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Preface

Brie�y speaking, according to the methodological and epistemological
considerations explained in (Fromm 1979, 1.), the philosophical access
to a theoretical system of every thinker is possible only when we have a
clear and detailed framework which comprises, above all, the historical
contextuality within which it has sprung out as a critical and subversive
(i.e., not institutionally recognized or not codi�ed) system with respect
to the given paideia1 coeval with the thinker under consideration. All
this is, on the other hand, also supported by the well-known Kuhnian
epistemological ideas about the unavoidable relationships between inter-
nal and external history. This initial state of non-o�cial institutional
recognition of a given system of thought is apparently contradictory be-
cause, in a given historical period, this system will be in con�ict with the
so-called normal science, for being then gradually considered with even
more attention until up when it will be accepted by a given social-cultural
community, so joining the new normal science course. Along this histori-
cal pathway, which often is characterized by a paradigmatic change in the
Kuhnian sense, the nets of internal and external history are inextricably
intertwined amongst them, above all as concern natural sciences. Nev-
ertheless, as regard mathematics, these epistemological considerations
should be considered with a certain caution, because the relationships
between internal and external history are quite circumstantialized, like
in the case, for instance, of the theory of Riemann zeta function, as we
will see later.

Indeed, di�erently from other celebrated conjectures of mathematics,
the so-called Riemann conjecture, still resists to every attempt of reso-
lution, notwithstanding its centenarian history which has seen the birth
of a wide and variegated knowledge's �eld grew up just around Riemann
zeta function. In a epoch-making communication to the Berlin Academy
of Science, dating back the late 1850s, G.F.B. Riemann presented his

1Paideia is a Greek term, used by Marcus Tullius Cicero and Marcus Terentius Varro (see (Riera
Matute 1970)), which refers to the overall cultural formation of the man constrained, in a given
historical period, to a truth based on the philosophical knowledge seen as the higher and most
worthy knowledge form. The corresponding Latin term is humanitas.
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unique work on number theory in which he argues on the possible esti-
mates of prime numbers less than a given quantity, on the basis of the
previous works mainly made by L. Euler, J.L.F. Bertrand, P.G.L. Dirich-
let, A.M. Legendre, P.L. �eby�sev e K.F. Gauss (see (Narkiewicz 2000,
Preface) and (Niven et al. 1991, Chapter 8)). To be precise, Riemann
commenced with using the famous Euler relation
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where P .
= {p; p ∈ N, p prime, p ≥ 2}, introducing a new complex func-

tion, the ζ(s) on the left-hand side, which will be explicitly considered,
as a complex function, just by Riemann, and later called Riemann zeta
function or simply Riemann ζ. With this remarkable contribution, Euler
opened the way to explicitly use the tools and techniques of analysis ap-
plied to problems of number theory (see (Karatsuba 1994, Introduction)),
along this pathway having then continued Gauss, Legendre and, above
all, Riemann in carrying out his only unique work on number theory of
the years 1858-59. Indeed, Riemann tried to deduce properties of the
distribution of prime numbers by means of the mathematical properties
of this new complex function, one of these having given rise to the cele-
brated Riemann hypothesis (in short, RH). Following (Karatsuba 1994,
Introduction), the idea expressed by the above Euler's relation proved
to be very fruitful and gave great impetus to the development of an im-
portant line of investigation in number theory. So with Euler2, we might
identify the origins of analytic number theory which has had mainly to
do with two chief problems (see also next chapter 2), the one concerning
the distribution of prime numbers (multiplicative number theory) and the
other one regarding the resolution of equations in integers that was, by
Euler, initially approached by means of the so-called method of generat-
ing functions (additive number theory) and that, in turn, has given rise to
other new methods like the Hardy-Littlewood-Ramanujan circle method
and the Vinogradov method of trigonometric sums. Finally, another line
of investigation in number theory is the theory of transcendental num-

2In this regard, see also (Weil 1975).
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bers. Our historical sight regards multiplicative number theory because
the involvement of the Riemann zeta function is mainly motivated by
prime number theory and related distribution's issues: to be precise, we
are concerned with some historical moments regarding certain analytic
aspects of the Riemann zeta function, laid out within the multiplica-
tive number theory framework, which go through Riemann himself to
Hadamard, Poincaré, Pólya, and so forth.

As pointed out by P.B. Borwein, except noteworthy histories of Rie-
mann zeta function and related conjecture given at an informative or
popular level, there is neither much specialized literature nor a single
monograph devoted to the broad history of the Riemann zeta function
realm with its very wide plethora of results. The only available historical
sources are disseminated into the various technical textbooks and pa-
pers on the subject, which therefore are the necessary, and currently the
unique available, starting points for every possible attempt to build up
an organic and systematic historical framework of Riemann zeta function
and related conjecture. Perhaps, this might be due to basically two main
reasons. On the one hand, the fact that there exist only failed attempts
to prove such a conjecture and this, usually, does not make history be-
cause of an usual bias which may be easily expressed by an adage of
the Italian historian Niccolò Rodolico (1873-1969), according to which
�the history is made by the winners�! On the other hand, in a work
devoted to this subject, Alain Connes reports a signi�cant remark, due
to his teacher Gustave Choquet (1915-2006), according to which a math-
ematician is rather negatively remembered for her or his failed attempts
to prove RH than for her or his other previous positive achievements3.
Therefore, not wholly senseless, it would be, for instance, to shed a look
at to a possible history of all the attempts made to prove RH, if nothing
else from an epistemology of errors standpoint (see (Binanti 2001) for an
interesting historical-anthological collectanea of writes on the pedagogy
and epistemology of errors and mistakes). Furthermore, following this

3To be precise, he textually says that �According to my �rst teacher Gustave Choquet one does,
by openly facing a well known unsolved problem, run the risk of being remembered more by one's
failure than anything else. After reaching a certain age, I realized that waiting �safely� until one
reaches the end-point of one's life is an equally self defeating alternative� (see (Connes 2000)).
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historical research program, it would also be possible to have a global
vision of what have been the various pathways treated and not. On the
other hand, to carry out a similar program, a not brief time would have
been necessary to pursue it, so that we have chosen to restrict our atten-
tion to a particular part of this wide and ambitious program, consisting
in focussing on those historical aspects lying into that non-void ground
given by the intersection between the Riemann zeta function theory and
the entire function theory, through 19th to 20th century, which have seen
involved, amongst others, the names of K. Weierstrass, J. Hadamard and
G. Pólya. Finally, because of the unavoidable role that physics has played
(and still plays) in mathematics and its development (see also what is
said later by K. Maurin), we shall also put attention to some possible
applications in physics of what discussed here, and this in coherence with
the primeval aim that originally was, on the wake of the previous work
of A.L. Cauchy, at the basis of Riemann work on complex functions, that
never was disjoined, whenever possible, by the related physical motiva-
tions (see (Enriques 1982, Book III, Chapter I, Section 6) and (Klein
1979, Chapter VI)). On the other hand, the history of physics, above all
the fundamental physics of 20th century, plainly says us that it cannot
leave aside by considering, at the same time, history of complex anal-
ysis. Thus, we have considered an historical aspect quite neglected by
either history of physics and history of mathematics, concerning the de-
duction of some notable rigorous results of statistical mechanics, that
is to say, the formulation of some important theorems due to T.D. Lee
and C.N. Yang of the early 1950s, which started just from some previous
results of the 1930s achieved by Pólya upon certain integral representa-
tion of the so-called Riemann ξ function, and that has seen also involved
Hadamard's work on entire function theory.
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Hors d'÷uvre

Here, we wish textually report some emblematic words of Krzysztof Mau-
rin (see (Maurin 1997, Foreword, pp. xiii-xxii)) from which it is also pos-
sible to descry the motif of his notable work (Maurin 1997) on Riemann
oeuvre, and that might make a brief but meaningful epistemological syn-
optical framework within which to lay out our work. Exactly, around
great Riemann's �gure, Maurin argues as follows

�The study of the ways in which great mathematical ideas are born,
develop and die out (i.e., their so-called 'history' [of ideas]) is undoubt-
edly one of the most fascinating branches of history. However, it requires
an extensive and profound knowledge of contemporary mathematics. Be-
ing involved with the life of great mathematical ideas is fruitful not only
for mathematics and physics but also for the person involved. It enables
him (or her) to come into contact with and participate in the life of the
world of ideas (the 'cosmos noethos' of the Platonists). For nowhere
can we see more concretely, one is tempted to say almost palpably, the
enormous spiritual energy which, although acting in people, still lacks
clear contours and desires 'to be mounded' and developed by people -
people called mathematicians. Plato, being strongly in�uenced by the
Pythagoreans, was aware of this. So was Eudoxos, one of the greatest
mathematicians of antiquity active in Plato's Academy. [...] It was Rie-
mann, who probably more than anyone else, enriched mathematics with
new ideas. These ideas display an unusual degree of vitality and impulse
the whole mathematics as well as many branches of physics. The world
of ideas is 'one' - i.e., it is a cohesive living organism in which all 'parts'
interact and where even slight stimulations propagate producing echoes in
the (seemingly) distant organs4 which may be called theories or 'branches
of mathematics'. Similarly like in Weierstrass-Riemann principle of 'an-

4This is just one of the possible de�nition of Philosophy, centered around the notion of rational
referring within a given philosophical system or between di�erent philosophical systems, thanks
to which the historical unity of knowledge is attainable in such a manner to overcome the various
specialistic picket fences, in search for the possible common or �xed points obtained by means of a
general comparative method.
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alytic continuation', a change of a (meromorphic) function even within
a very small domain (environment) a�ects through analytic continua-
tion the whole of Riemann surface, or analytic manifold. Riemann was
a master in applying this principle and also the �rst who noticed and
emphasized that a meromorphic function is determined by its 'singulari-
ties'. Therefore, he is rightly regarded as the father of the huge 'theory of
singularities' which is developing so quickly and whose importance (also
for physics) can hardly be overestimated. [...] As we have seen, the most
fascinating phenomena in mathematics are those which link seemingly
disparate branches of the discipline: analysis and geometry, analysis and
arithmetic, geometry and arithmetic, local and global. The last pair is
probably the 'hermetic' relation between micro- and macrocosm. Mathe-
matics and physics make up5 one organism - man's task is to actualize
this unity of the world of ideas. Riemann was deeply aware of this: he
thought of himself as mathematician and physicist. Constantly repeated,
puzzled questions about 'the mysterious and incomprehensible congruity
between mathematics and physics' [d'après E.P. Wigner] have as their
source the unconscious and stubborn inclination to dissect this one (and
the same) organism of mathematics-physics. Thus, two di�erent, arti�-
cially created, entities come into being which are in fact organs of one
great reality. Riemann outward life was brief, punctuated by the deaths
of those he loved. It did not abound in any great worldly adventures.
But his true life was devoted to the enrichment of the world of mathe-
matical ideas, which was only natural as he was a profound philosopher,
a discipline of G.T. Fechner and his 'Zend Avesta'. Creator lives in his
creations!�

With these few words, Maurin has e�caciously summarized the main
lines of Riemann general philosophy. Our work would want to be coher-
ent with what Maurin has said above. Furthermore, reconnecting us to
the �rst part of this Maurin foreword, we also quote, en passant, what has
been just said by Chen Ning Yang in (Yang 1961, Preface) about some
methodological aspects of the history of science; precisely, he a�rms that

5As concern unitary character of mathematics, see also (Loria 1946, Appendice, � IV).
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�Obviously, a concept, and especially a scienti�c one, has no full
meaning if it is not de�ned with respect to that context of knowledge
from which it derived and has developed�.

All these yet brief methodological recalls may �nd a coherent and ho-
mogeneous setting into the modern historiographical theories as, for in-
stance, those exposed in (Kragh 1990), which is a fundamental work and
an unavoidable reference for everyone has to do with history of science
because it contains the minimal prerequisites to be known. Likewise,
we will also talk about one of the last works of Gino Loria in history of
mathematics, namely (Loria 1946), in which interesting historiography
of mathematics remarks and hints are exposed. In any way, as concern
the importance of the history of mathematics oriented toward primary
historical sources, it is just enough to recall a single case study, that is
to say, the truly notable work made by Carl Ludwig Siegel (1896-1981)
- who, inter alia, was also a scholar of history of mathematics - on the
1850s Riemann unpublished manuscripts, the so-called Riemann's Nach-
laÿ, from which he deduced, in 1932, a fundamental result of the theory
of Riemann zeta-function, which he wanted to call Riemann-Siegel for-
mula to highlight his obligation to Riemann himself (see (Siegel 1932)
and (Neuenschwander 1988)). Also André Weil (1906-1998), besides to
be a great mathematician, was too a scholar in history of mathematics
(see, for instance, (Weil 1975; 1978; 1984)), who has stressed some crucial
points concerning historiography of mathematics as done, for example,
in (Weil 1978). His historiographical considerations6 will constitute the
main methodological lines that we shall follow in pursuing our historical
research's work.

6Obviously, there are many other trends of historiography of mathematics besides the one con-
sidered by Weil (see, for instance, (Dauben 1994)), but we have chosen to follow it.
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1. A few notes on the historiographical method

As has just been said above, Weil, in (Weil 1978), brie�y outlines the
main lines of what a history of mathematics should be, its study's ob-
ject and related methods. The clear and dry form with which Weil,
in a few pages, delineates the essence of the historiography of mathe-
matics according his viewpoint, will be in accordance with our point of
view. We focus on some central points of Weil's paper, precisely on those
just centered on historiography of mathematics. At �rst he begins dis-
tinguishing between two main methodological approaches to a scienti�c
subject-matter, which he respectively calls tactic and strategic. In this
regard, we report textual words with which Weil explains their meaning
and di�erence. Weil states that

�[...] one has to make clear the distinction, in scienti�c matters,
between tactics and strategy. By tactics I understand the day-to-day
handling of the tools at the disposal of the scientist or scholar at a given
moment; this is best learnt from a competent teacher and the study of
contemporary work. For the mathematician it may include the use of dif-
ferential calculus at one time, of homological algebra at another. For the
historian of mathematics, tactics have much in common with those of the
general historian. He must seek his documentation at its source, or as
close to it as practicable; second-hand information is of small value. In
some areas of research one must learn to hunt for and read manuscripts;
in others one may be content with published texts, but then the ques-
tion of their reliability or lack of it must always be kept in mind. An
indispensable requirement is an adequate knowledge of the language of
the sources; it is a basic and sound principle of all historical research
that a translation can never replace the original when the latter is avail-
able. Luckily the history of Western mathematics after the XV th century
seldom requires any linguistic knowledge besides Latin and the modern
Western European languages; for many purposes French, German and
sometimes English might even be enough.

In contrast with this, strategy means the art of recognizing the main
problems, attacking them at their weak points, setting up future lines of
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advance. Mathematical strategy is concerned with long-range objectives;
it requires a deep understanding of broad trends and of the evolution
of ideas over long periods. This is almost indistinguishable from what
Gustav Eneström used to describe as the main object of mathematical
history, viz., �the mathematical ideas, considered historically�, or, as
Paul Tannery put it, �the �liation of ideas and the concatenation of dis-
coveries�. There we have the core of the discipline we are discussing,
and it is a fortunate fact that the aspect towards which, according to
Eneström and Tannery, the mathematical historian has chie�y to direct
his attention is also the one of greatest value for any mathematician who
wants to look beyond the everyday practice of his craft. [...] However that
may be, [...] we have agreed that mathematical ideas are the true object
of mathematical history. [...] It is obvious that the ability to recognize
mathematical ideas in obscure or inchoate form, and to trace them un-
der the many disguises which they are apt to assume before coming out
in full daylight, is most likely to be coupled with a better than average
mathematical talent. More than that, it is an essential component of
such talent, since in large part the art of discovery consists in getting a
�rm grasp on the vague ideas which are �in the air�, some of them �ying
all around us, some (to quote Plato) �oating around in our own minds�.

Due to their fundamental importance from an historiographical stand-
point, we are particularly interested in the last words of Weil, namely,
at the cost of repeating them again, when he says that

�[...] we have agreed that mathematical ideas are the true object of
mathematical history. [...] It is obvious that the ability to recognize math-
ematical ideas in obscure or inchoate form, and to trace them under the
many disguises which they are apt to assume before coming out in full
daylight, is most likely to be coupled with a better than average math-
ematical talent. More than that, it is an essential component of such
talent, since in large part the art of discovery consists in getting a �rm
grasp on the vague ideas which are �in the air�, some of them �ying all
around us, some (to quote Plato) �oating around in our own minds�.
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Indeed, Weil highlights what is peculiar of a process of mathematical
creation in coming o� a mathematical idea (or object), that is to say,
to synchronously expliciting what is diachronically implicit in the past
work of mathematics7, and, in this regard, we refer to (Kragh 1990,
Chapter 9) for the notions of synchronic and diachronic and their role
in history of science, as well as for a general overview of what means
doing history of science8. Of course, this main process of the history of
mathematics centered on the evolution of a mathematical idea or object,
which belongs to the so-called internal history and is mainly pursued
over primary literature and sources, is surrounded too by all the other
historiographical procedures which make complete a general historical
recognition, that is to say, to analyze possible correspondences, to exam-
ine objective biographical data, to sift secondary literature and sources,
all procedures, these, belonging to the so-called external history. Like-
wise, following (Loria 1946, Libro II, Capitolo I), every investigation on
the historical evolution of an arbitrary product of human thought relies
on the twice consideration of both the author of this outcome (exter-
nal history point of view) and her of his works (internal history point
of view). A paradigmatic instance of doing history of mathematics ac-
cording to what has just been said above, is the notable work on history
of complex function theory recently accomplished by U. Bottazzini and
J. Gray in their treatise (Bottazzini & Gray 2013) which has been one
of the main references of our research, above all as regard canonical
historical aspects of the route followed in this work. Anyhow, we will
adhere to remarkable Weil's historiographical considerations in pursuing

7A concrete example related to a speci�c historical case study of mathematics regarding the
crucial passage from implicit to explicit in exact sciences, is expounded in (Iurato 2012).

8Following (Kragh 1990, Chapter 9), according to synchronic viewpoint of history, the past
should be studied in the light of present knowledge we have, according to the perspective to com-
prehend its further developments which have could led to the current epoch. It is allowed, if not
even necessary, that historian analyzes past with knowledge he or she has today. On the other
hand, there are no other means to avoid this, because how is it possible for an historian of her
or his own time to do otherwise? Every human being cannot wholly avoid from her or his own
knowledge's heritage with whom to evaluate every object of thinking through her of his unavoid-
able mental grids. Instead, the diachronic viewpoint tries to study past only in the light of real
situations and conceptions of the time under examinations, neglecting every other thing may have
had some relationship with the given historical fact. In this regard, the historical re-enactments
advocated by R.G. Collingwood belong to the diachronic viewpoint.
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our historical research herein exposed. Furthermore, following (Neuen-
schwander 1994), the use of primary sources play an important role in
history of mathematics, since they provide the means for any critical
study in the �eld. As can be seen from numerous examples, historical
developments are seldom as straightforward and logical as many theo-
retically oriented historians and philosophers of science like to pretend.
The precise historical development can rarely be reconstructed by purely
intellectual means, since in�uences from outside the �eld, and even mere
accidents, sometimes play a certain unavoidable role. In order to deter-
mine the signi�cant and decisive factors and to avoid false conclusions, it
is therefore essential to undertake an extensive evaluation of primary and
secondary sources. The usefulness and the importance of the study of
primary sources in the history of mathematics have been demonstrated
by researches and studies achieved by E. Neuenschwander in regard to
three mathematicians from three di�erent countries, namely J. Liouville,
B. Riemann and F. Casorati. His investigations revealed the richness of
the estates of mathematicians of the 19th century, as nearly all the math-
ematical notes of these three mathematicians have survived, and in the
case of Liouville and Riemann, for example, even their school and uni-
versity reports are still to be found. On the other hand, it is possible to
reconstruct the discovery of mathematical theorems down to the smallest
detail by the use of primary sources, as was shown by a survey of the
history of Casorati-Weierstrass theorem (see (Neuenschwander 1978)),
which is another exemplary instance of history of a mathematical idea
or object according to Weil. On the other hand, according to (Peri 1971,
Parte Ia, Capitolo 2), the historical research has often a sectorial nature,
above all as regard history of science. Indeed, in our case, mathemat-
ics does not develop ever only through great systems, but very often
also through speci�c contributions and particular problems, so that we
have either an historical examination brought with intensive (or com-
prehensive) method and an historical recognition carried out with exten-
sive method. Here, we are just interested in a particular contribution to
mathematics falling into the intersection between Riemann zeta function
theory and entire function theory, and conducted with intensive method.
But, notwithstanding that one brings forward a comprehensive history
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upon a particular problem or speci�c subject-matter, it is a basic role
of historiography to consider the various possible historical connections
which regard it, in such a manner to give an as more coherent and har-
monic possible framework centered around the original historical issue.

Following (Kragh 1990, Chapter 2), roughly speaking, historiography
is right manner of the writing of history, especially the writing of history
based on the critical examination of sources, the selection of particular
details from the authentic materials in those sources, and the synthesis
of those details into a narrative story that stands the test of critical ex-
amination. The term historiography also refers to the theory and history
of historical writing. It is customary to distinguish between two main
di�erent levels or meanings of the term 'history'. History (hereafter H1)
can describe the actual phenomena or events that occurred in the past,
that is to say, objective history. In such expressions, history has to be
understood as 'the past' or the phenomena that actually occurred in the
past. But since we only have, and only ever will have, a limited knowl-
edge of the reality of the past, most of what actually took place in the
past will forever be beyond our grasp. The part of history (H1) that we
do know is not just limited in extent but is also the product of a research
process that includes the selections, interpretations and hypotheses of
the historian. We do not have direct access to H1, but only to parts of
H1 which have been transmitted via various sources. The term history
(hereafter H2) is also used to refer to the analysis of historical actuality
(H1), that is to say, the historical research and its results. The object of
history (H2) is thus history (H1) in the same way as the object of natural
science is nature. Just as our (scienti�c) knowledge of nature is limited
to the research results of science that are not nature but a theoretical
interpretation of it, so our knowledge of the events of the past is limited
to the results of history (H2) that are not the past but a theoretical in-
terpretation of it. Radically positivist philosophers have maintained that
the existence of an objective nature is a meaningless �ction and that it
is impossible to distinguish between nature and our knowledge of it. In
the same way, some idealist historians maintained that the distinction
between H1 and H2 is a �ction that serves no useful purpose; that there
is no actual history apart from that which the historian constructs from
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his sources. There is no need, however, in the present context, for us to
take this idealist view of history seriously. The term historiography is
often used to refer to H2, meaning writings about history. In practice,
historiography can have two meanings. It can simply mean (professional)
writing about history, that is, accounts of the events of the past as writ-
ten by historians, as well as it can mean theory or philosophy of history,
that is, theoretical re�ections on the nature of history (H2). In its latter
meaning, historiography is, therefore, a meta-discipline, whose object is
H2; purely descriptive history will not itself be historiography but it can
be the object of an historiographical analysis. According to the histori-
ographical theory associated with positivism (positivist historiography),
history is a description of the past, based on a series of well-documented
facts. Positivist historiography is based on the following assumptions:

1. History (i.e., the past, H1) is an objective reality that is the un-
changeable object of interest to the historian.

2. It is an historian's task to try to reconstruct the past as it actually
was, i.e., give a true description of the course of events of the past.
But it is not her or his task to interpret or evaluate the occurrences
of the past or to draw conclusions about the present or future on
the basis of history. The study of history is the study of the past
as the past in itself.

3. It is, in fact, possible to write history 'wie es eigentlich gewesen',
i.e. to attain an objective knowledge of parts of the historical past.
This epistemological objectivity implies, among other things, that
the subject (i.e., the historian) can be separated from the object
(i.e., the historic events) that can be viewed impartially, to be seen
'from without' (ideal of impartiality).

4. History can be viewed as an organized sum of simple, particular
facts that can be discovered through the study of documents from
the past, using methods that are the critical of sources. It is the
most exalted task of the historian to uncover these facts. Interpre-
tations and conclusions can only be made and drawn when all the
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relevant facts have been collected. The historian G. Sarton com-
pares the historian of science with the entomologist: in the one
case, it is insects that are collected and arranged, in the other, it
is scienti�c ideas.

Following (Kragh 1990, Chapter 7), because of their placement in the
past, historical occurrences cannot be re-created or manipulated. For this
reason hypothetical or contrary-to-fact statements are often regarded as
unacceptable in historical works. A contrary-to-fact statement is a state-
ment based on an assumption that is known to be factually false, in other
words, that cannot be reconciled with the known facts. Such statements
are also called counterfactual statements. They contain the conditional
'if ...' followed by the false statement P . The hypotheses are normally
statements whose truth value is not known, but which are used heuris-
tically in order to deduce testable statements that will then support or
weaken the hypothesis. Counterfactual history seems to presuppose that
individual historical occurrences can be taken out of their context with-
out disturbing anything more than a few other occurrences. According
to many historians with a 'holistic' view, this presupposition is funda-
mentally unjusti�ed since all historical occurrences are connected to each
other. The assumption that an actual occurrence had not taken place,
would have changed all subsequent occurrences in a totally unpredictable
way. In spite of these objections and in spite of the fact that we can never
determine the truth value of counterfactual historical situations with cer-
tainty, they are of value in history. In practice, counterfactual questions
are not infrequent in the history of science. According to M. Bernal, �we
ought to demand not only how was this discovery made, but why was
it not made before then and what would have been the course if history
had gone di�erently�. Questions of why occurrences took place as they
did are of course an important part of history. Such factual questions
can, however, also be formulated counterfactually, especially when they
are attempts to make causal connections between occurrences.

Following (Kragh 1990, Chapter 8), the structural framework of the
historian includes, among other things, divisions into historical periods.
Obviously, periodization is the work of the historian, not of history.
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There not exist any objective or natural way to periodize which is intrin-
sic of the historical course of events. This does not mean, however, that
all ways of organizing the historical materials are equally good. In the
historiography of modern science, a tradition has arisen for working with
chronological periods that follow the century in question: e.g., science in
the 20th century, in the 19th, 18th and 17th centuries, and so on. The
division is obviously arbitrary, in the sense that it does not re�ect any
internal tendency in the development of science. One way of organizing
history of science is to divide it into 'horizontal' and 'vertical' sections.
The horizontal history of science is understood here to mean the study
of the development through time of a given, narrow topic, like a scienti�c
speciality, a problem area or an intellectual theme9. In some cases, it
is possible to identify the origin (tα) and the end (tω) of the topic in
which cases the time boundaries are given. In other cases, the upper
boundary is the present day10 (tν). This case appears frequently since
the reason for tracing a particular topic backwards in time is often tied
up with the present importance of that particular topic. Horizontal his-
tory is typically discipline history or history of a sub-discipline. Instead,
vertical history is an alternative way of organizing history of science ma-
terials. The vertically inclined historian starts out from a perspective
that is more interdisciplinary in nature where the science that is in focus
is seen as merely one element in the cultural and social context of a given
period. An element that cannot be isolated from other elements of the
period and which, together with these, characterizes the 'spirit of the
age' (Zeitgeist) that constitutes the real �eld of this type of history of
science. While horizontal history is a �lm of a narrow part of science,
vertical history is a snapshot of the overall situation. In horizontally
organized history, the historian isolates a particular discipline or prob-
lem from other, contemporary disciplines. This approach involves the
danger of falling into anachronisms relying as it does on an assumption
of disciplinary continuity. If the historian applies a narrow, horizontal

9Like in the historical case study treated in this our research's work.
10Following the New Testament biblical tradition, we have deliberately chosen to use the �rst

letter (α), the mid letter (ν) and the last letter (ω) of the Greek alphabet as indexes to denote such
particular instants.
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perspective, the dependency on problems that lie outside the specialist
subject may not be revealed. Disciplinary, horizontal history tends to
become a bloodless recapitulation, a record of the origin, development
and decay of the internal aspects of the discipline. As such, it will not
only be relatively uninteresting but also arti�cially con�ned. The histo-
rian of mathematics who studies the development of geometry, cannot
allow himself to study pure geometry alone; he must be prepared to
study the histories of art, architecture, philosophy, cartography, physics
and perhaps several other �elds. In spite of the criticism that can be
raised against horizontally organized histories of disciplines, it would
be wrong to follow those who repudiate this approach completely. At
least in some cases, it is possible to identify disciplines and specialist
themes in earlier periods without committing sins of anachronism, like
in history of mathematics. The only problem is that these themes will
only rarely be identical to modern themes and only rarely be unchanged
throughout long periods of time. The risk one runs in cutting oneself o�
from important vertically integrated connections depends on the period
and discipline under consideration. An increasing disciplinary isolation
is characteristic of the kind of highly organized, specialized science that
has developed since the turn of the century. As far as modern science is
concerned, it is, therefore, less problematic to organize history horizon-
tally. Whether one needs to adopt a vertical, cross-disciplinary approach
is not a matter of principle but of historical contingency. While vertically
organized historiography avoids the problems connected with identifying
a stable discipline throughout a longer period of time, it lays itself open
to other problems. The historian who follows the advice given by who
investigates the science in a short period of time, including its integra-
tion with social-cultural context in general, will perhaps cut herself or
himself o� from acquiring knowledge about possible historical causes of
the situation being analyzed. The degree of arbitrariness in the choice of
period or of the complex discipline, will often be no less than the degree
of arbitrariness to be found in the horizontally inclined historian who
has to mark out her or his �eld.

A special kind of organization of history that contains both hori-
zontal and vertical traits is connected with the thesis of invariant his-

17



torical themes, or the invariance thesis, for short. This is the thesis
that history can be viewed as a variation on a relatively small number
of constant themes or unit-ideas that manifest themselves at di�erent
times in all-important branches of culture. According to A. Lovejoy,
who was an important spokesman for the invariance thesis in the history
of ideas, unit-ideas can be compared with atoms of elements: just as the
hundreds of thousands of chemical compounds can be understood to be
combinations of a few kinds of atoms, the complex and extremely varied
forms in the history of ideas can be conceived as combinations of a few
unit-ideas. Since it attempts to integrate di�erent elements that make
up culture and to simultaneously follow these through time, the thesis
can be regarded as an attempt to circumvent the con�ict between hori-
zontal and vertical historiography. Lovejoy describes the thesis as follows

�The postulate [...] is that the working of a given conception, of an
explicit or tacit presupposition11, of a type of mental habit, or of a spe-
ci�c thesis or argument, needs, if its nature and its historic role are to be
fully understood, to be traced connectedly through all the phases of men's
re�ective life in which those workings manifest themselves, or through as
many of them as the historian's resources permit. It is inspired by the
belief that there is a great deal more that is common to more than one
of these provinces than is usually recognized, that the same idea often
appears, sometimes considerably disguised, in the most diverse regions
of the intellectual world�.

Ever since Lovejoy, the thesis of invariant unit-ideas has been developed
by many authors amongst whom is M. Sachs, a physicist and philoso-
pher, who writes

�It is my thesis that the actual truths sought by the philosopher and
the scientist about the real world emerge in the form of abstract, invari-
ant relations that are independent of the domain of understanding to
which they may be applied, whether in the arts, the sciences, the phi-

11Notice here the reference to implicit/explicit duality.
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losophy of religion, or any other intellectual discipline, and that these
relations are invariant with respect to the di�erent periods of history dur-
ing which they may be expressed. In the language of theoretical physics,
I am contending that the principle of relativity - the assertion that the
laws of nature are independent of the frame of reference in which they
may be expressed - applies equally to the relations that govern the evo-
lution of human understanding, i.e. the history of ideas, as it does to
the natural phenomena of the inanimate world of the stars, planets and
elementary particles�.

Also S. Sambursky concludes that �the inner logic of scienti�c patterns
of thought has remained unchanged by the passage of centuries and the
coming and going of civilizations�. In the same way, several historians
have �xed on what they consider to be striking similarities between con-
cepts in classical natural philosophy and in modern science. The thesis
of invariance has been developed into a so-called analysis by G. Holton,
according to whom one can pro�tably interpret pioneering scienti�c work
as being based on underlying, possibly unconscious, concepts, methods
and commitments that act as 'private' motives or restraints during the
process of research. These themata are non-scienti�c in the sense that
they are often not acknowledged by the scientist and rarely appear in
o�cial scienti�c discourse. The themata to which a scientist is commit-
ted do not necessarily stem from science. They can have been formed
in early years or be the result of any sort of in�uence. Like other forms
of invariant ideas, themata do not have the status of theories. Their
validity cannot be tested empirically or established by means of rational
argumentation. Holton's use of thematic analysis di�ers from the Love-
joy version of the invariance thesis in that it focuses on a short period
of time and on individual scientists. In other words, it is used vertically
rather than horizontally. However, Holton believes that there are only a
few themata in the history of science and that it is only very rarely that
new themata arise. No matter how radical the advances will seem in
the near future, they will with high probability still be fashioned chie�y
in terms of currently used themata. The themata considered by Holton
typically appear as opposing pairs of thesis-antithesis, such as evolu-
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tion/devolution, plenum/vacuum, hierarchy/unity, reductionism/holism
and symmetry/asymmetry. However inspiring and interesting the invari-
ance thesis may be, it should be used with caution, not as an infallible
framework for organizing history but rather as a heuristic principle. In
most cases, it is problematic to talk of actually invariant unit-ideas as
independent historical quantities. Unit-ideas are the result of a compar-
ative analysis made by the historians, which are 'labels' implying that
di�erent works are analogous or belong to the same category. The se-
lection of the historian and her or his interest in historical constancy
may result in unit-ideas whose constancy in time is an illusion, since
the actual historical context in which they appear is disregarded. Con-
cepts and ideas are rarely or never quite the same over a long period of
time. Although the names given to them by historians might turn out to
be unchanged, fundamental concepts often develop beyond recognition
through the historical process. The problem with using the invariance
thesis over long periods of time, is that it tends to press modern con-
cepts and forms of thought down on earlier science instead of studying
the latter in terms of its own premises.

Following (Kragh 1990, Chapter 9), according to the synchronic view-
point, the science of the past ought to be studied in the light of the
knowledge that we have today, and with a view to understand this later
development, especially how it leads until to the present. It is considered
legitimate, if not necessary, that the historian should 'intervene' in the
past with the knowledge that he possesses by virtue of his placement later
in time. Synchronic historiography, in the sense is used here, involves a
certain type of anachronism, but it is not necessarily anachronistic in the
usual, derogatory sense. Today, synchronic history of science is rarely a
conscious historiographical strategy. On the contrary, there is a broad
agreement about praising a non-synchronic ideal. Even so, in practice,
synchronic history of science is widespread and di�cult to avoid. The
doctrine is connected with the presentist view of history which may be
seen as a theoretical justi�cation of synchronic historiography. Further-
more, this perspective is legitimate from the points of view that regard
the goal of history of science as primarily bound up with the present
situation. If one believes that it is the task of the historian of science
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to understand the technical contents of older science and to pass this
understanding to the scientists of today, then a way of presentation that
is synchronic in tendency will be natural. A text will then be taken to
have been understood if its true contents, in the current sense, can be
represented with modern formalism and using modern knowledge. The
diachronic ideal instead is to study the science of the past in the light
of the situation and the views that actually existed in the past, in other
words to disregard all later occurrences that could not have had any in-
�uence on the period in question. Occurrences that took place before,
but which were actually unknown at the time, have to be regarded as
non-existent as well. So, ideally, in the diachronic perspective one imag-
ines oneself to be an observer in the past, not just of the past. This
�ctitious journey backwards in time, has the result that the memory of
the historian-observer is cleansed of all knowledge that comes from later
periods. The diachronic historian is therefore not interested in evaluat-
ing the extent to which historical agents behaved rationally or whether
they produced true knowledge in an absolute or modern sense. The only
thing that matters is how far the actions of the agent were judged to
be rational and true by the agent's own time. In this sense, one may
say that there is a relativistic element in diachronic historiography. In
many ways, as has been said above, Collingwood's view of history is in
accordance with the diachronic ideal. In synchronic historiography the
subject-matter of history of science is the same as the subject-matter of
science. Scienti�c facts and theories are regarded as having a permanent,
almost transcendental existence even in periods when they were not rec-
ognized. In the words of G. Buchdal, synchronic historiography is based
on �the misleading presupposition that �science� (as against scientia) is
a quasi-object latently existing in all ages, signs or symptoms of which
may be discerned to appear during any stages of world history�. Accord-
ingly, science becomes a phenomenon that is bound to make progress in
the direction of truth. It is then the task of the historian to elucidate
this development towards true knowledge as it takes place through suc-
cessive experiments and theories. The philosophy of science that lies
behind synchronic historiography leads to the temptation to write his-
tory backwards, to teleological history of science. This is an approach
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that has been badly shaken by the criticisms put forward by T.S. Kuhn
and other post-positivistic philosophers of science.

