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This paper provides an evolutionary theory of reciprocity as an aspect of
preference interdependence. It is shown that reciprocal preferences, which place
negative weight on the payoffs of materialists and positive weight on the payoffs of
sufficiently altruistic individuals can invade a population of materialists in a class
of aggregative games under both assortative and nonassortative matching. In com-
parison with simpler specifications of preference interdependence (such as pure
altruism or spite), the survival of such preferences is therefore less sensitive to
details of the evolutionary selection process. Journal of Economic Literature
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1. INTRODUCTION

Experimental support for the standard conception of the economic actor
as a creature driven by material self-interest has, at best, been mixed.
Predictions made on the basis of this conception accord closely with the
behavior of subjects in some environments, such as competitive auctions
and market games (Smith [35], Roth et al. [34]), but fail rather dramati-
cally in others, such as public goods, ultimatum bargaining, and gift
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exchange games (Isaac and Walker [25], Gu� th et al. [22], Fehr et al.
[17]). This latter set of experiments suggests that aside from being con-
cerned with their own monetary payoffs, subjects appear to be concerned
also with the monetary payoffs of others. Preferences having this property
are commonly referred to as interdependent.

For any specific experimental environment, it is usually possible to find
plausible specifications of preference interdependence that fit the data. For
instance, altruistic preferences can explain contributions in public goods
environments, and an envious concern for relative payoffs is consistent with
data from bargaining games (Andreoni and Miller [1], Bolton [4]). The
challenge facing those who attempt to provide a parsimonious alternative
to the hypothesis of material self-interest is that a single specification
should simultaneously explain a wide variety of experimental results.
A number of recent attempts to meet this challenge have been made (Rabin
[33], Fehr and Schmidt [18], Bolton and Ockenfels [6], Levine [31],
Falk and Fischbacher [15], and Dufwenberg and Kirchsteiger [12].)
As a result, there are now a variety of competing specifications of
preference interdependence, each of which is consistent with results from
several experiments. What remains to be determined, however, is whether
any such specifications can be provided with a convincing evolutionary
rationale. This raises the question of how particular forms of preference
interdependence may have emerged and persisted in human societies.

In this paper, we provide an evolutionary account of the emergence and
stability of reciprocal preferences similar to those which Levine [31] has
used to confront the experimental data. Individuals endowed with such
preferences are concerned not only with their own material payoffs but also
with the material payoffs of others. This concern may be altruistic or spite-
ful and is represented by (positive or negative) weights placed on the
payoffs of others. These weights themselves vary systematically with the
degree of altruism or spite that others are perceived to possess, so that the
well-being of a fellow altruist is given greater weight by an altruist than is
the well-being of a selfish or spiteful individual. We argue that the flexibility
in behavior that reciprocal preferences provide enables such preferences to
survive under evolutionary pressure within a class of environments under
both assortative and purely random (nonassortative) interaction. Under
assortative interaction, reciprocators are likely to find themselves in groups
consisting largely of other reciprocators. This leads them to behave
altruistically and enjoy the efficiency gains that altruism provides in many
strategic situations. When interaction is purely random or nonassortative,
and the global population consists predominantly of materialists,
reciprocators are likely to find themselves in groups consisting largely of
materialists. This leads them to act as if they had spiteful preferences and,
under certain conditions, induces a response from materialists that raises
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the material payoffs of reciprocators. If the spitefulness of reciprocators
toward materialists is not too great, this effect can lead to a higher
expected payoff for reciprocators relative to that of materialists in the
global population. This, in turn, permits preferences for reciprocity to sur-
vive and spread when the population share of materialists is sufficiently
large. Once the population share of reciprocators becomes large, on the
other hand, most groups will consist largely of reciprocators. For
parameter values within a certain range, materialists can thrive in such
groups since reciprocators continue to act altruistically, unwilling to reduce
the material well-being of their fellow reciprocators in order to sanction the
few materialists in their midst. In this case a polymorphic population (con-
sisting of both materialists and reciprocators) will prevail in evolutionary
equilibrium.

The model we propose has the following features. There is a large pop-
ulation of individuals who are matched in small subgroups in which they
interact strategically. Preferences may be heterogenous within a group,
with some individuals pursing their material self-interest, while others have
reciprocal preferences. Individuals behave rationally given their preferences
and are assumed to take actions consistent with an equilibrium of the
game. Individuals with different preferences will typically take different
equilibrium actions and receive different payoffs, and it is this payoff dif-
ferential which drives the evolutionary dynamics. While individuals act to
maximize their utility (which may depend on the material payoffs and
preferences of others), it is their realized material payoffs that determine the
evolutionary survival of their preferences. We consider first the case of non-
assortative matching: at the end of each period of interaction, all
individuals are randomly matched with others in the global population to
form new groups. It is shown that a population of materialists will not
generally be stable in the presence of reciprocators. We next examine the
efficiency effects of changes in group composition and show that reciprocal
preferences are efficiency-reducing when they are rare, and efficiency-
enhancing when they are widespread. This suggests that such preferences
can thrive under assortative matching. In comparison with simpler
specifications of preference interdependence (such as pure altruism or
envy), therefore, the survival of reciprocal preferences is less sensitive to
details of the evolutionary selection process.

It is assumed that the strategic interaction that occurs within groups
belongs to the class of aggregative games, which possess the property that
an individual's material payoff depends only on her own action and an
aggregate of the actions of others. Although such a payoff structure has
usually been associated with strategic market games (Dubey et al. [11],
Corcho� n [9]), it also includes, for instance, common pool resource extrac-
tion and public goods games. Such environments have been important in
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human interaction from the earliest times and remain economically impor-
tant to this day. While our focus on aggregative games is motivated
primarily by their analytical tractability, we consider them to be a
reasonable class of strategic environments within which to study the
problem of preference evolution.

