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Preface

This is a tutorial to help you get started in Matlab. Examples of Matlab code in
this pamphlet are in typewriter font like this. As you read through the text,
type and execute in Matlab all of the examples, either at the À command line
prompt or in a test program you make called test.m. Longer sections of code are
set off and named. This code can be found as files on the Physics 330 web page at
physics.byu.edu/Courses/Computational.

This booklet can also be used as a reference manual because it is short, it has
lots of examples, and it has a table of contents and an index. It is almost true
that the basics of Matlab are in chapters 1-7 while physics applications are in
chapters 11-13. Please tell us about mistakes and make suggestions to improve
the text (michael_ware@byu.edu).

To find more details see the very helpful book Mastering MATLAB 7 by Duane
Hanselman and Bruce Littlefield.
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Chapter 1

Running Matlab

Type your commands here

Figure 1.1 The command window
allows you to directly issue com-
mands to Matlab.

1.1 Getting Started

Start Matlab and locate the command window. As you read this book, type the
commands that appear on their own line in this font at the À prompt in this
window, and then hit Enter to see how they work. You can get help at any time by
pressing F1 or clicking the question mark at the top of the Matlab window.

1.2 It’s a Calculator

You can use Matlab as a calculator by typing commands at the À prompt, like
these. Try them out.

1+2

5/6

cos(pi)

Note that Matlab’s standard trig functions are permanently set to radians mode,
but it also provides degree versions of the trig functions:

sind(90)

The ans command returns the last result calculated.

2*2

ans+1

To enter numbers in scientific notation, like 1.23×1015, use this syntax

1.23e15

Finally, note that the up-arrow key ↑ will display previous commands. And when
you back up to a previous command, you can hit Enter and it will execute again.
Or you can edit it and then execute the modified command. Do this now to
re-execute and edit some of the commands you have already typed.

1.3 Variables

While Matlab has other types of variables, you will mostly just use two types: the
matrix and the string. Variables are not declared before they are used, but are
defined on the fly. The assignment command is the equal sign. For instance,

a=20

1
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creates the variable a and assigns the value 20 to it, and then the command

a=a+1

adds one to the stored value. Note that variable names in Matlab are case sensitive,
t An assign statement in

programming is not a math-
ematical equation. It makes
perfect sense to write a=a+1
as assign statement: it tells
the computer to get the
value of a and add 1 to it
and then store the evalu-
ated quantity back in the
variable a. However, the
mathematical equation
a = a +1 is clearly false.

so watch your capitalization. If you want to see the value of a variable, just type
its name like this

a

String Variables

String variables contain a sequence of characters, like this

s='This is a string'

Some Matlab commands require options to be passed to them using strings. Make
sure you enclose them in single quotes, as shown above.

Numerical Accuracy

All numbers in Matlab are stored as double-precision values which have 15 digits
of accuracy. When you display numbers to the screen, like this

x=355/113

you may think Matlab only works to 5 significant figures. This is not true; it’s just
displaying five. If you want to see all the digits type

format long e

x

The e stands for exponential notation. The four most useful formats to set are

format short % the default format

format long

format long e

format short e

Matlab knows the number π.
B Matlab will let you set the

variable pi to anything you
want, like this, pi=2; but
please don’t.

pi

Try displaying π under the control of a couple of the formats above.

Clearing the Workspace

Matlab keeps all the variables you define in memory until you tell it to erase them.
In Matlab lingo, the place where variables are stored is the workspace. To erase a
single variable from the workspace, type clear and then the variable name. For
instance, if you foolishly set the variable pi to something other than π, like this

pi=2
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Then you would use the command

clear pi

to erase your user-defined value and restore the default value. To erase all the
variables in the workspace, simply type clear without anything after it

clear

1.4 Matrix Variables

The “Mat” in Matlab stands for matrix, and it treats all numeric variables as
matrices. For instance, Matlab thinks the number 2 is a 1×1 matrix:

N=2

size(N)

You can enter a 1×4 row matrix using commas and braces

a=[1,2,3,4]

size(a)

or a 4×1 column matrix with semicolons and braces

b=[1;2;3;4]

size(b)

or a 3×3 matrix with columns separated by commas and rows separated by semi-
colons And the matrix

A=[1,2,3;4,5,6;7,8,9]

size(A)

When you want to access the values of individual matrix elements, use the syntax
A(row,column). For example, to get the element of A in the 3rd row, 5th column
use

A(3,5)

And if you have a matrix or an array and you want to access the last element in a
row or column, you can use Matlab’s end command, like this:

b(end)

A(3,end)

The Colon (:) Command

B Pay attention to this section.
Understanding the colon
command clearly will make
your life much easier.

You can build large, evenly spaced arrays using the colon (:) command. To build
an array x of values starting at x = 0, ending at x = 10, and having a step size of
d x = 0.5 type this:

x=0:.5:10

And if you leave the middle number out of this colon construction, like this

t=0:20

then Matlab assumes a step size of 1.
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Selecting Rows and Columns

Sometimes you will want to select part of a matrix and load it into another array.
This is also done with Matlab’s all-purpose colon (:) command. To select just part
of row or column, use commands like this:

c=A(2,1:2)

The variable c now contains the first two elements of the second row of A. To load
a column vector b with all of the entries of the third column of the matrix A, you
can use the syntax

b=A(1:end,3)

Recall that the first index of a matrix is the row index, so this command tells
Matlab to select all of the rows of A in column 3. Since this type of operation is so
common in Matlab, there is a shorthand for selecting all of the entries in a given
dimension: just leave off the numbers around the colon, like this

b=A(:,3)

And to load a row vector c with the contents of the second row of the matrix A use

c=A(2,:)

Matlab treats strings as one-dimensional arrays of characters, so you to slice up
string variables using this method

s='This is a string'

s(1:7)

1.5 Calculating

Matlab was built to crunch numbers, and it usually handles them much faster
than symbolic programs like Maple or Mathematica. Here are the basics.

t Testimonial: “I, Scott Berge-
son, do hereby certify that I
wrote a data analysis code
in Maple that took 25 min-
utes to run. When I con-
verted the code to Matlab it
took 15 seconds.”

Add and Subtract

Matlab knows how to add and subtract arrays and matrices. As long as A and B

are two variables of the same size (e.g., both 2×3 matrices), then A+B and A-B will
add and subtract them as matrices:

A=[1,2,3;4,5,6;7,8,9]

B=[3,2,1;6,4,5;8,7,9]

A+B

A-B
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Multiplication and Division

The usual multiplication sign * has special meaning in Matlab. Because every-
thing in Matlab is a matrix, * means matrix multiply. So if A is a 3×3 matrix and B

is another 3×3 matrix, then A*B will be their 3×3 product. Similarly, if A is a 3×3
matrix and C is a 3×1 matrix (column vector) then A*C will be a new 3×1 column
vector. And if you want to raise A to a power by multiplying it by itself n times, you
just use

A^n

For a language that thinks everything in the world is a matrix, this is perfectly
natural. Try

A*B

A*[1;2;3]

A^3

But there are lots of times when we don’t want to do matrix multiplication.
Sometimes we want to take two big arrays of numbers and multiply their corre-
sponding elements together, producing another big array of numbers. Because
we do this so often (you will see many examples later on) Matlab has a special
symbol for this kind of multiplication:

B This “dot” operator stuff
is important. Be patient if
it is a little confusing now.
When we start plotting and
doing real calculations this
will all become clear.

.*

For instance, the dot multiplication between the arrays [a,b,c] and [d,e,f]

would be the array [a*d,b*e,c*f]. And since we might also want to divide two
big arrays this way, Matlab also allows the operation

./

This “dot” form of the division operator divides each element of an array by the
corresponding element in another (equally sized) array. If we want to raise each
element of an array to a power, we use

.^

For example, try

[1,2,3].*[3,2,1]

[1,2,3]./[3,2,1]

[1,2,3].^2

These “dot” operators are very useful in plotting functions and other kinds of
signal processing.

Arithmetic with Array Elements

If you want to do some arithmetic with specific values stored individual elements
of your arrays, you can just access them by index. For instance, if you want to
divide the third element of a by the second element of b, you would just use
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a(3)/b(2)

Note that in this case the things we are dividing are scalars (or 1×1 matrices
in Matlab’s mind), so Matlab will just treat this like the normal division of two
numbers. We don’t have to use the ./ command, although it wouldn’t hurt if we
did.

Sum the Elements

The command sum adds up the elements of the array. For instance, the following
commands calculate the sum of the squares of the reciprocals of the integers from
1 to 10,000.

n=1:10000;

sum(1./n.^2)

You can compare this answer with the sum to infinity, which is π2/6, by typing

ans-pi^2/6

For matrices the sum command produces a row vector which is made up of
the sum of the columns of the matrix.

A=[1,2,3;4,5,6;7,8,9]

sum(A)

If you want to add up all of the elements in the array, just nest the sum command
like this

sum(sum(A))

Complex Arithmetic

Matlab works as easily with complex numbers as with real ones. The variable i
is the usual imaginary number1 i =p−1, unless you are so foolish as to assign it
some other value by using i as a variable name, like this:

i=3

B Don’t use i as a variable
name.

Don’t do this, or you will no longer have access to imaginary numbers. If you
accidentally do it the command clear i will restore it to its imaginary luster. By
using i you can do complex arithmetic, like this

a=1+2i

b=2-3i

a+b

a-b

a*b

a/b

1If you are in a discipline where j is used for the imaginary number, Matlab can be your friend
too. The variables i and j have the same meaning in Matlab, and everything we say about i works
the same with j.
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And like everything else in Matlab, complex numbers work as elements of arrays
and matrices as well.

When working with complex numbers we quite often want to pick off the real
part or the imaginary part of the number, find its complex conjugate, or find its
magnitude. Or perhaps we need to know the angle between the real axis and the
complex number in the complex plane. Matlab knows how do all of these

z=3+4i

real(z)

imag(z)

conj(z)

abs(z)

angle(z)

Perhaps you recall Euler’s famous formula e i x = cos x + i sin x? Matlab knows
it too.

exp(i*pi/4)

Matlab knows how to handle complex arguments for all of the trig, exponential,
hyperbolic, and Bessel functions.

1.6 Matlab Functions

cos(x)

sin(x)

tan(x)

acos(x)

asin(x)

atan(x)

atan2(y,x)

cosd

sind

tand

acosd

asind

atand

atan2d

exp(x)

log(x)

log10(x)

log2(x)

sqrt(x)

cosh(x)

sinh(x)

tanh(x)

acosh(x)

asinh(x)

atanh(x)

sign(x)

airy(n,x)

besselh(n,x)

besseli(n,x)

besselj(n,x)

besselk(n,x)

bessely(n,x)

erf(x)

erfc(x)

erfcx(x)

erfinv(x)

gamma(x)

expint(x)

legendre(n,x)

factorial(x)

Table 1.1 A sampling of the math-
ematical functions available in
Matlab.

Matlab knows all of the standard functions found on scientific calculators and
even many of the special functions like Bessel functions. Table 1.1 shows a bunch
of them. Note that the natural log function ln x is the Matlab function log(x). To
get the base-10 log, use log10.

All of the functions in Table 1.1 work like the “dot” operators discussed in the
previous section (e.g. .* and ./). This means, for example, that it makes sense to
take the sine of an array: the answer is just an array of sine values. For example,
type

sin([pi/4,pi/2,pi])

and see what you get. Likewise, you could use the degree versions of the trigonom-
etry functions, like this:

cosd([0,45,90])

Housekeeping Functions

Matlab also has a bunch of other functions that don’t really do math but are useful
in programming. Two of the more useful housekeeping commands are max and
min, which return the maximum and minimum values of an array. For example,
create a couple of arrays like this

x=0:.01:5;

y=x.*exp(-x.^2);
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and then you can find the max and min like this

ymin=min(y)

ymax=max(y)

And with a slight change of syntax max and min will also return the indices in the
array at which the maximum and minimum occur, like this

[ymin,imin]=min(y)

[ymax,imax]=max(y)

Look at the values of imin and imax and discuss them with your lab partner until
you understand what they mean.

There are many more housekeeping functions. We’ve listed several of them
in Table 1.2. Take a minute to familiarize yourself with the functions in the table;
many of them will come in handy. Try

floor([1.5,2.7,-1.5])

to convince yourself that these functions operate on matrices and not just on
single numbers.

clc clears the com-
mand window; use-
ful for beautifying
printed output

clear clears all assigned
variables

close all closes all figure
windows;

close 3 Close figure 3

length(a) the number of
elements in a vector

size(c) the dimensions of a
matrix

ceil(x) the nearest integer
greater than x

fix(x) the nearest integer
to x looking toward
zero

floor(x) the nearest integer
less than x

round(x) the nearest integer
to x

sign(x) the sign of x and
returns 0 if x = 0

Table 1.2 A sampling of “house-
keeping” functions



Chapter 2

Scripts

Typing in commands in the command window is just the tip of the iceberg of
what Matlab can do for you. Most of the work you will do in Matlab will be stored
in files called scripts, or m-files, containing sequences of Matlab commands to be
executed over and over again. Let’s walk through the process of writing a script.

2.1 The Matlab Desktop

First, let’s take a tour of the Matlab desktop. The default layout of the desktop
usually looks something like this:

The different panes provide the following functionality.

• The Command window at the bottom allows you issue commands directly
to Matlab.

• The Editor window in the middle is where you write Matlab scripts. This
is where we’ll spend most of our time when using Matlab. If you’ve never
opened a script file, this window may be missing, but it will appear when
you create or edit a script.

9
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• The Workspace window at the right displays all of the variables that Matlab
currently has in memory. Double clicking a variable launches the Array
Editor, which allows you to view and modify the values in your variables.

• The Current Folder window on the left displays the files in your current
directory. Double click on script files (*.m) to open them in the editor, or
use the navigation bar up above to navigate to a different folder.

You can rearrange the Matlab desktop using drag, drop, and docking, but we
recommend that you wait until you’ve used it for a while before you start dragging
things around.

2.2 Script Files

Let’s start the scripting process. First, make a new script file in by clicking on the
“New” command on the tool bar. Save this file as “test.m” (Matlab will automati-
cally add the .m extension) in the directory where you want to store your Matlab
scripts. After you’ve created the script file, enter the sample command x=sin(2)

t Make a folder where you
can store all of the scripts
for this class. Work out an
arrangement to share these
files with your lab partner.

in the editor window, and save it.

Running a Script

When you run a script, the commands in the file are executed from top to bottom
just as if you had typed them on the command screen. Before you can execute a
script, you need to point Matlab’s current folder to the place where your script is
saved. Take a moment now to change the current folder (shown in the toolbar) to
the directory where you saved the script file (use the buttons in the toolbar). Once
your directory is set to the right place, execute your script by typing the name of
your file without the .m extension in the command window, like this:

test

Always save changes to your script before executing it in the command window.
Matlab loads scripts from the disk, not the editor window.

A convenient shortcut for running a script is to use the “Run” button on the
toolbar (the green “play” icon), or simply pressing the shortcut key F5, while in
the m-file editor window. This shortcut will save your script file, ask you if you
want to switch the current directory to where your script file is saved (if it isn’t
already pointed there), and then run the script for you. Use this method to run
your test.m script again.

Script File Names

Before we continue, please note that script file names cannot start with numbers,
like 330lab1a.m. You execute scripts by typing their name, and when Matlab
receives the start of a number in a command it thinks a calculation is coming.
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Since something like 330lab1a is not a valid calculation, Matlab will give you an
error if you try and name your scripts like this. Also, do not use a space or a period

B Script names cannot begin
with numbers or contain
spaces or periods

in the file name. If you must separate words in your file name, you can use the
underscore character (e.g. my_script.m), but it is easier just to use names without
separators if you can.

Clear and Close All

You should nearly always begin your scripts with the following two commands:

clear;

close all;

The clear command clears all variables from Matlab’s memory and makes sure
that you don’t have leftover junk active in Matlab that will interfere with your
code. The close all command closes any figure windows that are open. The
obvious exception to the rule of beginning your scripts with these commands is if
you need to keep some data in memory for your script to run, or if you need to
leave a plot window open. Add these two lines at the beginning of your test.m
script, and run it again.

Making Matlab Be Quiet

Any line in a script that ends with a semicolon will execute without printing to
the screen. For example, add these two lines of code to your test script

a=sin(5);

b=cos(5)

and then execute it. Look at the output in the command window. Even though
the variable a didn’t print, it is loaded with sin(5), as you can see by typing

a

in the command window, or looking in the workspace window. Printing output to
B Neglecting to end lines with

semicolons can lead to slow
execution

the command window takes a lot of time, especially when dealing with big matri-
ces, so your scripts will run much faster if you end your lines with semicolons.

2.3 Input and Output

For many scripts, it is sufficient to type the input in the script file before you
run it and view the output in the command window by selectively leaving off
semicolons in your code. But sometimes you will need to have the program get
input from the user and present formatted output on the screen.
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2.4 Input

To have a script request and assign a value to the variable N from the keyboard,
put the command

N=input(' Enter a value for N - ')

in your script and run it again. Note that Matlab is asking for input in the Com-
mand Window. If you enter a single number, like 2.7, then N will be a scalar
variable. If you enter an array, like this: [1,2,3,4,5], then N will be an array. If
you enter a matrix, like this: [1,2,3;4,5,6;7,8,9], then N will be a 3×3 matrix.
And if you don’t want the variable you have entered to echo on the screen, end
the input command line with a semicolon.

2.5 Output

To display formatted results in the Command Window, you can use the fprintf
command. Type the following examples in the command window to see what
each one produces. (Hint: Use the ↑ key to save yourself a bunch of typing)

fprintf(' N =%g \n',500)

fprintf(' x =%1.12g \n',pi)

fprintf(' x =%1.10e \n',pi)

fprintf(' x =%6.2f \n',pi)

fprintf(' x =%12.8f y =%12.8f \n',5,exp(5))

Note that the stuff inside the single quotes is a string which will print on the
screen; % is where the number you are printing goes; and the stuff immediately
after % is a format code. A gmeans use the “best” format; if the number is really big
or really small, use scientific notation, otherwise just throw 6 significant figures
on the screen in a format that looks good. The format 6.2f means use 2 decimal
places and fixed-point display with 6 spaces for the number. An emeans scientific
notation, with the number of decimal places controlled like this: 1.10e.) Note: \n
is the command for a new line. If you want all the details on this stuff, see the
Matlab help entry for fprintf.
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Debugging Code

Your programs will usually fail the first time you run them. This is normal. In
this chapter we give you some guidance to help you quickly correct the problems
and get your code to execute.

3.1 Make Your Code Readable

Begin by make your code readable by humans, most importantly by you. It takes
a little more time up front, but pays big dividends in the long run. Here are a few
tips to help you get started on the right path.

Add Comments

Document your scripts by including comment lines that begin with %, like this:

% This is a comment line

Or you can put comments at the end of a line of code like this:

f=1-exp(-g*t) % compute the decay fraction

Get in the habit of documenting your code as you write it. If you don’t do it then,
you never will. Add a comment line to your test.m script now to start a good habit.

