
The Mathematics of Juggling
by Burkard Polster

Next time you see some jugglers practising in a park, ask them whether they
like mathematics. Chances are, they do. In fact, a lot of mathematically
wired people would agree that juggling is “cool” and most younger mathe-
maticians, physicists, computer scientists, engineers, etc. will at least have
given juggling three balls a go at some point in their lives.

I myself also belong to this category and, although I am only speaking for
myself, I am sure that many serious mathematical jugglers would agree that
the satisfaction they get out of mastering a fancy juggling pattern is very
similar to that of seeing a beautiful equation, or proof of a theorem click into
place.

Given this fascination with juggling, it is probably not surprising that
mathematical jugglers have investigated what mathematics can be found in
juggling. But before we embark on a tour of the mathematics of juggling,
here is a little bit of a history.

1 A mini history

The earliest historical evidence of juggling is a 4000 year old wall painting in
an ancient Egyptian tomb. Here is a tracing of part of this painting showing
four jugglers juggling up to three objects each.

The earliest juggling mathematician we know of is Abu Sahl al-Kuhi who
lived around the 10th century. Before becoming famous as a mathematician,
he juggled glass bottles in the market place of Baghdad.

But he seems to be the exception. Until quite recently, it was mostly
professional circus performers or their precursors, who engaged in juggling.
There are some countries, Japan and Tonga for example, where for a long
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time juggling was a popular game practised by girls. But in most countries
the professionals dominated until the second half of the 20th century. It was
at that time that more and more people got into juggling as a hobby. This
was particularly true among college students, and many juggling clubs were
formed at colleges and universities around that time. Today there are tens
of thousands of amateur jugglers, all around the world.

It was around 1985 that at least three groups of people independently from
each other started developing and popularizing a mathematical language for
noting juggling patterns: Bengt Magnusson and Bruce ‘Boppo’ Tiemann in
Los Angeles; Paul Klimak in Santa Cruz; and Adam Chalcraft, Mike Day,
and Colin Wright in Cambridge.1

Based on this mathematical method of describing juggling patterns, there
are a number of freely available juggling simulators. If you are not a juggler
yourself (and even if you are), I recommend that you download and play with
some of these simulators before you read on. To get you started, I particularly
recommend Juggling Lab by Jack Boyce, arguably the most powerful and
useful simulator for mathematical juggling involving just one juggler. To find
out what is possible in terms of simulating multiple jugglers manipulating
chainsaws while riding unicyles in 3D, have a play with JoePass! by Werner
Westerboer, or Jongl by Hermann Riebesel.

2 Juggling numbers

Let’s have a close look at a juggler juggling the basic 5-ball pattern (left)
and the basic 4-ball pattern (right). In the basic 5-ball pattern all balls
trace a somewhat distorted infinity sign, and the same is true for all basic
juggling patterns using an odd number of balls. On the other hand, all the
basic even-ball juggling patterns split up into two circular patterns that are
juggled independently by the left and right hands.

Our juggler juggles to a certain regular beat. For simplicity, we shall
assume that balls are caught and immediately thrown again on the beats

1It should be noted, however, that there were a few earlier attempts at tackling juggling
mathematically. In particular, Claude Shannon, the famous information theorist, wrote
a paper in 1981 on the Scientific Aspects of Jugging [14]. However, Shannons paper only
got published a decade after it was written.
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(hot-potato style) and that the left and right hands take turns doing this.
This means that on every beat at most one ball gets caught and tossed again.2

The higher a ball gets tossed the more beats it stays in the air. We call a
throw a 1-throw, 2-throw, 3-throw, etc. if it keeps a ball exactly 1, 2, 3, etc.
beats in the air. For example, in the basic n-ball pattern every ball stays n
beats in the air. On some beats it may happen that no ball lands, and that
therefore also no ball gets tossed. We express this by saying that a 0-throw
gets performed.

To avoid worrying about starting and stopping, let’s assume that our
juggler has been juggling forever and will never stop. Then recording the
numbers in the different throws that a juggler makes on consecutive beats,
we arrive at an infinite sequence of numbers. This sequence is ...5, 5, 5, 5,
5,... in the case of the basic 5-ball pattern. For some other pattern this
sequence may turn out to be ...5, 0, 1, 5, 0, 1, 5, 0, 1,...