Before proceeding, it is useful to compare our approach to the evolution
of preferences with earlier (and ongoing) work on the topic. The literature
on preference evolution in games was pioneered by Gu� th and Yaari [23],
and has been further developed by Gu� th [21], Bowles and Gintis [7], and
Huck and Oechssler [24] among others. In each of these papers, the defini-
tion of reciprocal preferences is itself tailored to the specific environment
under consideration. For instance, Gu� th and Yaari allow for individuals
who have a preference for rejecting unfair offers in bargaining games, while
Bowles and Gintis consider individuals with a taste for punishing free
riders in a model of team production. In contrast, Bester and Gu� th [3]
and Koc� kesen et al. [29�30], have considered more general specifications
of preferences that are defined independently of particular strategic
environments, and depend only on the distribution of material payoffs in
the group. Bester and Gu� th deal with the survival of altruistic preferences
under pairwise random matching and Ko� kesen et al. with the survival of
envious or spiteful preferences. Ely and Yilankaya [13] and Dekel et al.
[10] examine general models of preference evolution in which the class of
preferences is composed of all possible orderings over action profiles.
Reciprocal preferences of the kind considered in the present paper are not
encompassed by this class of preferences for the reason that, in our case,
individual orderings over action profiles are sensitive to the preferences of
other players.2

2. PREFERENCE INTERDEPENDENCE

Let 1#[Xi , ?i] i # I be an n-person normal form game where I=[1, ..., n]
is the set of players, Xi denotes the action set of player i and ?i : _j Xj � R,
i # I, the material payoff functions. In the context of experimental games,
material payoffs correspond to cash payments. More generally, material
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payoffs may be interpreted to be any magnitude, such as income, wealth,
or fitness, for which interpersonal comparisons are possible. If preferences
are independent (an individual's ranking of payoff profiles depends only on
his of her own material payoff), then the game 1 provides a complete
description of the strategic interaction in which the players are engaged.
If, on the other hand, preferences are interdependent, then the utility
ui : _j Xj � R of player i will depend on the entire distribution of material
payoffs resulting from any given action profile x # _j Xj . We may write

ui (x)=Fi (?1(x), ..., ?n(x)).

If Fi is strictly increasing in ?j for all j{i, individual i is an altruist; if it
is strictly decreasing then i has envious or spiteful preferences. Altruistic
preferences have been argued to underlie behavior in public goods and
dictator game experiments, while envious preferences have been advanced
to explain data from bargaining experiments. The problem with pure
altruism or envy, however, is that while each is consistent with data from
some environments, both are flatly contradicted by others. More complex
forms of preference interdependence are therefore required if data from a
variety of experiments is to be simultaneously confronted.

Several recent papers have attempted to meet this challenge. These
papers fall into three broad categories. Fehr and Schmidt [18] and Bolton
and Ockenfels [6] provide specifications of preference interdependence
that are object-oriented, in that individuals are assumed to care only about
the distribution of material payoffs and not about the intentions or
preferences of those with whom they interact. Although they differ with
respect to a number of details, both papers require that individuals
experience some disutility from being at either extreme of the payoff
distribution. These papers are able to explain much more of the data than
can simpler specifications of preference interdependence, but cannot
account for the fact that at least in some environments, subjects con-
sistently choose very different terminal payoff distributions depending on
the prior behavior and opportunities available to other players.3

A second group of papers adopts the approach of psychological games in
which player utilities depend not just on action profiles but also on their
initial beliefs (Rabin [33], Dufwenberg and Kirchsteiger [12], Falk and
Fischbacher, [15]).4 In equilibrium, all beliefs (including higher-order
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beliefs) are correct, and individuals take optimal actions conditional on
these beliefs and the actions of others. Different beliefs (corresponding to
different equilibria) imply possibly different utility profiles at any given
action profile. This endogeneity of utility profiles represents a considerable
departure from standard game theoretic methodology. Papers using the
apparatus of psychological games to explain data from experiments are
based on the hypothesis that beliefs about the kindness or unkindness of
opponent strategies will give rise to the desire to reciprocate, where the
kindness or unkindness of an individual's strategy is assessed in terms of
the (material) payoff implications of other strategies available to him or
her. These papers are effective in accounting for the role of intentionality in
experimental results. As presently formulated, however, they deal only with
two-person games and therefore cannot be used to address phenomena
such as the rewarding of individuals who have been kind to others.5

A third approach, which applies the standard game theoretic methodology,
is based on the hypothesis of reciprocal preferences. Here an individual's
utility is directly influenced by parameters that enter the utility functions of
others. Levine [31] suggests the following specification of reciprocal
preferences, which allow for both altruism and spite:

ui (x)=?i (x)+ :
j{i

;ij?j (x), (1)

where

;ij=
:i+*i:j

1+*i

and &1<:i<1 and 0�*i . Here :i may be interpreted as a measure of an
individual's pure altruism, and *i a measure of the degree to which the
weight ; ij placed by individual i on the material payoffs of individual j is
sensitive to the altruism of the latter. Levine argues that a suitably chosen,
stable distribution of preferences belonging to this class can simultaneously
account for results from ultimatum bargaining, competitive auction,
centipede, and public goods games. Note, however, that in Levine's
specification an individual i with :i>0 can never place a negative weight
on the payoffs of an individual j who is purely self-interested (:i>0 and
:j=0 implies ;ij>0). Such ``flexible altruists'' would be driven to extinction
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under nonassortative matching in the class of strategic environments
considered here. The following slight variant of Levine's specification,
however, has greater prospects for survival under evolutionary pressure:

;ij=
:i+* i (:j&:i)

1+*i
. (2)

In this case, it is not the extent of the other party's altruism that counts,
but rather the deviation of their altruism from one's own. A purely self-
interested individual i, whose only concern is with her own material payoffs
corresponds to the case :i=*i=0. We shall refer to such individuals as
materialists. A pure altruist who puts the same positive weight on the
payoffs of all others is represented by :i>0=*i . A player with :i=0<*i

places no weight on the payoffs of a self-interested person but places
positive weight on the payoffs of pure altruists. More generally, if :>0 and
*>0, an individual is altruistic towards those who are similarly inclined
but is also capable of being spiteful toward materialists. We shall refer to
those with this preference simply as reciprocators. It is assumed that
0�:i<1 and *i�0. These two conditions ensure that &1<;ij<1, so that
each person places more weight on their own material payoff than on that
of another. Note that materialist preferences may be viewed as a limit case
of reciprocator preferences, obtained as : and * approach zero.

