used
only at the start of the computation, but this is addressed by the output trans-
formation and by the interchanging of the left and right trail in the last iteration



146 Chapter 6. Design of Message Authentication Codes

(see Sect. 6.8.2). Divide-and-conquer key recovery attacks do not need to be
considered for TTMAC (key material is used in only one place). This can be
compared to HMAC where the possibility of a divide-and-conquer attack implies
that the strength of the algorithm depends on the individual keys, and not on
their combined length.

6.8.4 Performance considerations

The performance of TTMAC is closely related to the performance of the RIPEMD-
160 hash function (see Table 4.11 in Chapter 4) on which it is based. The com-
pression function of TTMAC is very similar to the one of RIPEMD-160, and a
detailed analysis shows that TTMAC uses only a few percent more operations on
a message than RIPEMD-160 would do to get an unkeyed hash (experiments in-
dicate that 97% of the speed of RIPEMD-160 can be achieved). Moreover, this is
already the case for the shortest possible message of 512 bits (after padding). The
reason is that for a message input of t blocks both RIPEMD-160 and TTMAC
perform t computations of the underlying compression function.

This may be compared to other constructions which can be based on RIPEMD-
160. As noted in Sect. 6.5 both HMAC and MDx-MAC need t+1 computations
of the underlying compression function. The extra invocation is due to the out-
put transformation, and this is relatively costly for short messages (e.g., for a
single-block message less than 50% of the speed of unkeyed hashing is achieved).
Note that if one uses SHA-1 instead of RIPEMD-160 as the underlying hash
function for HMAC or MDx-MAC, this has little impact on the performance of
these constructions, see the comparison in Table 4.11.

A different consideration with respect to performance is the amount of work
needed when the authentication key is changed. For TTMAC the key is used
only to define the initial value of the chaining variable: (Z1, Z2) = (ZK , ZK).
Changing the key does not slowdown the speed of the computation of TTMAC.
For the HMAC and MDx-MAC constructions on the other hand, a key-change
requires respectively two or six extra computations of the underlying compression
function (see Sect. 6.5). Some applications require, for example, that the key
is changed for every new MAC authentication. The use of TTMAC in such
applications would offer a significant improvement in efficiency, especially if the
messages to be authenticated have a short length.

6.8.5 Generalised two-trail MAC construction

Our new MAC construction does not necessarily depend on the hash function
RIPEMD-160. More generally, the construction needs two operations L and
R : (S1 × S2) → S1. The set S1 should be large enough to make collisions
improbable. The size of the set S2 should be chosen large if messages are expected
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to be long. The operations L and R are allowed to be invertible if the second
argument is fixed, but the operations L∗ and R∗ (including feed-forward from
the first input) should be infeasible to invert. The operations L and R might be
bijective in the first argument, but they should behave unpredictably on changes
in the second argument, if the first argument is unknown (but perhaps fixed).
It would be even better if the change in the output of the functions L and R is
unpredictable with known first argument, i.e., the only way to know the effect of
a change is to compute the new function value. Based on the experience that a
first version of RIPEMD was partially broken (see Sect. 4.6.2), it is recommended
that L and R should be as different as possible. In the case that S1 contains all
160-bit strings, one can use the same transformation (Z1, Z2) = X (ZL, ZR) as
we use for TTMAC based on RIPEMD-160. Of course one also needs to define
a padding rule because the message length needs to be a multiple of some fixed
quantity. With the transformation X and a padding rule one can define the
procedure for the computation of the MAC result for a message of any length.

6.9 Conclusions

In this chapter we have discussed the design of message authentication codes,
algorithms that can be seen as keyed variants of cryptographic hash functions.
Most MAC algorithms are based on a block cipher or hash function. Our con-
tribution is the proposal of a new design, called Two-Track-MAC (published in
[37]). This algorithm is based on the hash function RIPEMD-160; it offers a high
security level against all known strategies of attack, and it is efficient, especially
in the case of short messages or frequent key changes. Two-Track-MAC was sub-
mitted as a candidate for the European NESSIE project [124], and it has been
selected for the NESSIE portfolio of recommended cryptographic primitives.
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Chapter 7

Block Ciphers

7.1 Introduction

In Chapter 1 we have explained the distinction between the concepts of confiden-
tiality and authenticity. The main focus of this thesis has been on hash functions
and message authentication codes, two types of cryptographic algorithms that
are used for protecting data authenticity. Block cipher algorithms on the other
hand are designed for the purpose of encrypting data, in order to protect its con-
fidentiality. However block ciphers are also a fundamental cryptographic building
block. Indeed we have seen in Chapters 3 and 6 that many practical hash func-
tions and MAC algorithms are derived from an underlying block cipher. In this
chapter we provide a definition of block ciphers and a short overview of different
designs. We then discuss the security of block ciphers, and develop a variant
on the well-known technique of differential cryptanalysis for a specific algorithm
called ICE. Finally we give another example of the close relationship between
block ciphers and hash functions, by means of the SHACAL ciphers which are
derived from hash functions of the SHA family. Our cryptanalysis of the ICE
algorithm has been published in [125].

7.2 Definition and Basic Concepts

The following formal definition for a block cipher is similar to the definition given
by S. Goldwasser and M. Bellare [57].

Definition 7.1 A block cipher is a function E : D → R where the domain
D = {0, 1}k×{0, 1}b and the range R = {0, 1}b for some k, b ≥ 1. A block cipher
function E takes two inputs, a key K ∈ {0, 1}k and a plaintext P ∈ {0, 1}b, and
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it returns a ciphertext C ∈ {0, 1}b with C = E(K,P ). For each K ∈ {0, 1}k let
EK : {0, 1}b → {0, 1}b be the function defined by EK(·) = E(K, ·). Then for any
block cipher, and any key K, the function EK is a permutation on {0, 1}b.

The function EK (encryption with key K) is a permutation (a one-to-one map-
ping), so it has an inverse function (decryption with the same key K) which we
denote by DK = E−1K . The property DK(EK(P )) = P means that by decrypting
a ciphertext one recovers the corresponding plaintext.

7.2.1 Security requirements

In applications where a block cipher is used for encryption, a random key K is
chosen and kept secret between a pair of users. The users encrypt their data
before sending it to each other over an insecure channel. For an adversary who
observes a ciphertext C sent over the channel, and who does not know the value
of K that is being used, it should be computationally infeasible to obtain the
plaintext P corresponding to C. More generally, assume that the adversary has
knowledge of a number of plaintext-ciphertext pairs (Pi, Ci). Then it should
be infeasible for him to gain any knowledge on the value of K from observing
these pairs. Moreover, he should be unable to find the plaintext corresponding
to a new ciphertext C ′, where C ′ 6= Ci for any i. This is the classical view on
block cipher security. More formal notions of security have been proposed by
regarding a block cipher as a set of pseudo-random permutations; a user chooses
a permutation out of the set by selecting the value of the key. One can now
require that for every key the operation of the block cipher be indistinguishable
from a random permutation. For more information on this approach to block
cipher security we refer to the work of Goldwasser and Bellare [57].

7.2.2 Distinction from stream ciphers

Stream ciphers are a different type of secret-key encryption algorithms. Whereas
block ciphers are memoryless and time-invariant transformations, stream ciphers
do have memory and use a transformation which varies with time. Most stream
ciphers process the plaintext input one bit at a time. Block ciphers process
plaintexts in blocks of a fixed length of b bits, typical lengths are b = 64 or
b = 128 bits (see Sect. 7.3). An example of a stream cipher is the encryption
mode of the Panama cryptographic module (Chapter 5).

7.2.3 Modes of operation

Many applications of block ciphers require the encryption of plaintext strings of
variable length. The most straightforward approach to realise this with a b-bit



7.3. Design of Block Ciphers 151

block cipher, is to divide the plaintext in separate blocks of b bits and encrypt
these blocks independently. The ciphertext consists of the concatenation of the
encrypted blocks. This procedure is called the Electronic Code Book (ECB) mode
of operation. Note that a well-defined padding rule must be used to pre-process
the plaintext in such a way that the input length is guaranteed to be a multiple
of b bits. A disadvantage of the ECB mode is that repetitions of blocks in the
plaintext lead to equal ciphertext blocks. This problem is solved in the Cipher
Block Chaining (CBC) mode, where the value of a ciphertext block depends not
only on the corresponding plaintext block but also on the previous ciphertext
block. A block cipher can also be used in a mode which emulates the operation
of a stream cipher, examples of this are the Cipher Feedback (CFB), Output
Feedback (OFB) and Counter (CTR) modes of operation. Note that the five
encryption modes mentioned here are included in a proposed standard of NIST
[120].

7.3 Design of Block Ciphers

In practice, block ciphers are designed in a manner similar to the one used for
cryptographic hash functions: designers learn from mistakes made in the past
and try to prevent known methods of attack. There are no block ciphers which
are both practical and provably secure, although in some cases bounds can be
given for the complexity of specific known attacks. Confidence in a new design is
only obtained when it does not get broken after a substantial amount of expert
cryptanalysis. Public research in this area was initiated after the adoption of
the Data Encryption Standard (DES) by the US federal government (NIST) in
the 1970’s [54]. Another important milestone has been the adoption of the new
Advanced Encryption Standard (AES) based on the Rijndael algorithm in 2001
[52].

7.3.1 Choice of the parameters

There are two important parameters in the design of a block cipher: the length
of the key (k bits) and the length of the blocks (b bits). The key length should
be chosen large enough to make exhaustive key search infeasible (this is similar
to exhaustive key search attacks on MAC algorithms, see Sect. 2.3.2). The DES
algorithm has a key length of k = 56 bits which no longer guarantees immunity.1

The AES algorithm on the other hand supports key lengths of k = 128, 192, or
256 bits which offers a very high level of security. In choosing the block length
one has to take into account the so-called matching ciphertext attack. Because

1This was demonstrated in practice by the solution of DES challenges proposed by the RSA
company, using dedicated hardware [45] or distributed computing over the Internet [133].
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of the birthday paradox only about 2b/2 ciphertext blocks are needed to obtain
a matching pair, and this leaks information on the plaintext (we refer to the
work of L. Knudsen [73] for more details). Therefore it is recommended that a
single key is used to encrypt at most 2b/2 blocks. Most designs published in the
literature have a block length of b = 64 bits (e.g., DES) or b = 128 bits (e.g.,
AES).

7.3.2 Block cipher constructions

Most known block ciphers have an internal iterated structure which consists of
a concatenation of identical round transformations. The idea is that the round
transformation is easy to describe and implement, and that by repeating it a
sufficient number of times a strong encryption function is obtained. A round
transformation can be described by Xi = round(Ki, Xi−1), where Xi−1 is the
input to the ith round, Xi the output and Ki a round key. An encryption
function of r rounds then consists of initialising with the plaintext block X0 = P ,
computing the values Xi for i = 1, 2 . . . , r and finally setting the ciphertext block
C = Xr. The round keys Ki (1 ≤ i ≤ r) are derived from the encryption key
K by means of a separate key scheduling algorithm. Below we review some well-
known design principles. For a detailed treatment on block ciphers we refer to
the work of V. Rijmen [110].

Components of a cipher

Typical designs use a round transformation consisting of several distinct compo-
nents, each with their own functionality. The purpose of non-linear substitution
boxes (or S-boxes) is to achieve confusion, that is a complex mixing of bits which
are close to each other. This is usually implemented by means of table look-ups.
Bit permutations can be used to achieve diffusion, that is a re-arranging of bits
so that bits which are close to each other in one round, are not close to each
other in the next round. The concepts of confusion and diffusion are well-known
in cryptology, having been introduced by C. Shannon in [119]. A component is
also needed to mix the secret round key values Ki with the intermediate Xi−1

values.

Feistel ciphers

Feistel ciphers are a special type of block ciphers, where the intermediate values
Xi−1 are divided into two halves (Li−1, Ri−1) and where the round transfor-
mation is based on a round function F which depends on the round key Ki

and operates on one half of the input. The output of F is added to the other
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half of the input, and finally the two halves are swapped to obtain the out-
put of the round transformation. This means that the round transformation
(Li, Ri) = round(Ki, (Li−1, Ri−1)) has the following structure:

Ri = Li−1 ⊕ F (Ki, Ri−1) ,

Li = Ri−1 .

In the last round the swapping of the two halves is omitted. The advantage
of the Feistel construction is that the decryption operation is the same as the
encryption operation, except that the round keys need to be used in reverse order.
This minimises the implementation cost when both encryption and decryption
are needed. Note also that the round function F which is the heart of the cipher,
does not need to be a permutation (that is, invertible). This may facilitate the
design of such a function.

The best known example of a Feistel cipher is the DES algorithm [54]. DES
has a block length of b = 64 bits and works on 32-bit halves. Its Feistel struc-
ture consists of sixteen rounds and the round function F depends on a 48-bit
round key. The sixteen round keys are derived from the 56-bit encryption (or
decryption) key by means of the key schedule. The ICE algorithm [78] which is
analysed in Sect. 7.5 is another Feistel cipher with a block length of b = 64 bits.
The MISTY1 [82] and Camellia [6] algorithms which have been selected for the
NESSIE portfolio are based on a variant of the Feistel structure2 with b = 64
and b = 128 bits respectively.

Ciphers based on a uniform transformation structure

Some block ciphers use a uniform transformation structure, in the sense that
every round operates on the complete intermediate value Xi−1 in a similar way.
The advantage may be that less rounds are needed to obtain a secure algorithm.
This type of block ciphers are also known as substitution-permutation networks,
because they separate the role of confusion and diffusion by decomposing the
rounds into a layer of S-boxes (substitution) followed by a layer for diffusion
(permutation). Note however that the diffusion layer is not necessarily based on
a simple bit permutation, more general linear transformations can also be used.

The best known block cipher based on a uniform transformation structure is
the AES [52] (derived from the more general Rijndael algorithm [31]). AES uses
a diffusion layer derived from a Maximum-Distance-Separable (MDS) code, which
implies a high diffusion rate. It has a block length of b = 128 bits, uses a key of
k = 128, 192 or 256 bits and operates over 10, 12 or 14 rounds respectively (the
round keys are 128 bits long). Note that for this type of cipher all components

2The overall structure is similar, but extra functions are used after some of the rounds.



154 Chapter 7. Block Ciphers

must be invertible. Moreover, decryption is generally different from encryption
(requiring the inverse of the components), except if the design is based on com-
ponents which are involutions. This is for example the case for the block ciphers
Khazad and Anubis [8, 7] (two candidates of NESSIE with a block length of
b = 64 and b = 128 bits respectively).

7.4 Security and Cryptanalytic Techniques

As discussed in Sect. 7.2.1 the usual goal of an adversary attacking a block
cipher is to recover the secret key. However, a stronger requirement for the
security of a block cipher is that there should exist no attacks which distinguish
the algorithm from a random permutation. Because the computation performed
by a block cipher involves secret data (the key), different attack scenarios can be
distinguished based on the information that is available to the cryptanalyst:

– Ciphertext-only attack. The adversary has access to a number of cipher-
texts. Possibly he also has some knowledge about the nature of the plain-
texts (e.g., characters encoded in ASCII).

– Known-plaintext attack. The adversary has access to a number of plaintexts
and the corresponding ciphertexts.

– Chosen-plaintext attack. The adversary is able to choose a set of plain-
texts and subsequently obtains a list of ciphertexts corresponding to these
plaintexts.

Even more powerful attacks may be considered, for example using adaptively
chosen plaintexts, chosen ciphertexts or a combination of chosen plaintexts and
chosen ciphertexts. A designer should be conservative and require that his al-
gorithm resists the strongest possible attacks, even though these may not be
realistic in practice.

The security of a block cipher is bounded by the length of the key, because
the adversary can always try one-by-one all possible key values and check the
correspondence between plaintext and ciphertext of one or more known pairs. In
general, an algorithm is considered to be broken if a short-cut attack has been
found which is faster than an exhaustive search of the key space. For practical
implementations of an attack the data and memory complexity should also be
considered. These properties correspond to the required number of plaintext-
ciphertext pairs and the amount of storage that is needed for an attack.

Since the introduction of DES much research has been done in the area of
block cipher cryptanalysis, and a number of techniques have been developed. The
first and best-known of these are differential and linear cryptanalysis. Differential
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cryptanalysis [18], introduced by E. Biham and A. Shamir, is a chosen-plaintext
attack where the propagation of differences through a block cipher is studied.
Linear cryptanalysis [81], introduced by M. Matsui, is a known-plaintext attack
based on linear approximations of a cipher. Both differential and linear attacks
have been developed, which can (theoretically) recover DES keys in time less
than exhaustive search.3 Therefore, Triple-DES is often used as a more secure
alternative to DES. Triple-DES, which is specified in [54], is based on three
sequential operations of DES. Note that there are several variants of Triple-DES,
and that the length of Triple-DES keys can be 112 or 168 bits. Many variations
on differential and linear analysis have been proposed later, as well as a number of
new techniques. Recent block ciphers, such as AES, are designed with resistance
to these known attacks in mind. For a good overview of the most important
cryptanalytic techniques we refer to the NESSIE security report [91]. Below we
discuss differential cryptanalysis in more detail, a variant of this technique will
be developed for our attack on the ICE algorithm in Sect. 7.5.

7.4.1 Differential cryptanalysis

The basic idea in a differential attack is that two chosen plaintexts (P1, P2) with
a certain difference ∆P = P1 ⊕ P2 can encipher to two ciphertexts (C1, C2)
such that the difference ∆C = C1 ⊕ C2 has a specific value with non-negligible
probability. Here the differences are defined with respect to bitwise addition
(exclusive-OR). More generally, other definitions are possible, e.g., ∆Z = Z1−Z2

where ‘−’ denotes subtraction mod 2w (and w is the word length in bits). The
attacker can choose this, usually the differences will be defined by means of the
inverse of the operation that is used for addition of the round keys.

For a differential attack the cryptanalyst needs to find and use a suitable
characteristic. According to [18] “a t-round characteristic describes a possible
evolution of the difference in the various rounds of an iterated cryptosystem
and estimates the probability that a random pair with the specified plaintext
difference would have the specified differences in the various rounds when it is
encrypted under a random key.” The probability that a given input difference
to a round results in a particular output difference at the end of this round can
be computed. For most block ciphers this depends on the properties of the non-
linear S-boxes that are used. To simplify the theoretical analysis, one then makes
the approximation that the different rounds are independent and this allows the
computation of the probability for the t-round characteristic as the product of
the probabilities for every round. Note that under certain circumstances several
shorter characteristics can be concatenated in order to obtain the overall charac-

3However these attacks remain less practical than exhaustive key search due to their data
complexity (number of required plaintext-ciphertext pairs).
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teristic of t rounds. Sometimes a short characteristic can be concatenated several
times to itself, this is called an iterative characteristic.