Note that because juggling patterns performed by real jugglers eventu-
ally repeat so will these sequences. This means that to pin down such a
sequence we only need to record a small part of the sequence that when
repeated gives the whole infinite sequence. So, for example, 5 and 5, 5 and
5, 5, 5, 5 all capture the first sequence, and 5, 0, 1 and 1, 5, 0 and 0, 1, 5 and
5, 0, 1, 5, 0, 1, 5, 0, 1 all capture the second sequence. These finite strings of
numbers are called juggling sequences or site swaps.3

3 Juggling diagrams

This immediately raises the question: Are there finite sequences of nonnega-
tive integers that are not juggling sequences? Well, obviously there are, since
we all have physical limitations—we surely cannot juggle any pattern with
juggling sequence 1, 1, 100000. However, if we assume for the moment that
there are no physical limitations, what juggling sequences can actually be
juggled?

To decide whether or not a sequence can be juggled we draw its juggling
diagram. Here is the juggling diagram of the sequence 5, 0, 1.

0 1 5 0 1 505 1 5 0 1 5

2There are also ways of catching and tossing multiple objects with one hand or with
both hands simultaneously. It is even possible for a number of jugglers to pass props
back and forth between them. They can even juggle themselves while they are doing this
by moving around in intricate patterns. There are extensions to the basic mathematical
model for juggling that we will be focussing on in this article that cover all these more
complicated scenarios.

3It is common to skip the commas in a juggling sequence if none of its elements is
greater then 9, but for the purpose of this article it turns out to be more convenient to
leave the commas in.
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The dots at the bottom stand for the beats on a virtual timeline, the
arches represent the different throws. Looking at this diagram we can tell
at a glance that 5, 0, 1 can be juggled. Why? Because the diagram extends
indefinitely to both sides as indicated and on every beat at most one ball
lands and gets tossed again.

A sequence that cannot be juggled is 2, 1. This becomes obvious when
we draw its juggling diagram.

2 1 2 1 2 21

NO JUGGLING SEQUENCE

In order to juggle 21, a juggler would have to catch two incoming balls
in one hand on every second beat. Moreover, he would need to have balls
mysteriously materialize and vanish. None of this is possible within our
simple juggling formulation, and therefore 2,1 cannot be juggled. In fact,
everything that can go wrong, does go wrong in the case of 2,1.

Juggling Theorem 1 To check whether a finite sequence of numbers is jug-
glable simply draw a large enough part of its juggling diagram to capture the
periodic nature of the sequence, and then check that on every dot representing
a beat: (1) either exactly one arch ends and one starts or no arches end and
start; (2) all dots with no arches correspond to 0-throws.

It should be clear that all the different juggling sequences that capture the
same pattern will yield the same juggling diagram. For example, 5, 0, 1 and
1, 5, 0 and 0, 1, 5 and 5, 0, 1, 5, 0, 1, 5, 0, 1 all correspond to the same juggling
diagram.

4 An algebraic juggling detector

All this is very well for short sequences consisting of small numbers, but
what about checking a sequence like 1000000, 1, 1? Fancy drawing (at least)
a million dots? Luckily, there is an easier algebraic method. Here is what
you do.

Let’s say we want to check whether

4, 4, 1, 3

is jugglable. The number of elements in the sequence is called its period.
This means the period of 4, 4, 1, 3 is 4. We form a second sequence by adding
0, 1, 2, 3 to the elements of the first sequence. This gives

4 + 0, 4 + 1, 1 + 2, 3 + 3 = 4, 5, 3, 6.

Following this we form the test sequence whose elements are the remainders
of the elements of the second sequence when you divide them by the period 4.
This gives

0, 1, 3, 2.

Now, it has been shown that
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Juggling Theorem 2 If all the numbers in a test sequence are different,
then the original sequence is a juggling sequence, and otherwise it is not.

This means that 4, 4, 1, 3 is a juggling sequence. To double-check, here is its
juggling diagram.

4 4 1 31 3 4 4 1 3 4 4 1

We already know that 2, 1 cannot be juggled. Let’s confirm this using
our algebraic juggling detector. In this case, the period is 2 and the second
sequence is 2+0, 1+1 = 2, 2. This means that the test sequence is 0, 0. Two
0s means no juggling sequence.

5 New from old

Here are a few easy consequences of this basic juggling theorem that allow
us to make new juggling sequences from given ones.

Adding or subtracting the period

First, adding the period of a sequence to any of its elements does not change
the associated test sequence. This means that starting with a juggling se-
quence, we can make up more juggling sequences by simply adding multiples
of the period to its elements. Subtracting the period is also possible as long
as the resulting sequence does not contain any negative numbers. For exam-
ple, 4, 4, 1, 3 has period 4. Therefore 4, 0, 1, 3 and 8, 4, 5, 7 and 0, 0, 1, 3, etc.
are all juggling sequences.