A fundamental aspect of synchronic ideal, is the so-called anticipa-
tion, which regards too our research's work. There is a long tradition
in the history of science of taking an interest in which persons or theo-
ries were the forerunners of a particular later theory. This interest has
recently been criticized by many authors and historians. The point is
partly that assertions about anticipation necessarily involve speculative
interpretations directed by next knowledge. And partly that scienti�c
discoveries ought to be judged with respect to their actual historical
signi�cance: discoveries can only be regarded as e�ective if they have
achieved a widespread acceptance. We notice, however, this entails a
non-diachronic view according to which earlier science ought to be judged
according to the same criteria as modern science, that is to say, the un-
changeable rules of scienti�c discussion. By its very nature, the idea of
anticipation involves a synchronic perspective. In itself, this may not be
problematic, but it becomes so if 'clairvoyant' abilities are ascribed to
predecessors and if later theories are projected upon the works of prede-
cessors. If these pitfalls are not avoided, the result is a pure anachronism.
The problem about the concept of anticipation is that, largely, it is the
historian's interpretation of the forerunner that decides to what extent
there is an historical connection between the alleged forerunner and the
successive doctrine. This is an unavoidable element in anticipation histo-
riography. As has been pointed out, anticipation is a context-dependent
concept that will often be evaluated di�erently by scientists and histo-
rians. Anticipation historiography is closely connected with the thesis
of invariance and, in general, with continuity of the history of science.
If scienti�c development is seen as a continuous and conservative pro-
cess, then the search for direct predecessors becomes a central task for
the historian12. This method, in which a development is presented as a
sequence of small changes and in which it does not, therefore, have any
clear beginning, has been called the emergence technique by P. Duhem,
who also de�ned the so-called emergence chains. Can one conclude from

12And this is the point of view adopted by us in the follows.
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the critics of the so-called Whig historiography13 that all synchronic ele-
ments ought to be avoided and that history of science should dealt with
a purely diachronic perspective? The answer is no, because a totally
diachronic history of science would not be able to live up to the demands
that are normally made on historical expositions. It might perhaps give
a true representation of the past, but it would also be antiquarian and
inaccessible to all except a few specialists. Diachronic historiography can
only be an ideal. The historian cannot liberate himself from his own age
and cannot completely avoid the use of contemporary standards. During
the preliminary study of a speci�c period, one cannot use the period's
own standards for evaluation and selection, since these standards form
part of a period that has not yet been studied and they will only gradu-
ally be revealed. In order to have a whole view of a subject-matter, one
has to wear glasses, and these glasses must, unavoidably, be the glasses
of the present. The historian cannot purely rely on criteria of signi�cance
accepted in the past. Only in a few cases there will be an undisputed
consensus on the priorities in the past. Usually the establishment of con-
sensus will involve selection and hence imply the historian's intervention
and her or his will. In many cases, it will be the obvious thing to do to
use modern knowledge in the analysis of a historical event, and, by so do-
ing, one may be led to interesting questions that could not be formulated
on a purely diachronic basis. Similarly, it is only in a retrospect stand-
point that many important connections manifest themselves. It is only
if one allows a synchronic perspective that it can be seen that, in fact,
di�erent instances of the 'same' discovery taken place. We conclude that
in practice the historian has not to be confronted with a choice between
a diachronic or a synchronic perspective. Usually both elements should
be present, their relative weights depending on the particular subject
being investigated and the purpose of the investigation. The historian of
science has to be a person with a kind of the 'two-faced head of a Janus'
who, at the same time, is able to respect the con�icting diachronic and
synchronic points of view.

13Roughly speaking, it is an historiographic point of view which focuses on the successful chain
of theories and experiments that led to present-day science, ignoring failed and dead theories.
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2. Moments of the history of number theory

Loosely speaking, number theory deals with Z, the set of integral num-
bers, with related properties and possible structures. Number theory is
the oldest trend of mathematics, dating back to Sumerians, Akkadians,
Egyptians, Babylonians, Chineses, and Greeks, who faced the problem
of counting and computing starting from numerical evidences and em-
pirical relationships between numbers. Notwithstanding that, number
theory is so wide to touch every other mathematical sector, it is however
possible to identify a few fundamental arguments which have been the
pivotal routes along which number theory historically developed, which
are

1. Diophantine equations. These are polynomial equations in more
variables whose solutions are in Z, one of the most celebrated being
the Pythagorean one x2 + y2 = z2. Such equations date back to
Diophantus of Alexandria (lived ca. between 200 and 300 A.C.),
in his famous treatise Arithmetica there being the �rst systematic
study of some equations of this type, even if equations of the sim-
plest type ax+by = c with a, b, c ∈ Z had already been considered
by Euclid in his Elements. But maybe such equations date back as
early as thousand years ago. For a modern history of Pythagorean
theorem, see the recent monograph (Maor 2007).

2. Distribution of prime numbers. Prime numbers are distributed in a
very irregular manner along numerical line, and ever since ancient
times many e�orts were accomplished to determine the laws ruling
such a distribution. The analytic number theory is the modern
trend of number theory which deals with this problematic.

3. Algebraic number theory. Such a trend of number theory deals with
factorization of integral numbers into prime numbers, starting from
the so-called fundamental theorem of arithmetic (see later).

4. Congruences. An equations of the type x ≡ y mod n means �nd
integer solutions to x − y = pn, for a certain p ∈ N. Such a
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types of equations, said to be a congruence, formalizes divisibility
properties of integral numbers and their factorizations into prime
numbers. The modern theory of congruences is therefore a chap-
ter of analytic number theory, and basically originated from C.F.
Gauss work on number theory (see (Berzolari et al. 1930-1951,
Volume I, Parte 1a)); furthermore, Gauss work put the founda-
tions from which started the construction of most modern number
theory of 19th and 20th century.

According to (Stopple, 2003), number theory is a subject which is so
old that nobody can say when it started, this also making hard to de-
scribe what it is. More or less, it is the study of interesting properties
of integers, even if, of course, what is interesting depends on the per-
sonal taste of every individual. In the study of right triangles in geom-
etry, one encounters triples of integers x, y, z such that x2 + y2 = z2,
as, for example, 32 + 42 = 52. These are called Pythagorean triples,
but their study predates even Pythagoras. In fact, there is a Babylo-
nian cuneiform tablet, considered to be oldest historical source of the
�rst arithmetical fact, and designated Plimpton 322 in the archives of
Columbia University from the nineteenth century B.C., that lists �fteen
very large Pythagorean triples; for example, 127092 + 135002 = 185412.
The Babylonians seem to have known the theorem that such triples can
be generated as x = 2st, y = s2 − t2, z = s2 + t2 for integers s, t. This,
therefore, is the oldest theorem in mathematics. Pythagoras and his fol-
lowers were fascinated by mystical properties of numbers, believing that
numbers constitute the nature of all things. The Pythagorean school
of mathematics also noted this interesting example with sums of cubes
33 + 43 + 53 = 216 = 63. This number, 216, is the Geometrical Number
in Plato's Republic. The other important tradition in number theory is
based on the Arithmetica of Diophantus. More or less, his subject was
the study of integer solutions of equations. Diophantus' work was lost
to the Western world for more than a thousand years. Although many
results of number theory were already known to ancients, the history of
this mathematical section wants to begin with he great French math-
ematician Pierre de Fermat, who was a lawman interested in number
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theory as an hobby. The problems raised by him, were quite modern for
his contemporaries, and were the starting points for almost all the num-
ber theory researches from 18th century on. Fermat worked out many
of his assertions and statements in letters sent to his contemporaries,
amongst whom are M. Mersenne and C. Huygens, but rarely given a
complete proof of them. A large part of number theory that developed
from this period onward, was just devoted to prove Fermat's arguments.
Fermat was reading Diophantus' comments on the Pythagorean theo-
rem, mentioned above, when he conjectured that for an exponent n > 2,
the equation xn + yn = zn has no integer solutions x, y, z (other than
the trivial solution when one of the integers is zero). This was called
�Fermat Last Theorem�, although he gave no proof of it, except the case
n = 4 by means of a new method of proof, called method of descent, and
claiming that the margin of the book was too small to be impossible to
�t the complete proof's steps for the general case. For more than 350
years, Fermat Last Theorem was considered the hardest open question
in mathematics, until it was brilliantly solved by Andrew Wiles in 1994.
This, then, is the most recent major breakthrough in mathematics. Fer-
mat introduced the so-called two-square and four-square theorems, the
�rst proved by him, the second completely proved, for the �rst time, by
J.L. Lagrange around 1770 after some unfruitful previous attempts due
to L. Euler.

Following (Weil, 1984), (Scharlau & Opolca 1985) and (Watkins
2014) to outline the main moments of the modern era of analytic num-
ber theory until up Riemann's work, we may start saying that after
more than a thousand years of general stagnation and decay, the rejuve-
nation and revitalization of western mathematics - particularly algebra
and number theory - starts with Leonardo of Pisa, known as Fibonacci
(about 1180-1250). Occasionally, the formula (a2 + b2)(c2 + d2)− (ac−
bd)2 + (ad+ be)2 is ascribed to him: if two numbers are the sums of two
squares, their product is a sum of two squares as well. This develop-
ment was continued by the Italian renaissance mathematicians Scipione
dal Ferro (about 1465-1526), Nicolò Fontana, known as Tartaglia (about
1500-1557), Gerolamo Cardano (1501-1576), and Ludovico Ferrari (1522-
1565). Their solution of algebraic equations of the third and fourth de-
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gree marks the �rst real progress over ancient mathematics. Next in
this line is François Viète (1530-1603) who introduced the use of let-
ters in mathematics. With Viète, we enter into the seventeenth century
mathematics, and, from that time on, mathematics enjoys an uninter-
rupted, continuous and exponentially accelerating development. This
new era, the era of modern mathematics, starts with four great French
mathematicians, namely Girard Desargues (1591-1661), René Descartes
(1596-1650), Fermat (1601-1665), and Blaise Pascal (1623-1662). Fermat
was the most important one, considered to be the father of modern num-
ber theory, deriving much of his inspiration from Diophantus' works. He
was a royal councillor at the Parliament of Toulouse, a position that, in
today's terms, can be described as a high-level administrator. Fermat's
profession apparently provided him with all the leisure he needed to oc-
cupy himself with mathematics. His style of work was slow, his letters,
which contain all his important number-theoretical results, are laconic
and dry. The majority of these were directed to Mersenne. Several of
these correspondents were important in the development of number the-
ory, among them B. Frénicle de Bessy, Pascal and P. de Carcavi. In
these letters, Fermat formulated number-theoretical problems, but there
are also several de�nitive statements and discussions of special numerical
examples. Fermat never gave proofs and only once did he indicate his
method of proof. This makes it di�cult to determine what Fermat really
proved as opposed to what he conjectured on the basis of partial results
or numerical evidence. Many of his theorems cannot be proved easily,
and �rst-rate mathematicians, such as Euler, had great trouble proving
them. Nevertheless, there can be no doubt that Fermat knew how to
prove many if not most of his theorems completely. His letters indicate
that at about 1635, inspired by Mersenne, Fermat began to occupy him-
self with number-theoretical questions. His �rst interests were perfect
numbers, amicable numbers, and similar arithmetical brain-teasers. He
describes several ways to construct such numbers, but far more remark-
able is that - showing more insight than any of his contemporaries - he
succeeded in proving an important theorem in this still very barren area,
the so-called Fermat little theorem, ap ≡ 1 mod p for every prime num-
ber p and every number a prime with p, today this theorem being proved
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with basic notions of group theory. Fermat's most important number-
theoretical heritage is a letter to Carcavi in August 1650 that himself
considers as his testament, a fact which he expresses in the following
words: �Voila sommairement le compte de mes reveries sur le sujet des
nombres�. At the beginning of this letter, one �nds the passage where
he describes a certain method of proof which he himself discovered and
used with great success. He then formulates a number of theorems all of
which were contained in earlier letters or papers, but it is obvious that
he wanted to compile what he himself considered his most beautiful and
important results. Among the Fermat's main outcomes in arithmetic
besides the above mentioned Fermat's little theorem, we recall the fol-
lowing ones. If n and m are coprime, then n2 +m2 is not divisible by
any prime congruent to −1 modulo 4, while every prime congruent to
1 modulo 4 can be written in the form n2 + m2, these two statements
dating back to 1640 and proved in 1659, with his method of in�nite de-
scent, already mentioned above, which is an argument by contradiction
that roughly reads as follows: if a given natural number n, with assigned
properties, implies that there exists at least a smaller one with the same
properties, then there exist too in�nitely many of such numbers, which
it is impossible. As said above, Fermat started to consider Diophantine
equations ever since 1850s, through the method of in�nite descent, but
often without giving a correct and complete proof, but developing meth-
ods to �nd points on some elementary algebraic curves. In particular, he
claimed x4 + y4 = z4 does not have non-trivial integer solutions, while
x3 + y3 = z3 does not have non-trivial solutions, stating that this could
be proven via the method of in�nite descent, but the �rst correct proofs
of these questions were due to Euler around 1753. Moreover, Fermat also
a�rmed to have prove there are no solutions to the equation xn+yn = zn

for all n ≥ 3 (Fermat last theorem). With Diophantus and, above all,
Fermat's works, we have the dawn of algebraic number theory (see also
(Maurin 1997) and (Goldstein et al. 2007)). Anyway, Fermat was the
�rst to discover really deep properties of the integers.

After 1650, number theory stood virtually still for a hundred years.
This period saw the development of analysis in the work of Isaac New-
ton (1643-1727), Gottfried Wilhelm Leibniz (1646-1716), the Bernoullis
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(Jacob, 1655-1705: Johann I, 1667-1748; Nicholas II, 1687-1759; Daniel
1700-1792), and Euler (1707-1783). Analytic methods have played an im-
portant role in number theory ever since Dirichlet's work. This interplay
between analysis and number theory has its early origins in the work of
Euler, which, therefore, marked the emergence of analytic number theory.
Euler, whose life is opposed to the Leibnitz's one, made meaningful con-
tributions in every �eld of mathematics in which he worked. Doubtlessly,
his most important achievements are in analysis (in�nite series, theory of
functions, di�erential and integral calculus, di�erential equations, calcu-
lus of variations, and so on). Euler's application of in�nite series to di�er-
ent number theoretical problems was of principal importance. The study
of the series

∑
n−2k leads to series of the form

∑
n−s, s ∈ N. The case

where s = 2k+1 runs into major di�culties, and even today, no explicit
formula is known for the corresponding series. Only later H. Minkowski
discovered interesting and very di�erent interpretations for these expres-
sions. Euler was probably the �rst to see that these series can be applied
to number theory. He was in correspondence with C. Goldbach and J.L
Lagrange just on number theory questions. His proof of the existence of
in�nitely many primes uses the divergence of the harmonic series

∑
n−1

and using the above fundamental theorem of arithmetic which says that
every natural number can uniquely be written as a product of powers
of primes. Afterwards, P.L.G. Dirichlet (1805-1859) systematically in-
troduced analytical methods in number theory. Among other things, he
investigated the series

∑
n−s for real s, while B. Riemann (1826-1866)

allowed complex s. Another typical example for Euler's way of thinking
is the following attempt to prove the four-square theorem on the wake of
the previous Fermat's work, for example proving Fermat little theorem,
some special cases of Fermat last theorem for n = 3, 4, the statement
that every integer number is the sum of four squares, and considering the
question of which prime numbers can be expressed in the form x2+ ky2,
where k is a given integer, hence, by numerical evidence, identifying
�rst forms (together similar Legendre's attempts) of the so-called law of
quadratic reciprocity, according to which, in Gauss notations, the con-
gruence x2 ≡ p mod q is solvable if and only if x2 ≡ (−1)(q−1)/2q mod p
is solvable, but not giving a rigorous proof of it; the �rst rigorous proof
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will be provided by Gauss14; see (Frei 1994) for a more detailed histori-
cal account of this law. The problem of four-square theorem fascinated
Euler over several decades but he never found a complete proof, improv-
ing and simplifying the �rst proof of the theorem, due to Lagrange; as
said above, he gave only a proof of the two-square theorem. Euler also
approached some Diophantine equations, amongst which the equation
x2−dy2 = 1, where d is a non-squared natural number15, and introduced
and studied the so-called numeri idonei, that is to say, the numbers
d = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 211320, 1365, 1848 (alto-
gether 65) which have the following property: if ab = d and if a number
can be uniquely written in the form ax2 + by2 with ax, by relatively
prime, then this number is of the form p, 2p or 2k, where p is a prime
number. Speci�cally, any odd number greater than 1 which can be writ-
ten uniquely in this fashion, is prime. Euler calls these numbers 'numeri
idonei' because they can be used for tests of primality. However, number
theory, in a way, did not exist when Euler began his work, since Fermat
had not left any proof. Initially, Euler was quite isolated, and only later
Lagrange joined him as a versatile and knowledgeable partner. It is di�-
cult to realize today what kind of obstacles Euler faced, obstacles which
we can overcome easily today with the help of simple algebraic concepts
such as those provided by group theory.

Lagrange was the �rst to give rigorous proofs to many Fermat's and
Euler's statements. Lagrange's number-theoretical papers belong to the
Berlin era, mainly dating back to the years 1766-1777. Lagrange's main
inspiration seems to have been Euler's work which he read very carefully;
there also was an extensive correspondence between Euler and Lagrange,
notwithstanding that they never met. As already said above, Euler was
not really successful in treating Fermat's problems, and, in spite of the
great e�orts made by him, he gave a complete proof, after several unsuc-
cessful attempts, only of the two-square theorem. Euler's contributions
to the four-square theorem, or to the theory of the equations x3 = y2+2

14The law of quadratic reciprocity anticipated more general results amongst which the modern
E. Artin reciprocity law of �eld class theory.

15As has been already said above, this equation was �rst considered by Fermat, but inexplicably
Euler called it Pell's equation. Euler proved such an equation have an in�nite number of solutions.
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or x3 + y3 = z3, were almost pursued with success, but serious gaps
yet remained, Euler's real achievements having been the presentation of
many examples and the use of analytical methods. Lagrange is Fermat's
true successor in number theory. He was the �rst to give proofs for a
series of Fermat's propositions and did so without leaving the realm of
arithmetic; many of these techniques were his own. Three of Lagrange's
works in number theory are particularly important, namely the �Solution
d'un problème d'arithmétique� of 1768, the Lagrange treatment of the
equation x2−ky2 = 1 in �Demonstration d'un théorème d'arithmétique�
of 1770, and the paper which contains the �rst proof of the four-square
theorem, i.e., �Recherches d'arithmétique� of 1773 where, moreover, La-
grange developed the theory of binary quadratic forms and derived from
the general theory, amongst other things, Fermat's theorems about the
representation of prime numbers by x2 + 2y2 and x2 + 3y2. We are
particularly interested in the latter paper because it is the �rst work
to systematically develop and in a coherent manner a complete arith-
metical theory, going much further than the individual problems which
are discussed by Fermat and Euler. The importance of this step cannot
be overestimated for the further development of number theory and al-
gebra. About 25 years later, Gauss considerably expanded the theory
of binary quadratic forms, starting to study congruences16 of the type
a2x

2+a1x+a0 ≡ 0 mod p (for proving the law of quadratic reciprocity),
and providing the �rst elements for a general theory of quadratic binary
forms starting from his studies on quadratic Diophantine equations of the
type ax2+bxy+cy2 = n. Lagrange studied quadratic forms of the general
type q(x, y) = ax2+bxy+cy2 on the basis of previous studies on certain
quadratic forms of the type x2+y2, x2+2y2, x2+3y2, x2−dy2, which have
already been treated by Fermat. Lagrange used the so-called continued
fraction algorithm for the solution of Fermat's equation x2−dy2 = 1, al-
ready called Pell's equation by Euler, proving it has a non-trivial integral

16With Gauss, the theory of congruences became an autonomous chapter of number theory, with
a speci�c notation which is the current one (see (Berzolari et al. 1930-1951, Volume I, Parte 1a)).
Gauss theory of binary quadratic forms also led to modern algebraic number theory, while his work
on congruences has provided �rst forms of Riemann hypothesis for curves. Finally, as has already
been said above, Gauss work on prime number theory were prolegomena of analytic number theory.
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solution for any non-squared natural number d. After many individual
results and more or less accidentally discovered connections, Euler and,
even more so, Lagrange developed the theory of continued fractions in
a systematic way, which he substantially extended for this end. In par-
ticular, the set of solutions to this Fermat's equation can be interpreted
as a group in a natural way, and in this one should identify the very
early origins of the algebraic structure of group even before E. Galois
work. Lagrange also proved that n is a prime number if and only if it is
a solution to (n − 1)! ≡ 1 mod n. Euler is even more a member of the
�naive� period of discovery, calculation and heuristic methods. But mo-
dem mathematics with its rigorous proofs, systematic procedures, and
clear descriptions and delineations of the problems begins with Lagrange.
A decisive change took place in the development of number theory be-
tween Euler and Lagrange, with the dawning of Legendre and Gauss
works which were gathered into the �rst treatises on number theory re-
spectively drawn up in 1798 and 1801, the latter being the celebrated
Disquisitiones Arithmeticæ of Gauss, considered his greatest work. See
(Merzbach 1981) for a detailed historical analysis of Gauss' work on
number theory prior to 1799; see also (Goldstein et al. 2007).

After Lagrange, the vestibule of the founder heroes of number theory
comprises Legendre, Gauss, Dirichlet, Riemann, and so forth. Neverthe-
less, for our historical purposes which are mainly oriented towards the
central chapter of analytic number theory, that is to say, that concerning
the distribution of prime numbers, we shall devote a few historical words
to Legendre, Gauss and Dirichlet, till to touch Riemann work, narrowing
to the analytic number theory context that just starts with some works
of these authors, in turn restricting us to those historical information
concerning only distribution of prime numbers. Following (Goldstein
1973) and (Maz'ya & Shaposhnikova 1998, Chapter 10), the sequence
of prime numbers, that is to say, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...
has always fascinated mathematicians, both professionals and amateurs
alike. It was already known to Euclid that the number of primes is in�-
nite. The ancient Greeks also knew that all the prime numbers could be
obtained using the algorithm known as the Eratosthenes' sieve. Up to
18th century, no regularity in the sequence of prime numbers had been
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found. Euler wrote, in 1747, that

�Until now, mathematicians have tried in vain to discover any or-
der in the sequence of prime numbers, and therefore they believed that
it is a mystery which the human mind will never be able to penetrate.
In order to convince oneself, one only needs to look at the table of
primes, which many mathematicians made great e�orts to extend be-
yond 100,000. From this table, one can see that there is no law govern-
ing them�.

Let π(x) denote the number of primes lower than [x] (= integer part
of x). Euclid's theorem simply states that π(x) → ∞ as x → ∞, but
what can one say about the behavior of π(x) as x → ∞? This problem
hardly occupied many famous mathematicians from Euclid onwards, till
to the pioneering works, simultaneously and independently achieved by
J. Hadamard and C. de la Vallée-Poussin in 1896, on the principal term
in the asymptotic law of π(x). Whereupon, other mathematicians con-
tributed to study such an asymptotic behavior with many other methods,
like Tauberian theorems, harmonic analysis, Dirichlet L-function theory,
and so on. In a rough form, the basic theorem of the theory of prime
number is known as the prime number theorem (in short PNT) and al-
lows one to predict, at least roughly, the way in which the primes are
distributed. Let x be a positive real number, and let π(x) = the number
of primes lesser than x. Then the prime number theorem asserts that

(∗0) lim
x→∞

π(x)/(x/ lnx) = 1.

In other words, the prime number theorem asserts that

(∗1) π(x) =
x

lnx
+ o

( x

lnx

)
(x→ ∞).

Actually, for reasons which will become clear later, it is much better to
replace (∗1) by the following equivalent assertion

(∗2) π(x) =

∫ x

2

dy

ln y
+ o

( x

lnx

)
.
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The advantage of the version (∗2) is that the function li(x) =
∫ x

2

dy

ln y
,

called the logarithmic integral, provides a much closer numerical approx-
imation to π(x) than x/ lnx. In (Goldstein 1973), the author explores
the history of the ideas which led up to the prime number theorem and
to its proof, which was not supplied until up some 100 years after the
�rst conjecture was made. The history of the prime number theorem
provides a beautiful example of the way in which great mathematical
ideas develop and interrelate, feeding upon one another ultimately to
constructively yield a coherent theory which rather completely explains
observed phenomena.

The real conception of a prime number goes back to ancient time,
although it is not possible to precisely say when the concept was ex-
plicitly and clearly formulated for the �rst time. However, a number
of elementary facts concerning the primes were known as early as Greek
mathematicians. Goldstein cites three examples, all of which appear ever
since Euclid's work, namely

1. the Fundamental Theorem of Arithmetic, which states that every
positive integer n can be written as a product of powers of primes.
Moreover, this expression of n is unique up to a rearrangement of
the factors;

2. there exist in�nitely many primes;

3. the primes may be e�ectively listed using the so-called Eratos-
thenes' sieve.

There exists a proof of 2. which is quite di�erent from original Euclid's
well-known proof and which is very signi�cant for the history of the prime
number theorem: indeed, this proof is due to Euler and dates back to
the middle of the 18th century, which links together the Fundamental
Theorem of Arithmetic with the in�nitude of primes, as well as it uses an
analytic fact, namely the divergence of the harmonic series, to conclude
an arithmetic result. It was just this latter feature to become the cor-
nerstone upon which much of 19th century number theory was erected.
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In Euler's enormous legacy is the following identity, which he obtained
in 1737 ∑

n∈N

1

ns
=

∏
i∈N

(
1− 1

psi

)−1

, s > 1.

The �rst published statement which came close to the prime number
theorem was due to Legendre in 1798, while analyzing the table of prime
numbers. He asserted that π(x) is of the form x/(A lnx + B) for con-
stants A and B. On the basis of numerical works, Legendre re�ned his
conjecture in 1808, asserting that

(∗3) π(x) =
x

lnx+ A(x)

where A(x) is �approximately 1.08366 ... �. Presumably, by this lat-
ter statement, Legendre meant that limx→∞A(x) = 1.08366. Never-
theless, it is precisely in regard to A(x) where Legendre was in error.
In his memoir Essai sur la théorie des nombres of 1808, Legendre for-
mulated another famous conjecture, namely the following one. Let k
and 1 be integers which are relatively prime to one another. Then
Legendre asserted that there exist in�nitely many primes of the form
1 + kn(n = 0, 1, 2, 3, ...). In other words, if πk,l(x) denotes the number
of primes p of the form 1+kn for which p < x, then Legendre conjectured
that

(∗4) πk,l(x) → ∞ as x→ ∞,

whose proof by P.L. Dirichlet in 1837 provided several crucial ideas on
how to approach the prime number theorem. Although Legendre was
the �rst to publish a conjectural form of the prime number theorem,
Gauss had already done extensive work on the theory of primes in the
years 1792-93. Gauss was interested in the asymptotic law all throughout
his life from when he was a youth. In his old age, he said he liked to
spend a quarter of an hour each day to thinking about this issue. He
never published any result on it, but in a letter to the astronomer J.F.
Encke, dated December 24, 1848, where he wrote that, while considering
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the table of prime numbers during 1792-93, he obtained, from numerical
evidence, the following approximate formula

(∗5) π(x) ≈ li(x) .=
∫ x

2

dt

ln t

which implies (∗0). Evidently Gauss considered the tabulation of primes
as some sort of pastime and amused himself by compiling extensive ta-
bles on how the primes distribute themselves in various intervals of length
1000. The �rst table of Gauss, covers the primes from 1 to 50,000, where
each entry in the table represents an interval of length 1000. Thus, for
example, there are 168 primes from 1 to 1000; 135 primes from 1001
to 2000; 127 primes from 3001 to 4000; and so forth. Gauss suspected
that the density with which primes occurred in the neighborhood of the
integer n was 1/ lnn, so that the number of primes in the interval [a, b[

should be approximately equal to
∫ b

a

dx/ lnx. In the second set of ta-

bles, Gauss investigates the distribution of primes up to 3,000,000 and
compares the number of primes found with the above integral, the agree-
ment turning out to be striking. Nevertheless, Gauss never published his
investigations on the distribution of primes, even if there is a little rea-
son to doubt Gauss' revendication that he �rst accomplished this his
work in 1792-93, well before the memoir of Legendre was written. In-
deed, there are several other known examples of results of the �rst rank
which Gauss proved, but never communicated to anyone until years after
the original work had been done. This was the case, for example, with
the elliptic functions, where Gauss preceded C.G.J. Jacobi, and with
Riemannian geometry, where Gauss anticipated B. Riemann. The only
information beyond Gauss' tables concerning Gauss' work on the distri-
bution of primes is contained, as already said above, in a 1849 letter to
Encke. In his letter, Gauss describes his numerical experiments and his
conjecture concerning π(x), while, on the second page of the letter, he
compares his approximation to π(x), namely li(x), with Legendre for-
mula. The results are tabulated at the top of the second page and Gauss'
formula yields a much larger numerical error. In a very prescient state-
ment, Gauss defends his formula by noting that although Legendre's
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formula yields a smaller error, the rate of increase of Legendre's error
term is much greater than his own. Anyway, as we shall see later, in a
certain sense Gauss anticipated what is today known as the �Riemann
hypothesis�. Another feature of Gauss' letter is that he casts doubt on
Legendre's assertion about A(x). He asserts that the numerical evidence
does not support any conjecture about the limiting value of A(x). Gauss'
calculations are very imposing to contemplate, since they were achieved
long before the days of high-speed computers. Gauss' persistence is most
impressive. However, Gauss' tables are not error-free: for instance, E.
Korn has checked Gauss' tables using an electronic computer and has
found a number of errors, but, in spite of these (remarkably few) errors,
Gauss' calculations still provide overwhelming evidence in favor of the
prime number theorem, and modern students of mathematics should take
note of the great care with which data was compiled by such giants as
Gauss. Conjectures in those days were rarely guesses of inactivity, since
they were usually supported by piles of laboriously gathered evidence.

The next step towards a proof of the prime number theorem was
a step in a completely di�erent direction, and was taken by Dirichlet
in 1837. In a beautiful memoir, Dirichlet proved Legendre's conjecture
πk,l(x) → ∞ as x→ ∞, concerning the in�nitude of primes in an arith-
metic progression. Simply, Dirichlet observed that linear polynomials
of the type ax + b may provide in�nite prime numbers when x runs
through all the positive integers and a, b were positive integers with no
prime factor in common (like 2x + 1, 4x + 1, 4x + 3 and so on); it also
follows that there exist in�nite primes in the arithmetical progression
k, k + l, k + 2l, k + 3l, .... Dirichlet, in proving this his outcome, went
outside the realm of integers, introducing tools of analysis to pursue
this. Furthermore, Dirichlet's work contained two radically new ideas:
to be precise, Dirichlet's ideas gave birth to the modern theory of du-
ality on locally compact Abelian groups, while Dirichiet's second great
idea opened the way to the well-known Dirichlet L-function theory, as
it nowadays is called, thanks to which he proved a notable theorem on
primes in arithmetic progressions, which states that for any two positive
coprime integers n and m (that is to say, if the only positive integer that
equally divides both of them, is 1), there are in�nitely many primes of
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the form n + lm where l is a non-negative integer, which was one of
the major achievements of 19th century mathematics, because it intro-
duced a fertile new idea into number theory, that is to say, that analytic
methods (in this case the study of the Dirichlet L-series) could be fruit-
fully applied to arithmetic problems (in this case the problem of primes
in arithmetic progressions). To be noted the following main fact about
L(s, χ) =

∑
n∈N(χ(n)/n

s) (χ(n) is a numerical function called Dirich-
let's character modulo l), to be precise, L(s, χ) has a product formula of
the form

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

where the product is taken over all primes p, the proof of this formula
being very similar to the argument given in Euler's proof of the in�n-
ity of prime numbers via his product formula. Dirichlet's idea in prov-
ing the in�nitude of primes in the arithmetic progression a, a + n, a +
2n, ..., (a, n) = 1, was to imitate, somehow, Euler's proof of the in�ni-
tude of primes, by studying the function L(s, χ) for s near 1. To the
novice, such an application of analysis to number theory would seem to
be a waste of time. After all, number theory is the study of the discrete,
whereas analysis is the study of the continuous; and what should one
have to do with the other! However, Dirichlet's 1837 paper was, together
Euler's work, the beginning of a revolution in number-theoretic thought,
the substance of which was to apply analysis to number theory. At �rst,
undoubtedly, mathematicians were very uncomfortable with Dirichlet's
ideas. They regarded them as very clever devices, which would eventu-
ally be supplanted by completely arithmetic ideas. For although analysis
might be useful in proving results about the integers, surely the analytic
tools were not intrinsic. Rather, they entered into the theory of the
integers in an inessential way and could be eliminated by the use of suit-
ably sophisticated arithmetic. However, the history of number theory
in the 19th century shows that this idea was eventually repudiated and
the rightful connection between analysis and number theory came to be
recognized. But, the �rst major progress towards a proof of the prime
number theorem after Dirichlet, was due to the Russian mathematician
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P.L. Tchebyche� in two memoirs written in 1851 and 1852. Both Gauss
and Legendre conjectures were analyzed by Tchebyche� in his memoir
presented at the St. Petersburg Academy of Science in 1848, his �rst
result stating that, for each natural number n, the sum

∞∑
n=2

(
π(x+ 1)− π(x)− 1

lnx

)(lnx)n
x1+ρ

tends to a �nite limit as ρ→ 0+. From this result, Tchebyche� deduced
that, if it exists, the limit of the ratio π(x)/li(x), as x → ∞, should be
equal to 1. He therefore concludes that the expression x/π(x)− lnx can
only tend to −1, so disproving Legendre conjecture. Later, Tchebyche�
introduced two functions of a real variable x, namely

θ(x) =
∑
p≤x

ln p, ψ(x) =
∑
pm≤x

ln p

where p runs over primes and m over positive integers. Tchebyche�
proved that the prime number theorem in the �rst form we have given
above, is equivalent to either of the two statement

(∗6) lim
x→∞

θ(x)

x
= lim

x→∞

ψ(x)

x
= 1.

These results will play a signi�cant role in the subsequent proofs of prime
number theorem. Accordingly, the asymptotic law is often written in the
form ψ(x) ∼ x. Tchebyche� also gave a proof of the so-called Bertrand's
postulate, which claims that there exists a prime number into any inter-
val of the type ]x, 2x[ for each x ≥ 2. In 1881, J.J. Sylvester proved that,
for su�ciently large x, the value π(x) lies into a smaller interval, but the
question of making this interval as small as possible remained open, un-
til the next works of Riemann and Hadamard. However, Tchebyche�'s
methods were of an elementary, combinatorial nature, and as such were
not powerful enough to prove the prime number theorem. The �rst gi-
ant strides toward a proof of the prime number theory were taken by
B. Riemann in a memoir written in 1859. Riemann followed Dirichlet
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in connecting problems of an arithmetic nature with the properties of a
function of a continuous variable. However, where Dirichlet considered
L-functions L(s, χ) as functions of a real variable s, Riemann took the
decisive step in connecting arithmetic with the theory of functions of a
complex variable introducing the function ζ(s) =

∑
n∈N(1/n

s) which has
come to be known as the celebrated Riemann zeta function in relation to
the conjecture about the location of its non-trivial zeros. Very roughly
speaking, such a conjecture, the Riemann Hypothesis (RH), is an out-
growth of the Pythagorean tradition in number theory. It determines
how the prime numbers are distributed among all the integers, raising
the possibility that there is a hidden regularity amid the apparent ran-
domness. The key question turns out to be the location of the zeros of
a certain function, that is to say, the Riemann zeta function.
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3. Outlines of history of complex function

theory

Strangely enough, besides a few hints inorganically spread into the var-
ious chapters of the many histories of in�nitesimal calculus, a very few
organic, complete and systematic works on the history of complex func-
tion theory there exist so far. Indeed, as a witness of this fact, it is
enough to recall what say the authors in17 (Bottazzini & Gray 2013, In-
troduction), namely

�This book is the �rst to be devoted to the history of analytic function
theory since Brill and Noether published their Bericht über die Entwick-
lung der Theorie der algebraischen Functionen in älterer und neuerer Zeit
in the Jahresbericht der Deutschen Mathematiker Vereinigung in 1894.
Indeed, because that work leaves out many topics that belong to the the-
ory of analytic functions but not algebraic functions, it can reasonably
be argued that our book is the �rst ever to be written exclusively on this
subject. This is rather strange given the importance of analytic function
theory within mathematics and the attention that historians of mathe-
matics have paid to the development of the theory of real functions in the
nineteenth century. It is indeed surprising that the rise of complex or
analytic function theory in the nineteenth century from almost nothing
to one of the dominant �elds of mathematics has not been told before,
because it is a story worth telling and analyzing in its own right. The
theory of functions, as it was generally referred to throughout the later
half of the century, was much more concerned with complex than with
real variables and functions. To tell this story is to redress the balance
and to restore a family of overlapping perspectives on the mathematics
of the day.

In fact, we provide here the �rst full treatment of the work of sev-
eral major mathematicians in the context of complex function theory.
Gauss's work has not been treated in this way since Schlesinger con-
tributed his essay [...] to the Gauss Werke, although Cox [...] has written

17Which will be the main reference quasi verbatim followed in this section.
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a good account of Gauss's work on elliptic functions. Ours is the �rst
thorough analysis of Cauchy's contributions. They were described by
Smithies [...], but he stopped his account in 1831, after which the reader
must consult Belhostes biography [...]; Grabiner [...]con�ned her attention
to Cauchy's work on real analysis. Riemann's work was discussed quite
fully by Laugwitz [...], but he only skirted the central topic of Abelian
functions. Weierstrass has also been studied only selectively by Dugac,
Manning, and Ullrich; again, our chapter is the �rst to discuss all his
work on complex analysis. Although there are [...] good accounts of Ko-
valevskaya's life and work [...], there is nothing on Schwarz, although
the English translation of Arild Stubhaug's biography of Mittag-Le�er
appeared in 2010. Our account of Poincaré's contribution is fuller than
most but still only partial. Hadamard's work in this area has been writ-
ten about very helpfully by Maz'ya and Shaposhnikova, but there is very
little on the other French mathematicians of note, Borel and Montel�.