In order to develop a key-recovery attack one does not need a characteristic
which extends over the complete block cipher. Usually one or more rounds at
the end of the cipher are not included (this means that no assumption is made
on the difference propagation in these rounds). The attacker then tries to find
encrypted plaintext pairs which follow the characteristic. These are called right
pairs. Encrypted plaintext pairs which do not follow the characteristic are wrong
pairs. The process of distinguishing right pairs from wrong pairs is called filtering,
and usually a small number of right pairs is sufficient for the next step of the
attack. Here the attacker guesses the value of some bits of the round key used
in the final round, and he checks whether these guesses are consistent with all of
the data that is available for the right pairs. We will demonstrate this procedure
in the next section where we develop differential attacks on the block cipher ICE.
However these attacks are somewhat different from standard differential attacks.
In particular we will see that the characteristics which are used, are not valid for
all possible keys.

7.5 A Key-Dependent Differential Attack on ICE

The ICE algorithm [78], proposed by M. Kwan in 1997 as an alternative to DES,
introduced the concept of a keyed permutation to improve the resistance against
differential and linear cryptanalysis. However in this section we demonstrate that
a key-dependent differential attack can be applied to ICE. This attack has been
published in [125].

7.5.1 Description of the ICE algorithm

ICE, which stands for Information Concealment Engine, is a 64-bit block cipher
with a Feistel structure similar to DES. The standard ICE algorithm takes a
64-bit key and uses sixteen rounds, each depending on a round key. There is also
a fast variant, called Thin-ICE, which uses eight rounds with a 64-bit key, and
there are open-ended variants ICE-m which use 16×m rounds and (64×m)-bit
keys. The structure of Thin-ICE is illustrated in Fig. 7.1. Here both the plaintext
(PL, PR) and the ciphertext (CL, CR) are divided into 32-bit halves. The values
Ki denote the round keys. The other variants of ICE have a similar structure but
with more rounds. Below we give an outline of the round function F , which is the
heart of the Feistel structure, and we describe the components of this function.
We also discuss the key scheduling algorithm which is used to derive the round
keys from the encryption (or decryption) key K. For a complete description of
ICE we refer to [78]. Note that in this section bits are numbered from right to
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left, starting at bit zero. The rightmost (least significant) bit of an n-bit value
V is denoted V [0], while the leftmost bit is denoted V [n− 1].

Outline of the round function

The ICE round function F maps 32-bit inputs to 32-bit outputs, using a 60-bit
round key. This round key is split into a 20-bit and a 40-bit subkey. First the 32-
bit input to the round function is expanded to a 40-bit value. The 20-bit subkey
performs a keyed permutation and the 40-bit subkey is exored to the resulting
value. Finally four 10 to 8-bit S-boxes and a bit permutation are used to obtain
the 32-bit result of the round function.

The expansion function

The 32-bit input I to the round function F is expanded to four 10-bit values
E0, E1, E2, E3 (eight of the bits at the input are duplicated).

The keyed permutation and key addition

The 20-bit subkey, which we denote KP , performs a keyed permutation on the
expanded 40-bit text, swapping bits between E0 and E2, and between E1 and
E3. If the subkey bit KP [10 + j] (j < 10) is set (equal to one), bits E0[j] and
E2[j] are swapped. If the subkey bit KP [j] (j < 10) is set, bits E1[j] and E3[j]
are swapped. The 40-bit result from this keyed permutation is then exored with
the 40-bit subkey (denoted KA).

The S-boxes

The round function of ICE uses four S-boxes (S0, S1, S2, S3) with 10-bit inputs
and 8-bit outputs to map the 40-bit value obtained after the key addition to a 32-
bit value. These S-boxes are based on Galois Field exponentiation. Each S-box
takes a 10-bit input X, from which X[9] and X[0] are concatenated to form the
row selector R. Bits X[8]...X[1] are concatenated to form the column selector
C. For each row there is an exor offset value OR, and a Galois Field prime
(irreducible polynomial) PR. Note that the values of OR and PR are different for
the different S-boxes. The 8-bit output of an S-box, corresponding to its input
X, is computed as (C ⊕ OR)

7 mod PR, under Galois Field arithmetic. Usually
this will be implemented by means of a look-up table.

The permutation function

The final operation in the round function F is a bit permutation where the four
8-bit S-box outputs are combined into the 32-bit output of F .
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Figure 7.1: The Feistel structure of Thin-ICE (eight rounds).
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The key scheduling algorithm

The ICE key schedule maps a 64-bit user key K into sixteen 60-bit round keys
Ki (divided into a 20-bit subkey KPi and a 40-bit subkey KAi). Important for
our attack is that each round key bit depends on only one bit of the user key.
Hence if an attacker is able to determine the value of one round key, he also
knows 60 bits of the user key. Note that the Thin-ICE and ICE-m key schedules
are similar, except that the number of derived round keys is different (and for
ICE-m the length of the user key).

7.5.2 Strategy for a differential attack on ICE

In [78] the designer of ICE considered the strength of the algorithm against
differential attacks. The analysis considers only symmetric input differences,
having equal left and right 16-bit halves of the 32-bit input to the F function.
This was claimed to be the best strategy since they are the only differences that
are not affected by the keyed permutation. As a consequence the attacker has
to target at least two S-boxes at a time and the probabilities for the difference
propagation are too low to be used in a realistic attack.

The approach used in our attack is to use (asymmetric) differences with a
low Hamming weight (as low as possible). Whether these differences are affected
by the keyed permutation depends on the values of only a few key bits. The
advantage of this approach is that the attacker has to target only one S-box in
the round function. In this way he finds characteristics with a probability that
is high enough to (theoretically) recover ICE keys for the algorithm reduced to
fifteen rounds, in time less than the expected cost for exhaustive search. Applied
to Thin-ICE (the fast eight-round variant of the algorithm) the complexity is low
enough to make the attack practical. The complication of our approach is that
the attacks are key-dependent.

7.5.3 Differential characteristics for ICE

As explained above we will focus on low Hamming weighted differences that
address only one S-box in the round function. It turns out that it is not possible
to build a two-round iterative characteristic like the one used for the cryptanalysis
of DES in [18], with a difference that addresses only one S-box (using only the
middle six bits out of the ten input bits to that S-box so that it is not affected by
the expansion in the round function). We can however build three-round iterative
characteristics of the form specified in Fig. 7.2.

For this three-round characteristic we require the transitions (α → β) in
the second round function, and (β → α) in the third round function. These
transitions occur with probabilities p1 and p2 respectively. Because we restrict
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Figure 7.2: Three-round iterative characteristic.

the differences α and β to one S-box, they can have a Hamming weight of no more
than four each, since the 8-bit output of an S-box delivers, after the permutation
and the key dependent permutation in the next round, up to four bits to an S-box
in the next application of the round function.

The characteristic will be valid if α and β are not affected by the keyed
permutation in the corresponding rounds. This happens if the permutation key
bits used in the bit positions that are set (equal to one) in α and β, are equal to
zero (so the difference is not permuted from the left 20-bit half of the expanded
text to the right or vice versa).

There are also characteristics which are valid only if certain permutation key
bits are equal to one (corresponding to the bits set in α or β or both). In general
we call these conditional characteristics. They have a certain probability with
respect to a subset of the key space. Note that the concept of conditional char-
acteristics was first used by I. Ben-Aroya and E. Biham in their cryptanalysis of
the Lucifer algorithm [16]. Their usage is advisable when they improve the prob-
ability over the best probability of a non-conditional characteristic by a factor
that is higher than the inverse of the key fraction (the ratio between the size of
the subset and the size of the key space), especially if several such characteristics
can efficiently share the same structure of chosen plaintexts.

If we consider only differences with Hamming weight one (this maximises the
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key fraction) there is a total of 105 conditional characteristics with

2−13 ≥ p1 · p2 ≥ 2−18.

Table 7.1 lists some of the differences of Hamming weight one, which can be
used to construct a three-round iterative characteristic with probability p1 · p2 ≥
2−15, together with the corresponding probabilities. The differences α and β are
denoted by the bit position in the 32-bit value that is set at one. We also list
the required value for the permutation key bits corresponding to α and β in the
second and third round of the characteristic. By interchanging the values of α
and β we get twice the number of characteristics (except for the fourth entry in
the table which has α = β).

Table 7.1: Characteristics with Hamming weight one and p1 · p2 ≥ 2−15.

α β p1 (-log2) p2 (-log2) round 2 round 3
18 28 6 7 0 0
26 29 6 7.4 1 1
31 26 8 6 1 0
7 7 7 7 0 0
3 10 7.4 7.4 0 0
27 3 7.4 7.4 1 1
4 22 7.4 7.4 1 0
18 30 6 9 1 0
15 23 7 8 0 0
22 7 7 8 1 1

7.5.4 Differential attacks on reduced versions

An attack on six rounds

We use the best three-round characteristic, with α = 28 and β = 18, followed
by a trivial round with probability one. The probability for this four-round
characteristic is p1 · p2 = 2−7 · 2−6 = 2−13. The characteristic is valid if the bits
set in the differences α and β are not permuted in the respective rounds (rounds
2 and 3). This can be translated to the following conditions for the permutation
subkeys KP2 and KP3 (used in rounds 2 and 3 respectively):

KP2[14] = 0 and KP3[2] = 0 .
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Examination of the key scheduling algorithm shows the corresponding condition
for the 64-bit user key K:

K[20] = 1 and K[12] = 0 .

Fig. 7.3 shows the six-round algorithm and the four-round characteristic. The
expected input difference to the round function in round 5 is β, the expected
output difference equals the difference in the right half of the ciphertext (∆CR).
This allows us to check if an arbitrary encrypted pair (with difference α in the
left half of the plaintext, and no difference in the right half) is a right pair for
the characteristic. The difference β = 18 delivers an input difference to S-box
S1 or S3, depending on the value of the corresponding permutation subkey bit.
So the output differences from S-boxes S0 and S2 have to be zero, as well as
the output difference from either S1 or S3. This is equivalent to checking the
values of 24 − 1 = 23 bits. So a wrong pair has a probability 2−23 of surviving
this filtering process. The probability of generating a right pair is much higher
(2−13), so when a pair survives the filtering, with a high probability it is a right
pair.

For such a right pair we know the inputs and the difference at the output
(∆CL ⊕ β) of the last round, and for all possible values of the round key K6

we can check whether they correspond. This is done separately for each S-box.
Repeat this for about four right pairs (we need to generate about 4 · 213 = 215

pairs of plaintexts); the correct round key K6 will be suggested each time and
can be distinguished from other suggested round key values.

The signal-to-noise-ratio (the ratio of the number of times the correct key is
suggested and the number of times an arbitrary key is suggested) for this attack
can be calculated with the method described in [18]. It depends on the number
of plaintext pairs m, the probability of the characteristic p, the number k of
simultaneous key bits that we count on, the average count a per analysed pair,
and the fraction b of the analysed pairs among all the pairs.

S/N =
m · p

m · a · b/2k .

In this case we havem = 215 and p = 2−13. When concentrating on one S-box
we are counting on k = 20 key bits (ten bits used for the keyed permutation with
KP6 and ten bits used for the exor with KA6). The average count a equals 212,
since we count on 220 keys and check an 8-bit value (difference at the output of
the S-box). The fraction b (filtering) equals 2−23. Hence the signal-to-noise-ratio
is:

S/N =
215 · 2−13

215 · 212 · 2−23/220 =
22

2−16
= 218,
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Figure 7.3: The characteristic for an attack on six rounds.
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and similarly for the other three S-boxes. However S0 and S2, as well as S1 and
S3, use the same permutation subkey bits, which we have to determine only once.
For the second S-box which uses these permutation subkey bits we can count on
just the ten exor subkey bits. In this way we determine all sixty bits of the round
key K6, which correspond to sixty bits of the user key K. The remaining four
bits of the user key can easily be found by exhaustive search.

An attack on eight rounds (Thin-ICE)

We can extend the previous attack in a straightforward manner, using a six-round
characteristic with a probability p1 · p2 · p2 · p1 = 2−7 · 2−6 · 2−6 · 2−7 = 2−26.
The attack can be improved however by inserting a round before the first round
of the characteristic without reducing the probability, like in the attack on DES
[18]. The assumed evolution of differences (during the encryption of a right pair)
is shown in Fig. 7.4. In the first round the difference α at the input of the round
function is an input difference to S-box S0 or S2, depending on the value of the
corresponding permutation subkey bit. We guess this bit and repeat the attack
if we have guessed wrong. We compensate the difference at the output of the
round function of round 1 by using a structure of 29 plaintexts:

Pi = P ⊕ (vi, 0), P̄i = P ⊕ (vi, 0)⊕ (0, α) for 0 ≤ i < 28,

with vi denoting all the possibilities for the eight bits that are exored with the
output bits from S0 or S2; (l, r) denotes the left and right 32-bit halves of a
64-bit text.

The probability for the characteristic is p1 ·p2 ·p2 = 2−7 ·2−6 ·2−6 = 2−19. The
characteristic is valid under the following conditions for the permutation subkeys
used in rounds 3, 4 and 6:

KP3[14] = 0, KP4[2] = 0 and KP6[2] = 0 .

The corresponding condition for the 64-bit user key is:

K[3] = 0, K[59] = 1 and K[25] = 1 .

In the defined structure there are 216 pairs, of which 28 satisfy the first round.
These can be isolated in 28 time as follows. Since the expected output differences
from S-boxes S1 and S3 in round 7 are zero, we sort the texts according to the
values of the corresponding bits in the right half of the ciphertext and find the
matching values. We filter these further by S-box S0 or S2 (like in the six-round
attack), and can expect 28 · 2−19 = 2−11 right pairs in a structure. By using 213

structures four right pairs are expected. In total however there are 216 ·213 = 229

pairs. After filtering for 23 bits we expect there will remain 26 = 64 wrong
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Figure 7.4: The characteristic for an attack on eight rounds.
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pairs. For this mixture of right and wrong pairs we try all possible values for K8

concentrating on one S-box at a time.
In the calculation of the signal-to-noise-ratio for this attack there is an extra

factor 2−8, imposed by the first round structure (m = 213 · 216, but only 213 · 28
pairs satisfy the first round):

S/N =
213 · 28 · 2−19

213 · 216 · 212 · 2−23/220 =
22

2−2
= 24.

We can easily extend this attack to make it valid for twice as many keys.
Just guess the value of KP6[2] (bit 2 of the permutation subkey in round 6). If
it equals 1 instead of 0, the round function in that round delivers an output exor
different from α = 28. With probability 2−6 this output exor will be γ = 30 and
we can perform the attack in a similar way. The condition for the 64-bit user key
therefore reduces to:

K[3] = 0 and K[59] = 1 .

Alternatively we can do an eight-round attack using the characteristic with
α = 31 and β = 26. According to Table 7.1 the probability of this characteristic
is p1 · p2 · p2 = 2−8 · 2−6 · 2−6 = 2−20. The conditions for the permutation subkey
bits translate to the following condition for the user key:

K[48] = 1, K[18] = 1 and K[48] = 1 .

So the permutation subkey bit in round 6 doesn’t impose an extra condition on
the user key, and we don’t have to guess this bit when using the characteristic
with α = 31 and β = 26.

Practical aspects of the analysis

The attacks on the six-round version and the eight-round version (Thin-ICE) have
been implemented and, on the average, work as predicted. However, using low
Hamming weighted differences causes some complications. The input difference
to the last round is caused by the output difference from the previous round.
That output difference is caused by just one S-box and has a Hamming weight
of no more than eight, with an average of four.

Each S-box in the last round receives two bits from these eight bits. Because
the keyed permutation swaps bits between the ‘partner’ S-boxes S0 − S2 and
S1 − S3, an S-box will finally receive between zero and four from these bits at
its input, depending on the value of the permutation subkey. Only these bits can
cause an input difference. If S-box S0 or S1 gets k bits, then respectively S2 or
S3 will get 4− k bits. If a particular S-box gets k bits with a possible difference,
the probability to get input difference zero is approximately 2−k. In Table 7.2
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Table 7.2: Probabilities to get a zero input difference to an S-box.

probability fraction of subkeys
1 1/24

2−1 4/24

2−2 6/24

2−3 4/24

2−4 1/24

we list the possible values for that probability, and the fraction of subkeys for
which it holds.

If the input difference to an S-box is zero, all of the guesses for the permutation
subkey that cause a zero difference will be counted, as will all possibilities for the
exor subkey. Therefore the attack is less efficient and we have to look for some
more right pairs for the characteristic (in practice between four and eight), hence
use more plaintexts.

For a fraction 2−4 of the keys the input difference to the S-box will always
be zero, so we can determine only some of the permutation subkey bits and none
of the exor subkey bits. But then the partner S-box has a probability for zero
input difference of only 2−4. We determine the permutation subkey bits via this
S-box, and the ten exor subkey bits that we cannot determine can be looked for
exhaustively after the differential attack (together with the four bits of the user
key that are not used in the 60-bit round key of the last round).

It is possible to exploit the occasions of zero input differences to improve our
attack. If the input difference to an S-box in the last round is zero, the output
difference is zero as well. In that case we know the corresponding difference at
the input to the round function in the second to last round and we can check if
its value corresponds to the value that is required for the characteristic. In this
way we can do some extra filtering, which is important for the eight-round attack
where we expect to get 64 wrong pairs. It will increase the signal-to-noise-ratio
and reduce the number of required plaintexts.

7.5.5 Extending the attack

The three-round iterative characteristic can be extended in a straightforward
manner to attack the ICE algorithm with an arbitrary number of rounds. But
if the number of rounds exceeds 9, the signal-to-noise-ratio will drop below one,
making the attack impossible (the last remark of previous section allows only a
slight improvement by extra filtering). There are however several ways to improve
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the signal-to-noise-ratio.

Counting on more key bits

When a pair survives the filtering (and is assumed to be a right pair, following the
characteristic), we know the inputs and the difference at the output of the last
round and check whether they correspond. In the basic attack we concentrate
on one S-box and count on twenty subkey bits (ten used for the permutation and
ten for exoring). Instead we can consider two partner S-boxes (S0 and S2, or S1
and S3) at the same time. They share ten permutation subkey bits and both use
ten exor subkey bits. This allows us to count on thirty key bits, and results in an
improvement of the signal-to-noise-ratio by a factor of 28 because we check the
values of eight more bits at the output of the second S-box (in the calculation of
S/N we have 2k = 230 and a = 230/216 = 214). In theory further improvements
(by a factor of 216 or 224) are possible by considering respectively three or four
S-boxes (fifty or sixty key bits).

Checking differences in the first round

When a pair is assumed to follow the characteristic we can also check subkey bits
in the first round of the algorithm. In this first round we use a special structure
(cf. the attack on eight rounds) and guess the value of the permutation subkey bit
corresponding with the difference of Hamming weight one. Hence we can count
on the ten exor subkey bits of the S-box where the difference of Hamming weight
one is located. Moreover, due to the key schedule some of these subkey bits in
the first round represent the same user key bits as some of the subkey bits in the
last round of the algorithm. This allows us to improve the signal-to-noise-ratio
by a factor of 28 by counting on just a few more key bits. Note also that some
of the key bits that we count on are already known, because of the condition on
the user key for the characteristic to be valid.