Scramblable juggling sequences

Simply permuting the elements of a juggling sequence usually results in a
sequence that cannot be juggled. However, there are scramblable juggling
sequences that stay jugglable no matter how you permute their elements.
Clearly, any constant juggling sequence and any juggling sequence derived
from a constant sequence using the adding and subtracting method is scram-
blable. In fact, it is easy to see that all scramblable juggling sequences arise
in this manner. For example, starting with 5, 5, 5 we add the period 3 to the
first 5 and subtract it from the second 5 to arrive at the scramblable juggling
sequence 8, 2, 5.

Swap

From what we just said it should also be clear that simply swapping two
adjacent elements in a juggling sequence will usually not result in another

5



juggling sequence. However, you will always get a new juggling sequence
if you swap two adjacent elements in a juggling sequence, adding 1 to the
element that is moving left and subtracting 1 from the element that is moving
right.4 Why? Because at the level of the test sequence this results in a
simple swap of the corresponding elements. For example, performing this
swap operation on the second and third elements of 4,4,1, 3 gives 4, 2, 3, 3.
Note also that applying the same swapping operation to the second sequence
gets you back to the first sequence.

4, 4, 1, 3 
+1

–1

4, 2, 3, 3 
+1

–1

swap

But let’s not stop here and let’s also swap the first and second elements
of the second sequence 4,2, 3, 3. This gives the constant juggling sequence
3, 3, 3, 3. In fact, it is fairly easy to see that any juggling sequence can be
turned into a constant juggling sequence by repeatedly applying this swap-
ping operation together with the occasional cyclic permutation (which in
essence leaves the sequence unchanged). Here is an example in which we
transform the juggling sequence 2, 6, 4 into the constant juggling sequence
4, 4, 4:

2,6,4
swap−→ 2, 5, 5

cycle−→ 5, 5,2
swap−→ 5,3, 4

swap−→ 4, 4, 4

Of course, it is also possible to move in the opposite direction and trans-
form 4, 4, 4 into 6, 4, 2 using the same operations.

Juggling Theorem 3 Any juggling sequence can be transformed into a con-
stant juggling sequence using swap operations and cyclic permutations. Con-
versely, any juggling sequence can be constructed from a constant juggling
sequence using swap operations and cyclic permutations.

6 How many balls?

Okay, you just verified in two different ways that the numbers in your date of
birth form a juggling sequence. Of course, this means that you are destined
to be a juggler, and the first thing you want to do is try and juggle your date
of birth. But how many balls do you need to do this? The answer is hiding
in the juggling diagram. For example, have another look at the juggling
diagram of 4, 4, 1, 3. Since all the balls are in the air in between beats the
number of balls is simply the number of arches above a point in between two
consecutive beat points. In the case of 4, 4, 1, 3 we find that there are three
balls.

4Obviously, when you perform a swap like this you have to ensure that the element
from which 1 is subtracted is not a 0.
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4 4 1 31 3 4 4 1 3 4 4 1

However, as we already mentioned, it is not always easy to draw a juggling
diagram. Luckily, there is an even easier way to determine the number of
balls.

Juggling Theorem 4 The number of balls needed for juggling a juggling
sequence is the average of the numbers in the sequence.

For example, using this theorem we confirm that we need

4 + 4 + 1 + 3

4
=

12

4
= 3

balls to juggle 4, 4, 1, 3. And we need exactly n/1 = n balls to juggle the
basic n-ball juggling sequence.

An ingenious proof of this fundamental result uses the swapping operation
that we introduced in the previous section. It is easy to check that this
operation does not change the number of balls and also does not change the
average of a sequence. Consequently, after transforming a juggling sequence
into a constant sequence c, c, c, c, ...., c as in Juggling Theorem 3, both the
average and the number of balls needed are the same for both sequences.
Theorem 4 then follows once you observe that for the constant sequence
both the average and the number of balls needed are equal to c.

This result also implies that a given mystery sequence cannot possibly be
a juggling sequence if its average is not an integer. For example, the sequence
5, 1, 1 is not a juggling sequence—no need for drawing a juggling diagram or
doing any more calculations.

On the other hand, it is important to realize that if the average of a
certain mystery sequence is an integer, this does not identify it as a juggling
sequence.5 For example, 3, 2, 1 is not a juggling sequence even though the
average of 3, 2, and 1 is an integer.

Having said this, it is interesting to note that

Juggling Theorem 5 Given any sequence of non-negative integers whose
average is an integer, this sequence can always be rearranged into a juggling
sequence.6

For example, we can rearrange our previous example 3, 2, 1 into the jug-
gling sequence 3, 1, 2.

5This should not come as a surprise given that we already mentioned that most juggling
sequences are not scramblable.