Wrap Long Lines

Make your code more readable by continuing long program lines onto successive
lines by using the ... syntax, like this

a=sin(x)*exp(-y) + sqrt(b^2-4*a*c)/2/a + c1*d3 +...

log(z) + sqrt(b);

Wrap any lines that are too long to read without horizontal scrolling. It is hard to
find bugs you can’t easily see.

Enter Matrix Constants Cleanly

When matrices become large the comma and semicolon way of entering them is
awkward. A more visual way to type large matrices in a script is to use spaces in
place of the commas and to press the Enter key at the end of each row in place of
the semicolons, like this:

13
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A = [ 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16]

This makes the matrix look so nice in a script that you probably ought to use it
whenever possible.

Use Short Variable Names

Finally, when coding physics, don’t follow the computer science convention of
making your code more “readable” by using long variable names like this:

Force_of_1_on_2 = G*Mass_of_1*Mass_of_2/Distance_between_1_and_2^2

If you program like this, your code won’t match the math, you’ll drive yourself
crazy with typos, and you’ll end your programming career prematurely due to
repetitive-stress injury. Do it this way

F=G*m1*m2/r12^2

and then add comments when needed to clarify the meaning of your variables,
like this

% r12 is the distance between the earth and the satellite

% m1 is the mass of the earth

3.2 Debugging

When your script fails you will need to examine the values stored in your variables
to see what went wrong. In Matlab this is easy because after you run a script all of
the data in that script is available at the Matlab À prompt. So if you need to know
the value of a at the end of your script, just type

a

and its value will appear on the screen. You can also explore the values stored in
memory using the Workspace window (the right pane in the desktop).

Breakpoints and Stepping

t Remember that all the num-
bered code listings are avail-
able as individual files on
the Physics 330 course web-
site. You can just save them
all into your script directory
to save a bunch of cut and
paste.

It is very helpful in this debugging process to watch what the script does as it runs,
and to help you do this Matlab comes with two important features: breakpoints
and stepping. To help you see how these features work, make a script file with the
code from Listing 3.1 in it, and open it in the editor window.

This script uses a loop and a logical test to step the variable n from 1 to 12 and
at each value check if n evenly divisible by 3. We haven’t introduced these loop
and logic commands yet, but they will be important, so let’s use the debugging
commands to explore how loops work.

http://www.physics.byu.edu/Courses/Computational/phys330.aspx
http://www.physics.byu.edu/Courses/Computational/phys330.aspx


3.2 Debugging 15

Listing 3.1 (ch3ex1.m)

clear; % clear all variables from memory

close all; % close any figure windows

% N is the largest number to test

N=12;

% steps the value of n from 1 to N

for n=1:N

% calculate the integer remainder of this value of n divided by 3

r = mod(n,3);

if (r==0)

% indicate that 3 is a factor of this n

fprintf(' 3 is a factor of %g \n', n);

else

% indicate that if 3 is not a factor of this n

fprintf(' 3 is not a factor of %g \n', n);

end

end

To see what a breakpoint does, put the cursor on the line “for n=1:N” in
the editor window and either click on Breakpoints on the tool bar and select
Set/Clear, or press F12, or click on the small dash to the right of the line of code.
Now press F12 repeatedly and note that the little red dot at the beginning of the
line toggles on and off, meaning that F12 is just an on-off switch for setting a
breakpoint. When the red dot is there it means that a breakpoint has been set,
which means that when the script runs it will execute the instructions in the script
until it reaches the breakpoint, and then it will stop.

Set the breakpoint to “on”, and execute the script by pressing F5. Notice that
a green arrow appear on the line with the breakpoint. Look at the workspace
window and note that N has been given a value, but that n has not. This is because
the breakpoint stops execution just before the line on which it is set. You can also
see the value of a variable by moving the cursor over the variable in the editor
window and waiting for a tip window to pop up. Do this now for N.

The most common things to do next step through the code executing each
line in turn using the Step button on the toolbar (or more commonly just F10)
while watching what happens to your variables in the workspace window. Take a
minute now and use F10 to step through the script while watching what happens
to the variables in the workspace window. When you are done stepping, you can
let the script continue to the end by clicking “Continue” on the toolbar (or more
commonly, just use the shortcut F5). Use breakpoints and stepping to explore the
this script until you can explain to your lab partner how the for loop works and
what how the if logic command works.

When you write a new script, you should almost always step through it this
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way so that you are sure that it is doing what you designed it to do. You will have
lots of chances to practice debugging this way as you work through the examples
in this book.

Stopping Runaway Code

Sometimes you will accidentally write code that takes forever to run. Some
common cases are defining a huge array and forgetting to put a semicolon after it
to suppress the screen print, or writing an infinite loop. If you’ve done something
like this, Ctrl-C will abort whatever Matlab is doing and return control to you.

3.3 Pause command

A pause command in a script causes execution to stop temporarily. To continue
just hit Enter. This can be a useful way to view information at a certain point in

B Make sure to give some
indication to the user that
the script is paused and
waiting. Otherwise the user
just waits for the program to
do something.

execution before proceeding. Usually its good practice to give some indication in
the command window that you are paused. Beginning students have been known
to waste time searching for a “bug” that is causing their code to hang, only to find
that they have a forgotten pause command in their code.

You can also give pause a time argument like this

pause(.2)

which will cause the script to pause for 0.2 seconds, then continue. You can ask
for a pause of any number or fractions of seconds, but if you choose a really
short pause, like 0.001 seconds, the pause will not be so quick. Its length will be
determined instead by how fast the computer can run your script.
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Loops and Logic

4.1 for Loops

A loop is a way of repeatedly executing a section of code. A for loop looks like
this:

for n=1:N

% Put code here

end

which tells Matlab to start n with a value of 1, then increment the value by 1 over
and over until it counts up to N, executing the code between for and end for each
new value of n. Here are a few examples of how the for loop can be used.

Summing a series with a for loop

Let’s do the sum
N∑

n=1

1

n2 (4.1)

with N chosen to be a large number.

Listing 4.1 (ch4ex1.m)

clear; close all;

% set s to zero so that 1/n^2 can be repeatedly added to it

s=0;

N=10000; % set the upper limit of the sum

for n=1:N % start of the loop

s = s + 1/n^2; % add 1/n^2 to s each iteration

end % end of the loop

fprintf(' Sum = %g \n',s) % print the answer

Create a breakpoint at the s=0 line, run the code, and then step through the first
several iterations of the for loop using F10. Look at the values of n and s in the
Workspace window and see how they change as the loop iterates. Once you are
confident you know how the loop works, press F5 to let the script finish executing.

You can also calculate the same sum using matrix operators like this

n=1:N;

sum(1./n.^2)

If your code will work equally well with either a loop or a matrix operator (like
sum) with the colon command, use the colon command whenever possible. The

17
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matrix operators are pre-compiled and usually much faster. In modern versions,
Matlab will check to see if it can automatically replace loops with precompiled
matrix commands like sum, but it can’t always tell if the replacement is proper.

Products with a for loop

Let’s calculate N ! = 1 ·2 ·3 · · ·(N −1) ·N using a for loop that starts at n = 1 and
ends at n = N , doing the proper multiply at each step of the way.

Listing 4.2 (ch4ex2.m)

clear; close all;

P=1; % set the first term in the product

N=20; % set the upper limit of the product

for n=2:N % start the loop at n=2 because we already loaded n=1

P=P*n; % multiply by n each time, put the answer back into P

end % end of the loop

fprintf(' N! = %g \n',P) % print the answer

Now use Matlab’s factorial command to check that you found the right answer:

factorial(20)

B Matlab’s factorial com-
mand is a limited in that it
won’t act on arrays of num-
bers the way that cos, sin,
exp etc. do. A better facto-
rial command to use is the
gamma function Γ(x) which
extends the factorial func-
tion to all complex values.
It is related to the factorial
function by Γ(N +1) = N !,
and is called using the com-
mand gamma(x). you could
also check the answer to
your factorial loop this way:
gamma(21)

Recursion relations with for loops

Suppose that we were analytically solving a differential equation by substituting
into it a power series of the form

f (x) =
∞∑

n=1
an xn (4.2)

and that we discovered that the coefficients an satisfy the recursion relation

a1 = 1 ; an+1 = 2n −1

2n +1
an . (4.3)

To use these coefficients we need to load them into an array a so that a(1) = a1,
a(2) = a2, etc. Let’s load the array using a for loop:

Listing 4.3 (ch4ex3.m)

clear; close all;

a(1)=1; % put the first element into the array

N=19; % the first one is loaded, so let's load 19 more

for n=1:N % start the loop

a(n+1)=(2*n-1)/(2*n+1)*a(n); % the recursion relation

end

disp(a) % display the resulting array of values
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Note that we translated the recursion relation into Matlab code just as it appeared
in the formula: a(n+1)=(2*n-1)/(2*n+1)*a(n). Then we adjusted the count-
ing in the loop to fit by starting at n = 1, which loads a(1+1) = a(2) and ending at
n = 19, which loads a(19+1) = a(20). Always make your code fit the mathematics
as closely as possible, then adjust the supporting variables and structures to fit.
This will make your code easier to read and you will make fewer mistakes.

4.2 Logic

Often we only want to do something when some condition is satisfied, so we need
logic commands. The simplest logic command is the if statement, which works
like this:

Listing 4.4 (ch4ex4.m)

clear; close all;

a=1;

b=3;

if a>0

c=1 % If a is positive set c to 1

else

c=0 %if a is 0 or negative, set c to zero

end

% if either a or b is non-negative, add them to obtain c;

% otherwise multiply a and b to obtain c

if a>=0 | b>=0 % either non-negative

c=a+b

else

c=a*b % otherwise multiply them to obtain c

end

Study each of the commands in the code above and make sure you understand
what they do. You can build any logical condition you want if you just know the
basic logic elements listed in Table 4.1.

Equal ==

Less than <

Greater than >

Less than or equal <=

Greater than or equal >=

Not equal ∼=
And &

Or |

Not ∼
Table 4.1 Matlab’s logic elements

while loops

There is also a useful logic command that controls loops: while. Suppose you
don’t know how many times you are going to have to loop to get a job done, but
instead want to quit looping when some condition is met. For instance, suppose
you want to add the reciprocals of squared integers until the term you just added
is less than 1e-10. Then you would change the loop in the

∑
1/n2 example to look

like this

Listing 4.5 (ch4ex5.m)

clear; close all;

term=1 % load the first term in the sum, 1/1^2=1
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s=term; % load s with this first term

% start of the loop - set a counter n to one

n=1;

while term > 1e-10 % loop until term drops below 1e-10

n=n+1; % add 1 to n so that it will count: 2,3,4,5,...

term=1/n^2; % calculate the next term to add

s=s+term; % add 1/n^2 to s until the condition is met

end % end of the loop

fprintf(' Sum = %g \n',s)

This loop will continue to execute until term<1e-10. Note that unlike the for

loop, here you have to do your own counting, being careful about what value n
starts at and when it is incremented (n=n+1). It is also important to make sure
that the variable you are testing (term in this case) is loaded before the loop starts
with a value that allows the test to take place and for the loop to run (term must
pass the while test.)

Sometimes while loops are awkward to use because you can get stuck in
an infinite loop if your check condition is never false. The break command is

B If you get stuck in an infi-
nite loop, press Ctrl-C in
the Command Window to
manually stop the program
and return control back to
you.

designed to help you here. When break is executed in a loop the script jumps to
just after the end at the bottom of the loop. The break command also works with
for loops. Here is our sum loop rewritten with break

Listing 4.6 (ch4ex6.m)

clear; close all;

term=1; % load the first term in the sum, 1/1^2=1

s=term; % load s with this first term

% start of the loop - set a counter n to one

n=1;

while term > 1e-100 % set a ridiculously small term.

% Don't really do this, as you

% only have 15 digits of precision.

n=n+1; % add 1 to n so that it will count: 2,3,4,5,...

term=1/n^2;

s=s+term;

if (n > 1000) % Break stop if it is taking too long

disp('This is taking too long. I''m out of here...')

break

end

end % end of the loop

fprintf(' Sum = %g \n',s)
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Basic Plotting

One of the nicest features in Matlab is its wealth of visualization tools. In this
chapter we’ll learn how to use several common plots, but there are many more
that Matlab can make for you besides these.

5.1 Linear Plots

Making a Grid

Simple plots of y vs. x are done with Matlab’s plot command and arrays. To build
an array x of x-values starting at x = 0, ending at x = 10, and having a step size of
.01 type this:

x=0:.01:10;

t The semicolon at the end
of the x=0:.01:10; line is
crucial, unless you want to
watch 1001 numbers scroll
down your screen. If you
make this mistake on a very
large matrix and the screen
print is taking forever, Ctrl-
C will rescue you.

To make a corresponding array of y values according to the function y(x) = sin(5x)
simply type this

y=sin(5*x);

Both of these arrays are the same length, as you can check with the length

command

length(x)

length(y)

Plotting the Function

Once you have two arrays of the same size, you plot y vs. x like this

plot(x,y);

And what if you want to plot part of the x and y arrays? The colon and end

commands can help. Try the following code to plot the first and second half
separately:

nhalf=ceil(length(x)/2);

plot(x(1:nhalf),y(1:nhalf))

plot(x(nhalf:end),y(nhalf:end))

21
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Controlling the Axes

Matlab chooses the axes to fit the functions that you are plotting. You can override
this choice by specifying your own axes, like this:

axis([0 10 -1.3 1.3])

Or, if you want to specify just the x-range or the y-range, you can use xlim:

plot(x,y)

xlim([0 10])

or ylim:

plot(x,y)

ylim([-1.3 1.3])

And if you want equally scaled axes, so that plots of circles are perfectly round
instead of elliptical, use

axis equal

Logarithmic Plots

To make log and semi-log plots use the commands semilogx, semilogy, and
loglog. They work like this:

close all;

x=0:.1:8;

y=exp(x);

semilogx(x,y);

title('semilogx')

semilogy(x,y);

title('semilogy')

loglog(x,y);

title('loglog')

3-D Line Plots

Matlab will draw three-dimensional curves in space with the plot3 command.
Here is how you would do a spiral on the surface of a sphere using spherical
coordinates.

Listing 5.1 (ch5ex1.m)

clear; close all;

dphi=pi/100; % set the spacing in azimuthal angle

N=30; % set the number of azimuthal trips

phi=0:dphi:N*2*pi;
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theta=phi/N/2; % go from north to south once

r=1; % sphere of radius 1

% convert spherical to Cartesian

x=r*sin(theta).*cos(phi);

y=r*sin(theta).*sin(phi);

z=r*cos(theta);

% plot the spiral

plot3(x,y,z)

axis equal

5.2 Plot Appearance

Line Color and Style

To specify the color and line style of your plot, use the following syntax

plot(x,y,'r-')

The 'r-' option string tells the plot command to plot the curve in red connecting
the dots with a continuous line. Many other colors and line styles are possible,
and instead of connecting the dots you can plot symbols at the points with various
line styles between the points. For instance, if you type

plot(x,y,'g.')

you get green dots at the data points with no connecting line. To see what the
possibilities are type

help plot

in the command window.

Labeling your plots

To label the x and y axes, do this after the plot command:

xlabel('Distance (m)')

ylabel('Amplitude (mm)')

And to put a title on you can do this:

title('Oscillations on a String')

To write on your plot, you can use Matlab’s text command in the format:

text(10,.5,'Hi');
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which will place the text “Hi” at position x = 10 and y = 0.5 on your plot.
You can also build labels and titles that contain numbers you have generated;

use Matlab’s sprintf command, which works just like fprintf except that it
writes into a string variable instead of to the screen. You can then use this string
variable as the argument of the commands xlabel, ylabel, and title, like this:

s=sprintf('Oscillations with k=%g',5)

title(s)

In this example we hard-coded the number 5, but you can do the same thing with
variables.

Greek Letters, Subscripts, and Superscripts

α \alpha
β \beta
γ \gamma
δ \delta
ε \epsilon
φ \phi
θ \theta
κ \kappa
λ \lambda
µ \mu
ν \nu
π \pi
ρ \rho
σ \sigma
τ \tau
ξ \xi
ζ \zeta

Table 5.1 The lowercase Greek
letters in LaTeX

When you put labels and titles on your plots you can print Greek letters, subscripts,
and superscripts by using the LaTeX syntax. To print Greek letters just type their
names preceded by a backslash, like this:

xlabel('\theta')

ylabel('F(\theta)')

And to put a title on you can do this:

title('F(\theta)=sin(5 \theta)')

To force LaTeX symbols to come through correctly when using sprintf you have
to use two backslashes instead of one.

s=sprintf('F(\\theta)=sin(%i \\theta)',5)

title(s)

You can also print capital Greek letters, like this \Gamma, i.e., you just capitalize
the first letter.

To put a subscript on a character use the underscore character on the key-
board: θ1 is coded by typing \theta_1. And if the subscript is more than one
character long do this: \theta_{12} (makes θ12). Superscripts work the same
way only using the ∧ character: use \theta∧{10} to print θ10.

5.3 Multiple Plots

You may want to put one graph in figure window 1, a second plot in figure win-
dow 2, etc. To do so, put the Matlab command figure before each plot command,
like this

close all;

x=0:.01:20;

f1=sin(x);

f2=cos(x)./(1+x.^2);

figure

plot(x,f1)

figure

plot(x,f2)
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And once you have generated multiple plots, you can bring the plot windows
to the foreground on your screen either by clicking on them and moving them
around, or by using the command figure(1) to pull up figure 1, figure(2)
to pull up figure 2, etc. If you want this to happen while Matlab is executing
other code (say a long loop), you need to put in a short pause command, say
pause(0.1) to give the computer a chance to switch from executing the code to
drawing the plot.

Overlaying Plots

Often you will want to overlay two plots on the same set of axes. Here’s the first
way—just ask for multiple plots on the same plot line

plot(x,f1,'r-',x,f2,'b-')

title('First way')

Here’s the second way. After the first plot, tell Matlab to hold the plot so you can
put a second one with it

figure

plot(x,f1,'r-')

hold on

plot(x,f2,'b-')

title('Second way')

hold off

The second way is convenient if you have lots of plots to put on the same figure.
Remember to release the hold using the command hold off as shown in the
example or every subsequent plot will be on the same axis.

Subplots

It is often helpful to put multiple plots in the same figure, but on separate
axes. The command to produce plots like this is subplot, and the syntax is
subplot(rows,columns,plot number) This command splits a single figure
window into an array of subwindows, the array having rows rows and columns

columns. The last argument tells Matlab which one of the windows you are draw-
ing in, numbered from plot number 1 in the upper left corner to plot number
rows*columns in the lower right corner, just as printed English is read. See online
help for more information on subplots. For instance, to make two-row figure, do
this

subplot(2,1,1)

plot(x,f1)

subplot(2,1,2)

plot(x,f2)
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Grids and Plots in Multiple Dimensions

Matlab will display functions of the type F (x, y), either by making a contour
plot (like a topographic map) or by displaying the function as height above the
x y plane like a perspective drawing. You can also display functions like F(x, y),
where F is a vector-valued function, using vector field plots.