Filtering in the last round

The most important improvement can be made by adapting the characteristic.
In the previous attacks we used the characteristics with the highest probabilities.
The resulting attacks are called 2R-attacks (cf. Biham and Shamir [18]), because
they don’t make assumptions for the last two rounds of the algorithm. Instead
we can perform 1R-attacks, using a characteristic up to the last to one round.
An example of the last rounds for such a characteristic is shown in Fig. 7.5.

Although the probability of such a characteristic is generally lower than for
a 2R-attack, it is useful because it allows much more filtering and an overall
improvement of the signal-to-noise-ratio. In the last round we can check if the
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Figure 7.5: Characteristic (last rounds) for a 1R-attack.

difference at the output of the round function (∆CL in Fig. 7.5) is possible, like
we did in the last to one round in the previous attacks. This corresponds to
checking the values of 23 bits. But we can also check the difference in the right
half of the ciphertext (∆CR = α in Fig. 7.5), thus filter for 32 more bits. This
results in an improvement of the signal-to-noise-ratio by a factor of 232 ·pc, where
pc represents the factor by which the probability of the characteristic is reduced
when we perform a 1R-attack instead of a 2R-attack.

Results for an arbitrary number of rounds

Table 7.3 lists for each number of rounds: the probability of the characteris-
tic, the required number of chosen plaintexts (assuming four right pairs for the
characteristic are sufficient, and that we need both guesses for the permutation
subkey bit in the first round structure), the number of subkey bits counted on
(excluding key bits in the first round because of the overlap), the signal-to-noise-
ratio and the fraction of keys that can be found with the attack. Note that the
number of plaintexts determines the data and time complexity, the number of
counters determines the memory that is needed for an attack.

When the number of rounds exceeds nine we list two different attacks: a
2R-attack (where the signal-to-noise-ratio is improved by counting on more key
bits and checking the difference in the first round), and a 1R-attack (which has
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Table 7.3: Differential analysis for an arbitrary number of rounds. († log2)

rounds probability † plaintexts † counters † S/N † key frac. †
4 0 4 20 23 all
5 -6 10 20 17 all
6 -13 16 20 18 -2
7 -13 17 20 10 -2
8 -19 23 20 4 -2
9 -26 29 20 5 -4
10 -26 30 20 5 -4
10 -32 36 20 23 -5
11 -32 36 20 -1 -4
11 -39 42 20 24 -6
12 -39 43 20 16 -6
13 -39 43 30 0 -6
13 -45 49 20 10 -7
14 -45 49 50 2 -6
14 -52 55 20 11 -8
15 -52 56 20 3 -8
16 -52 56 60 3 -8
16 -58 62 30 5 -9

a lower probability and requires more plaintexts). When the number of rounds
is a multiple of three, we have listed only the 1R-attack because it has the same
probability as the 2R-attack (pc = 1). In the other cases we have pc = p1 = 2−7

or pc = p2 = 2−6. Note that the key fraction is lower for a 1R-attack, because the
characteristic imposes more conditions on the user key (except when the number
of rounds is a multiple of three).

The table shows that the differential analysis works for up to fifteen rounds of
ICE: for this attack eight key bits are fixed and an exhaustive search would have
256 possibilities, our attack requires at most 256 plaintexts. For the complete
sixteen-round algorithm the number of plaintexts needed is still smaller than
the total number of available plaintexts, but an exhaustive search in the covered
fraction of the key space would be faster.

7.5.6 Key dependency

We described the previous attacks using the best conditional characteristic. In
Table 7.3 we have listed for how many keys this works. For Thin-ICE (eight
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Table 7.4: Thin-ICE (eight rounds): the number of characteristics and plaintexts
versus the fraction of keys that can be found.

characteristics plaintexts (log2) key fraction
1 23 25%
3 24 63%
5 25 81%
6 26 88%
8 27 95%

rounds) the attack works for a fraction 2−2 of the keys. For other keys however
we can use a different characteristic with a lower probability. We can use several
characteristics with the same set of plaintexts, if we use a special structure for
these plaintexts. For two characteristics this is a quartet structure (like the one
used for the analysis of DES in [18]), for three an octet structure and so on.
The number of plaintexts we need depends on the characteristic with the lowest
probability. If we want to be able to determine as many possible keys with as
few possible plaintexts we use the characteristics with the highest probabilities.
Table 7.4 shows the evolution of these numbers for the Thin-ICE algorithm.

7.5.7 Conclusions

The ICE algorithm was proposed as a possible alternative to DES, the most
important feature of the design being the use of keyed permutations. In this
section we have shown that differential attacks can be applied to ICE and the
main conclusion is that the keyed permutations do not prevent differential crypt-
analysis. Although the analysis is more complex and becomes key dependent, in
our opinion the intention of the design was not reached.

This is demonstrated by the fact that there is a practical attack on the fast
variant Thin-ICE. In its basic form it finds the secret key in 25% of the cases using
223 chosen plaintexts, and in 95% of the cases using 227 plaintexts. The optimal
characteristic for our attack on Thin-ICE has a probability of 2−19 which is much
higher than the probability of the optimal characteristic based on a symmetric
input difference, which was shown to be 2−56 by the designer of ICE [78].
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7.6 Block Ciphers Based on Hash Functions

In Chapter 3 we have seen that block ciphers can be used to construct a cryp-
tographic hash function. The inverse is also true: some block ciphers have been
proposed where the design was based on an existing hash function. In this section
we illustrate this by means of the SHACAL-1 and SHACAL-2 ciphers, which are
based on hash functions of the SHA family.

7.6.1 The SHACAL ciphers

In [60] H. Handschuh and D. Naccache proposed to use the compression func-
tion of the cryptographic hash function SHA-1 in encryption mode. As noted in
Sect. 4.7.1 the eighty elementary step operations of SHA-1 are reversible. There-
fore, if one uses a secret key instead of the message and a plaintext instead of the
input chaining variable, and if one omits the feed-forward operation at the end of
the compression function, an invertible function is obtained. This function can
be used as a block cipher that encrypts 160-bit plaintexts into 160-bit cipher-
texts by means of eighty step operations, dependent on a 512-bit key. This key is
first expanded to eighty 32-bit words (2560 bits) by means of the key scheduling
algorithm, which is equivalent to the procedure for message expansion in SHA-1.
Alternatively, one can also regard SHA-1 as being based on an underlying block
cipher, that is used in Davies-Meyer mode.4

After the announcement of a number of new hash functions for the NIST hash
function standard, Handschuh and Naccache also proposed a new block cipher
that uses the compression function of the hash function SHA-256 in encryption
mode [60]. This cipher has 256-bit blocks, 512-bit keys and uses sixty-four step
operations. The two proposed block ciphers, based on SHA-1 and SHA-256,
are called SHACAL-1 and SHACAL-2 respectively. They were submitted as
candidates for the NESSIE project.

Known security results

The block cipher SHACAL-1 has been evaluated for its resistance against ad-
vanced types of differential attacks. More particularly, in [70] boomerang attacks
were applied, and in [17] rectangle attacks were applied to the algorithm. The
best of these attacks works (theoretically) with a data complexity of 2152 chosen
plaintexts and a time complexity of 2509 operations, for a variant of SHACAL-1
reduced to 49 steps. From the analysis it can be seen that the probability of
differential characteristics decreases rapidly when the number of steps increases,
due to the fact that the Hamming weight of the difference words grows larger.

4See Sect. 3.4.1, a small difference is that the Davies-Meyer mode of SHA-1 uses modular
addition instead of exclusive-OR for the feed-forward operation.
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For example, the best 28-step characteristic which was found has a probability
of 2−107, and the best 30-step characteristic has a probability of 2−138. Overall
the security margin of SHACAL-1 against such attacks appears to be very large.
It may be noted that if a differential attack on the complete SHACAL-1 cipher
would be possible, then this might also affect the security of the SHA-1 hash func-
tion. In particular, it might lead to pseudo-collisions for SHA-1. For SHACAL-2
an impossible differential attack was applied in [61]. This attack works for a vari-
ant of SHACAL-2 reduced to 30 steps, in less time than needed for an exhaustive
search for a 512-bit key.

The slide attack on SHA-1, which we discussed in Sect. 4.7.2, can also be
applied to the block cipher SHACAL-1. In particular it is shown in [118] that
an attacker who has access to two SHACAL-1 encryption oracles whose keys
are slid (in the same way that the procedure for message expansion can be slid
for SHA-1), is able to distinguish the cipher from a random permutation with
a complexity of about 296 chosen plaintexts. This does not lead to a practical
attack but it presents an undesirable property. SHACAL-2 is not vulnerable to
such a slide attack, because each of the step operations in this algorithm uses a
unique additive constant. Note that SHACAL-2 has been selected as one of the
block ciphers in the NESSIE portfolio.

7.7 Conclusions

This chapter has given a discussion on block ciphers. These algorithms are not
only used for encryption purposes but they are also useful for the construction of
other cryptographic primitives, including hash functions and message authentica-
tion codes. We have presented some well-known design principles and discussed
the security of block ciphers. The technique of differential cryptanalysis has been
explained in some detail, and a key-dependent variant of this technique was de-
veloped for an attack on the block cipher ICE. This attack has been published
in [125]. Finally we also mentioned the design of block ciphers based on hash
functions, with the example of two ciphers based on the hash functions SHA-1
and SHA-256.
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Chapter 8

Conclusions and Open

Problems

8.1 Cryptanalysis of Hash Functions

One of the main topics of this thesis has been the cryptanalysis of hash functions.
These algorithms are versatile building blocks used in many cryptographic ap-
plications, especially towards the protection of the authenticity of information.
The analysis of cryptographic hash functions is a young research area. The MD4
hash function [114] which is a precursor of the most popular hash functions in use
today, dates from 1990; in 1995 an innovating approach for analysing this type
of hash functions was introduced by H. Dobbertin [41]. This may be compared
to the situation for block ciphers, where the academic research started in the
1970’s (after the adoption of the DES standard [54] by the US government). The
methods of differential [18] and linear cryptanalysis [81] were first presented in
the early 1990’s, and are now a well-known tool for evaluating the security of
block ciphers.

In Chapter 4 we have given an extensive overview of the attacks published
in the literature for hash functions based on the design ideas of MD4, and we
hope that this will contribute to a better understanding of this field. It may
be noted that the cryptanalytic methods of Dobbertin [41, 42, 39] seem to be
more generally applicable than the earliest attacks on MD4 [35] and MD5 [36],
and new designs of hash functions should take this into account. An important
contribution of our research is the attack which we developed for the HAVAL
algorithm. HAVAL [131] was designed in 1992 when the techniques of Dobbertin
were still unknown. The main focus of the design was on the complex non-linear
Boolean functions which are used in the compression function. In [40] Dobbertin
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noted:

“Various promising new characteristics are involved in the design of
HAVAL. These probably improve the cryptographic strength, but
could also be pitfalls introducing unexpected weaknesses. It should
be investigated whether there is a suitable modification of the MD4
attack, which could be applied to the 3-round version of HAVAL. As
long as such analysis has not been worked out, there is no sufficient
base to assess the strength of HAVAL.”

Our work [123] has shown that the version of HAVAL with three rounds in the
compression function can be broken, with an attack that follows a strategy similar
to the one for Dobbertin’s attack on MD4 [42]. It is the first published attack on a
complete version of HAVAL. Our result makes it clear that for a secure design it is
not sufficient to use strong building blocks (e.g., the non-linear Boolean functions
of HAVAL), but the effect of these building blocks on the overall security must
be determined.

Although the experience with the cryptanalysis of MDx-class hash functions
has led to the design of a number of algorithms (particularly those of the RIPEMD
[100] and SHA [51] families) which appear to have a large security margin against
all known strategies of attack, there are limitations to this approach for designing
hash functions. In particular, the more recent (and more secure) algorithms are
considerably less efficient than MD4 and MD5 [115] (see Table 4.11). This is
contrary to the evolution which can be noticed in the design of block ciphers:
the recent US standard AES [52], and the NESSIE block ciphers MISTY1 [82]
and Camellia [6], are considerably faster than DES, and especially Triple-DES,
as shown in [92]. According to [92] the MD4 hash function is more than ten
times faster than DES, but the SHA-256 hash function [51] is slower than AES.1

Therefore, there certainly is an interest in fresh ideas for the design of new hash
functions. An example of a new type of design is the Panama cryptographic
module [30], which can be used for both hashing and stream encryption. The
inherent parallelism of Panama allows very fast software implementations on
VLIW processors (at least for the hashing of long message streams). However,
in Chapter 5 and in [112] we have demonstrated a theoretical collision attack on
the hash mode of Panama, which is much faster than a generic birthday attack.

1SHA-256 has been designed to offer a security level similar to AES (about 2128 operations
for the best attack on both algorithms). Note however that SHA-256 is still faster than AES
used in a hashing mode [92].



8.2. Design of a New MAC Selected by NESSIE 177

8.2 Design of a New MAC Selected by NESSIE

In Chapter 6 we have presented a new design for a message authentication code, or
keyed hash function. Our algorithm, called Two-Track-MAC or TTMAC [37], is
closely based on the design of the unkeyed hash function RIPEMD-160 [100]. The
compression function of TTMAC uses the two trails of RIPEMD-160, and we have
demonstrated that thanks to this two trail construction our algorithm is faster
than other MACs based on RIPEMD-160 (or SHA-1), especially when processing
short messages. Furthermore, TTMAC has extremely good key agility, which
makes it well suited to applications where the secret key needs to be changed
frequently (e.g., after every message). We have also shown that TTMAC has a
high security margin against all known attacks on MAC algorithms. TTMAC
has been submitted to the European NESSIE project [124], and in February 2003
the NESSIE consortium announced [94] that TTMAC is part of its portfolio of
recommended cryptographic primitives. The selection of TTMAC is motivated
in [93] as follows:

“TTMAC (also known as Two-Track-MAC) has the highest security
level of the MAC primitives considered by NESSIE. The design of
TTMAC is based on the hash function RIPEMD-160 (with small
modifications). The security can be proven on the assumption that
the underlying compression function is pseudo-random. TTMAC has
specific performance advantages: it is especially efficient in the case
of short messages, and has optimal key-agility.”

Three other MAC algorithms are included in the NESSIE portfolio: UMAC [76],
EMAC [95] and HMAC [15]. The NESSIE consortium [93] remarks:

“No security weaknesses were found for any of these primitives. NESSIE
makes a broad recommendation in this area because every primitive
has its own specific advantages.”

8.3 Study of Block Ciphers

In Chapter 7 we have studied block ciphers. The main use of these algorithms is
for encrypting data (the protection of confidentiality), but they can also be used
for the construction of hash functions and message authentication codes. On the
other hand there also exist block cipher designs which are based on a hash func-
tion (see for example the SHACAL [60] block ciphers). We have presented [125]
a key-dependent variant on the technique of differential cryptanalysis, applied
for an attack on the block cipher ICE [78].
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8.4 Further Research

During the research for this thesis a number of problems were encountered, which
are still unsolved. Additional cryptanalysis of MDx-class hash functions is possi-
ble, especially for the most recent algorithms of the SHA family which have been
adopted as standards by NIST without disclosure of their design strategy or any
supporting evaluation. Due to the use of linear codes in these hash functions, a
cryptanalysis of them would probably be based for a large part on coding theory.
It is an open problem whether our collision attack on the three-round version
of HAVAL can be extended to versions with more rounds in the compression
function. Attacks which find pseudo-collisions or almost-collisions would also be
interesting. The MD5 algorithm is still very popular today despite the fact that
collisions can be found for its compression function [39] (but not yet for the hash
function itself). Trying to find real collisions for MD5 is therefore an interesting
research problem. Alternatively, it would be very useful to implement a brute-
force birthday attack on MD5. MD5 hash results are only 128 bits long, so such
an attack, requiring about 264 operations, should be feasible with today’s equip-
ment (using dedicated hardware, distributed computing, or both), but this has
not been demonstrated yet.

Another cryptanalytic challenge is trying to find an improvement for our
collision attack on Panama. The current attack is theoretical (much faster than
a birthday attack but too complex to be practical), but we anticipate that by
using methods such as relinearisation [71] for solving the systems of non-linear
equations, collisions for Panama might actually be found. As a generic comment
on hash function security, we note that more research is needed to study other
properties of hash functions, for example the resistance against preimage attacks,
or against attacks that analyse the pseudo-randomness of the output (when part
of the input is secret). Additional evaluation of our own design Two-Track-MAC
is welcome.

From the designing point of view there exists an interest for new types of
hash functions, which should offer a high security level combined with good
performance. It would also be desirable to have more provable security properties
for hash functions (similar to block ciphers, where designers of new algorithms try
to prove the resistance against, for example, differential and linear cryptanalysis).
For hash functions that are based on a block cipher, it is still an open problem
which requirements for the block cipher are sufficient in order to produce a secure
hash function.
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Appendix A

Specification of

Two-Track-MAC

A high level description of the Two-Track-MAC (TTMAC) algorithm has been
given in Chapter 6 (Sect. 6.8). In this appendix we give the source code for a
reference implementation of Two-Track-MAC, and we provide test vectors.

Source Code

/* ----------------------------------------------------------

*

* C Implementation TTMAC Message Authentication

*

* Files: ttmac.h, ttmac.c, test.c

*

* Author: Bart Van Rompay, ESAT/SCD-COSIC

* Note: based on RIPEMD-160 code of

* Antoon Bosselaers (ESAT/SCD-COSIC)

* Date: June 2004

* Version: 1.0

*

* Copyright (c) Katholieke Universiteit Leuven

* 2004, All Rights Reserved

*
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* Conditions for use of the TTMAC Software

*

* The TTMAC software is freely available for use under the

* terms and conditions described hereunder, which shall be

* deemed to be accepted by any user of the software and

* applicable on any use of the software:

*

* 1. K.U.Leuven Department of Electrical Engineering

* (ESAT/SCD-COSIC) shall for all purposes be considered

* the owner of the TTMAC software and of all copyright,

* trade secret, patent or other intellectual property

* rights therein.

* 2. The TTMAC software is provided on an "as is" basis

* without warranty of any sort, express or implied.

* K.U.Leuven makes no representation that the use of the

* software will not infringe any patent or proprietary

* right of third parties. User will indemnify K.U.Leuven

* and hold K.U.Leuven harmless from any claims or

* liabilities which may arise as a result of its use of

* the software. In no circumstances K.U.Leuven R&D will

* be held liable for any deficiency, fault or other

* mishappening with regard to the use or performance of

* the software.

* 3. User agrees to give due credit to K.U.Leuven in

* scientific publications or communications in relation

* with the use of the TTMAC software.