6The proof for this result is a corollary of a theorem about abelian groups proved by
Marshall Hall; see [13] for details. This is a much deeper result than any of the other
juggling theorems mentioned so far.
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Magic juggling sequences

As a little application of all of the above, let’s have a look at magic juggling
sequences. In analogy to magic squares, a juggling sequence of period p is
magical if it contains all the integers 1, 2, 3, ...., p. For which periods p do
magic juggling sequences exist? By the last theorem, this is the same as
asking for which p is the average

(1 + 2 + 3 + .... + p)/p = (p + 1)/2

an integer? Obviously, this is the case if and only if p is an odd number. In
fact, you can use our algebraic juggling detector to prove that the sequence
1, 2, 3, ...., p can be juggled whenever its period p is an odd number. Usually,
there are a few different magic juggling sequences for each odd period. For
example, 12345, 13524, and 14253 are all the magic juggling sequences of
period 5 (up to cyclic permutations).

Juggling diagrams ARE useful!

Considering that it is so easy to determine algebraically whether or not a
sequence of numbers is a juggling sequence, and how many balls are needed
to juggle a juggling sequence, it would appear that juggling diagrams are
fairly useless after all. However, juggling diagrams can tell you a lot more
about the way a juggling pattern is built.

Have another look at the juggling diagram for 4, 4, 1, 3. Note that the
arches in the diagram naturally combine into three continuous curves. Each
curve corresponds to a distinct ball.

4 4 1 31 3 4 4 1 3 4 4 1

Highlighting the trajectories of the different balls actually tells you exactly
what the different balls are doing. Having this sort of information is essential
when you are actually learning to juggle a pattern. In particular, from the
juggling diagram above we can see see that two of the balls are continuously
tossed with 4-throws whereas the remaining ball “does” 3, 1. Since the hands
take turns tossing the balls, an odd-number throw originates at one hand and
lands at the other hand, whereas an even-number throw starts and ends at
the same hand. This means that when you juggle 4, 4, 1, 3, one of the
balls continuously moves up and down in 4s on the left side of the pattern,
a second one does the same on the right side, and the third ball moves in a
circle between the two hands; see the following diagram.
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7 How many juggling sequences are there?

Since every non-negative integer corresponds to a juggling sequence, there
are infinitely many juggling sequences. So, is there anything else to be said
about the number of juggling sequences?

Associated with every juggling sequence are three parameters: (1) the
number of balls b required to juggle the sequence; (2) the maximum number
m contained in the sequence; and (3) the period p of the sequence.

The official world record for the most number of balls juggled is twelve
and it is probably safe to say that nobody will ever be able to juggle one
hundred balls. As well, there is only a limited number of different throws
that anybody can control, let’s be incredibly generous and say 0-, 1-, 2-,
... , 100-throws. And, it is probably also true that nobody will be able to
memorize, let alone juggle, a random looking juggling sequence that consists
of one million elements.

So, we have physical limitations on the three parameters b, p and m when
it comes to real-life juggling. It is therefore natural to ask for the number
of juggling sequences for which some of these parameters are limited, and
maybe even list all such sequences to identify the ones that are interesting
from a performance point of view.

It turns out that limiting only one of the parameters does not limit the
number of juggling sequences (unless you go for really small limits). For ex-
ample, we have already seen that there are infinitely many juggling sequences
of period 1—every non-negative integer corresponds to a juggling sequence.
The same is true for limiting only the maximum throw height or only the
number of balls. This means that we have to restrict at least two of the three
parameters in order to arrive at a finite collection of juggling sequences.

Juggling cards: limiting balls and period

Let’s start by limiting the number of balls b and the period p. Then we have
the following result which was first proved by Joe Buhler, David Eisenbud,
Ron Graham and Colin Wright in [3].

Juggling Theorem 6 There are exactly (b + 1)p juggling sequences of pe-
riod p that involve at most b balls.
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This immediately implies that there are exactly (b+1)p−bp juggling sequences
with period p using exactly b balls. For example, for two balls and period 3
we get the following 33 = 27 juggling sequences

0, 0, 0|0, 0, 3|0, 3, 0|3, 0, 0|0, 1, 2|1, 2, 0|2, 0, 1|1, 1, 1

0, 1, 5|1, 5, 0|5, 0, 1|0, 4, 2|4, 2, 0|2, 0, 4|3, 1, 2|1, 2, 3|2, 3, 1|1, 1, 4|1, 4, 1|4, 1, 1

2, 2, 2|0, 0, 6|0, 6, 0|6, 0, 0|0, 3, 3|3, 0, 3|3, 3, 0

Among these 27 juggling sequences the first is a 0-ball sequence and the
next seven are 1-ball sequences. This leaves us with the 19 bona fide 2-ball
juggling sequences