6.1 Making 2-D Grids

Before we can display 2-dimensional data, we need to define arrays X and Y that
span the region that you want to plot, then create the function F (x, y) over the
plane. First, you need to understand how Matlab goes from one-dimensional ar-
rays x and y to two-dimensional matrices X and Y using the commands meshgrid
and ndgrid. Begin by executing the following example.

Listing 6.1 (ch6ex1.m)

clear;close all;

% Define the arrays x and y

% Don't make the step size too small or you will kill the

% system (you have a large, but finite amount of memory)

x=-1:.1:1;

y=0:.1:1.5;

% Use meshgrid to convert these 1-d arrays into 2-d matrices

% of x and y values over the plane

[X,Y]=meshgrid(x,y);

% Get F(x,y) by using F(X,Y). Note the use of .* with X and Y

% rather than with x and y

F=(2-cos(pi*X)).*exp(Y);

% Plot the function

surf(X,Y,F);

xlabel('x');

ylabel('y');

The picture should convince you that Matlab did indeed make things two-dimensional,
and that this way of plotting could be very useful. But exactly how Matlab did it is
tricky, so pay close attention.

To understand how meshgrid turns one-dimensional arrays x and y into two-
dimensional matrices X and Y, consider the following simple example. Suppose
that the arrays x and y are given by

x=[1,2,3]

y=[4,5]

27
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The command [X,Y]=meshgrid(x,y) produces the following results:

(1,4)

(1,5)

(2,4) (3,4)

(2,5) (3,5)

1 2 3

4

5

Figure 6.1

X =
[

1 2 3
1 2 3

]
Y =

[
4 4 4
5 5 5

]
. (6.1)

Compare these matrices to Fig. 6.1 to see how they correspond to the small area of
x-y space that we are representing. Note that the y dimension entries are flipped
from what you might expect because of the difference in conventions for writing
matrices (left-to-right and top-to-bottom) versus plotting functions (left-to-right
and bottom-to-top).

With meshgrid, the first index of both X and Y is a y-index, since matrix
elements are indexed using the X(row,column) convention. For example, the
elements X(1,1) and X(2,1) both have value 1 because as the y-index changes,
x stays the same. Similarly, Y(1,1)=4 and Y(2,1)=5 because as the y-index
changes, y does change. This means that if we think of x having an array index i
and y having index j , then the two-dimensional matrices have indices

X ( j , i ) Y ( j , i ). (6.2)

But in physics we often think of two-dimensional functions of x and y in the form
F (x, y), i.e., the first position is for x and the second one is for y . Because we think
this way it would be nice if the matrix indices worked this way too, meaning that
if x = x(i ) and y = y( j ), then the two-dimensional matrices would be indexed as

X (i , j ) Y (i , j ) (6.3)

instead of in the backwards order made by meshgrid.
Matlab has a command called ndgrid which is similar to meshgrid but does

the conversion to two dimensions the other way round. For instance, with the
example arrays for x and y used above [X,Y]=ndgrid(x,y) would produce the
results

X =
 1 1

2 2
3 3

 Y =
 4 5

4 5
4 5

 (6.4)

These matrices have the indexes in the X (i , j ), Y (i , j ) order, but lose the spatial
correlation that meshgrid gives between Eq. (6.1) and Fig. 6.1.

Plots made either with surf(X,Y,F) or contour(X,Y,F) (discussed below)
will look the same with either grid. However, streamline plots require your data
to be in the format provided by meshgrid. You will need to be familiar with both
methods of creating a grid. You will have need to do it both ways, depending on
the circumstance.

6.2 Surface Plots

Now that we understand how to make two-dimensional grids, let’s make some
plots. Run the following example, read through the comments and watch what it
does.
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Listing 6.2 (ch6ex2.m)

clear; close all;

% Make the grid

x=-1:.1:1;y=0:.1:1.5;

[X,Y]=ndgrid(x,y);

F=(2-cos(pi*X)).*exp(Y);

% Now make a surface plot of the function

surf(X,Y,F); % or you can use mesh(X,Y,F) to make a wire plot

AZ=30;EL=45;

view(AZ,EL);

title('Surface Plot')

xlabel('x')

ylabel('y')

If you want to manually change the viewing angle of a surface plot, click on
the circular arrow icon on the figure window, then click and move the pointer
on the graph. Try it until you get the hang of it. You can also programmatically
set the viewing angle with the view command. Here’s a piece of code that flies
around the surface plot by continually changing the viewing angles and using the
pause command; we think you’ll be impressed.

Listing 6.3 (ch6ex3.m)

clear; close all;

x=-1:.1:1;

y=0:.1:1.5;

[X,Y]=ndgrid(x,y);

F=(2-cos(pi*X)).*exp(Y);

surf(X,Y,F);

title('Surface Plot')

xlabel('x')

ylabel('y')

EL=45;

for m=1:100

AZ=30+m/100*360;

view(AZ,EL);

pause(.1); % pause units are in seconds

end

The pause command in the loop allows Matlab the time to draw the plot. If
you don’t put it in, Matlab will not pause to draw the picture each iteration. This
same trick will let you make animations of both xy and surface plots.



30 Chapter 6 Grids and Plots in Multiple Dimensions

6.3 Vector Field Plots

Matlab will plot vector fields for you with arrows. This is a good way to visualize
flows, electric fields, magnetic fields, etc. The command that makes these plots
is quiver and the code below illustrates its use in displaying the electric field
of a line charge and the magnetic field of a long wire. Note that the vector field
components must be computed in Cartesian geometry.

Listing 6.4 (ch6ex4.m)

clear;close

x=-5.25:.5:5.25;y=x; % define the x and y grids (avoid (0,0))

[X,Y]=meshgrid(x,y);

% Electric field of a long charged wire

Ex=X./(X.^2+Y.^2);

Ey=Y./(X.^2+Y.^2);

quiver(X,Y,Ex,Ey) % make the field arrow plot

title('E of a long charged wire')

axis equal % make the x and y axes be equally scaled

% Magnetic field of a long current-carrying wire

Bx=-Y./( X.^2+Y.^2);

By=X./(X.^2+Y.^2);

% make the field arrow plot

figure

quiver(X,Y,Bx,By)

axis equal

title('B of a long current-carrying wire')

% The big magnitude difference across the region makes most arrows too small

% to see. This can be fixed by plotting unit vectors instead

% (losing all magnitude information, but keeping direction)

B=sqrt(Bx.^2+By.^2);

Ux=Bx./B;

Uy=By./B;

figure

quiver(X,Y,Ux,Uy);

axis equal

title('B(wire): unit vectors')

% Or, you can still see qualitative size information without such a big

% variation in arrow size by having the arrow length be logarithmic.

Bmin=min(min(B));

Bmax=max(max(B));

% s is the desired ratio between the longest arrow and the shortest one

s=2; % choose an arrow length ratio

k=(Bmax/Bmin)^(1/(s-1));

logsize=log(k*B/Bmin);

Lx=Ux.*logsize;

Ly=Uy.*logsize;
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figure

quiver(X,Y,Lx,Ly);

axis equal

title('B(wire): logarithmic arrows')

There may be too much detail to really see what’s going on in some field plots.
You can work around this problem by clicking on the zoom icon on the tool bar
and then using the mouse to define the region you want to look at. Clicking on
the zoom-out icon, then clicking on the figure will take you back where you came
from. Or double-click on the figure will also take you back.

6.4 Streamlines

In addition to plotting little arrows at each point in the vector field, you can plot
“streamlines.” For fluid dynamics, streamlines show the path that a particle would
follow if the arrows at each point represent the fluid velocity at that point. In
electricity and magnetism, flow lines for the electric and magnetic fields are the
field lines that you learned about in your introductory electricity and magnetism
course.

As mentioned above, the streamline plotting routine assumes that the grid
data was created in the meshgrid format rather than the ndgrid format.

Listing 6.5 (ch6ex5.m)

clear;close

%Define the position arrays x and y

[x,y] = meshgrid(0:0.1:1,0:0.1:1);

%Define the flow velocity arrays u and v

u = x;

v = -y;

%Create a quiver plot of the flow velocity

figure

quiver(x,y,u,v)

%Plot streamlines that start at different points along the line y=1.

startx = 0.1:0.1:1;

starty = ones(size(startx));

streamline(x,y,u,v,startx,starty);
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Make Your Own Functions

You will often need to build your own Matlab functions as you use Matlab to
solve problems. You can do this either by putting simple expressions into your
code by using Matlab’s anonymous function syntax, or by defining function files
with .m extensions called M-file functions.

7.1 Anonymous Functions

Matlab will let you define expressions inside a script for use as functions within
that script only. For instance, if you wanted to use repeated references to the
function

f (x, y) = sin(x y)

x2 + y2 (7.1)

you would use the following syntax (to make both a line plot in x with y = 2 and
to make a surface plot):

Listing 7.1 (ch7ex1.m)

clear;close all;

f = @(x,y) sin(x.*y)./(x.^2+y.^2);

x=-8:.1:8;

y=x;

plot(x,f(x,2))

[X,Y]=ndgrid(x,y);

figure

surf(X,Y,f(X,Y))

The second line in this listing creates a function f that is stored only in memory.
The symbol @ tells Matlab that the variable f contains a reference to a function
rather than a numeric value, and the items in parentheses afterwards indicate that
this function takes two arguments: x and y. The code sin(x.*y)./(x.^2+y.^2)
defines how the input values are used to create output values.

Anonymous functions are convenient in many cases, but to use them you
must be able to define your function in a single statement of Matlab code. Often
this is not possible because your functions will require logic or loops. In these
cases, you’ll need to use the more flexible m-file functions.
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7.2 M-file Functions

M-file functions are subprograms stored in text files with .m extensions. A func-
tion is different than a script in that the input parameters it needs are passed to it
with argument lists like Matlab commands; for example, think about sin(x) or
plot(x,y,'r-'). Here is an example of how you can code the function in (7.1)
as an m-file function rather than anonymous function.

Listing 7.2 (trig.m)

function f=trig(x,y)

f=sin(x.*y)./(x.^2+y.^2);

The first line of the function file is of the form

function output=name(input)

The word function is required, output is the name of the variable that the
function passes back to whomever called it, name should match the filename of
the script (e.g. “trig.m” above), and input is the argument list of the function.
When the function is called, the arguments passed in must match in number and
type defined in the definition. The m-file function must assign the output an
appropriate value before finishing.

To call the function, you to write a separate script like this

Listing 7.3 (calling.m)

clear;close all;

h=0.1;

x=-8:h:8;

y=x;

plot(x,trig(x,2))

[X,Y]=ndgrid(x,y);

figure

surf(X,Y,trig(X,Y))

The names of the input and output variables of a function are local to the
function, so you don’t have to worry about overwriting variables in the file that
called the function. However, this also means that the variables inside Matlab
functions are invisible in the command window or the calling m-file. For example,
you cannot reference the variable f in the calling.m script, nor can you access the
variable h in the trig.m script.

If you want variables used outside the function to be visible inside the function
and vice-versa, use Matlab’s global command. This command declares certain
variables to be visible in all Matlab routines in which the global command appears.
For instance, if you put the command

global a b c;
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both in a script that calls trig.m and in trig.m itself, then if you give a, b, and
c values in the main script, they will also have these values inside trig.m. This
construction will be especially useful when we use Matlab’s differential equation
solving routines in Chapter 9.

7.3 Functions With Multiple Outputs

Here is an example of a function that returns more than one output variable. This
function takes as input an integer n, a width a in nanometers, and an integer
NPoints and returns the energy level and wavefunction for a infinite square well
of width a.

Listing 7.4 (SquareWell.m)

function [x,psi,E] = SquareWell(n,a,NPoints)

% Calculate the energy and wavefunction for an

% electron in an infinite square well

%

% Inputs: n is the energy level; must be a positive integer

% a is the well width in nanometers

% NPoints is the number of points in the x grid

%

% Outputs: x is the grid for the plot, measured in nanometers

% psi is the normalized wave function

% E is the energy of the state in electron-volts

% Make the x-grid

xmin = 0;

xmax = a;

x = linspace(xmin,xmax,NPoints);

% Wave number for this energy level

k = n * pi / a;

% Calculate the wave function

psi = sqrt(2/a) * sin(k*x);

global hbar m

% Calculate energy in electron-volts

E = n^2*pi^2*hbar^2 / (2*m*(a*1e-9)^2) / 1.6e-19;

Note that when a function returns more than one output variable, the names
of these results are put in square brackets, as in SquareWell.m. When you call
the function, you use the same type of format to receive the output, as in this
example

Listing 7.5 (ch7ex5.m)

clear; close all;

global hbar m



36 Chapter 7 Make Your Own Functions

% Constants in MKS units

hbar = 1.05e-34;

m=9.11e-31;

% remember that n must be a positive integer

n=3;

% Set the width to an Angstrom

a=0.1;

% Get the values

[x,psi,Energy] = SquareWell(n,a,100);

% Make the plot and label it

plot(x,psi)

s=sprintf('\\Psi_%g(x); a=%g nm; Energy=%g eV',n,a,Energy);

title(s);

xlabel('x (nm)');

ylabel('\Psi(x)');

Note that we didn’t have to call the variables the same names when we used them
outside the function in the main script (e.g. we used Energy instead of E). This
is because all variables inside functions are local to these programs and Matlab
doesn’t even know about them in the command window. Confirm this by trying
to display the value of E in the command window.

E

However, note that we did declare the variables hbar and m as global variables so
that the values that we set in our calling script are available inside the function
also.
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Derivatives and Integrals

In numerical physics we represent functions like f (x) as discrete points on
a grid. If you are careful, you can use these discrete values to quickly give you
numerical approximations to the derivative f ′(x) and the integral

∫ b
a f (x)d x.

8.1 Derivatives

The instructor of your first calculus class probably introduced the derivative with
a formula like this:

d f

d x
= lim

h→0

f (x +h)− f (x)

h
. (8.1)

To do a derivative numerically on a grid, we use the following slightly different,
but numerically more accurate, form:

d f

d x
= lim

h→0

f (x +h)− f (x −h)

2h
. (8.2)

It’s more accurate because it’s centered about the value of x where we want the
derivative to be evaluated.

Figure 8.1 The centered derivative
approximation works best.

To see the importance of centering, consider Fig. 8.1. In this figure we are
trying to find the slope of the tangent line at x = 0.4. The usual calculus-book
formula uses the data points at x = 0.4 and x = 0.5, giving tangent line a. It should
be obvious that using the “centered” pair of points x = 0.3 and x = 0.5 to obtain
tangent line b is a much better approximation.

As an example of what a good job centering does, try differentiating sin x this
way:

dfdx=(sin(1+1e-5)-sin(1-1e-5))/2e-5

Now take the ratio between the numerical derivative and the exact answer cos(1)
to see how well this does

format long e dfdx/cos(1)

You can also take the second derivative numerically using the formula

d 2 f

d x2 = lim
h→0

f (x +h)−2 f (x)+ f (x −h)

h2 . (8.3)

For example,

d2fdx2=(sin(1+1e-4)-2*sin(1)+sin(1-1e-4))/1e-8

Again, we take the ratio between the numerical derivative and the exact answer
−sin(1) to see how well this does

37
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format long e d2fdx2/(-sin(1))

You may be wondering how to choose the step size h. This is a little compli-
cated; take a course on numerical analysis and you can see how it’s done. But
until you do, here’s a rough rule of thumb. If f (x) changes significantly over an
interval in x of about L, approximate the first derivative of f (x) using h = 10−5L;
to approximate the second derivative use h = 10−4L.

If you want to differentiate a function defined by arrays x and f , then the step
size is already determined; you just have to live with the accuracy obtained by
using h =∆x, where ∆x is the spacing between points in the x array. Notice that
the data must be evenly spaced for the example we are going to give you to work.

The idea is to approximate the derivative at x = x j in the array by using the
function values f j+1 and f j−1 like this

f ′(x j ) ≈ f j+1 − f j−1

2h
. (8.4)

This works fine for an N element array at all points from x2 to xN−1, but it doesn’t
work at the endpoints because you can’t reach beyond the ends of the array to
find the needed values of f . So we use this formula for x2 through xN−1, then use
linear extrapolation to find the derivatives at the endpoints, like this

Listing 8.1 (ch8ex1.m)

clear; close all;

dx=1/1000; x=0:dx:4; N=length(x); f=sin(x);

% Do the derivative at the interior points all at once using

% the colon command

dfdx(2:N-1)=(f(3:N)-f(1:N-2))/(2*dx);

% linearly extrapolate to the end points

dfdx(1)=2*dfdx(2)-dfdx(3); dfdx(N)=2*dfdx(N-1)-dfdx(N-2);

% now plot both the approximate derivative and the exact

% derivative cos(x) to see how well we did

plot(x,dfdx,'r-',x,cos(x),'b-')

% also plot the difference between the approximate and exact

figure plot(x,dfdx-cos(x),'b-') title('Difference between approximate and

exact derivatives')

Here is an example of a function that takes as inputs an array y representing
the function y(x), and d x the x-spacing between function points in the array. It
returns yp and ypp, numerical approximations to the first and second derivatives.

Listing 8.2 (derivs.m)

function [yp,ypp]=derivs(y,dx)
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% This function numerically differentiates the array y which

% represents the function y(x) for x-data points equally spaced

% dx apart. The first and second derivatives are returned as

% the arrays yp and ypp which are the same length as the input

% array y. Either linear or quadratic extrapolation is used

% to load the derivatives at the endpoints. The user decides

% which to use by commenting out the undesired formula below.

% load the first and second derivative arrays

% at the interior points

N=length(y); yp(2:N-1)=(y(3:N)-y(1:N-2))/(2*dx);

ypp(2:N-1)=(y(3:N)-2*y(2:N-1)+y(1:N-2))/(dx^2);

% now use either linear or quadratic extrapolation to load the

% derivatives at the endpoints

% linear

%yp(1)=2*yp(2)-yp(3);yp(N)=2*yp(N-1)-yp(N-2);

%ypp(1)=2*ypp(2)-ypp(3);ypp(N)=2*ypp(N-1)-ypp(N-2);

% quadratic

yp(1)=3*yp(2)-3*yp(3)+yp(4); yp(N)=3*yp(N-1)-3*yp(N-2)+yp(N-3);

ypp(1)=3*ypp(2)-3*ypp(3)+ypp(4); ypp(N)=3*ypp(N-1)-3*ypp(N-2)+ypp(N-3);

To see how to call this function, you can use the following script

Listing 8.3 (ch8ex3.m)

clear; close all;

% Build an array of function values

x=0:.01:10; y=cos(x);

% Then, since the function returns two arrays in the form

% [yp,ypp], you would use it this way:

[fp,fpp]=derivs(y,.01);

% plot the approximate derivatives

plot(x,fp,'r-',x,fpp,'b-') title('Approximate first and second derivatives')

Matlab also has its own routines for doing derivatives; look in online help for
diff and gradient.