*

* ------------------------------------------------------- */

/*** file ttmac.h ***/

/** typedef 8 and 32 bit types, resp. **/

/* adapt these, if necessary,

for your operating system and compiler */

typedef unsigned char byte;

typedef unsigned long dword;

/** define constants **/
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/* length of left and right internal variable */

#define STATEsize 160

/* length of message block */

#define BLOCKsize 512

/* MAC output length : 32, 64, 96, 128 or 160 bits */

#define MACsize 160

/** define structure used to store the expanded key

and the state (note: the expanded key is the

initial state) **/

struct MDstruct {

/* left 160-bit state variable */

dword L[STATEsize/32];

/* right 160-bit state variable */

dword R[STATEsize/32];

/* buffer for incomplete message block */

byte buf[BLOCKsize/8-1];

/* number of bytes buffered */

unsigned int bufbytes;

/* number of bytes processed */

unsigned long nbytes;

};

/** macro definitions **/

/* collect four bytes into one word (little-endian): */

#define BYTES_TO_DWORD(strptr) \

(((dword) *((strptr)+3) << 24) | \

((dword) *((strptr)+2) << 16) | \

((dword) *((strptr)+1) << 8) | \

((dword) *(strptr)))
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/* extract a byte from a word */

#define DWORD_TO_BYTES(x, i) (x[(i)>>2] >> (8*((i)&3)))

/* ROL(x, n) cyclically rotates x over n bits to the left */

/* x must be of an unsigned 32 bits type and 0 <= n < 32. */

#define ROL(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* the five basic functions F(), G(), H(), I() and J() */

#define F(x, y, z) ((x) ^ (y) ^ (z))

#define G(x, y, z) (((x) & (y)) | (~(x) & (z)))

#define H(x, y, z) (((x) | ~(y)) ^ (z))

#define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))

#define J(x, y, z) ((x) ^ ((y) | ~(z)))

/* the ten basic operations FF() through JJJ() */

#define FF(a, b, c, d, e, x, s) {\

(a) += F((b), (c), (d)) + (x);\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

#define GG(a, b, c, d, e, x, s) {\

(a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

#define HH(a, b, c, d, e, x, s) {\

(a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

#define II(a, b, c, d, e, x, s) {\

(a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

#define JJ(a, b, c, d, e, x, s) {\

(a) += J((b), (c), (d)) + (x) + 0xa953fd4eUL;\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

#define FFF(a, b, c, d, e, x, s) {\
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(a) += F((b), (c), (d)) + (x);\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

#define GGG(a, b, c, d, e, x, s) {\

(a) += G((b), (c), (d)) + (x) + 0x7a6d76e9UL;\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

#define HHH(a, b, c, d, e, x, s) {\

(a) += H((b), (c), (d)) + (x) + 0x6d703ef3UL;\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

#define III(a, b, c, d, e, x, s) {\

(a) += I((b), (c), (d)) + (x) + 0x5c4dd124UL;\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

#define JJJ(a, b, c, d, e, x, s) {\

(a) += J((b), (c), (d)) + (x) + 0x50a28be6UL;\

(a) = ROL((a), (s)) + (e);\

(c) = ROL((c), 10);\

}

/** function prototypes **/

void MDkeysetup(

const unsigned char * const key,

struct MDstruct * const structpointer);

void MDadd(

const unsigned char * const plaintext,

unsigned long numberofbits,

struct MDstruct * const structpointer);

void MDfinalize(

const struct MDstruct * const structpointer,

unsigned char * const result);

void mix(struct MDstruct * const sp);
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void ltrail(dword *A, dword *M);

void rtrail(dword *B, dword *M);

/*** end of file ttmac.h ***/

/*** file ttmac.c ***/

/** header files **/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "ttmac.h"

/** key expansion and state initialisation

(note: the expanded key is the initial state) **/

void MDkeysetup(

const unsigned char * const key,

struct MDstruct * const structpointer)

{

unsigned int i;

for (i=0; i<(STATEsize/32); i++)

structpointer->L[i] = structpointer->R[i] \

= BYTES_TO_DWORD(key+i*4);

structpointer->nbytes = 0;

structpointer->bufbytes = 0;

return;

}

/**- modify the state according to the data at plaintext

- numberofbits tells the function how many bits of

plaintext to process

- if numberofbits is not a multiple of BLOCKsize, the last

incomplete block is stored in the buffer of structpointer

- if structpointer already contains such a buffer when the

function is called the data therein is prepended to

plaintext **/
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void MDadd(

const unsigned char * const plaintext,

unsigned long numberofbits,

struct MDstruct * const structpointer)

{

unsigned int i;

unsigned int bytesinbuf = structpointer->bufbytes;

unsigned long numberofbytes = numberofbits/8;

unsigned long bytesleft;

byte *message;

dword M[BLOCKsize/32]; /* message words */

/* case 1: (buffer +) plaintext is shorter than one block

store the plaintext in the buffer and return */

if ( (numberofbytes + bytesinbuf) < (BLOCKsize/8) ) {

message = (byte *) plaintext;

for (i=0; i<numberofbytes; i++)

structpointer->buf[bytesinbuf + i] = *message++;

structpointer->bufbytes += numberofbytes;

return;

}

/* case 2a: buffer + plaintext is at least one block

put bytes from buffer at start of message */

/* note: this is inefficient so try to avoid this case */

if (bytesinbuf) {

message = (byte*)malloc(numberofbytes + bytesinbuf);

for (i=(numberofbytes + bytesinbuf); i>bytesinbuf; i--)

*(message + i - 1) = *(plaintext + i - 1 - bytesinbuf);

for (i=bytesinbuf; i>0; i--)

*(message + i - 1) = structpointer->buf[i - 1];

}

/* case 2b: no buffer, plaintext is at least one block */

else message = (byte *) plaintext;
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/* process the plaintext in blocks */

for (bytesleft=(numberofbytes + bytesinbuf);

bytesleft>(BLOCKsize/8 - 1);

bytesleft-=(BLOCKsize/8)) {

for (i=0; i<(BLOCKsize/32); i++) {

M[i] = BYTES_TO_DWORD(message);

message += 4;

}

ltrail(structpointer->L, M); rtrail(structpointer->R, M);

mix(structpointer);

structpointer->nbytes += BLOCKsize/8;

}

/* store the last incomplete block in the buffer */

for (i=0; i<bytesleft; i++)

structpointer->buf[i] = *message++;

structpointer->bufbytes = bytesleft;

if (bytesinbuf) { free(message); }

return;

}

/**- get the MAC value from the state

- first process the data left in the buffer of

structpointer, add padding (including length info)

- truncate the result (depends on the value of MACsize)

- store the MAC value at the address of the parameter

result **/

void MDfinalize(

const struct MDstruct * const structpointer,

unsigned char * const result)

{

unsigned int i;

struct MDstruct state = *structpointer;
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unsigned int bytesinbuf = state.bufbytes;

unsigned long bytelength = \

(state.nbytes) + bytesinbuf;

dword M[BLOCKsize/32]; /* message words */

dword E[STATEsize/32]; /* complete output */

dword F[MACsize/32]; /* truncated output */

memset(M, 0, BLOCKsize/32*sizeof(dword));

/* put bytes from buffer into M

byte i goes into word M[i div 4] at pos. 8*(i mod 4) */

for (i=0; i<bytesinbuf; i++)

M[i>>2] ^= (dword) ((state.buf[i]) << (8 * (i&3)));

/* append the bit 1 */

M[bytesinbuf>>2] ^= (dword) (1 << (8 * (bytesinbuf&3) + 7));

if (bytesinbuf > 55) {

/* length goes to next block */

ltrail(state.L, M); rtrail(state.R, M);

mix(&state);

memset(M, 0, BLOCKsize/32*sizeof(dword));

}

/* append length in bits */

M[14] = bytelength << 3;

M[15] = bytelength >> 29;

/* process the last block

(note: reversal of left and right trail) */

rtrail(state.L, M); ltrail(state.R, M);

/* combine trails to produce MAC (modular subtraction) */

for (i=0; i<(STATEsize/32); i++)
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E[i] = (state.L[i]) - (state.R[i]);

/* optional truncation of the output (MAC result) */

#if (MACsize == 160)

for (i=0; i<(MACsize/8); i++) \

result[i] = DWORD_TO_BYTES(E, i);

#else

#if (MACsize == 32)

F[0] = E[0] + E[1] + E[2] + E[3] + E[4];

#else

F[0] = E[0] + E[1] + E[3];

F[1] = E[1] + E[2] + E[4];

#if (MACsize > 64)

F[2] = E[2] + E[3] + E[0];

#if (MACsize > 96)

F[3] = E[3] + E[4] + E[1];

#endif

#endif

#endif

for (i=0; i<(MACsize/8); i++) \

result[i] = DWORD_TO_BYTES(F, i);

#endif

return;

}

void mix(struct MDstruct * const sp)

{

dword a0 = sp->L[0], a1 = sp->L[1], a2 = sp->L[2],

a3 = sp->L[3], a4 = sp->L[4];

dword b4 = sp->R[4];

sp->L[0] = (a1 + a4) - sp->R[3];

sp->L[1] = a2 - sp->R[4];

sp->L[2] = a3 - sp->R[0];

sp->L[3] = a4 - sp->R[1];

sp->L[4] = a0 - sp->R[2];

sp->R[4] = a2 - sp->R[3];
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sp->R[3] = a1 - sp->R[2];

sp->R[2] = a0 - sp->R[1];

sp->R[1] = (a4 + a2) - sp->R[0];

sp->R[0] = a3 - b4;

return;

}

void ltrail(dword *A, dword *M)

{

dword a0 = A[0], a1 = A[1], a2 = A[2], a3 = A[3], a4 = A[4];

/* round 1 */

FF(a0, a1, a2, a3, a4, M[ 0], 11);

FF(a4, a0, a1, a2, a3, M[ 1], 14);

FF(a3, a4, a0, a1, a2, M[ 2], 15);

FF(a2, a3, a4, a0, a1, M[ 3], 12);

FF(a1, a2, a3, a4, a0, M[ 4], 5);

FF(a0, a1, a2, a3, a4, M[ 5], 8);

FF(a4, a0, a1, a2, a3, M[ 6], 7);

FF(a3, a4, a0, a1, a2, M[ 7], 9);

FF(a2, a3, a4, a0, a1, M[ 8], 11);

FF(a1, a2, a3, a4, a0, M[ 9], 13);

FF(a0, a1, a2, a3, a4, M[10], 14);

FF(a4, a0, a1, a2, a3, M[11], 15);

FF(a3, a4, a0, a1, a2, M[12], 6);

FF(a2, a3, a4, a0, a1, M[13], 7);

FF(a1, a2, a3, a4, a0, M[14], 9);

FF(a0, a1, a2, a3, a4, M[15], 8);

/* round 2 */

GG(a4, a0, a1, a2, a3, M[ 7], 7);

GG(a3, a4, a0, a1, a2, M[ 4], 6);

GG(a2, a3, a4, a0, a1, M[13], 8);

GG(a1, a2, a3, a4, a0, M[ 1], 13);

GG(a0, a1, a2, a3, a4, M[10], 11);

GG(a4, a0, a1, a2, a3, M[ 6], 9);

GG(a3, a4, a0, a1, a2, M[15], 7);

GG(a2, a3, a4, a0, a1, M[ 3], 15);

GG(a1, a2, a3, a4, a0, M[12], 7);

GG(a0, a1, a2, a3, a4, M[ 0], 12);
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GG(a4, a0, a1, a2, a3, M[ 9], 15);

GG(a3, a4, a0, a1, a2, M[ 5], 9);

GG(a2, a3, a4, a0, a1, M[ 2], 11);

GG(a1, a2, a3, a4, a0, M[14], 7);

GG(a0, a1, a2, a3, a4, M[11], 13);

GG(a4, a0, a1, a2, a3, M[ 8], 12);

/* round 3 */

HH(a3, a4, a0, a1, a2, M[ 3], 11);

HH(a2, a3, a4, a0, a1, M[10], 13);

HH(a1, a2, a3, a4, a0, M[14], 6);

HH(a0, a1, a2, a3, a4, M[ 4], 7);

HH(a4, a0, a1, a2, a3, M[ 9], 14);

HH(a3, a4, a0, a1, a2, M[15], 9);

HH(a2, a3, a4, a0, a1, M[ 8], 13);

HH(a1, a2, a3, a4, a0, M[ 1], 15);

HH(a0, a1, a2, a3, a4, M[ 2], 14);

HH(a4, a0, a1, a2, a3, M[ 7], 8);

HH(a3, a4, a0, a1, a2, M[ 0], 13);

HH(a2, a3, a4, a0, a1, M[ 6], 6);

HH(a1, a2, a3, a4, a0, M[13], 5);

HH(a0, a1, a2, a3, a4, M[11], 12);

HH(a4, a0, a1, a2, a3, M[ 5], 7);

HH(a3, a4, a0, a1, a2, M[12], 5);

/* round 4 */

II(a2, a3, a4, a0, a1, M[ 1], 11);

II(a1, a2, a3, a4, a0, M[ 9], 12);

II(a0, a1, a2, a3, a4, M[11], 14);

II(a4, a0, a1, a2, a3, M[10], 15);

II(a3, a4, a0, a1, a2, M[ 0], 14);

II(a2, a3, a4, a0, a1, M[ 8], 15);

II(a1, a2, a3, a4, a0, M[12], 9);

II(a0, a1, a2, a3, a4, M[ 4], 8);

II(a4, a0, a1, a2, a3, M[13], 9);

II(a3, a4, a0, a1, a2, M[ 3], 14);

II(a2, a3, a4, a0, a1, M[ 7], 5);

II(a1, a2, a3, a4, a0, M[15], 6);

II(a0, a1, a2, a3, a4, M[14], 8);

II(a4, a0, a1, a2, a3, M[ 5], 6);

II(a3, a4, a0, a1, a2, M[ 6], 5);
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II(a2, a3, a4, a0, a1, M[ 2], 12);

/* round 5 */

JJ(a1, a2, a3, a4, a0, M[ 4], 9);

JJ(a0, a1, a2, a3, a4, M[ 0], 15);

JJ(a4, a0, a1, a2, a3, M[ 5], 5);

JJ(a3, a4, a0, a1, a2, M[ 9], 11);

JJ(a2, a3, a4, a0, a1, M[ 7], 6);

JJ(a1, a2, a3, a4, a0, M[12], 8);

JJ(a0, a1, a2, a3, a4, M[ 2], 13);

JJ(a4, a0, a1, a2, a3, M[10], 12);

JJ(a3, a4, a0, a1, a2, M[14], 5);

JJ(a2, a3, a4, a0, a1, M[ 1], 12);

JJ(a1, a2, a3, a4, a0, M[ 3], 13);

JJ(a0, a1, a2, a3, a4, M[ 8], 14);

JJ(a4, a0, a1, a2, a3, M[11], 11);

JJ(a3, a4, a0, a1, a2, M[ 6], 8);

JJ(a2, a3, a4, a0, a1, M[15], 5);

JJ(a1, a2, a3, a4, a0, M[13], 6);

A[0] = a0 - A[0];

A[1] = a1 - A[1];

A[2] = a2 - A[2];

A[3] = a3 - A[3];

A[4] = a4 - A[4];

return;

}

void rtrail(dword *B, dword *M)

{

dword b0 = B[0], b1 = B[1], b2 = B[2], b3 = B[3], b4 = B[4];

/* parallel round 1 */

JJJ(b0, b1, b2, b3, b4, M[ 5], 8);

JJJ(b4, b0, b1, b2, b3, M[14], 9);

JJJ(b3, b4, b0, b1, b2, M[ 7], 9);

JJJ(b2, b3, b4, b0, b1, M[ 0], 11);

JJJ(b1, b2, b3, b4, b0, M[ 9], 13);

JJJ(b0, b1, b2, b3, b4, M[ 2], 15);

JJJ(b4, b0, b1, b2, b3, M[11], 15);



204 Appendix A. Specification of Two-Track-MAC

JJJ(b3, b4, b0, b1, b2, M[ 4], 5);

JJJ(b2, b3, b4, b0, b1, M[13], 7);

JJJ(b1, b2, b3, b4, b0, M[ 6], 7);

JJJ(b0, b1, b2, b3, b4, M[15], 8);

JJJ(b4, b0, b1, b2, b3, M[ 8], 11);

JJJ(b3, b4, b0, b1, b2, M[ 1], 14);

JJJ(b2, b3, b4, b0, b1, M[10], 14);

JJJ(b1, b2, b3, b4, b0, M[ 3], 12);

JJJ(b0, b1, b2, b3, b4, M[12], 6);

/* parallel round 2 */

III(b4, b0, b1, b2, b3, M[ 6], 9);

III(b3, b4, b0, b1, b2, M[11], 13);

III(b2, b3, b4, b0, b1, M[ 3], 15);

III(b1, b2, b3, b4, b0, M[ 7], 7);

III(b0, b1, b2, b3, b4, M[ 0], 12);

III(b4, b0, b1, b2, b3, M[13], 8);

III(b3, b4, b0, b1, b2, M[ 5], 9);

III(b2, b3, b4, b0, b1, M[10], 11);

III(b1, b2, b3, b4, b0, M[14], 7);

III(b0, b1, b2, b3, b4, M[15], 7);

III(b4, b0, b1, b2, b3, M[ 8], 12);

III(b3, b4, b0, b1, b2, M[12], 7);

III(b2, b3, b4, b0, b1, M[ 4], 6);

III(b1, b2, b3, b4, b0, M[ 9], 15);

III(b0, b1, b2, b3, b4, M[ 1], 13);

III(b4, b0, b1, b2, b3, M[ 2], 11);

/* parallel round 3 */

HHH(b3, b4, b0, b1, b2, M[15], 9);

HHH(b2, b3, b4, b0, b1, M[ 5], 7);

HHH(b1, b2, b3, b4, b0, M[ 1], 15);

HHH(b0, b1, b2, b3, b4, M[ 3], 11);

HHH(b4, b0, b1, b2, b3, M[ 7], 8);

HHH(b3, b4, b0, b1, b2, M[14], 6);

HHH(b2, b3, b4, b0, b1, M[ 6], 6);

HHH(b1, b2, b3, b4, b0, M[ 9], 14);

HHH(b0, b1, b2, b3, b4, M[11], 12);

HHH(b4, b0, b1, b2, b3, M[ 8], 13);

HHH(b3, b4, b0, b1, b2, M[12], 5);

HHH(b2, b3, b4, b0, b1, M[ 2], 14);
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HHH(b1, b2, b3, b4, b0, M[10], 13);

HHH(b0, b1, b2, b3, b4, M[ 0], 13);

HHH(b4, b0, b1, b2, b3, M[ 4], 7);

HHH(b3, b4, b0, b1, b2, M[13], 5);

/* parallel round 4 */

GGG(b2, b3, b4, b0, b1, M[ 8], 15);

GGG(b1, b2, b3, b4, b0, M[ 6], 5);

GGG(b0, b1, b2, b3, b4, M[ 4], 8);