0, 1, 5|1, 5, 0|5, 0, 1|0, 4, 2|4, 2, 0|2, 0, 4|3, 1, 2|1, 2, 3|2, 3, 1|1, 1, 4|1, 4, 1|4, 1, 1

2, 2, 2|0, 0, 6|0, 6, 0|6, 0, 0|0, 3, 3|3, 0, 3|3, 3, 0

One problem with such a list is that it contains the juggling sequences
1, 1, 4 and 1, 4, 1 and 4, 1, 1, which represent the same pattern. Another
problem is that 1, 1, 1 gets counted as a “proper” juggling sequence of period
3 although it is really just the juggling sequence 1 repeated three times. There
is a formula for b-ball juggling sequences of period p that counts all cyclic
permutations of a juggling sequence as one and also only counts juggling
sequences that are not repetitions of smaller juggling sequences.7

There is a really ingenious proof for Theorem 6 due to Richard Ehrenborg
and Margaret Readdy [8] that we’d like to sketch in the following. Have a
close look at the following five “cards”.

Every card contains a circle at the bottom and four curves connecting the
left and right sides of the card. From a deck that contains infinitely many
copies of each card we now draw a few cards which we place right next to
each other. Here is a possible outcome of this experiment.

7This formula is
1
p

∑
d|p

µ(p/d)
(
(b + 1)d − bd

)
.

Here µ is the Möbius function; see [13] for details.
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Repeating the resulting pattern to the left and right we arrive at a slightly
distorted juggling diagram of a juggling sequence.

2 3 5 0 8 6 2 3 5 0 8 62 3 5 0 8 6 2 3 5 0 8 6

In this case it is easy to see that the juggling sequence is 235086. This
juggling sequence has period 6, the number of cards that we pulled from the
deck. Furthermore, it is easy to see that the number of balls needed to juggle
this sequence is 4, the number of curves connecting the left and right sides
of the cards.

In fact, it is not hard to see that every possible juggling sequence requiring
at most 4 balls and a certain period p can be represented using p of our cards
in exactly one way. Since there are 5 different cards this gives a total of 5p

different juggling sequences of period p requiring at most 4 balls.
All this generalizes to any number of balls by suitably modifying our

original set of cards. Neat!
As we have just seen, limiting the number of balls and the period results

in a limited number of juggling sequences and a neat way of finding all of
them using juggling cards. Since the number of balls is the average of the
numbers in a juggling sequence, it is clear that by limiting the number of
balls b and the period p we also limit the maximal throw height. In fact, it is
easy to see that bp is the maximal possible throw height and that this throw
height actually occurs in the juggling sequence bp, 0, 0, ..., 0.

Of course, even for relatively small numbers of balls and small period
their product can get quite large and therefore move a juggling sequence
beyond what is physically possible. This makes the lists of juggling sequences
considered in this section of only limited usefulness for the real juggler.

This also turns out to be the case if we consider the juggling sequences of
a given period p and maximum throw height m. Here it is immediately clear
that there will be less than (m + 1)p such sequences. Furthermore, the num-
ber of balls needed for juggling such a juggling sequence will always be less
than m, the number of balls necessary to juggle the sequence m, m,m, ..., m.
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Juggling state graphs: limiting balls and throw height

As we will see, apart from some trivial exceptions, fixing the number of balls
and the maximum throw height still gives an infinite class of juggling se-
quences. However, it is exactly pondering these limitations that has resulted
in a very ingenious method for constructing useful lists of juggling sequences.
The method which we are about to describe is due to Jack Boyce, who is
also the author of the juggling program Juggling Lab recommended earlier.

Picture yourself in four weeks time after having practised your juggling
for ten hours a day. You are now able to juggle three balls proficiently, and
you are able to use 0-, 1-, 2-, 3-, 4-, and 5-throws in your 3-ball patterns.
Then the following juggling state graph is all you need to construct all the
3-ball juggling sequences that you are able to juggle.

The vertices of this graph are the numbers 11100, 11010, and so on; that
is, the ten different ways of writing a five digit number with three ones and
two zeros. These ten numbers/vertices are called juggling states. They are
connected by arrows that are labeled with the numbers from 0 to 5.

To construct a juggling sequence, all you need to do is to find a closed
oriented loop in the graph. Here “oriented” means that, as you travel around
the loop, you are always traveling in the direction of the arrows that the loop
consists of.