8.2 Integrals

Definite Integrals

There are many ways to do definite integrals numerically, and the more accurate
these methods are the more complicated they become. But for everyday use the
midpoint method usually works just fine, and it’s very easy to code. The idea of
the midpoint method is to approximate the integral

∫ b
a f (x)d x by subdividing
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the interval [a,b] into N subintervals of width h = (b −a)/N and then evaluating
f (x) at the center of each subinterval. We replace f (x)d x by f (x j )h and sum over
all the subintervals to obtain an approximate integral. This method is shown in
Fig. 8.2. Notice that this method should work pretty well over subintervals like
[1.0,1.5] where f (x) is nearly a straight line, but probably is lousy over subintervals
like [0.5,1.0] where the function curves.

Figure 8.2 The midpoint rule
works OK if the function is nearly a
straight line across each interval.

Listing 8.4 (ch8ex4.m)

clear; close all;

N=1000; a=0; b=5; dx=(b-a)/N;

x=.5*dx:dx:b-.5*dx; % build an x array of centered values

f=cos(x); % load the function

% do the approximate integral

s=sum(f)*dx

% compare with the exact answer, which is sin(5)

err=s-sin(5)

If you need to do a definite integral in Matlab, this is an easy way to do it. And
to see how accurate your answer is, do it with 1000 points, then 2000, then 4000,
etc., and watch which decimal points are changing as you go to higher accuracy.

Indefinite integrals

And what if you need to find the indefinite integral? If you have arrays of (x, f (x)),
you can quickly approximate the indefinite integral function

∫ x
a f (x ′)d x ′ using

Matlab’s cumtrapz functions. This function takes an array of function values in
y and an x-spacing dx and returns an approximate indefinite integral function
g (x) = ∫ x

a y(x ′)d x ′ using the trapezoid rule. This rule says to use as the height of
the rectangle on the interval of width h the average of the function values on the
edges of the interval: ∫ x+h

x
y(x ′)d x ′ ≈ y(x)+ y(x +h)

2
h (8.5)

Because cumtrapz uses the trapezoid rule instead of the midpoint rule, the array
of function values must start at x = a and be defined at the edges of the subin-
tervals of size h rather than at the centers. Once you have your function values
stored in an array, say f, you calculate the indefinite integral like this:

g=cumtrapz(f)*dx

where dx is the point spacing.
Here is a function that does essentially the same calculation as cumtrapz, but

is coded to be readable. This function takes dx as an argument and multiplies it at
each step of the calculation, whereas cumtrapz assumes a step size of one. This
code is more intuitive, but less efficient. Study this code to see how it works, but
use cumtrapz and multiply by dx as above when you actually do calculations.
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Listing 8.5 (indefint.m)

function g=indefint(y,dx)

% returns the indefinite integral of the function

% represented by the array y. y(1) is assumed to

% be y(a), the function value at the lower limit of the

% integration. The function values are assumed to be

% values at the edges of the subintervals rather than

% the midpoint values. Hence, we have to use the

% trapezoid rule instead of the midpoint rule:

%

% integral(y(x)) from x to x+dx is (y(x)+y(x+dx))/2*dx

% The answer is returned as an array of values defined

% at the same points as y

% the first value of g(x) is zero because at this first value

% x is at the lower limit so the integral is zero

g(1)=0;

N=length(y);

% step across each subinterval and use the trapezoid area

% rule to find each successive addition to the indefinite

% integral

for n=2:N

% Trapezoid rule

g(n)=g(n-1)+(y(n-1)+y(n))*.5*dx;

end

8.3 Matlab Integrators

For simple integrals of functions sampled at discrete points (e.g. measured data)
it is usually fine to use trapz to calculate a definite integral, or cumtrapz to
calculate an indefinite integral. Both functions treat the function as little line
segments connecting the data points in your array. Performing integrals on raw
measured data is usually a bad idea unless your data is very clean. If your data is
noisy, you’ll probably want to consider smoothing it or fitting it to a curve before
trying to take an integral.

If you want to calculate the integral of a function rather than data stored in
an array, you have more options because you can calculate function values at
arbitrary points rather than having to interpolate between array elements. For
this type of problem, use the command integral (or integral2, or integrate3
for multiple dimension integrals). These functions take references to a Matlab
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function in their arguments (like fzero, fsolve, and fminsearch did) and adjust
the grid step size to optimize accuracy.

The Matlab routine integral adaptively approximates the function with
parabolas (as shown in Fig. 8.3) or other functions instead of the rectangles of the
midpoint method. The parabolic method is called Simpson’s Rule. As you can see
from Fig. 8.3, parabolas do a much better job, making quad a standard Matlab
choice for integration. To use the integral command, you need to define your
function using an anonymous function. For example, to define an anonymous
function to represent the function f (x) = cos(x)e−x , you use this syntax:

f=@(x) exp(-x).*cos(x)|

After you have defined f this way, you can use it just like built-in Matlab functions
like sin and cos. For instance, try these commands after defining f as above:

f(1)

f(1:10)

Using the anonymous function syntax, we can use integral to integrate cos(x)e−x

from 0 to 2 like this:

Figure 8.3 Fitting parabolas (Simp-
son’s Rule) works better.

Listing 8.6 (ch8ex6.m)

clear; close all;

f=@(x) exp(-x).*cos(x)

integral(f,0,2,'AbsTol',1e-8)

Matlab also has a command integrate2 that does double integrals. Here’s
how to use it to integrate the function f (x, y) = cos(x y).

Listing 8.7 (f2int.m)

clear; close all;

f = @(x,y) cos(x.*y);

integral2(f,0,2,0,2,'AbsTol',1e-10)
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Ordinary Differential Equations

Matlab provides some powerful numerical solvers and gives you a lot of
control over how they work. It is often more efficient to use Matlab for hard
differential equations than to use Mathematica. In this chapter we review the
methods used by numerical differential equation solvers and write a couple of
crude solvers to see how they work. Then we introduce you to the solvers that
Matlab provides.

9.1 General form of Ordinary Differential Equations

The standard way to write differential equations in numerical work is as a first
order system, like this:

du

d t
= F(u) (9.1)

where u is a vector of unknown functions of the parameter t (often, but not always,
t is time in physics problems) and where F(u) is a vector-valued function of a
vector argument. For a system with three unknown functions x, y , and z we
would write

d

d t

 u1(t )
u2(t )
u3(t )

=
 f1(u1,u2,u3)

f2(u1,u2,u3)
f3(u1,u2,u3)

 . (9.2)

where
u1 ≡ x

u2 ≡ y

u3 ≡ z

(9.3)

This makes perfect sense to a mathematician, but physicists usually need exam-
ples. Here are a couple.

Decay of a Radioactive Sample

If there are N atoms of an unstable element with an exponential decay rate of γ
then the differential equation describing how N decreases in time is

d N

d t
=−γN (9.4)

which is just a single first order differential equation whose solution is

N (t ) = N (0)e−γt .

In this case u is the one-element vector with u1 = N and F is the one element
vector F(u) =−γu1
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Simple Harmonic Oscillator

The equation of motion of a mass m bouncing in a weightless environment on a
spring with spring constant k is

d 2x

d t 2 =−ω2
0x where ω0 =

√
k

m
(9.5)

which has the fundamental solution

x(t ) = A cosω0t +B sinω0t

This is a second order differential equation rather than a first order system, so we
need to change its form to fit Matlab’s format. This is done by using position x(t )
and velocity v(t ) = d x/d t as two unknown functions of time. The first order set
consists of the definition of v(t ) in terms of x(t ) and the second order differential
equation with d 2x/d t 2 replaced by d v/d t :

d x

d t
= v

d v

d t
= −ω2

0x . (9.6)

It is always possible to use this trick of defining new functions in terms of deriva-
tives of other functions to convert a high order differential equation to a first order
set.

In this case, the vector u from Eq. (9.1) is

u =
(

x
v

)
. (9.7)

In this notation, our system of equations becomes

du1

d t
= u2

du2

d t
=−ω2

0u1

(9.8)

So the vector F(u) is

F(u) =
(

u2

−ω2
0u1

)
(9.9)

9.2 Solving ODEs numerically

So let’s assume that we have a first order set. How can we solve it? We are going to
show you two methods. The first is simple, intuitive, and inaccurate. The second
is a little more complicated, not terribly intuitive, but pretty accurate. There are
many ways to numerically solve differential equations and the two we will show
you are rather crude; Matlab has its own solvers which are better, but you will
better appreciate what they can do if you learn the ideas they are based on by
studying these two methods.
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Euler’s Method

The first method is called Euler’s Method (say “Oiler’s Method”), and even though
it’s pretty bad, it is the basis for many better methods. Here’s the idea.

First, quit thinking about time as a continuously flowing quantity. Instead we
will seek the solution at specific times tn separated by small time steps τ. Hence,
instead of u(t ) we will try to find un = u(tn). The hope is that as we make τ smaller
and smaller we will come closer and closer to the true solution.

Since we are going to use discrete times and since the initial conditions tell us
where to start, what we need is a rule that tells us how to advance from un to un+1.
To find this rule let’s approximate the differential equation du/d t = F this way

un+1 −un

τ
= F(un , tn) . (9.10)

In doing this we are assuming that our solution is represented as an array of values
of both t and u, which is the best that Matlab can do. If we already know un , the
solution at the present time tn , then the equation above can give us u one time
step into the future at time tn+1 = tn +τ:

un+1 = un +F(un , tn)τ . (9.11)

This is a little abstract, so let’s use it to approximately solve the harmonic
oscillator equation. For this case Matlab would use for u the vector [x,v] and
for F the vector [v,-w∧2*x]. (Stare at the harmonic oscillator equation given in
Eq. (9.6) as a first order system until you can see that this is true.) Here’s a script
that uses Euler’s method to solve the harmonic oscillator equation.

Listing 9.1 (ch9ex1.m)

clear; close all;

% Use Euler's method to solve the harmonic oscillator equation

% set the angular frequency

w=1;

% decide how long to follow the motion, 10 periods in this case

tfinal=2*pi/w*10;

% choose the number of time steps to take

N=input(' Enter the number of time steps to take - ')

% Pre-allocate the arrays to make the code faster

t=zeros(1,N+1);

x=zeros(1,N+1);

v=zeros(1,N+1);

% calculate the time step

tau=tfinal/N;

% initialize the time array

t(1)=0;
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% set the initial values of position and velocity

x(1)=1;v(1)=0;

% Do Euler's method for N time steps

for n=1:N

t(n+1)=n*tau;

x(n+1)=x(n) + v(n)*tau;

v(n+1)=v(n) - w^2*x(n)*tau;

end

% plot the result and compare it with the exact solution

% which is x(t)=cos(w*t)

plot(t,x,'r-',t,cos(w*t),'b-')

When you run this code you will see that even if you take 1000 steps, the solution
is not very good. No matter how small tau is, if you run long enough Euler’s
method will blow up.

Also note that if you try to run this script for many steps (N = 50,000, for
instance) it runs slow. The reason is that you keep making the t , x, and v arrays
longer and longer in the loop, so Matlab has to allocate additional memory for
them in each step. But if you define them ahead of time to be big enough (see the
commented line just after the line N=input... in the code above), the arrays are
defined to be big enough before you start the loop and no time will be wasted
increasing the array sizes. Run this script again with the line of code beginning
with t=zeros(1,N+1)... uncommented and watch how fast it runs, even if you
choose N = 500,000.

Second-order Runge-Kutta

Here is a method which is still quite simple, but works a lot better than Euler.
But it is, in fact, just a modification of Euler. If you go back and look at how we
approximated du/d t in Euler’s method you can see one thing that’s wrong with it:
the derivative is not centered in time:

un+1 −un

τ
= F(un , tn) . (9.12)

The left side of this equation is a good approximation to the derivative halfway
between tn and tn+1, but the right side is evaluated at tn . This mismatch is one
reason why Euler is so bad.

Runge-Kutta attempts to solve this centering problem by what looks like a
cheat: (1) Do an Euler step, but only by τ/2 so that we have an approximation
to [x,v] at tn+1/2. These half-step predictions will be called [xhalf,vhalf].
(2) Then evaluate the function F(u, t) at these predicted values to center the
derivative

un+1 −un

τ
= F(un+1/2, tn+1/2) . (9.13)
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This is the simplest example of a predictor-corrector method and it works lots
better than Euler, as you can see by running the code given below. (Step (1) above
is the predictor; step (2) is the corrector.)

You can see this difference between Runge-Kutta and Euler in Fig. 9.1, where
the upward curve of the solution makes Euler miss below, while Runge-Kutta’s
half-way-out correction to the slope allows it to do a much better job.

Figure 9.1 Runge-Kutta antici-
pates curving and beats Euler.

Listing 9.2 (ch9ex2.m)

clear;close all;

% Runge-Kutta second order approximate solution

% to the harmonic oscillator

% set the angular frequency

w=1;

% decide how long to follow the motion, 10 periods in this case

tfinal=2*pi/w*10;

% choose the number of time steps to take

N=input(' Enter the number of time steps to take - ')

% calculate the time step

tau=tfinal/N;

% initialize the time array

t(1)=0;

% set the initial values of position and velocity

x(1)=1;v(1)=0;

% Do Runge-Kutta for N time steps

for n=1:N

t(n+1)=n*tau;

% Predictor step .5*tau into the future

xhalf=x(n) + v(n)*tau*.5;

vhalf=v(n) - w^2*x(n)*tau*.5;

% Corrector step

x(n+1)=x(n) + vhalf*tau;

v(n+1)=v(n) - w^2*xhalf*tau;

end

% plot the result and compare it with the exact solution

% x(t)=cos(w*t) and v(t)=-w*sin(w*t)

plot(t,x,'r-',t,cos(w*t),'b-')
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9.3 Matlab’s Differential Equation Solvers

ode23 An explicit, one-step Runge-
Kutta low-order (2-3) solver.
(Like the second-order Runge-
Kutta method predictor-
corrector discussed above.)
Suitable for problems that ex-
hibit mild stiffness, problems
where lower accuracy is accept-
able, or problems where F(t ,x)
is not smooth (e.g. discontinu-
ous).

ode45 An explicit, one-step Runge-
Kutta medium-order (4-5)
solver. Suitable for non-stiff
problems that require moder-
ate accuracy. This is typically
the first solver to try on a new
problem.

ode113 A multi-step Adams-
Bashforth-Moulton PECE
solver of varying order (1-13).
Suitable for non-stiff problems
that require moderate to high
accuracy involving problems
where F(t ,x) is expensive to
compute. Not suitable for
problems where F(t ,x) is dis-
continuous or has discontinu-
ous lower-order derivatives.

ode23s An implicit, one-step modi-
fied Rosenbrock solver of order
2. Suitable for stiff problems
where lower accuracy is ac-
ceptable, or where F(t ,x) is
discontinuous. Stiff problems
are those in which there are
several different rates of change
involved whose sizes differ by
several orders of magnitude, or
more.

ode15s An implicit, multi-step solver
of varying order (1-5). Suitable
for stiff problems that require
moderate accuracy. This is
typically the solver to try if
ode45 fails or is too inefficient.

Table 9.1 List from Mastering
Matlab 6 of some of Matlab’s differ-
ential equation solvers.

Matlab has its own differential equation solvers and they are more accurate than
the simple methods discussed above. Table 9.1 shows a list of these Matlab
functions and what they do. All of these functions work in the same basic way:

1. You define the right-hand side function for your set of first order differential
equations in an M-file, say rhs.m.

2. You choose the beginning and ending times to pass into the Matlab ODE
function.

3. You put the initial column vector u in the Matlab variable u0 to define the
initial conditions for your problem.

4. You choose the ode solver control options by using Matlab’s odeset func-
tion.

5. You ask Matlab to give you a column of times t and a matrix of u-values by
calling one of the ode solvers like this

[t,u]=ode45(@rhs,[tstart,tfinal],u0,options);

6. The differential equation solver then returns a column vector t of the dis-
crete times between tstart and tfinal which ode45 chose to make the
solution be as accurate as you asked it to be when you used odeset. You
will also receive a matrix u with as many columns as you have unknowns
in your set of ode’s and with as many rows as you have times in t. If you
make the required accuracy smaller, you will receive more data points. If
the position x is called u(1) in your set of equations then you can obtain
an array containing these positions by extracting the first column, like this

x=u(:,1);

Once you have extracted the different components of your solution from u,
i.e., x, vx , y , vy , z, vz , etc., you can use Matlab’s plotting and data analysis
capabilities to slice and dice the data anyway you want.

An important point that sometimes hangs students up is that the data points
that Matlab returns will not be equally spaced in time. If you just want the solution
at certain pre-set times [tn], replace the 2-element array [tstart,tfinal] with
an array of the times that you want: [t1,t2,...,tN]. For example, you could re-
place [tstart,tfinal]with the equally spaced array of times tstart:dt:tfinal.
Alternately, you can use Matlab’s interpolation functions to interpolate the output
of ode45 onto an equally spaced time grid. We’ll illustrate this method in the next
chapter.

Below you will find two sample scripts odetest and rhs which can use any
of these Matlab solvers to solve and plot the solution of the harmonic oscillator
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equation. Notice that in rhs.mwe have a bunch of comments to remind ourselves
what each slot in the u vector represents. We recommend you get in this habit, or
you will drive yourself crazy trying to debug your code.

Listing 9.3 (ch9ex3.m)

clear;close all;

% declare the oscillator frequency to be global and set it

global w0;

w0=1;

% set the initial and final times

tstart=0;tfinal=200;

% set the initial conditions in the y0 column vector

u0=zeros(2,1);

u0(1)=.1; % initial position

u0(2)=0; % initial velocity

% set the solve options

options=odeset('RelTol',1e-8);

% do the solve

[t,u]=ode45(@rhs,[tstart,tfinal],u0,options);

% unload the solution that comes back in y into x and v arrays

x=u(:,1);v=u(:,2);

% plot the position vs. time

plot(t,x)

title('Position vs. Time')

% make a "phase-space" plot of v vs. x

figure

plot(x,v)

title('Phase Space Plot (v vs. x)')

Listing 9.4 (rhs.m)

function F=rhs(t,u)

% right-hand side function for Matlab's ODE solver,

% simple harmonic oscillator example

% Write comments to remind yourself how the variables are arranged in u.