Bottazzini and Gray have not tried just to make only a history of ideas,
but they have instead tried both to describe the rise of complex anal-
ysis and to explain it also with respect to the general social-cultural
inherent context. What is a major and novel aspect of their work is
the emphasis placed on elliptic functions as one of the principal impe-
tuses for a theory of complex functions. Therefore, one of the main
results achieved by Bottazzini and Gray, is just to have pointed out that
elliptic function theory has been the main source from which complex
function theory sprung out. The rising, about 1830, of elliptic functions
by N.H. Abel and C.G.J. Jacobi works caused tremendous excitement,
Bottazzini and Gray history starting just with this event and its imme-
diate consequences just because of the fact that elliptic functions were a
strong incentive to the development of complex function theory18. They

18Moreover, if we look at the few people who were doing anything genuinely using complex num-
bers prior to 1850 (e.g., prior to Riemann's memoir), such as Cauchy, Abel, Jacobi, and Eisenstein,
we do not see an aggressive use of complex numbers in a way so di�erent from Euler's intuitive
sense of �number�. It is true that Abel and Jacobi's treatment of elliptic integrals, elliptic functions
and more general �abelian� functions looked at the behavior of functions in C and Cn, but did not
use terribly subtle properties of complex functions, especially not of entire functions (by a private
communication with Professor Paul Garrett).
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essentially were complex functions, so to say in nuce, even if their ba-
sic occurrence in the inversion of an integral containing a two valued
integrand was soon felt to be either inadequate and mysterious at �rst
sight. But Gauss immediately recognized this fact and took considerable
steps to create a properly complex theory of doubly periodic functions
that did not start from an integral, whilst Jacobi turned his attention
toward the theory of theta functions. But these were not the only mo-
tifs: indeed, A.L. Cauchy was attracted by the subject from the analytic
standpoint, who had taken profound knowledge and practice towards a
rigorization process of the calculus as well as knew very well the way
which complex issues had become entangled with problems in evaluating
integrals. Cauchy, however, was not so strongly drawn to the theory of
elliptic functions, and his insights into the integration of complex func-
tions took over 20 years to suggest a rich and organized theory to him.
This was left to others, amongst whom J. Liouville and C. Hermite, to
�nd a way to bring enough analysis in such a way to re-found elliptic
functions as doubly periodic complex functions on the wake of Gauss'
work. As the time went on, complex function theory gradually became
even more to be involved with other branches of mathematics. Bottazz-
ini and Gray argue that these applications or interventions of complex
function theory in both pure and applied aspects of mathematics were
amongst the main reasons why the theory became more and more highly
regarded and appreciated, because it turned out to be of fundamental
importance in number theory, in mechanics, in the theory of linear di�er-
ential equations, and even in geometry, and it developed a most fruitful
interaction with potential theory and the theory of harmonic functions.
And these, in turn, greatly helped in the advancement of complex func-
tion theory itself. Instead, a di�erent situation occurred with the subject
of topology, because it was not a preexisting discipline to be enriched by
new ideas, for instance coming from applied sciences. Rather, it was a
new subject, created in part to meet the increasing need for a rigor in
complex function theory itself. From Riemann intuitive vague and yet
profound ideas of what is today known as a �Riemann� surface till to the
work of A. Harnack on connectedness and path-connectedness, complex
function theory generated a number of basic concepts in both geometric
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and point set topology.
The rise of complex function theory cannot, however, be understood

exclusively as an history of ideas, so that Bottazzini and Gray have not
only traced such a story as a sequence of ideas, theorems, notions, con-
cepts, and theories, but they have also paid attention to the general
social-cultural historical context, the biographies of the main protago-
nists, the di�erent reactions and developments in various countries de-
pending on the national traditions, and so on. One would expect that
the balance would shift from France to Germany, from Paris to Berlin,
because that is true of so many aspects of the nineteenth century cul-
tural context, especially regarding scienti�c disciplines. It took more-
or-less than sixty years for the nation whose citizens �lled the ranks of
Napoleon's Army and watched Moscow burn to see a Prussian army at
the gates of Paris, and nobody since then has doubted that this situation
has profoundly in�uenced about almost every aspect of life in those two
countries, albeit it is very hard to make de�nitive clarity in this regard.
In the context of the history of mathematics, it is true that those young
ambitious persons who sought best education in the 1820s, went to Paris
and in the 1870s went to Berlin. But single individuals in small �elds can
invert trends, and to this end it is enough to mention a few names, like
Cauchy, Riemann and Weierstrass. We see a strong presence of those
Italian mathematicians who historians of mathematics have considered
to form that revitalized Italian community soon arose after uni�cation
of 1860s, while the poor presence of British mathematicians for most of
the nineteenth century is a further evidence of the narrowly utilitarian
views of the British society of then. In any history of ideas, the historian
mainly seeks to show how things once thought about in one way then
became worked out in another fashion, as well as how complex function
theory developed many ideas which were �rst introduced naively and
only then slowly re�ned, or coming from other �elds, like physics, and
gradually formalized and rightly contextualized. De�nitions were lack-
ing or, when provided, were sometimes inadequate by later standards.
Furthermore, even when this latter became available, it could yet be
misleading, since mathematicians on occasion may o�er a clear de�ni-
tion with very few ideas about its deepest implications, like the example
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of continuity in real analysis shows. Sometimes these problems can be
compared directly, as with the de�nition of an analytic function, but
more often one has to overcome a long period of vagueness and gesta-
tion. To mention a few of some speci�c issues, Cauchy, for example, often
used the phrases �continuous� and ��nite and continuous� very loosely
to mean something like �complex analytic�. Similar problems occur with
counting roots according to their multiplicities, with lim versus lim sup,
as well as with points of in�nity and poles. Moreover, mathematicians
throughout the eighteenth and nineteenth centuries often spoke freely
of many-valued functions (the simplest example being

√
z). It is just

in this spirit that often it is more proper to use the nineteenth century
term �complex function� for example, where a modern mathematician
would use �analytic function�. In this regard, it is helpful here to recall
the following A. Weil's remark

�The mathematicians of the eighteenth century were in the habit of
speaking of �the metaphysics of the in�nitesimal calculus� and the �meta-
physics of the theory of equations�. They understood by this a set of
vague analogies, di�cult to grasp and di�cult to formulate but which
nonetheless seemed to play an important role at a given moment in re-
search and mathematical discovery. [...] Nothing is more fertile, all
mathematicians know this, than these obscures analogies, these cloudy
re�ections of one theory on another, these furtive caresses, these inexpli-
cable misunderstandings; nothing gives more pleasure to the researcher�.

Afterwards, Bottazzini and Gray going on making some historiographical
considerations. To be precise, they state that there is no truly satisfac-
tory manner to represent the original ideas of mathematicians when they
are in this state. On the other hand, saying nothing is to produce con-
fusion. On the other hand, from a synchronous point of view, to silently
bring them into line with modern standards not only introduces anachro-
nisms but also brings in historical falsehoods and nulli�es the purpose of
a history. Furthermore, in correcting them in the light of modern sights
in more than the most egregious cases would entail unrealistic and un-
due advances with the simultaneous admission of genuine blunders made
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by who established such results, and with a consequent belittling of the
work of major mathematicians. According to Bottazzini and Gray, the
best historiographical policy, therefore, should be read on with a spirit
of ideal dialogue with the earlier authors, aware, as one better might
do, of the limitations and false implications that their original papers
and books may imply, and waiting to see when, if at all in the period,
a better light was shone on the subject. In this way, one can grapple
with more of the complexity of the past. Thus, going back to the subject
of this section, one may a�rm that the emergence of elliptic functions
should be considered the �rst step with which to begin a history of
complex function theory. As already said above, these functions have
their early origins in the study of elliptic integrals, and they, as their
name suggests, date back to researches by I. Newton and later workers
on the integration of the equations of motion of the planets. Likewise
many other matters of mathematical importance, elliptic integrals were
taken up and studied in depth by Euler, but it was Legendre's lengthy
account of them that may be considered as the �rst o�cial historical
account on the subject. Legendre computed tables of values for them,
found di�erential equations for the so-called 'complete elliptic integrals'
as functions of the parameter on which they depend, and described in
detail possible applications in mechanics where these integrals could be
found, and from which really arise. It was Legendre, modelling himself
deliberately on Euler, who made elliptic integrals into a de�nite mathe-
matical topic, his elliptic integrals providing one of the �rst new functions
to enrich mathematics since Euler's times. Legendre's elliptic integrals
were �rmly real functions of their upper endpoint, and they involved
only a real parameter. Everything changed with the nearly simultaneous
realizations by Abel and Jacobi, so realizing that it is much more pro-
ductive to invert the integral and to let the variables be complex. This
step turned the elliptic integrals into elliptic functions strikingly anal-
ogous to the familiar trigonometric functions, explained some puzzling
features of the previous studies on elliptic integrals, and opened a wide
door to new research. Their work was almost immediately recognized as
signi�cant with the joint award of the prestigious Paris Académie prize
of 1830 to Abel (but posthumously assigned) and Jacobi. Their work

46



provided the �rst examples, other than the trigonometric functions, of
complex-valued functions of a complex variable. But Abel and Jacobi
were not the �rst ones to take this precious momentous step. Unknown
to them both, Gauss had been con�ding results about elliptic functions
to his notebooks since 1797. He had indeed gone further than them,
notoriously he having said, about Abel's work, that Abel had �gone one
third of the way�. Gauss had also connected their study to the hypergeo-
metric di�erential equation, and in various other ways fully embraced the
idea that the proper domain for the theory of functions was the complex
domain. He had ideas about the nature of complex integration when
Abel and Jacobi were still proceeding formally on several proofs of the
fundamental theorem of algebra.

It is well-known that Gauss did not publish much of his work, pre-
ferring, as is known, the motto �Pauca, sed matura (i.e., few but ripe)�,
a practice he only broke when it devoted to astronomy. His French peer
in the next generation, Cauchy, had no such inhibitions, but whereas
Cauchy's Cours d'analyse of 1821 and its Résumé of 1823, did so much
to put real analysis on the map, nevertheless unlucky circumstances hin-
dered his contemporaries to be perfectly aware of the relevance of such
an account of complex analysis due to Cauchy. What eluded Cauchy
for over 20 years was a good way to make precise the perception that,
within the growing collection of facts about maps from R2 to R2, implic-
itly there was a coherent collection of ideas that would make a theory
of maps from C to C. Cauchy's work in the 1810s and 1820s is rooted
in eighteenth-century methods for evaluating integrals, speci�cally those
that used what was called the passage from the real to the imaginary.
This involved mathematicians such as A.C. Clairaut, J.L. d'Alembert,
and Euler in the study of complete di�erentials and their integrals, and
here the famous Cauchy-Riemann equations naturally make their �rst
(one might say, unannounced) appearance. In a purely formal way, com-
plex terms appeared in many places when one factorizes expressions or
makes substitutions. Cauchy built up this work, and to explain some
of its paradoxical conclusions made a detailed study of the introduction
of imaginaries in a memoir of 1814, but �rst published in 1827. There,
he showed that the reduction of a double integral to a repeated integral
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can be a�ected by the presence of singular integrals, an insight that was
eventually to be the key to the theory of integrating a complex function
on a closed path. At one time or another in the 1820s, 1830s and early
1840s, Cauchy had a theory of complex integration that included the cal-
culus of residues (a term he introduced in 1826) and a theory of power
series expansions of 'complex' functions. But he was forced to be exiled
for political reasons in 1830 and was away from France for almost all of
the 1830s. This nevertheless did not stop him to publish but deprived
him of an opportunity to write up his ideas in a systematic way, so rob-
bing his numerous articles of some of their impact. By the time that
he was securely went back in Paris in the late 1840s, he was reaching 60
years old, and this, as well as the rivalry of the younger generations, may
have stimulated him to publish, so that only now Cauchy gathered his
ideas together and promoted them. In a fast-�owing stream of papers,
he responded to the work of others, often to claim priority, to draw out
new and forgotten conclusions from his published and unpublished work,
and to �nd new ideas (for example, the logarithmic counter dates from
this period). For the �rst time, he found the right general setting for
his ideas and settled on the geometric description of complex numbers
as points in the plane, which he had hitherto resisted.

As for elliptic functions, which however were never a topic belonging
to Cauchy's interests, from the 1840s onwards, Liouville and Hermite,
independently of Cauchy, had begun to lay out them into a theory of
complex functions. In doing so, Liouville realized that an analytic func-
tion, which is de�ned and bounded in the entire complex plane, reduces
to a constant (such a result being today known as the Liouville's the-
orem), which can be taken as one of the �rst major landmarks on the
way to recognizing analytic functions as a distinctive class of functions.
From all that, it turned out that only now the early origins of ana-
lytic function theory could be clearly identi�ed in the elliptic functions.
However, Cauchy's uncertainties about geometric approach to function
theory implied, excepts V. Puiseux memoir of 1851, that there was still
little that could be function-theoretically said about algebraic functions
with certainty and rigor, beyond the single case of elliptic functions. In
this regard, remarkable was the Jacobi's reformulation of the theory of
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elliptic functions. Throughout the 1830s, mathematicians had tried to
face the unfortunate fact that an elliptic function was de�ned by invert-
ing an elliptic integral which nevertheless, when treated in the complex
setting, has a two-valued integrand. One successful way to cope this
fact, was to restart their story with what had been one of its crown-
ing successes, that is to say, the representation of elliptic functions as
quotients of theta functions. Jacobi saw that it was possible to reverse
the argument, hence he started with theta functions, and derived elliptic
function theory from them, although, as Weierstrass pointed out, he did
not fully extend the theory from the real to the complex setting in any
respect. Other mathematicians, amongst whom is Jacobi, looked at a
graver problem still, extending the theory of elliptic integrals and elliptic
functions to the situation where the integrand involves not the square
root of a polynomial of degree 4 but one of degree 5 or more, what became
known as the hyperelliptic case. Even Jacobi stumbled here and seems
to have suggested that it could not be done directly, but only by passing
to the study of theta functions in two or more variables. This was done
later by A. Göpel and G. Rosenhain, hence extended by Hermite and
Carl Neumann. In this way, the hyperelliptic integral and related argu-
ments, became established as central problems in the emerging theory of
complex functions. So complex functions and related applications, were
beginning to �nd uses and fruitful applications. Jacobi had shown that
J.V. Poncelet closure theorem could be tackled by means of them, and
Gauss' work showed that they turn up naturally in number theory and
in the study of quadratic (and higher) reciprocity. Also Dirichlet used
elementary ideas about complex variables to establish the remarkable re-
sult that every arithmetic progression without common factors contains
in�nitely many primes (as we have seen in the previous section).

Afterwards, it enters into the scene the unique and original insights
of Riemann with his distinctive intuitive manner of doing mathematics.
The fragmentary discovery of complex function theory as a theory of
analytic functions de�ned on the complex plane, was disrupted so com-
pletely by Riemann even if a long time needed before the implications
of his ideas were fully understood, although - contrary to the impres-
sion sometimes given - they were promptly and energetically accepted
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and studied. In his doctoral thesis of 1851, Riemann gave the de�nition
of complex di�erentiability and its consequence, that is, the celebrated
Cauchy-Riemann equations, so central to his de�nition of the relevant
functions. He deduced from this that a complex function can be de�ned
on any two-dimensional patch, thus opening the way to the study of
complex functions upon non-simply connected domains and, in particu-
lar, the study of elliptic functions as functions on a torus. He proposed
the theorem that any two simply connected domains with boundaries -
this ruling out the entire plane - are equivalent for the purposes of com-
plex function theory (this outcome being today known as the Riemann
mapping theorem). In 1857, he pushed these ideas through to a resolu-
tion of the outstanding problem of the integrals of algebraic functions,
Weierstrass having essentially done the hyperelliptic case between 1854
and 1856. Riemann gave �nally the �rst theory of algebraic functions on
a complex curve and ampli�ed it with a thoroughgoing theory of theta
functions in any number of variables. It was a profound success for his
geometric, and indeed topological, way of thinking, quite disliked by
Weierstrass. He followed it with his account of the hypergeometric equa-
tion in the complex setting, with consequences for the construction of
minimal surfaces and, famously in the twentieth century, his treatment
of the zeta function as a complex function, with its deep implications for
the distributions of the prime numbers (see previous section). Riemann
visionary presentation left very much for his successors to do, even if
some of his bolder claims collapsed under a careful criticism. For a gen-
eration, his use of Dirichlet principle, which he had tried to prove, was
held in great suspicion. His hope that his geometric analysis captured ex-
actly what an approach based on in�nite arithmetical expressions would
capture, was shown to be unfounded. But his elementary insight that
the Cauchy-Riemann equations were the place to start, as well as his
use of geometric and topological methods to tackle advanced problems
in complex function theory, were widely regarded as decisive, albeit very
di�cult. From the 1850s onwards, complex function theory was increas-
ingly well established in France because of the work of Cauchy and in
Germany through the work of Riemann. The next major �gure with a
vision for the subject was K. Weierstrass, whose lifelong ambition was
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to create a theory of Abelian functions, as those functions obtained by
inverting an arbitrary algebraic integral were called in honor of Abel.
They would be functions of several complex variables, and so, whenever
possible, Weierstrass preferred methods that worked in any number of
variables and avoided methods that worked in just one variable. By the
time, he arrived in Berlin in his glory as the conqueror of the hyperel-
liptic integral, he had renounced the Cauchy integral theorem, and he
distrusted of the Cauchy-Riemann equations too, which neither work
satisfactorily when more than one variable is involved. So, as his famous
letter to H.A. Schwarz attests, everything came down more and more to
the use of algebraic methods and convergence arguments. In his own way,
however, Weierstrass thought as deeply about complex function theory
as Riemann had done. He was not the �rst to observe the crucial distinc-
tion between �nite poles and essential singularities - even if F. Casorati
in Italy and Y.V. Sokhotskii in Russia had noticed this independently -
but he was the �rst to begin to understand it and to make real use of this
distinction and thereby to clarify obscure features about the way a func-
tion 'becomes in�nite'. His representation theorem clari�ed completely
the question of what the zero set of a complex function can be, and his
disciple R. Mittag-Le�er then did the same service for the polar set. His
theory of elliptic functions evolved until up the 1870s, it was based on
his famous P function, and rooted in a signi�cant argument about what
functions can satisfy an algebraic addition theorem. Ironically, it was
only in the study of Abelian functions that Weierstrass made any serious
mistakes and could not get the deep results he wanted, but that only
showed how di�cult that subject was.

One way thanks to which the theory of complex functions advanced,
was because of the fruitful connections found for it with other, better es-
tablished, �elds of mathematics and of applied sciences. Weierstrass had,
of course, disdained the intimate connection that Riemann had exploited
between complex function theory and harmonic function theory, but oth-
ers found it worth to explore. The �rst di�culty here, however, was that
the fundamental theorems of potential theory were themselves in trou-
ble. With Dirichlet principle in disgrace, the Dirichlet problem had to
be solved some other way, and among the �rst to do this was Schwarz,
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the Weierstrass' most loyal and ambitious former student. Schwarz gave
a rigorous account of how Dirichlet problem can be solved for a large
but obscure class of boundaries, and he was followed by C. Neumann,
A. Harnack and H.J. Poincaré. Schwarz in fact performed the function
for Weierstrass of recapturing several of Riemann's theorems in a way
that was more acceptable (and indeed more rigorous) than Riemann �rst
presentation of them. He solved special cases of Riemann mapping the-
orem in this spirit, as did E.B. Christo�el independently, and likewise
engaged in the study of minimal surfaces. He also followed L.I. Fuchs,
another Berlin graduate much in�uenced by Weierstrass, in a study of
the complex hypergeometric equation and investigated when all its so-
lutions are algebraic functions. Other problems in applied mathematics
were enriched by the use of complex methods in surprising ways. Elliptic
integrals had been identi�ed by Legendre as important in the motion of
the top, and the corresponding elliptic functions studied by Jacobi. In
the 1870s, the motion of the top was studied again by S. Kovalevskaya
and later on by F. Klein and A. Sommerfeld. The three-body prob-
lem, although decisively reformulated by Poincaré in the late 1880s, still
concealed answers about collisions that only yielded to K.F. Sundman
complex methods at the end of the 19th century. The hypergeomet-
ric equation and the related study of the so-called special functions of
mathematical physics were clari�ed and deepened by being made com-
plex, as the discovery of G. Stokes' sectors and the theory of con�uent
di�erential equations show. Finally, the conformal character of a com-
plex analytic map proved its worth in the reformulation of the theory
of minimal surfaces, in conformal transformations of problems in two-
dimensional �uid �ow, and in the elucidation of a complex structure on
a (Riemann) surface. Moreover, two complementary developments in
the theory of complex functions came about in the period from 1880 to
around 1910. Geometric function theory is the use of geometric, chie�y
Riemannian, ideas. It received a considerable boost when R. Dedekind
used it, in 1877, to illuminate the theory of modular functions, an im-
portant o�shoot of the theory of elliptic functions. It was immediately
taken up by Klein and, a year or so later, independently by Poincaré,
who made it into the �rst major application of non-Euclidean geometry.
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Also in 1879, C.E. Picard published his two theorems about the behav-
ior of a function with an essential singularity, which led to a great many
attempts in France and Germany to exploit and deepen his unexpected
discovery.

The work of Poincaré and Klein strongly suggested that every Rie-
mann surface is the quotient of the appropriate simply connected surface
by the action of a discrete group (this being the content of the nowa-
days called uniformisation theorem). But any real and rigorous proof
of it wasn't provided, �rst proofs having been found only later by P.
Koebe and Poincaré independently in 1907, after Hilbert had made the
uniformization theorem the subject of one of his famous 1910 Paris prob-
lems. Rigorous proofs of the Riemann mapping theorem also date from
this time, when for the �rst time topological methods could be devel-
oped to deal with general boundaries. In the same three decades, French
mathematicians (amongst whom are E.N. Laguerre, Poincaré himself,
J. Hadamard, E.C. Picard, and E. Borel) had been at work investigat-
ing questions that sought to describe properties of a complex function
from properties of its power series expansion. They also took up the
theory of entire functions and the properties of genre and order of an
entire function. Along with the Italian mathematicians C. Arzelá and
G. Ascoli and the American mathematician W.F. Osgood, they looked at
questions about sequences of functions, and out of this network of ideas,
which includes Picard theorems, came Paul Montel work on normal fam-
ilies. At the very end of our period, a remarkable amount of complex
function theory was brought together by P. Fatou and G. Julia in their
theory of the iteration of rational functions. In passing, it is noteworthy
to notice the uncomfortable fact that such a rapid progress was not to
be made in the theory of complex functions of more than one variable.
Where the direction of in�uence had run from elliptic functions to com-
plex functions, it was to run from complex functions of several variables
to Abelian functions, and then only slowly. The zero set and the singu-
lar set of a function of several variables had to be elucidated, and even
Weierstrass made mistakes. The theory of Abelian functions and their
connection with the general theory of theta functions was again di�-
cult: in fact the central problem, the so-called Schottky problem, which
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asks for a characterization of the theta functions that arise from Abelian
functions, was not to be solved until the 1980s. Some insight came with
P. Cousin's generalization of the Mittag-Le�er theorem to the several
variables case, and gradually Poincaré, Picard, and P. Appell produced
the �rst rough but complete theory of the subject. Then, in the early
years of the twentieth century, F. Hartogs and E.E. Levi were the �rst to
explore the crucial novelties concerning the possible domains of functions
of several variables, and Poincaré and K.A. Reinhardt showed how Rie-
mann mapping theorem could not be generalized to higher dimensions.
From a wide and detailed pedagogical �nal analysis of the many texts
and treatises on the subject, Bottazzini and Gray have �nally identi-
�ed some unsurprising national features, but also a growing recognition
that complex di�erentiability and the Cauchy-Riemann equations are the
place to start, that a transition to the Weierstrass' power series methods
should be made quite quickly, especially if the important subject of el-
liptic functions is to be taught, and that Riemannian methods are likely
to be the right way to tackle deeper problems. A consensus could only
emerge, however, when the Weierstrassian school was played out, and it
emerges, interestingly enough, in the lecture courses that Hilbert gave
in Göttingen as well as the well-known textbooks by L. Bieberbach and
K. Knopp. These are among the classic texts that Serge Lang hoped
everyone would continue to consult.

Cauchy's presentation of his ideas was however frankly poor until
the last few years of his life. It has none of the focus of his two major
accounts of real analysis, his Cours d'analyse with his next Résumé, and
consequently it had a lesser impact. It was scattered between a number
of journals and irregular publications, a problem that his voluntary exile
from Paris for most of the 1830s inevitably entailed and exacerbated.
Only around the 1850s, when he attempted to pull together his many
and varied presentations, he gave to French mathematicians good ac-
counts of his work, by then many of his ideas having been independently
rediscovered and used. Riemann ideas, on the other hand, drew a much
better response than is commonly realized. The lonely and obscure ge-
nius of Riemann - who, in H. Ahlfors accurate phrase, wrote �cryptic
messages to the future� - must be highly regarded as one of the great-
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est ingenious men of mathematics. He did indeed leave a body of work
that needed for a major rewriting to become rigorous, but over twenty
mathematicians contributed to its further development in less than a
decade after his early death in 1866. Only his remarkable paper on the
zeta function and the distribution of primes lay fallow for thirty years.
His great rival, Weierstrass, paid him the compliment of suggesting that
his own students take up aspects of Riemann work and re-think as well
as re-derive Riemann results via better methods, like the Weierstrassian
one19. Weierstrass himself had however less success in promoting his own
approach, despite having the immeasurable advantage to teach in Berlin
University, i.e., the leading place in the world in his lifetime for the edu-
cation of the mathematical elite. But Weierstrass put all his energies into
the presentation of his 2-year, 4-semester cycle of lectures on complex
functions, elliptic functions, Abelian functions, and their applications.
He published very little of his own work in any journal, even some of his
lectures to the Berlin Academy of Science were only read but not printed,
and the seven volumes of his collected works are largely full of accounts
that were being published for the �rst time. His present and former stu-
dents had access to lithographed sets of notes, G.H. Halphen recorded
that he saw such sets on every mathematician's desk when he went to
Germany, but not to books, reprints, or preprints. Instead, Weierstrass
relied on the power of his lectures to spread his ideas, which he revised
between each cycle and the next one, and by giving few references to
existing literature he inevitably took steps to deprive his students from
other possible alternative versions.

The result was that naturally the French relied on a version of the
theory that was largely that of Cauchy as described �rst by C. Briot and
J. Bouquet in their celebrated textbook of 1859 (see (Briot & Bouquet,
1859)) and then by a succession of authors, while the German mathe-
maticians turned either to more-or-less Riemannian accounts such as H.
Durège provided in 1864 (see (Durège 1864)) or to Weierstrassian ap-
proaches derived from lecture notes. Gradually, the geometric versions

19As pointed out by Professor Paul Garrett (private communication), the possible relationships
between Riemann works and Weierstrass ones are very little clear and would deserve a further
deeper historical examination.
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that relied on the theory of the complex integral distilled into a Cauchy-
style approach and a more advanced Riemannian one, the distinction
being drawn according to the extent that the concept of Riemann sur-
face was found to be necessary. Those attracted by a Weierstrassian ap-
proach valued it for its pedagogic clarity, its rigor, its numerous insights,
and its coherence; but even here a crucial distinction emerged. Weier-
strass himself disliked the integral and was at pains to avoid it and to
rely on power series methods instead. English and American authors, for
example, found this too extreme, and blended Cauchy and Weierstrass'
methods as they saw �t. Also German authors felt more free to pick up
and mix them, as is often suggested by the historical literature which
wants a well-known dichotomy. Even if the elements of complex func-
tion theory were almost fully established by the triumvirate of Cauchy,
Riemann and Weierstrass, as the literature would often have it, much
more was done before it was clear that the foundations had been laid.
There was the vigorous series of investigations that form the body of
geometric function theory, associated with the names of Carl Neumann,
Dedekind, Klein and Poincaré. There was the equally important body of
work on understanding functions de�ned by power series that one might
have expected to have been done by Weierstrass or his students, but
which was largely a French creation of the 1880s. But there were also
signi�cant gaps in the theory that were �lled by other mathematicians,
such as P. Laurent theorem, E. Rouché theorem, G. Morera theorem and
the Schwarz re�ection principle (so named by C. Carathéodory in 1913).
Curiously, Weierstrass' Berlin may be the only example of a school of
function theorists in the modern period. The concept of a school was
originally introduced into the history of science and after its loose use in
the history of mathematics, for a number of years it was recently re�ned
by K.H. Parshall (see (Parshall 2004)). On Parshall's de�nition, a school
involves a leader who actively pursues research, who has a characteristic
approach to her or his subject, who trains students who then develop
this approach further, and who collectively publish the results of their
research, thereby demonstrating that it has external validity. If the re-
search is particularly successful, the school's focus may produce a new
subdiscipline of mathematics, into which the school dissolves. This con-
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cept of a school may be particularly well suited to the later nineteenth
century and beyond, which is interesting in itself as an observation about
the structure of the profession of mathematician (it was, of course, con-
structed upon the example of E.H. Moore at Chicago). This �ts the
situation with Weierstrass in Berlin very well, for Weierstrass had a par-
ticular approach to the fundamentals of complex function theory, and he
taught it with considerable success to many of his students. Riemann,
by contrast, was a major in�uence, but he did not create a school; L.
Kronecker was also in�uential in Berlin, but he did not build up a school
around him. In French, there was the group around É Borel, even if
it was more like a collection of 'equals of France' than other20. These
di�erences are re�ected in the way the subject spread out. The school
around Weierstrass looked inward to the writings of the master and kept
new members away from alternative treatments. Everyone else in France,
Italy or further a�eld, had much more independence, less support, and
could be much more eclectic. By the time our story ends, a generation
after the death of Weierstrass, it is clear that orthodoxy was no longer
a virtue, and a new consensus was in the making, one that has largely
survived to the present day.

In what follows, for a sake of completeness, we shall brie�y give only
those notions of complex analysis which will be need for understanding
part of the content of next sections. Following, for example, (Bernar-
dini et al. 1993, Chapter 1, Section 1.6), holomorphic21 functions are
roughly speaking complex functions de�ned on a non-void open subset
of the complex plane, say A, which are complex-di�erentiable according
to Cauchy-Riemann equations de�ned in A. Let f(z) be a monodromic
function which is holomorphic into a domain of the complex plane, say
D, but eventually in an internal point of it, say z0. Then, three possible

20It is known the snobbish behavior of Borel in regard to H. Lebesgue just due to the notable
di�erences of social status between them, which maybe re�ected too on their mathematical work
with, for example, the many opposition between their corresponding integration theories (see (Hoare
& Lord, 2002)).

21This term was introduced by two Cauchy's alumni C. Briot and J-C. Bouquet in (Briot &
Bouquet 1859), the �rst treatise that organically and systematically collected Cauchy's theory of
complex functions previously disseminated into a realm of numerous articles and papers of their
schoolmaster (see (Neuenschwander 1981)).
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types of singularity of f may exist in such a point. To be precise, z0 is
said to be a removable singularity if there exists �nite limz→z0 f(z) = c,
in such a case letting f(z0)

.
= c in order to make f analytic in the whole

of D; z0 is said to be a pole of f if limz→z0 |f(z)| = ∞, while z0 is said
to be an essential singularity of f if there not exist limz→z0 f(z). Given
a pole z0 of f , the smaller natural number n such that there exists �-
nite and non-zero the limit limz→z0(z − z0)

nf(z), is said to be the order
of such a pole. If z0 ∈ D, f is analytic in D and f(z0) = 0, then z0
is said to be a zero of order n if n is the smaller natural number such
that f(z) = (z − z0)

nh(z) with h(z) analytic function in D and such
that h(z0) ̸= 0. There exists a close connection between the poles of
an analytic function f and the zeros of its inverse g = 1/f : namely, a
necessary and su�cient condition for f have a pole of order n in z0, is
that g has a zero of order n in it. The zeros of an analytic function are
isolated points of it. An entire function is a monodromic analytic func-
tion which have not �nite singularities, whilst a meromorphic function is
a monodromic analytic function whose only possible �nite singularities
are poles. Following (Itô, 1993, Article 429), an entire function (or in-
tegral function) f(z) is a complex-valued function of a complex variable
z that is holomorphic in the �nite z-plane, z ̸= ∞. If f(z) has a pole
at ∞, then f(z) is a polynomial in z. A polynomial is called a rational
entire function. If an entire function is bounded, it is constant (Liou-
ville's theorem). A transcendental entire function is an entire function
that is not a polynomial, for example, exp z, sin z, cos z. An entire func-
tion can be developed in a power series

∑
n∈N anz

n with in�nite radius
of convergence. If f(z) is a transcendental entire function, this is actu-
ally an in�nite series. If a transcendental entire function f(z) has a zero
of order m(m > 0) at z = 0 and other zeros at α1, α2, ..., αn, ... with
|α1| ≤ |α2| ≤ ... ≤ |αn| ≤ ... → ∞, multiple zeros being repeated, then
f(z) can be written in the form

f(z) = eg(z)zm
∞∏
k=1

(
1− z

αk

)
egk(z)

where g(z) is an entire function, gk(z) = (z/αk) + (1/2)(z2/α2
k) + ... +
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(1/pk)(z
pk/αpkk ), and p1, p2, ..., pk, ... are non-zero integers with the prop-

erty that
∑∞

k=1 |zk/αk|pk+1 converges for all z (K. Weierstrass' canonical
product dating back to the 1870s). Later, in the 1880s, E.N. Laguerre
introduced the concept of the genus of a transcendental entire function
f(z). Assume that there exists an integer p for which

∑∞
k=1(αk)

−(p+1)

converges, and take the smallest such p. Assume further that in the rep-
resentation for f(z) in the previous one, when p1 = p2 = ... = p, the func-
tion g(z) reduces to a polynomial of degree q; thenmax{p, q} is called the
genus of f(z). For transcendental entire functions, however, the order
is more essential than the genus. The order p of a transcendental entire
function f(z) is de�ned by p = lim sup(log logM(r)/ log r), whereM(r)
is the maximum value of |f(z)| on |z| = r. By using the coe�cients of
f(z) =

∑
n anz

n, we can write p = lim sup(n log n/ log(1/|an|)). The
entire functions of order 0, which were studied by G. Valiron and oth-
ers in the 1910s, have properties similar to polynomials, and the entire
functions of order less than 1/2 satisfy limrn→∞(min|z|=rn |f(z)|) = ∞
for some increasing sequence rn ↑ ∞ (A. Wiman's theorem of the early
1900s - see (Wiman 1905)). Hence, entire functions of order less than 1/2
cannot be bounded in any domain extending to in�nity. Among the func-
tions of order greater than 1/2, there exist functions bounded in a given
angular domain D : α < argz < α + π/µ. If |f(z)| < exp rρ(ρ < µ)
and f(z) is bounded on the boundary of D, then f(z) is bounded in the
angular domain. In particular, if the order ρ of f(z) is an integer p, then
it is equal to the genus, and g(z) reduces to a polynomial of degree ≤ p
(J. Hadamard's theorem of 1893). As we will see later, these theorems
originated in the study of the zeros of the Riemann zeta function and
constitute the beginning of the theory of entire functions. Just upon
all these common aspects relying on that non-void intersection area be-
tween transcendental entire functions theory and Riemann zeta function
theory, our historical work will be centered around.
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4. Outlines of history of entire function fac-

torization theorems

To sum up following (Remmert 1998, Chapter 1), in�nite products �rst
appeared in 1579 in the works of F. Vieta, whilst in 1655 J. Wallis gave
the famous product for π/2 in his Arithmetica In�nitorum. But L. Euler
was the �rst to systematically work with in�nite products and to formu-
late important product expansions in his 1748 Introductio in Analysin
In�nitorum. The �rst convergence criterion is due to Cauchy in his 1821
Cours d'analyse22, whilst the �rst comprehensive treatment of the con-
vergence theory of in�nite products was given by A. Pringsheim in 1889
(see (Pringsheim 1889)). In�nite products found then their permanent
place in analysis by 1854 at the latest, through the works of Weierstrass
and others. In this section, we wish to deeply outline some historical as-
pects and moments regarding the dawning of in�nite product techniques
in complex analysis, with a view towards some of their main applications.

4.1 On the Weierstrass' contribution. Roughly, the history of en-
tire function theory starts with the theorems of factorization of a certain
class of complex functions, later called entire transcendental functions
by Weierstrass (see (Loria 1950, Chapter XLIV, Section 741) and (Klein
1979, Chapter VI)), which made their explicit appearance around the
mid-1800s, within the wider realm of complex function theory which
had its paroxysmal moment just in the 19th-century. But, if one wished
to identify, with a more precision, that chapter of complex function the-
ory which was the crucible of such a theory, then the history would lead
to elliptic function theory and related factorization theorems for doubly
periodic elliptic functions, these latter being meant as a generalization
of trigonometric functions. Following (Vesentini 1984, Chapter VII), the
theory of elliptic integrals was the �rst main historical motif from which
elliptic function theory sprung out, whilst the polydromy of such integrals
�nds its natural environment of development in the geometry of alge-
braic curves (see (Enriques & Chisini 1985, Volume 1) and (Dieudonné

22See its English annotated translation (Bradley & Sandifer 2009).
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& Grothendieck 1971)). Again, following (Stillwell 2002, Chapter 12,
Section 12.6), the early idea which was as at the basis of the origin of
elliptic functions as obtained by inversion of elliptic integrals, is mainly
due to Legendre, Gauss, Abel and Jacobi (together two pupils of this
last, namely G.A. Göpel (1812-1847) and J.A. Rosenhain (1816-1887)
(see (Hermite 1873, pp. 296-297)). Following (Fasano & Marmi 2002,
Appendix 2), the elliptic functions was introduced for the �rst time by J.
Wallis in 1655 in computing the arc length of an ellipse whose in�nitesi-
mal element is not equal to the di�erential of an already known elemen-

tary function. In their most general form, they are given by
∫
R(x, y)dx

where R(x, y) is a rational function of its arguments and y =
√
P (x)

with P (x) a fourth degree polynomial. Legendre, in 1793, proved that
a general elliptic integral is given by a linear combination of elementary
functions and three basic elliptic integrals said to be integrals of the �rst,
second and third kind. Gauss had the idea of inversion of elliptic inte-
grals in the late 1790s but didn't publish it; Abel had the same idea in
1823 and published it in 1827, independently of Gauss. Jacobi's indepen-
dence instead is not quite so clear. He seems to have been approaching
the idea of inversion in 1827, but he was only spurred by the appear-
ance of Abel's paper. At any rate, his ideas subsequently developed at
an explosive rate, up until he published the �rst and major book on
elliptic functions, the celebrated Fundamenta nova theoriæ functionum
ellipticarum in 1829. Following (Enriques 1982, Book III, Chapter I,
Section 6), on the legacy left, amongst others, by J.L. Lagrange, N.H.
Abel, C.G.J. Jacobi, A.L. Cauchy and L. Euler, Riemann andWeierstrass
quickly became the outstanding �gures of the 19th-century mathemat-
ics. Agreeing with Poincaré in his 1908 Science et méthode, Riemann was
an extremely brilliant intuitive mathematician, whereas Weierstrass was
primarily a logician, both personifying, therefore, those two complemen-
tary and opposite typical aspects characterizing the mathematical work.
Beyond what had been made by Cauchy, they created the main body of
the new complex function theory in the period from about 1850 to 1880
(see (Klein 1979, Chapter VI)). Both received a strong impulse from Ja-
cobi's work. The �rst elements of the theory of functions according to
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Weierstrass date back to a period which roughly goes on from 1842-43
to 1854; in the meanwhile, Riemann published, in the early 1850s, his
�rst works on the foundations of complex analysis, followed by the cele-
brated works on Abelian functions (which are elliptic functions so named
by Jacobi) of the years 1856-57, which dismayed Weierstrass himself, in-
�uencing his next research program. This last point should be taken
with a certain consideration. Instead, following (Klein 1979, Chapter
VI), in the period from 1830s to the early 1840s, Weierstrass began to
self-taughtly study Jacobi's Fundamenta nova theoriæ functionum ellip-
ticarum, hence attended Christoph Gudermann (1798-1852) lectures on
elliptic functions (see also (Manning 1975)). He wrote his �rst paper in
1841 on modular functions, followed by some other papers wrote between
1842 and 1849 on general function theory and di�erential equations. His
�rst relevant papers were written in the years 1854-56 on hyperelliptic
or Abelian functions, which engaged him very much. Afterwards, in the
wake of his previous work on analytic, elliptic and Abelian functions,
Weierstrass was led to consider the so-called natural boundaries (that is
to say, curves or points - later called essential singularities - in which
the function is not regularly de�ned) of an analytic function to which
Riemann put little attention. The �rst and rigorous treatment of these
questions was given by Weierstrass in his masterful 1876 paper enti-
tled Zur Theorie der eindeutigen anatytischen Funktionen, where many
new results were achieved, amongst which is the well-known Casorati-
Weierstrass theorem (as we today know it) and the product factorization
theorem. Klein (1979, Chapter VI) states that the content of this seminal
paper surely dated back to an earlier period, and was chie�y motivated
by his research interests in elliptic functions. As pointed out in (Hancock
1910, Introduction), nevertheless, it is quite di�cult to discern the right
contribution to the elliptic function theory due to Weierstrass from other
previous mathematicians, because of the objective fact that Weierstrass
started to publish his lessons and researches only after the mid-1860s.