The numbers in the juggling sequence that correspond to the loop are the
labels that you come across as you travel along the loop. For example, the
little circular arrow attached to the juggling state 11100 and labeled with a
3 is such a loop. It corresponds to the basic 3-ball juggling sequence 3. The
highlighted triangular oriented loop in the following diagram corresponds
to the juggling sequence 4, 4, 1. If we extend this oriented loop to a larger
oriented loop by adding the little circular arrow, we get the juggling sequence
4, 4, 1, 3. Note that a loop can visit the same vertex more than once. For
example, the loop corresponding to 4, 4, 1, 3 visits the vertex 11100 twice.
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Why does this work? And how is this juggling state graph constructed?
Imagine yourself on stage, performing a mindbogglingly complicated 3-ball
juggling pattern. After a couple of minutes of doing the same pattern, your
audience is starting to get bored, and you decide that it is time to change
your pattern on the next beat, without hesitating. What are your options?
The answer to this question comes in the form of a juggling state.

Let’s freeze the juggling action in between two beats. As indicated in the
diagram, the three balls are scheduled to land in 1, 3, and 4 beats from now.
This means that a natural way to note down the juggling state that you are
in is 10110. This just says that there is 1, no, 1, 1, and no ball expected to
land on beats 1, 2, 3, 4, 5, from now on.

10110

Let’s unfreeze the action and refreeze again on the next beat. To get the
new juggling state, just remove the first digit from 10110 and add a 0 at the
end. This means that our new juggling state is 01100, and we now hold one
ball in our hand that has to be tossed again.
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10110

101100

Since we hold a ball in our hand, a 0-throw is not an option. What about
a 1-throw? Well, a 1-throw would land on the next beat. Since our current
juggling state starts with a 0 we know that no other ball is scheduled to
land on the next beat. Hence a 1-throw is definitely possible. What about a
2-throw? No, not possible, because it would collide with the other ball that
is scheduled to land two beats from now. Similarly, a 3-throw is not possible.
On the other hand, both 4- and 5-throws are possible because no balls are
scheduled to land 4 and 5 beats from now.

You decide to perform a 5-throw. This changes your juggling state from
01100 to 01101.

10110

101100

01101

If you had gone for a 1-throw, your juggling state would have changed
to 11100, and if you had decided on a 4-throw, then your state would have
changed to 01110. This shows the connection between your original state
10110 and the three arrows originating at it in the state graph.
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Repeating the same for all possible states gives the complete juggling state
graph. It should be clear that by juggling along the edges of this juggling
state graph, on any beat either nothing happens or exactly one ball lands
and is tossed again. This is exactly what we want to ensure. Finally, it is
clear that every oriented loop will correspond to a juggling sequence.

Okay, what we have found so far is that loops in this juggling state graph
correspond to 3-ball juggling sequences consisting of 0-, 1-, 2-, 3-, 4-, and
5-throws. On the other hand, it is also fairly easy to see that every such
juggling sequence corresponds to an oriented loop in this juggling state graph.

Of course, it is also possible to draw a juggling state graph which will
allow you to construct all 245-ball juggling sequences with throws that can
be up to 1056 beats in duration. Or, for any choice of nonnegative integers b
and m, there is a juggling state graph from which all b-ball juggling sequences
with throws up to m beats in duration can be extracted.

As we have seen, constructing such state graphs is a completely automatic
task and can be performed easily by a computer. Similarly, finding loops in
graphs is a routine exercise for a computer.

Finally, it is easy to see that there are infinitely many ways to find loops
in all but the most trivial juggling state graphs. For example, let’s have
another look at the loops corresponding to the juggling sequences 4, 4, 1 and
3. Since the two sequences both start and end in the same juggling state
11100 we can combine copies of these juggling sequences into infinitely many
different juggling sequences. Here are just a few such sequences

4, 4, 1|4, 4, 1, 3|4, 4, 1, 3, 3|4, 4, 1, 3, 3, 3|...

Although there are infinitely many different loops corresponding to in-
finitely many different juggling sequences hiding in any juggling state graph,
all these juggling sequences are made up from finitely many prime juggling
sequences. These are the juggling sequences that correspond to loops that do
not visit states more than once. The two juggling sequences 4, 4, 1 and 3 are
examples of prime juggling sequences. Identifying all cyclic permutations
of a prime juggling sequence, there are a total of 26 prime 3-ball juggling
sequences of maximum throw height 5.
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8 Do real jugglers really care?

Well, the answer to this question is: “Some do, most don’t, but they should!”
Here are a couple of reasons for why most jugglers could profit from knowing
a little bit about juggling sequences.

Communicate juggling patterns

Juggling sequences provide a clear and compact way to communicate juggling
patterns. Just tell your friend on the other side of the planet that you are
practicing 4, 4, 1, 3 blindfolded, and with all throws going under your legs,
and she will get the picture. This usually beats even watching videotapes
that show a particular pattern being performed.