% In our case we will use:

% u(1) -> x

% u(2) -> v

% declare the frequency to be global so its value

% set in the main script can be used here

global w0;

% make the column vector F filled
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% with zeros

F=zeros(length(u),1);

% Now build the elements of F

% Recall that in our ordering of the vector u we have:

%

% du(1) dx

% ---- = F(1) -> -- = v

% dt dt

%

% so the equation dx/dt=v means that F(1)=u(2)

F(1)=u(2);

% Again, in our ordering we have:

%

% du(2) dv

% ---- = F(2) -> -- = -w0^2*x

% dt dt

%

% so the equation dv/dt=-w0^2*x means that F(2)=-w0^2*u(1)

F(2)=-w0^2*u(1);

You can write the rhs function more compactly using anonymous functions.
For the example above, you could do this as

rhs = @(t,u)[u(2);-w0^2*u(1)];

[t,u] = ode45(rhs,[tstart,tfinal],u0,options);

rather than writing a separate m-file function. The anonymous function method
has the feature that there are no global variables to cause interesting debugging
problems. It is also much more compact. But for more complicated systems of
differential equations, it can become hard to read the code.

9.4 Event Finding with Differential Equation Solvers

Something you will want to do with differential equation solvers is to find times
and variable values when certain events occur. For instance, suppose we are
solving the simple harmonic oscillator and we want to know when the position of
the oscillator goes through zero with positive velocity, as well as when the velocity
is zero and decreasing. We have good news and bad news. The good news is that
Matlab knows a way to do this. The bad news is that the way is a little involved.
If you try to figure out how it works from online help you will be confused for
a while, so we suggest that you use the example files given below. Read them
carefully because we have put all of the explanations about how things work in the
codes as comments. The main file is eventode.m and its right-hand side function
is eventrhs.m. There is also an additional M-file to control the event-finding
called events.m.
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Listing 9.5 (ch9ex5.m)

% example of event finding in Matlab's ode solvers

clear;close;

dt=.01; % set the time step

u0=[0;1]; % put initial conditions in the [x;vx] column vector

% turn the eventfinder on by specifying the name of the M-file

% where the event information will be processed (events.m)

options=odeset('Events',@events,'RelTol',1e-6);

% call ode45 with event finding on

% and a parameter omega passed in

omega=1;

[t,u,te,ue,ie]=ode45(@eventrhs,[0,20],u0,options,omega);

% Here's what the output from the ode solver means:

% t: array of solution times

% u: solution vector, u(:,1) is x(t), u(:,2) is vx(t)

% te: array of event times

% ue: solution vector at the event times in te

% ie: index for the event which occurred, useful when you

% have an array of events you are watching instead of

% just a single type of event. In this example ie=1

% for the x=0 crossings, with x increasing, and ie=2

% for the vx=0 crossings, with vx decreasing.

% separate the x=0 events from the vx=0 events

% by loading x1 and v1 with the x-positions and

% v-velocities when x=0 and by loading x2 and v2

% with the positions and velocities when v=0

n1=0;n2=0;

for m=1:length(ie)

if ie(m)==1

n1=n1+1;

% load event 1: x,v,t

x1(n1)=ue(m,1);v1(n1)=ue(m,2);t1(n1)=te(m);

end

% load event 2: x,v,t

if ie(m)==2

n2=n2+1;

x2(n2)=ue(m,1);v2(n2)=ue(m,2);t2(n2)=te(m);

end

end

% plot the harmonic oscillator position vs time

plot(t,u(:,1),'g-')

hold on

% plot the x=0 crossings with red asterisks and the v=0

% crossings with blue asterisks
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plot(t1,x1,'r*')

plot(t2,x2,'b*')

hold off

Listing 9.6 (eventrhs.m)

function rhs=eventrhs(t,u,omega)

% eventrhs.m, Matlab function to compute [du(1)/dt;du(2)/dt]

% right-hand side for the simple harmonic oscillator

% make sure rhs is a column vector

rhs(1,1)=u(2);

rhs(2,1)=-omega^2*u(1);

Listing 9.7 (events.m)

function [value,isterminal,direction] = events(t,u,omega)

% function to control event finding by Matlab's ode solvers

% NOTE: the argument list for the events function (t,u,omega) must be exactly

% the same as the argument list for the right-hand side function (t,u,omega).

% If they don't match you will get the error "Too many input arguments", which

% doesn't make sense. Hence this note.

% Locate the time and velocity when x=0 and x is increasing

% value array: same dimension as the solution u. An event is

% defined by having some combination of the

% variables be zero. Since value has the same size

% as u (2 in this case) we can event find on two

% conditions. Should be a column vector

% load value(1) with the expression which,

% when it is zero, defines the event, u(1)=0 in this case.

value(1,1) = u(1);

% load value(2) with a second event condition, vx=0

% (u(2)=0) in this case. If you don't want a second

% event just set value(2)=1 so it is never 0.

value(2,1)=u(2);

% this vector tells the integrator whether

% to stop or not when the event occurs.

% 1 means stop, 0 means keep going. isterminal

% must have the same length as y (2 in this case).

% Should be a column vector

isterminal = [0 ; 0];

% direction modifier on the event:
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% 1 means value=0 and is increasing;

% -1 means value=0 and is decreasing;

% 0 means value is zero and you don't care

% whether it is increasing or decreasing.

% direction must have the same length as y.

% should be a column vector

direction = [1 ; -1];
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Interpolation and Extrapolation

In computational physics we usually represent functions as arrays of values
at discrete points in time and space. But we often want to be able to find function
values at points not in the arrays. Finding function values between data points in
the array is called interpolation; finding function values beyond the endpoints
of the array is called extrapolation. A common way to do both is to use nearby
function values to define a polynomial approximation to the function that is pretty
good over a small region. Both linear and quadratic function approximations will
be discussed here.

Figure 10.1 Linear interpolation
only works well over intervals
where the function is straight.

10.1 Manual Interpolation and Extrapolation

Linear approximation

A linear approximation can be obtained with just two data points, say (x1, y1)
and (x2, y2). You learned a long time ago that two points define a line, and the
two-point formula for a line is

y = y1 + (y2 − y1)

(x2 −x1)
(x −x1) (10.1)

This formula can be used between any two data points to linearly interpolate. For
example, if x in this formula is half-way between x1 and x2 at x = (x1 +x2)/2 then
it is easy to show that linear interpolation gives the obvious result y = (y1 + y2)/2.

But you must be careful when using this method that your points are close
enough together to give good values. In Fig. 10.1, for instance, the linear approxi-
mation to the curved function represented by the dashed line “a” is pretty poor
because the points x = 0 and x = 1 on which this line is based are just too far apart.
Adding a point in between at x = 0.5 gets us the two-segment approximation “c”
which is quite a bit better. Notice also that line “b” is a pretty good approximation
because the function doesn’t curve much.

This linear formula can also be used to extrapolate. A common way extrapola-
tion is often used is to find just one more function value beyond the end of a set
of function pairs equally spaced in x. If the last two function values in the array
are fN−1 and fN , it is easy to show that the formula above gives the simple rule

fN+1 = 2 fN − fN−1 (10.2)

You must be careful here as well: segment “d” in Fig. 10.1 is the linear extrapo-
lation of segment “b”, but because the function starts to curve again “d” is a lousy
approximation unless x is quite close to x = 2.

55



56 Chapter 10 Interpolation and Extrapolation

Quadratic approximation

Quadratic interpolation and extrapolation are more accurate than linear because
the quadratic polynomial ax2 +bx + c can more easily fit curved functions than
the linear polynomial ax +b. Consider Fig. 10.2. It shows two quadratic fits to
the curved function. The one marked “a” just uses the points x = 0,1,2 and is not
very accurate because these points are too far apart. But the approximation using
x = 0,0.5,1, marked “b”, is really quite good, much better than a two-segment
linear fit using the same three points would be.

Figure 10.2 Quadratic interpola-
tion follows the curves better if the
curvature doesn’t change sign.

To derive the quadratic interpolation and extrapolation function, we assume
that we have three known points, (x1, y1), (x2, y2), and (x3, y3). If our parabola
y = ax2 +bx + c is to pass through these three points, then the following set of
equations must hold

y1 = ax2
1 +bx1 + c

y2 = ax2
2 +bx2 + c

y3 = ax2
3 +bx3 + c

(10.3)

Unfortunately, when you solve this set of equations for a, b, and c, the formulas
are ugly. If we simplify to the case where the three points are part of an equally
spaced grid, things are prettier. Let’s assume equally spaced points spaced by h,
so that x1 = x2 −h and x3 = x2 +h. In this case, the solutions are1

a = y1 −2y2 + y3

2h2

b = y3 − y1

2h
−2x2a

c = y2 +x2
y1 − y3

2h
+x2

2 a

(10.4)

With these coefficients, we can quickly find approximate y values near our
three points using y = ax2+bx+c . This formula is very useful for getting function
values that aren’t in the array. For instance, we can use this formula to obtain the
interpolation approximation for a point half way between two known points, i.e.
yn+1/2 ≡ y(xn +h/2)

yn+1/2 =−1

8
yn−1 + 3

4
yn + 3

8
yn+1 (10.5)

1It is common in numerical analysis to derive this result using Taylor’s theorem, which approxi-
mates the function y(x) near the point x = a as

y(x) ≈ y(a)+ y ′(a)(x −a)+ 1

2
y ′′(a)(x −a)2 +·· ·

If we ignore all terms beyond the quadratic term in (x −a)) near a point (xn , yn ), use an array of
equally spaced x values, and employ numerical derivatives as discussed in Chapter 8, the Taylor’s
series becomes

y(x) ≈ yn + yn+1 − yn−1

2h
(x −xn )+ yn−1 −2yn + yn+1

2h2
(x −xn )2 .

This can be solved to find a, b, and c.
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and also to find the quadratic extrapolation rule for a data point one grid spacing
beyond the last point, i.e. yN+1 ≡ y(xN +h)

yN+1 = 3yN −3yN−1 + yN−2 . (10.6)

10.2 Matlab interpolaters

Interp1

Matlab has its own interpolation routine interp1which does the things discussed
in the previous two sections automatically. Suppose you have a set of data points
{x, y} and you have a different set of x-values {xi } for which you want to find the
corresponding {yi } values by interpolating in the {x, y} data set. You simply use
any one of these three forms of the interp1 command:

yi=interp1(x,y,xi,'linear')

yi=interp1(x,y,xi,'pchip')

yi=interp1(x,y,xi,'spline')

We haven’t talked about spline interpolation yet. It is a piece-wise polynomial fit
that typically does an excellent job of matching smooth functions.

Here is an example of how each of these three types of interpolation works on
a crude data set representing the sine function.

Listing 10.1 (ch10ex1.m)

clear; close all;

% make the crude data set with dx too big for

% good accuracy

dx=pi/5;

x=0:dx:2*pi;

y=sin(x);

% make a fine x-grid

xi=0:dx/20:2*pi;

% interpolate on the coarse grid to

% obtain the fine yi values

% linear interpolation

yi=interp1(x,y,xi,'linear');

% plot the data and the interpolation

plot(x,y,'b*',xi,yi,'r-')

title('Linear Interpolation')

% cubic interpolation

yi=interp1(x,y,xi,'pchip');

% plot the data and the interpolation

figure

plot(x,y,'b*',xi,yi,'r-')
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title('Cubic Interpolation')

% spline interpolation

yi=interp1(x,y,xi,'spline');

% plot the data and the interpolation

figure

plot(x,y,'b*',xi,yi,'r-')

title('Spline Interpolation')

10.3 Two-dimensional interpolation

Matlab also knows how to do 2-dimensional interpolation on a data set of {x, y, z}
to find approximate values of z(x, y) at points {xi , yi } which don’t lie on the data
points {x, y}. In the completely general situation where your data points {x, y, z}
don’t fall on a regular grid, you can use the command TriScatteredInterp to
interpolate your function onto an arbitrary new set of points {xi , yi }, such as an
evenly spaced 2-dimensional grid for plotting. Examine the code below to see
how TriScatteredInterp works, and play with the value of N and see how the
interpolation quality depends on the number of points.

Listing 10.2 (ch10ex2.m)

clear; close all;

% Make some "data" at random points x,y points

N=200;

x = (rand(N,1)-0.5)*6;

y = (rand(N,1)-0.5)*6;

z = cos((x.^2+y.^2)/2);

% Create an interpolating function named F

F = TriScatteredInterp(x,y,z,'natural');

% Create an evenly spaced grid to interpolate onto

xe = -3:.1:3;

ye = xe;

[XE,YE] = ndgrid(xe,ye);

% Evaluate the interpolation function on the even grid

ZE = F(XE,YE);

% plot the interpolated surface

surf(XE,YE,ZE);

% overlay the "data" as dots

hold on;

plot3(x,y,z,'.');

axis equal
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The TriScatteredInterp command is very powerful in the sense that you
can ask it to estimate z(x, y) for arbitrary x and y (within your data range). How-
ever, for large data sets it can be slow. In the case that your data set is already on a
regular grid, its much faster to use the interpn command, like this:

Listing 10.3 (ch10ex3.m)

clear; close all;

x=-3:.4:3; y=x;

% build the full 2-d grid for the crude x and y data

% and make a surface plot

[X,Y]=ndgrid(x,y);

Z=cos((X.^2+Y.^2)/2);

surf(X,Y,Z);

title('Crude Data')

% now make a finer 2-d grid, interpolate linearly to

% build a finer z(x,y) and surface plot it.

% Because the interpolation is linear the mesh is finer

% but the crude corners are still there

xf=-3:.1:3;

yf=xf;

[XF,YF]=ndgrid(xf,yf);

ZF=interpn(X,Y,Z,XF,YF,'linear');

figure

surf(XF,YF,ZF);

title('Linear Interpolation')

% Now use cubic interpolation to round the corners. Note that

% there is still trouble near the edge because these points

% only have data on one side to work with, so interpolation

% doesn't work very well

ZF=interpn(X,Y,Z,XF,YF,'cubic');

figure

surf(XF,YF,ZF);

title('Cubic Interpolation')

% Now use spline interpolation to also round the corners and

% see how it is different from cubic. You should notice that

% it looks better, especially near the edges. Spline

% interpolation is often the best.

ZF=interpn(X,Y,Z,XF,YF,'spline');

figure

surf(XF,YF,ZF);

title('Spline Interpolation')

In this example our grids were created using ndgrid. If you choose to use
the meshgrid command to create your grids, you’ll need to use the command
interp2 instead of interpn.
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Linear Algebra and Polynomials

Since Matlab is convinced that every variable in the world is a matrix, you
won’t be surprised that it has about every matrix function you can imagine. Any-
thing you learned about in your linear algebra class Matlab has a command to do.
Here is a brief summary of the most useful ones for physics.

11.1 Solve a Linear System

Matlab will solve the matrix equation Ax = b, where A is a square matrix, where
b is a known column vector, and where x is an unknown column vector. For
instance, the system of equations

x + z = 4

−x + y + z = 4 (11.1)

x − y + z = 2 ,

which is solved by (x, y, z) = (1,2,3), is handled in Matlab by defining a matrix A
corresponding to the coefficients on the left side of this equation and a column
vector b corresponding to the coefficients on the right like this

A=[ 1, 0,1

-1, 1,1

1,-1,1 ];

b=[4

4

2];

Then using the backslash symbol \ (sort of “backwards divide”) Matlab will use
Gaussian elimination to solve this system of equations, like this:

x=A\b

11.2 Matrix Operations

Matrix Inverse

The inv command will compute the inverse of a square matrix. For instance,
using the matrix

A=[1,0,-1;-1,1,1;1,-1,1]

we load C with the inverse of A like this

C=inv(A)

We can verify by matrix multiplication that A*C is the identity matrix

A*C
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Transpose and Hermitian Conjugate

To find the transpose of the matrix A just use a single quote with a period, like this

A.'

To find the Hermitian conjugate of the matrix A (transpose of A with all elements
replaced with their complex conjugates) type

A'

(notice that there isn’t a period). If your matrices are real, then there is no differ-
ence between these two commands and you might as well just use A'. Notice that
if a is a row vector then a' is a column vector. You will use the transpose operator
to switch between row and column vectors a lot in Matlab, like this

[1,2,3]

[1,2,3]'

[4;5;6]

[4;5;6]'

Flipping Matrices

Sometimes you want to flip a matrix along the horizontal or vertical directions.
The command to do this are

fliplr(A) % flip A, left column becomes right, etc.

and

flipud(A) % flip A, top row becomes bottom, etc.

Determinant

Find the determinant of a square matrix this way

det(A)

Eigenvalues and Eigenvectors

To build a column vector containing the eigenvalues of the matrix A in the previ-
ous section use

E=eig(A)

To build a matrix V whose columns are the eigenvectors of the matrix A and
another matrix D whose diagonal elements are the eigenvalues corresponding to
the eigenvectors in V use

[V,D]=eig(A)

To select the 3rd eigenvector and load it into a column vector use

v3=V(:,3) % i.e., select all of the rows (:) in column 3
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Fancy Stuff

Matlab also knows how to do singular value decomposition, QR factorization, LU
factorization, and conversion to reduced row-echelon form. And the commands
rcond and cond will give you the condition number of a matrix. To learn about
these ideas, consult a textbook on linear algebra. To learn how they are used in
Matlab use the commands;

help svd

help QR

help LU

help rref

help rcond

help cond

Special Matrices

Matlab will let you load several special matrices. A few of the more useful ones
are the identity matrix

I=eye(4,4) % load I with the 4x4 identity matrix. The

% programmer who invented this syntax must

% have been drunk

the zeros matrix

Z=zeros(5,5) % load Z with a 5x5 matrix full of zeros

the ones matrix

X=ones(3,3) % load X with a 3x3 matrix full of ones

and the random matrix

% load Y with a 4x6 matrix of random numbers between 0 and 1

% The random numbers are uniformly distributed on [0,1]

Y=rand(4,6)

% load Y with a 4x6 matrix of random numbers with a Gaussian

% distribution with zero mean and a variance of 1

Y=randn(4,6)

% And to load a single random number just use

r=rand

11.3 Vector Operations

Dot and Cross Products

Matlab will do vector dot and cross products for you with the commands dot and
cross, like this:
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a=[1,2,3];

b=[3,2,1];

dot(a,b)

cross(a,b)

Cross products only work for three-dimensional vectors, but dot products can be
used with vectors of any length. Note that the dot function is not the same thing
as the “dot times” operator (.*). Type

dot(a,b)

a.*b

and compare the output. Explain the difference to someone sitting nearby.

Norm of Vector (Magnitude)

Matlab will compute the magnitude of a vector a (the square root of the sum of
the squares of its components) with the norm command

a=[1,2,3]

norm(a)

11.4 Polynomials

Polynomials are used so commonly in computation that Matlab has special com-
mands to deal with them. The polynomial x4+2x3−13x2−14x+24 is represented
in Matlab by the array [1,2,-13,-14,24], i.e., by the coefficients of the polyno-
mial starting with the highest power and ending with the constant term. If any
power is missing from the polynomial its coefficient must appear in the array as a
zero. Here are some of the things Matlab can do with polynomials.