The preferences of reciprocators possess the property that an individual
i 's utility depends not only on another individual j 's payoff, but the extent
of this dependence itself depends on j 's preferences. It is this property that
allows individuals the flexibility to switch from altruistic to spiteful
behavior in response to the composition of the group within which they
find themselves. The capacity for spite is necessary for the viability of such
preferences under random matching, and the capacity for altruism is a criti-
cal ingredient for their viability under assortative matching. One could
obtain some of the results below by assuming preferences that were purely
spiteful and others by assuming preferences that were purely altruistic. For
instance, altruistic preferences can be viable under perfectly assortative
interaction but not under random matching, and spiteful preferences can be
viable under random but not assortative interaction.6 Reciprocal preferences,
on the other hand, can be viable in evolutionary competition with
materialist preferences under both assortative and nonassortative matching.
We demonstrate this within a particular class of strategic environments:
aggregative games.
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3. AGGREGATIVE GAMES

Although the analysis of preference evolution can, in principle, be con-
ducted within arbitrary strategic environments, with a population of
possible preferences for each player position, it is reasonable to begin with
the case of a single population from whom individuals are drawn to play
a game that is symmetric with respect to material payoffs. In this paper
attention is confined to games 1#[X, ?i]i # I that are symmetric in this
sense. Here X denotes the (common) action space and the material payoffs
?i are symmetric (?i= f (xi , x&i) for some function f which is common to
all players.) We further restrict attention to games in which the action
space X=[a, b]/R is a closed interval, and in which the material payoff
functions are of the form

?i (x)=H(xi , nx� ), (3)

where nx� =�n
j=1 xj is the aggregate action in the group, and H is assumed

to be twice differentiable. This is the class of symmetric aggregative games
(Dubey et al. [11]). Let T(xi , nx� ) denote the marginal payoff of player i:

�?i

�xi
=H1(xi , nx� )+H2(xi , nx� )#T(xi , nx� ).

Most of the results below are based on one or more of the following
additional restrictions on the payoff functions:

H1>0 (4)

H2<0 (5)

H11+H21=T1<0 (6)

H21+H22=T2>0. (7)

The first of these is the assumption of (positive) action monotonicity: at any
given action profile, a player with a higher action obtains a higher payoff.
The second is the assumption of negative spillovers, and implies that an
increase in the action of one player lowers the payoffs of all others.7

Assumptions (6) and (7) state that the marginal payoff function T(xi , nx� )
is strictly decreasing in both components (the latter corresponds to the
assumption of strategic substitutability.) Note that (6) and (7) together

280 SETHI AND SOMANATHAN

7 Note that any symmetric game satisfying negative action monotonicity and positive
spillovers, by a suitable relabeling of actions, can be transformed into one which satisfies
positive action monotonicity and negative spillovers. Hence all results which use (4�5)
continue to hold if the signs of both inequalities are reversed.



imply strict concavity of payoffs in own actions. Both these assumptions
are common in analyses of aggregative games (see, for instance, Corcho� n
[9]), together with the following conditions, which are made to exclude
boundary equilibria of limited interest in the present context.

T(a, na)>0>T(b, nb). (8)

Let A denote the class of symmetric aggregative games which satisfy con-
ditions (4�8). The following examples illustrate that this class includes
games which have economically meaningful interpretations and which are
relevant environments in which the question of preference evolution may
be examined.

Example 1. (Private provision of public goods). Suppose each of n
individuals has an endowment b of a private good, part or all of which can
be contributed towards the provision of a public good. Individual i 's action
xi is the amount of the good retained for private use. The aggregate
contribution to the public good is then nb&nx� . The action space of each
player is [0, b] and the material payoff functions are ?i=H(xi , nx� )= f (x i)
+ g(nb&nx� ) where f $, g$>0 and f ", g"<0. This game is aggregative
and satisfies (4�7). If, in addition, f $(0)>g$(nb) and f $(nb)<g$(0), it
satisfies (8).

Example 2 (Common pool resource extraction). Suppose each of n
individuals has access to a common pool resource. Let xi�0 denote the
extraction effort of individual i, and nx� the aggregate extraction effort.
Total output of the resource is given by the production function f (nx� ),
assumed to satisfy f (0)=0, f $(0)>w, and f "<0, where w is a constant
average cost of extraction effort. Let A(nx� )= f (nx� )�(nx� ) denote average
extraction per unit of effort and set A(0)=limx� � 0 f (nx� )�nx� = f $(0).
Concavity of f implies that A$<0. The material payoff obtained by each
extractor is proportional to her extraction effort and is given by ?i (x)=
H(xi , nx� )=xi (A(nx� )&w). If nA$+nx� A"<0, it can be shown that there
exists a set [a, b]n in which all equilibrium action profiles must lie and
which has the following property: restricting the action set of this game to
[a, b] yields an aggregative game which satisfies (4�8).8

As a special case to be considered below, we say that a game 1 # A is
separable if H12=0. In this case material payoffs may be expressed as the
sum of two separate functions of xi and nx� respectively. Note that the game
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described in Example 1 is separable, but that in Example 2 is not. The
separability condition may be interpreted, in the context of the public
goods game, as an assumption that the value to an individual of private
good consumption does not depend on the amount of public good
provided.

Although each of the players has the same action space and the same
material payoff function, players may differ with respect to their preferences.
Suppose that some subset M of the players have materialist preferences, so
that ui (x)=?i for all i # M. The set of remaining players R have reciprocal
preferences, so that for all i # R, ui (x) is given by (1�2) for some value of
: # (0, 1) and *>0. The resulting strategic interaction is then described by
an (asymmetric) n-person normal from game in which each player's action
space is X and the objective functions are

ui (x)={
?i (x) for all i # M,

(9)
?i (x)+;r :

j # R"[i]

?j (x)+;m :
j # M

? j (x) for all i # R,

where ;r and ;m satisfy

;r=
:

1+*
, ;m=

:(1&*)
1+*

.

Let 1(k) denote this game, where k # [0, ..., n] is the number of players
with materialist preferences. Since *>0, ;r # (0, :) and ;m # (&:, :).
Reciprocators are spiteful towards materialists if *>1, and altruistic
towards all players if *<1. Assume for the moment that the distribution of
preferences is common knowledge though the particular assignment of
preferences to individuals need not be known. Although the material payoff
functions are symmetric, equilibria of 1(k) will generally be asymmetric
whenever there is heterogeneity with respect to player objective functions.

We conclude this section with some preliminary results which will prove
useful in the subsequent analysis. The first of these establishes conditions
under which a single reciprocator in a group of materialists obtains greater
payoffs than each of the materialists.

Proposition 1. Suppose 1 # A. Then, at any equilibrium of 1(n&1),
the single reciprocator earns a strictly greater (smaller) payoff than each
materialist if *>1 (*<1).