GGG(b4, b0, b1, b2, b3, M[ 1], 11);

GGG(b3, b4, b0, b1, b2, M[ 3], 14);

GGG(b2, b3, b4, b0, b1, M[11], 14);

GGG(b1, b2, b3, b4, b0, M[15], 6);

GGG(b0, b1, b2, b3, b4, M[ 0], 14);

GGG(b4, b0, b1, b2, b3, M[ 5], 6);

GGG(b3, b4, b0, b1, b2, M[12], 9);

GGG(b2, b3, b4, b0, b1, M[ 2], 12);

GGG(b1, b2, b3, b4, b0, M[13], 9);

GGG(b0, b1, b2, b3, b4, M[ 9], 12);

GGG(b4, b0, b1, b2, b3, M[ 7], 5);

GGG(b3, b4, b0, b1, b2, M[10], 15);

GGG(b2, b3, b4, b0, b1, M[14], 8);

/* parallel round 5 */

FFF(b1, b2, b3, b4, b0, M[12] , 8);

FFF(b0, b1, b2, b3, b4, M[15] , 5);

FFF(b4, b0, b1, b2, b3, M[10] , 12);

FFF(b3, b4, b0, b1, b2, M[ 4] , 9);

FFF(b2, b3, b4, b0, b1, M[ 1] , 12);

FFF(b1, b2, b3, b4, b0, M[ 5] , 5);

FFF(b0, b1, b2, b3, b4, M[ 8] , 14);

FFF(b4, b0, b1, b2, b3, M[ 7] , 6);

FFF(b3, b4, b0, b1, b2, M[ 6] , 8);

FFF(b2, b3, b4, b0, b1, M[ 2] , 13);

FFF(b1, b2, b3, b4, b0, M[13] , 6);

FFF(b0, b1, b2, b3, b4, M[14] , 5);

FFF(b4, b0, b1, b2, b3, M[ 0] , 15);

FFF(b3, b4, b0, b1, b2, M[ 3] , 13);

FFF(b2, b3, b4, b0, b1, M[ 9] , 11);

FFF(b1, b2, b3, b4, b0, M[11] , 11);
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B[0] = b0 - B[0];

B[1] = b1 - B[1];

B[2] = b2 - B[2];

B[3] = b3 - B[3];

B[4] = b4 - B[4];

return;

}

/*** end of file ttmac.c ***/

/*** file test.c ***/

/** header files **/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "ttmac.h"

/** read MAC key from file fname

key should be given in hexadecimal format **/

void readkey(char *fname, byte **key, unsigned int *keysize)

{

FILE *file;

unsigned int i, temp;

if ( (file = fopen(fname, "rb")) == NULL ) {

fprintf(stderr, \

"readkey: cannot open file \"%s\".\n", fname);

exit(1);

}

fseek(file, 0L, SEEK_END);

if ((*key = malloc((ftell(file)+1)/2)) == NULL) {

fprintf(stderr, "readkey: allocation error");

exit(1);

}

fclose(file);
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if ( (file = fopen(fname, "r")) == NULL ) {

fprintf(stderr, \

"readkey: cannot open file \"%s\".\n", fname);

exit(1);

}

for (i=0;;i++) {

if (fscanf(file, "%02x", &temp) == EOF)

break;

(*key)[i] = (byte)temp;

}

*keysize = 8*i;

fclose(file);

}

/** return TTMAC(key, message) **/

void MACstring(byte *key, char *message)

{

unsigned int i;

unsigned long bitlength;

struct MDstruct state;

byte mac[MACsize/8];

bitlength = (unsigned long) (8*strlen(message));

MDkeysetup(key, &state);

MDadd((byte *) message, bitlength, &state);

MDfinalize(&state, mac);

printf("* message: \"%s\"\n* MAC: ", message);

for (i=0; i<(MACsize/8); i++)

printf("%02x", mac[i]);

printf("\n\n");

}
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/** main test programme **/

main(int argc, char *argv[])

{

byte *key;

unsigned int i, keysize;

if (argc == 1) {

printf("For each command line argument in turn:\n");

printf(" -sstring -- print key, string and MAC\n");

return(0);

}

readkey("Keyfile.hex", &key, &keysize);

if (keysize > STATEsize)

printf("\n%d-bit key shortened to 160 bits !", keysize);

else if (keysize < STATEsize) {

printf("\n%d-bit key is too short, \

supply a key of 160 bits !\n", keysize);

return(1);

}

printf("\n* key: ");

for (i=0; i<(STATEsize/8); i++)

printf("%02x", key[i]);

printf("\n");

for (i = 1; i < argc; i++) {

if (argv[i][0] == ’-’ && argv[i][1] == ’s’)

MACstring(key, argv[i] + 2);

}

return(0);

}

/*** end of file test.c ***/
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Test Vectors

* key: 00112233445566778899aabbccddeeff01234567

TTMAC test suite results (ASCII):

* message: "" (empty string)

* MAC: 2dec8ed4a0fd712ed9fbf2ab466ec2df21215e4a

* message: "a"

* MAC: 5893e3e6e306704dd77ad6e6ed432cde321a7756

* message: "abc"

* MAC: 70bfd1029797a5c16da5b557a1f0b2779b78497e

* message: "message digest"

* MAC: 8289f4f19ffe4f2af737de4bd71c829d93a972fa

* message: "abcdefghijklmnopqrstuvwxyz"

* MAC: 2186ca09c5533198b7371f245273504ca92bae60

* message: "abcdbcdecdefdefgefghfghighij

hijkijkljklmklmnlmnomnopnopq"

* MAC: 8a7bf77aef62a2578497a27c0d6518a429e7c14d

* message: "A...Za...z0...9"

* MAC: 54bac392a886806d169556fcbb6789b54fb364fb

* message: 8 times "1234567890"

* MAC: 0ced2c9f8f0d9d03981ab5c8184bac43dd54c484

* message: 1 million times "a"

* MAC: 27b3aedb5df8b629f0142194daa3846e1895f3d2
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Appendix B

Description of MD4

In this appendix we give a description of MD4 and explain the notations which
are used in our analysis in Chapter 4 (Sect. 4.4). Not all of the details are
fully described: for a complete specification see [114]. MD4 is defined as the
iteration of a compression function which we specify below. Each application of
this compression function uses a four-word chaining variable and a sixteen-word
message block as input, and produces four words of output (a new value for the
chaining variable, to be used as input for the next application of the compression
function). All words have a length of 32 bits (four bytes). The initial value for the
chaining variable (to be used as input for the first application of the compression
function) is specified as follows (hexadecimal notation):

IV = 67452301x efcdab89x 98badcfex 10325476x .

Note that there is a padding rule which appends bytes to the message so that its
length becomes a multiple of 64 bytes (16 words × 4 bytes/word). The added
bytes include a representation of the length of the original message. The little-
endian convention is used to transform the message (sequence of bytes) into a
sequence of words.

The compression function uses three Boolean functions, each of which takes
three words of input and produces one word of output:

f1(Z2, Z1, Z0) = (Z2Z1) ∨ (Z2Z0) ,

f2(Z2, Z1, Z0) = (Z2Z1) ∨ (Z1Z0) ∨ (Z2Z0) ,

f3(Z2, Z1, Z0) = Z2 ⊕ Z1 ⊕ Z0 .

These functions are the selection, majority, and exor functions respectively, and
operate at bit-level: they can be performed independently at each of the 32 bit
positions in the words.
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Let the notations F1(Z3, Z2, Z1, Z0,W, s), F2(Z3, Z2, Z1, Z0,W, s) and F3(Z3,
Z2, Z1, Z0,W, s) be equivalent to respectively:

(Z3 + f1(Z2, Z1, Z0) +W + U1)
¿s ,

(Z3 + f2(Z2, Z1, Z0) +W + U2)
¿s ,

(Z3 + f3(Z2, Z1, Z0) +W + U3)
¿s .

Here the ‘+’ operation denotes addition modulo 232. The additive constants U1,
U2 and U3 have the following values (note that U1 can be ignored, and U2 and
U3 correspond to

√
2 and

√
3 respectively):

U1 = 00000000x , U2 = 5a827999x , U3 = 6ed9eba1x .

Suppose now that the input chaining variable (A0, B0, C0, D0) is given, and
a message block {Wj} (0 ≤ j < 16). Then the compression function applies the
following 48 steps (three rounds of 16 steps each):

ROUND 1 STEP

A1 = F1(A0, B0, C0, D0,W0, 3) (B.1)

D1 = F1(D0, A1, B0, C0,W1, 7) (B.2)

C1 = F1(C0, D1, A1, B0,W2, 11) (B.3)

B1 = F1(B0, C1, D1, A1,W3, 19) (B.4)

A2 = F1(A1, B1, C1, D1,W4, 3) (B.5)

D2 = F1(D1, A2, B1, C1,W5, 7) (B.6)

C2 = F1(C1, D2, A2, B1,W6, 11) (B.7)

B2 = F1(B1, C2, D2, A2,W7, 19) (B.8)

A3 = F1(A2, B2, C2, D2,W8, 3) (B.9)

D3 = F1(D2, A3, B2, C2,W9, 7) (B.10)

C3 = F1(C2, D3, A3, B2,W10, 11) (B.11)

B3 = F1(B2, C3, D3, A3,W11, 19) (B.12)

A4 = F1(A3, B3, C3, D3,W12, 3) (B.13)

D4 = F1(D3, A4, B3, C3,W13, 7) (B.14)

C4 = F1(C3, D4, A4, B3,W14, 11) (B.15)

B4 = F1(B3, C4, D4, A4,W15, 19) (B.16)

ROUND 2 STEP

A5 = F2(A4, B4, C4, D4,W0, 3) (B.17)
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D5 = F2(D4, A5, B4, C4,W4, 5) (B.18)

C5 = F2(C4, D5, A5, B4,W8, 9) (B.19)

B5 = F2(B4, C5, D5, A5,W12, 13) (B.20)

A6 = F2(A5, B5, C5, D5,W1, 3) (B.21)

D6 = F2(D5, A6, B5, C5,W5, 5) (B.22)

C6 = F2(C5, D6, A6, B5,W9, 9) (B.23)

B6 = F2(B5, C6, D6, A6,W13, 13) (B.24)

A7 = F2(A6, B6, C6, D6,W2, 3) (B.25)

D7 = F2(D6, A7, B6, C6,W6, 5) (B.26)

C7 = F2(C6, D7, A7, B6,W10, 9) (B.27)

B7 = F2(B6, C7, D7, A7,W14, 13) (B.28)

A8 = F2(A7, B7, C7, D7,W3, 3) (B.29)

D8 = F2(D7, A8, B7, C7,W7, 5) (B.30)

C8 = F2(C7, D8, A8, B7,W11, 9) (B.31)

B8 = F2(B7, C8, D8, A8,W15, 13) (B.32)

ROUND 3 STEP

A9 = F3(A8, B8, C8, D8,W0, 3) (B.33)

D9 = F3(D8, A9, B8, C8,W8, 9) (B.34)

C9 = F3(C8, D9, A9, B8,W4, 11) (B.35)

B9 = F3(B8, C9, D9, A9,W12, 15) (B.36)

A10 = F3(A9, B9, C9, D9,W2, 3) (B.37)

D10 = F3(D9, A10, B9, C9,W10, 9) (B.38)

C10 = F3(C9, D10, A10, B9,W6, 11) (B.39)

B10 = F3(B9, C10, D10, A10,W14, 15) (B.40)

A11 = F3(A10, B10, C10, D10,W1, 3) (B.41)

D11 = F3(D10, A11, B10, C10,W9, 9) (B.42)

C11 = F3(C10, D11, A11, B10,W5, 11) (B.43)

B11 = F3(B10, C11, D11, A11,W13, 15) (B.44)

A12 = F3(A11, B11, C11, D11,W3, 3) (B.45)

D12 = F3(D11, A12, B11, C11,W11, 9) (B.46)

C12 = F3(C11, D12, A12, B11,W7, 11) (B.47)

B12 = F3(B11, C12, D12, A12,W15, 15) (B.48)
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Finally, the four-word output of the compression function is computed with
a feed-forward of the input chaining variable:

A = A0 +A12 , B = B0 +B12 , C = C0 + C12 , D = D0 +D12 .

The obtained words (A,B,C,D) serve as input chaining variable for the next
application of the compression function. If this was the final use of the compres-
sion function (the last sixteen words of the padded message have been processed),
the concatenated 128-bit (sixteen-byte) value A‖B‖C‖D serves as hash result of
the message, where the little-endian convention is used to transform the sequence
of words into a sequence of bytes (starting with the least significant byte of A
and ending with the most significant byte of D).



Appendix C

Description of HAVAL

In this appendix we give a description of three-round HAVAL and explain the
notations which are used in our analysis in Chapter 4 (Sect. 4.5). Not all of
the details are fully described: for a complete specification see [131]. HAVAL is
defined as the iteration of a compression function which we specify below. Each
application of this compression function uses an eight-word chaining variable and
a 32-word message block as input, and produces eight words of output (a new
value for the chaining variable, to be used as input for the next application of
the compression function). All words have a length of 32 bits (four bytes). The
initial value for the chaining variable (to be used as input for the first application
of the compression function) is specified as follows (hexadecimal notation):

IV = ec4e6c89x 082efa98x 299f31d0x a4093822x

03707344x 13198a2ex 85a308d3x 243f6a88x .

Note that there is a padding rule which appends bytes to the message so that its
length becomes a multiple of 128 bytes (32 words × 4 bytes/word). The added
bytes include a representation of the length of the original message. The little-
endian convention is used to transform the message (sequence of bytes) into a
sequence of words.

The compression function uses three Boolean functions, each of which takes
seven words of input and produces one word of output:

f1(Z6, Z5, Z4, Z3, Z2, Z1, Z0) = (Z2Z3)⊕ (Z6Z0)⊕ (Z5Z1)⊕ (Z4Z2)⊕ Z4 ,

f2(Z6, Z5, Z4, Z3, Z2, Z1, Z0) = (Z3Z5Z0)⊕ (Z5Z1Z2)⊕ (Z3Z5)⊕ (Z3Z1)

⊕(Z5Z4)⊕ (Z0Z2)⊕ (Z1Z2)⊕ (Z6Z5)⊕ Z6 ,

f3(Z6, Z5, Z4, Z3, Z2, Z1, Z0) = (Z5Z4Z3)⊕ (Z5Z2)⊕ (Z4Z1)⊕ (Z3Z6)

⊕(Z0Z3)⊕ Z0 .
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Note that the functions f1, f2 and f3 operate at bit-level: they can be performed
independently at each of the 32 bit positions in the words.

Let the notations F1(Z7, Z6, Z5, Z4, Z3, Z2, Z1, Z0,W ), F2(Z7, Z6, Z5, Z4, Z3,
Z2, Z1, Z0,W ) and F3(Z7, Z6, Z5, Z4, Z3, Z2, Z1, Z0,W ) be equivalent to respec-
tively:

ZÀ11
7 + (f1(Z6, Z5, Z4, Z3, Z2, Z1, Z0))

À7 +W ,

ZÀ11
7 + (f2(Z6, Z5, Z4, Z3, Z2, Z1, Z0))

À7 +W ,

ZÀ11
7 + (f3(Z6, Z5, Z4, Z3, Z2, Z1, Z0))

À7 +W .

Here the ‘+’ operation denotes addition modulo 232.
Suppose that the input chaining variable (A0, B0, C0, D0, E0, F0, G0, H0) is

given, and a message block {Wj} (0 ≤ j < 32). Then the compression function
of 3-round HAVAL applies the following 96 steps (three rounds of 32 steps each):

ROUND 1 STEP

A1 = F1(A0, B0, C0, D0, E0, F0, G0, H0,W0) (C.1)

B1 = F1(B0, C0, D0, E0, F0, G0, H0, A1,W1) (C.2)

C1 = F1(C0, D0, E0, F0, G0, H0, A1, B1,W2) (C.3)

D1 = F1(D0, E0, F0, G0, H0, A1, B1, C1,W3) (C.4)

E1 = F1(E0, F0, G0, H0, A1, B1, C1, D1,W4) (C.5)

F1 = F1(F0, G0, H0, A1, B1, C1, D1, E1,W5) (C.6)

G1 = F1(G0, H0, A1, B1, C1, D1, E1, F1,W6) (C.7)

H1 = F1(H0, A1, B1, C1, D1, E1, F1, G1,W7) (C.8)

A2 = F1(A1, B1, C1, D1, E1, F1, G1, H1,W8) (C.9)

B2 = F1(B1, C1, D1, E1, F1, G1, H1, A2,W9) (C.10)

C2 = F1(C1, D1, E1, F1, G1, H1, A2, B2,W10) (C.11)

D2 = F1(D1, E1, F1, G1, H1, A2, B2, C2,W11) (C.12)

E2 = F1(E1, F1, G1, H1, A2, B2, C2, D2,W12) (C.13)

F2 = F1(F1, G1, H1, A2, B2, C2, D2, E2,W13) (C.14)

G2 = F1(G1, H1, A2, B2, C2, D2, E2, F2,W14) (C.15)

H2 = F1(H1, A2, B2, C2, D2, E2, F2, G2,W15) (C.16)

A3 = F1(A2, B2, C2, D2, E2, F2, G2, H2,W16) (C.17)

B3 = F1(B2, C2, D2, E2, F2, G2, H2, A3,W17) (C.18)

C3 = F1(C2, D2, E2, F2, G2, H2, A3, B3,W18) (C.19)

D3 = F1(D2, E2, F2, G2, H2, A3, B3, C3,W19) (C.20)
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E3 = F1(E2, F2, G2, H2, A3, B3, C3, D3,W20) (C.21)

F3 = F1(F2, G2, H2, A3, B3, C3, D3, E3,W21) (C.22)

G3 = F1(G2, H2, A3, B3, C3, D3, E3, F3,W22) (C.23)

H3 = F1(H2, A3, B3, C3, D3, E3, F3, G3,W23) (C.24)

A4 = F1(A3, B3, C3, D3, E3, F3, G3, H3,W24) (C.25)

B4 = F1(B3, C3, D3, E3, F3, G3, H3, A4,W25) (C.26)

C4 = F1(C3, D3, E3, F3, G3, H3, A4, B4,W26) (C.27)

D4 = F1(D3, E3, F3, G3, H3, A4, B4, C4,W27) (C.28)

E4 = F1(E3, F3, G3, H3, A4, B4, C4, D4,W28) (C.29)

F4 = F1(F3, G3, H3, A4, B4, C4, D4, E4,W29) (C.30)

G4 = F1(G3, H3, A4, B4, C4, D4, E4, F4,W30) (C.31)

H4 = F1(H3, A4, B4, C4, D4, E4, F4, G4,W31) (C.32)

ROUND 2 STEP

A5 = F2(A4, B4, C4, D4, E4, F4, G4, H4,W5 + U0) (C.33)

B5 = F2(B4, C4, D4, E4, F4, G4, H4, A5,W14 + U1) (C.34)