Roots of a Polynomial

The following command will find the roots of a polynomial:

p=[1,2,-13,-14,24];

r=roots(p)

Find the polynomial from the roots

If you know that the roots of a polynomial are 1, 2, and 3, then you can find the
polynomial in Matlab’s array form this way

r=[1,2,3];

p=poly(r)
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Multiply Polynomials

The command conv returns the coefficient array of the product of two polynomi-
als.

a=[1,0,1];

b=[1,0,-1];

c=conv(a,b)

Stare at this result and make sure that it is correct.

Divide Polynomials

Remember synthetic division? Matlab can do it with the command deconv, giving
you the quotient and the remainder.

a=[1,1,1]; % a=x^2+x+1

b=[1,1]; % b=x+1

% now divide b into a finding the quotient and remainder

[q,r]=deconv(a,b)

After you do this Matlab will give you q=[1,0] and r=[0,0,1]. This means that
q = x +0 = x and r = 0x2 +0x +1 = 1, so

x2 +x +1

x +1
= x + 1

x +1
. (11.2)

First Derivative

Matlab can take a polynomial array and return the polynomial array of its deriva-
tive:

a=[1,1,1,1]

ap=polyder(a)

Evaluate a Polynomial

If you have an array of x-values and you want to evaluate a polynomial at each
one, do this:

% define the polynomial

a=[1,2,-13,-14,24];

% load the x-values

x=-5:.01:5;

% evaluate the polynomial

y=polyval(a,x);

% plot it

plot(x,y)





Chapter 12

Fitting Functions to Data

A common problem that physicists encounter is to find the best fit of a func-
tion (with a few variable parameters) to a set of data points. If you are fitting to a
polynomial, then the easiest way to do this is with polyfit. If you want to fit to
an arbitrary functions containing sines, cosines, exponentials, logs, etc., then the
process is a little more complicated. Pay attention to this section; it is useful.

12.1 Fitting Data to a Polynomial

If you have some data in the form of arrays (x, y) (perhaps read in with Matlab’s
load command), Matlab will do a least-squares fit of a polynomial of any order
you choose to this data. In this example we will let the data be the sine function
between 0 and π and we will fit a polynomial of order 4 to it. Then we will plot the
two functions on the same frame to see if the fit is any good. Before going on to
the next section, try fitting a polynomial of order 60 to the data to see why you
need to be careful when you do fits like this.

Listing 12.1 (ch12ex1.m)

clear; close all;

x=linspace(0,pi,50);

% make a sine function with 1% random error on it

f=sin(x)+.01*rand(1,length(x));

% fit to the data

p=polyfit(x,f,4);

% evaluate the fit

g=polyval(p,x);

% plot fit and data together

plot(x,f,'r*',x,g,'b-')

Interpolating With polyfit and polyval

You can also use Matlab’s polynomial commands to build an interpolating poly-
nomial. Here is an example of how to use them to find a 5th-order polynomial fit
to a crude representation of the sine function.

Listing 12.2 (ch12ex2.m)

clear; close all;
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% make the crude data set with dx too big for good accuracy

dx=pi/5;

x=0:dx:2*pi;

y=sin(x);

% make a 5th order polynomial fit to this data

p=polyfit(x,y,5);

% make a fine x-grid

xi=0:dx/20:2*pi;

% evaluate the fitting polynomial on the fine grid

yi=polyval(p,xi);

% display the fit, the data, and the exact sine function

plot(x,y,'b*',xi,yi,'r-',xi,sin(xi),'c-')

legend('Data','Fit','Exact sine function')

% display the difference between the polynomial fit and

% the exact sine function

figure

plot(xi,yi-sin(xi),'b-')

title('Error in fit')

12.2 General Fits with fminsearch

If you want to fit data to a more general function than a polynomial, you need to
work a little harder. Suppose we have a set of data points (x j , y j ) and a proposed
fitting function of the form y = f (x, a1, a2, a3, ...). For example, we could try to fit
to an exponential function with two adjustable parameters a1 and a2

f (x, a1, a2) = a1ea2x . (12.1)

The first step in the fitting process is to make a m-file function, call it funcfit.m,
that evaluates the function you want to fit to, like this

Listing 12.3 (funcfit.m)

function f=funcfit(a,x)

% this function evaluates the fitting

% function f(x,a1,a2,a3,...) to be fit to

% data. It is called by leastsq.

% a is a vector of variable fitting parameters a1, a2, ...

% that are used in the function and x is a

% vector of x-values

% the function returns a vector f=f(x,a1,a2,...)
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% sample exponential function with 2 variable

% parameters

f = a(1)*exp(a(2)*x);

The input a is a matrix containing the as-yet unknown parameters and x is a
matrix with the independent variable for your fit. Make sure the funcfit.m

function works properly on matrices, so that if x is a matrix input then f is a
matrix of function values.

Our goal is to write some code to choose the parameters (a1, a2, a3, ...) in such
a way that the sum of the squares of the differences between the function and the
data is minimized, or in mathematical notation we want to minimize the quantity

S =
N∑

j=1
( f (x j )− y j )2 . (12.2)

We need to make another Matlab M-file called leastsq.m which evaluates the
least-squares sum you are trying to minimize. It needs access to your fitting
function f (x, a), which you stored in the Matlab M-file funcfit.m above. Here is
the form of the leastsq.m function.

Listing 12.4 (leastsq.m)

function s=leastsq(a,x,y)

% leastsq can be passed to fminsearch to do a

% non-linear least squares fit of the function

% funcfit(a,x) to the data set (x,y).

% funcfit.m is built by the user as described here

% a is a vector of variable parameters; x and y

% are the arrays of data points

% find s, the sum of the squares of the differences

% between the fitting function and the data

s=sum((y-funcfit(a,x)).^2);

With these two functions built and sitting in your Matlab directory we are ready
to do the fit.

Matlab has a nice multidimensional minimizer routine called fminsearch

that will do fits to a general function if you give it a half-decent initial guess for the
fitting parameters. The basic idea is that you pass a reference to your leastsq.m
function to fminsearch, and it varies the fit parameters in the variable a in a
systematic way to find the values that minimizes the error function S (calculated
by leastsq.m from the (x, y) data and the an ’s).

Note, however, that fminsearch is a minimizer, not a zero finder. So it may
find a local minimum of the error function which is not a good fit. If it fails in
this way you need to make another initial guess so fminsearch can take another
crack at the problem.



70 Chapter 12 Fitting Functions to Data

Here is a piece of code that performs the fitting functions. First, it loads the
data from a file. For this to work, the data needs to be sitting in the file data.fil
as two columns of (x, y) pairs, like this

0.0 1.10

0.2 1.20

0.4 1.52

0.6 1.84

0.8 2.20

1.0 2.70

Then the program asks you to enter an initial guess for the fitting parameters, plot
the initial guess against the data, then tell fminsearch to do the least squares fit.
The behavior of fminsearch can be controlled by setting options with Matlab’s
optimset command. In the code below this command is used to set the Matlab
variable TolX, which tells fminsearch to keep refining the parameter search until
the parameters are determined to a relative accuracy of TolX. Finally, it plots the
best fit against the data. We suggest you save it for future use.

Listing 12.5 (datafit.m)

clear;close

% Uses fminsearch to least squares fit a function defined

% in funcfit.m to data read in from data.fil

% read the data file and load x and y

load data.fil;

x=data(:,1);

y=data(:,2);

% set up for the plot of the fitting function

xmin=min(x);

xmax=max(x);

npts=1001;

dx=(xmax-xmin)/(npts-1);

xplot=xmin:dx:xmax;

% set ifit to 0 and don't continue on to the fit until

% the user sets it to 1

ifit=0;

while (ifit==0)

disp(' Enter an initial guess for the function ')

a=input('parameters [a1,a2,...] in vector form [...]- ')

% plot the data and the initial function guess

yplot=funcfit(a,xplot);

plot(x,y,'b*',xplot,yplot,'r-')

xlabel('x')

ylabel('y')

title('Initial Guess and Data')

ifit=input('0:guess again; 1:fit with this guess - ')
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end

% Do the fit with the option TolX set; fminsearch will adjust

% a until each of its elements is determined to within TolX.

% If you think fminsearch could do better, reduce TolX.

option=optimset('TolX',1e-5);

% Have fminsearh look for the best parameters to minimize the

% leastsq.m function. The @ character in front of the function

% name tells Matlab it is a reference to an m-file function

a=fminsearch(@leastsq,a,option,x,y)

% Evaluate the function with the final fit parameters

yplot=funcfit(a,xplot);

% Plot the final fit and the data

plot(x,y,'b*',xplot,yplot,'r-')

xlabel('x')

ylabel('y')

title('Final Fit and Data')

It’s a little more work to make three files to get this job done, but we suggest
you learn how to use fminsearch this way. Function fitting comes up all the time.
Once you get the hang of it, you can choose to fit to any function you like just by
changing the definition in funcfit.m. The other two scripts usually don’t need
to be modified.
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Fast Fourier Transform (FFT)

In physics, we often need to see what frequency components comprise a
signal. The mathematical method for finding the spectrum of a signal f (t ) is the
Fourier transform, given by the integral

g (ω) = 1p
2π

∫ ∞

−∞
f (t )e iωt d t (13.1)

Back in chapter 8 we learned how to do integrals numerically, but the Fourier
transform is hard because we usually want to calculate Eq. (13.1) for a lot of values
of ω—often 100,000 or more. To calculate Eq. (13.1) this many times using regular
integrating techniques is very time consuming, even with a modern computer.
Fortunately, some clever scientists came up with a much more efficient way to
calculate a Fourier transform using the aptly-named Fast Fourier Transform (FFT)
algorithm. Matlab knows this algorithm, and can give it to you with the fft

command.

13.1 Matlab’s FFT

Suppose you have a signal stored as a series of N data points (t j , f j ) equally
spaced in time by time interval τ from t = 0 to t = tfinal = (N −1)τ. We’ll assume
that the data is in two arrays, an array t with the times and a corresponding array
f with the signal strength at each time. The Matlab function fft will convert the
array f into an array g of amplitude vs. frequency, like this

g=fft(f);

If you look at the array g you will find that it is full of complex numbers. They are
complex because they store the phase relationship between frequency compo-
nents as well as amplitude information, just like the Fourier transform. When we
don’t care about the phase information contained in g (ω), we can work instead
with the power spectrum P (ω) = |g (ω)|2, obtained this way:

P=abs(g).^2

The fft routing runs fastest if you give it data sets with 64, 128, 1024, 16384, etc.
(powers of 2) data points in them. Use help fft to see how to give fft a second
argument so powers of 2 are always used.

To plot P or g vs. frequency, we need to associate a frequency with each
element of the array, just like we had to associate a time with each element of f to
plot f (t). Later we’ll show you how to derive the values for the frequency array
that corresponds to g. For now we’ll just tell you that the frequency interval from
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one point in g to the next is related to the time step τ from one point in f to the
next via

∆ν= 1/(Nτ) or ∆ω= 2π/(Nτ) (13.2)

The “regular” frequency ν is measured in Hz, or cycles/second, and angular
frequency ω= 2πν is measured in radians/second. The lowest frequency is 0 and
the highest frequency in the array is

νmax = (N −1)/(Nτ) or ωmax = 2π(N −1)/(Nτ). (13.3)

The frequency array ν (in cycles per second) and the ω array (in radians per
second) would be built this way:

N=length(f);

dv=1/(N*tau);

v=0:dv:1/tau-dv; % (regular frequency, cycles/sec)

dw=2*pi/(N*tau);

w=0:dw:2*pi/tau-dw; % (angular frequency, radians/sec)

Both flavors of frequency are commonly used, and you should make sure that you
clearly understand which one you are using in a given problem.

Here is an example to show how this process works.

Listing 13.1 (ch13ex1.m)

clear; close all;

% Build a time series made up of 5 different frequencies

% then use fft to display the spectrum

N=2^14;

tau=6000/N;

t=0:tau:(N-1)*tau;

% Make a signal consisting of angular frequencies

% w=1, 3, 3.5, 4, and 6

f=cos(t)+.5*cos(3*t)+.4*cos(3.5*t)+.7*cos(4*t)+.2*cos(6*t);

% the time plot is very busy and not very helpful

plot(t,f)

title('Time Series')

% now take the fft and display the power spectrum

g=fft(f);

P=abs(g).^2;

dw=2*pi/(N*tau);

w=0:dw:2*pi/tau-dw;

figure

plot(w,P)

xlabel('\omega')

ylabel('P(\omega)')

title('Power Spectrum, including aliased points')
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Figure 13.1 Plot of the example power spectrum

The power spectrum produced by Listing 13.1 is plotted in Fig. 13.1. Note that
it has peaks at ω= 1,3,3.5,4,6 as we would expect, but there are some extra peaks
on the right side. These extra peaks are due to a phenomenon called aliasing.

13.2 Aliasing and the Critical Frequency

?? ??

Figure 13.2 The stagecoach effect
occurs when a spoke in an initial
frame (indicated by the dashed
line) could have rotated to many
indistinguishable orientations in
the next frame. The ambiguity of
the wheel rotation is due in part
the many spokes.

If you have watched an old western movie, you may have noticed that stagecoach
wheels sometimes appear to be turning backwards. This is due to the fact that
movies are made by taking a bunch of pictures separated by a time interval. We
know the wheel rotates between pictures, but since all the spokes look the same,
there are infinite possible rotations that are consistent with the new spoke angles
(see Fig. 13.2). Each possible rotation corresponds to either a positive or negative
rotation frequency. Our brains resolve the ambiguity by picking the frequency
with the smallest magnitude, whether the sign is positive or negative, which
accounts for the stagecoach effect. This ambiguity of frequency is referred to as
aliasing, and it comes up whenever you study the frequency content of a signal
that has been sampled at discrete times.

Figure 13.3 Even with one spoke,
the ambiguity remains. In this fig-
ure, we show three of the possible
rotation angles between frames.

Imagine that we painted one of the spokes of a wagon wheel bright red, and
then sampled its position at t = 0 and t = τ. Figure 13.3 shows three of the
possible angles that the wheel may have rotated during this time interval: θ0,
θ1 = θ0 + 2π, and θ−1 = θ0 − 2π. These angles of rotation correspond to three
possible frequencies:

ω0 = θ0/τ

ω1 = θ1/τ=ω0 +2π/τ,

ω−1 = θ−1/τ=ω0 −2π/τ. (13.4)

The general expression for all frequencies that are consistent with the wheel
orientation at the two times is

ωn =ω0 +n2π/τ. (integer n) (13.5)



76 Chapter 13 Fast Fourier Transform (FFT)

Negative Frequencies Aliased Positive Frequencies

Figure 13.5 Plot of the power spectrum from Listing 13.1 showing the negative frequen-
cies that are aliased as positive frequencies.

Here n is an integer, with n ≥ 0 corresponding to positive frequencies and n <
0 corresponding to negative frequencies. Notice that every frequency can be
“aliased” by neighbor frequencies located 2π/τ above or below the frequency of
interest.

Now we are in a position to understand the extra peaks in Fig. 13.1. The
Fourier transform of any real signal has an equal amount of positive and neg-
ative frequency1 content, i.e. P (ω) = P (−ω). However, our original frequency
window included only positive frequencies, so we didn’t see the negative half of
the spectrum. In Fig. 13.5 we’ve plotted the negative frequency content of the
signal in Listing 13.1 in dashed lines, and the fft power spectrum in solid lines.
Notice that each of the “extra” peaks on the right side of the spectrum is a result
of an aliased negative-frequency peak located 2π/τ below the peak. In the time
domain, the negative frequency and its positive alias produce signals that have
the same value at each sampling time, as shown in Fig. 13.4.

Time

Figure 13.4 The sine of a negative
frequency (dashed) and its aliased
positive frequency (solid). In our
wagon wheel example, these
would be ω−1 and ω0. The dots
indicate times at which the signal
is sampled. There are infinitely
many other frequencies that also
cross these sampled points, as
specified by Eq. (13.5).

Notice from Eq. (13.3) that the maximum frequency you can detect is con-
trolled by the time step τ. If you want to see high frequencies you need a small
time step τ. Since the aliased negative frequencies will always be present in
the right half of the fft window (for real signals), only the first half of the FFT
frequency window has the peaks at the correct frequencies. Referring back to
Eq. (13.3), this means we can only reliably detect frequency components with an
absolute value less than

νc = 1

2τ
or ωc = π

τ
(13.6)

This important limiting frequency is called the critical frequency or the Nyquist
frequency. If the signal contains frequency components higher than the critical fre-
quency, those high frequencies intermingle with the aliased negative frequencies

1A negative frequency component behaves just like a positive frequency for time-symmetric
signals (i.e. cos(−ωt ) = cos(ωt )), but has a π phase shift for antisymmetric signals (i.e. sin(−ωt ) =
−sin(ωt )). You can just think of wagon wheels rotating forward or backward in time.
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and you will be unable to distinguish between actual and aliased frequency peaks.
For example, if we increase τ by using τ = 22,000/N while keeping N = 214 in
our example code, the aliased peaks overlap the real peaks, as shown in Fig. 13.6.
In this case it is impossible to tell which peaks are real and which are aliased
throughout the whole range of ω.

Power Spectrum, including aliased points

Figure 13.6 The fft of the same
signal as Fig. 13.5 sampled with
a slower rate (τ is about 4 times
bigger) for the same amount of
time. The “real” signal peaks are
at ω = 1,3,3.5,4,6; the rest of the
peaks are aliased negative frequen-
cies.

Notice from the definition (13.2) that the frequency step size ∆ω is controlled
by tfinal = Nτ. Thus, your minimum spectral resolution is inversely proportional
to the amount of time that you record data. If you want to distinguish between
two frequenciesω1 andω2 in a spectrum, then you must take data long enough so
that ∆ω¿|ω2 −ω1|. Since the time step τ often needs to be tiny (so that ωc is big
enough), and the total data taking time tfinal often needs to be long (so that ∆ω is
small enough) you usually need lots and lots of points. So you need to design your
data-taking carefully to capture the features you want to see without requiring
more data than your computer can hold.

13.3 Windowing

The relative peak heights in Fig. 13.5 are similar to what they should be, but zoom
in closely on the normalized power spectrum and you will see that they are not
exactly the right relative heights—power is proportional to amplitude squared,
so the peaks should be in the ratio [1,0.25,0.16,0.49,0.04]. To understand why
the relative sizes are off, let’s take the Fourier transform of one of the frequency
components in our signal analytically:

F [cos(ω0t )] = 1p
2π

∫ ∞

−∞
cos(ω0t )e iωt d t =

√
π

2
(δ(ω+ω0)+δ(ω−ω0)) . (13.7)

Yes, those are delta-functions located at ω=±ω0, and they are infinite (but they
have finite area.) So when Matlab does the fft on periodic data, the result
is a bunch of approximate delta functions with very narrow widths and large
amplitudes. However, since our frequency array doesn’t have, for example, a point
exactly at ω= 3 where our signal should have a delta function, the heights of the
approximate delta function peaks are not correct. The solution to this amplitude
problem relates to a concept called windowing.