Proof. Let ui=?i for all i{n and un=?n+;m � j{n ?j . If *>1, then
;m<0. Let x be any Nash equilibrium of 1(n&1). We claim that
x=( y, ..., y, z) for some y, z # [a, b]. To see this, suppose there exist
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i, j # M such that xi>xj . Then a necessary condition for equilibrium is
T(xi , nx� )>T(x j , nx� ). This implies x i�xj from (6), a contradiction. Hence
x=( y, ..., y, z) for some y, z # [a, b]. If z=b or y=a, then z> y from (8),
and so ?n>? i for all i # M from (4). Now suppose z<b and y>a. In this
case T( y, nx� )�0 and

�un

�xn
=T(z, nx� )+;m(n&1) H2( y, nx� )�0.

Since H2<0 from (5) and ;m<0, this implies T(z, nx� )<0�T( y, nx� ).
Hence z> y from (6), and so ?n>?i for all i # M from (4). A similar
argument can be used to show that if *<1, then ?n<? i for all i # M. (Note
that (7) is not required for the result to hold.) K

The requirement that *>1 for the above to hold is intuitive, since
reciprocators are altruistic even towards materialists when *<1. It is the
potentially spiteful behavior of the single reciprocator which gives him or
her the advantage over materialists.

An equilibrium x of 1(k) is said to be intragroup symmetric if players
with the same preference take the same action. Formally, x is intragroup
symmetric if xi=xj whenever either i, j # M or i, j # R. The following
lemma identifies conditions under which equilibria of 1(k) are intragroup
symmetric for all k.

Lemma 1. Suppose 1 satisfies (6) and H12�0. Then, for any
k # [0, ..., n], every equilibrium of 1(k) is intragroup symmetric.

Proof. Suppose there exist i, j # R such that xi>xj at some equilibrium
x of 1(k). Then we must have �ui ��xi�0��uj ��xj , or

T(xi , nx� )+;rH2(xj , nx� )+;r :
j # R"[i, j]

H2(x j , nx� )+;m :
j # M

H2(x j , nx� )

�T(x j , nx� )+;rH2(xi , nx� )+;r :
j # R"[i, j]

H2(x j , nx� )

+;m :
j # M

H2(xj , nx� ),

where ;r>0. This implies T(xi , nx� )+;r H2(xj , nx� )�T(x j , nx� )+;rH2

(xi , nx� ). Since H12>0, H2(xi , nx� )�H2(xj , nx� ). Hence T(xi , nx� )�
T(xj , nx� ). This implies xi�xj from (6), a contradiction. The proof that
xi=xj for all i, j # M follows by setting ;r=;m=0 and applying the above
reasoning. (Note that H12�0 is not required in this latter case.) K
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The following result identifies, in the special case of separable payoff
functions, the relevant parameter range for which a single materialist in a
group of reciprocators obtains greater payoffs than each of the reciprocators.

Proposition 2. Consider any separable 1 # A. Then, at any equilibrium
of 1(1), the single materialist earns a strictly greater (smaller) payoff than
each reciprocator if *<n&1 (*>n&1).

Proof. Let u1=?1 and ui=?i+;r � j # R"[i] ?j+;m?1 for all i{1. Let x
be any Nash equilibrium of 1(1). From Lemma 1, x=( y, z, ..., z) for some
y, z # [a, b]. Suppose first that *<n&1. If z=a or y=b, then y>z from
(8), and so ?1>?i , for all i # R from (4). Now suppose y<b and z>a.
Then T( y, nx� )�0 and

�un

�xn
=T(z, nx� )+;r(n&2) H2(z, nx� )+;mH2( y, nx� )�0.

Since H12=0, H2( y, nx� )=H2(z, nx� ) so we have

T(z, nx� )+(;r(n&2)+;m) H2(z, nx� )�0.

Since *<n&1, ;r(n&2)+;m=(n&1&*) :�(1+*)>0. This, together
with (5) and the above relation yields T(z, nx� )>0�T( y, nx� ). Hence z< y
from (6), and ?1>? i for all i # R from (4). A similar argument can be used
to show that if *>n&1, then ?1<?i for all i # R. K

Taken together, Propositions 1 and 2 imply that when 1<*<n&1, a
single materialist in a group of reciprocators will outperform all
reciprocators in that group, while a single reciprocator in a group of
materialists will outperform all materialists in that group. The intuition
underlying this is the following. In a group of materialists, a single
reciprocator places negative weight on the payoffs of all others. Relative to
an equilibrium in which all players are materialists, the reciprocator is
tempted to increase her action despite the fact that this increase reduces her
material payoff, since it reduces the payoffs of materialists. This increase
lowers the marginal returns to an increase in action for all players, and
induces the materialists to respond by reducing their action. Although the
overall effect may be to reduce the average material payoff in the group as
a whole, the reciprocator outperforms the materialists since his equilibrium
action is higher. On the other hand, a materialist can thrive in a group of
reciprocators, provided that their altruism towards each other prevents
them from raising their actions for punitive purposes when a single
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materialist is in their midst.9 The necessary condition for this to occur is
that *<n&1. If this inequality is reversed, the negative weight placed by
reciprocators on the payoffs of materialists is so great that it outweighs the
effects of their mutual altruism. For given *, Proposition 2 implies that if
the group size n is sufficiently large, then a single materialist in a popula-
tion of reciprocators will outperform all others in the group, as their
altruism for each other restrains them from responding to the presence of
the materialist in a spiteful manner. In other words, unless the group size
is sufficiently small, a single materialist will thrive in a group of
reciprocators. This has evolutionary implications that are discussed in the
section to follow.

4. RANDOM MATCHING

We now turn to the question of the long-run preference distribution in
a large population, the members of which are matched randomly with each
other in groups of size n. For convenience, we assume that the population
is infinite, though our results continue to hold for populations that are
sufficiently large.

Let p denote the share of materialists in the global population. The prob-
ability #k( p) that a randomly selected group will contain k materialists is
then

#k( p)=\n
k+ pk(1& p)n&k.