Find all juggling patterns

As we have seen, juggling sequences provide a comprehensive method for
finding new juggling patterns. It is certainly true that the vast majority of
possible juggling sequences are very boring or impossible and therefore of no
interest from a performance point of view. Nevertheless quite a few new and
interesting patterns have only been discovered as a result of thinking about
juggling in a mathematical manner.

Divide and conquer

We’ve already seen in Section 6 how coloring in the trajectories of the balls
in a juggling diagram can help to break a juggling pattern into managable
subpatterns that can be practised individually.

Further, juggling sequences can help master complicated patterns, by
providing examples of easier patterns that are made up of the same throws.
For example, to master the basic 5-ball pattern corresponding to the juggling
sequence 5 is difficult. On the other hand, it is easy to get used to the 5-
throws that this pattern consists of by practicing the 2-ball sequence 5, 0, 1,
or the 4-ball sequence, 5, 5, 2.

Create transitions

In a juggler’s routine different patterns are connected seamlessly. To figure
out a way to move from one juggling sequence to another one, have a look
at loops that correspond to them in a juggling state graph. Basically, what
you are seeking is an oriented path in the juggling state graph that connects
the two loops. For example, in the following diagram I have highlighted two
oriented loops. These loops are disjoint. This means that juggling a pattern
corresponding to the left loop, it is not possible to go straight into a pattern
corresponding to the right loop. But, as you can see, once you are in the top
left juggling state 10101, you can juggle a 3-throw to get into the top right
juggling state 01110, which is part of the second loop.
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If the two loops that you are interested in intersect in a state, you can
go from one to the other whenever you are in this state. We’ve already
encountered an example like this. The two juggling sequences 4, 4, 1 and 3
correspond to loops that have the state 11100 in common. Therefore you can
switch from juggling one pattern to the other whenever you are in this state.

Juggling simulators

Juggling sequences form the natural language that people use to teach a
computer to juggle. In fact, the first serious computer simulations of jug-
gling were developed by some of the same people who first investigated the
mathematics of juggling.

17



Modern juggling simulators can realistically show you just about every
juggling trick ever performed by a human juggler. Using these simulators
you can witness masterful juggling performed without having to leave your
living room and you can slow down a complicated pattern and study it in
detail before attempting it yourself.

But going way beyond what is humanly possible, a juggling simulator can
show you tricks with dozens of balls woven into the most intricate patterns
imaginable. The main point being that if there was a human being or robot
strong and fast enough to perform a trick like this here on Earth8 it would
look very much like what the simulator shows you.

The screenshot above shows Jack Boyce’s Juggling Lab in action. Apart
from executing juggling sequences, this simulator also has a built in juggling
sequence generator implementing juggling state graphs. For example, in the
picture I have asked the generator to show me all juggling sequences with 5
balls, maximal throw height 7 and period 5. The beginning of the resulting
list is shown in the upper right window. Clicking on the sequence 66625,
for example, then brings up the little juggler in the lower right corner who
juggles this sequence for us.

Here is a tracing of another screenshot. This is of Werner Westerboer’s
JoePass! conjuring up two blindfolded back-to-back jugglers on unicycles
who are passing 9 clubs between them.

8...or on the Moon, since gravity can often be adjusted in juggling simulators.
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9 Do real mathematicians really care?

Yes, they do. The mathematics of juggling is inherently beautiful and this
is good enough a reason for real mathematicians to care. However, even
if you are looking for some justification in the form of results that connect
with other disciplines, or interesting and hard open problems, or an appeal-
ing application of mathematics to a real-world problem, the mathematics of
juggling has much to offer. Here are just a few examples.

Braids

Imagine that while you are juggling some pattern in a plane in front of you,
you are also jogging backwards at a constant speed, and smoke is issuing
from your juggling balls. This has the effect that the balls trace their own
trajectories in the air, just as some airplanes write advertisements in the
sky. The following diagram shows what the set of trajectories produced by
juggling the basic 3-ball pattern would look like viewed from above. As
you can see, the three trajectories form the most basic braid. Braids are
important mathematical objects that have made an appearance in many
areas of mathematics. It can be shown that every braid can be juggled in
the above sense; see [13] and [7].

Permutations

Associated with every juggling sequences are several permutations. One ex-
ample is the test sequence that arises when we apply the algebraic test for
jugglability that we talked about in Section 4. This is a permutation of the
numbers 0, 1, 2, ... , up to p−1, where p is the period. Other straightforward
examples include the various interpretations of juggling diagrams as permu-
tations of the infinite set of beat points. This means that distinguished sets of
juggling sequences correspond to certain sets of permutations, some of which
have turned out to be of special significance in other parts of mathematics.

For example, in the investigation of juggling cards by Richard Ehrenborg
and Margaret Readdy [8] the so-called affine Weyl group Ãp−1 materializes as
a permutation group composed of permutations associated with the juggling
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sequences of period p. It is then shown how juggling cards can be used to
very elegantly derive some important results about this group.