When we numerically sample a waveform, there is always an implied “square
window” around the data: the signal is zero before you start sampling, and im-
mediately zero again after you stop. The square window artificially confines the
signal in time. The uncertainty principle states that if we confine a signal to a
short time, its frequency peaks will be broader. However, in our example we are
broadening delta functions (infinitely narrow), and even the broadening due to
the square window is not enough to resolve the peak.

The solution is to further narrow the time signal in a controlled fashion by
multiplying it by a bell-shaped curve called a windowing function.2 This narrow-
ing in time further broadens the frequency peaks, and with broader peaks the

2You may be wondering why we don’t just use a shorter time window instead of multiplying
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height isn’t as sensitive to where your data points fall in relation to the center
of the peaks. However, if your windowing function is too narrow in time, your
frequency peaks can overlap and your spectral resolution will be compromised (a
phenomenon called leakage).

There are many types of windowing functions. See Matlab help on the window
command for a list of ones that Matlab has built in.

13.4 Using the FFT to Compute Fourier Transforms

If you just want to know where the peaks in a spectrum occur, you can just take the
fft, lop off the right half of the spectrum where the aliased negative frequencies
are (after you have checked to make sure the aliased frequencies aren’t spilling
over), and plot the magnitude squared. However, there are many other uses
for the fft. For instance, it is often useful to numerically calculate the Fourier
transform of a signal, do work on the spectrum in the frequency domain, and
then transform back into the time domain. When doing this type of calculation,
you’ll need to be careful to understand the relationship between Matlab’s fft and
what you think a Fourier transform should be.

When a physicist refers to a Fourier transform, she usually means the opera-
tion defined by

g (ω) =F [ f (t )] ≡ 1p
2π

∫ ∞

−∞
f (t )e iωt d t (13.8)

and when she refers to an inverse Fourier transform, she usually means

f (t ) =F−1[g (ω)] ≡ 1p
2π

∫ ∞

−∞
g (ω)e−iωt dω, (13.9)

However, these definitions of the Fourier transform are not universally used. For
instance, you can put a factor of 1/2π on one transform rather than a factor of
1/

p
2π on both.3 Also, it is arbitrary which equation is called the transform and

which is the inverse transform—i.e., you can switch the minus signs in the expo-
nents. We prefer the convention shown, because the inverse transform can then
be used to cleanly represent a sum of traveling waves of the form e i (kx−ωt ). The
other sign convention is also mathematically permissible, and often used, espe-
cially in engineering and acoustics. You should make sure you clearly understand
the conventions you are using, so you don’t have factors of 2π floating around or
time running backward in your models!

The formula Matlab calculates in the fft command is the sum

g (ωk+1) =
N−1∑
j=0

f (t j+1)e−i 2π j k/N , (k = 0,1,2, ..N −1) (13.10)

by a windowing function. Well, you can, but then you reduce your resolution ∆ω which is usually
undesirable.

3 Physicists usually use the 1/
p

2π form because it makes an energy conservation theorem
known as Parseval’s theorem more transparent.
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and the ifft command computes the sum

f (t j+1) = 1

N

N−1∑
k=0

g (ωk+1)e i 2π j k/N , ( j = 0,1,2, ..N −1) (13.11)

In these formulas, j enumerates the times t j and k enumerates the frequencies
ωk . These expressions define the frequency spacing that we presented without
justification in Eq. (13.2). To see how this works, use j = t j /τ in the fft equation,
so that the exponent becomes −i (2πk/Nτ)t j . This form allows us to identify the
components in the frequency array as νk = k/Nτ or ωk = 2πk/Nτ.

The sums in Eqs. (13.10) and (13.11) are related to the integrals in Eqs. (13.8)
and (13.9), but there are several differences that need to be addressed:

1. The fft defined in Eq. (13.10) is a sum with no normalization, so the height
of your peaks scales with N , the number of points you sample. Thus, sam-
pling the same signal with a different number of points will change the
height of the result.

2. The fft has a negative exponent and (in our convention) the Fourier trans-
form has a positive exponent. Thus, the ifft is closer to what we would
call the Fourier transform than the fft.

3. The fft aliases negative frequency components to positive frequencies as
discussed in the previous section.

To address the first issue, we just need to multiply by factors of N , dω or d t ,
and

p
2π at the appropriate places. The second issue can be addressed by using

ifft to calculate the Fourier transform and fft to calculate the inverse. Finally,
to address the aliasing issue, we take the aliased positive frequencies, and put
them back where they belong as negative frequencies. When we want to take the
inverse Fourier transform, we put the negative frequencies back where the Matlab
functions expect them to be.

When you put all of these modifications together, the function to calculate
the “physicist’s Fourier transform” in Eq. (13.8) becomes

Listing 13.2 (ft.m)

% function to calculate the Fourier Transform of St

function f = ft(St,dt)

f = length(St)*fftshift(ifft(ifftshift(St)))*dt/sqrt(2*pi);

return

The fftshift function handles the requirement to put the negative frequencies
back where they belong. The “physicist’s inverse Fourier transform,” i.e. Eq. (13.9)
is then

Listing 13.3 (ift.m)
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% function to calculate the inverse Fourier Transform of Sw

function f = ift(Sw,dw)

f = fftshift(fft(ifftshift(Sw)))*dw/sqrt(2*pi);

return

The nesting of functions in these scripts is not particularly intuitive, so don’t
spend a lot of time working out the details of the shifting functions. But they
get the job done: ft.m takes in a time series and a d t (i.e. τ) and spits out a
properly normalized (according to the 1/

p
2π convention) Fourier transform with

the negative frequencies at the beginning of the array; ift.m takes in a dω and
a properly normalized frequency spectrum with the negative frequencies at the
beginning of the array, and spits out its inverse Fourier transform.

Since we put the negative frequencies at the beginning of the matrices, the
frequency matrix that goes with the spectrum also needs to be fixed. Use this if N
is even (usually the case since powers of 2 are even)

w=-(N/2)*dw:dw:dw*(N/2-1)

or this if you absolutely must use an odd N (puts ω= 0 in the right place)

w=-((N-1)/2)*dw:dw:dw*((N-1)/2);

To illustrate how to use these functions, let’s use them to analyze the same
signal as in Example 13.2a

Listing 13.4 (ch13ex4.m)

clear; close all;

% build a time series made up of 5 different frequencies

% then use ft.m to display the spectrum

N=2^14;

tau=6000/N;

t=0:tau:(N-1)*tau;

% Notice that the w array is different than before

dw=2*pi/(N*tau);

w = -(N/2)*dw:dw:dw*(N/2-1);

% Make a signal consisting of angular frequencies

% w=1, 3, 3.5, 4, and 6

f=cos(t)+.5*cos(3*t)+.4*cos(3.5*t)+.7*cos(4*t)+.2*cos(6*t);

% Use our new function to calculate the fourier transform

% which needs to be saved as ft.m

g = ft(f,tau);

P = abs(g).^2;

figure

plot(w,P)

xlabel('\omega')
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Figure 13.7 Plot of the example power spectrum

ylabel('P(\omega)')

title('Power Spectrum with peaks at all the right frequencies')

Run the example and note that we now have frequency peaks at all the right
frequencies. Also vary N and note that the peak heights don’t scale with N any
more. The amplitude of peaks in a Fourier transform still tends to be large,
however, because instead of amplitude, it is amplitude density (amplitude per
unit frequency, or amplitude squared per unit frequency in the case of a power
spectrum). So if the signal is confined to a tiny range in ω, its density will be huge.





Chapter 14

Solving Nonlinear Equations

You will sometimes need to solve difficult equations of the form f (x) = 0 where
f (x) is a complicated, nonlinear expression. Other times you will need to solve
complicated systems of the form f (x, y, z) = 0, g (x, y, z) = 0, and h(x, y, z) = 0,
where f , g , and h are all complicated functions of their arguments. Matlab can
help you solve these systems.

14.1 Solving Transcendental Equations

Matlab’s fzero command solves equations like f (x) = 0 automatically. Before we
see how to use fzero, let’s learn the basics of how to find zeros by studying the
secant method.1

The Secant Method

Figure 14.1 The sequence of ap-
proximate points in the secant
method.

The first step in the secant algorithm is to make two guesses x1 and x2 that are
near a solution of this equation. You can find reasonable guesses by plotting the
function and seeing about where the solution is. It’s OK to choose them close to
each other, like x1 = .99 and x2 = .98. Once you have these two guesses find the
function values that go with them: f1 = f (x1) and f2 = f (x2) and compute the
slope m = ( f2 − f1)/(x2 −x1) of the line connecting the points. This line is shown
in Fig. 14.1 and its equation is

y − f2 = m(x −x2) (14.1)

We can solve Eq. (14.1) for the value of x that makes y = 0. If we call this new value
of x x3, we have

x3 = x2 − f2

m
= x2 − f2(x2 −x1)

f2 − f1
(14.2)

as shown in Fig. 14.1. The value x3 will be a better approximation to the solution
than either of your two initial guesses, but it still won’t be perfect, so you have
to do it again using x2 and the new value of x3 as the two new points. This will
give you x4 in the figure. You can draw your own line and see that the value of
x5 obtained from the line between (x3, f3) and (x4, f4) is going to be pretty good.
And then you do it again, and again, and again, until your approximate solution
is good enough.

Here’s what the code looks like that solves the equation exp(−x)−x = 0 using
this method

1The secant method is similar to Newton’s method, also called Newton-Raphson, but when a
finite-difference approximation to the derivative is used it is usually called the secant method.
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Listing 14.1 (ch14ex1.m)

% Secant method to solve the equation exp(-x)-x = 0

clear; close all;

% Define the function as an anonymous function

func = @(x) exp(-x)-x;

% First plot the function (Note that the second plot is just

% a blue x-axis (y=0) 0*x is just a quick way to load an array

% of zeros the same size as x)

x=0:.01:2;

f=func(x);

plot(x,f,'r-',x,0*x,'b-')

% From the plot it looks like the solution is near x=0.6,

% so use an initial guess of x1=0.6

x1=0.6;

% find f(x1)

f1=func(x1);

% find a nearby second guess

x2=0.99*x1;

% set chk, the error, to 1 so it won't trigger the while

% before the loop gets started

chk=1;

while chk>1e-8 % start the loop

f2=func(x2); % find f(x2)

% find the new x from the straight line approximation

xnew = x2 - f2*(x2-x1)/(f2-f1)

% find the error by seeing how closely f(x)=0 is approximated

chk=abs(f2);

% load the old x2 and f2 into x1 and f1

x1=x2;

f1=f2;

% put the new x into x2

x2=xnew;

end % end of while loop
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Matlab’s Fzero

Matlab has its own zero-finder which internally does something similar to the
secant method described above. To use it to solve the equation f (x) = 0 you must
make an M-file function (called fz.m here) that evaluates the function f (x). Here
is an example function file for f (x) = exp(−x)−x = 0:

Listing 14.2 (fz.m)

function f=fz(x)

% evaluate the function fz(x) whose roots are being sought

f=exp(-x)-x;

Once you have fz.m built, you call fzero and give it a reference to fz.m and
an initial guess, and it does the solve for you. Here is the command to find a zero
of f (x) = 0 near the guess x = 0.7

x=fzero(@fz,0.7)

Note that the function fz.m must be stored in the current directory. The @-sign
syntax tells Matlab that you are passing in a reference to a function.

14.2 Systems of Nonlinear Equations

The fzero command will only work with a single equation. If you have a compli-
cated system of nonlinear equations, you can use Matlab’s fsolve to solve the
system in a similar way.

Consider the following pretty-impossible-looking set of three equations in
three unknowns (x, y, z).

sin(x y) = 0.95908−exp(−xz)

z
√

x2 + y2 = 6.70820 (14.3)

tan(y/x)+cos z = 3.17503

The way to talk fsolve into solving this set is to first write the system with zeros
on the right side of each equation, like this

sin(x y)+exp(−xz)−0.95908 = 0

z
√

x2 + y2 −6.70820 = 0 (14.4)

tan(y/x)+cos z −3.17503 = 0

Then we write a function file that accepts x, y , and z as arguments and returns
the left sides of the equations. For the equations above, this would look like this:

Listing 14.3 (eqsystem.m)

% nonlinear system of equations routine for

% use with fsolve
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function s=eqsystem(xn)

% Unpack the inputs into friendly names

x=xn(1);

y=xn(2);

z=xn(3);

Eq1 = sin(x*y)+exp(-x*z)-0.95908;

Eq2 = z*sqrt(x^2+y^2) -6.70820;

Eq3 = tan(y/x)+cos(z)+3.17503;

s=[ Eq1; Eq2; Eq3 ];

Here is a piece of Matlab code that uses fsolve to solve this system with the
initial guess (1,2,2). fsolve uses a minimizer routine like fminsearch did when
we were fitting data in chapter 12. Basically, it tries a bunch of input values to the
function and searches for the inputs that make your eqsystem.m function return
all zeros. If your initial guess is way off, it can get stuck in a local minimum, and if
your system has multiple solutions, it will only find one.

Listing 14.4 (ch14ex4.m)

% Uses fsolve to look for solutions to the nonlinear system

% of equations defined in the file eqsystem.m

clear; close all;

x0 = [1; 2; 2]; % Make a starting guess at the solution

options=optimset('Display','iter'); % Option to display output

[x,fval] = fsolve(@eqsystem,x0,options) % Call solver

fprintf(' The solution is x=%g, y=%g, z=%g\n',x(1),x(2),x(3));

fprintf(' Final values of the function file = %g \n',fval)

disp(' (Make sure they are close to zero)')

You could also do the same thing a little more compactly using anonymous,
but you lose some readability. Here is an example that solves the same equations
as above:

Listing 14.5 (ch14ex5.m)

clear;close all;

eqsystem = @(x) [sin(x(1)*x(2))+exp(-x(1)*x(3))-0.95908; ...

x(3)*sqrt(x(1)^2+x(2)^2)-6.70820; ...

tan(x(2)/x(1))+cos(x(3))+3.17503];

x0 = [1; 2; 2];

options=optimset('Display','iter');

[x,fval] = fsolve(eqsystem,x0,options)

fprintf(' The solution is x=%g, y=%g, z=%g\n',x(1),x(2),x(3));

fprintf(' Final values of the function file = %g \n',fval)

disp(' (Make sure they are close to zero)')
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Publication Quality Plots

The default settings which Matlab uses to plot functions are usually fine
for looking at plots on a computer screen, but they are generally pretty bad
for generating graphics for a thesis or for articles to be published in a journal.
However, with a bit of coaxing Matlab can make plots that will look good in print.
Your documents will look much more professional if you will take some time to
learn how to produce nice graphics files. This chapter will show you some of the
tricks to do this. This material owes a lot to the work of some former students:
Tom Jenkins and Nathan Woods.

Before getting started, let’s review a little about graphics file formats. Raster
formats (e.g. jpeg, bmp, png) are stored as a grid of dots (like a digital photograph).
In contrast, vector image formats store pictures as mathematical formulas de-
scribing the lines and curves, and let the renderer (e.g. the printer or the computer
screen) draw the picture the best it can. Fonts are stored in a vector format so
that they can be drawn well both on the screen and on paper. The most common
format used to store vector graphics in physics is encapsulated postscript (EPS).

Raster graphics are well-suited for on-screen viewing. However, they are
often not a good choice for figures destined for the printer (especially line plots
and diagrams). They often look blurry and pixelated on paper because of the
mismatch between the image resolution and the printer resolution. Although it
is possible to just make really high resolution raster graphics for printing, this
approach makes for very large file sizes.

Although some programs don’t display EPS graphics very nicely on screen
(Word does a particularly bad job with on-screen EPS), the figures look great in
the printed copy or an exported PDF. We will first learn how to make nice EPS
graphics files, and then later we will go over some tips for making nice raster
graphics for a presentation.

15.1 Creating an EPS File

Matlab can create vector EPS files for you. To see how this works, let’s make a
simple plot with some fake data that looks like something you might publish.

Listing 15.1 (ch15ex1.m)

clear;close all;

% Creates some fake data so we have something to plot.

x=0:0.05:2*pi;

f=sin(x);

data = f + rand(1,length(x))-0.5;

err_hi = f + 0.5;
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err_low = f - 0.5;

% Plot the data

plot(x,f,'b',x,data,'b.',x,err_hi,'r-.',x,err_low,'g--');

Run this example and then select “Save as..." in the figure window, and Matlab
will let you choose to save your plot in the EPS format.
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Figure 15.1 Default plot output from Matlab
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Figure 15.2 Figure 15.1 scaled to
a size similar to journal require-
ments.

While this is a pretty simple process, the Matlab defaults have some issues. We
have included the EPS file generated this way as Fig. 15.1, shown at Matlab’s
default size. This EPS has a few problems. The axes Matlab chose on which
to plot the function aren’t the ones we would pick, but we can fix that with the
axis command (see section 5.1). The large size that Matlab chose for the figure
is also an issue. A common practice in senior thesis is to just scale Fig. 15.1 to
be smaller, as in Fig. 15.2. But this figure has unreadably small text and almost
invisible lines. It would not be acceptable for physics journals. These journals
have strict requirements on how wide a figure can be in its final form because of
the two-column format (8.5 cm width) they often use. But at the same time they
require that the lettering be a legible size and that the lines be visible. Journals
will not fix your figures for you.
While you may not immediately publish in journals, you will almost certainly
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include plots in your senior thesis. You will want to create something that looks
nice when scaled to a reasonable size. Fortunately, Matlab allows us to change the
visual properties of a plot. Once you have learned the basics, you can use Matlab
to make suitable figures for your thesis and journal articles.

15.2 Controlling the Appearance of Figures

The Matlab GUI interface

You can control the visual properties of a figure from the GUI of the figure window.
This capability is great for quick one-time adjustments and to get a feel for what
can be done. To get started, click on the “show plot tools" button on the toolbar to
display the interface. If you haven’t used the GUI formatting tools yet, you should
take some time to get familiar with their capabilities. Once you have formatted
a figure to your liking, you can export an EPS for use in your paper. If you want
to control the size of your exported plot through the GUI, you will need to use
the “Export Setup..." option in the File menu before making the EPS. It is a good
idea to save your doctored figure as a .fig file in addition to exporting an EPS file.
The .fig file stores all of your adjustments, so you can come back later and modify
something and then re-export without having to start from scratch.
As convenient as the GUI interface can be, it has its limitations. Some properties
are buried pretty deep in the interface, and it can get tedious to manually format a
large number of graphs (and then reformat them all when you decide something
needs to change). Fortunately, you can also control the visual appearance of your
figures using m-file commands. With the m-file approach, your plot gets the
formatting applied each time you run your script. You can also cut and paste your
format commands so that all your figures have the same size and style. In the
long run, you will save yourself time by learning to control figure properties from
the m-file.
To help you learn the m-file commands, Matlab allows you to export all of the
adjustments you make to a figure in the GUI to m-file commands using “Generate
m-file..." in the figure’s File menu. You can then paste this code into your files to
get this figure formatting each time you run the script. However, before you can
make the m-file formatting commands work as you expect, you need to take the
time to understand a few concepts—just blindly pasting the Matlab-generated
code without understanding what it does will not get you what you want. The
commands have to be put in the right place and refer to the right objects. The
next section will teach you the basics of how these commands work.