As before, assume that within a group the distribution of preferences is
common knowledge and that the members of the group are able to locate
an equilibrium of the game (the case of incomplete information is discussed
below). Let +m(k) denote the expected equilibrium payoff to materialists in
groups with population composition k, and let +r(k) be the expected equi-
librium payoff to reciprocators. When all players in a group are materialists
the resulting game 1(n) has a unique equilibrium, and when there is a
single reciprocator in a group the resulting game 1(n&1) has a unique
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9 Note that this effect occurs because reciprocators cannot reduce the payoffs of materialists
without simultaneously lowering those of fellow-reciprocators. If reciprocators could target
materialists individually (for instance, if the game were augmented to allow a second stage in
which costly sanctions could be imposed on specific individuals), a single materialist in a
group of reciprocators might do very poorly in comparison with the reciprocators even when
* is close to 1. A proper analysis of games with this structure, while interesting, is beyond the
scope of the present paper.



equilibrium provided that * is sufficiently close to 1. More generally,
however, there may be multiple equilibria and the payoffs +m(k) and +r(k)
will then depend on the probabilities with which the various equilibria are
realized. For the results to follow, it is irrelevant which equilibria are
realized and in what proportions. We therefore assume that for any given
population composition k, there is some exogenously given probability that
any particular equilibrium will be realized, so that +m(k) and +r(k) are well
defined. Let +� m( p)=�n

k=1 #k( p) +m(k) be the expected payoff to materialists
in the population as a whole, with +� r( p)=�n&1

k=0 #k( p) +r(k) being the
corresponding expected payoff to reciprocators.

We are interested in the stability of the states p=0 and p=1 under
payoff monotonic selection dynamics. Payoff monotonicity here corresponds
to the assumption that for all p # (0, 1), the following holds,

+� m( p)>(<) +� r( p) � p* >(<) 0,

with p* =0 for p # [0, 1]. With an infinite global population, a sufficient
condition for the instability of the state p=1 is that +m(n)<+r(n&1). This
follows from the fact that limp � 1 #n( p)=1 (so that almost all materialists
will be in monomorphic groups when p is close to 1) and limp � 1 #n&1( p)�
�n&1

k=0 #k( p)=1 (so that almost all reciprocators will be in groups in which
all other players are materialists when p is close to 1.) Similarly, a sufficient
condition for the stability of the state p=0 is that +m(1)<+r(0). The
following result identifies conditions under which reciprocators can invade
a population of materialists under random matching.

Proposition 3. Consider any 1 # A. There exists *� >1 such that if
1<*<*� , the state p=1 is unstable.

Proof. Define G( y, z)#T( y, (n&1) y+z) and note that from (6) and
(7), G1=T1+(n&1) T2<0 and G2=T2<0. By the implicit function
theorem, G( y, z)=0 defines a differentiable function y=b(z) such that
G(b(z), z)=0 and b$(z)=&G2 �G1<0. Recall (from the proof of Proposi-
tion 1 above) that all equilibria of 1(n&1) are of the form ( y, ..., y, z).
Hence G( y, z)=0 and y=b(z) must hold at any equilibrium ( y, ..., y, z) of
1(n&1) at which y # (a, b).

Under (6) and (7), 1(n) has a unique equilibrium (Corcho� n [9, Proposi-
tion 1.3]), which must therefore be symmetric. Let, (c, ..., c) denote this
equilibrium. From (8), c # (a, b). Hence T(c, nc)=G(c, c)=0 and b(c)=c.
Define .(z)#H(z, (n&1) b(z)+z) and note that .$(c)=H1(c, nc)+
((n&1) b$(c)+1) H2(c, nc)=T(c, nc)+(n&1) b$(c) H2(c, nc)=(n&1)
b$(c) H2(c, nc)>0 since T(c, nc)=0, H2<0 from (5) and b$<0. This
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implies that there exists =� >0 such that .(c+=)>.(c) for all = # (0, =� ].
Note that ?n( y, ..., y, z)=.(z) at any equilibrium ( y, ..., y, z) of 1(n&1) at
which y # (a, b).

With :>0 given, let E(*) denote the set of equilibria of 1(n&1) when
the reciprocator has preference parameter *�1. Consider a sequence
(*t)�

t=0 where 1<*t<*t&1 for all t�1 and limt � � *t=1. Since the Nash
equilibrium correspondence has a closed graph, any sequence ( yt, ..., yt,
zt)�

t=0 with ( yt, ..., yt, zt) # E(*t) has a limit point in E(1). Note that when
*=1, 1(n) and 1(n&1) are identical games so 1(n&1) also has a unique
interior equilibrium at (c, ..., c). Hence E(1) consists of the single element
(c, ..., c) and any sequence ( yt, ..., yt, zt)�

t=0 with ( yt, ..., yt, zt) # E(*t)
converges to (c, ..., c).

We claim that for any sequence ( yt, ..., yt, zt)�
t=0 with ( yt, ..., yt, zt) #

E(*t), zt>c for all t. To see this, consider the following. If zt=a then from
(8) yt>a which, from (4), implies that ?1( yt, ..., yt, zt)>?n( yt, ..., yt, zt)
violating Proposition 1. Hence zt # (a, b]. If zt=b then the claim is trivially
true. If zt # (a, b), then the following necessary condition for equilibrium
must hold.

T(zt, (n&1) yt+zt)+;m(n&1) H2( yt, (n&1) yt+zt)=0.

Since ;m<0 when *>1 and H2<0 from (5), we have T(zt, (n&1) yt+zt)
<0. This, together with the fact that zt> yt (from (4) and Proposition 1),
implies that if zt�c, then (n&1) yt+zt<nc. But this contradicts T(zt,
(n&1) yt+zt)<0=T(c, nc) since T is strictly decreasing in both com-
ponents from (6) and (7). This proves zt>c for all t.

Since ( yt, ..., yt, zt)�
t=0 converges to (c, ..., c), and zt>c for all t, and

yt<zt, there exists t� such that for all t>t� , zt # (c, c+=� ) and yt # (a, c+=� ),
where =� is as defined above. Hence, for all *<*t, ?n( yt, ..., yt, zt)=.(zt)>
.(c)=?i (c, ..., c) for all i # I. In this case +r(n&1)>+m(n) and the state
p=1 is unstable. K

This result shows that reciprocal preferences can invade a population of
materialists under (nonassortative) random matching provided that *
exceeds 1 but is not too high. What is required for this result is that the
invader should act spitefully but not too spitefully. The condition that *>1
ensures that a reciprocator in a group of materialists acts spitefully. This
spite takes the form of an action higher than the equilibrium for a group
of materialists. Negative spillovers lower the materialists' payoffs and
strategic substitutability results in their actions falling below the materialist
equilibrium level, which in turn raises the reciprocator's payoff above the
level that materialists obtain in monomorphic groups. This last claim is only
true if the reciprocator's action is not too high, hence the requirement that *
not be too high. If the degree of spite were too high, then, despite the fact
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that the reciprocator would outperform the materialists in her group, the
resulting efficiency losses would be so great as to cause her payoffs to
fall below those that materialists obtain in monomorphic groups.
Since most materialists find themselves in monomorphic groups when p is
close to 1, the payoff to materialists in the population as a whole would
exceed that to reciprocators if the latter were too spiteful toward
materialists.