Another example, involves the original proof for the formula (b + 1)p for
the number juggling sequences of period p using at most b balls. This proof
starts out with the possible test sequences associated with such juggling se-
quences. The general idea for this proof then generalized very naturally to
yield some remarkable results about posets, which are important generaliza-
tions of permutations; see [4].

Linear algebra

Another surprising connection, this time with linear algebra, was discovered
recently by Allen Knutson, Thomas Lam and David E. Speyer [10].

Given an ordered list of n vectors spanning a b-dimensional real vector
space, build a basis of the vector space by including the ith vector exactly if
it is not a linear combination of the 1st, . . . , i− 1st vectors. Call this the
greedy basis. Then move the 1st vector to the end of the list of vectors and
construct a new greedy basis from the new list. Repeat n times, and you
get n greedy bases. Interpreted as states of the b-ball juggling state graph
of maximal height n, the greedy bases form an oriented loop and therefore
correspond to a b-ball juggling sequence of period n all of whose throws are
no larger then n.

Here is an example involving a list of three vectors in the plane, two of
which are parallel. The first greedy basis contains the vectors 1 and 2, but
not the vector 3. This means it corresponds to the juggling state (1,1,0),
etc. Altogether we find that the juggling sequence associated with this list
of vectors is 2, 3, 1.

1

2

3

3

1

2

2

3

1

(1,1,0) (1,1,0) (1,0,1)2 3

1

Note that all the numbers in juggling sequences generated in this manner
are no larger than the period of the sequence. This means that, for example,
the basic sequence 2 does not arise in this manner. Nonetheless, it is possible
to generate a juggling sequence for any possible juggling pattern—although 2
is impossible 2, 2, 2 is (just start with three vectors in the plane, no two of
which are parallel).

This new connection of juggling sequences and linear algebra leads to im-
portant applications and some very fancy mathematics elaborated on in [10].
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Infinite sequences

Recently Fan Chung and Ron Graham investigated primitive juggling se-
quences [5]. These are juggling sequences whose corresponding oriented loops
in a juggling state graph visit their starting states only once. Counting fam-
ilies of primitive juggling sequences Chung and Graham came up with a
number of infinite sequences that naturally show up in completely different
areas of mathematics.

For example, they found the sequence of numerators of the continued
fraction convergents to

√
2. At this stage it is not clear whether these are

simply amazing coincidences or whether there are deeper connections with
these other areas that are waiting to be discovered.

Other interesting open problems

Some of the most interesting outstanding problems concern the prime jug-
gling sequences. Remember that a juggling sequence is prime if the corre-
sponding oriented loop in a juggling state graph does not visit any state more
than once. Furthermore, every juggling sequence has a cyclic permutation
that is a product of prime juggling sequences. There are only finitely many
prime juggling sequences in any state graph. Natural unsolved questions
about prime sequences involve the number of such sequences in state graphs
and the maximal length of prime sequences.

Communicating the power and beauty of mathematics

Many people leave school convinced that mathematics is a boring, difficult
and inaccessible subject, practised by equally boring, difficult and inacces-
sible individuals. Many juggling mathematicians have found that a presen-
tation of mathematical juggling spiced up with some fancy juggling by the
presenter is a perfect way to demonstrate to people that mathematicians
can be very interesting individuals whose mathematics can be a lot of fun,
incredibly beautiful and very useful and accessible. This should be another
good reason why mathematicians in general “should care”.

10 Concluding remarks

This concludes our tour of the mathematics of juggling. My aim was to give
an accessible introduction to the most important results while skipping most
of the gory details, generalizations to multihand- and multiperson juggling,
models that incorporate more of the physical constraints, and so on. A fairly
complete account of all aspects of mathematical juggling can be found in my
2003 book The mathematics of juggling [13].

If you actually feel like getting into juggling some non-trivial juggling
sequences, I recommend that you first have a go at some of the juggling
sequences collected in the Lodi.jml file in the pattern directory of the jug-
gling simulator Juggling Lab. Also very useful is the program JuggleMaster
Java by Yuji Konishi and Asanuma Nobuhiko, based on the original Juggle
Master program by Ken Matsuoka. It comes with lots of juggling sequences

21



and easy-to-use controls for slowing down the juggling action. This is par-
ticularly useful for figuring out how to break a juggling pattern into pieces
that can be mastered individually.

The following is just a small collection of annotated references. Included
in this list are a number of landmark articles, some high-profile popular-
izations, plus all articles of interest (to me) that have appeared since the
publication of my book. Most of these articles are readily available online.
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