Formatting figures with script commands

Matlab treats a figure as a collection of visual objects. Each object has an internal
label called a handle to allow you to refer to objects in a figure. A handle is simply
a number that Matlab has associated with an object. You can look at the number
of a handle, but it won’t really tell you anything—it just references a place in the
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computer’s memory associated with the object. For most objects, you can get the
handle when you create them. For instance, the code

tt = xlabel('My Label');

creates the x-label and also stores a handle for the label object in the variable tt.
Once you have a handle to an object, you can specify the visual properties using
the set command, like this

set(tt,'PropertyName1','PropertyValue1',...)}

This command tells Matlab to take the object with handle tt and set its Property-
Name to PropertyValue. The last comma and dots are not part of the syntax, but
indicate that you can set as many property Name-Value pairs as you want in the
same set command. For instance, to make the x-axis label 20 point Arial font,
you would use the command

set(tt,'FontSize',20,'FontName','Arial');

Take a moment now and modify code to add an x-axis label and change its font
size to 8 point.
One of the most frequently referenced objects on a plot is the axes object. This
object includes the box surrounding the plot, and it also includes all the labels
and titles as child objects. When you set many of the properties of the axes object
(e.g. the font size), the child objects also inherit this setting. This feature makes
the axes object a useful way to set a bunch of things at once. Getting a handle to
an axes object is a little different because you don’t usually create axes objects
manually—Matlab does it for you when you make a plot. To get a handle to an
axes object, you use gca command (which stands for Get Current Axes). For
instance, the command

aa = gca;

stores the handle for the current axes object in the variable aa. Then, to set the
font to 12 point Symbol for that axes object, you would use

set(aa,'FontSize',12,'FontName','Symbol');

Note that you need to use gca to store the current handle in a variable before
you open another set of axes by using another figure or plot command, other-
wise the axes you want to refer to will no longer be the current axes. See “Axes
Properties" in the online help for a list of properties you can set for the axes.
Another frequently used object is the lineseries object, which refers to the lines
or symbols displayed inside an axes object to represent the data. Matlab can
have multiple lineseries plotted on the same set of axes, so we need a way to
reference an individual lineseries independent from the axes on which they are
displayed. Take a moment to modify the example code to get handles to the
individual lineseries objects using the following syntax:

pp=plot(x,f,'b',x,data,'b.',x,err_hi,'r-.',x,err_low,'g--');
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This syntax stores an array of handles referring to the lineseries objects displayed
by the plot command in the variable pp. The first element, pp(1), refers to the
first lineseries (the plot of f), the second element, pp(2), refers to the second
lineseries (the plot of data), and so forth.
The syntax for setting the properties of the lineseries object is essentially the same
as the axes, except you have to choose the right index of the handle array. To get
the hang of this, modify the example code to change the plot of the data variable
to red stars rather than blue dots using the following command:

set(pp(2),'LineStyle','none','Marker','*','Color',[1 0 0])

Note that here we have chosen to set the color with an RGB value rather than a
preset color (an RGB value is a matrix of three numbers between 0 and 1 which
specify a color).
Because we often need to control the visual styles of the lineseries data, Matlab
gives us shortcuts to set many of the visual properties of the plot data right in the
plot command. You have already learned many of these. You could have gotten
the red star effect simply by changing your plot command to

pp=plot(x,f,'b',x,data,'r*',x,err_hi,'r-.',x,err_low,'g--');

You can also set properties that apply to every lineseries in the plot by putting
name-value pairs at the end of a plot command. For example

pp=plot(x,f,'b',x,data,'r*',x,err_hi,'r-.',x,err_low,'g--','LineWidth',2);

changes the line thickness for the plots to a heavy 2 point line (the default width
is 0.5 point). However, the stars are also drawn with heavy lines which looks kind
of awkward. If you want to control the properties of the lines individually, you
have to go back to the longer syntax with handles. For example

pp = plot(x,f,'b',x,data,'r*',x,err_hi,'r-.',x,err_low,'g--');

set(pp(1),'LineWidth',2);

makes the plot of f heavy, but leaves the rest at the default width. See “lineseries
properties" in the online help for a list of properties you can set for a lineseries.

Controlling the Size of Exported Graphics

Controlling the size of the exported figure is tricky. The basic parameters are
the OuterPosition property which specifies the extent of the entire figure, the
Position property which specifies the position of the axes box within the figure,
and the TightInset property that describes the size of the labels around the axes
box. Probably the best way to learn how to do this is to study an example. Execute
the following code see what the plot looks like.

Listing 15.2 (ch15ex2.m)

clear;close all;

x=0:0.05:2*pi;
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f=sin(x);

data = f + rand(1,length(x))-0.5;

err_hi = f + 0.5;

err_low = f - 0.5;

% Store our target size in variables. Using these variables

% whenever you reference size will help keep things cleaner.

Units = 'Centimeters';

figWidth = 8.5;

figHeight = 7;

% Create a figure window with the correct size

figure('Units',Units,'Position',[10 10 figWidth figHeight])

% Plot the data

plot(x,f,'b',x,data,'b.',x,err_hi,'r-.',x,err_low,'g--');

% Get a handle to the newly created axes

aa = gca;

% Set the outer dimensions of the axes to be the same as the

% figure. The 'OuterPosition' property describes the

% boundary of the whole figure.

set(aa,'Units',Units,'OuterPosition',[0 0 figWidth figHeight])

% Calculate where the axes box should be placed inside the

% figure (using information from 'TightInset').

newPos = get(aa, 'OuterPosition') - ...

get(aa,'TightInset')*[-1 0 1 0; 0 -1 0 1; 0 0 1 0; 0 0 0 1];

% The 'Position' property describes the rectangle

% around the plotted data

set(aa, 'Position', newPos);

The EPS produced using “Save As" is included as Fig. 15.3 in this document so
you can see what was affected by these commands (compare with Fig. 15.1 which
shows the output without the sizing commands).

Making an EPS Suitable for Publication

The sizing commands fixed our scaling problem, but the figure still needs a lot of
improvement before it would be suitable for a thesis or journal. For instance, we
still need to fix the axes limits and put on labels. The lines are still sort of “spidery,”
and the x-axis is labeled with integers rather than fractions of π. We also need
to provide a legend that tells what the lines and dots on this plot mean. In the
following example code we show how to address all of these issues by setting the
visual properties of the objects on the figure. Run this example and then study
the comments in it.

Listing 15.3 (ch15ex3.m)

clear;close all;
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Figure 15.3 Plot made in Example 17.3a (no scaling).

x=0:0.05:2*pi;

f=sin(x);

data = f + rand(1,length(x))-0.5;

err_hi = f + 0.5;

err_low = f - 0.5;

% Choose what size the final figure should be

Units = 'Centimeters';

figWidth = 8.5;

figHeight = 7;

% Create a figure window of a specific size. Note that we

% also get a handle to the entire figure (ff) for later use

ff=figure('Units',Units,'Position',[10 10 figWidth figHeight])

% Plot the data and get handles to the lineseries objects.

pp=plot(x,f,'b',x,data,'b.',x,err_hi,'r-.',x,err_low,'g--');

% Set the lineseries visual properties.

set(pp(1),'LineWidth',2); % Make the main sine a heavy line

set(pp(2),'MarkerSize',8);% Make the dots a bit bigger

set(pp(3),'LineWidth',1); % Make the error bound lines heavier

set(pp(4),'LineWidth',1); % Make the error bound lines heavier

% Set the plot limits and put on labels

axis([0 2*pi -1.6 1.6])

xlabel('\theta')

ylabel('sin(\theta)')

title('Fake measurement of Sine function')

% Get a handle to the axes and set the axes visual properties

aa=gca;
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% Make the ticks a little longer, put the symbol for pi in the

% number labels using the symbol font (LaTeX won't work there),

% and set the minor ticks to display.

set(aa,'LineWidth',1,...

'TickLength',get(aa,'TickLength')*2,...

'FontSize',8,... % Set the font for the axes

'FontName','Symbol',... % to get the pi symbol in labels

'XTick',[0 pi/2 pi 3*pi/2 2*pi],...

'XTickLabel',{'0';'p/2';'p';'3p/2';'2p'},...

'XMinorTick','On',...

'YTick',[-1 -.5 0 .5 1],...

'YMinorTick','On')

% Put in a legend. We have to specify the font back to

% Helvetica (default) because we changed to the symbol font

% above for the pi tick labels.

ll=legend('Sine','Fake Data','Upper Limit','Lower Limit');

set(ll,'FontName','Helvetica')

% Set the output size for the figure.

% DO THIS LAST because the margins depend on font size, etc.

% Set the outside dimensions of the figure.

set(aa,'Units',Units,'OuterPosition',[0 0 figWidth figHeight])

% Calculate where the axes box should be placed

newPos = get(aa, 'OuterPosition') - ...

get(aa,'TightInset')*[-1 0 1 0; 0 -1 0 1; 0 0 1 0; 0 0 0 1];

% Set the position of the axes box within the figure

set(aa, 'Position', newPos);

The EPS output (made using “Save as") produced by this example is included as
Fig. 15.4. Although the code is (of course) more complicated, it does make a graph
that’s suitable for publication. The FontName business can be removed if you
are not trying to get symbols as tick labels (unfortunately you can’t use Matlab’s
TEX capabilities for tick labels). You may have also noticed that the example used
the get command, which allows you to read the current value of a property from
one of the objects that you are controlling.

Subplots

There are a few tricks to controlling the size and appearance of the subplot

figures bound for publication. Here is an example of how to produce a two-axis
plot, formatted to fit in a single column of a journal. Notice that in such a figure,
there are multiple sets of axes, so it is important to be clear which set you are
setting properties for.

Listing 15.4 (ch15ex4.m)

clear;close all;
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Figure 15.4 Plot made in Example 17.2b (no scaling).

% Make up some data to plot

x=0:.01:100;

f1=cos(x);

f2=exp(-x/20);

% Choose what size the entire final figure should be

Units = 'Centimeters';

figWidth = 8.5;

figHeight = 10;

% Create a figure window of a specific size.

ff=figure('Units',Units,'Position',[10 10 figWidth figHeight])

% Make the top frame: 2 rows, 1 column, 1st axes

subplot(2,1,1)

% Make the plot--in this case, we'll just set the lineseries

% properties right in the plot command.

plot(x,f1,'r-',x,f2,'b--','LineWidth',1.5)

% set the plot limits

axis([0 100 -1.1 1.1])

% Make the labels.

xlabel('x')

ylabel('f_1(x), f_2(x)')

title('Multiplication of Functions')

% Get a handle to the top axes and set the properties

aa = gca;

set(aa,'FontSize',10,...

'LineWidth',0.75,...
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'XTick',[0 20 40 60 80 100],...

'YTick',[-1 -.5 0 .5 1])

% Set this axis to take up the top half of the figure

set(aa,'Units',Units,'OuterPosition',...

[0 figHeight/2 figWidth figHeight/2])

% Now adjust the axes box position to make it fit tightly

newPos = get(aa, 'OuterPosition') - ...

get(aa,'TightInset')*[-1 0 1 0; 0 -1 0 1; 0 0 1 0; 0 0 0 1];

set(aa, 'Position', newPos);

% Create the second set of axes in this figure

subplot(2,1,2)

% Make the second plot

plot(x,f1.*f2,'b-','LineWidth',1.5)

% Set labels for second axes

xlabel('x')

ylabel('f_1(x)* f_2(x)')

% Set limits

axis([0 100 -1.1 1.1]);

% Get a handle for the second axes. We are overwriting the

% handle for the first axes, but we're done modifying them,

% so it's ok

aa=gca;

% Set properties for the second set of axes

set(aa,'FontSize',10,...

'LineWidth',0.75,...

'XTick',[0 20 40 60 80 100],...

'YTick',[-1 -.5 0 .5 1])

% Set this axis to take up the bottom half of the figure

set(aa,'Units',Units,'OuterPosition',[0 0 figWidth figHeight/2])

% Now adjust the axes box position to make it fit tightly

newPos = get(aa, 'OuterPosition') - ...

get(aa,'TightInset')*[-1 0 1 0; 0 -1 0 1; 0 0 1 0; 0 0 0 1];

set(aa, 'Position', newPos);

Figure 15.5 shows the plot produced by this script.

15.3 Making Raster Versions of Figures

While EPS figures are great for printing, the predominant method for presenting
information in a talk is with a computer projector, usually with something like
PowerPoint. Unfortunately, PowerPoint does a lousy job of rendering EPS files, so
you may prefer to make a raster version of your figure to use in a presentation. In
principle, you can just do this by changing output resolution in the “Export Setup"
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Figure 15.5 An example of a set of plots produced using subplot.

dialog and then choosing a raster format in the “Save as..." dialog. However, this
can sometimes give mixed results.
We have found better results by exporting via the Matlab print command. (See
Matlab help for details on print.) To use this method, make sure to get a handle
to the figure window when it is created using the

ff=figure

syntax. Then control the size and appearance as we discussed above for making
EPS figures. Then once your figure looks right, you can use the following code:

set(ff,'PaperUnits',Units,...

'PaperSize',[figWidth figHeight],...

'PaperPosition',[0 0 figWidth figHeight]);

print -djpeg -r600 'Test.jpg'

to make a jpeg image with good resolution (600 dpi). This code assumes you put
the size in the variables Units, figWidth, and figHeight as before. The raster
images that Matlab produces sometimes get rendering oddities in them, and
they don’t do anti-aliasing to smooth the lines. This can sometimes be helped by
increasing resolution or changing what rendering method Matlab uses (see the
Renderer property in “Figure Properties" in Matlab help).1

1You can often get better and more reliable results in making raster figures for presentations
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Another situation where raster graphics may be called for is for 3-D surface plots
with lighting, etc. These are hard to render in vector graphics formats, so even
when destined for printing you may be better off making a raster figure file. Just
control the resolution as shown in the example code above to make sure your
printed versions look OK.

by creating the EPS figure and then converting the EPS file directly using a good raster imaging
program. However, this requires a good raster imaging program which we don’t have available in
the department labs. The Matlab renderer usually makes figures that work just fine, however.
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:, repeat command, 3, 21
;, suppress printing, 11

Accuracy, 15 digits, 2
Add and subtract, 4
And, 19
Anonymous functions, 33
Ans, 1
Array editor, 10
Array, first or second half, 21
Arrays, 3
Assigning values, 1
Axis Command, 22
Axis equal, 22

Break, 20

Case sensitive, 2
Clear, 11
Colon command, :, 3, 21
Colon command–rows and columns,

4
Column, selecting with :, 4
Comment lines (%), 13
Complex arithmetic, 6
Continue long lines, 13
Contour plots, 28
Conv, 65
Cross product, 63
Curves, 3-D, 22

Data types, 1
Deconv, 65
Derivative function, 38
Derivative of an array, 38
Derivatives, numerical, 37
Desktop, arranging, 9
Determinant, 62

Differential equations, numerical, 43
Division, ./, 5
Dot product, 63

Eigenvalues and eigenvectors, 62
Else, Elseif, 19
End of an array, 3
Equation, solve, 85
Euler’s method, 45
Event finding, odes, 50
exported figures

controlling appearance of, 89
Encapsulated PostScript, 87

Extension, .m, 10
Extrapolation, 55

Factorial, 18
FFT, 73
Figure windows, 24
Fitting, 67
Fitting, polynomial, 67
fliplr, 62
flipup, 62
For, 17
Format long e, etc., 2
Fourier transform, 73
Fprintf, 12
Function fitting, 67
Function syntax, 34
Functions, 7
Functions, anonymous, 33
Functions, M-file, 34
Functions, your own, 33
Fzero, equation solver, 85

Gamma, 18
Global variables, 34
Greek letters, 24
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Harmonic oscillator, 44
Hermitian conjugate, 62
Hold on, off, 25
Housekeeping functions, 7

Identity matrix, 63
If, 19
image formats

raster, 87
vector, 87

Indefinite integral function, 40
Input, 12
Integrals, numerical, 39
Integrate, Matlab Integrator, 41
Integrate2, Matlab 2-D Integrator, 41
Integration, Matlab’s Cumtrapz, 40
Integration, Matlab’s Trapz, 40
Interp1, 57
Interp2, 58
Interpolating: polyfit and polyval, 67
Interpolation, 55
Interpolation, 2-dimensions, 58
Inverse of a matrix, 61

Last array element, end, 3
LaTeX and Greek letters, 24
LaTeX symbols in sprintf, 24
Leastsq.m, 69
Lettering plots, 23
Linear algebra, 61
Log plots, 22
Logarithm, natural: log, 7
Logic, 19
Long lines, continue, 13
Loops, 17

M-file functions, 34
Magnitude of a vector, 64
Make your own functions, 33
Mathematical functions, 7
Matlab’s ode solvers, 48
Matrices, 3
Matrix elements, getting, 3
Max and min, 7
Meshgrid, 27

Multiple plots, 24
Multiplication, *, 5
Multiplication, .*, 5

Natural log: log, 7
Ndgrid, 28
Nonlinear equations, 83
Norm, 64
Not, 19

Ode113, 48
Ode15s, 48
Ode23, 48
Ode23s, 48
Ode45, 48
Odes, event finding, 50
Ones matrix, 63
Optimset, options, 70
Or, 19
Output, fprintf, 12
Overlaid plots, 25

Pause, 16
Pi, 2
Plot, subplots, 94
Plot3, 22
Plot: equally scaled axes, 22
Plots, logarithmic, 22
Plots, publication quality, 87
Plotting, contour and surface, 28
Plotting, xy, 21
Poly, 64
Polyder, 65
Polyfit, 67
Polynomials, 64
Polyval, 65
Power, raise to, .∧, 5
Predictor-corrector, 46
Previous commands, 1
Printing, suppress, ;, 11

Quiver plots, 30

Radians mode, 1
Random matrix, 63
Random numbers, 63
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Roots, polynomial, 64
Row, selecting with :, 4
Runge-Kutta, 46
Running scripts, 10

Script files (.m), 11
Secant method, 83
Second order ode to first order set, 44
size

of exported figures, 91
Solve a linear system, 61
Solve a nonlinear system, 83
Solving an equation, 85
Space curves, 22
Sprintf, 24
Sprintf, LaTeX symbols, 24
Square Well function, 35
Strings, 2
Subplot, 94
Subscripts, superscripts, 24
Sum an array, 6
Surface plots, 28
Synthetic division, 65
Systems of equations, 83

Taylor’s theorem, 56
Tests, logical, 19
Text, on plots, 23
TolX, fminsearch option, 70
Transpose, 62

Vector Field Plots, 30

While, 19
Workspace window, 10
Write data to a string: sprintf, 24

Xlim, 22

Ylim, 22

Zero matrix, 63
Zoom in and out, 31
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