If, instead of assuming common knowledge of the distribution of
preferences, one assumed that individuals were completely ignorant of the
preference distribution within their groups but were perfectly informed of
global population composition (which then serves as a common prior in
the resulting Bayesian game) then a monomorphic population of
materialists could not be unstable under random matching (see Ok and
Vega-Redondo [32] for a general analysis of this scenario). However, if
there is sufficient, although not perfect, information about the preferences
of players within a group, then reciprocators will be able to invade a pop-
ulation of materialists. For expositional clarity we demonstrate this for the
case of pairwise random matching (n=2). Suppose, as in the discussion of
incomplete information in the previous section, that both players begin
with a common prior over the distribution of preferences in their group. As
in Ok and Vega-Redondo [32], let the prior probability that any given
player is a materialist be given by the global population composition
p # (0, 1). (In this case the prior is identical to the objective probability that
any given player is a materialist under random matching.) Each player
then becomes completely informed of her own preferences, and the players
receive independent signals regarding the preferences of their opponents.
There are two possible signals, a signal that is highly correlated with the
opponent being a materialist, and one that is highly correlated with the
opponent being a reciprocator. Let \m be the probability that a player
receives a ``materialist signal,'' conditional on the fact that the opponent is
indeed a materialist. Then (1&\m) is the probability that a player receives
a ``reciprocator signal'' when her opponent is a materialist. Let \r be
analogously defined as the probability that a player receives a reciprocator
signal, conditional on the fact that the opponent is indeed a reciprocator.
This defines a Bayesian game in which there are four types of each player,
where types differ not only with respect to their preferences, but also with
respect to the information they receive regarding the preferences of their
opponent. Let x%i denote the equilibrium action of type % of player i, where
i # [1, 2] and % # 3=[mm, mr, rm, rr]. Here %=mr is a type whose
preferences are materialist, and who receives a reciprocator signal. The
other types are interpreted analogously. Let q%$

% be the posterior probability
that a type % places on her opponent being of type %$. It is easily verified
by a straightforward application of Bayes' rule that q%$

% is a continuous
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function of \m and \r for any given \ # (0, 1).10 The expected payoff to each
type of each player may then be expressed in terms of these probabilities
and the equilibrium actions of each type of each player. For instance, if %
is a type with materialist preferences (% # [mm, mr]), then the expected
payoffs to a player i of type % are simply

v%i= :
%$ # 3

q%$
% (x%i , x%i+x%$j),

where i{ j. The expected payoffs of types with reciprocator preferences are
more complicated but may easily be verified to be continuous in
probabilities and actions. By continuity of the payoff functions, the corre-
spondence mapping the signal qualities (\m , \r) to Nash equilibria of the
corresponding Bayesian games is upper hemi-continuous. As (\m , \r)
converges to (1,1), the equilibrium actions (xmm1 , xmm2) converge to Nash
equilibria of 1(2), the actions (xmr1 , xrm2) and (xrm1 , xmr2) converge to
Nash equilibria of 1(1) and the actions (xrr1 , xrr2) converge to Nash
equilibria of 1(0). Hence the ordering of the equilibrium payoffs to
materialists in 1(2) and reciprocators in 1(1) is preserved under incom-
plete information when the signals are sufficiently accurate. If the global
population composition p is sufficiently close to 1, this in turn implies that
under the conditions of Proposition 3, +� r( p)>+� m( p), so that p* <0. Hence
the basin of attraction of the state p=1 can be made arbitrarily small if the
signals received regarding opponent preferences are sufficiently precise. In
this sense the conclusion of Proposition 3 holds if the signals received by
players about others' preferences are sufficiently precise.11

We conclude this section with a look at the conditions under which a
population of reciprocators is stable under random matching.

Proposition 4. Consider any separable 1 # A. There exists *� <n&1
such that if *>*� , a monomorphic population of reciprocators is stable.
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10 For instance, if %=%$=mm, then q%$
% is the probability that player i 's opponent is a

materialist conditional on the fact that player i received a materialist signal, multiplied by the
probability that player i 's opponent received a materialist signal conditional on the fact that
player i is a materialist. The latter probability is simply \m . The former probability, by
application of Bayes' rule, is p\m �( p\m+(1& p)(1&\r)).

11 If the global population is finite, even a single mutation will cause p to be bounded away
from 1. In this case it can be proved, using, the above reasoning, that the state p=1 is
unstable. For an infinite population, the instability of the state p=1 does not follow because
for any given values of signal quality (\m , \r) # (0, 1)2 it is possible to find a number p�
sufficiently close to 1 such that if the prior p>p� , then the posterior probability that one is
facing a materialist can be close to 1 regardless of the signal received.



Proof.

Claim 1. If 1 # A is separable and satisfies (6), and (7), then 1(0) has
a unique equilibrium.

Proof of Claim 1. From Lemma 1, all equilibria of 1(0) are symmetric.
Let (d, ..., d ) and (d $, ..., d $) be two equilibria with d>d $. Then the
following are necessary equilibrium conditions

T(d, nd )+;r(n&1) H2(d, nd )�0,

T(d $, nd $)+;r(n&1) H2(d $, nd $)�0.

Since T is decreasing in both components, T(d, nd)<T(d $, nd $), so the
above conditions imply that H2(d $, nd $)<H2(d, nd ). Since H12=
0, H2(d $, nd $)=H2(d, nd $) so we have H2(d, nd $)<H2(d, nd ). But when
H12=0, (7) implies that H22<0 and hence H2(d, nd $)>H2(d, nd), a
contradiction. K

Claim 2. Suppose 1 # A satisfies (4), (6), (7) and H12�0, and that
*=n&1. Then 1(1) and 1(n) have the same (unique) equilibrium.

Proof of Claim 2. For a proof that 1(n) has a unique equilibrium
under (6) and (7), see Corcho� n [9, Proposition 1.3]. Let (c, ..., c) denote
this equilibrium. From Lemma 1, any equilibrium x of 1(1) is of the form
( y, z, ..., z). Since *=n&1, (;r(n&2)+;m)=0 so for all i # R,

�ui

�xi
=T(z, nx� )+(;r(n&2)+;m) H2( y, nx� )=T(z, nx� ).