Weierstrass' theory of entire functions and their product decomposi-
tions, according to Klein, has found its most brilliant application in the
(Weierstrass) theory of elliptic functions, to be precise, in the construc-
tion of the basic Weierstrassian σ-function σ(u); perhaps - Klein says -
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Weierstrass' theory of entire functions even originated from his theory
of elliptic functions (see also (Bottazzini & Gray 2013, Chapter 6, Sec-
tion 6.6.3)). Nevertheless, already Gauss and Abel were gone very close
to this σ-function and its properties. Again Klein says that he wishes
to conclude his discussion of Weierstrass' theory of complex functions,
adding only some remarks on the history, referring to R. Fricke distin-
guished review on elliptic functions for more information (see (Burkhardt
et al. 1899-1927, Zweiter Teil, B.3, pp. 177-348)). If we now ask - again
Klein says - from where Weierstrass got the impulse to represent his
functions by in�nite products, we �nd his principal forerunner in G.
Eisenstein (1823-1852), a student of Gauss, who was also a friend of Rie-
mann with whom often talked about mathematical questions and who
very likely stimulated, according to André Weil (see (Narkiewicz 2000,
Chapter 4, Section 4.1, Number 2) and references therein), the interest
towards prime number theory in Riemann. Following textually (Weil
1975, Second Lecture, p. 21),

�[...] the case of Riemann is more curious. Of all the great mathe-
maticians of the last century, he is outstanding for many things, but also,
strangely enough, for his complete lack of interest for number theory and
algebra. This is really striking, when one re�ects how close he was, as
a student, to Dirichlet and Eisenstein, and, at a later period, also to
Gauss and to Dedekind who became his most intimate friend. During
Riemann's student days in Berlin, Eisenstein tried (not without some
success, he fancied) to attract him to number-theory. ln 1855, Dedekind
was lecturing in Gottingen on Galois theory, and one might think that
Riemann, interested as he was in algebraic functions, might have paid
some attention. But there is not the slightest indication that he ever gave
any serious thought to such matters. It is clearly as an analyst that he
took up the zeta-function. Perhaps his attention had been drawn to the
papers of Schlömilch and Malmquist in 1849, and of Clausen in 1858.
Anyway, to him the analytic continuation of the zeta-function and its
functional equation may weIl have seemed a matter of routine; what re-
ally interested him wa8 the connection with the prime number theorem,
and those aspects which we now classify as �analytic number-theory�,
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which to me, as 1 have told you, is not number theory at all. Neverthe-
less, there are two aspects of his famous 1859 paper on the zeta-function
which are of vital importance to us here [i.e., his functional equation for
ζ function and the famous Riemann hypothesis]�.

In his long-paper (see (Eisenstein 1847)), Eisenstein did not attain the
fully symmetric normal form, because he still lacked the exponential fac-
tors attached to the individual prime factors that will be then introduced
by Weierstrass for inducing the product to converge in an absolutely
manner. As he himself declared, Weierstrass got this idea from Gauss,
who had proceeded in a similar way with his product expansion of the
gamma function in 1812 (see the paper on the hypergeometric series in
Weierstrass' Mathematische Werke, Band II; see also Weierstrass' works
on elliptic and other special functions included in Band V). It therefore
turns out clear that elliptic and hyperelliptic function theory exerted a
notable role in preparing the humus in which grew up the Weierstrass
work on factorization theorem, and not only this: in general, it exerted
a great in�uence on Riemann and Weierstrass work (see (Bottazzini &
Gray 2013, Chapter 4, Section 4.5)). Following (Burkhardt et al. 1899-
1927, Zweiter Teil, B.3, Nr. 15-17, 25, 45, 55), amongst others, Abel23,
Euler, Jacobi, Cayley and Gauss (see (Bottazzini & Gray 2013, Chapter
1, Section 1.5.1.1; Chapter 4, Section 4.2.3.1-2)) had already provided
product expansions of certain elliptic functions, but it was Eisenstein (see
(Eisenstein 1847)), with his in�nite product expansion ansatz, the closest
forerunner of the Weierstrass work on his σ function, in turn based on
the previous work made by Jacobi and Gauss (see (Weil 1976)). Follow-
ing (Remmert 1998, Chapter 1), in his 1847 long-forgotten paper, had
already systematically used in�nite products, also using conditionally
convergent products and series as well as carefully discuss the problems,

23In (Greenhill 1892, Chapter IX, Section 258), the author states that the well-known expres-
sions for the circular and hyperbolic functions in the form of �nite and in�nite products, have their
analogues for the elliptic functions as laid down by Abel in some his researches on elliptic functions
published in the celebrated Crelle's Journal, Issues 2 and 3, years 1827 and 1828. Following (Han-
cock 1910, Chapter V, Article 89), Abel showed, in the 1820s, that elliptic functions, considered
as the inverse of the elliptic integrals, could be expressed as the quotient of in�nite products, then
systematically reconsidered in a deeper manner by Jacobi.
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then barely recognized, of conditional and absolute convergence, but he
does not deal with questions of compact convergence. Thus logarithms
of in�nite products are taken without hesitation, and series are casually
di�erentiated term by term, and this carelessness may perhaps explain
why Weierstrass nowhere cites Eisenstein's work. Furthermore, already
Cauchy24, ever since 1843, gave some useful formulas involving in�nite
products and in�nite series with related convergence properties which
maybe could have played a certain role in the 1859 Riemann paper in
deducing some properties of that functional equation related to his ξ
function (whose an earlier form was also known to Euler over a hundred
years before Riemann, and to which Euler had arrived in the real domain
by use of divergent series methods; see(Kolmogorov & Yushkevich 1996,
Volume II, Chapter 2) and (Bateman & Diamond 2004, Chapter 8, Sec-
tion 8.11)), also because of the simple fact that Riemann himself known
very well Cauchy's work. Therefore, Weierstrass himself acknowledges,
in di�erent places, his debit both to Gauss and Cauchy, in achieving
his celebrated results on entire function factorization theorem. Further-
more, following (Fouët 1904-07, Tome II, Chapter IX, Section 272), many
mathematicians have acknowledged in Abel one of the most in�uential
scholars who have contributed to the intellectual development of Weier-
strass. On the other hand, following (Pólya 1930), also J-B. Fourier, in
(Fourier 1830, Exposé synoptique, Nos. (15) and (16) IIIe and IVe, pp.
65-66), as early as the late 1820s, considered in�nite products in alge-
braic questions inherent transcendental equations of the type ϕ(x) = 0,
with applications to the case sinx = 0, whose outcomes could be there-
fore known to Riemann. To be precise, in the words of Pólya, he states
a more general theorem which it is worth quoting verbally as follows

�IIIe. Une fonction transcendante ou algébrique ϕx étant proposée, si
l'on fait l'énumération de toutes les valeurs réelles ou imaginaires de x,

24In this regard, see (Bellacchi 1894, Chapter X), where an interesting discussion of the Jacobi
series is made, amongst other things highlighting that already Abel, on the wake of what was done by
Johann Bernoulli, had introduced in�nite product expansions of certain elliptic functions (Jacobi's
triple product) that later Jacobi, in turn, converted into in�nite series by means of trigonometric
arguments, so giving rise to new elliptic functions (see (Greenhill 1892, Chapter IX, Section 258)
and (Remmert 1998, Chapter 1, Section 5)).
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savoir α, β, γ, δ, etc. qui rendent nulle la fonction f(x), et si l'on désigne

par f(x) le produit
(
1− x

α

)
,
(
1− x

β

)
,
(
1− x

γ

)
,
(
1− x

δ

)
, ... de tous les

facteurs simples qui correspondent aux racines de l'equation ϕx = 0, ce
produit pourra di�érer de la fonction ϕx, en sorte que cette fonction, au
lieu d'étre équivalente fx, sera le produit d'un premier facteur f(x) par
un second F (x). Cela pourra arriver si le second facteur F (x) ne cesse
point d'étre une grandeur �nie, quelque valeur réelle ou imaginaire que
l'on donne à x , ou si ce second facteur F (x) ne devient nul que par la
substitution de valeurs de x qui rendent in�ni le premier facteur f(x). Et
réciproquement si l'équation F (x) des racines, et si elles ne rendent point
in�ni le facteur f(x), on est assuré que le produit de tous les facteurs
du premier degré correspondant aux racines de ϕx = 0 équivaut à cette
fonction ϕx. En e�et: 10 s'il existait un facteur fx qui ne pût devenir
nul pour aucune valeur réelle ou imaginaire de x, par exemple si Fx était
une constante A et si fx était sinx, toutes les racines de A sinx = 0
seraient celles de sinx = 0, et le produit de tous les facteurs simples
correspondant aux racines de A sinx = 0 serait seulement sinx, et non
A sinx. Il en serait de méme si le facteur Fx n'était pas une constante
A. Mais s'il pouvait exister un facteur Fx qui ne cesserait point d'avoir
une valeur �nie, quelque valeur réelle ou imaginaire que l'on attribuât à
x, toutes les racines de l'équation sinxFx = 0 seraient celles de sinx =
0, puisqu'on ne pourrait rendre nul le produit sinx. Fx qu'en rendant
sinx nul. Donc le produit de tous les facteurs correspondants aux racines
de ϕx = 0 serait sinx, et non sinxFx. On voit donc que dans ce second
cas il serait possible que le produit de tous les facteurs simples ne donnât
pas ϕx. 20 Si l'équation Fx = 0 a des racines, ou réelles ou imaginaires,
ce qui exclut le cas où Fx: serait une constante A, ou serait un facteur
dont la valeur est toujours �nie, et si les racines de Fx = 0 rendeut
fx in�ni, le produit fxFx devient 0/0, et peut avoir une valeur très-
di�érente de fx. Mais si les racines de Fx = 0 donnent pour fx une
valeur �nie, le produit fxFx deviendrait nul lorsque Fx = 0: donc
l'enumération complète des racines de l'équation ϕx = 0, ou fxFx = 0,
comprendrait les racines de Fx = 0. Or nous avons représenté par fx le
produit de tous les facteurs simples qui répondent aux racines de ϕx = 0:
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il serait donc contraire à l'hypothèse d'admettre qu'il y a un autre facteur
Fx, tel que les racines de Fx = 0 sont aussi des facteurs de ϕx = 0.
Cela supposerait que l'on n a pas fait une enumération complète des
racines de l'équation ϕx = 0, puisqu'on a exprimé seulement par fx
le produit des facteurs simples qui correspondent aux racines de cette
équation.

IVe. Étant proposée une équation algébrique ou transcendante ϕx =
0 formée d'un nombre �ni ou in�ni de facteurs réels ou imaginaires(
1−x

α

)
,
(
1−x

β

)
,
(
1−x

γ

)
,
(
1−x

δ

)
, etc. on trouve le nombre des racines

imaginaires, les limites des racines réelles, les valeurs de ces racines, par
la méthode de résolution qui a été exposée dans les premiers livres et qui
sera la même soit que la di�érentiation répétée réduise ϕx une valeur
constante, soit que la di�érentiation puisse être indé�niment continuée.
L'équation ϕx = 0 a précisément autant de racines imaginaires qu'il y a
de valeurs réelles de x qui , substituées dans une fonction dérivée inter-
médiaire d'un ordre quelconque, rendent cette fonction nulle, et donnent
deux résultats de même signe pour la fonction dérivée qui la précède et
pour celle qui la suit. Par conséquent si l'on parvient à prouver qu'il n'y
a aucune valeur réelle de x qui, en faisant évanouir une fonction dérivée
intermédiaire, donne le même signe à celle qui la précède, et à celle
qui la suit, on est assuré que la proposée ne peut avoir aucune racine
imaginaire. Par exemple en examinant l'origine de l'équation transcen-

dante (1) 0 = 1 − x

1
+

x2

(1 · 2)2
− x3

(1 · 2 · 3)2
+

x4

(1 · 2 · 3 · 4)2
−etc. nous

avons prouvé qu'elle est formé du produit d'un nombre in�ni de facteurs;
et en considérant une certaine relation récurrente qui subsiste entre les
coe�cients des fonctions dérivées des divers ordres, on reconnaît qu'il
est impossible qu'une valeur réelle de x substituée, dans trois fonctions
dérivées consécutives, réduise la fonction intermédiaire à zéro, et donne
deux résultats de même signe pour la fonction précédente et pour la fonc-
tion suivante. On en conclut avec certitude que l'équation (1) ne peut
point avoir de racines imaginaires�.

Pólya says that no proof of this theorem, by Fourier or another math-
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ematician, is known. In 1841, M.A. Stern gave an invalid proof, and
repeated in greater detail some a�rmations of Fourier. Since then, the
question seems to have been neglected. However, to further emphasize
the Weierstrass work on entire function factorization, we report textual
words of Picard (see (Picard 1897) and (Dugac 1973, Section 5.1)), who
is one of the founders of the theory of entire functions, as we will see later

�L'illustre analyste a publié en 1876 un mémoire sur la Théorie des
Fonctions uniformes; ce mémoire, en faisant connaître à un public plus
étendu les résultats développés depuis longtemps déjà dans l'enseignement
du maître, a été le point de départ d'un très grand nombre de travaux sur
la Théorie des Fonctions. Cauchy et ses disciples français, en étudiant
les fonctions analytiques uniformes, n'avaient pas pénétré bien profondé-
ment dans l'étude de ces points singuliers appelés �points singuliers es-
sentiels�, dont le point z = 0 pour la fonction exp(1/z) donne l'exemple
le plus simple. Weierstrass, en approfondissant cette étude, a été con-
duit à un résultat qui est un des plus admirables théorèmes de l'Analyse
moderne, je veux parler de la décomposition des fonctions entières en
facteurs primaires. D'après le théorème fondamental de l'Algèbre, un
polynôme peut être décomposé en un produit de facteurs linéaires; pour
une fonction entière, c'est-à-dire pour une fonction uniforme continue
dans tout le plan telle que sins),ne peut-on chercher à obtenir aussi une
décomposition en facteurs? Cauchy avait obtenu sur ce sujet des résul-
tats importants, mais sans le traiter dans toute sa généralité. Il était
réservé à Weierstrass de montrer qu'une fonction entière peut être dé-
composée en un produit d'un nombre généralement in�ni de facteurs
primaires, chacun de ceux-ci étant le produit d'un facteur linéaire par
une exponentielle de la forme exp(P (z)), où P (z) est un polynôme.
C'est sans doute en étudiant l'intégrale Eulérienne de seconde espèce
que Weierstrass a été mis sur la voie de ce beau théorème, et nous rap-
pellerons à ce sujet cet important résultat que l'inverse de cette intégrale
est une fonction entière�.

Rolf Nevanlinna points out the main role played by Weierstrass in realiz-
ing a class of elementary analytic functions, amongst which Abelian and
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elliptic functions, whose construction has led Weierstrass to the creation
of a general theory of entire and meromorphic functions of which one of
the founding pillars is just the theorem on the decomposition into pri-
mary factors (see (Dugac 1973, Section 5.1)). On the other hand, Weier-
strass himself was fully aware of the importance played by this result
within the general context of complex function theory. Furthermore, as
(Kudryavtseva et al. 2005, Section 7) point out, the two decades follow-
ing the publication of the celebrated 1859 Riemann's paper, were largely
uneventful. Weierstrass, who was eleven years older than Riemann, but
whose rise to fame - from an obscure schoolteacher to a professor at Berlin
- happened in a way very di�erent from Riemann's one, began working
and lecturing on complex numbers and the general theory of entire func-
tions already during the 1860s, but it wasn't until 1876, when Weierstrass
�nally published his famous memoir, that mathematicians became aware
of some of his revolutionary ideas and results. Weierstrass' factorization
theorem, together with Riemann's memoir, set the stage for the great
work of Hadamard and de la Valée-Poussin in the 1890s. In particular,
Hadamard made more explicit and applicable Weierstrass' factorization
theorem.

4.2 On the Riemann's contribution. In 1858, Riemann wrote his
unique paper on number theory, which marked a revolution in mathemat-
ics. According to Laugwitz (1999, Introduction, Sections 4.1 and 4.2),
real and complex analysis has always in�uenced Riemann work: algebraic
geometry appears, in his works, as a part of complex analysis; he treats
number theory with methods of complex function theory; he subsumes
physical applications into partial di�erential equations; he replaces the
usual axiomatic conception of geometry by his novel (Riemannian) geom-
etry, which is a part or real analysis of several variables; and he develops
the topology of manifolds as a new discipline derived from analysis. Rie-
mann knew the elements of algebraic analysis according to J-L. Lagrange
and L. Euler, through the lessons of his teacher, M.A. Stern (1807-1894),
who was one of the last schoolmasters of the subject. Riemann handled
the gamma function in a secure and self-con�dent way and has dealt with
di�erential equations and recursions in the Euler's manner. The Stern
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lessons were of very fundamental importance to achieve many Riemann's
results, even if the celebrated 1748 Euler's Introductio in Analysin In-
�nitorum was one of the most in�uential textbooks of the time. Nev-
ertheless, Klein (1979, Chapter VI) states that Riemann began already
to study elliptic and Abelian functions since the late 1840s, because this
subject, in the meantime, has become of a certain vogue in Germany.
In the 1855-56 winter term, following the Dirichlet's research lines, Rie-
mann lectured on functions of a complex quantity, in particular elliptic
and Abelian functions, while in the 1856-57 winter term he lectured on
the same subject, but now with special regard to hypergeometric series
and related transcendentals. These lectures, from which he drew publica-
tions on Abelian and hypergeometric functions, were partially repeated
in the following semesters. Klein (1979, Chapter VI) points out that the
years 1857-62 marked the high-point of Riemann's creativity. Moreover,
Klein states that before to characterize the speci�c Riemannian function
theory work, he wishes to put forward a remark that may cause some
surprise: Riemann did much important work in the theory of functions
that does not �t into the framework of his typical theory. Klein refers
to the notable 1859 paper on the number of primes lower than a given
magnitude, where it is introduced �the Riemann zeta-function ζ(σ+ it)
given by an analytic expression, namely an in�nite product. This prod-
uct is converted into a de�nite integral, which can then be evaluated by
shifting the path of integration. The whole procedure is function theory à
la Cauchy�. Therefore, according to what Felix Klein states, the math-
ematical background that was at the basis of the Riemannian analytic
treatment of his ζ function, essentially lies on the Cauchy's theory of
complex functions. This is also con�rmed by (Bottazzini & Gray 2013,
Chapter 5, Section 5.1), coherently with what has just been said above
in regards to the importance played by Cauchy's work on the Riemann's
one.

According to (Laugwitz 1999, Chapter 1), notwithstanding the era of
ferment that concerned the 19th century mathematics, an autonomous
and systematic account of the foundations of complex analysis is �nd-
able, for the �rst time, in the Riemann's works and lecture notes through
the winter term 1855-56 to the winter term 1861-62, the latter having
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been published by the physicist Carl Ernst Abbe (1840-1905) in the sum-
mer term 1861 (see (Ullrich 2003) and references therein) when he was
a student of W. Weber and Riemann in Göttingen. The only systematic
and congruous historical attempt to organically recognize the various
Riemann's lessons has been pursued by E. Neuenschwander in (Neuen-
schwander 1996). In any case, Riemann was fully imbedded into the
real and complex analysis scenery of the �rst middle of the 19th century,
which seen involved the outstanding �gures of Cauchy, Weierstrass and
Riemann himself, whose researches were intertwined amongst them more
times. According to (Laugwitz 1999, Chapter 1, Section 1.1.5), just in
connection with the drawing up of his paper on the same subject, Rie-
mann was aware of the Weierstrass' papers on Abelian functions wrote
between 1853 and 1856-57, for which it is evident that a certain in�uence
of the latter on the Riemann's one - at least, as concerns such a period
- there was, even if Weierstrass will publish these his works only later.
Again following (Neuenschwander 1996), one of the key themes of the
last Sommersemestern 1861 Riemann lectures on analytic functions (see
sections 11-13), was the determination of a complex function from its
singularities (section 13) mainly following Cauchy's treatment25. Then,
he clari�es that this problem regards only single-valued functions de�ned
on C∪ {0} whose unique singularities are poles (the names pole and es-
sential singularity are respectively due to C.A. Briot and J.C. Bouquet
and to Weierstrass). In turn, the resolution of this problem requires the
previous knowledge of the zeros of the function which has to be deter-
mined. At �rst, Riemann considered the case of a function having a
�nite number of zeros and poles, then he went over the the next ques-
tion, namely to determine a function with in�nitely many zeros whose
unique point of accumulation if ∞ (which, inter alia, concerns too the
Riemann zeta function theory). But, again following (Laugwitz 1999,
Chapter 1, Section 1.1.6), in doing so Riemann went over very close
to the next Weierstrass' work on the in�nite product representation of
an entire function, using special cases to explain the general procedure.

25Amongst the �rst lecture notes on complex functions very close to the Riemann ideas and
approach, there are those exposed in (Durège, 1896).
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Detlef Laugwitz points out that Riemann has pursued this latter task in
such a way that, by following his directions, one could immediately give
a proof of the known Weierstrass' product theorem, even if Riemann ulti-
mately failed in reaching the general case; nevertheless, for what follows,
this last claim has a certain importance from our historical standpoint.

Indeed, in his renowned paper on the distribution of prime numbers26,
Riemann stated the following function

(1) ξ(t)
.
=

(1
2
Γ
(s
2

)
s(s− 1)π−s/2ζ(s)

)
s=1/2+it

later called Riemann ξ-function. It is an entire function (see (Titchmarsh
1986, Chapter II, Section 2.12)). Riemann conjectured that (ξ(t) = 0) ⇒
(ℑ(t) = 0), that is to say, the famous Riemann hypothesis (RH), as it

26This paper was presented by Riemann, after his nomination as full professor in July 1859, to
the Berlin Academy for his consequent election as a corresponding member of this latter. To be
precise, following (Bottazzini 2003), just due to this election, Riemann and Dedekind visited Berlin,
where they met E.E. Kummer, L. Kronecker and K. Weierstrass. According to (Dedekind 1876),
very likely, it was just from this meeting that sprung out of the celebrated 1859 Riemann number
theory paper that was, then, sent to Weierstrass himself, to be published in the November issue
of the Monatsberichte der Berliner Akademie. Following (Neuenschwander 1981), during time Rie-
mann spent in Berlin, in the years 1847-1849, he was particularly in�uenced by Dirichlet, Eisenstein
and Jacobi. Riemann attended Dirichlet's lectures on, among other things, the theory of de�nite
integrals and partial di�erential equations, as well as those of Eisenstein and Jacobi on elliptic in-
tegrals. Dirichlet recognized Riemann's extraordinary talent early on and contributed considerably
to the advancement of his career from that moment. In the year 1852, for example, he discussed
Riemann's dissertation with him and helped him to get the literature for his Habilitationsschrift.
But quite early Riemann was also making himself familiar with the writings of the most important
French mathematicians. In his �rst year of study 1846-47 in Göttingen, he borrowed from the uni-
versity library, among other books, the Cours d'analyse, the Calcul di�érentiel and the Exercices de
mathématiques, all by Cauchy, along with the Traité des fonctions elliptiques of Legendre. From the
above it becomes clear that Riemann was suitable, as no other German mathematician then was,
to e�ect the �rst synthesis of the �French� and the �German� approaches in function theory. In his
introductory lectures on general complex function theory of 1861, Riemann dealt with the Cauchy
Integral Formulae, the operations on in�nite series, the power series expansion, the Laurent series,
the analytic continuation by power series, the argument principle, the product representation of
an entire function with arbitrarily prescribed zeros, the evaluation of de�nite integrals by residues,
etc., besides the subjects known from his published papers. Furthermore, and this is an important
witness for our ends, according to the mathematician Paul B. Garrett (see his Number Theory
lessons at http://www.math.umn.edu/ garrett/), general factorizations of entire functions in terms
of their zeros are due to K. Weierstrass, but sharper conclusions from growth estimates are due to
J. Hadamard. In relation to his 1859 memoir, Riemann's presumed existence of a factorization for
ξ function to see the connection between prime numbers and complex zeros of zeta function, was a
signi�cant impetus to Weierstrass' and Hadamard's study of products in succeeding decades.
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will be called later. Whereupon, he stated that

�This function ξ(t) is �nite for all �nite values of t, and allows itself
to be developed in powers of tt as a very rapidly converging series. Since,
for a value of s whose real part is greater than 1, log ζ(s) = −

∑
log(1−

p−s) remains �nite, and since the same holds for the logarithms of the
other factors of ξ(t), it follows that the function ξ(t) can only vanish
if the imaginary part of t lies between i/2 and −i/2. The number of
roots of ξ(t) = 0, whose real parts lie between 0 and T is approximately
= (T/2) log(T/2)π − T/2π; because the integral

∫
d log ξ(t), taken in

a positive sense around the region consisting of the values of t whose
imaginary parts lie between i/2 and −i/2 and whose real parts lie between
0 and T , is (up to a fraction of the order of magnitude of the quantity
1/T ) equal to (T log(T/2)π − T/2π)i; this integral however is equal to
the number of roots of ξ(t) = 0 lying within this region, multiplied by
2πi. One now �nds indeed approximately this number of real roots within
these limits, and it is very probable that all roots are real. Certainly one
would wish for a stricter proof here; I have meanwhile temporarily put
aside the search for this after some �eeting futile attempts, as it appears
unnecessary for the next objective of my investigation. If one denotes by
α all the roots of the equation ξ(t) = 0, one can express log ξ(t) as

(2)
∑

log
(
1− tt

αα

)
+ log ξ(0)

for, since the density of the roots of the quantity t grows with t only
as log t/2π, it follows that this expression converges and becomes for an
in�nite t only in�nite as t log ξ(t); thus it di�ers from log ξ(t) by a func-
tion of tt, that for a �nite t remains continuous and �nite and, when
divided by tt, becomes in�nitely small for in�nite t. This di�erence is
consequently a constant, whose value can be determined through setting
t = 0. With the assistance of these methods, the number of prime num-
bers that are smaller than x can now be determined�.

So, in his celebrated 1859 paper, Riemann himself had already reached
an in�nite product factorization of ξ(t), namely the (2), which can be
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equivalently written as follows

(3) log ξ(t) =
∑
α

log
(
1− tt

αα

)
+ log ξ(0) = log ξ(0)

∏
α

(
1− t2

α2

)
from which it follows that ξ(t) = ξ(0)

∏
α

(
1 − t2/α2). Thus, questions

related to entire function factorizations had already been foreshadowed
in this Riemann work. Therefore, we now wish to outline the main
points concerning the very early history of entire function factorization
theorems, having taken the 1859 Riemann paper as an occasional starting
point of this historical question, in which, inter alia, a particular entire
function factorization - i.e. the (3) - had been used. In short, this 1859
Riemann paper has been a valuable καιρóς to begin to undertake one of
the many study's branch which may depart from this milestone of the
history of mathematics, to be precise that branch concerning the entire
function theory which runs parallel to certain aspects of the theory of
Riemann zeta function, with interesting meet points with physics. One
of the very few references which allude to these Riemann paper aspects is
the article by W.F. Osgood in (Burkhardt et al. 1899-1927, Zweiter Teil,
B.1.III, pp. 79-80), where, discussing of the genus of an entire function,
an in�nite product expansion of the function sin πs/πs is considered;
to be precise, since Johann Bernoulli to Euler, the following form27 had

27As n→ ∞ and t ̸= 0, Weierstrass proved to be sinπt/πt =
∏∞

n=−∞(1−t/n)et/n - see (Bellacchi
1894, Chapter XI). But, according to (Bellacchi 1894, Chapter XI) and (Hancock 1910, Chapter
I, Arts. 13, 14), Cauchy was the �rst to have treated (in the Exercises de Mathématiques, IV)
the subject of decomposition into prime factors of circular functions and related convergence ques-
tions, from a more general standpoint. Although Cauchy did not complete the theory, he however
recognized that, if a is a root of an integral (or entire) transcendental function f(s), then it is
necessary, in many cases, to join to the product of the in�nite number of factors such as (1− s/a),
a certain exponential factor eP (s), where P (s) is a power series in positive powers of s. Weierstrass
gave then a complete treatment of this subject. On the other hand, besides what has already
been said above, also in (Greenhill 1892, Chapter IX, Section 258)) it is pointed out that, since
Abel's work, the in�nite product expansions of trigonometric functions have been formal models
from which to draw inspiration, by analogy, for further generalizations or extensions. Analogously,
following (Fouët 1904-07, Tome II, Chapter IX, Section II, Number 279), �Cauchy [in the An-
ciens Exercices de Mathématiques, 1829-1830] avait vu que, pour obtenir certaines transcendantes,
il fallait multiplier le produit des binomes du premier degré du type X − an par une exponentielle
eg(x), g(x) désignant une fonction entière. Mème l'introduction de cette exponentielle ne su�t à
donner l'expression générale des fonctions admettant les zéros a1, ..., an, ... que dans le cas où la
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already been deduced (see (Bellacchi 1894, Chapter XI))

sin πs

πs
=

∞∏
n=1

(
1− s2

n2

)
which has genus 0. This is often said to be the Euler's product formula
(see (Borel 1900, Chapter IV), (Tricomi 1968, Chapter IV, Section 8),
(Remmert 1998, Chapter 1, Section 3) and (Maz'ya & Shaposhnikova
1998, Chapter 1, Section 1.10)), and might be considered as one of the
�rst meaningful instances of in�nite product expansion of an entire func-
tion, given by Euler in his 1748 Introductio in Analysin In�nitorum,
through elementary analytic methods (see (Sansone 1972, Chapter IV,
Section 1)). Furthermore, following (Fouët 1904-07, Chapter IX, Sec-
tion III, Number 286), there have always been a close analogical com-
parison between the trigonometric functions and the Eulerian integrals
(amongst which the one involved in the Gamma function) together their
properties, a way followed, for instance, by E. Heine. Also looking at
the Riemann's lectures on function theory through the 1855-56, 1856-57,
1857-58 Wintersemestern to the 1858-59 and 1861 Sommersemestern
lessons - see (Neuenschwander 1996, Section 13) as regards the last ones
- it would be possible to descry as well some Riemann's attempts to
consider factorization product expansions whose forms seem to suggest,
by analogy, a formula similar to (3). Moreover, also in the 1847 Eisen-
stein paper, surely known to Riemann, there is also a certain lot of
work devoted to the study of the Euler's sine product formulas (see
(Ebbinghaus et al. 1991, Chapter 5)) which perhaps have could con-
tribute to stimulate the Riemann insight in �nding some formulas used
in his 1859 celebrated paper, �rst of all the (3). To be precise, be-

série
∑

n |an|−1 converge. converge. L'étude du développement des (Weierstrass) fonctions P et σ
en produits in�nis amena Weierstrass à s'occuper de cette question et fut ainsi l'occasion d'une de
ses plus belles découvertes [see, for example, (Lang 1987, Chapter 1, Section 2)]. Ces recherches,
exposées en 1874 par Weierstrass dans son cours à l'Université de Berlin, ont été publiées dans
un Mémoire fondamental �Zur Théorie der eindeutigen analytischen Functionen� de 1876. Quinze
ans auparavant, Betti, dans ses Leçons à l'Université de Pise (1859-1860), avait traité un prob-
lème analogue à celui résolu par Weierstrass, mais sans apercevoir toutes les conséquences de sa
découverte; il en �t l'application au développement des fonctions eulériennes, trigonométriqucs et
elliptiques, puis, laissant son Mémoire dans 1860 inachevé, il n'y pensa plus�.
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cause of the close friendship between Eisenstein and Riemann, seen too
what is said in (Weil 1989) (see also (Weil 1976)) about the sure in�u-
ence of Eisenstein work on Riemann one, reaching to suppose that 1859
Riemann paper was just originated by Eisenstein in�uence, we would
be inclined to put forwards the historical hypothesis that the deep and
complete analysis and critical discussion of in�nite products pursued in
the long and rich paper28 (Eisenstein 1847), surely played a decisive role
in the dawning of ξ product expansion of Riemann paper, also thanks
to the great mathematical insight of Riemann in extending and general-
izing previous mathematical contexts in others. Furthermore, following
(Genocchi 1860, N. 2), an in�nite product factorization of the ξ function
could be easily deduced from what is said in (Briot & Bouquet 1859,
Book IV, Chapter II) about in�nite product factorizations29. Follow-
ing (Stopple 2003, Chapter 6, Section 6.1), Euler's idea is to write the
function sin πx/πx as a product over its zeros, analogous to factoring
a polynomial in terms of its roots. For example, if a quadratic polyno-
mial f(x) = ax2 + bx + c has roots α, β di�erent from 0, then we can
write f(x) = c(1 − x/α)(1 − x/β). On the other hand, sin πx = 0
when x = 0,±1,±2, ... and since sinπx/x = 1 − π2x2/6 + O(x4),
sin πx/πx →

x→0
1 and sin πx/πx = 0 when x = ±1,±2, ..., Euler guessed

that sin πx/πx could have a factorization as an in�nite product of the
type (see also (Ebbinghaus et al. 1991, Chapter 5))

sinπx

πx
=

(
1− x

1

)(
1 +

x

1

)(
1− x

2

)(
1 +

x

2

)
... =

28Where, amongst other things, already a wide use of exponential factors was made for conver-
gence reasons related to in�nite products.

29It is noteworthy to highlight some historical aspects of Charles Briot (1817-1882) mathematical
works which started in the mathematical physics context in studying the mathematical properties
of light propagation in a crystallin medium, like the Ether (as it was supposed to be at that time,
until the advent of Einstein's relativity), undertaking those symmetry conditions (chirality) soon
discovered by Louis Pasteur about certain chemical crystalline substances. In this regard, C.A. Briot
published, with J-C. Bouquet, a series of three research memoirs on the theory of complex functions
�rst published in the Journal de l'École Polytechniquein then collected into a unique monograph
published by L.J-B. Bachelier in Paris in 1856 (see also (Bottazzini & Gray 2013) as well as the
e-archive http://gallica.bnf.fr for a complete view of all the related bibliographical items), to which
more enlarged and complete treatises will follow later either in pure and applied mathematics (see
also (Briot & Bouquet 1859)) as well as in physics.
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=
(
1− x2

1

)(
1− x2

4

)(
1− x2

9

)(
1− x2

16

)
...

which will lead later to a valid proof of this factorization. Then, even
in the context of the history of entire function factorization theorems,
W.F. Osgood points out that already Riemann, just in his famous 1859
paper, had considered an entire function, the ξ(s), as a function of s2

with genus 0, taking into account the above mentioned Euler product
formula for the sine function but without giving any rigorous prove of
this fact, thing that will be done later by J. Hadamard in 1893 as a by-
product of his previous 1892 outcomes on entire function theory. In the
next sections, when we will deepen the works of Hadamard and Pólya on
the entire function theory related to Riemann zeta function, we also will
try to clarify, as far as possible, these latter aspects of the 1859 Riemann
paper which mainly constitute one of the central cores of the present
work. Following (Cartier 1993, I.1.d),

�Concernant les zéros de la fonction ζ, on doit à Riemann deux
résultats fondamentaux dans son mémoire de 1859. Tout d'abord, Rie-
mann ajoute un facteur s(s−1) dans la fonction ζ(s); cela ne détruit pas
l'équation fonctionnelle, mais lui permet d'obtenir une fonction entière

ξ(s) = π−s/2Γ(s/2)ζ(s)s(s− 1)

car les deux pôles sont compensés (Aujourd'hui, on préfère garder la
fonction méromorphe). Grâce à l'équation fonctionnelle, on montre
facilement que les zéros de la fonction ζ sont situés dans la bande cri-
tique 0 < ℜs < 1. Il est de tradition, depuis Riemann, d'appeler ρ ces
zéros. La fonction ξ est désormais une fonction entière; si l'on connaît
l'ensemble de ses zéros, on doit pouvoir la reconstituer. Riemann a�rme
alors que ξ(s) s'écrit sous forme du produit d'une constante par un pro-
duit in�ni qui parcourt tous les zéros de la fonction ξ, chaque facteur
s'annulant pour le zéro s = ρ correspondant de ζ(s). Bien entendu, ce
produit in�ni diverge mais - et c'est un point important - il converge si
on le rend symétrique, i.e. si l'on regroupe judicieusement les facteurs.
L'équation fonctionnelle montre en e�et qu'on peut associer tout nom-
bre ρ le nombre 1 − ρ qui en est le symétrique, géométriquement, par
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rapport 1/2. De ce fait, si l'on regroupe dans ce produit in�ni le facteur
correspondant à ρ et le facteur correspondant à 1 − ρ, on obtient un
produit in�ni absolument convergent (le prime signi�e que l'on ne prend
qu'une fois chaque paire ρ, 1− ρ)

ξ(s)
30
= c

∏
ρ

(
1− s

ρ

)(
1− s

1− ρ

)
.