C5 = F2(C4, D4, E4, F4, G4, H4, A5, B5,W26 + U2) (C.35)

D5 = F2(D4, E4, F4, G4, H4, A5, B5, C5,W18 + U3) (C.36)

E5 = F2(E4, F4, G4, H4, A5, B5, C5, D5,W11 + U4) (C.37)

F5 = F2(F4, G4, H4, A5, B5, C5, D5, E5,W28 + U5) (C.38)

G5 = F2(G4, H4, A5, B5, C5, D5, E5, F5,W7 + U6) (C.39)

H5 = F2(H4, A5, B5, C5, D5, E5, F5, G5,W16 + U7) (C.40)

A6 = F2(A5, B5, C5, D5, E5, F5, G5, H5,W0 + U8) (C.41)

B6 = F2(B5, C5, D5, E5, F5, G5, H5, A6,W23 + U9) (C.42)

C6 = F2(C5, D5, E5, F5, G5, H5, A6, B6,W20 + U10) (C.43)

D6 = F2(D5, E5, F5, G5, H5, A6, B6, C6,W22 + U11) (C.44)

E6 = F2(E5, F5, G5, H5, A6, B6, C6, D6,W1 + U12) (C.45)

F6 = F2(F5, G5, H5, A6, B6, C6, D6, E6,W10 + U13) (C.46)

G6 = F2(G5, H5, A6, B6, C6, D6, E6, F6,W4 + U14) (C.47)

H6 = F2(H5, A6, B6, C6, D6, E6, F6, G6,W8 + U15) (C.48)

A7 = F2(A6, B6, C6, D6, E6, F6, G6, H6,W30 + U16) (C.49)

B7 = F2(B6, C6, D6, E6, F6, G6, H6, A7,W3 + U17) (C.50)

C7 = F2(C6, D6, E6, F6, G6, H6, A7, B7,W21 + U18) (C.51)

D7 = F2(D6, E6, F6, G6, H6, A7, B7, C7,W9 + U19) (C.52)
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E7 = F2(E6, F6, G6, H6, A7, B7, C7, D7,W17 + U20) (C.53)

F7 = F2(F6, G6, H6, A7, B7, C7, D7, E7,W24 + U21) (C.54)

G7 = F2(G6, H6, A7, B7, C7, D7, E7, F7,W29 + U22) (C.55)

H7 = F2(H6, A7, B7, C7, D7, E7, F7, G7,W6 + U23) (C.56)

A8 = F2(A7, B7, C7, D7, E7, F7, G7, H7,W19 + U24) (C.57)

B8 = F2(B7, C7, D7, E7, F7, G7, H7, A8,W12 + U25) (C.58)

C8 = F2(C7, D7, E7, F7, G7, H7, A8, B8,W15 + U26) (C.59)

D8 = F2(D7, E7, F7, G7, H7, A8, B8, C8,W13 + U27) (C.60)

E8 = F2(E7, F7, G7, H7, A8, B8, C8, D8,W2 + U28) (C.61)

F8 = F2(F7, G7, H7, A8, B8, C8, D8, E8,W25 + U29) (C.62)

G8 = F2(G7, H7, A8, B8, C8, D8, E8, F8,W31 + U30) (C.63)

H8 = F2(H7, A8, B8, C8, D8, E8, F8, G8,W27 + U31) (C.64)

ROUND 3 STEP

A9 = F3(A8, B8, C8, D8, E8, F8, G8, H8,W19 + U32) (C.65)

B9 = F3(B8, C8, D8, E8, F8, G8, H8, A9,W9 + U33) (C.66)

C9 = F3(C8, D8, E8, F8, G8, H8, A9, B9,W4 + U34) (C.67)

D9 = F3(D8, E8, F8, G8, H8, A9, B9, C9,W20 + U35) (C.68)

E9 = F3(E8, F8, G8, H8, A9, B9, C9, D9,W28 + U36) (C.69)

F9 = F3(F8, G8, H8, A9, B9, C9, D9, E9,W17 + U37) (C.70)

G9 = F3(G8, H8, A9, B9, C9, D9, E9, F9,W8 + U38) (C.71)

H9 = F3(H8, A9, B9, C9, D9, E9, F9, G9,W22 + U39) (C.72)

A10 = F3(A9, B9, C9, D9, E9, F9, G9, H9,W29 + U40) (C.73)

B10 = F3(B9, C9, D9, E9, F9, G9, H9, A10,W14 + U41) (C.74)

C10 = F3(C9, D9, E9, F9, G9, H9, A10, B10,W25 + U42) (C.75)

D10 = F3(D9, E9, F9, G9, H9, A10, B10, C10,W12 + U43) (C.76)

E10 = F3(E9, F9, G9, H9, A10, B10, C10, D10,W24 + U44) (C.77)

F10 = F3(F9, G9, H9, A10, B10, C10, D10, E10,W30 + U45) (C.78)

G10 = F3(G9, H9, A10, B10, C10, D10, E10, F10,W16 + U46) (C.79)

H10 = F3(H9, A10, B10, C10, D10, E10, F10, G10,W26 + U47) (C.80)

A11 = F3(A10, B10, C10, D10, E10, F10, G10, H10,W31 + U48) (C.81)

B11 = F3(B10, C10, D10, E10, F10, G10, H10, A11,W15 + U49) (C.82)

C11 = F3(C10, D10, E10, F10, G10, H10, A11, B11,W7 + U50) (C.83)

D11 = F3(D10, E10, F10, G10, H10, A11, B11, C11,W3 + U51) (C.84)
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E11 = F3(E10, F10, G10, H10, A11, B11, C11, D11,W1 + U52) (C.85)

F11 = F3(F10, G10, H10, A11, B11, C11, D11, E11,W0 + U53) (C.86)

G11 = F3(G10, H10, A11, B11, C11, D11, E11, F11,W18 + U54) (C.87)

H11 = F3(H10, A11, B11, C11, D11, E11, F11, G11,W27 + U55) (C.88)

A12 = F3(A11, B11, C11, D11, E11, F11, G11, H11,W13 + U56) (C.89)

B12 = F3(B11, C11, D11, E11, F11, G11, H11, A12,W6 + U57) (C.90)

C12 = F3(C11, D11, E11, F11, G11, H11, A12, B12,W21 + U58) (C.91)

D12 = F3(D11, E11, F11, G11, H11, A12, B12, C12,W10 + U59) (C.92)

E12 = F3(E11, F11, G11, H11, A12, B12, C12, D12,W23 + U60) (C.93)

F12 = F3(F11, G11, H11, A12, B12, C12, D12, E12,W11 + U61) (C.94)

G12 = F3(G11, H11, A12, B12, C12, D12, E12, F12,W5 + U62) (C.95)

H12 = F3(H11, A12, B12, C12, D12, E12, F12, G12,W2 + U63) (C.96)

The additive constants Ui which are used in the last two rounds are 32-bit
values derived from the fractional part of π (see [131]). Finally, the eight-word
output of the compression function is computed with a feed-forward of the input
chaining variable:

A = A0 +A12 B = B0 +B12 C = C0 + C12 D = D0 +D12

E = E0 + E12 F = F0 + F12 G = G0 +G12 H = H0 +H12 .

The obtained words (A,B,C,D,E, F,G,H) serve as input chaining variable
for the next application of the compression function. If this was the final use of
the compression function (the last 32 words of the padded message have been pro-
cessed), the concatenated 256-bit (32-byte) value H‖G‖F‖E‖D‖C‖B‖A serves
as hash result of the message, where the little-endian convention is used to trans-
form the sequence of words into a sequence of bytes (starting with the least
significant byte of H and ending with the most significant byte of A). The spec-
ification in [131] gives an optional output transformation which allows to reduce
the length of this hash result to 128, 160, 192 or 224 bits.
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Appendix D

Supporting Cryptanalytic

Results for PANAMA

In this appendix we provide some supporting results for the cryptanalysis of
Panama, given in Chapter 5 (Sect. 5.3).

Collisions in two steps are not possible

We show why there are no solutions for the difference pattern (5.12). In this case
the ‘timeline’ (5.15) reduces to:

A
σ0−→ B

γ−→ C
π−→ D

θ−→ E
σ1−→ F (D.1)

Here σ0 introduces the ‘dX difference’, and σ1 the ‘dY difference’ which must
cancel the difference in state E for every sub-collision.

We start by considering sub-collision 1. We know that for any value of P0
and dX,

dBi = 0, for i = 0, 9, 10, 11, . . . , 16. (D.2)

Since γ does only mix nearby words it follows that

dCi = 0, for i = 9, 10, 11, . . . 15. (D.3)

Applying the definition of π gives the following:

dDi = 0, for i = 2, 4, 7, 9, 11, 14, 16. (D.4)

221



222 Appendix D. Supporting Cryptanalytic Results for PANAMA

With (5.5), this can be translated to the following conditions on dEi:

dE3 + dE4 + dE7 + dE11 + dE12 + dE13 + dE14 + dE16 + dE1 = 0
dE5 + dE6 + dE9 + dE13 + dE14 + dE15 + dE16 + dE1 + dE3 = 0
dE8 + dE9 + dE12 + dE16 + dE0 + dE1 + dE2 + dE4 + dE6 = 0
dE10 + dE11 + dE14 + dE1 + dE2 + dE3 + dE4 + dE6 + dE8 = 0
dE12 + dE13 + dE16 + dE3 + dE4 + dE5 + dE6 + dE8 + dE10 = 0
dE15 + dE16 + dE2 + dE6 + dE7 + dE8 + dE9 + dE11 + dE13 = 0
dE0 + dE1 + dE4 + dE8 + dE9 + dE10 + dE11 + dE13 + dE15 = 0

(D.5)

Fulfilling (5.12) also requires that dFi = 0,∀i. Without specifying P1 or dYi, we
have conditions on dE:

dEi = 0, for i = 0, 9, 10, 11, . . . , 16. (D.6)

Furthermore,
dEi = dYi−1, for i = 1, 2, . . . , 8. (D.7)

Combining (D.5), (D.6) and (D.7), gives us the following conditions on dY :

dY2 + dY3 + dY6 + dY0 = 0
dY4 + dY5 + dY0 + dY2 = 0

dY7 + dY0 + dY1 + dY3 + dY5 = 0
dY0 + dY1 + dY2 + dY3 + dY5 + dY7 = 0

dY2 + dY3 + dY4 + dY5 + dY7 = 0
dY1 + dY5 + dY6 + dY7 = 0

dY0 + dY3 + dY7 = 0

(D.8)

This can be transformed into:

dY2 = 0, dY6 = dY7, dY5 = dY1, dY3+dY6+dY0 = 0, dY4+dY1+dY0 = 0. (D.9)

We can do the same excercise for sub-collision 3, where the same differences
are injected into the state, but now via the buffer tap. We get the following:

dBi = 0, for i = 0, 1, 2, . . . , 8; (D.10)

dCi = 0, for i = 0, 1, 2, . . . , 6; (D.11)

dDi = 0, for i = 0, 3, 5, 8, 10, 13, 15. (D.12)

dE1 + dE2 + dE5 + dE9 + dE10 + dE11 + dE12 + dE14 + dE16 = 0
dE4 + dE5 + dE8 + dE12 + dE13 + dE14 + dE15 + dE0 + dE2 = 0
dE6 + dE7 + dE10 + dE14 + dE15 + dE16 + dE0 + dE2 + dE4 = 0
dE9 + dE10 + dE13 + dE0 + dE1 + dE2 + dE3 + dE5 + dE7 = 0
dE11 + dE12 + dE15 + dE2 + dE3 + dE4 + dE5 + dE7 + dE9 = 0
dE14 + dE15 + dE1 + dE5 + dE6 + dE7 + dE8 + dE10 + dE12 = 0
dE16 + dE0 + dE3 + dE7 + dE8 + dE9 + dE10 + dE12 + dE14 = 0

(D.13)
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Now we have that dEi = 0 for i = 0, . . . , 8, and dEi = dYi−9 for i = 9, . . . , 16.

dY0 + dY1 + dY2 + dY3 + dY5 + dY7 = 0
dY3 + dY4 + dY5 + dY6 = 0
dY1 + dY5 + dY6 + dY7 = 0

dY0 + dY1 + dY4 = 0
dY2 + dY3 + dY6 + dY0 = 0
dY5 + dY6 + dY1 + dY3 = 0

dY7 + dY0 + dY1 + dY3 + dY5 = 0

(D.14)

Combining these results with the results from sub-collision 1 (D.9), we get:

dY0 = dY1 = dY2 = dY4 = dY5 = 0, dY3 = dY6 = dY7. (D.15)

Because sub-collisions 2 and 4 will result in similar conditions on r(dY ), the only
valid solution is dY = 0. It is a bit surprising that combining the results of
sub-collisions 1 and 3 alone does not suffice to reach this conclusion; we get seven
equations for each sub-collision, but they are not independent, e.g., two of the
seven equations from sub-collision 1 are redundant.

Difference propagation for sub-collisions 2,3,4

We give here Tables D.1, D.2 and D.3 with the required difference propagation for
sub-collisions 2, 3 and 4, as well as the corresponding conditions on the absolute
value of the state at ‘time’ B and F . Sub-collision 1 (and 5) was described in
Sect. 5.3.3 (Table 5.4), where we also discussed the relations between Tables 5.4,
D.1, D.2 and D.3.

Sub-collision 2

The difference propagation in sub-collision 2, as specified in Table D.1, leads to
the following conditions for B:

B3 = 1, B4 +B5 = 1, B6 = 0, (D.16)

and the following conditions for F :

F0 = 0, F1 = 0, F2 + F3 = 1, F3 = F4, F5 = 1, F6 = 1, F7 + F8 = 1,
F9 = 1, F10 = 0, F12 = 0, F13 = 1, F14 = F15, F15 + F16 = 1.

(D.17)
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Table D.1: The required difference propagation for sub-collision 2.

i dB dC dD dE = dF dG dH dI

0 0 0 0 0 1 1 0
1 0 0 0 0 1 0 1
2 0 0 0 1 1 0 0
3 0 1 1 1 0 1 1
4 1 1 0 1 1 1 0
5 1 1 0 0 0 1 0
6 0 0 0 0 1 1 1
7 0 0 0 1 0 1 0
8 0 0 1 1 1 0 1
9 0 0 0 0 1 0 0

10 0 0 0 0 0 1 0
11 0 0 0 1 1 1 0
12 0 0 0 0 0 1 0
13 0 0 0 0 0 1 0
14 0 0 0 1 0 0 0
15 0 0 1 1 1 0 0
16 0 0 0 1 1 0 0

Sub-collision 3

The difference propagation in sub-collision 3, as specified in Table D.2, leads to
the following conditions for B:

B13 = 0, B14 +B15 = 1, B16 = 0, (D.18)

and the following conditions for F :

F0 = 1, F1 + F2 = 1, F2 + F3 = 1, F4 = 0, F5 + F6 = 1, F6 + F7 = 1, F7 = F8,
F8 = F9, F9 + F10 = 1, F11 = 0, F12 = 1, F13 = F14 = F15, F16 = 0.

(D.19)

Sub-collision 4

The difference propagation in sub-collision 4, as specified in Table D.3, leads to
the following conditions for B:

B11 = 0, B12 = B13, B14 = 0, (D.20)
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Table D.2: The required difference propagation for sub-collision 3.

i dB dC dD dE = dF dG dH dI

0 0 0 0 0 1 1 0
1 0 0 0 1 0 1 0
2 0 0 1 1 1 1 0
3 0 0 0 1 0 1 0
4 0 0 0 0 1 0 0
5 0 0 0 1 0 0 0
6 0 0 0 1 1 0 0
7 0 0 1 1 1 1 0
8 0 0 0 1 0 0 0
9 0 0 1 1 1 0 0

10 0 0 0 1 1 1 1
11 0 0 0 0 0 1 1
12 0 1 0 0 0 0 0
13 0 1 0 1 1 1 1
14 1 1 1 1 1 1 0
15 1 1 0 1 1 0 0
16 0 0 0 0 0 1 1

and the following conditions for F :

F0 = 1, F4 = 0, F6 = 1, F7 = 0, F8 + F9 = 1, F8 = F10,
F11 = 0, F12 + F13 = 1, F12 = F14, F12 = F15, F12 = F16.

(D.21)
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Table D.3: The required difference propagation for sub-collision 4.

i dB dC dD dE = dF dG dH dI

0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0
2 0 0 0 0 0 1 0
3 0 0 0 0 1 1 0
4 0 0 0 0 1 1 0
5 0 0 0 1 1 0 0
6 0 0 0 0 1 0 0
7 0 0 0 0 1 0 0
8 0 0 0 1 0 1 0
9 0 0 1 1 1 0 1

10 0 1 0 1 0 0 0
11 0 0 0 0 1 1 1
12 1 1 0 1 0 1 0
13 1 1 0 1 1 1 0
14 0 0 1 1 1 1 1
15 0 0 0 1 0 1 0
16 0 0 1 1 1 0 1
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Analyse en Ontwerp van Cryptografische Hash-

functies, MAC-algoritmen en Blokcijfers

1. Inleiding

In onze moderne maatschappij vormt informatie een belangrijk handelsgoed. Het
is vaak nodig om de confidentialiteit ervan te beschermen, wat betekent dat het
voor niet-geauthoriseerde personen onmogelijk moet zijn om de inhoud van de
informatie te achterhalen. Langs de andere kant kan het even belangrijk zijn om
de authenticiteit van gegevens te beschermen. Dit wil zeggen dat het mogelijk
moet zijn om de oorsprong (auteur) ervan na te gaan, en om te controleren dat de
gegevens door niemand anders gewijzigd zijn. Er wordt tegenwoordig steeds meer
overgegaan van papieren naar elektronische documenten, en dit kan het risico
op schending van de confidentialiteit of authenticiteit van gegevens vergroten:
het is in vele gevallen heel gemakkelijk om informatie in elektronische vorm te
doorzoeken, kopiëren of zelfs wijzigen. Dit is bijvoorbeeld het geval bij informatie
die zonder bijkomende beveiliging op het Internet geplaatst wordt. Hetzelfde
geldt voor de bescherming van de communicatie tussen personen: elektronische
berichten die via telecommunicatielijnen worden uitgewisseld, kunnen onderweg
afgeluisterd en in sommige gevallen zelfs gewijzigd worden.