If y<z, then equilibrium requires that T( y, nx� )�0�T(z, nx� ) which from
(6) implies that y�z, a contradiction. Similarly, if y>z, then
T(z, nx� )�0�T( y, nx� ) which from (6) implies that z� y, a contradiction.
Hence y=z=x� and T( y, ny)=T(z, nz)=0. But since T(c, nc)=0,
y=z=c from (6).

From Claim 1, 1(0) has a unique equilibrium, which is therefore sym-
metric and which we denote by (d, ..., d ). From Claim 2, if *=n&1, 1(1)
has the same unique equilibrium as 1(n), which we denote by (c, ..., c).
From Proposition 5 below, there exists =>0 such that ?i (d, ..., d )=
?i (c, ..., c)+= for all i # I. Hence, when *=n&1, +m(1)<+r(0) so the
equilibrium at p=0 is stable.

Next we show that there exists *� <n&1 such that the result holds for
*� <*<n&1. With :>0 given, let E(*) denote the set of equilibria of 1(1)
when the reciprocator has preference parameter *. Consider a sequence
(*t)�

t=0 where *t&1<*t<n&1 for all t�1 and limt � � ?t=n&1. Since
the Nash equilibrium correspondence has a closed graph, any sequence
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(xt)�
t=0 with xt # E(*t) has a limit point in E(n&1). Since E(n&1) consists

of the single element (c, ..., c) and any sequence (xt)�
t=0 with xt # E(*t)

converges to (c, ..., c). Since the payoff functions are continuous, there
exists t~ such that for all t>t~ and all i # I, ?i (xt)<?i (c, ..., c)+=, where = is
as defined above. Setting *� =*t~ , we have the following: if *� <*<n&1, then
for any equilibrium x of 1(1), ?i (x)<?i (d, ..., d ) for all i # M. Hence
+m(1)<+r(0) when *� <*<n&1, so the equilibrium at p=0 is stable.

To complete the proof, consider the case *>n&1. From Lemma 1, any
equilibrium x of 1(1) is of the form x=( y, z, ..., z). From Proposition 2
and (4), y<z, so T( y, nx� )<0 is a necessary equilibrium condition. We
claim that c<x� . To see this, suppose x� �c. Then y<c (otherwise we
would have c� y<z contradicting x� �c), which implies that T( y, nx� )>0
=T(c, nc) from (6) and (7), contradicting T( y, nx� )�0. Hence x� >c. We
next claim that y<c. To see this, suppose c� y. Then, since c<x� , (6) and
(7) imply T( y, nx� )<0=T(c, nc). But T( y, nx� )<0 can hold in equilibrium
only if y=a<c, contradicting c� y. We have therefore proved that
y<c<x� . This, together with (4) and (5), implies H( y, nx� )<H(c, nx� )<
H(c, nc). But H(c, nc)<H(d, nd ) from Proposition 5 below. Hence +m(1)=
H( y, nx� )<H(d, nd)=+r(0) when *>n&1, so the equilibrium at p=0 is
stable. K

Proposition 4 confirms that reciprocal preferences can persist in competi-
tion with materialist preferences under (nonassortative) random matching,
and that it is possible in this environment for materialist preferences to be
eliminated entirely. Furthermore, a population of reciprocators can resist
invasion by materialists even when the presence of a single materialist in a
group of reciprocators does not cause the latter to become spiteful. This
follows from the fact that the threshold *� <n&1 in Proposition 4. The
intuition for this is as follows. When a single materialist is present in a
group of reciprocators, the latter continue to remain altruistic but become
less so. Provided that the reduction in altruism is sufficiently great (*>*� )
the average group payoff is lowered significantly relative to the case of
groups containing only reciprocators. Hence, although the single materialist
outperforms the reciprocators in her group, her payoff is lower than that
which reciprocators earn in monomorphic groups. Since almost all reci-
procators find themselves in monomorphic groups when p is sufficiently
small, materialists cannot invade.

Propositions 3 and 4, taken together, imply the following. When *
exceeds 1 but is not too large, monomorphic populations of either kind
(materialists or reciprocators) are unstable. Materialists can spread in a
population consisting largely of reciprocators and vice versa; only interior
population states in which both materialists and reciprocators are present
can be stable. On the other hand, when * is sufficiently large, monomorphic
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populations of either kind (materialists or reciprocators), are locally stable,
and the long-run outcome therefore depends on the initial population
composition. In addition, there may exist an intermediate range of values
of * for which exactly one of the two monomorphic population states is
stable.

We next turn to the question of efficiency, which is critical in under-
standing whether reciprocal preferences are favored under assortative
interaction and group selection.

5. EFFICIENCY AND ASSORTATIVE INTERACTION

There are at least two reasons why the issue of efficiency is important for
understanding the evolution of preferences. First, if group selection is an
important force in determining the fate of populations, for instance through
the collapse or extinction of poorly performing groups, then preferences
that are efficiency enhancing are liable to be favored. Second, if group for-
mation occurs under voluntary association rather than random matching,
then it may be advantageous for those with efficiency enhancing preferences
to seek each other out in the formation of groups. Most evolutionary
explanations of pure altruism are based on one or both of these processes
of group selection and assortative interaction (Sober and Wilson [36]).
Pure altruism, however, suffers from evolutionary disadvantages under
random matching in many strategic environments. In contrast, reciprocal
preferences can yield some of the same group benefits that altruism does,
without being vulnerable in competition with materialist preferences under
random matching. The following result is a formal statement of the fact
that groups of reciprocators outperform groups of materialists.

Proposition 5. Suppose 1 # A is separable. Then, if x is an equilibrium
of 1(0) and y is an equilibrium of 1(n), ?i (x)>?i ( y) for all i # I.

Proof. Consider any symmetric action profile x=(z, ..., z) where
z # [a, b]. The payoff to each player at x is given by W(z)=H(z, nz). Note
that W$(z)=H1(z, nz)+nH2(z, nz)=T(z, nz)+(n&1) H2(z, nz). Conditions
(6), (7) and H12=0 together imply that

W"(z)=H11(z, nz)+2nH12(z, nz)+n2H22(z, nz)<0. (10)

Let e=argmaxz # [a, b] W(z). This is the action which, if taken by all
players, yields the highest payoff to each among the set of symmetric action
profiles.
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Let xm be an equilibrium of 1(n) and xr an equilibrium of 1(0). From
Lemma 1, equilibria of 1(n) and 1(0) are symmetric under the stated con-
ditions. Hence there exist c, d # [a, b] such that xm=(c, ..., c) and
xr=(d, ..., d). From (8), c # (a, b). We claim that d # [a, b). To see why,
note that for x=(b, ..., b) to be an equilibrium of 1(0), we must have
�ui ��xi�0 for all i # I. But at x=(b, ..., b), (8) implies that T(b, nb)<0 and
from (5) we therefore have

�ui

�xi
=T(b, nb)+;r(n&1) H2(b, nb)<0,

a contradiction. Hence d # [a, b). Consider the following two cases.