Le premier problème majeur, dans le mémoire de Riemann de 1859, était
de démontrer cette formule; il l'énonce, mais les justi�cations qu'il en
donne sont très insu�santes. L'objectif de Riemann est d'utiliser cette
formule du produit pour en déduire des estimations très précises sur la ré-
partition des nombres premiers. Si l'on note, suivant la tradition, π(x) le
nombre (Anzahl) de nombres (Zahlen) premiers p < x, Legendre (1788)
et Gauss (en 1792, mais jamais publié) avaient conjecturé qu'on avait
π(x) ∼ (x/ lnx). Riemann donne des formules encore plus précises au
moyen de sommations portant sur les zéros et les π(x). En fait, il a fallu
près de quarante ans pour que Hadamard (1896) et, indépendamment,
de la Vallée-Poussin (1896) démontrent rigoureusement cette formule de
développement en produit in�ni au moyen d'une théorie générale de la
factorisation des fonctions entières - par des arguments qui étaient es-
sentiellement connus d'Euler et de Riemann, en tout cas certainement
de Riemann - et justi�ent ainsi rigoureusement la loi de répartition des
nombres premiers. Hadamard donne la forme limx→∞(x/ lnx), et de la

Vallée-Poussin donne la forme plus forte π(x) =
∫ x

2

dt

ln t
+O

(
xe−c

√
lnx

)
pour une constante c > 0�.

Following (Stopple 2003, Chapter 10, Section 10.1), it was Riemann to
realize that a product formula for ξ(s) would have had a great signi�-
cance for the study of prime numbers. The �rst rigorous proof of this
product formula was due to Hadamard but, as himself remember, it took
almost three decades before he reached to a satisfactory proof of it. Like-
wise, also H.M. Edwards (1974, Chapter 1, Sections 1.8-1.19) a�rms that
the parts concerned with (2) are the most di�cult portion of the 1859
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Riemann's paper (see also (Bottazzini & Gray 2013, Chapter 5, Section
5.10)). Their goal is to prove essentially that ξ(s) can be expressed as
an in�nite product, stating that

�[...] any polynomial p(t) can be expanded as a �nite product p(t) =
p(0)

∏
ρ(1− t/ρ) where ρ ranges over the roots of the equation p(t) = 0

[except that the product formula for p(t) is slightly di�erent if p(0) = 0];
hence the product formula (2) states that ξ(t) is like a polynomial of
in�nite degree. Similarly, Euler thought of sinx as a �polynomial of
in�nite degree31� when he conjectured, and �nally proved, the formula
sinx = πx

∏
n∈N

(
1− (x/n)2

)
. On other hand, [...] ξ(t) is like a polyno-

mial of in�nite degree, of which a �nite number of its terms gives a very
good approximation in any �nite part of the plane. [...] Hadamard (in
1893) proved necessary and su�cient conditions for the validity of the
product formula ξ(t) = ξ(0)

∏
ρ(1 − t/ρ) but the steps of the argument

by which Riemann went from the one to the other are obscure, to say
the very least�.

The last sentence of this Edwards' quotation is historically quite interest-
ing and would deserve further attention and investigation. Furthermore,
H.M. Edwards states too that

�[...] a recurrent theme in Riemann's work is the global characteri-
zation of analytic functions by their singularities. See, for example, the
Inauguraldissertation, especially Article 20 of Riemann's Werke (pp. 37-
39) or Part 3 of the introduction to the Riemann article �Theorie der
Abel'schen Functionen�, which is entitled �Determination of a function
of a complex variable by boundary values and singularities�. See also
Riemann's introduction to Paper XI of the his collected works, where he
writes about � [...] our method, which is based on the determination of
functions by means of their singularities (Umtetigkeiten und Unendlich-

31Following (Bottazzini & Gray 2013, Chapter 8, Section 8.5.1), amongst the functions that
behave very like a polynomial, there is the Riemann ξ function. In this regard, see also what will
be said in the next sections about Lee-Yang theorems and, in general, the theory concerning the
location of the zeros of polynomials.
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werden) [...]�. Finally, see the textbook (Ahlfors 1979), namely the sec-
tion 4.5 of Chapter 8, entitled �Riemann's Point of View��,

according to which Riemann was therefore a strong proponent of the idea
that an analytic function can be de�ned by its singularities and general
properties, just as well as or perhaps better than through an explicit
expression, in this regard showing, with Riemann, that the solutions of a
hypergeometric di�erential equation can be characterized by properties
of this type. In short, all this strongly suggests us the need for a deeper
re-analysis of Riemann ÷uvre concerning these latter arguments, as well
as a historical seek for the mathematical background which was at the
origins of his celebrated 1859 number theory paper. From what has just
been said, it turns out clear that a look at the history of entire function
theory, within the general and wider complex function theory framework,
is needed to clarify some of the historical aspects of this in�uential semi-
nal paper which, as Riemann himself recognized, presented some obscure
points. In this regard, also Gabriele Torelli (see (Torelli 1901, Chapter
VIII, Sections 60-64)) claimed this last aspect, pointing out, in partic-
ular, the Riemann's ansätz according to which the entire function ξ(t)
is equal, via (3), to the Weierstrass' in�nite product of primary factors
without any exponential factor. As is well-known, this basic question
will be brilliantly solved by J. Hadamard in his famous 1893 paper that,
inter alia, will mark a crucial moment in the history of entire function
theory (see (Maz'ya & Shaposhnikova 1998, Chapter 9, Section 9.2) and
next sections).

4.3 An historical account of entire factorization theorems from

Weierstrass onward. To begin, we wish to preliminarily follow the
basic textbook on complex analysis of Giulio Vivanti (1859-1949), an
Italian mathematician whose main research �eld was into complex anal-
ysis, becoming an expert of the entire function theory. He wrote some
notable treatises on entire, modular and polyhedral analytic functions:
a �rst edition of a prominent treatise on analytic functions appeared in
1901, under the title Teoria delle funzioni analitiche, published by Ul-
rico Hoepli in Milan, where the �rst elements of the theory of analytic
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functions, worked out in the late 19th-century quarter, are masterfully
exposed into three main parts, giving a certain load to the Weierstrass'
approach respect to the Cauchy's and Riemann's ones. The importance
of this work immediately arose, so that a German edition was carried
out, in collaboration with A. Gutzmer, and published in 1906 by B.G.
Teubner in Leipzig, under the title Theorie der eindeutigen analytis-
chen funktionen. Umarbeitung unter mitwirkung des verfassers deutsch
herausgegeben von A. Gutzmer (see (Vivanti 1906)), which had to be
considered as a kind of second enlarged and revised edition of the 1901
�rst Italian edition according to what Vivanti himself said in the preface
to the 1928 second Italian edition, entitled Elementi della teoria delle
funzioni analitiche e delle trascendenti intere, again published by Ul-
rico Hoepli in Milan, and wrote following the above German edition in
which many new and further arguments and results were added, also as
regards entire functions. Almost all the Vivanti's treatises are character-
ized by the presence of a detailed and complete bibliographical account
of the related literature, this showing the great historical attention that
he always put in drawing up his works. Therefore, he also was a valid
historian of mathematics besides to be an able researcher (see (Janovitz
& Mercanti 2008, Chapter 1) and references therein), so that his works
are precious sources for historical studies, in our case as concerns entire
functions. The above mentioned Vivanti's textbook on complex analysis
has been one of the most in�uential Italian treatises on the subject. It
has also had wide international fame thanks to its German edition.

Roughly speaking, the transcendental entire functions may be for-
mally considered as a generalization, in the complex �eld, of polynomial
functions (see (Montel 1932, Introduction) and (Levin 1980, Chapter I,
Section 3)). Following (Vivanti 1928, Sections 134-135), (Marku²evi£
1988, Chapter VII) and (Pierpont 1914, Chapter VIII, Sections 127 and
140), the great analogy subsisting between these two last function classes
suggested the search for an equal formal analogy between the correspond-
ing chief properties. To be precise, the main properties of polynomials
concerned either with the existence of zeros (Gauss' theorem) and the
linear factor decomposition of a polynomial, so that it was quite obvious
trying to see whether these could be, in a certain way, extended to entire
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functions. As regards the Gauss' theorem, it was immediately realized
that it couldn't subsist because of the simple counterexample given by
the fundamental elementary transcendental function ex which does not
have any zero in the whole of complex plane. On the other hand, just
this last function will provide the basis for building up the most general
entire function which is never zero, which has the general form eG(x),
where G(x) is an arbitrary entire function, and is said to be an expo-
nential factor. Then, the next problem consisted in �nding those entire
functions having zeros and hence how it is possible to build up them
from their zero set. In this regard, it is well-known that, if P (z) is an
arbitrary non-zero polynomial with zeros z1, ..., zn ∈ C \ 0, having z = 0
as a zero with multiplicity λ (supposing λ = 0 if P (0) = 0), then we
have the following well-known �nite product factorization32

(4) P (z) = Czλ
n∏
j=1

(
1− z

zj

)
where C ∈ C\0 is a constant, so that a polynomial, except a constant fac-
tor, may be determined by its zeros. For transcendental entire functions,
this last property is much more articulated respect to the polynomial
case: indeed, whilst the indeterminacy for polynomials is given by a con-
stant C, for transcendental entire functions it is larger and related to the
presence of an exponential factor which is need to be added to warrant

32It is noteworthy the historical fact pointed out by Giuseppe Bagnera (1927, Chapter III, Section
12, Number 73), in agreement to what has been likewise said above, according to which already
Cauchy himself had considered �rst forms of in�nite product developments, after the Euler's work.
Also Bagnera then, in this his work, quotes Betti's work on elliptic functions and related factor-
ization theorems. Instead, it is quite strange that the Italian mathematician Giacomo Bellacchi
(1838-1924) does not cite Betti, in his notable historical work on elliptic functions (Bellacchi 1894)
in regards to entire function factorization theorems which are treated in the last chapter of this
his work; this is also even more strange because Chapter XI of his book is centered around the
1851 Riemann dissertation on complex function theory, without quoting the already existed Italian
translation just due to Betti. Furthermore, Bellacchi studied at the Scuola Normale Superiore of
Pisa in the 1860s, for which it is impossible that he had not known Betti (see (Maroni 1924)). On
the other hand, also (Loria 1950, Chapter XLIV, Section 741) refers that Weierstrass found inspi-
ration for his factorization theorem, a result of uncommon importance according to Gino Loria,
generalizing a previous Cauchy's formula: indeed, both Cauchy and Gauss are quoted at p. 120 of
the 1879 French translation of the original 1876 Weierstrass paper. This, to further con�rmation
of what has been said above.
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the convergence of in�nite product development. A great part of his-
tory of the approach and resolution of this last problem is the history of
entire function factorization. Nevertheless, we also wish to report what
says Giacomo Bellacchi (1894, Chapter XI, Section 98) about this last
problem. To be precise, he states that

�Se a1, a2, a3, ..., an, .... simboleggino le radici semplici di una fun-
zione olomorfa f(z), ed il quoziente f(z) :

∏
(z − an) non si annulli

per alcuna di esse, la sua derivata logaritmica ψ′(z) = f ′(z)/f(z) −∑
(1/(z− an)) è olomorfa in tutto il piano; moltiplicando i due membri

per dz ed integrando, Cauchy giunse alla formula f(z) = Ceψ(z)
∏
(1−

z/an), dove C è una costante�

[�If a1, a2, a3, ..., an, .... represent the simple roots of a holomorphic
function f(z), and the ratio f(z) :

∏
(z − an) is not zero for each root,

then its logarithmic derivative ψ′(z) = f ′(z)/f(z) −
∑

(1/(z − an)) is
holomorphic in the whole of plane; multiplying both sides by dz and inte-
grating, Cauchy reached the formula f(z) = Ceψ(z)

∏
(1− z/an), where

C is a constant�],

so that it seems, according to Bellacchi, that already Cauchy had de-
scried the utility of exponentials as convergence-producing factors, in a
series of his papers published in the Tome XVII of the Comptes Rendus
de l'Académie des Sciences (France); this supposition is also con�rmed
by Hancock (1910, Chapter I, Art. 14). Nevertheless, following (Vivanti
1928, Sections 135-141), the rise of the �rst explicit formulation of the
entire function factorization theorem was given by Weierstrass in 1876
(see (Weierstrass 1876)) and was mainly motivated by the purpose to
give a solution to the latter formal problem, concerning the convergence
of the in�nite product development of a transcendental entire function
f(z) having an in�nite number of zeros, namely z = 0, with multiplicity
λ, and z1, ..., zn, ... such that 0 < |zj| ≤ |zj+1|, zj ̸= zj+1 j = 1, 2, ...,
trying to extend the case related to a �nite number of zeros z1, ..., zn, in
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which such a factorization is given by

(5) f(z) = eg(z)zλ
n∏
j=1

(
1− z

zj

)
,

to the case of in�nite zeros, reasoning, by analogy, as follows. The set of
in�nite zeros zj is a countable set having only one accumulation point,
that at in�nite. Therefore, for every in�nite increasing natural num-
ber sequence {ρi}i∈N, it will be always possible to arrange the zeros zj
according to their modulus in such a manner to have the following non-
decreasing sequence |z1| ≤ |z2| ≤ ... with limn→∞ |zn| = ∞. In such a
case, if one wants, by analogy, to extend (5) as follows

(6) f(z) = eg(z)zλ
∞∏
j=1

(
1− z

zj

)
,

then it will not be possible to fully avoid divergence's problems inherent
to the related in�nite product. The �rst hint towards a possible overcom-
ing of these di�culties, was suggested to Weierstrass (see (Weierstrass
1856a)) by looking at the form of the inverse of the Euler integral of the
second kind33 - that is to say, the gamma function - and given by

(7)
1

Γ(z)
= z

∞∏
j=1

(
1 +

z

j

)( j

1 + j

)z
= z

∞∏
j=1

(
1 +

z

j

)
e−z log

j+1
j ,

from which he descried the possible utility of the exponential factors
there involved to, as the saying goes, force the convergence of the in�nite
product of the last equality; these his ideas concretized only in 1876 with
the explicit formulation of his celebrated theorem on the entire function
factorization.

As we have said above, Weierstrass (1856a) attributes, however, the
in�nite product expansion (7) to Gauss, but some next historical studies

33Following (Amerio 1982-2000, Volume 3, Part I), the �rst historical prototype of the Euler
integral of the �rst kind was provided by the so-called Beta function, whilst the �rst historical
prototype of the Euler integral of the second type was provided by Gamma function.
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attribute to Euler this formula, that he gave in the famous 1748 Intro-
ductio in Analysin In�nitorum. Indeed, as has been said above, from
the 1879 French translation of the original 1876 Weierstrass paper, it
turns out that both Cauchy and Gauss are quoted (at page 120), be-
fore to introduce the primary factors. Nevertheless, P. Ullrich (1989,
Section 3.5) says that the real motivation to these Weierstrass' results
about entire function factorization were mainly due to attempts to char-
acterize the factorization of quotients of meromorphic functions on the
basis of their zero sets, rather than to solve the above problem related
to the factorization of a polynomial in dependence on its zeros. Further-
more, Ullrich (1989, Section 3.5) observes too that other mathematicians
dealt with questions concerning entire function factorization methods,
amongst whom are just Enrico Betti and Bernard Riemann, the latter,
in his important 1861 sommersemestern lectures on analytic functions,
arguing, as has already been said, upon the construction of particular
complex functions with simple zeros, even if, all things considered, he
didn't give, according to Ullrich (1989, Section 3.5), nothing more what
Euler done about gamma function through 1729 to his celebrated 1748
treatise on in�nitesimal analysis34. Instead, as we have seen above, D.
Laugwitz (1999, Chapter 1, Section 1.1.6) states that Riemann's work
on meromorphic functions was ahead of the Weierstrass' one, having
been carried out with originality and simplicity. To this point, for our
purposes, it would be of a certain importance to deepen the possible re-
lationships between Riemann and Weierstrass, besides to what has been
said above: for instance, in this regard, Laugwitz (1999, Chapter 1, Sec-
tion 1.1.5) says that Riemann was aware of the Weierstrass' works until
1856-57, in connection with the composition of his paper on Abelian
functions, in agreement with what has been said in the previous sec-
tions. Again according to (Laugwitz 1999, Chapter 1, Section 1.1.6),
one of the key themes of Riemann's work on complex function theory
was the determination of a function from its singularities which, in turn,
implies the approach of another problem, the one concerning the deter-

34Following (Lunts 1950), (Marku²eci£ 1988, Chapter VII) and references therein, also
Loba£evskij, since 1830s, made some notable studies on gamma function which preempted times.
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mination of a function from its zeros. In this regard, Riemann limited
himself to consider the question to determine a function with in�nitely
many zeros whose only point of accumulation is ∞. What he is after
is the product representation later named after Weierstrass. Riemann
uses a special case to explain the general procedure. He does it in such a
way that by following his direction one could immediately give a proof of
the Weierstrass product theorem. Therefore, it would be hoped a deeper
study of these 1857-61 Riemann's lectures on complex function theory to
historically clarify this last question which is inside the wider historical
framework concerning the work of Riemann in complex function theory.

Furthermore, to this point, there seems not irrelevant to further high-
light, although in a very sketchily manner, some of the main aspects of
the history of gamma function. To this end, we follow the as many no-
table work of Reinhold Remmert (see (Remmert 1998)) which, besides
to mainly be an important textbook on some advanced complex analysis
topics, it is also a very valuable historical source on the subject, which
seems to remember the style of the above mentioned Vivanti's textbook
whose German edition, on the other hand, has always been a constant
reference point in drawing up the Remmert's textbook itself35. Following
(Davis 1959), (Remmert 1998, Chapter 2), (Edwards 1974, Chapter 1,
Section 1.3), (Bourbaki 1963, Chapter XVIII), (Bourguet 1881), (Mont-
gomery & Vaughan 2006, Appendix C, Section C.1), (Scriba 1981) and
(Pradisi 2012, Chapter 3), amongst the many merging mathematical
streams from which it arose, the early origins of gamma function should
be above all searched into the attempts to extend the function n! to real
arguments starting from previous attempts made by John Wallis in his
1655 Arithmetica In�nitorum, to interpolate the values of a discrete se-
quence, say {un}n∈N, with an integral depending on a real parameter,
say λ, such that it is equal to un for λ = n. In 1730, J. Stirling inves-
tigated the formula log(n!) = log Γ(n + 1) in his celebrated Methodus

35The usefulness of historical notes are recognized by Remmert making him what was said by
Weierstrass, according to whom �one can render young students no greater service than by suitably
directing them to familiarize themselves with the advances of science through study of the sources�
(from a letter of Weierstrass to Casorati of the 21st of December 1868). Anyway, see (Davis 1959)
for a complete history of gamma function.
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di�erentialis, sive tractatus de summatione et interpolatione serierum
in�nitarum. In 1727, Euler was called by Daniel Bernoulli to join San
Petersburg Academy of Science, becoming close co-workers. In the same
period, also Christian Goldbach was professor in the same Academy, and
it seems have been just him to suggest to Euler, on the wake of Wallis'
work, to extend factorial function to non-integer values. So, from then
onwards, Euler was the �rst to approach this last Wallis' problem since
1729, giving a �rst expression of this function, in a celebrated 13th of
October 1729 letter to Goldbach (see also (Whittaker & Watson 1927,
Chapter XII, Section 12.1) and (Sansone 1972, Chapter IV, Section 5)),
providing a �rst in�nite product expression of this new function, but only
for real values. Gauss, who did not know Euler work36, also taking into
account Newton's work on interpolation (see (Schering 1881, Sections XI
and XII)), around the early 1810s, considered as well complex values dur-
ing his studies on the hypergeometric function (of which the Γ function
is a particular case of it), denoting such a new function with Π, while it
was Legendre, in 1814 (but (Jensen 1891) reports the date of 1809), to
introduce a uni�ed notation both for Euler and Gauss functions, denot-
ing these latter with Γ(z) and speaking, since then, of gamma function.
Other studies on gamma function properties were pursued, amongst oth-
ers, by Cauchy, Hermite, A.T. Vandermonde, A. Binet and C. Krampt
around the late 1700s. Afterwards, in 1854, Weierstrass began to con-
sider an Euler in�nite product expansion of the function 1/Γ(z), that he
denoted with Fc(z) and is given by 1/Γ(z) = zeγz

∏∞
j=1(1 + z/j)e−z/j,

where γ is the well-known Euler-Mascheroni constant37, from which he
maybe recognized, for the �rst time, the importance of the use of expo-
nential factors as in�nite product convergence-producing elements. Fol-
lowing (Remmert 1998, Chapter 2) and references therein, Weierstrass
considered the Euler product for Fc(z) the starting point for the theory,

36This explaining why Weierstrass, as late as 1876, gave Gauss credit for the discovery of the
Gamma function.

37Following (Sansone 1972, Chapter IV, Section 5), the γ constant was discovered by Euler in
1769, then computed by L. Mascheroni in 1790, hence by Gauss in 1813 and by J.C. Adams in
1878. See (Pepe 2012) for a contextual brief history of the Euler-Mascheroni constant, as well as
(Sansone 1972, Chapter IV, Section 5).
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being it, in contrast to Γ(z), holomorphic everywhere in C. Weierstrass
said that to be pleased

�to propose the name �factorielle of u� and the notation Fc(u) for it,
since the application of this function in the theory of factorials is surely
preferable to the use of the Γ-function because it su�ers no break in con-
tinuity for any value of u and, overall [...], essentially has the character
of a rational entire function�. Moreover, Weierstrass almost apologized
for his interest in the function Fc(u), writing �that the theory of ana-
lytic factorials, in my opinion, does not by means have the importance
that many mathematicians used attributed to it�.

Weierstrass' factorielle Fc is now usually written in the form zeγz
∏

ν∈N(1+

z/ν)e−z/, where γ is the Euler's constant. Furthermore, Weierstrass ob-
served, in 1854, that the Γ-function is the only solution of the di�erential
equation F (z + 1) = zF (z) with the normalization condition F (1) = 1
that also satis�es the limit condition limn→∞(F (z + n)/nzF (z)) = 1.

However, according to (Whittaker & Watson 1927, Part II, Chap-
ter XII, Section 12.1), the formula (7) had already been obtained either
by F.W. Newman (see (Newman 1848)), starting from Euler's expres-
sion of gamma function given by (7). Moreover, following (Davis 1959),
the factorization formula given by Newman for the reciprocal to gamma
function was the starting point of the early Weierstrass' interest in study-
ing gamma function, which will lead him then to approach the problem
how functions, other than polynomials, may be factorized, starting from
the few examples then available, among which sine function factoriza-
tion and Newman formula, which however required a general theory of
in�nite products. But, following (Jensen 1891) and references therein,
it turns out already Euler was reached the following expression for the
Gamma function

(8) Γ(s) =
1

s

∞∏
ν=1

(
1 +

1

ν

)s
(
1 +

s

ν

) ,
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who unfortunately replaced this excellent de�nition by de�nite integrals
by which, in consequences, several of the formal properties of the Gamma
function escaped his attention38. This 1729 Euler's formula is equivalent
to the following one

(9) Γ(s) = lim
n→∞

(n+ 1)!(n+ a)s

s(s+ 1)...(s+ n− 1)

which was provided by Gauss in 1813 who undoubtedly was not familiar
with Euler's expression (8). Later on, the expression

(10) Γ(s) = eCss
∞∏
ν=1

(
1 +

1

ν

)s
38Following (Remmert 1998, Chapter 2, Section 3), Euler observed, as early as 1729, in his work

on the Gamma function, that the sequence of factorials 1, 2, 6, 24, ... is given by the integral

n! =

∫ 1

0

(− ln τ)ndτ, n ∈ N.

In general

Γ(z + 1) =

∫ 1

0

(− ln τ)zdτ

whenever ℜz > 1. With z instead of z + 1 and t = − ln τ , this yields the well-known equation

Γ(z) =

∫ ∞

0

ts−1e−tdt

for z ∈ T .
= {z; z ∈ C,ℜz > 0}. This last improper integral was called Euler's integral of the second

kind by Legendre in 1811, and it was a cornerstone of the rising theory of Gamma function, becoming
the matter-subject of other scholars like R. Dedekind and, above all, H. Hankel, a Riemann's
student who will give important contributions to the theory of Gamma function. In 1766, Euler
systematically studied the integral∫ 1

0

xp−1(1− xn)
q
n−1dx =

∫ 1

0

xp−1

n
√
(1− xn)n−q

dx,

from which he derived the following improper integral

B(w, z) =

∫ 1

0

tw−1(1− t)z−1dt,

which is convergent in T × T and, after Legendre (still in 1811), called Euler's integral of the �rst
kind. Later, in 1839, this integral will be called beta function by J.Ph. Binet who introduced too
the notation B(w, z) (see (Sansone 1972, Chapter IV, Section 5)). Euler knew as well, by 1771 at
the latest, that the beta function could be reduced to the gamma function.
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was due either to O.X. Schlömilch in 1843 (see (Schlömilch 1844; 1848)
as well as to F.W. Newmann (see above), besides to have been rediscov-
ered by Weierstrass in his famous 1856 memoir on analytical factorials
(see (Weierstrass 1856a); see also (Burkhardt et al. 1899-1927, Band II,
Erster Teil, Erste Hälfte, A.3, Nr. 12e) and (Remmert 1998, Chapter
2)).

Following (Vivanti 1928, Section 135-141), (Remmert 1998, Chapter
3) and, above all, (Bottazzini & Gray 2013, Section 6.7), Weierstrass
extended the product (5) in such a manner to try to avoid divergence
problems with the ad hoc introduction, into the product expansion, of
certain forcing convergence factors. This attempt was successfully at-
tended, since 1874, as a solution to a particular question - the one which
may be roughly summarized as the attempt to build up an entire tran-
scendental function with prescribed zeros - which arose within the general
Weierstrass' intent to solve the wider problem to �nd a representation
for a single-valued function as a quotient of two convergent power series.
To be precise, he reached, amongst other things, the following main result

�Given a countable set of non-zero complex points z1, z2, ..., such that
0 < |z1| ≤ |z2| ≤ ... with limn→∞ |zn| = ∞, then it is possible to �nd, in
in�nite manners, a non-decreasing sequence of natural numbers p1, p2, ...
such that the series

∑∞
j=1 |z/zj|pj+1 be convergent for every �nite value

of z, in such a manner that the most general entire function which is
zero, with their own multiplicity, in the points z1, z2, ..., and has a zero
of order λ in the origin, is given by39

(11) f(z) = eg(z)zλ
∞∏
j=1

(
1− z

zj

)
Ej(z)

where Ej(z) = (1 − z)(
∑j

i=1 z
i/i) for j ≥ 1 and E0(z) = 1 − z, g(z)

being an arbitrary entire function, and the in�nite product is absolutely
convergent for each �nite value of |z|�.

39Historically, in relation to (8), the function f(z) was usually denoted, d'après Weierstrass, by
G(z), whilst zλ

∏∞
j=1(1 − z/zj)Ej(z) was named canonical (or primitive) function - see (Sansone

1972, Chapter IV, Section 3), where there are too many interesting historical notes.
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The factors Ej(z) will be later called Weierstrass' factors, whilst the
numbers pj will be called convergence exponents; �nally, eg(z) is also
called Weierstrass' exponential factor. The sequence Ej(z)j∈N0

plays a
very fundamental role in the Weierstrass' theorem: from the equation

(12) 1− z = exp(log(1− z)) = exp(−
∑
i≥1

zi/i),

Weierstrass obtained the formula Ej(z) = exp(−
∑

i>j z
j/j) in proving

convergence properties which, on the other hand, would have been easier
obtained by means of the following estimates

(13) |Ej(z)− 1| ≤ |z|j+1, ∀j ∈ N0,∀z ∈ C, |z| ≤ 1

that have been proved only later. Amongst the �rst ones to have made
this, seems there having been L. Fejér (see (Hille 1959, Section 8.7)), but
the argument appears as early as 1903 in a paper of Luciano Orlando40

(1903) which starts from Weierstrass' theorem as treated by Borel's
monograph on entire functions. As has already been said above, Weier-
strass was led to develop his theory by the chief objective to establish the
general expression for all analytic functions meromorphic in C except in
�nitely many points, reaching the scope after a series of previous futile
attempts only in 1876, with notable results, spelt out in (Weierstrass
1876), concerning the class of transcendental entire functions. But what
was new and sensational in the Weierstrass' construction was just the
introduction and the application of the so-called convergence-producing
factors (or primary factors orWeierstrass' factors) which strangely have
no in�uence on the behavior and distribution of the zeros.

4.4 Towards the theory of entire functions, and other. In the
necrology of Weierstrass, Poincaré (1899, Section 6) said that Weier-
strass' major contribution to the development of function theory was

40Luciano Orlando (1887-1915) was an Italian mathematician prematurely died in the First World
War - see the very brief obituary (Marcolongo 1918) as well as (Rouse Ball 1937, Appendix II, pp.
430-431). His supervisors were G. Bagnera and R. Marcolongo who led him to make researches in
algebraic integral equation theory and mathematical physics.
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just the discovery of primary factors. Also Hermite was, in a certain
sense, astonished and intrigued from the introduction of this new Weier-
strass' notion of prime factor, which he considered of capital importance
in analysis and making later notable studies in this direction; he also
suggested to Èmile Picard to do a French translation of the original 1876
Weierstrass' work, so opening a French research trend on this area. En
passant, we also point out the fact that, from the notion of prime factor
and from the convergence of the in�nite product

∏
j∈NEj(z/aj), repre-

senting an entire transcendental function vanishing, in a prescribed way,
in each aj, Hilbert drew inspiration to formulate his valuable algebraic
notion of prime ideal41. Following (Pincherle 1922, Chapter IX, Section
137), (Vivanti 1928, Section 136), (Burckel 1979, Chapter XI), (Remmert
1998, Chapters 3 and 6), (Ullrich 1989, Section 3.5) and (Bottazzini &
Gray 2013, Sections 5.11.5 and 6.7), since the late 1850s, Enrico Betti42

had already reached notable results, about convergence properties of in-
�nite products of the type (6), very near to the Weierstrass' ones related
to the resolution of a fundamental problem of entire function theory, the
so-called Weierstrass' problem43 (see (Pincherle 1922, Chapter IX, Sec-
tion 137)). Betti exposed these outcomes in his celebrated 1859-60 Pisa
lectures on advanced analysis entitled La teorica delle funzioni ellittiche

41Usually, the notion of prime ideal of the commutative algebra, with related operations, would
want to be stemmed from the factorization of natural numbers.

42Following (Bottazzini 2003), the in�uence of Riemann's ideas on 19th-century Italian mathe-
matical school had a great impulse thanks to the Betti's interest since 1850s. In 1858, as is well
known, Betti, Brioschi and Casorati went in Göttingen to personally know Riemann and his ideas,
translating many works of Riemann. Betti and Casorati were immediately aware of the innovative
power of the new Riemann ideas in complex analysis, introducing in Italy, for the �rst time, such
a theory with appreciated works and treatises.

43Following (Forsyth 1918, Chapter V, Section 50) and (Bottazzini & Gray 2013, Section 4.2.3.2),
in relation to the in�nite product expression of an entire transcendental function prior to 1876
Weierstrass' paper, attention should be also paid to a previous 1845 work of A. Cayley on doubly
periodic functions. Furthermore, following (Tannery & Molk 1893, Section 85), into some previous
1847 works of G. Eisenstein on elliptic functions, some notable problems having to do with the
construction of analytic functions with prescribed zeros as a quotient of entire functions with the
involvement of certain transcendental entire functions of exponential type (similar to the Weier-
strass problem as historically related to meromorphic functions), had already been considered. See
also certain function's quotients stemmed from the developments of certain determinants given in
(Gordan 1874). In any case, all these historical considerations con�rm, once again, that the prole-
gomena of entire function factorization theorems should be searched in the general history of elliptic
functions.
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(see (Betti 1903-1913, Tomo I, XXII)), published in the Tomes III and
IV of the Annali di matematica pura ed applicata, Series I, after having
published, in the Tome II of these Annali, an Italian translation of the
celebrated 1851 Riemann's inaugural dissertation on complex function
theory, which can be considered as an introduction to his next lectures
on elliptic functions. Indeed, in these latter, Betti, before all, places an
Introduction on the general principles on complex functions, essentially
based on these 1851 Riemann lectures. From the point 3. onward of this
Introduction, Betti starts to deal with entire functions, their �nite and
in�nite zeros (there called roots), as well as on possible quotients between
them. In particular, taking into account what is said in (Briot & Bouquet
1859), he considered in�nite products of the type

∏
ρ(1− z/ρ), where ρ

are the zeros of an entire function, with the introduction of a factor of the
type ew, where w is an arbitrary entire function, to make convergent this
in�nite product. Furthermore, Betti dealt with this type of in�nite prod-
ucts starting to consider in�nite product representations of the following
particular function es(z) = z

∏∞
m=1(m/(m + 1))z(1 + z/m), which sat-

is�es some functional equations and veri�es the relation Γ(z) = 1/es(z).
Therefore, as Weierstrass too will do later, Betti started from the con-
sideration of the in�nite product expansion of the inverse of the gamma
function for studying the factorization of entire functions. Therefore,
Betti guessed the utility of the convergence factors having exponential
form, looking at the in�nite product expansion of Gamma function, sim-
ilarly to what Weierstrass will do. Afterwards, Betti proved some the-
orems which can be considered particular cases of the next Weierstrass'
results, concluding a�rming that

�Da questi teoremi si deduce che le funzioni intere potranno decom-
porsi in un numero in�nito di fattori di primo grado ed esponenziali,
e qui comparisce una prima divisione delle funzioni intere. Quelle che
hanno gl'indici delle radici in linea retta, e quelle che le hanno dis-
poste comunque nel piano; le prime, che sono espresse da un prodotto
semplicemente in�nito, le chiameremo di prima classe, le seconde, che
sono espresse da un prodotto doppiamente in�nito, le diremo di seconda
classe. Le funzioni di prima classe si dividono anch'esse in due specie,
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la prima, che comprende quelle che hanno gl'indici delle radici disposti
simmetricamente rispetto a un punto, e che possono esprimersi per un
prodotto in�nito di fattori di primo grado, le altre, che hanno gl'indici
delle radici disposti comunque sopra la retta, le quali si decomporranno
in fattori di primo grado ed esponenziali. Ogni funzione intera di prima
classe della prima specie potrà decomporsi nel prodotto di più funzioni
intere della stessa classe di seconda specie, e data una funzione della
seconda specie se ne potrà sempre trovare un'altra che moltiplicata per
la medesima dia per prodotto una funzione della prima specie. Le fun-
zioni di seconda classe si dividono anch'esse in due specie; la prima
comprenderà quelle che hanno gl'indici delle radici disposti egualmente
nei quattro angoli di due assi ortogonali, in modo che facendo una ro-
tazione intorno all'origine di un quarto di circolo, gl'indici di tutte le
radici vengano a sovrapporsi, le quali funzioni possono esprimersi per
un prodotto doppiamente in�nito di fattori di primo grado; la seconda
comprenderà quelle che hanno gl'indici disposti comunque, e si decom-
pongono in un prodotto doppiamente in�nito di fattori di primo grado
e di fattori esponenziali. Data una funzione della seconda specie se ne
potrà sempre trovare un'altra che moltiplicata per quella dia una funzione
della prima specie�.

[�From these theorems, we deduce that entire functions might be de-
composed into an in�nite number of �rst degree factors and exponential
factors, so that here there is a �rst classi�cation of entire functions ac-
cording to that their root's indexes lie along a line or are arbitrarily
placed in the plane; the former are said to be of �rst class and are ex-
pressed by a simply in�nite product, while the latter are said to be of
second class and are expressed by a doubly in�nite product. The func-
tions of the �rst class are, in turn, classi�ed into two kinds: the �rst
one comprises those functions having the root's indexes symmetrically
placed respect to a point and that can be expressed by an in�nite product
of �rst degree factors; the second one comprises those functions having
root's indexes arbitrarily placed along a line and that can be expressed by
an in�nite product both of �rst degree factors and of exponential factors.
Each entire function of �rst class and of �rst kind might be decomposed
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into the product of other entire functions of the same class and of the
second kind; furthermore, given a function of the second kind, it is al-
ways possible to �nd another function that multiplied by the former, the
product gives rise to another function of the �rst kind. Likewise, the
functions of the second class are divided into two kinds: the �rst one
comprises those functions having the root's indexes equally placed into
the four angles of the two orthogonal cartesian axes in such a manner
that all these are overlapped through a π/2 radian rotation around the
origin, and are decomposable into a doubly in�nite product of �rst degree
factors; the second one includes those functions having the root's indexes
arbitrarily placed and that are decomposable into a doubly in�nite prod-
uct of �rst degree factors and exponential factors. Furthermore, given a
function of the second kind, it is always possible to �nd another function
that multiplied by the former, the product gives rise to a function of �rst
kind�].