Cryptografische technieken worden al vele eeuwen gebruikt om militaire en
diplomatieke geheimen te beschermen. Historisch gezien heeft de nadruk echter
steeds gelegen op de bescherming van confidentialiteit: een encryptieschema zet
een bericht om in een cryptogram, door middel van een transformatie (vercij-
fering) die afhankelijk is van een geheime sleutel. Het bekomen cryptogram is
onleesbaar voor wie deze geheime sleutel niet kent. Een geauthoriseerde persoon
met kennis van de sleutel daarentegen, kan na ontvangst van het cryptogram de
inverse transformatie (ontcijfering) toepassen en het bericht weer verkrijgen. Er
werd lang van uitgegaan dat encryptie volstaat om ook de oorsprong van infor-
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matie te controleren: als het ontcijferen van een cryptogram resulteert in een
zinvol bericht, dan moet het cryptogram wel opgesteld zijn door iemand met
kennis van de sleutel. Dat men hier echter niet zomaar van kan uitgaan blijkt
duidelijk uit het voorbeeld van het Vernam schema [129]. Dit encryptieschema
garandeert perfecte geheimhouding, maar wanneer een tegenstrever een binair
symbool (bit) van het cryptogram verandert, verandert ook de overeenkomende
bit van het bericht dat bekomen wordt na ontcijfering.

In de jaren zeventig hebben de publicatie van de Amerikaanse encryptiestan-
daard, de DES [54], en de uitvinding van publieke sleutel cryptografie [38] ervoor
gezorgd dat cryptologie (de studie van cryptografische technieken) is uitgegroeid
tot een wetenschappelijk onderzoeksdomein. Dit domein kan onderverdeeld wor-
den in twee subdomeinen: cryptografie en cryptanalyse. Een cryptograaf ontwik-
kelt nieuwe schema’s (algoritmen), bijvoorbeeld om niet-geauthoriseerde toegang
tot gegevens te voorkomen, of om te beletten dat documenten vervalst kunnen
worden. Een cryptanalyst aan de andere kant probeert methoden te ontwikkelen
om deze algoritmen te breken en zodoende de doelstellingen van de cryptograaf
te omzeilen. Er bestaat een sterke band tussen de twee subdomeinen: een nieuw
algoritme kan alleen veilig verondersteld worden na voldoende bestudeerd te zijn
door ervaren cryptanalysten die geen zwakheden kunnen vinden.

De ontwikkeling van de cryptologie heeft meegebracht dat er meer aandacht
besteed wordt aan andere concepten dan louter encryptie. De bescherming van de
authenticiteit van informatie is hier een voorbeeld van, en er zijn ook nieuwe toe-
passingen zoals digitale handtekeningen en elektronisch geld. In dit proefschrift
richten we ons voornamelijk op de studie van cryptografische hashfuncties. Dit
zijn functies die berichten van willekeurige lengte afbeelden op een hashresultaat
met een bepaalde lengte, al dan niet onder de invloed van een geheime sleutel.
Hun voornaamste gebruik is voor de authentisering van gegevens. Hoofdstuk 2
van het proefschrift geeft een overzicht van de basisconcepten, met definities voor
hashfuncties en de cryptografische eigenschappen waar ze aan moeten voldoen.
Er wordt ook uitgelegd hoe deze functies gebruikt worden om de authenticiteit
van gegevens te beschermen, en enkele andere toepassingen worden beschreven.
Er wordt dieper ingegaan op het gebruik van hashfuncties in systemen voor di-
gitale tijdsstempels. Hoofdstuk 3 beschrijft verschillende methoden voor het
ontwerp van sleutel-onafhankelijke hashfuncties. Hoofdstuk 4 is gewijd aan de
studie van een belangrijke klasse van hashfuncties, namelijk de ontwerpen die af-
geleid zijn van het bekende MD4 algoritme. De verschillende algoritmen worden
beschreven, een overzicht wordt gegeven van de aanvallen die gepubliceerd zijn in
de literatuur, en nieuwe aanvallen worden ontwikkeld, in het bijzonder de eerste
gekende aanval op het HAVAL algoritme. Hoofdstuk 5 bestudeert Panama, een
cryptografische module die zowel voor encryptie als voor hashen kan dienen. Een
aanval wordt voorgesteld op de Panama module gebruikt als hashfunctie. Hoofd-
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stuk 6 richt zich op hashfuncties waarvoor de berekening afhankelijk is van een
geheime sleutel. Dergelijke hashfuncties worden ook MAC-algoritmen genoemd
(‘message authentication codes’). Verschillende methoden voor het ontwerp van
MAC-algoritmen worden beschreven, en een nieuw eigen ontwerp wordt voorge-
steld: het algoritme Two-Track-MAC. Hoofdstuk 7 beschouwt blokcijfers, een
type van cryptografische algoritmen die voor encryptie gebruikt worden. Een
sleutelafhankelijke variant op de techniek van differentiële cryptanalyse wordt
ontwikkeld, toegepast op het blokcijfer ICE. Tevens wordt de relatie tussen
blokcijfers en hashfuncties besproken. Hoofdstuk 8 sluit het proefschrift af, en
formuleert nieuwe uitdagingen voor toekomstig onderzoek.

2. Basisconcepten

Cryptografische hashfuncties zijn functies die berichten van willekeurige lengte
afbeelden op een hashresultaat, bestaande uit een vast aantal bits. Om bruikbaar
te zijn voor cryptografische doeleinden, moet een hashfunctie echter aan een
aantal bijkomende voorwaarden voldoen. De volgende informele definities voor
twee types van hashfuncties werden gegeven door B. Preneel [96]. Een éénwegs-
hashfunctie is een functie h die aan de volgende voorwaarden voldoet:

1. De ingang X mag een willekeurige lengte hebben en het resultaat h(X)
heeft een vaste lengte van n bits.

2. Als h en een ingang X gegeven zijn, dan moet de berekening van h(X)
‘gemakkelijk’ zijn.

3. De functie moet aan de éénwegseigenschap voldoen: als een waarde Y ge-
geven is, die in het beeld van de functie h ligt, moet het ‘moeilijk’ zijn om
een bericht X te vinden waarvoor geldt dat h(X) = Y (invers beeld); als
een waarde X gegeven is (en bijgevolg h(X) gekend is) moet het ‘moeilijk’
zijn om een bericht X ′ 6= X te vinden waarvoor geldt dat h(X ′) = h(X)
(tweede invers beeld).

Een botsing-bestendige hashfunctie is een éénwegs-hashfunctie h die voldoet
aan de volgende bijkomende voorwaarde:

4. De functie moet botsing-bestendig zijn: het moet ‘moeilijk’ zijn om twee
verschillende berichten X en X ′ te vinden die door h op hetzelfde hashre-
sultaat h(X) = h(X ′) worden afgebeeld.

MAC-algoritmen (‘message authentication codes’) zijn een speciaal type van
hashfuncties waarvoor de berekening afhankelijk is van een geheime sleutel. Het
moet voor een tegenstrever onhaalbaar zijn om het MAC-resultaat van een bericht
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te ‘vervalsen’. Dit betekent dat hij het juiste MAC-resultaat niet kan berekenen
zonder kennis van de sleutel. De volgende informele definitie werd gegeven door
Preneel [96]. EenMAC-algoritme is een functie h die voldoet aan de volgende
voorwaarden:

1. De ingang X mag een willekeurige lengte hebben en het resultaat h(K,X)
heeft een vaste lengte van n bits. De functie heeft als bijkomende ingang
de sleutel K, met een vaste lengte van k bits.

2. Als h, K en een ingang X gegeven zijn, moet de berekening van h(K,X)
‘gemakkelijk’ zijn.

3. Als een bericht X gegeven is (maar met onbekende K), moet het ‘moeilijk’
zijn om h(K,X) te bepalen. Zelfs als een grote verzameling met paren
{Xi, h(K,Xi)} gekend is, moet het ‘moeilijk’ zijn om de sleutelK te bepalen
of om h(K,X ′) te berekenen voor eender welk nieuw bericht X ′ 6= Xi (∀i).

Men kan een (sleutelonafhankelijke) hashfunctie of een MAC-algoritme ge-
bruiken om berichten te authentiseren. De kern van het idee is dat het gemakke-
lijker is om de authenticiteit van een kort hash- of MAC-resultaat te beschermen
dan de authenticiteit van het bericht zelf. In het geval van een sleutelonafhan-
kelijke hashfunctie wordt het hashresultaat naar de bestemmeling verzonden via
een veilig kanaal waarop de authenticiteit gewaarborgd is (bv. een telefoonlijn
zodat de bestemmeling de stem van de zender kan herkennen). De bestemme-
ling kan vervolgens de authenticiteit van het bericht, dat via een onveilig kanaal
gecommuniceerd is, controleren door er zelf de hashfunctie op toe te passen. In
het geval van een MAC-algoritme kan het MAC-resultaat samen met het be-
richt verzonden worden over het onveilige kanaal. Voor het communiceren van
de gebruikte geheime sleutel heeft men dan wel een veilig kanaal nodig dat zowel
authenticiteit als geheimhouding waarborgt.

Er zijn ook heel wat andere toepassingen voor hashfuncties. Eén van de be-
langrijkste is het gebruik van een sleutelonafhankelijke hashfunctie in combinatie
met een digitaal handtekeningsschema. Zo een schema is gebaseerd op publieke
sleutel cryptografie, en de performantie kan beduidend verbeterd worden wanneer
men eerst de hashfunctie toepast op het bericht en vervolgens de handtekening
berekent over het korte hashresultaat (in plaats van over het bericht zelf). Voor
deze toepassing is het belangrijk dat de gebruikte hashfunctie niet alleen aan
de éénwegseigenschap voldoet, maar ook botsing-bestendig is. Anders zouden
gebruikers in staat kunnen zijn om te ontkennen dat ze bepaalde handtekenin-
gen geplaatst hebben. Er wordt in dit hoofdstuk ook een beschrijving gegeven
van systemen voor digitale tijdsstempels, en van de rol die hashfuncties daarin
vervullen. Door digitale tijdsstempels kan men bewijzen dat bepaalde gegevens
bestonden vóór een zeker tijdstip, wat onder meer nuttig is voor de bescherming



231

van intellectuele eigendomsrechten, voor veilige audits en voor het verlengen van
de levensduur van digitale handtekeningen. De beschrijving is gebaseerd op een
studie die gemaakt werd voor het Belgische TIMESEC-project [134], en is gepu-
bliceerd in [127].

3. Ontwerp van Cryptografische Hashfuncties

Een eerste vraag die beantwoord moet worden bij het ontwerp van een (sleutel-
onafhankelijke) hashfunctie, is welke lengte (in bits) men kiest voor de hashre-
sultaten. Voor een lengte van n bits zijn er 2n verschillende elementen in het
beeld van de functie en dit aantal bepaalt de moeilijkheidsgraad van enkele al-
gemeen toepasbare aanvallen. Het is voor een tegenstrever altijd mogelijk om de
éénwegseigenschap van een hashfunctie te breken in ongeveer 2n stappen, en om
botsende berichten te vinden in ongeveer 2n/2 stappen (elke stap vereist de bere-
kening van een hashresultaat). De moeilijkheidsgraad van 2n/2 stappen voor het
vinden van botsingen kan verklaard worden door de zogenaamde verjaardagspara-
dox. Met de beschikbare rekenkracht van huidige computers wordt aangenomen
dat een lengte van n = 80 bits nodig is voor een éénwegs-hashfunctie. Als de
hashfunctie ook botsing-bestendig moet zijn is een lengte van n = 160 bits nodig.
Omwille van de wet van Moore (de rekenkracht die beschikbaar is voor een be-
paalde kostprijs verdubbelt elke achttien maanden) zijn grotere bitlengtes nodig
voor veiligheid op lange termijn.

Zoals eerder uitgelegd, kunnen de berichten die door een hashfunctie ver-
werkt worden, een willekeurige lengte hebben. Alle bekende hashfuncties zijn
echter gebaseerd op het itereren van een compressiefunctie die een ingang heeft
van vaste lengte. Het bericht dat gehasht wordt, wordt dan eerst verdeeld in
blokken van die lengte, en elk blok wordt op gelijkaardige wijze verwerkt door
de compressiefunctie. De berekening maakt ook gebruik van een kettingvariabele.
Deze variabele wordt in het begin van de berekening gelijk gesteld aan een initiële
waarde (deze waarde maakt deel uit van de specificatie van de hashfunctie). Elke
iteratie van de compressiefunctie berekent een nieuwe waarde voor de kettingva-
riabele, en het hashresultaat wordt gelijkgesteld aan de laatst bekomen waarde
voor de kettingvariabele (dit is na verwerking van het laatste blok van het be-
richt). In sommige gevallen wordt nog een uitgangstransformatie toegepast. Het
bericht van willekeurige lengte dat gehasht wordt, moet verdeeld kunnen worden
in blokken van vaste lengte. Het is dan ook nodig om een schema te definiëren dat
een variabel aantal bits toevoegt aan het bericht, en op deze wijze ervoor zorgt
dat de lengte van het gewijzigde bericht steeds een veelvoud is van de lengte van
de blokken. Indien dit schema ook bits toevoegt die een representatie vormen van
de oorspronkelijke lengte van het bericht, kan men bewijzen dat de hashfunctie
veilig is als de gebruikte compressiefunctie veilig is (Merkle-Damg̊ard [86, 32] en



232 Nederlandse Samenvatting

Lai-Massey [79]). Dit betekent dat een cryptograaf zich kan concentreren op het
ontwerpen van een veilige compressiefunctie.

Verschillende methoden zijn voorgesteld voor het ontwerp van compressie-
functies. Men kan de compressiefunctie baseren op een bestaand cryptografisch
schema zoals een blokcijfer (dit is een type van algoritme dat gebruikt wordt
voor encryptie). Het voordeel hiervan is dat bestaande software- of hardware-
implementaties herbruikt kunnen worden. Een ander argument is dat sommige
blokcijfers, zoals het DES- [54] en het AES-algoritme [52], grondig geëvalueerd
zijn, en dat er daardoor vertrouwd wordt op hun veiligheid. Er zijn verschil-
lende constructies om een hashfunctie te verkrijgen uit een blokcijfer. Er kan
een onderscheid gemaakt worden tussen constructies waarvoor de lengte van het
hashresultaat gelijk is aan de bloklengte van het gebruikte blokcijfer (bv. Matyas-
Meyer-Oseas en Davies-Meyer [83]), en constructies waarvoor de lengte van het
hashresultaat dubbel zo groot is (bv. MDC-2 en MDC-4 [25, 87]). Een ander type
van hashfuncties zijn deze waarvan de compressiefunctie gebaseerd is op modulair
rekenen (zoals deze gebruikt in systemen van publieke sleutel cryptografie). Het
veiligheidsniveau van dergelijke hashfuncties kan gemakkelijk aangepast worden
door de keuze van de gebruikte modulus; het nadeel is dat deze constructies veel
trager zijn dan andere types van hashfuncties. Een voorbeeld is de hashfunc-
tie MASH-1 [64], waarvan de compressiefunctie gebaseerd is op een modulaire
kwadrateringsoperatie. Er zijn ook algoritmen met een compressiefunctie die ex-
pliciet ontworpen is om te hashen. De populairste algoritmen van dit type zijn
degene die gebaseerd zijn op het bekende MD4-algoritme [114], en die ontworpen
zijn met het oog op een goede software-performantie. Tot slot van dit hoofdstuk
wordt een overzicht gegeven van de standardisatieprocedures voor hashfuncties.
De belangrijkste organisaties die hashfuncties standardiseren zijn ISO/IEC, ISO,
ANSI en NIST.

4. Hashfuncties van de MDx-klasse

De MDx-klasse bestaat uit hashfuncties waarvan het ontwerp gëınspireerd is door
het bekende MD4-algoritme. MD4 werd in 1990 door R. Rivest voorgesteld
en is gericht op software-implementatie voor 32-bit architecturen. Ondertus-
sen is aangetoond dat MD4 geen veilige hashfunctie is, maar een aantal ande-
re algoritmen zijn voorgesteld waarvan het ontwerp gebaseerd is op gelijkaar-
dige ideeën. Hiertoe behoren MD5 [115] (een ander ontwerp van Rivest), HA-
VAL [131] (voorgesteld door Australische onderzoekers), de SHA-algoritmen [51]
(FIPS-standaarden van de Amerikaanse overheid), en de RIPEMD-algoritmen
[44] (oorspronkelijk ontwikkeld in het kader van het Europese RIPE project).
Deze hashfuncties zijn de populairste voor praktisch gebruik, omwille van hun
software-performantie (op 32-bit of 64-bit platformen naargelang het algoritme)
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en omwille van het vertrouwen dat gegroeid is door de gekende cryptanalytische
resultaten.

Zoals eerder uitgelegd berekent de compressiefunctie van een hashfunctie een
nieuwe waarde voor de kettingvariabele, gebruik makend van het huidige ingangs-
blok. Typisch voor hashfuncties van de MDx-klasse is dat de compressiefunctie
een sequentiële structuur heeft, bestaande uit een groot aantal eenvoudige stap-
pen die elk een deel van de kettingvariabele aanpassen. Alle bewerkingen gebeu-
ren met woorden van een vaste lengte (32 of 64 bits naargelang het algoritme), en
zowel de kettingvariabele als het ingangsblok worden opgedeeld in zulke woorden.
Voor de meeste algoritmen kan de compressiefunctie ook onderverdeeld worden in
een aantal ronden. Elk woord van het ingangsblok wordt dan éénmaal gebruikt
in elke ronde van de compressiefunctie.

In dit hoofdstuk wordt een beschrijving gegeven van de verschillende hash-
functies van de MDx-klasse, en van de aanvallen die er in de literatuur voor
gepubliceerd zijn. De cryptanalytische methoden van H. Dobbertin [41, 42, 39]
blijken meer algemeen toepasbaar te zijn dan vroegere aanvallen. Ze zijn geba-
seerd op een combinatie van verschillende technieken: differentiële cryptanalyse
waarbij de verschillen zo klein mogelijk gehouden worden, en methoden voor het
oplossen van stelsels van niet-lineaire vergelijkingen. Men zoekt eerst een botsing
voor de compressiefunctie, voor twee berichten die elk uit één blok bestaan. Ver-
volgens probeert men dit uit te breiden naar een botsing voor de hashfunctie zelf.
Het probleem van het vinden van een botsing voor de compressiefunctie wordt on-
derverdeeld in verschillende kleinere problemen, zoals het vinden van een interne
botsing of een interne bijna-botsing. Een belangrijke bijdrage van ons onderzoek
is de aanval die we ontwikkeld hebben op het HAVAL-algoritme. Het ontwerp
van de compressiefunctie van HAVAL is voornamelijk gebaseerd op het gebruik
van complexe niet-lineaire Booleaanse functies. We hebben echter aangetoond
dat de versie van HAVAL met drie ronden in de compressiefunctie gebroken kan
worden met een aanval die een strategie volgt die vergelijkbaar is met de strate-
gie van de aanval van Dobbertin op MD4 [42]. Deze aanval vergt ongeveer 229

berekeningen van de compressiefunctie. Het is de eerste gepubliceerde aanval op
een volledige versie van HAVAL. Het resultaat, dat gepubliceerd werd in [123],
toont aan dat het voor een veilig ontwerp niet volstaat om sterke bouwblokken te
gebruiken (bv. de niet-lineaire Booleaanse functies van HAVAL), maar dat men
ook het effect van deze bouwblokken op de globale veiligheid moet nagaan.