(i) Suppose d=a. Then a necessary condition for equilibrium is

�ui

�xi
=T(a, na)+;r(n&1) H2(a, na)�0.

But since ;r # (0, 1) and H2<0 from (5), this implies that

T(a, na)+(n&1) H2(a, na)=W$(a, na)<0.

The above, together with (10), implies that e=d=a. Since c>a, and
e=argmaxz # [a, b] W(z), we have W(e)=W(d )>W(c) as required.

(ii) Suppose d # (a, b). Consider the following function

G(z, ;)=H1(z, nz)+H2(z, nz)+;(n&1) H2(z, nz).

Note that if ;=0, G(z, ;)=0 is a necessary condition for equilibrium in
1(n); if ;=;r , G(z, ;)=0 is a necessary condition for equilibrium in 1(0),
and if ;=1, G(z, ;)=0 corresponds to the condition W$(z)=0. Note also
that

�G
�z

=H11+nH12+(1+;(n&1))(H12+nH22)<0 (11)

for all ; # [0, 1] from (6), (7) and H12=0. Applying the implicit function
theorem, G(z, ;)=0 defines a function z(;): [0, 1] � R with the property

dz
d;

=&
�G��;
�G��z

<0

since �G��;=(n&1) H2(z, nz)<0 from (5). Hence z(1)<z(;r)<z(0). If
z(1)<a then e=a; otherwise e=z(1). In either case, e<z(;r)=d<z(0)
=c, so from (10) and the fact that e=argmaxz # [a, b] W(z), we have W(d )
>W(c) as required. (Note that the separability condition H12=0 is
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sufficient but not necessary for the above argument; any payoff function H
for which inequalities (10) and (11) hold would suffice.) K

The above result implies that perfectly assortative interaction favors the
growth of reciprocators over groups of materialists. Furthermore, if
individuals form groups by voluntary association, the result would be per-
fectly assortative matching regardless of *. To see this, note that if *>n&1
then materialists would prefer to associate exclusively with each other,
since even a single materialist in the presence of reciprocators would cause
the latter to become spiteful. If, on the other hand, *<n&1, then
reciprocators will associate exclusively with each other. This is because
the presence of a single materialist in a group of reciprocators both lowers
the average payoff in the group and results in a higher payoff for the
materialist relative to the reciprocators. These two facts together imply
that the material payoff of each reciprocator is strictly lowered. Given that
their objective function places positive weight on the payoffs of other
reciprocators and negative weight on the payoffs of materialists, this implies
a lower value of their objective function. Consequently, reciprocaters will
prefer to associate exclusively with each other, leading to perfect assor-
tation. Proposition 5 then implies that reciprocators will outperform
materialists in the population as a whole.

Although a monomorphic group of reciprocators does better than a
monomorphic group of materialists, it is not the case that the average
payoff in a group increases monotonically with the number of reci-
procators. In groups consisting largely of materialists, reciprocators act in
a spiteful manner, choosing higher actions in equilibrium than would be
optimal from a purely material standpoint. This can cause groups with a
small number of reciprocators to obtain lower average payoffs than
monomorphic groups of either type. The following numerical example
illustrates this.

Example 3. Suppose 1 is a common pool resource game (see
Example 2) game with A(X)=10&X, w=1, n=20, *=2, and :=0.5.
It can be shown that equilibria of 1(k) are unique for all k. Let ?� (k) be
the mean equilibrium payoff in the group when the population composi-
tion is k. Computation of equilibria yields ?� (0)=0.578>?� (20)=0.184>
?� (19)=0.161. Hence ?� (k) does not decline monotonically with k.

The fact that reciprocators can be efficiency-reducing when they are rare
suggests that under group selection, mixed groups will tend to have the
lowest prospects for survival. The groups which proliferate fastest will be
monomorphic groups of reciprocators, which (from Proposition 5) outper-
form monomorphic groups of materialists. Although we do not explore the
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effects of group selection formally in the present paper, it is easy to con-
struct models of intergroup competition in which the efficiency-enhancing
effects of reciprocal preferences (arising from their altruism when they are
sufficiently widespread) cause such preferences to outcompete purely
self-regarding preferences. Group selection in general tends to favor the
survival of efficiency-enhancing traits (see, for instance, Canals and
Vega-Redondo [8], and the references cited therein.)

6. CONCLUSIONS

The analysis in this paper suggests that a population of self-regarding
materialists may be unstable in the presence of reciprocal preferences under
both nonassortative and assortative interaction. Individuals endowed with
such preferences are willing to make material sacrifices to reward others
who are similarly disposed, and to punish those who are not. Their motiva-
tion for doing so does not arise from any prospects of future material
reward. Such preferences not only help account for experimental data from
a diverse set of sources, they also accord with the facts of everyday
experience. Even without any history of prior interaction, and with little or
no prospect of future interaction, people are often altruistic towards others
who are perceived to be similarly altruistic, and may even gain pleasure
from reducing the well being of those who are perceived to be selfish or
spiteful. Such behavior has increasingly come to be recognized as an impor-
tant aspect of human decision making with significant social and economic
implications such as the downward rigidity of real wages, the private
provision of certain public goods, the sustainable management of natural
resources in local commons, voluntary donations of time and effort, and
the decentralized enforcement of cooperative social norms (see Fehr and
Ga� chter [16] for a recent survey of the relevant literature.)

A natural extension of the present work would be the endogenization of
the preference parameters. The class of preferences considered here is large
and varies along two dimensions: the degree of altruism and the degree of
sensitivity to the altruism of others. While a wide range of parameter values
is consistent with survival against materialists, a much narrower range may
be expected to survive when several members of this class of preferences are
in competition with each other. Another possible extension of this work
would be to study the evolution of reciprocal preferences in other environ-
ments likely to have been important in the evolution of human behavior,
such as multi-stage games which allow for the costly sanctioning of prior
actions. Under incomplete information, individuals would be induced to
take into account the effect of their actions on the beliefs of others regard-
ing the distribution of preferences (as in Kreps et al. [27] for instance.) An
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evolutionary analysis that allows for such signalling effects could
potentially yield significant new insights.
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