Then, Betti carries on treating entire functions in the �rst part of his
lessons on elliptic functions, followed by a second part devoted to quo-
tients of functions, mentioning either the paper (Weierstrass 1856a) and
the paper (Weierstrass 1856b). Therefore, Betti's work on entire func-
tion factorization, made in the period 1860-63, was very forerunner of the
Weierstrass' one: this is con�rmed either by (Rouse Ball 1937, Appendix
II, pp. 376-384)) and by (Federigo Enriques 1982, Book III, Chapter I,
Section 6), in which it is pointed out that the fundamental Weierstrass'
theorem on the factorization of entire transcendental functions from their
zeros, had already been discovered by Betti, highlighting however as the
Pisa's mathematician, with singular personal disinterestedness, wanted
not claim it as due to him. Indeed, following Francesco Cecioni's com-
ments about some works of Ulisse Dini (see (Dini 1953-59, Volume II)),
it turns out that Betti's work could easily reach, only with very slight
modi�cations, the same generality and abstraction of the Weierstrass'
one, as Dini explicitly proved in (Dini 1881); furthermore, Dini proved
too that Betti's work could be able to give a particular case, given in the
years 1876-77, of the general Gösta Mittag-Le�er theorem - see (Mittag-
Le�er 1884), (Vivanti 1928, Section 145), (Loria 1950, Chapter XLIV,
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Section 752) and (Bottazzini & Gray 2013, Section 6.7.6) - independently
by what Weierstrass himself was doing in the same period, in regards to
these latter arguments. Cecioni says that this Dini's work had already
been worked out since 1880, whilst the Weierstrass' theorem was pub-
lished in 1876 - see (Weierstrass 1876). Thus, much before, namely in
1860, Betti had proved, as we have already said, a particular but impor-
tant case of this theorem, albeit he didn't go beyond, because the results
achieved by him were enough to his pragmatic scopes concerning Abelian
and elliptic functions44, and, as also Pincherle (1922, Chapter IX, Sec-
tion 135) has claimed, the Weierstrass' method was essentially the same
of the Betti's one with slight modi�cations. In the years 1876-77, also G.
Mittag-Le�er proved a particular case of a more general theorem that
he will give later, to be precise in 1884, after a long series of previous
works in which he gradually, through particular cases, reached the gen-
eral form of this his theorem as nowadays we know it. In the meanwhile,
Weierstrass reconsidered Mittag-Le�er's works, since the early 1880s, in
relation to what himself have done on the same subject. Also F. Casorati
(1880-82) had some interesting ideas similar to the Mittag-Le�er's ones,
giving further contributions to the subject (see (Loria 1950, Chapter
XLIV, Section 750)). Almost at the same time, amongst others, Ernst
Schering (1881), Charles Hermite (1881), Émile Picard (1881), Felice
Casorati (1882), Ulisse Dini (1881), Paolo Gazzaniga45 (1882), Claude
Guichard (1884) and Paul Painlèvé (1898a,b), achieved notable results

44In this regard, also Salvatore Pincherle (1899, Chapter IX, Section 175) reports that Betti
solved the Weierstrass' problem in a quite general case.

45Some historical sources refer of Paolo Cazzaniga, whereas others refer of Paolo Gazzaniga,
but, very likely, they are the same person, that is to say, Paolo Gazzaniga (1853-1930), an Italian
mathematician graduated from Pavia University in 1878 under the supervision of Felice Casorati.
In the years 1878-1883, he was interim assistant professor at Pavia, then he spent a period of
study in Germany under the Weierstrass and Kronecker supervision. Afterwards, from 1888, he
became professor at the high school Tito Livio in Padua, teaching too in the local University. He
was also one of the most in�uential teachers of Tullio Levi-Civita during his high school studied.
Gazzaniga's researches mainly concerned with applied algebra and number theory. Furthermore,
Paolo Gazzaniga has to be distinguished from Tito Camillo Cazzaniga (1872-1900), a prematurely
died Italian mathematician, graduated from Pavia University in 1896, whose researches concerned
with matrix theory and analytic functions according to the research trend of Ernesto Pascal (1865-
1940) during his teaching in Pavia. Both Tito Cazzaniga (see (Rouse Ball 1937, Appendix II, pp.
412-413)) and Paolo Gazzaniga are quoted in (Vivanti 1901) but not in (Vivanti 1928).
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about the general problem to build up a complex function with pre-
scribed singularities, although related to a generality degree less than
that of the Mittag-Le�er results. Thus, the history of the Mittag-Le�er
theorem makes too its awesome appearance within the general history
of meromorphic functions, a part of which may be retraced in the same
Mittag-Le�er 1884 paper in which, amongst other things, also the 1881
work of Ulisse Dini is quoted. However, both Schering (1881, Section
XVI) and Casorati (1880-82, p. 269, footnote (***)), in discussing the
above mentioned Mittag-Le�er results, quote Betti's work on Weier-
strass' theorem; in particular, the former speaks of Betti's convergence
factors and the latter states that

�Anche il sig. Dini, nella sua Nota sopra citata, dimostra questo
teorema, riducendo lo studio del prodotto in�nito a quello della serie dei
logaritmi dei fattori; riduzione di cui s'era già valso felicemente, per il
caso di distribuzione degli zeri a distanze non mai minori di una quan-
tità �ssa d, il sig. Betti nella Introduzione della sua Monogra�a delle
funzioni ellittiche (Annali di Matematica, Tomo III, Roma, 1860), dove
precede assai più oltre di Gauss nella via che mena al teorema del sig.
Weierstrass�.

[�Also Mr. Dini, in his Note of above, proves this theorem, reducing
the study of the in�nite product to the study of the series of the loga-
rithms of the factors; reduction, this, that had already been used by Mr.
Betti in the Introduction to his monograph on elliptic functions (Annali
di Matematica, Tome III, Rome, 1860) for the case of a distribution of
zeros having reciprocal distances not less than a �xed quantity d; in do-
ing so, he much foregoes Gauss in a fashion which leads to the theorem
of Mr. Weierstrass�.]

Therefore, from the Mittag-Le�er's works onwards, together to all those
works made by other mathematicians amongst whom are Dini, Scher-
ing, Casorati, Hermite, Picard, Cazzaniga, Guichard, Von Schaper46,

46Hans Von Schaper, a doctoral student of Hilbert (see (Borel 1900, Chapitre II, p. 26)), whose
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Painlèvé and Weierstrass himself, it starts the theory of entire tran-
scendental functions whose early historical lines have been traced in the
previous sections. In any case, with Mittag-Le�er, we have the most
general theorems for the construction, by in�nite products, of a mero-
morphic function with prescribed singularities (see (Bottazzini & Gray,
Chapter 6, Section 6.7) for a deeper historical analysis of these represen-
tation theorems). On the other hand, following (Gonchar et al. 1997,
Part I, Introduction) and (Vivanti 1901, Section 215), the above men-
tioned works by Weierstrass, Mittag-Le�er and Picard, dating back to
the 1870s, marked the beginning of the systematic studies of the the-
ory of entire and meromorphic functions. The Weierstrass and Mittag-
Le�er theorems gave a general description of the structure of entire and
meromorphic functions, while the representation of entire functions as
an in�nite product à la Weierstrass, served as basis for studying prop-
erties of entire and meromorphic functions. Following (Remmert 1998,
Chapter 3, Section 1), Weierstrass developed his 1876 paper with the
main objective to establish the general expression for all functions mero-
morphic in C except at �nitely many points but, as said above, the
really importance of Weierstrass' construction was the application of the
convergence-producing factors which have no in�uence on the behavior
of the zeros. The awareness that there exist entire functions with arbi-
trarily prescribed zeros revolutionized the thinking of function theorists.
Suddenly, one could construct holomorphic functions that were not even
hinted at in the classical framework. Nevertheless, this sort of freedom
does not contradict the so-called solidarity of value behavior of holomor-
phic functions required by the identity theorem because, with the words
of Remmert himself, the 'analytic cement' turns out to be pliable enough
to globally bind locally prescribed data in an analytic way. Weierstrass
left it to other the extension of his product theorem to regions in C. So,
as early as 1881, E. Picard considered, for the �rst time, Weierstrass'

doctoral dissertation thesis, entitled Über die Theorie der Hadamardschen Funktionen und ihre
Anwendung auf das Problem der Primzählen, and defended at Göttingen in 1898, was just centered
around the applications of 1893 Hadamard factorization theorem of entire function; in it, some
further interesting properties on the order of an entire function, like the distinction between real
and apparent order, were discussed as well.
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products in regions di�erent from C, albeit he nothing said about con-
vergence questions. In 1884, Mittag-Le�er proved existence theorems
for more general regions but without quoting Picard's work, even if Ed-
mund Landau (see (Landau 1918)) later will speak of the �well-known
Picard/Mittag-Le�er product construction�. Further generalization of
Weierstrass' theorem was then given too by A. Pringsheim in 1915 (see
(Burkhardt et al. 1899-1927, II.C.4, Nr. 26)). Following (Gol'dberg &
Ostrovski�i 2008, Preface), the classical 1868 theorem of J. Sokhotski and
F. Casorati, the above mentioned 1876 theorem of Weierstrass and the
1879 Picard theorem opened the theory of value distribution of mero-
morphic functions, while the works of J.L.W. Jensen and J. Petersen
in the late 1890s, had great importance for the further developments
of the theory of entire and meromorphic functions (see (Remmert 1998,
Chapter 4, Section 3)) which started, in the same period, to gradually
become a separate and autonomous mathematical discipline after the
pioneering investigations mainly pursued by the French school of La-
guerre, Hadamard, Poincaré, Lindelö�, Picard, Valiron and Borel, up
until the Rolf Nevanlinna work of the early 1900s, which gave an al-
most de�nitive setting to the theory. All that will be in-depth studied
in the next section, where we shall deal with the main lines of the his-
tory of entire and meromorphic functions whose theory basically starts
just from the entire function factorization theorems. Following (Zhang
1993, Preface), in 1925, Nevanlinna established two main theorems that
constituted the basis upon which build up the theory of value distri-
bution of meromorphic functions, whilst, in 1929, by examining some
examples, he recognized as well that there is an intrinsic relationship
between the problem of exceptional values (de�cient values are excep-
tional values under a certain kind of implication) and the asymptotic
value theory. Moreover, Nevanlinna anticipated that the study of their
relationship might help to clarify some of the profound problems of the
theory of entire and meromorphic functions. From his product theorem,
Weierstrass immediately deduced the theorem on quotient representa-
tion of meromorphic functions, attracting attention by this alone. From
this work of the �celebrated geometer of Berlin�, Poincaré worked out
his 1883 famous theorem on the representability of every meromorphic
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function in C2 as the quotient f(w, z)/g(w, z) of two entire functions
in C2 and locally relatively prime everywhere, so giving rise to a new
theory that, through the works of P. Cousin, T.H. Gronwall, H. Cartan,
H. Behnke, K. Stein, K. Oka, J-P. Serre, H. Röhrl and H. Grauert, is
still alive and rich today. With his product theorem, Weierstrass opened
the door to a development that led to new insights in higher-dimensional
function theory as well. In particular, the Weierstrass' product theorem
was for the �rst time generalized to the case of several complex variables
as early as 1894 by Pierre Cousin (1867-1933), a student of Poincaré,
in (Cousin 1895) centered around his doctoral thesis whose main aim
was that to generalize the above mentioned 1883 Poincaré theorem to
higher dimensions and more general domains, so giving rise to the cele-
brated I and II problem of Cousin, solved by him for product domains
of the type X = B1 × ...× Bn ⊂ Cn (see (Maurin 1997, Part V, Chap-
ter 6) and (Della Sala et al. 2006, Chapter 11, Section 6)). As Cousin
himself says, the 1883 Poincaré theorem was the �rst successful attempt
to extend Weierstrass results to analytic functions several complex vari-
ables: following (Dieudonné 1982, A VIII), that branch of mathematics
known as �analytic geometry� is nothing but the modern form of the
theory of analytic functions of several complex variable. Then, Cousin
recalls too the attempts made by P. Appell and by S. Dautheville in
the 1880s to extend, along the same line, the 1884 Mittag-Le�er work
to the n complex variable case. En passant, then, we also note that
the Weierstrass' entire function factorization theorem has had further
remarkable applications in many other pure and applied mathematical
contexts. In this place, we wish to point out another possible interesting
historical connection. To be precise, following (Marku²evi£ 1967, Volume
II, Chapters 8 and 9), (Burckel 1979, Chapter VII) and (Remmert 1998,
Chapter 4), a very similar problem to that considered by Weierstrass
was the one considered in (Marku²evi£ 1967, Volume II, Chapter 8, The-
orem 8.5) where, roughly, a bounded analytic function with prescribed
zeros is constructed by means of certain in�nite products introduced
by Wilhelm Blaschke (see (Blaschke 1915)), called Blaschke products,
in relation to questions related to the well-known Giuseppe Vitali con-
vergence theorem for sequences of holomorphic functions, and de�ned
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upon those complex numbers assigned as given zeros of that function
that has to be determined. They form a special class of Weierstrass'
products47. Edmund Landau (see (Landau 1918)) reviewed Blaschke's
work in 1918 and simpli�ed the proof by using a formula due to J.L.W.
Jensen (see (Jensen 1898-99)). By means of the di�erentiation theorem
of products of holomorphic functions, in 1929 R. Ritt was able to give
a factorization of an holomorphic function at the origin, whose product
is normally convergent into a disc about the origin (see (Remmert 1998,
Chapter 1, Section 2)). In the proceedings collected in (Mashreghi &
Fricain 2013), where remarkable applications of Blaschke's products in
pure and applied mathematics questions (amongst which one concerning
approximation of Riemann zeta function) are presented, we report what
is said in the incipit of the Preface, according to which

�In�nite Blaschke products were introduced by Blaschke in 1915.
However, �nite Blaschke products, as a subclass of rational functions,
has existed long before without being speci�cally addressed as �nite Blaschke
products. In 1929, R. Nevanlinna introduced the class of bounded an-
alytic functions with almost everywhere unimodular boundary values.
Then the term inner function was coined much later by A. Beurling
in his seminal study of the invariant subspaces of the shift operator.
The �rst extensive study of the properties of inner functions was made
by W. Blaschke, W. Seidel and O. Frostman. The Riesz technique in
extracting the zeros of a function in a Hardy space is considered as the
�rst step of the full canonical factorization of such elements. The dis-
position of zeros of an inner function is intimately connected with the
existence of radial limits of the inner function and its derivatives. For
almost a century, Blaschke products have been studied and exploited by
mathematicians. Their boundary behaviour, the asymptotic growth of
various integral means of Blaschke products and their derivatives, their
applications in several branches of mathematics in particular as solutions
to extremal problems, their membership in di�erent function spaces and

47See (Remmert 1998, Chapter 4), (Lang 1974, Chapter 15) and (Lang 1999, Chapter XIII) for
technical details.
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their dynamics are examples from a long list of active research domains
in which they show their face�.

Following (Borel 1900, Chapter I), the major di�cult in applying the
Weierstrass theorem is the determination of the exponential factors expG(x),
a hindrance that the next Hadamard work coped with success, whose pio-
neering work will turn out to be extremely useful also in physics: amongst
all the possible applications to which such a work has given rise, we here
only mention the use of entire function theory (following (Boas 1954))
made by Tullio Regge in achieving some notable properties of the ana-
lytic S matrix of potential scattering theory (see (Regge 1958)), which
are closely connected with the distribution of the zeros of entire func-
tions. In particular, Regge cleverly uses in�nite product expansions of
entire functions, amongst which the Hadamard expansion, in �nding an-
alytic properties of the analytic Jost functions as particular asymptotic
solutions to non-relativistic Schrödinger equation (S waves). Finally, fol-
lowing (Maz'ya & Shaposhnikova 1998, Chapter 1, Section 1.10), we also
notice that remarkable applications of some results of entire function the-
ory, amongst which some results due to Hadamard, were also considered
by Poincaré in his celebrated three volume work Les Méthodes Nouvelles
de la Mécanique Céleste (see (Poincaré 1892-1899): to be precise, in
(Poincaré 1892-1899, Tome II, Chapter XVII, Section 187), the author
considers some entire function factorization theorems in solving certain
linear di�erential equations also making reference to the well-known 1893
Hadamard results.

We wish to report some very interesting historical remarks made by
Hermann Weyl in one of his last works, the monograph on meromorphic
functions wrote in 1943 and reprinted in 1965 with the collaboration of
his son, F. Joachim Weyl (see (Weyl & Weyl 1965)). Weyl says that
the main motif underlying the drawing up of this his monograph was the
work of Lars V. Ahlfors on meromorphic curves on complex plane, dating
back to the late 1930s, and that Weyl wanted to reformulate extending
it to a general Riemann surface. In (Weyl & Weyl 1965, Introduction),
Weyl states an analogical parallel, that is to say, that meromorphic func-
tions stand for entire functions as rational functions stand for polyno-
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mials, pointing out that degree is the most important characteristic of
a polynomial, hence considering the usual decomposition into linear fac-
tors of a complex polynomial in dependence on its roots. A complex
polynomial with n roots, say a1, ..., an, counted with their multiplicity,
may be written in the form

(⋆1) f(z) = kzh
n−h∏
i=1

(
1− zi

ai

)
if h(≤ n) out of the n roots are equal to zero, and k is a non-zero con-
stant. Then, Weyl considers the type of growth of a polynomial of degree
n, given by an inequality of the form |f(z)| ≤ C|z|n, or, more precisely,
by an asymptotic equation of the type |f(z)|/|z|n → C as |z| → ∞,
where C ̸= 0 is a constant. This means that f(z) takes on the value
∞ with multiplicity n at z = ∞. Then, Weyl asks whether it is pos-
sible to make statements about entire functions on the basis of what
is known about polynomials. Weyl points out that the perfect analogi-
cal extension is not possible simply because there exist entire functions
which have no zeros, like ez to mention the simplest one. Weyl hence
goes on considering the problem of building up an entire function know-
ing its zeros ordered according to their nondecreasing modulus which
are in a �nite number in every �nite region of complex plane, hence ob-
serving that this problem (named Weierstrass' problem) was �rst solved
by Weierstrass in a paper of 1876 which is the starting point of many
other investigations on entire and meromorphic functions. Then, Weyl
observes that the next problem of determining the growth of an entire
function through its canonical decomposition into primary factors ac-
cording to Weierstrass, is not solvable by the simple knowledge of such
a decomposition because it is related an arbitrary but �nite region of
complex plane. So, it was Poincaré, in 1883, to approach and solve, for
the �rst time, such a problem in some special cases connected with the
convergence of certain series related to the zeros of the given entire func-
tion. This last problem was then approached and solved, in more general
cases, by E.N. Laguerre and E. Borel, introducing the notions of genus
(or genre) and order of an entire function, hence Hadamard, in 1893,
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gave a converse to Poincaré theorem for entire functions of �nite genus,
whose form was later improved and extended by R. Nevanlinna. Just
in regard to the novelties due to Hadamard, Weyl points out that the
driving force for these Hadamard's investigations was the wish to obtain
su�cient information about the zeros of the Riemann zeta function for
establishing the asymptotic law for the distribution of prime numbers.
This law states that the number π(n) of primes less than n becomes
in�nite with n→ ∞ exactly as strongly as n lnn, that is to say

(⋆2)
π(n) lnn

n
→ 1 as n→ ∞,

Riemann having shown how this prime number problem crucially de-
pends on the zeros of his zeta function. In 1896, either Hadamard and
de la Vallée-Poussin, independently of each other, were able to draw the
conclusion (⋆2) from 1893 Hadamard's results concerning entire func-
tions. Afterwards, besides the problem to determine zeros of an entire
function f(z), Weyl considers too the problem to determine the distri-
bution of the points z ∈ C satisfying the equation f(z) = c for any
preassigned complex value c, which Weyl calls c-places, the former prob-
lem being therefore the one determining the 0-places of f(z). Weyl
quotes E. Picard results in this direction, dating back 1880, hence the
next results of G. Valiron, A. Wiman and Nevanlinna brothers of 1920s,
until up L. Ahlfors results of 1930s. Once meromorphic function the-
ory was established, by various research papers from 1920s onward and
mainly due, among others, to E. Borel, A. Bloch, P. Montel, R. Nevan-
linna, F. Nevanlinna, H. Cartan, T. Shimizu, O. Frostman, H. Weyl, J.F.
Weyl, E. Ullrich, G. Hällström and J. Dufresnoy, started the so-called
theory of meromorphic curves, which originated by the rough idea to
consider homogeneous coordinates x0, x1, ..., xk of a k-dimensional pro-
jective space, as meromorphic functions x1/x0, x2/x0, ..., xk/x0 depend-
ing on a certain complex parameter z ranging over the whole complex
plane except z = ∞ (see (Weyl & Weyl 1965, Chapter II, Section 2;
Chapter III, Sections 2-4) and references therein), so that a meromor-
phic function f = x1/x2 may be considered as a meromorphic curve in
a two-dimensional projective space.

104



5. Outlines of history of entire function the-

ory

Following (Borel 1897), the Weierstrass' work on the decomposition of
entire functions into primary factors, has greatly contributed to the
study of the distribution of zeros of the entire functions. The notion
of genus of an entire function, introduced by Laguerre, will turn out to
be of fundamental importance to this end, as well as the analogous no-
tion of order of an entire function, which nevertheless will turn out to
be much more useful and precise than the former, above all thanks to
the contributions of Poincaré, Hadamard and Picard (see (Borel 1900)).
Above all, Hadamard's work will provide new avenues to the theory of
entire functions and the related distribution laws of their zeros. Fol-
lowing (Bergweiler & Eremenko 2006), the theory of entire functions
begins as a �eld of research in the works of Laguerre (see (Laguerre
1898-1905)), soon after the Weierstrass product representation became
available. Laguerre then introduced the �rst important classi�cation of
entire functions, according to their genera. Following (Gil' 2010, Pref-
ace), one of the most important problems in the theory of entire functions
is the problem of the distribution of the zeros of entire functions. Many
other problems in �elds close to the complex function theory, lead to
this problem. The connection between the growth of an entire function
and the distribution of its zeros was investigated in the classical works
of Borel, Hadamard, Jensen, Lindelöf, Nevanlinna and others. On the
other hand, following (Gonchar et al. 1997, Part I, Chapter 1), the
in�nite product representation theory of entire functions marked the be-
ginning of the systematic study of their properties and structure, with
the �rst works by Weierstrass and Hadamard. Following (Marku²evi£
1966, Preface), entire functions are the simplest and most commonly
encountered functions: in high schools, we encounter entire functions
(like polynomials, the exponential function, the sine and cosine, and so
forth), meromorphic functions, that is, the ratios of two entire functions
(like the rationale functions, the tangent and cotangent, and so on), and,
�nally, the inverse functions of entire and meromorphic functions (like
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fractional powers, logarithms, the inverse trigonometric functions, etc.).
Following (Levin 1980, Chapter I), an entire function is a function of a
complex variable holomorphic in the whole of the complex plane and con-
sequently represented by an everywhere convergent power series of the
type f(z) =

∑∞
i=0 aiz

i, these functions forming a natural generalization
of the polynomials, and are therefore close to polynomials in their prop-
erties. The theorem of Weierstrass on the expansion of entire functions
into in�nite products provided the basic apparatus for the investigation
of the properties of entire functions and it was the starting point for
their classi�cation. This theorem plays a fundamental role in the theory
of entire functions (see (Saks & Zygmund 1952, Chapter VII, Section
2)), being it, roughly, the analogue of the theorem on the decomposition
of polynomials into linear factors. Following (Tricomi 1968, Chapter IV,
Section 8), this Weierstrass theorem plays a central role in the whole of
the theory of entire functions whose even most recent developments are,
more or less directly, reconnected to it. At approximately the same time
as this celebrated work of Weierstrass, Laguerre studied the connection
between entire functions and polynomials, and introduced the impor-
tant concept of genus of an entire function. Since then, the theory of
entire and meromorphic functions underwent to a notable development,
becoming one of the many wide chapters of complex analysis, assuming
an autonomous status. Amongst the many contributions to the theory,
which will be brie�y recalled below, the classical investigations of Borel,
Hadamard and Lindelö� dealt with the connection between the growth of
an entire function and the distribution of its zeros. The rate of growth of
a polynomial as the independent variable goes to in�nity is determined,
of course, by its degree. Thus, the more roots a polynomial has, the
greater its growth is. This connection between the set of zeros of the
function and its growth can be generalized to arbitrary entire functions,
the content of most of the classical theorems of the theory of entire func-
tions consisting just in establishing relations between the distribution of
the roots of an entire function and its asymptotic behavior as z → ∞, to
measure the growth of an entire function and the density of its zeros, a
special growth scale having been introduced. Following (Evgrafov 1961,
Chapter II, Section 1), the basic task of the theory of entire functions
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(at least, from the point of view of its applications to other domains of
analysis) is to establish connections between the di�erent characterizing
elements of an entire function as, for example, between the coe�cients,
the behavior at in�nity, and the zeros. It would hardly be mistaken to
say that the most important task of all is to establish such connections
for entire functions that are in some sense regular, that is, have regularly
decreasing coe�cients, or regularly distributed zeros, or a simple integral
representation, or else a simple functional equation. However, the study
of entire functions under such strong hypotheses is a very complicated
task, and it is necessary to know those simpler and more general laws
that are less exact but which hold under weaker hypothesis. Amongst
all the elements of an entire function, it is customary to single out three
as the most important ones: these are the Taylor coe�cients, the zeros
of the function and its behavior at in�nity. The simplest characteristics
of these elements are the rate of decrease of the coe�cients, the number
of zeros in the sphere |z| < r, and the rate of growth of the logarithm of
the maximum modulus of the function in the ball |z| ≤ r. It is custom-
ary to compare the logarithm of the maximum modulus of the function
with certain very smooth functions, called orders of growth. In what
follows, we shall try to treat these latter facts and notions from a deeper
historical viewpoint.

Following (Burkhardt et al. 1899-1927, Dritter Teil, erste Hälfte,
C.4, Nr. 26-36; Zweiter Teil, B.1.III) once again, the starting point of
entire transcendental functions is just the 1876 Weierstrass paper (see
(Weierstrass 1876)) in which, from well-known special cases treated by
Cauchy48 and Gauss regarding Γ function and trigonometric functions,
an in�nite product expansion of non-constant entire rational and tran-
scendental functions was given. Therefore, the factorization theorems
of entire functions have opened the way to a new chapter of complex
function theory49, that regarding the entire functions. As we have seen

48See (Cauchy 1829, pp. 174-213), namely the chapter entitled Usage du calcul des résidus par
l'évaluation ou la transformation des produits composés d'un nombre �ni ou in�ni de facteurs, as
well as (Cauchy 1827, pp. 277-297), in which a method of decomposing a meromorphic function into
simple fractions had already been given before Mittag-Le�er's work - see also (Saks & Zygmund
1952, Chapter VII, Section 4) and (Sansone 1972, Chapter IV, Section 8).

49Following (Della Sala et al. 2006), the term complex analysis is quite recent because it has
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above, the historical pathways of Riemann zeta function theory and of
entire function theory intertwined among them, for the �rst time, just
with the introduction of the Riemann ξ function, and, thenceforth, there
were other similar intersection points along the history of mathematics
and its applications that we wish to consider in what follows. Therefore,
it is needful to brie�y outline the main historical points concerning entire
function theory from Weierstrass onward. Almost all treatises on entire
function theory start with a �rst chapter devoted to Weierstrass' fac-
torization theorem: in this regard, for instance, the �rst monograph on
the subject, that is to say (Borel 1900), just begins with a �rst chapter
recalling the main points concerning Weierstrass' work on factorization
product of entire functions, hence Borel goes on with a second chapter
devoted to explain the Laguerre works upon what previously made by
Weierstrass, and in which, among other things, the fundamental notions
of genus and order of an entire function were introduced starting from
the Weierstrass factorization theorem (see also (Sansone 1972, Chapter
V, Section 8)). With respect to these appreciated Laguerre works and
on the wake of those made, above all, by E. Cesaro, G. Vivanti, A. Bassi
and D. Pizzarello50 on those entire functions having arbitrary genus but
devoid of exponential factors (see (Vivanti 1928) for a most complete
bibliographical account of the contributions of these last authors), the
third chapter of Borel's monograph deals with the fundamental 1883
Poincaré's work on entire functions, until up the celebrated Hadamard
work outlined in the next chapter IV, to end with the Picard's contri-
bution delineated in the �nal chapter V. As the author himself says, a
natural continuation of Borel's monograph is (Blumenthal 1910), where
a central chapter, the fourth one with a �nal Note II, deals with a general

been used, for the �rst time, in the International Mathematical Union Congress held at Vancouver
in 1974, where a section speci�cally devoted to Complex Analysis was considered for exposing
researches in the theory of holomorphic functions of one or more variables.

50Domenico Pizzarello was born in Scilla (Messina, IT) on August 3, 1873 from Gaetano and
Teresa Bellantoni. He was graduated in Mathematics from the University of Rome on November
12, 1899. Then, he was assistant at the In�nitesimal Calculus chair of Professor Giulio Vivanti at
the University of Messina. Afterwards, he taught in various Italian high schools until 1924, when he
was appointed head of the Francesco Maurolico classical high school at Messina, where he passed
away on July 23, 1943.

108



theory of canonical products as it turned out be until 1910s. Further-
more, O. Blumenthal himself contributed to the theory of entire functions
(see (Valiron 1949, Chapter II, Section 3)).

In what follows, we mainly refer to (Borel 1900), (Vivanti 1928),
(Sansone 1972, Chapter V), (Levin 1980, Chapter I) and references
therein. Retaking into consideration the above mentioned Weierstrass'
theorem, Laguerre (see (Laguerre 1882a,b,c; 1883; 1884)), from 1882
onwards, published some short but remarkable papers on certain con-
cepts and properties of entire functions, amongst which the notion of
genus. To be precise, Laguerre �rst de�nes j as the genus of the Weier-
strass' factors Ej(z), letting γ(Ej(z)) = j, then he calls genus (or
rank) of the entire function f(z) as given by (8), the number p =
max{∂eg g(z), sup{γ(Ej(z)}}, which may also be∞ when sup{γ(Ej(z)} =
∞ or, otherwise, when g(z) is a transcendental entire function (so ∂eg g(z) =
∞). The importance of the natural numbers ∂eg g(z) and sup{j;Ej(z)}
with respect to the Weierstrass decomposition (8), had already been rec-
ognized by Weierstrass himself, but it was Laguerre the �rst who un-
derstood that their maximum value has instead more importance and
usefulness from a formal viewpoint. Most of Laguerre's work was pur-
sued on entire functions of genus zero and one as well as on the study
of the distribution of the zeros of an entire function and its derivatives,
taking constantly into account the comparison between polynomials and
entire functions on the wake of what had already known about the deter-
mination of the zeros of the former. Following (Gonchar et al. 1997, Part
I, Chapter 1, Section 1), entire functions are a direct generalization of
polynomials but their asymptotic behavior has an incomparably greater
diversity. The most important parameter characterizing properties of a
polynomial is its degree. A transcendental entire function that can be
expanded into an in�nite power series can be viewed as a kind of poly-
nomial of in�nite degree, and the fact that the degree is in�nite brings
no additional information to the statement that an entire function is not
a polynomial. That is why, to characterize the asymptotic behavior of
an entire function, one must use other quantities and new notions, like
those of order, genus, the maximum modulus Mf(r), and so forth.

According to (Burkhardt et al. 1899-1927, Dritter Teil, erste Hälfte,
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C.4, Nr. 26-36), (Fouët 1904-07, Tome II, Chapter IX, Section II, Num-
ber 283), (Marden 1949; 1966) and (Pólya & Szeg® 1998a, Part III;
1998b, Part V), just upon the possible analogical transfer of the known
results about the theory of polynomials (above all results on their zeros,
like Rolle's and Descartes' theorems - see (Marden 1949; 1966)) towards
entire functions, the next work of Poincaré, Hadamard, Borel, as well
as of E. Schou, E. Cesaro, E. Fabry, E. Laguerre51, G.A.A. Plana, F.
Chiò, A. Genocchi, C. Runge, C. Hermite, E. Maillet, E. Jaggi, C.A.
Dell'Agnola, J. von Puzyna, M.L.M. de Sparre, C. Frenzel, M. Petro-
vitch, A. Winternitz and others, will be oriented (see (Vivanti 1906))
since the early 1900s till to the 1920s with pioneering works of E. Lind-
wart, R. Jentzsch, G. Grommer, N. Kritikos and, above all, G. Pólya.
The �rst notable results in this direction were obtained both by E. Pi-
card in the late 1870s, who dealt with the values of an arbitrary entire
function, and by Poincaré in the early 1880s (see (Poincaré 1882; 1883)
and (Sansone 1972, Chapter V, Section 14)), who established some �rst
notable relations between the modulus of an entire function, its genus
and the variations of the magnitude of its coe�cients; Poincaré was too
the �rst one to apply entire function theory methods to di�erential equa-
tions. Following (Marku²evi£ 1966, Preface), the so-called Picard's little
theorem roughly asserts that the equation f(z) = a, where f(z) is a
transcendental entire function and a is a given complex number, has in
general, an in�nite set of roots. This theorem clearly can be regarded as
the analog, to the in�nite degree, of the Gauss' fundamental theory of al-
gebra, according to which the number of roots of the equation p(x) = a,
where p(x) is a polynomial, is equal to the degree of the polynomial.
Following (Vivanti 1928, Part III, Section 184), the Poincaré theorems
were underestimated up to the 1892-93 Hadamard work (that will be dis-
cussed later), notwithstanding their importance for having opened the
way to the study of the relations between the distribution of the zeros
of an entire function and the sequence of its coe�cients. The relevance
of the zeros of an entire function is simply due to the fact that this last

51See (Laguerre 1898-1905, Tome I, p. 168) in which he retakes a notable result achieved by
Hermite who, in turn, used previous methods found by G.A.A. Plana, A. Genocchi e F. Chiò on
the zeros of algebraic equations.
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is determined by factorization theorems of the Weierstrass' type. With
Poincaré, the notion of order of an entire function is introduced as fol-
lows. First, Poincaré proved that, if f(z) is an entire function of genus
p (as de�ned above) and ρ is a positive integer greater than p such that∑

n∈N r
−ρ
n is convergent, then, for every positive number α, there exists

an integer r0(α) > 0 such that, for |z| = r ≥ r0(α), we have |f(z)| < eαr
α

in |z| = r. Then, if f(z) is an entire function, to characterize the growth
of an entire function, we introduce a not-decreasing function as follows:
let Mf(r) = max|z|=r |f(z)| be the maximum value of |f(z)| on the
sphere having center into the origin and radius r. Mf(r) is a continu-
ous not-decreasing monotonic function of r, tending to +∞ as r → ∞.
For a polynomial f of degree n, the following asymptotic relation holds
lnMf(r) ∼ n ln r, so that n = limr→∞ lnMf(r)/ ln r, i.e., the degree of
a polynomial is closely related to the asymptotics of Mf(r). The ratio
lnMf(r)/ ln r tends to ∞ for all entire transcendental functions. That
is why the growth of lnMf(r) is characterized by comparing it, not with
ln r, but with faster growing functions, the most fruitful comparison be-
ing that with power functions. Thus, in order to estimate the growth of
transcendental entire functions, one must choose comparison functions
that grow more rapidly than powers of r. If one chooses functions of the
form er

k

k ∈ N, as comparison functions, then an entire function f(z)
is said to be of �nite order if there exist k ∈ N and r0(k) ∈ R+ such
that the inequality Mf(r) < er

k

is valid for su�ciently large values of
r > r0(k), the greatest lower bound of such numbers k, say ρ, being said
the order of the entire function f(z); �nally, further indices, introduced
by E.L. Lindelö�, H. Von Schaper, A. Pringsheim and E. Borel in the
early 1900s (with further contributions due to S. Minetti in 1927 - see
(Vivanti 1906; 1928, Section 203)), and often called Lindelö� indices,
have been introduced to estimate the rapidity of variation of the modu-
lus of the zeros, of the coe�cients and of the function Mf(r) of a given
entire function f(z) (see (Borel 1900, Chapter III), (Vivanti 1928, Part
III, Section 176) and (Levin 1980, Chapter I)).

With the pioneering works of Jacques Hadamard (see (Hadamard
1892; 1893)), deepening of the previous results, as well as new research
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directions, were pursued. If Poincaré was the �rst to apply the early
results of entire function theory to the study of di�erential equations, so
Hadamard was the �rst to explicitly consider applications of the theory of
entire functions to the number theory, just working upon what previously
made by Riemann on the same subject. Following (Borel 1900, Chap-
ter III) and (Maz'ya & Shaposhnikova 1998, Chapter 1, Section 1.10;
Chapter 9, Section 9.2), the 1893 work of Hadamard roughly consisted
in �nding relations between the behavior of the coe�cients and the dis-
tribution of the zeros of an entire function as well as in providing more
explicit formulas of the Weierstrass type for functions growing slower
than exp(|z|λ), so becoming easier to prove the absence of exponential
factors in the case of the Riemann ξ function. Following (Maz'ya & Sha-
poshnikova 1998, Chapter 9, Section 9.2), the 1893 Hadamard memoir
is divided into three parts. The �rst one, after having improved some
previous results achieved by Picard (and mentioned above), is mostly
devoted to the relationships between the rate of growth of Mf(r) and
the decreasing law of the coe�cients cn of the Taylor expansion of the
given entire function f(z). At the beginning, Hadamard found a majo-
rant for Mf(r) described in terms of the sequence of the coe�cients cn,
noting, for example, that if |cn| < (n!)−1/α, α > 0, then Mf(r) < eHr

α

for some constant H. Then, he considered the inverse problem, already
approached by Poincaré, to �nd the law of decreasing of the coe�cients
departing from the law of growth of the function, extending Poincaré
method in order to include functions satisfying Mf(r) < eV (r), where
V (r) is an arbitrary positive increasing unbounded function. Then, as
the central goal of the paper in the aim of the author, Hadamard deals
with an improvement of the Picard theorem, but it will be Borel, in 1896,
to give a general prove of it, valid for every entire function. Following
(Gonchar et al. 1997, Chapter 5, Section 1), 1879 Picard famous theorem
is concerned with the problem of the distribution of the values of entire
functions and it may be considered as one of the starting points of the
theory of the distribution of the values of meromorphic functions which
then began to develop only in the 1920s with the pioneering works of R.
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Nevanlinna, albeit its very early starting point was the following formula

log
rn|f(0)|
|z1...zn|

=
1

2π

∫ 2π

0

log |f(reiθ)|dθ,

due either to J.L.W. Jensen (see (Jensen 1898-99)) and J. Petersen (see
(Petersen 1899)) but already known to Hadamard since the early 1890s
(see52 (Maz'ya & Shaposhnikova 1998, Chapter 9, Section 9.2)), where
z1, z2, ..., zn, ... are the zeros of f(z), |z1| ≤ |z2| ≤ ... and |zn| ≤ r ≤
|zn+1|. This formula was called Poisson-Jensen formula by R. Nevan-
linna around 1920s who, later, will give an extended version of it, today
known as Jensen-Nevanlinna formula (see (Zhang 1993, Chapter I)).