Aan te bevelen hashfuncties van de MDx-klasse lijken deze van de RIPEMD-
en SHA-families te zijn. Het MD4-algoritme is duidelijk gebroken op het gebied
van botsing-bestendigheid, en voor MD5 zijn belangrijke zwakheden aangetoond
(botsingen kunnen gevonden worden voor de compressiefunctie, maar tot nu toe
kunnen ze niet uitgebreid worden naar de hashfunctie zelf). Bovendien is de
lengte van het hashresultaat voor deze algoritmen slechts 128 bits, wat sowieso
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te weinig is voor een echte botsing-bestendige hashfunctie. HAVAL biedt het
voordeel van een variabele lengte (tot 256 bits) voor de hashresultaten, en heeft
verschillende veiligheidsniveaus op basis van het aantal gebruikte ronden in de
compressiefunctie (drie tot vijf ronden zijn mogelijk). Ons werk toont echter
aan dat botsingen gemakkelijk gevonden kunnen worden voor de versie met drie
ronden. De RIPEMD-algoritmen hebben een compressiefunctie die bestaat uit
twee parallelle lijnen (elk bestaande uit een aantal ronden), en voor de SHA-
algoritmen wordt een speciale procedure gebruikt voor expansie van het ingangs-
blok. De laatste twee benaderingen voor het ontwerp lijken de veiligheid gevoelig
te verbeteren. Als een lengte van 160 bits voor het hashresultaat voldoende is,
kan RIPEMD-160 of SHA-1 gebruikt worden. Voor langere hashresultaten komen
de meest recente SHA-algoritmen (SHA-224, SHA-256, SHA-384 en SHA-512) in
aanmerking. Er moet echter opgemerkt worden dat deze hashfuncties tot nu toe
nog maar een beperkte publieke evaluatie gekregen hebben.

5. De PANAMA Cryptografische Module

De ervaring die is opgedaan met de cryptanalyse van hashfuncties van de MDx-
klasse, heeft geleid tot het ontwerp van een aantal algoritmen (in het bijzonder
deze van de RIPEMD- en SHA-families) die een hoge veiligheidsmarge lijken te
hebben tegen alle gekende aanvalsstrategieën. Deze algoritmen zijn echter bedui-
dend minder performant dan MD4 en MD5. Er bestaat dan ook zeker interesse
voor nieuwe ideeën voor het ontwerp van hashfuncties. Een voorbeeld van een
nieuw type van ontwerp is de Panama cryptografische module [30], die gebruikt
kan worden voor zowel hashen als voor stroom-encryptie. Opmerkelijk aan het
ontwerp van Panama is de parallelle (in plaats van sequentiële) structuur van
de iteratiefunctie, en het grote interne geheugen dat vereist is (de kettingva-
riabele bestaat uit een staat en een buffer, met een gecombineerde lengte van
544 + 8192 = 8736 bits). Er wordt een uitgangstransformatie gebruikt en de
lengte van het hashresultaat is 256 bits. De veiligheid van Panama is niet ge-
baseerd op het itereren van een botsing-bestendige compressiefunctie, maar er
wordt verwacht dat de diffusie en niet-lineariteit gerealiseerd door opeenvolgende
toepassingen van de iteratiefunctie cryptanalyse onmogelijk maken. Het inhe-
rente parallellisme van Panama laat heel performante software-implementaties
op VLIW-processoren toe (tenminste in het geval dat er lange berichten gehasht
worden).

De analyse die we in dit hoofdstuk maken van Panama toont echter aan
dat er een theoretische aanval bestaat die veel efficiënter is voor het vinden van
botsende berichten dan een algemeen toepasbare aanval gebaseerd op de verjaar-
dagsparadox: 282 operaties volstaan voor het vinden van botsingen (voor ideale
veiligheid zouden 2128 operaties vereist moeten zijn). De strategie van deze aan-
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val is sterk verschillend van de strategie van de aanvallen op hashfuncties van
de MDx-klasse. We zoeken botsingen in zowel de staat als de buffer en hiervoor
werken we met verschillen tussen twee berichten bestaande uit een groot aantal
blokken. Het zoeken naar een botsing wordt onderverdeeld in vijf kleinere pro-
blemen die onafhankelijk van elkaar kunnen opgelost worden: elke keer dat er een
verschil ontstaat in de staat laten we dit verschil zo snel mogelijk uitdoven. Hier-
voor moeten we stelsels van niet-lineaire vergelijkingen oplossen. Ons resultaat
werd gepubliceerd in [112]. Merk op dat dit geen impact heeft op de veiligheid
van de encryptiemode van Panama (wanneer de cryptografische module gebruikt
wordt als stroomcijfer).

6. Ontwerp van MAC-algoritmen

In dit hoofdstuk bespreken we het ontwerp van MAC-algoritmen (hashfuncties
waarvoor de berekening afhankelijk is van een geheime sleutel). Net zoals bij
sleutel-onafhankelijke hashfuncties is het ontwerp van een MAC-algoritme ge-
baseerd op de iteratie van een compressiefunctie met ingang van vaste lengte.
Voor MAC-algoritmen is het doorgaans noodzakelijk voor de veiligheid om een
uitgangstransformatie te gebruiken. Zowel de initiële waarde voor de ketting-
variabele, de compressiefunctie als de uitgangstransformatie kunnen afhankelijk
zijn van de geheime sleutel. De vereiste lengte van het MAC-resultaat wordt in
grote mate bepaald door de applicatie waarin het algoritme gebruikt wordt; in de
praktijk zijn lengtes van 32 of 64 bits vaak voldoende. De lengte van de geheime
sleutel moet groot genoeg zijn om aanvallen waar exhaustief naar de sleutel ge-
zocht wordt onhaalbaar te maken. Hiervoor is een sleutellengte van tenminste 80
bits vereist (meer voor veiligheid op lange termijn). Voor MAC-algoritmen moet
men ook rekening houden met aanvallen gebaseerd op interne botsingen (dit zijn
botsingen die optreden vóór de uitgangstransformatie). Preneel en van Oorschot
[104, 105] hebben aangetoond dat zo een interne botsing gebruikt kan worden
voor een verifieerbare MAC-vervalsing met een aanval op basis van slechts één
enkel opgevraagd MAC-resultaat.

Men kan de compressiefunctie van een MAC-algoritme baseren op een be-
staand cryptografisch schema. Een blokcijfer kan hiervoor gebruikt worden in
CBC-mode (‘Cipher Block Chaining’). De veiligheid van deze constructie kan be-
wezen worden onder de veronderstelling dat het gebruikte blokcijfer een pseudo-
willekeurige permutatie is [12]. Dit bewijs geldt enkel wanneer berichten van vaste
lengte verwerkt worden, maar er zijn ook varianten op de CBC-MAC constructie
(bv. EMAC [95] en OMAC [67]) die veilig zijn voor berichten van willekeurige
lengte. In plaats van een blokcijfer kan men ook een hashfunctie gebruiken als
basis voor een MAC-algoritme. Hiervoor moet men de functie afhankelijk maken
van een secundaire ingang, de geheime sleutel. Twee aanbevolen constructies zijn
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HMAC [15] en MDx-MAC [104]. Ook voor deze constructies kan de veiligheid
bewezen worden op basis van een aantal veronderstellingen.

We stellen in dit hoofdstuk ook een eigen nieuw ontwerp voor: het algoritme
Two-Track-MAC (gepubliceerd in [37]). Het ontwerp van Two-Track-MAC (of
TTMAC) is gebaseerd op een compressiefunctie met dezelfde tweelijnsconstructie
als in de compressiefunctie van de sleutelonafhankelijke hashfunctie RIPEMD-160
[100]. De twee parallelle lijnen worden echter niet gecombineerd op het einde van
de compressiefunctie. Dit betekent dat de kettingvariabele een lengte heeft van
320 bits (in plaats van 160 bits). We zorgen er wel voor dat er een interactie
optreedt tussen de twee lijnen, en na de laatste berekening van de compressie-
functie (dus na de verwerking van het laatste blok van het bericht) is er een
uitgangstransformatie die het MAC-resultaat berekent door het verschil te bere-
kenen tussen de twee lijnen. Opmerkelijk in het ontwerp van TTMAC is dat de
geheime sleutel enkel gebruikt wordt als initiële waarde voor de kettingvariabele,
en niet in de compressiefunctie of in de uitgangstransformatie. Dit is in tegen-
stelling tot andere MAC-constructies op basis van een hashfunctie (zoals HMAC
en MDx-MAC); het wordt mogelijk gemaakt door de tweelijnsconstructie.

De veiligheid van TTMAC kan bewezen worden onder de veronderstelling
dat de compressiefunctie pseudo-willekeurig is. Deze compressiefunctie is sterk
gelijkaardig aan de compressiefunctie van RIPEMD-160; alhoewel RIPEMD-160
eerder ontworpen is met oog op de éénwegseigenschap en botsing-bestendigheid,
lijkt de compressiefunctie ervan sterk te zijn door het gebruik van verschillende
operaties (Booleaanse functies, bit-rotaties en modulaire optellingen). Onze eva-
luatie toont aan dat TTMAC een hoog veiligheidsniveau bezit tegen alle gekende
aanvalsstrategieën. Het veiligheidsniveau is hoger dan voor HMAC en MDx-MAC
(gebaseerd op RIPEMD-160 of SHA-1). De performantie van TTMAC benadert
deze van RIPEMD-160. Een belangrijk voordeel is dat TTMAC zeer efficiënt is
in het geval dat korte berichten (één of enkele blokken van 512 bits) verwerkt wor-
den. Dit is omwille van de eenvoudige uitgangstransformatie, vergeleken met de
HMAC en MDx-MAC constructies waar in de uitgangstransformatie de compres-
siefunctie van de onderliggende hashfunctie moet berekend worden. Een ander
voordeel van ons algoritme is dat de geheime sleutel enkel als initiële waarde ge-
bruikt wordt. TTMAC is dan ook heel geschikt voor toepassingen waar de sleutel
regelmatig veranderd wordt (bv. na elke MAC-authenticatie). Voor HMAC en
MDx-MAC daarentegen vereist elke sleutelverandering respectievelijk twee of zes
extra berekeningen van de compressiefunctie.

We hebben TTMAC ingediend als kandidaat [124] voor het Europese NESSIE-
project (‘New European Schemes for Signatures, Integrity, and Encryption’,
[135]). Dit project had als voornaamste doelstelling om een portfolio van sterke
cryptografische algoritmen voor te stellen. Deze portfolio bestaat uit verschillen-
de categorieën van algoritmen, die bruikbaar zijn voor encryptie, authentisering
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of digitale handtekeningen. In totaal werden 42 cryptografische algoritmen in-
gediend als kandidaat voor NESSIE. Deze algoritmen werden gedurende meer
dan twee jaar geëvalueerd, en uiteindelijk (februari 2003) werden twaalf algorit-
men uitgekozen voor de verschillende categorieën van de portfolio (samen met
vijf bestaande standaarden). TTMAC werd gekozen als MAC-algoritme voor de
portfolio (samen met UMAC [76] en de standaarden EMAC [95] en HMAC [15]).
Volgens NESSIE [93] heeft elk van deze algoritmen zijn eigen specifieke voordelen.
Merk op dat de door NESSIE gekozen algoritmen geen standaarden zijn, maar
dat er een behoorlijke graad van vertrouwen is in hun veiligheid omwille van de
evaluatie die is uitgevoerd en het feit dat er geen zwakheden werden gevonden.
Er wordt verwacht dat tenminste verschillende ervan in de nabije toekomst zullen
aangenomen worden door standardisatieorganisaties.

7. Blokcijfers

Blokcijfers zijn een type van cryptografische algoritmen die hoofdzakelijk gebruikt
worden voor encryptie. In ECB-mode (‘Electronic Code Book’) wordt het be-
richt opgedeeld in blokken van een vaste lengte, en wordt vervolgens elk van deze
blokken vercijferd, gebruik makend van de geheime sleutel. Er zijn ook andere
modes (bv. CBC of ‘Cipher Block Chaining’) voor het gebruik van een blokcijfer,
die ervoor zorgen dat de verschillende vercijferingen niet onafhankelijk van elkaar
gebeuren. Het moet voor een tegenstrever die de cijfertekst kent, onhaalbaar zijn
om het oorspronkelijke bericht (de klaartekst) te weten te komen. Als de tegen-
strever kennis heeft van een (groot) aantal klaarteksten en hun overeenkomende
cijferteksten, moet het voor hem ook onhaalbaar zijn om de gebruikte geheime
sleutel te weten te komen.

We geven in dit hoofdstuk een korte beschrijving van verschillende metho-
den voor het ontwerp van blokcijfers. De meest gekozen bloklengtes zijn 64
of 128 bits, en de sleutellengte moet groot genoeg zijn om aanvallen waar ex-
haustief naar de sleutel gezocht wordt onhaalbaar te maken. De veiligheid van
een blokcijfer is gebaseerd op de bekende concepten van confusie en diffusie,
gëıntroduceerd door C. Shannon [119]. Praktische ontwerpen maken gebruik van
een ronde-transformatie die een voldoende aantal keren herhaald wordt om een
sterke encryptiefunctie te bekomen. De meeste algoritmen zijn gebaseerd op de
zogenaamde Feistel-constructie of op een uniforme transformatiestructuur (ook
substitutie-permutatie netwerk of SPN genoemd). Het DES-algoritme [54] is een
voorbeeld van een Feistel-cijfer met een bloklengte van 64 bits, en het AES-
algoritme [52] is een uniforme transformatiestructuur met een bloklengte van 128
bits. De eigenschap van confusie wordt in de meeste blokcijfers gerealiseerd door
het gebruik van zogenaamde substitutiedozen of S-boxen.

Eén van de best bekende technieken voor het analyseren van blokcijfers is
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differentiële cryptanalyse, een probabilistische techniek die de propagatie van
verschillen doorheen een algoritme bestudeert. In dit hoofdstuk ontwikkelen we
een sleutelafhankelijke variant op deze techniek, toegepast op het blokcijfer ICE.
ICE [78] is een Feistel-cijfer met een bloklengte van 64 bits, en bestaande uit zes-
tien ronden (er is ook een snelle variant met acht ronden). Het meest opvallende
kenmerk van dit algoritme zijn de sleutelafhankelijke permutaties die gebruikt
worden om onder meer differentiële cryptanalyse te bemoeilijken. Volgens de
ontwerper van het algoritme zou de beste strategie voor een differentiële aanval
zijn om gebruik te maken van symmetrische 32-bit verschillen aan de ingang van
de F -functie die de kern vormt van de ronde-transformatie. De waarschijnlijk-
heden in de differentiële cryptanalyse worden dan te laag om bruikbaar te zijn
voor een aanval. We hebben echter ontdekt dat we een sleutelafhankelijke dif-
ferentiële aanval kunnen uitvoeren, gebruik makend van kleine verschillen met
een Hamming gewicht gelijk aan één. De analyse maakt gebruik van voorwaar-
delijke differentiële karakteristieken die geldig zijn voor slechts een deel van alle
mogelijke sleutelwaarden. Op deze manier kunnen we de versie van ICE met acht
ronden breken: de aanval werkt met een complexiteit van 223 klaarteksten (en
encryptie-operaties) voor 25% van de sleutels, en met een complexiteit van 227

klaarteksten voor 95% van de sleutels. In theorie kunnen gereduceerde versies
van ICE met hoogstens vijftien ronden gebroken worden met een complexiteit
die lager is dan de complexiteit voor een exhaustieve zoektocht naar de sleutel.

Tenslotte hebben we het verband besproken tussen blokcijfers en hashfuncties.
We hebben reeds eerder uitgelegd dat een blokcijfer gebruikt kan worden voor het
ontwerp van een hashfunctie (en ook voor een MAC-algoritme). Langs de andere
kant kan men een hashfunctie gebruiken om een blokcijfer te ontwerpen. De
SHACAL-1 en SHACAL-2 blokcijfers [60], die gebaseerd zijn op de hashfuncties
SHA-1 en SHA-256 (respectievelijk), zijn hier een voorbeeld van.

8. Toekomstig Onderzoek

Tijdens het onderzoek voor dit proefschrift zijn een aantal vragen gerezen die nog
onbeantwoord zijn. Verdere cryptanalyse van hashfuncties van de MDx-klasse is
mogelijk, vooral voor de meest recente algoritmen van de SHA-familie die door
NIST gekozen zijn als standaarden zonder dat hun ontwerpstrategie werd be-
kendgemaakt, en zonder ondersteunende publieke evaluatie van hun veiligheid.
Omwille van het gebruik van lineaire codes in deze hashfuncties, zou een crypt-
analyse ervan waarschijnlijk voor een groot deel gebaseerd moeten worden op
codeertheorie. Het is een open probleem of onze aanval op HAVAL uitgebreid
kan worden naar versies met meer ronden in de compressiefunctie. Het MD5-
algoritme is nog steeds populair ondanks het feit dat botsingen gevonden kunnen
worden voor de compressiefunctie. Het is dus een interessante uitdaging om bot-
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singen te zoeken voor de MD5-hashfunctie zelf. Anderzijds zou het nuttig zijn
om een aanval gebaseerd op de verjaardagsparadox te implementeren voor MD5,
wat haalbaar zou moeten zijn omdat de lengte van de hashresultaten slechts 128
bits is.

Nog een andere cryptanalytische uitdaging is om onze aanval op Panama

te verbeteren. De huidige aanval is theoretisch (veel sneller dan een aanval ge-
baseerd op de verjaardagsparadox, maar te complex om praktisch te zijn). We
houden er rekening mee dat door het gebruik van methoden zoals relinearisatie
[71] voor het oplossen van de stelsels met niet-lineaire vergelijkingen, botsingen
voor Panama in de praktijk gevonden zouden kunnen worden. Een algemene
opmerking over de veiligheid van hashfuncties is dat meer onderzoek vereist is
om andere eigenschappen te bestuderen. We denken in de eerste plaats aan de
éénwegseigenschap, en ook bv. aan aanvallen die de pseudo-willekeurigheid van
het resultaat analyseren (in het geval dat een deel van de ingang geheim is). We
nodigen ook uit tot verdere evaluatie van ons eigen ontwerp Two-Track-MAC.

Op het gebied van het ontwerpen van nieuwe algoritmen, bestaat er zeker
interesse voor nieuwe types van hashfuncties die een hoog veiligheidsniveau zou-
den moeten combineren met een goede performantie. Het zou ook nuttig zijn
om meer bewijsbare eigenschappen te hebben voor hashfuncties (vergelijkbaar
met blokcijfers waar ontwerpers van nieuwe algoritmen de weerstand tegen bij-
voorbeeld differentiële cryptanalyse trachten te bewijzen). Voor hashfuncties die
gebaseerd zijn op een blokcijfer is de vraag nog onbeantwoord welke voorwaarden
aan het blokcijfer moeten gesteld worden opdat de hashfunctie veilig zou zijn.
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