Following (Maz'ya & Shaposhnikova 1998, Chapter 9, Section 9.2),
in the second part of the 1893 memoir, as we have already said above,
Hadamard considers a question converse to the one treated by Poincaré,
that is to say, what information on the distribution of zeros of an entire
function can be derived from the law of decreasing of its coe�cients? In
particular, he shows that the genus of the entire function is equal to the
integer part [λ] of λ provided by |cn|(n!)−1/(λ+1) −→

n→∞
0 with λ, in general,

not integer53. From this statement, one concludes that a function f(z)
has genus zero if Mf(r) < eHr

α

holds with α < 1. Hadamard's theorem,
nevertheless, is less precise for the case when λ is integer, because, in this
case, the function may have genus either λ or λ+ 1. Hadamard's result

52With this historical remark, we might answer to a query expressed in (Davenport 1980, Chap-
ter 11, p. 77, footnote 1) about the use of Jensen's formula in proving Hadamard factorization
theorem, where textually the author says that �strangely enough, Jensen's formula was not dis-
covered until after the work of Hadamard�. Also H.M. Edwards, in (Edwards 1974, Chapter 2,
Section 2.1, footnote1), about the Hadamard proof of 1893 memoir, a�rms that �A major simpli-
�cation is the use of Jensen's theorem, which was not known at the time Hadamard was writing�.
Nevertheless, there are historical proves which state the contrary, amongst which a witness by a
pupil of Hadamard, Szolem Mandelbrojt (1899-1983), who, in (Mandelbrojt 1967, p. 33), states
that Hadamard was already in possession of Jensen's formula before Jensen himself, but did not
not publish it, since he could not �nd for it any important application (see also (Narkiewicz 2000,
Chapter 5, Section 5.1, Number 1)). The �rst part of the Volume 13, Issue 1, of the year 1967 of
the review L'Enseignement Mathématique, was devoted to main aspects of Hadamard mathematical
work, with contributions of P. Lévy, S. Mandelbrojt, B. Malgrange and P. Malliavin.

53Poincaré proved that, if f(z) is an entire function of genus p such that f(z) =
∑

n∈N0
cnz

n,
then (n!)1/(1+p)cn −→

n→∞
0 (see (Sansone 1972, Chapter V, Section 9)). Further studies on entire

functions of non-integral order were also attained by L. Leau in 1906.
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was improved by Borel in 1897 (see also (Borel 1900)), who used two
important characteristic parameters of an entire function, namely the
order ρ (that, d'après Borel, he called apparent order) and the exponent
of convergence of zeros p (said to be the real order, in his terminology
borrowed by Von Schaper). The order is the upper lower bound ρ of the
numbers α such that Mf(r) < eHr

α

, its explicit expression being given
by

ρ = lim sup
r→∞

ln lnMf(r)

ln r

which might therefore be taken as the de�nition of the order of the
function f ; the quantity instead λρ

.
= lim infr→∞ ln lnMf(r)/ ln r is

said to be the lower order of f . For a polynomial we have ρ = 0,
while for the transcendental functions exp z, sin z, exp(exp z) the or-
der is respectively 1, 1 and ∞. If we have ρ < ∞, then the quantity
σ
.
= lim supr→∞ r−ρ lnMf(r) is called the type value of the entire func-

tion f . The exponent of convergence of the zeros, say p, is de�ned as
the upper lower bound of those λ > 0 for which the series

∑
n |zn|−(λ+1)

converges. One can also check that the exponent of convergence is also
provided by µ = lim sup(lnn/ ln |zn|). Hadamard proved that ρ ≥ p,
often said to be the �rst Hadamard theorem (see (Sansone 1972, Chapter
V, Section 3)). If an entire function has only a �nite number of zeros,
then we say that it has exponent of convergence zero. Thus, while the
order characterizes the maximal possible growth of the function, the ex-
ponent of convergence p is an indicator of the density of the distribution
of the zeros of f(z). Therefore, the Hadamard's re�nement of Weier-
strass formula (11) by using the notion of order, states that, if f is an
entire function of �nite order ρ, then the entire function g(z) in (11) is
a polynomial of degree not higher than [ρ]. As we have been said above,
Borel obtained a kind of converse to this result by showing how the order
can be found from the factorization formula, his theorem stating that,
if µ < ∞ and g(z) is the polynomial appearing in (11), then f(z) is an
entire function of order p = max{µ, q}. Finally, the lst third part his
memoir, Hadamard applied his results on the genus of an entire function,
achieved in the �rst part, to the celebrated Riemann zeta function. To
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be precise, Riemann reduced the study of the zeta function to that of the
even entire function ξ de�ned by ξ(z) = z(z − 1)Γ(z/2)ζ(z)/2πz/2, and
writing ξ as the series ξ(z) = b0+ b2z

2+ b4z
4+ ..., Hadamard proved the

inequality |bm| < (m!)−1/2−ε, ε > 0, thus verifying, for 1/α = 1/2 + ε,
the following estimate |cn| < (n!)−1/α, α > 0 deduced in the �rst part
of his memoir and brie�y mentioned above, so that it follows that the
genus of ξ, as a function of z2, is equal to zero and that

ξ(z) = ξ(0)
∞∏
k=1

(
1− z2

α2
k

)
where the αk are the zeros of ξ, this last property, as is well-known,
having already been provided by Riemann, in his celebrated 1859 paper,
but without a rigorous proof.

Following (Gonchar et al. 1997, Part I, Chapter 1, Section 1), the
classical Weierstrass theorem is well-known on the representation of an
entire function with a given set of zeros in the form of an in�nite product
of Weierstrass primary factors. In the works of Borel and Hadamard on
entire function of �nite order, the Weierstrass theorem was signi�cantly
improved, showing that the genus of the primary factors could be one
and the same, in the representation of an entire function only a �nite
number of parameters being not de�ned by the set of zeros. As early as
the turn of the 20th century, the theory of factorization of entire func-
tions was regarded as fully completed, albeit in a series of works started
in 1945, M. Dzhrbashyan and his school constructed a new factorization
theory, as well as H. Behnke and K. Stein extended, in 1948, factoriza-
tion theorem to arbitrary non-compact Riemann surfaces (see (Remmert
1998, Chapter 4, Section 2)). The remarkable work of Behnke and Stein
(see (Behnke & Stein 1948)) revaluated the role of the so-called Runge
sets in the theory of non-compact Riemann surfaces, demonstrating a
Runge type theorem. Following (Maurin 1997, Part V, Chapters 3 and
6), Carl Runge (1856-1927) gave fundamental contributions, between
1885 and 1889, to the theory of complex functions, proving a basic re-
sult, in which he introduced particular sets later called Runge's sets,
regarding the approximation of holomorphic functions by a sequence of
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polynomials, almost in the same years in which Weierstrass gave his as
much notable theorem on the approximation of a function on interval by
polynomials. From Runge outcomes, hence also from Behnke-Stein ones,
it follows much of the representation theorems for meromorphic functions
due to Weierstrass and Mittag-Le�er. To point out the central result of
the 1893 Hadamard paper, we recall, following (Levin 1980, Chapter I),
the Weierstrass theorem, namely that every entire function f(z) may be
represented in the form

f(z) = zmeg(z)
ω∏
n=1

G
( z
an

; pn

)
(ω ≤ ∞)

where g(z) is an entire function, an are the non-zero roots of f(z), m is
the order of the zero of f(z) at the origin, and G(u; p) = (1−u) exp(u+
u2/2 + ... + up/p) is the generic primary factor. The sequence of num-
bers pn is not uniquely determined and, therefore, the function g(z) is
not uniquely determined either. After Laguerre work, the representation
of the function f(z) is considerably simpler if the numbers an satisfy the
following supplementary condition, that is, the series

∑
n∈N |an|−(λ+1)

converges for some positive λ. In this case, let p denote the smallest
integer λ > 0 for which the series

∑
n∈N |an|−(λ+1) converges. Thus, also

the in�nite product
∏

n∈NG(z/an; p) converges uniformly: it is called a
canonical product, and the number p is called, following B.J. Levin, the
genus of the canonical product, or else, following Borel, the exponent of
convergence of the zeros an. If g(z) is a polynomial, f(z) is said to be
an entire function of �nite genus. If q is the degree of the polynomial
g(z), the largest of the numbers p and q is called the genus of f(z). If
g(z) is not a polynomial or if the series

∑
n∈N |an|−(λ+1) diverges for all

the values of λ > 0, then the genus is said to be in�nite. The represen-
tation of an entire function as an in�nite product makes it possible to
establish a very important dependence between the growth of the func-
tion and the density of distribution of its zeros. As a measure of the
density of the sequence of the points an, having no �nite limit point, we
introduce, d'après Borel (see (Borel 1900, Chapter II)), the convergent
exponent of the sequence a1, a2, ..., an, ..., with an ̸= 0 de�nitively and
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limn→∞ an = ∞, which is de�ned by the greatest lower bound of the
numbers λ > 0 for which the series

∑
n∈N(1/|an|λ+1) converges. Clearly,

the more rapidly the sequence of numbers |an| increases, the smaller will
be the convergent exponent, which may be also zero. A more precise
description of the density of the sequence {an}n∈N, than the convergence
exponent is given by the growth of the function n(r), said to be zero-
counting function, equal to the number of points of the sequence in the
circle |z| < r, so that by the order of this monotone function we mean
the number ρ1 = lim supr→∞(lnn(r)/ ln r), and by the upper density of
the sequence {an}, we mean the number ∆ = lim supr→∞(n(r)/rρ1); if
the limit exists, then ∆ is simply called the density of the sequence {an}.
Classical results on the connection between the growth of an entire func-
tion and the distribution of its zeros mainly describe the connection be-
tween lnMf(r) and the zero-counting function n(r). If f is a polynomial,
then limr→∞ n(r) = n if and only if lnMf(r) ∼ n ln r, whereas no simple
connection exists between the asymptotic behavior of lnMf(r) and n(r)
for entire transcendental functions. It is possible to prove that the con-
vergent exponent of the sequence {an}, with limn→∞ |an| = ∞, is equal
to the order of the corresponding function n(r). Borel moreover proved
that the order ρ of the canonical product Π(z) =

∏
n∈NG(z/an; p), does

not exceed the convergence exponent ρ1 of the sequence {an}, even bet-
ter p = ρ1 (Borel theorem; see also (Sansone 1972, Chapter V, Section
6)). Hadamard's factorization theorem is a re�nement concerning the
representation of entire functions of �nite order, and is one of the classi-
cal theorems of the theory of entire functions. This theorem states that
an entire function f(z) of �nite order ρ and genus p, can be represented
in the form

f(z) = zmeP (z)
ω∏
n=1

G
( z
an

; p
)

(ω ≤ ∞),

where an are the non-zero roots of f(z), p ≤ ρ, P (z) is a polynomial
whose degree q does not exceed [ρ], and m is the multiplicity of the
zero at the origin. This theorem, hence, states that the genus of an en-
tire function does not exceed its order. Sometimes, the factor eP (z) is
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also called external exponential factor (see (Vivanti 1928) and (Sansone
1972, Chapter V, Section 5)). Following (Maz'ya & Shaposhnikova 1998,
Chapter 9, Section 9.2), Borel obtained as well a sort of converse to this
result by showing how the order can be found from the factorization for-
mula, stating as follows: if p < ∞ and P (z) is a polynomial of degree
q, then f(z) is a function of order ρ = max{p, q} = max{ρ1, q} (via
Borel theorem). Finally, we recall that in this 1893 Hadamard memoir,
further estimates for the minimum of the modulus of an entire function
were also established (forming the so-called second Hadamard theorem),
upon which, then, Borel (see (Borel 1900)), P. Boutroux, E. Maillet,
A. Kraft, B. Lindgren, G. Faber, A. Denjoy, F. Schottky, E. Lindelöf,
J.L.W. Jensen, J.E. Littlewood, G. Hardy, W. Gross, R. Mattson, G.
Rémoundos, O. Blumenthal, R. Mattson, E. Landau, C. Carathéodory,
A. Wahlund, G. Pólya, A. Wiman, P. Fatou, P. Montel, T. Carleman, L.
Bieberbach, F. Iversen, E. Phragmèn, A. Pringsheim, E.F. Collingwood,
R.C. Young, J. Sire, G. Julia, A. Hurwitz, G. Valiron and others will
work on, at �rst providing further improvements to the estimates both
for the minimum and the maximum of the modulus of an entire function
and its derivatives (see (Burkhardt et al. 1899-1927, Dritter Teil, erste
Hälfte, C.4, Nr. 26-36) and (Sansone 1972, Chapter V, Sections 4, 13
and 16)), till to carry out a complete, rich and autonomous chapter of
complex analysis. Later studies on entire functions having integral order
were also accomplished, in the early 1900s, above all by A. Pringsheim
as well as by E. Lindelöf and E. Phragmèn who de�ned what is known
as Phragmèn-Lindelöf indicator of an entire function which will be the
basic characteristic of growth of an entire function of �nite order (see
(Ostrovski�i & Sodin 1998, Section 3)). Anyway, the description of the
state-of-the-art of the theory of entire functions until 1940s, may be found
above all in the treatise (Valiron 1949), as well as in the last editions of
the well-known treatise (Whittaker & Watson 1927). Furthermore, it is
also useful to look at the notes by G. Valiron, to the 1921 second edition
of Borel's treatise on entire functions (i.e., (Borel 1900)), that is to say
(Borel 1921), where, at the beginning of the Note IV, Valiron says that

�La théorie des fonctions entières a fait l'object d'un três grand
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nomhre de travaux depuis la publication des Mémoires fondamentaux
de J. Hadamard et E. Borel. Plus de cent cinquante Mémoires ou Notes
ont été publiés entre 1900, dale de la première édition des Leçons sur
les fonctions entières, et 1920; beaucoup de ces travaux ont leur orig-
ine dans les suggestions de E. Borel. On peut répartir ccs recherches
en quatre groupes: 1o. Étude de la relation entre la croissance du mod-
ule maximum et la croissance de la suite des coe�cients de la fonction
et démonstrations élémentaires du théorème de Picard; 2o. Études di-
rectes de la relation entre la suite des zéros et la croissance du module
maximum; 3o. Recherches sur les fonctions inverses et généralisations
du théorème de Picard; 4o. Recherches de nature algébrique et étude des
fonctions d'ordre �ni considérées comme fonctions limites d'une suite de
polynomes. Il eût été di�cile de donner dans quelques pages un aperçu
des travaux particuliers de chaque auteur, certaines questions ayanl été
traitées simultanément ou d'une façon indipendante par plusieurs math-
ématiciens [...]�.

Afterwards, Valiron brie�y exposes the main results achieved by those
mathematicians whose names have been just recalled above, a more de-
tailed treatment being given in his treatise (Valiron 1949) which covers
the European area until up mid-1900s. After such a period, a great
impulse to the theory of entire functions was given by Russian school
which grew up around Boris Yakovlevich Levin (1906-1993) whose scien-
ti�c and human biography may be found in the preface to (Levin 1996).
Herein, we give a very brief �ashing out on the research work on entire
function theory achieved by Russian school, referring to (Ostrovskii &
Sodin 1998; 2003) for a deeper knowledge. The fundamental problem in
the theory of entire functions is the problem of the connection between
the growth of an entire function and the distribution of its zeros, a basic
characteristic of growth of an entire function of �nite order being the so-
called Phragmén-Lindelöf indicator (see (Phragmén & Lindelöf 1908))
de�ned by

(14) h(φ, f) = lim sup
r→∞

r−ρ(r) ln |f(reiφ)|, φ ∈ [0, 2π].
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The systematic study of the connection of the indicator with the distri-
bution of zeros, started in the 1930s with the Russian school leaded by
Levin and Mark G. Kre�in. Following (Levin 1980, Chapter VIII), the
representation of an entire function by a power series shows the simple
fact that any entire function is the limit of a sequence of polynomi-
als which converges uniformly in every bounded domain. If we impose
on the polynomials which are approaching uniformly the given entire
function the additional requirement that their zeros belong to a certain
set, then the limit functions will form a special class, depending on the
set. The �rst notable results in this direction were due to Laguerre (see
(Laguerre 1898-1905, Tome I, pp. 161-366)), who gave a complete char-
acterization of the entire functions that can be uniformly approximated
by polynomials, distinguishing two chief cases: the �rst one (I) in which
the zeros of these polynomials are all positive, and the second one (II) in
which these zeros are all real. In this latter case, a proof of his theorem
was later given by G. Pólya (see (Pólya 1913)), while a more complete
investigation of the convergence of sequences of such polynomials was
carried out by E. Lindwart and Pólya (see (Lindwart & Pólya 1914)),
showing, in particular, that in the two above just mentioned cases I
and II (as well as in more general cases), the uniform convergence of
a sequence of polynomials, in some disk |z| < R, implies its uniform
convergence on any bounded subset of the complex plane. Now, the
main results achieved in the theory of representation of an entire func-
tion by a power series, namely that any entire function is the limit of
a sequence of polynomials which converges uniformly in every bounded
domain, in turn refer to the theory of approximation of entire functions
by polynomials whose zeros lie in a given region, say G, of the open
or closed upper complex half-plane. Besides important results achieved
by E. Routh and A. Hurwitz in the 1890s, the basic algebraic fact in
this domain is a theorem stated by C. Hermite in 1856 (see (Hermite
1856a,b)) and C. Biehler (see (Biehler 1879)), and nowadays known as
Hermite-Biehler theorem, which provides a necessary and su�cient con-
dition for a polynomial of the type ω(z) = P (z) + iQ(z), with P and
Q real polynomials, not have any root in the closed lower half-plane
ℑz ≤ 0, imposing conditions just on P and Q. In 20th century, the
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Russian school achieved further deep results along this direction and, in
carrying over the Hermite-Biehler criterion to arbitrary entire functions,
an essential role is played by particular classes of entire functions, intro-
duced by M.G. Kre�in in a 1938 work devoted to the extension of some
previous Hurwitz criteria for zeros of entire functions (see (Ostrovski�i
1994)), and said to be Hermite-Biehler classes (HB and HB classes).
An entire function ω(z) is said to be a function of class HB [respectively
HB] if it has no roots in the closed [open] lower half-plane ℑz ≤ 0, and if
|ω(z)/ω̄(z)| < 1 [|ω(z)/ω̄(z)| ≤ 1] for54 ℑz > 0. On the basis of results
achieved by M.G. Kre�in, N.N. Me�iman, Ju.I. Ne�imark, N.J. Akhiezer,
L.S. Pontrjagin, B.Ja. Levin, N.G. �ebotarev and others, around 1940s
and 1950s, simple criteria for an entire function to belong to the class
HB, as well as representation theorems for elements of this class of entire
functions using special in�nite products, were provided (see (Levin 1980,
Chapter VII)). A polynomial which has no zeros in open lower half-plane
will be called an H-polynomial. Then, the so-called Laguerre-Pólya class
(LP class) is given by a particular class of entire functions obtained as
limit of a sequence of H-polynomials uniformly converging in an angular
δ-neighborhood of the origin, hence in an arbitrary bounded domain (see
(Levin 1980, Chapter VIII)) through a criterion called Laguerre-Pólya
theorem due to previous outcomes obtained by Laguerre in the late 1890s.
The classical Laguerre-Pólya theorem asserts that an entire function f
belongs to this class if and only if

(15) f(z) = e−γz
2+βz+αzm

∏
n

(
1− z

zn

)
e

z
zn

where all zn, α and β are real, γ ≤ 0, m ∈ N0 and
∑

n |zn|−2 < ∞.
Following (Bergweiler et al., 2002), in passing we recall that Laguerre-
Pólya class LP coincides with the closure of the set of all real polynomials
with only real zeros, with respect to uniform convergence on compact
subsets of the plane. This is just what was originally proved by Laguerre
in (Laguerre 1882c) for the case of polynomials with positive zeros and

54Here we understand by ω̄(z) the entire function obtained from ω(z) by replacing all the coe�-
cients in its Taylor series by their conjugates.
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by Pólya in (Pólya 1913) in the general case. It follows that LP class is
closed under di�erentiation, so that all derivatives of a function f ∈ LP
have only real zeros. Pólya, in (Pólya 1913), also asked whether the
converse is true, that is to say, if all derivatives of a real entire function
f have only real zeros then f ∈ LP . This conjecture was later proved by
S. Hellerstein and J. Williamson in 1977 (see (Bergweiler et al., 2002) and
references therein). Other notable results for entire functions belonging
to LP class were achieved by E. Malo in the late 1890s and by G. Pólya,
J. Egerádry, E. Lindwart, A.I. Marku²evi£, I. Schur, J.L.V. Jensen, O.
Szàsz, J. Korevaar, M. Fekete, E. Meissner, E. Bálint, D.R. Curtiss, J.
Grommer, M. Fujiwara, E. Frank, S. Benjaminowitsch, K.T. Vahlen,
A.J. Kempner, I. Schoenberg, S. Takahashi, N. Obrechko� and others,
between the 1910s and the 1950s (see (Levin 1980, Chapter VIII) and
(Marden 1949)). For other interesting historical aspects of entire function
theory see also (Korevaar 2013) and references therein, while as regard
history of mathematics in Russian area, see (Demidov 2002).

Finally, a notable work on after the mid-1900s entire function theory
developments has surely been the one achieved by Louis de Branges since
1950s with his theory of Hilbert spaces of entire functions, culminated in
the treatise (de Branges 1968). In the intention of the author expressed
in the Preface to the latter, anyone approaches Hilbert spaces of entire
functions for the �rst time will see the theory as an application of the clas-
sical theory of entire functions. The main tools are drawn from classical
analysis, and these are the Phragmén-Lindelöf principle55 (see (Phrag-
mén & Lindelöf 1908)), the Poisson representation of positive harmonic
functions, the factorization theorem for functions of Pólya class, Nevan-
linna's theory of functions of bounded type, and the Titchmarsh-Valiron
theorem relating growth and zeros of entire functions of exponential type.
The origins of Hilbert spaces of entire functions are found in a theorem
of Paley and Wiener that characterizes �nite Fourier transforms as en-
tire functions of exponential type which are square integrable on the real

55Besides Hadamard's work to be greatly in�uenced by Riemann 1859 paper, also E. Phragmén
and E. Lindelöf work, in the very late 19th century and early 20th, was in�uenced too by this Rie-
mann paper, once it became ever-more-clear that the di�culties in proving the Riemann Hypothesis
were substantial (by a private communication with Professor Paul Garrett).
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axis. This result has a striking consequence which is meaningful without
any knowledge of Fourier analysis. The identity∫ +∞

−∞
|F (t)|2dt = π

a

+∞∑
−∞

|F (nπ/a)|2

which holds for any entire function F (z) of exponential type at most a
which is square integrable on the real line. The formula is ordinarily
derived from a Fourier series expansion of the Fourier transform of F (z).
In the fall of 1958, de Branges discovered an essentially di�erent proof
which requires nothing more than a knowledge of Cauchy's formula and
basic properties of orthogonal sets. The identity is a special case of a
general formula which relates mean squares of entire functions on the
whole real axis to mean squares on a sequence of real points. Certain
Hilbert spaces, whose elements are entire functions, enter into the proof
of the general identity. Since such an identity has its origins in Fourier
analysis, de Branges conjectured that a generalization of Fourier analysis
was associated with these spaces, spending the years 1958-1961 to verify
this conjecture. The outlines of this de Branges theory are best seen by
using the invariant subspace concept. The theory of invariant subspaces
sprung out of some early studies of the end of 19th Century on the zeros
of polynomials and their generalization by C. Hermite and T.J. Stieltjes,
just after the Riemann conjecture (see (de Branges 1968; 1986)). The
next axiomatization of integration just due to Stieltjes in the last years
of 19th century, greatly contributed to settling up these studies, above
all thanks to the work of Hilbert. A fundamental problem is to deter-
mine the invariant subspaces of any bounded linear transformation in
Hilbert space and to write the transformation as an integral in terms of
invariant subspaces: this is one of the main problems of spectral analysis.
A similar problem can be stated for an unbounded or partially de�ned
transformation once the invariant subspace concept is clari�ed. To this
purpose, it may help to say that there exist invariant subspaces appro-
priate for a certain kind of transformation, the theory of Hilbert spaces
of entire functions being the best behaved of all invariant subspace theo-
ries. Moreover, nontrivial invariant subspaces always exist for nontrivial
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transformations; invariant subspaces are totally ordered by inclusion.
The transformation admits an integral representation in terms of its in-
variant subspaces, this representation being stated as a generalization of
the Paley-Wiener theorem and of the Fourier transformation. Hilbert
spaces of entire functions also have other applications, an obvious area
being the approximation by polynomials of entire functions of exponen-
tial type. On the other hand, it was just through such problems that de
Branges discovered such spaces. Although it is easy to construct entire
functions with given zeros, it is quite di�cult to estimate the functions so
obtained. To this end, de Branges used the extreme point method to con-
struct nontrivial entire functions whose zeros lie in a given set and whose
reciprocals admit absolutely convergent partial fraction decompositions.
A classical problem is to estimate an entire function of exponential type
in the complex plane from estimates on a given sequence of points, so
de Branges constructed Hilbert spaces of entire functions of exponential
type with norm determined by what happens on a given sequence of real
points.
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6. On some applications of the theory of en-

tire functions

6.1. On the applications of entire function theory to Riemann

zeta function: the works of J. Hadamard, H. Von Mangoldt,

E. Landau, G. Pólya, and others. Following (Valiron 1949, Chapter
I), the early origin of the general theory of entire functions, that is to
say of functions which are regular throughout the �nite portion of the
plane of the complex variable, is to be found in the work of Weierstrass.
He shown that the fundamental theorem concerning the factorization of
a polynomial can be extended to cover the case of such functions, and
that in the neighborhood of an isolated essential singularity the value
of a uniform function is indeterminate. These two theorems have been
the starting point of all subsequent research. Weierstrass himself did not
complete his second theorem, this having been done in 1879 by Picard
who proved that in the neighborhood of an isolated essential singularity
a uniform function actually assumes every value with only one possi-
ble exception. Much important work, the earliest of which was due to
Borel, has been done in connection with Picard's theorem; and the con-
sequent introduction of new methods has resulted in much light being
thrown on obscure points in the theory of analytic functions. The notion
of the genus of a Weierstrassian product was introduced and its impor-
tance �rst recognized by Laguerre, but it was not until after the work
of Poincaré and Hadamard had been done that any substantial advance
was made in this direction. Here also Borel has enriched the theory
with new ideas, and his work has done much to reveal the relationship
between the two points of view and profoundly in�uenced the trend of
subsequent research. The theory of entire functions, or more generally of
the functions having an isolated singularity at in�nity, may be developed
in two directions. On the one hand, we may seek to deduce from facts
about the zeros information concerning the formal factorization of an
entire function; on the other hand, regarding the problem from the point
of view of the theorems of Weierstrass and Picard, we may endeavor to
acquire a deeper insight into the nature of the function by investigating

125



the properties of the roots of an equation of the type f(z)−a = 0, where
f(z) is an entire function. The study of the zeros of these functions thus
serves a double purpose, since it contributes to advance the theory along
both these avenues. The �rst step consists in giving all the theorems
due to Hadamard and Borel concerning the formal factorization of an
entire function, and then proceed towards a direct investigation of the
moduli of its zeros by the methods provided by Borel, the resulting out-
comes bringing out very clearly the close relationships existing between
these two points of view. Along this treatment, the Jensen work plays a
fundamental role. Apart Weierstrass' work, the Hadamard one on fac-
torization of entire functions started from previous work of Poincaré but
was inspired by Riemann 1859 paper, to be precise by problematic raised
by Riemann ξ function and its properties. The next work of Borel, then,
based on Hadamard one. In this section, nevertheless, we outline only
the main contributions respectively owned to Hadamard, Edmund Lan-
dau and George Pólya, the only ones who worked on that meeting land
between the theory of Riemann zeta function and the theory of entire
functions.

• The contribution of J. Hadamard. In section 5.1 of the previous chap-
ter, we have brie�y outlined the main content of the celebrated 1893
Hadamard memoir, where in the last and third part he deals with Rie-
mann ξ function. Now, in this section, we wish to start with an historical
deepening of this memoir, to carry on then with other remarkable works
centered on the applications of entire function theory to Riemann zeta
function issues, amongst which those achieved by H. Von Mangoldt, E.
Landau, G. Pòlya, and others. Following (Narkiewicz 2000, Chapter
5, Section 5.1, Number 1), the last twenty years of the 19th century
seen a rapid progress in the theory of complex functions, summed up
in the monumental works of Émile Picard and Camille Jordan. The
development of the theory of entire functions, started with pioneering
1876 Weierstrass work and rounded up by Hadamard in 1893, revived
the interest in Riemann's memoir and forced attempts to use these new
developments to solve questions left open by Riemann. This led to the
�rst proofs of the Prime Number Theorem (PNT), early conjectured in
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the late 1700s by Gauss and Legendre independently of each other, in the
form (d'après E. Landau) θ(x) =

∑
p≤x lnx = (1 + o(1))x obtained in-

dependently by Hadamard and de la Vallée-Poussin in 1896. They both
started with establishing the non-vanishing of ζ(s) on the line ℜs = 1
but obtained this result in completely di�erent ways, but with equiva-
lent results (as pointed out by Von Schaper in his PhD dissertation of
1898). Also the deduction of the Prime Number Theorem from that re-
sult is di�erently done by them, even if, according to (Montgomery &
Vaughan 2006, Chapter 6, Section 6.3) and (Bateman & Diamond 1996),
the methods of Hadamard56 and de la Vallée-Poussin depended on the
analytic continuation of ζ(s), on bounds for the size of ζ(s) in the com-
plex plane, and on Hadamard theory of entire functions. Anyway, also
(Ayoub 1963, Chapter II, Section 6) claims that the original 1896 proof
by de la Vallée-Poussin made use of the product formula provided by
Hadamard work of 1893, in deducing an expression for ζ ′(s)/ζ(s). Like-
wise, in (Chen 2003, Chapter 6, Section 6.1), the author comments that
Hadamard product representation played an important role in the �rst
proof of prime number theorem. Hadamard). Finally, as also pointed out
in (Itô 1993, Article 429, Section B), almost all the outcomes delineated
above concerning entire functions, originated in the study of the zeros of
the Riemann zeta function and constitute the beginning of the theory of
entire functions. Therefore, due to its fundamental importance, we shall
return back again in discussing upon this 1893 Hadamard work.

The members of the evaluation's commission of the annual grand
prix des sciences mathématiques ra�ed by the French Academy of Sci-
ences, namely Jordan, Poincaré, Hermite, Darboux and Picard, decided
to award the celebrated 1893 Hadamard paper for having put attention
to certain apparently minor questions treated by Riemann in his famous
paper on number theory, from which arose new and unexpected results
of entire function theory, as already said in the previous sections. In
their report (see (Jordan et al. 1892)), published at the pages 1120-1122
of the Tome CXV, Number 25 of the Comptes Rendus de l'Academie des

56Furthermore, in (Ayoub 1963, Chapter II, Notes to Chapter II), the author says that it is
worthwhile noting that Hadamard based his proof on that given by E. Cahen in (Cahen ), where it
is assumed the truth of the Riemann hypothesis, ascribing the ideas of his proof to G.H. Halphen.
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Sciences de Paris in the year 1892, the relevance of the new complex
function ζ(s) for studying number theory issues, introduced by Riemann
in his 1859 celebrated seminal paper, have been pointed out together
some its chief properties, just by Riemann himself but without providing
any rigorous proof of them. In 1885, George H. Halphen (1844-1889)
(see (Narkiewicz 2000, Chapter 4, Section 4.3) and references therein),
referring to the latter unsolved Riemann questions, wrote that

�Avant qu'on sache établir le théorème de Riemann (et il est vraisem-
blable que Riemann ne l'a pas su faire), il faudra de nouveaux progrès sur
une notion encore bien nouvelle, le genre des transcendantes entières�.

Thus Hadamard, within the framework of the new entire function theory
and in agreement with the above Halphen's consideration57, proved one
of these, determining the genus of the auxiliary ξ(s) function which is
as an entire function of the variable s2 having genus zero but, at the
same time, from an apparently minor issue (drawn from number the-
ory), opening the way to new and fruitful directions in entire function
theory (see also (Jordan et al. 1892, p. 1122)). Therefore, as it has been
many times said above, the theory of entire function has plainly played
- and still plays - a crucial and deep role in Riemann's theory of prime
numbers whose unique 1859 number theory paper has been therefore one
of the chief input for the development, on the one hand, of the number
theory as well as, on the other hand, of the entire function theory itself
with the next study of the Riemann ξ function and its in�nite product
factorization, opened by Hadamard work. Hence, we go on with a more
particularized historical analysis of the 1893 celebrated Hadamard paper
starting from the 1859 Riemann original memoir. Before all, we brie�y
recall the main points along which the Hadamard memoir lays down,
referring to the previous chapter for more information. To be precise,
Hadamard starts with the consideration that the decomposition of an en-
tire function f(x) into primary factors, achieved via Weierstrass' method

57Although Hadamard never quoted Halphen in his 1893 paper.
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as follows

(16) f(x) = eg(x)
∞∏
j=1

(
1− x

ξj

)
eQj(x),

leads to the notion of genus of an entire function, taking into consid-
eration a result as early as achieved by Poincaré in 1883 (and already
mentioned in the previous chapter), namely that, given an entire function
of genus p, then the coe�cient of xm, say cm, multiplied by p+1

√
m!, tends

to zero as m → ∞, as well as outcomes achieved by Picard, Hadamard
expresses the intention to complete this Poincaré result, trying to �nd
the general possible relations between the properties of an entire func-
tion and the laws of decreasing of its coe�cients. In particular, as we
have already been said in the previous chapter, Hadamard proves that,
if cm is lower than (m!)−

1
p , then it has, in general, a genus lower than p.

Hence, in the �rst and second parts of the memoir, Hadamard proceeds
�nding relations between the decreasing law of the coe�cients of the
Taylor expansion of the given entire function f(x) and its order of mag-
nitude for high values of the variable x. Then, in the third and last part
of his memoir, Hadamard applies what has been proved in the previous
parts, to Riemann ξ function. Precisely, Hadamard reconsiders the 1859
Riemann paper in which he �rst introduces the function ζ(s) to study
properties of number theory, from which he then obtained a particular
entire function ξ(s) de�ned by

(17) ξ(x) =
1

2
−
(
x2 +

1

4

) ∫ ∞

1

Ψ(t)t−
3
4 cos

(x
2
ln t

)
dt

with Ψ(t) =
∑∞

n=1 e
−n2πt. Therefore, next Riemann's analysis lies on the

main fact that such a function ξ, considered as a function of x2, he says
to have genus zero, but without providing right prove of this statement.
The proof will be correctly given by Hadamard in the �nal part of his
memoir through which a new and fruitful road to treat entire functions,
through in�nite product expansion, was opened.

From a historical viewpoint, the �rst extended treatises on history of
number theory appeared in the early 1900s, with the two-volume trea-
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tise of Edmund Landau (1877-1933) (see (Landau 1909)) and the three-
volume treatise of Leonard Eugene Dickson (1874-1954) (see (Dickson
1919-23)). In the preface to the �rst volume of his treatise, Landau
highlights the great impulse given to the analytic number theory with
the �rst rigorous outcomes achieved by Hadamard since the late 1880s on
the basis of what exposed by Riemann in his 1859 celebrated paper, em-
phasizing the importance of the use of entire function method in number
theory. For instance, in (Landau 1909, Band I, Erstes Kapitel, � 5.III-IV;
Zweites Kapitel, � 8; Fünfzehntes Kapitel), in�nite product expansions à
la Weierstrass are extensively used to factorize Riemann ξ function, until
Hadamard work. But, the truly �rst notable extended report (as called
by Landau who quotes it in the preface to the �rst volume of his treatise)
on number theory was the memoir of Gabriele Torelli (1849-1931), the
�rst complete survey on number theory that was drawn up with a deep
and wide historical perspective not owned by the next treatise on the
subject. Also G.H. Hardy and E.M. Wright, in their monograph (Hardy
& Wright 1960, Notes on Chapter XXII), state that �There is also an
elaborate account of the early history of the theory in Torelli, Sulla to-
talità dei numeri primi, Atti della R. Acad. di Napoli, (2) 11 (1902) pp.
1-222�, even if then little attention is paid to Riemann's paper (with
which analytic number theory o�cially was born (see (Weil 1975)), to
which a few sections of chapter XVII are devoted. Therefore, herein we
will recall the attention on this work, focusing on those arguments which
are of our historical interest. Following (Marcolongo 1931) and (Cipolla
1932), Torelli58 started his academic career at the University of Palermo
in 1891, as a teacher of In�nitesimal Calculus and Algebraic Analysis.
Afterwards, he moved to the University of Naples in 1907, as a succes-
sor of Ernesto Cesàro, until up his retirement in 1924. He chie�y made
notable researches in algebra and in�nitesimal calculus, upon which he
wrote valid treatises. But, the most notable achievement of Torelli was
memoir, entitled Sulla totalità dei numeri primi �no ad un limite asseg-
nato, which is a monograph on the subject drawn up by the author when

58Not to be confused with Ruggero Torelli (1884-1915), his son, who gave remarkable contribu-
tions to complex algebraic geometry amongst which, for example, the celebrated Torelli theorem on
projective algebraic curves (see (Maurin 1997)).
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he was professor at the University of Palermo, for a competition called
by the Reale Accademia delle Scienze �siche e matematiche di Napoli.
To be precise, as himself recall in the second cover of this monograph
(with a dedication to Francesco Brioschi), such a work was drawn up to
ask to the following question:

�Esporre, discutere, e coordinare, in forma possibilmente compen-
diosa, tutte le ricerche concernenti la determinazione della totalità dei
numeri primi, apportando qualche notevole contributo alla conoscenza
delle leggi secondo le quali questi numeri si distribuiscono tra i numeri
interi�.

[�Explain, discuss and coordinate, in a compendious manner, the state of
the art of all the researches concerning the determination of the totality
of prime numbers, also personally concurring with some notable contri-
bution to the knowledge of the distribution laws of prime numbers�.]

Until the publication of Edmund Landau treatise, Torelli report was the
only monograph available at that time which covered the subject from
Legendre work onwards. This work, for his novelty and importance, won
the competition announced by Reale Accademia delle Scienze �siche e
matematiche di Napoli , hence it was published in the related Academy
Acts (see (Torelli 1901)). As we have already said above, this monograph
puts much attention and care to the related historical aspects, so that it
is a valuable historiographical source for the subject. For our ends, we
are interested in the chapter VIII, IX and X, where the works of Riemann
and Hadamard are treated with carefulness.

Since Euclid times, one of the central problems of mathematics was
to determine the totality of prime numbers less than a given assigned
limit, say x. In approaching this problem, three main methods were
available: a �rst one consisting in the e�ective explicit enumeration of
such numbers, a second one which tries to determine this totality from
the knowledge of a part of prime numbers, and a third one consisting in
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building up a function of x, say59 θ(x), without explicitly knowing prime
numbers, but whose values provide an estimate of the totality of such
numbers less than x. To the �rst method, which had an empirical na-
ture, little by little was supplanted by the other two methods, which were
more analytical in their nature. Around the early 1800s, the method for
determining the number of the primes through the third method based
on θ(x) function, was believed the most important one even if it pre-
sented great formal di�culties of treatment. After the remarkable pro-
fuse e�orts spent by Fermat, Euler, Legendre, Gauss, Von Mangoldt and
Lejeune-Dirichlet, it was P.L. Tchebyche�60 the �rst one to provide a
powerful formal method for the determination of the function θ(x), even
if he gave only asymptotic expressions which were unable to be used for
�nite values, also at approximate level. The function θ(x) plays a very
fundamental role in solving the problem of determining the distribution
laws of prime numbers, so that an explicit albeit approximate expression
of it, was expected. This problem, however, constituted a very di�cult
task because such a function was extremely irregular, with an in�nite
number of discontinuities, and with the typical characteristic that, such
a formula for θ(x), couldn't explicitly provide those points in which the
prime numbers were placed. It was Riemann, in his famous 1859 pa-
per, to give, through Cauchy's complex analysis techniques, a formula
thanks to which it was possible, in turn, to deduce a �rst approximate
expression for the θ function, valid for �nite values of the variable. In
any case, leaving out the formal details, Riemann was induced to intro-
duce a complex function, that is to say the ζ function, to treat these
number theory issues, bringing back the main points of the question to
the zeros of this function. To be precise, for the determination of the

59It will be later called prime number counting function, and seems to have been introduced
by Tchebyche� (see (Fine & Rosenberger 2007, Chapter 4, Section 4.3)). To be precise, π(x) =∑

p≤x 1 is the counting function for the set of primes not exceeding x, while θ(x) =
∑

p≤x lnx (see
(Nathanson 2000, Chapter 8, Section 8.1)) is a Tchebyche� function.

60Besides, under advice of the mathematician Giuseppe Battagliani (1826-1894), in 1891 an Italian
translation of an important monograph of Tchebyche�, with Italian title Teoria delle congruenze (see
(Tchebyche� 1895)), was undertaken by Iginia Massarini, the �rst Italian woman to be graduated
in mathematics from the University of Naples in 1887. Such a monograph, many times is quoted
by Torelli in his memoir.
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non-trivial zeros of this function, Riemann considered another function
obtained by ζ through the functional equation to which it satis�es, the
so-called Riemann ξ function, namely

(18) ξ(t) =
s(s− 1)

2
π−

s
2Γ

(s
2

)
ζ(s)

which is an even entire function of t if one puts s = 1/2 + it. About
such a function, Riemann enunciates the following three propositions

1. the number of zeros of ξ(t), whose real part is comprised into
[0, T ] with T ∈ R+, is approximately given by (T/2π) log(T/2π)−
(T/2π),

2. all the zeros αi of ξ(t) are real,

3. we have a decomposition of the type

ξ(t) = ξ(0)
∞∏
ν=1

(
1− t2

α2
i

)
,

but without giving a correct proof of them. The points 1. and 3. will
be proved later by Von Mangoldt and Hadamard, while the point 2. is
the celebrated Riemann hypothesis which still resist to every attempt
of prove or disprove. But, notwithstanding that, Riemann, assuming as
true such three propositions, goes on in �nding an approximate formula
for the prime number counting function θ(x). For the proof of many
other results of number theory discussed in his memoir, many times
Riemann makes reference to such a ξ function and its properties, but
without giving any detailed and corrected development of their prove,
so constituting a truly seminal paper upon which a whole generation of
future mathematicians will work on, amongst whom is Hadamard.

Soon after the appearance of Riemann memoir, Angelo Genocchi (see
(Genocchi 1860)) published a paper in which contributed to clarify some
obscure points of 1859 Riemann paper as well as observed some mistakes
in Riemann memoir about ξ function, giving a detailed development of
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its expression as an entire function as deduced from a (Jacobi) theta
function61 transformation of the ζ function, hence pointing out some
remarks concerning its in�nite product factorization and related proper-
ties, referring to the well-known Briot and Bouquet treatise (see (Briot
& Bouquet 1859)) as regards the in�nite product factorization of the ξ
function from the knowledge of the sequence of its zeros αi. Neverthe-
less, this Genocchi's remark is not enough to give a rigorous and complete
proof of the proposition 3. of above, thing that will be accomplished later
by Hadamard in 1893. The words of Torelli (see (Torelli 1901, Chapter
IX, Section 74)), in this regard, are very meaningful. Indeed, he says
that Riemann assumed to be valid only statements 1. and 3. of above,
while the statements 2. was considered to be uninteresting to the ends
that Riemann wished to pursue. Hadamard was the �rst one to cope the
very di�cult task to solve the Riemann statements 1. and 3., achieving
this with success in 1892 with a memoir presented to the Academy of
Sciences of Paris. Indeed, he was able to brilliantly prove statement 3.,
from which he derived also of statement 1. as a corollary stated in the
last part of the next paper Étude sur les propriétés des fonctions en-
tières et en particulier d'une fonctions considérée par Riemann, which
was published in 1893. As the title itself shows, the Hadamard work
is a very new chapter of complex analysis in which are treated general
properties of entire functions, so opening new directions in the theory of
entire functions. In 1898, Hans Von Schaper, in his dissertation entitled
Über die Theorie der Hadamardschen Funktionen und ihre Anwendung
auf das Problem der Primzahlen, under the supervision of Hilbert, as
well as Borel, in his important work Leçons sur les fonctions entières
(see (Borel 1900)), reconsider this notable Hadamard paper as a starting
point for a further deepening of the theory of entire functions of �nite
order, in particular simplifying the original proof of the above Riemann
statement 3., as given by Hadamard in his 1893 paper. And in his re-
port, Torelli considers Von Schaper proof of this statement, adopting the
following terminology. If a1, a2, ..., aν, ... are non-zero complex numbers

61That is to say, ϑ(u) =
∑

n∈Z e
−πn2u, while ω(u) =

∑
n∈N e

−πn2u. These two function were
introduced by Tchebychev in the 1850s (see (Goldstein 1973)).
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arranged according to a non-decreasing modulus sequence tending to ∞,
such that there the integer number k + 1 is the lowest one such that∑∞

ν=1(1/|aν|k+1) converges, then we may consider the following abso-
lutely and uniformly convergent in�nite product

(19) G(z) =
∞∏
ν=1

(
1− z

aν

)
e
∑k

j=1
1
j!

zj

a
j
ν .

Every entire function F (z) having zeros a1, a2, ..., an, ..., must have the
form eH(z)G(z), where G(z) is given by (17) and H(z) is also an entire
function which may be a polynomial as well. When H(z) is a polynomial
of degree q, then the integer number p = max{q, k} < ∞ is called, by
Borel, the genus of the entire function F (z), while Von Schaper speaks of
height of F (z); the entire functions of �nite order are called Hadamard's
functions by Von Schaper. If it is not possible to reduce H(z) to a
polynomial, or if the sequence of zeros aν of the given entire function
F (z) is such that the above integer k+1 does not exist, then we will say
that F (z) has in�nite genus.

We are interested in entire functions of �nite order, of which other
two parameters have to be de�ned as follows. The upper lower bound of
the integer numbers62 k (or λ) such that, for any arbitrarily �xed ε ∈ R+,∑∞

ν=1(1/|aν|k+ε) converges and
∑∞

ν=1(1/|aν|k−ε) diverges, is said to be
(after Von Schaper) the exponent of convergence of the sequence of the
zeros aν, or (after Borel) the real order of the function F (z). The upper
lower bound of the integer numbers63 ρ such that, for any arbitrarily
�xed ε ∈ R+, we have |F (z)| < exp(|z|ρ+ε) from a certain value of |z|
onwards, and |F (z)| < exp(|z|ρ−ε) into an in�nite number of points z
arbitrarily far64, is called (after Borel) the apparent order of the func-
tion F (z), while Von Schaper says that F (z) is of the exponential type
exp(|z|ρ). Afterwards, Von Schaper and Borel proved a series of notable
properties concerning the possible relationships between the above de-

62Which will be denoted by the same letter.
63Which will be denoted by the same letter.
64Taking into account the modern notions of lower and upper limit of a function, these last

notions are nothing but those exposed in section 5.1.
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�ned four parameters p, q, k, ρ, which are summarizable as follows. We
have the following properties

• p ≤ ρ;

• If ρ is not an integer number, then k = ρ and p = [ρ] (= integer
part of ρ);

• If ρ is an integer number, the the genus p is equal to ρ or to ρ− 1.
We have p = ρ−1 is and only if q ≤ ρ−1 and

∑∞
ν=1(1/|aν|k) <∞;

• ρ = max{k, q}.

From all that, Torelli retraces the original Hadamard treatment of Rie-
mann ξ function taking into account the just quoted above results achieved
by Von Schaper and Borel, reaching to prove that the following even en-
tire function in the variable t

(20) ξ(t) =
s(s− 1)

2
π−

s
2Γ

(s
2

)
ζ(s)

is an entire function that, with respect to t2, has an apparent order which
cannot exceed 1/2, so that it follows that it has genus zero with respect
to the variable t2, if one puts s = 1/2+it. Therefore, the in�nite product
expansion of the above Riemann statement 3., is now proved. Further-
more, the absence of exponential factors in this expansion into primary
factors of the function ξ(t), implies the existence of, at least, one root for
ξ(t) = 0, while the expansion into an in�nite series of increasing powers
of t2, implies too that such roots are in an in�nite number. We have
already said that Hadamard himself, in his celebrated 1893 memoir, also
proved the above Riemann statement 1., even if further improvements
were achieved later by H. Von Mangoldt (see (Von Mangoldt 1896)), J.
Franel (see (Franel 1896)) and Borel (see (Borel 1897)). In conclusion,
the pioneering Hadamard work contained in his 1893 memoir, has �-
nally proved two out of the three above Riemann statements, namely
the 1. and 3., to which other authors have later further contributed with
notable improvements and extensions.

136



Following (Torelli 1909, Chapter VIII, Sections 71 and 72; Chapter
IX, Section 77), as regards, instead, Riemann statement 2., that is to say,
what will be later known as the Riemann hypothesis, �rst attempts to
approach the solution of the equation ξ(t) = 0, were made by T.J. Stielt-
jes (see (Stieltjes 1885)), J.P. Gram (see (Gram 1895)), F. Mertens (see
(Mertens 1897) and J.L.W. Jensen (see (Jensen 1898-99)). We are inter-
ested in the Jensen's work for its historical role played in the development
of entire function theory, of which we have already said something about
this in section 5.1. where it has been pointed out what fundamental
role played this Jensen's work in the early developments of the theory
of value distribution of entire and meromorphic functions as opened by
R. Nevanlinna work. To be precise, in this Jensen's work of 1898, the
author considers a meromorphic function, say f(z), de�ned into a region
of complex plane, say D, containing the zero and where such a function
is neither zero nor in�nite. Let a1, ..., an be the zeros and b1, ..., bm be
the poles of the function f(z), counted with their respective multiplicity
and supposed to be all included into a circle, say Cr, given by |z| ≤ r
centered in 0 and with radius r such that Cr ⊆ D. Then, Jensen easily
proves the following formula

(21)
1

2π

∫ 2π

0

ln |f(reiθ)|dθ = ln |f(0)|+ ln
rn−m|b1 · ... · bm|

|a1 · ... · an|
.

Now, Jensen argues that, if f(z) is an entire function, then r may be
chosen arbitrarily large in such a manner Cr does not contain any zero,
so that the second term in the right hand side of (19) reduces only to
the �rst, constat term. In doing so, we have thus a simple criterion for
deciding on the absence or not of zeros within a given circle of complex
plane. Once Jensen stated that, he �nishes the paper announcing to
have proved, through his previous researches on Dirichlet's series, that
the function ξ(t) does not have any zero within an arbitrary circle cen-
tered into the �nite imaginary axis and comprehending the zero, which
implies that ξ(t) = 0 has only real zeros, as Riemann conjectured. On
the other hand, as we have already pointed out in the previous section
5.1., it is just from this Jensen formula that started the theory of value
distribution of entire and meromorphic functions which was built by the
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pioneering work of Rolf Nevanlinna of 1920s. Often, in many treatise
on entire and meromorphic functions, Jensen formula is the �rst key el-
ement from which to begin. Indeed, following (Zhang 1993, Chapter I),
the theory of entire and meromorphic functions starts with Nevanlinna
theory which, in turn, is based either on a particular transformation of
the formula (19), called Poisson-Jensen formula by Nevanlinna65, and
on the previous works made by Poincaré, Hadamard and Borel on en-
tire functions. Therefore, another central starting point of the theory
of entire and meromorphic functions, as the one just examined above
and due to Jensen, relies on the prickly problematic raised by Riemann
ξ function. Lastly, the appreciated Torelli's monograph comes out with
the following textual words

�Come conclusione di questo capitolo e dell'intero lavoro, si può
senza alcun dubio a�ermare che la memoria di Riemann, insieme alle
esplicazioni e i complimenti arrecati da Hadamard, Von Mangoldt, e de
la Vallèe-Poussin, resta tuttora come il faro, che guidar possa nella scop-
erta di quanto ancora v'è di ignoto nella Teoria dei Numeri primi�.

[� As a conclusion of this chapter as well as of the whole work, surely we
may state that the Riemann memoir, together all the explications and
complements due to Hadamard, Von Mangoldt, and de la Vallèe-Poussin,
still remains as that lighthouse which can drive towards the discovery of
what yet is unknown in the theory of prime numbers�].

Following (Ingham 1964, Introduction, 6.), as we have already said above
Riemann enunciated a number of important theorems concerning the
zeta function - i.e., the above Riemann statements 1., 2., and 3. - to-
gether with a remarkable relatioship connecting the prime number count-
ing function with its zeros, but he gave in most cases only insu�cient
indications of proofs. These problems raised by Riemann memoir in-
spired, in due course, the fundamental researches of Hadamard in the

65Because either the original Jensen formula (19) and another formula of potential theory (Poisson
formula) due to D.S. Poisson, are special cases of this formula due to Nevanlinna.
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theory of entire functions, the results of which at last removed some of
the obstacles which for more than thirty years had barred the way to rig-
orous proofs of Riemann statements. The proofs sketched by Riemann
were completed (in essentials), in part by Hadamard himself in 1893, and
in part by Von Mangoldt in 1894. Following (Ingham 1964, Introduction,
6.), as we have already said above Riemann enunciated a number of im-
portant theorems concerning the zeta function - i.e., the above Riemann
statements 1., 2., and 3. - together with a remarkable relatioship con-
necting the prime number counting function with its zeros, but he gave in
most cases only insu�cient indications of proofs. These problems raised
by Riemann memoir inspired, in due course, the fundamental researches
of Hadamard in the theory of entire functions, the results of which at
last removed some of the obstacles which for more than thirty years had
barred the way to rigorous proofs of Riemann statements. The proofs
sketched by Riemann were, in essentials, completed in part by Hadamard
himself in 1893, and in part by Von Mangoldt in 1894. These discoveries
due to Hadamard prepared the way for a rapid advance in the theory
of the distribution of primes. The so-called prime number theorem, ac-
cording to which θ(x) ∼ x/ lnx, was �rst proved in 1896 by Hadamard
himself and by de la Vallée-Poussin, independently and almost simulta-
neously, the proof of the former having used the results achieved in his
previous 1893 memoir. Out of the two proofs, Hadamard one is the sim-
pler, but de la Vallée-Poussin, in another paper published in 1899 (see
(de la Vallée-Poussin 1899-1900)), studied in great detail the question
of closeness of approximation as well as gave further improvements to
prime number theorem. Finally, either de la Vallée-Poussin work (see
(de la Vallée-Poussin 1896)) and Von Mangoldt one (see (Von Mangoldt
1896) and (Von Mangoldt 1905)), used the results on entire function
factorization achieved by Hadamard in his 1893 memoir (see (Maz'ya &
Shaposhnikova 1998, Chapter 10, Section 10.1)). Following (Kudryavt-
seva 2005, Section 7), Riemann's paper is written in an extremely terse
and di�cult style, with huge intuitive leaps and many proofs omitted.
This led to (in retrospect quite unfair) criticism by E. Landau and G.H.
Hardy in the early 1900s, who commented that Riemann had only made
conjectures and had proved almost nothing. The situation was greatly
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clari�ed in 1932 when C.L. Siegel (see (Siegel 1932)) published his paper,
representing about two years of scholarly work studying Riemann's left
over mathematical notes at the University of Göttingen, the so-called
Riemann's Nachlass. From this study, it became clear that Riemann
had done an immense amount of work related to his 1859 memoir and
that never appeared in it. One conclusion is that many formulas that
lacked su�cient proof in 1859 paper were in fact proved in these notes. A
second conclusion is that the notes contained further discoveries of Rie-
mann that were never even written up in the original memoir. One such
is what is now called the Riemann-Siegel formula, which Riemann had
written down and that Siegel (with great di�culty) was able to prove
(see (Karatsuba 1994) and (Edwards 1974)). This formula, in essentials,
arises from an Hankel integral type expression for ξ(s), and gives a re-
�ned method to calculate ξ(1/2 + it), in comparison to previous ones.
In any way, after Hadamard work on Riemann ξ function, only a few au-
thors have put considerable attention to it, amongst whom are E. Landau
and G. Pólya. Notwithstanding that, in the following sections we wish
brie�y to retrace the historical path which gather those main works on
Riemann ξ function which will lead to a particular unexpected result of
mathematical physics, to be precise belonging to statistical mechanics
which, in turn, has opened a new possible line of approach Riemann
hypothesis.

In conclusion, we wish to textually report what retrospectively Hadamard
himself says about his previous work on entire function, following (Hadamard
1901, Chapter I), that is to say

�Les formules démontrées dans ma thèse relativement aux singular-
ités polaires66 ont trouvé une application immédiate dans un Mémoire

66To be precise, we report an excerpt of the last part of the Hadamard discussion about his 1892
thesis on Taylor development of functions (see (Hadamard 1892)), from which he starts to discuss
his next work on entire functions. He states that �A partir de la publication de ma Thèse, l'attention
des géomètres s'est portée sur ce sujet. Grâce aux travaux de MM. Borel, Fabry, Leau, Lindelöf, et
à la découverte de M. Mittag-Le�er, cette théorie, qui n'existait pas en 1892, forme aujourd'hui un
chapitre assez important de la Théorie des fonctions, celui de tous (avec la théorie des Fonctions
entières dont il va être question plus loin) qui, dans ces dernières années, a acquis à la Science le
plus grand nombre de résultats. Une très grande partie de ceux-ci ont d'ailleurs été obtenus par
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auquel l'Académie a décerné, en 1892, le grand prix des Sciences math-
ématiques. La question posée par l'Académie, et qui portait sur une
fonction employée par Riemann, soulevait un problème général: celui du
genre des fonctions entières. Ou sait que la notion de genre est liée au
théorème de Weierstrass d'après lequel toute fonction entière F (x) peut
être mise sous forme d'un produit de facteurs (facteurs primaires)

F (x) = eG(x)
∏
n

[(
1− x

an

)
ePn

(
x
an

)]
(où G(x) est une nouvelle fonction entière et les P (x) des polynômes):
décomposition analogue à celle d'un polynôme en ses facteurs linéaires.

Si l'on peut s'arranger les polynômes P (x) soient de degré E au
plus, la fonction G(x) se réduisant elle-même à un polynôme de degré
égal ou inférieur à E, la fonction F (x) est dite (Il est sous-entendu
que E doit être le plus petit entier satisfaisant aux conditions indiquées)
de genre E. Il est nécessaire pour cela (mais non su�sant) que les
racines a1, a2, ..., an de l'équation F (x) = 0 ne soient pas trop rap-
prochées les unes des autres: la série

∑
(1/|an|)E+1 doit être conver-

gente. M. Poincaré a donné, en 1883 (Bull. de la Soc. math. de
France), une condition nécessaire pour qu'une fonction F (x) soit de
genre E; cette condition est que les coe�cients du développement de
F (x) décroissent au moins aussi vite que les valeurs successives de 1/(m!)1/(E+1).
Cette condition nécessaire était-elle la condition nécessaire et su�sante
pour que la fonction fût au plus de genre E? Etant donnée la manière
compliquée dont les racines d'une équation dépendent de ses coe�cients,
il semblait hautement improbable que la réponse fût aussi simple, ni
surtout qu'elle fût aisée à obtenir. C'était elle qui avait manqué à
Halphen pour continuer les recherches qu'il avait commencées en 1883,

le développement des méthodes mêmes que j'avais indiquées. Je n'ai pas perdu de vue, dans la
suite, cette catégorie de questions, et, en 1897, j'ai démontré, également par la considération d'une
intégrale dé�nie, un théorème qui fait connaître les singularités possibles de la série

∑
aibix

i quand
on connaît celles de la série

∑
aix

i et de la série
∑
bix

i. Celte proposition dérive évidemment du
même principe que le théorème mentionné en dernier lieu; comme lui, elle o�re cet avantage de
s'appliquer à toute l'étendue du plan. Aussi, ce travail a-t-il attiré l'attention des géomètres sur le
principe en question et provoqué une nouvelle série de recherches ayant pour objet d'en obtenir de
nouvelles applications�.
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sur les travaux de Riemann. La Commission (M. Picard, rapporteur)
chargée déjuger le concours de 1892 rappelait, dans son Rapport, l'exemple
d'Halphen et faisait observer combien il semblait peu vraisemblable au
premier abord que l'on pût donner une réciproque au théorème de M.
Poincaré. De son côté, ce dernier, dans le Mémoire précédemment cité,
après s'être posé une question étroitement liée à la précédente, celle de
savoir si la dérivée d'une fonction de genre E, ou la somme de deux
fonctions de genre E, est également du même genre, ajoutait: �Ces
théorèmes, en admettant qu'ils soient vrais, seraient très di�ciles à dé-
montrer�.

Le problème qui consiste à déterminer le genre d'une fonction en-
tière donnée par son développement en série de puissances se rattache
d'une manière évidente aux recherches dont j'ai parlé jusqu'ici, puisque
celles-ci ont pour objet général l'étude d'une série de Maclaurin donnée
a priori. J'ai pu e�ectuer celle détermination on toulc rigueur dans le
Mémoire soumis au jugement de l'Académie. Désormais, la théorie des
fonctions entières est, au point de vue des zéros, toute parallèle à celle
des polynômes. Le genre (ou, plus généralement, l'ordre décroissance)
joue le rôle du degré, la distribution des zéros de la fonction étant en
général réglée par ce genre comme le nombre des zéros d'un polynome
par son degré. Dans un article ultérieur [see (Hadamard 1896c)], j'ai pré-
cisé et simpli�é la loi qui donne la croissance du module de la fonction
lorsqu'on donne la suite des coe�cients et qui joue un rôle important
dans ces recherches. [...] Quant aux questions posées par M. Poincaré et
relatives à la conservation du genre dans la dérivation ou dans les com-
binaisons linéaires, elles ne sont pas, il est vrai, résolues d'une façon
tout à fait complète par les théorèmes dont je viens de parler, et ne
sauraient, d'ailleurs, l'être par des méthodes de cette nature. Mais on
peut dire qu'elles sont résolues en pratique. D'une part, en e�et, les cas
qui échappent aux méthodes précédentes sont tout exceptionnels, d'autre
part, l'hésitation ne peut jamais être que d'une unité sur le genre cherché.

Again, Hadamard goes on, recalling what follows

�Du théorème relatif au rayon de convergence d'une série entière dé-

142



coule celte conséquence: la condition nécessaire et su�sante pour qu'une
série de Maclaurin représente une fonction entière est que la racine
mieme du coe�cient de xm tende vers 0. Les propriétés les plus im-
portantes de la fonction entière sont liées à la plus ou moins grande
rapidité avec laquelle a lieu cette décroissance des coe�cients. L'étude
de ces propriétés consiste tout d'abord dans l'établissement de relations
entre cette loi de décroissance et les deux éléments suivants : 1o L'ordre
de grandeur du module maximum de la fonction pour les grandes valeurs
du module de la variable; 2o La distribution des zéros et la valeur du
genre, laquelle est étroitement liée à cette distribution. Une partie de
ces relations avait été établie dans le Mémoire cité de M. Poincaré: une
limite supérieure des coe�cients successifs avait pu être trouvée, con-
naissant l'une ou l'autre des deux lois qui viennent d'être énumérées.
Mais on n'avait pas pu, depuis ce moment, obtenir les réciproques, c'est-
à-dire déduire d'une limite supérieure supposée connue pour chaque co-
e�cient les conséquences qui en découlent, d'une part quant à l'ordre de
grandeur de la fonction ellemême, d'autre part quant à la distribution de
ses zéros. C'est à l'établissement de ces conséquences qu'est principale-
ment consacré le Mémoire couronné par l'Académie en 1892 et publié en
1893 au Journal de Mathématiques. J'ai ensuite précisé les premières
dans la Note [see (Hadamard 1896c)] insérée au Bulletin de la Société
Mathématique de France et dont j'ai également parlé dans l'Introduction.
Quant aux zéros, les résultats contenus dans ma Thèse fournissaient
aisément à leur égard cette conclusion simple: La loi de croissance des
racines de la fonction entière

∑
amx

m est au moins aussi rapide que
celle des quantités 1/ m

√
|am|. Pour étudier le facteur exponentiel, de

nouvelles déductions ont, au contraire, été nécessaires. Ces déductions
m'ont, en particulier, permis de démontrer, avec une extrême simplic-
ité, le théorème de M. Picard sur les fonctions entières, pour toutes les
fonctions de genre �ni. La démonstration ainsi donnée s'étend d'elle-
même, moyennant une restriction analogue, au théorème plus général du
même auteur sur le point essentiel, ainsi que je l'ai montré depuis [see
(Hadamard 1896b)]. On sait que mon Mémoire de 1893 a été le point de
départ des si importants travaux de M. Borel, consacrés à la démonstra-
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tion du premier théorème de M. Picard sans restriction, et aussi de ceux
de MM. Schou et Jensen. Outre les applications à la fonction ζ(s) et
aux fonctions analogues, dont il me reste à parler, la proposition fonda-
mentale de ce Mémoire a été utilisée par M. Poincaré dans une question
relative aux déterminants in�nis qui s'introduisent en Astronomie (Les
méthodes nouvelles de la Mécanique céleste, t. II)�.

Whereupon, in a brief but complete manner, Hadamard discusses his
work on Riemann ζ function, stating �rst that

�Le dernier anneau de la chaîne de déductions commencée dans ma
Thèse et continuée dans mon Mémoire couronné aboutit à l'éclaircissement
des propriétés les plus importantes de la fonction ζ(s) de Riemann. Par
la considération de cette fonction, Riemann détermine la loi asympto-
tique de fréquence des nombres premiers. Mais son raisonnement sup-
pose : 1o que la fonction ζ(s) a des zéros eu nombre in�ni; 2o que
les modules successifs de ces zéros croissent à peu près comme n lnn;
3o que, dans l'expression de la fonction auxiliaire ξ(t) en facteurs pri-
maires, aucun facteur exponentiel ne s'introduit. Ces propositions étant
restées sans démonstration, les résultats de Riemann restaient complète-
ment hypothétiques, et il n'en pouvait être recherché d'autres dans cette
voie. De fait, aucun essai n'avait été tenté dans cet ordre d'idées depuis
le Mémoire de Riemann, à l'exception : 1o de la Note précédemment citée
d'Halphen, qui était, en somme, un projet de recherches pour le cas où
les postulats de Riemann seraient établis; 2o d'une Note de Stieltjes, où
ce géomètre annonçait une démonstration de la réalité des racines de
ξ(t), démonstration qui n'a jamais été produite depuis. Or les proposi-
tions dont j'ai rappelé tout à l'heure l'énoncé ne sont qu'une application
évidente des théorèmes généraux contenus dans mon Mémoire.

Une fois ces propositions établies, la théorie analytique des nombres
premiers put, après un arrêt de trente ans, prendre un nouvel essor; elle
n'a cessé, depuis ce moment, de faire de rapides progrès. C'est ainsi que
la connaissance du genre de ζ(s) a permis, tout d'abord, à M. Von Man-
goldt d'établir en toute rigueur le résultat �nal du Mémoire de Riemann.
Auparavant, M. Cahen avait fait un premier pas vers la solution du prob-
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lème posé par Halphen; mais il n'avait pu arriver complètement au but:
il fallait, en e�et, pour achever de construire d'une façon inattaquable le
raisonnement d'Halphen, prouver encore que la fonction ζ, n'avait pas
de zéro sur la droite R(s) = 1. J'ai pu vaincre cette dernière di�culté
en 1896, pendant que M. de la Vallée-Poussin parvenait de son côté au
même résultat. La démonstration que j'ai donnée est d'ailleurs de beau-
coup la plus rapide et M. de la Vallée-Poussin l'a adoptée dans ses pub-
lications ultérieures. Elle n'utilise que les propriétés les plus simples de
ζ(s). En même temps, j'étendais le raisonnement aux séries de Dirichlet
et, par conséquent, déterminais la loi de distribution des nombres pre-
miers clans une progression arithmétique quelconque, puis je montrais
que ce raisonnement s'appliquait de lui-même aux formes quadratiques
à déterminant négatif. Les mêmes théorèmes généraux sur les fonctions
entières ont permis, depuis, à M. de la Vallée-Poussin d'achever ce cycle
de démonstrations en traitant le cas des formes a b2 − ac positif�.

Then, Hadamard recalls furthermore that

�La détermination du genre de la fonction ζ(s) - et c'était d'ailleurs
l'objet môme de la question posée par l'Académie - était nécessaire pour
l'éclaircissement des points principaux du Mémoire principal de Riemann
�Sur le nombre des nombres premiers inférieurs à une grandeur donnée�.
Cette détermination, qui avait été jusque-là cherchée en vain, s'eirectue
sans aucune di�culté à l'aide des principes précédemment établis sur
les fonctions entières. Aussi M. Von Mangoldt put-il peu après établir
avec une entière rigueur les résultats énoncés par Riemann. Un seul
point restait à élucider: la question de savoir si, conformément à une
assertion énuse, en passant, par ce grand géomètre, les racines imagi-
naires de l'équation ζ(s) = 0 sont toutes de la forme 1/2 + it, t étant
réel. Cette question n'a pas encore reçu de réponse décisive (le Mémoire
dans lequel M. Jensen annonce qu'il donnera ce résultat n'ayant pas en-
core paru); mais j'ai pu en 1896 [see (Hadamard 1896a) and references
therein] établir que la partie réelle des racines dont il s'agit, laquelle
n'est évidemment pas supérieure à l'unité, ne peut non plus, pour au-
cune d'elles, être égale à 1. Or ce résultat su�t pour établir les prin-
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cipales lois asymptotiques de la théorie des nombres premiers, de même
que le résultat complet de Riemann conduirait à montrer (voir un Mé-
moire récent de M. Helge von Koch) que ces lois sont vraies à une erreur
près, laquelle n'est pas seulement d'ordre inférieur à celui de la quantité
considérée x, mais est tout au plus comparable à

√
x.

De plus le mode de démonstration que j'emploie n'utilise (pie les pro-
priétés les plus simples de la fonction ζ(s). Il en résulte que ce mode de
démonstration s'étend sans grande di�culté aux séries analogues qui ont
été ulilisées dans la théorie des nombres. J'ai fait voir en particulier,
dans le même travail, qu'il s'applique aux séries qui servent à étudier
la distribution des nombres premiers représentables soit par une forme
linéaire (séries de Dirichlet67), soit par une forme quadratique dé�nie.
M. de la Vallée-Poussin parvenait en même temps au même résultat,
mais par une voie moins rapide. Depuis, ce savant (tout en simpli�-
ant son Analyse par l'emploi du mode de raisonnement que j'avais in-
diqué) a étendu ses recherches au cas des formes quadratiques indé�nies
et aussi à celui où l'on donne à la fois une forme linéaire et une forme
quadratique; de sorte que les mêmes principes relatifs aux fonctions en-
tières servent de base à la solution générale de toutes les questions qui
s'étaient posées relativement à la distribution des nombres premiers. Ce
ne sont d'ailleurs pas les seules questions de Théorie des nombres pour
la solution desquelles les théorèmes qui viennent d'être rappelés se soient
montrés d'une importance essentielle. Je me contente de signaler, à cet
égard, les Mémoires récents de MM. von Mangoldt, Landau, etc�.

In any event, Hadamard work until early 1900s was always in�uenced by
1859 Riemann's memoir: indeed, as remembers (Mandelbrojt & Schwartz
1965), for instance

�Hadamard's theorem on composition of singularities was proved in
1898. When stated without much rigour, it reads as follows.

∑
anbnz

n

67Pour démontrer le théorème relatif à la distribution des nombres premiers dans une progression
arithmétique, j'ai utilisé, en la complétant sur un point, la proposition de M. Lipschitz qui établit,
pour les séries de Dirichlet, une relation fonctionnelle analogue à celle de Riemann-Schlömilch. J'ai
été conduit, depuis le travail [see (Hadamard 1897)], à simpli�er la démonstration de ce théorème.
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has no other singularities than those which can be expressed as products
of the form αβ, where α is a singularity of

∑
anz

n and β a singularity of∑
bnz

n. The theorem is proved by the use of Parseval's integral, which
Hadamard adapted to Dirichlet series (in works of 1898 and 1928), not
for the research of the singularities of the composite series, but for the
study of interesting relationships between the values of Riemann's ζ func-
tion at di�erent points, or between di�erent types of ζ functions�.

Then, Mandelbrojt and Schwartz recall further that

�The year 1892 is one of the richest in the history of Function The-
ory, since then not only did Hadamard's thesis appear, but also his fa-
mous work on entire functions, which enabled him, a few years later (in
1896), to solve one of the oldest and most important problems in the
Theory of Numbers. The general results obtained, establishing a rela-
tionship between the rate of decrease of the moduli of the coe�cients of
an entire function and its genus (the converse to Poincaré's theorem),
applied to the entire function ξ(z), related to ζ(s), shows that its genus,
considered as a function of z2, is (as stated, but not proved correctly, by
Riemann) zero. This relationship (for general entire functions) between
the moduli of the zeros of an entire function and the rate of decrease of its
coe�cients is obtained by using the results of the Thèse [see (Hadamard
1892)], and concerning the determinants Dn,m of a suitable meromor-
phic function (the reciprocal of the considered entire function). This
paper on entire functions was written for the Grand Prix de l'Académie
des Sciences in 1892 for studying the function π(x). As a matter of
fact, the mathematical world in Paris was sure that Stieltjes would get
the prize, since Stieltjes thought that he had proved the famous �Rieman-
nische Vermutung�, and it is interesting, I believe, to quote a sentence
from Hadamard's extremely famous paper of 1896 with the suggestive ti-
tle, �Sur la distribution des zéros de la fonction ζ(s) et ses conséquences
arithmétiques�. Hadamard writes: �Stieltjes avait démontré, conformé-
ment aux prévisions de Riemann, que ces zéros sont tous de la forme
1/2 + it (le nombre t étant réel), mais sa démonstration n'a jamais été
publiée, et il n'a même pas été établi que la fonction ζ n'ait pas de zéros
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sur la droite R(s) = 1. C'est cette dernière conclusion que je me propose
de démontrer.

The �modesty� and the grandeur, of the purpose: to prove that ζ(s) ̸=
0 for σ = l (s = σ+it), after the assertion that Stieltjes had �proved� the
Riemannische Vermutung, are remarkably moving. The more so that,
due to this proof, Hadamard could prove, in the same paper of 1896, the
most important proposition on the distribution of primes: π(x) being
the number of primes smaller than x (x > 0), π(x) ∼ x/ lnx (x→ ∞).
The event had certainly a great historical bearing. The assumption was
made, at the beginning of the last century, by Legendre (in the form
π(x) = x/(lnx − A(x)), with A(x) tending to a �nite limit). Tcheby-
che� had shown that 0.92129 ≤ π(x) ln x/x ≤ 1.10555 ..., but did not
prove that the expression tends to a limit, and there was no hope that
his method could yield any such proof. Many mathematicians, Sylvester
among them, were able, in using the same methods as Tchebyche�, to
improve these inequalities. But there was nothing fundamentally new
in these improvements. Let us quote Sylvester (in 1881) on this mat-
ter (quotation given by Landau). �But to pronounce with certainty upon
the existence of such possibility (limπ(x) ln x/x = 1) we should proba-
bly have to wait until someone is born into the world as far surpassing
Tchebyche� in insight and penetration as Tchebyche� proved himself
superior in these qualities to the ordinary run of mankind�. And, as
Landau says, when Sylvester wrote these words Hadamard was already
born. It should be pointed out that independently, and at the same time,
de La Vallée-Poussin also proved the non-vanishing of ζ on σ = 1 and,
thus, the prime-number theorem; however, Hadamard's proof is much
simpler. Hadamard's study of the behavior of the set of zeros of ζ(s) is
based on his result quoted above (proved in his paper of 1892, written for
the Grand Prix), on the genus of ξ(z). It seems to me of importance
to insist upon the �chain of events� in Hadamard's discoveries: relation-
ship between the position of the poles of a meromorphic function and
the coe�cients of its Taylor series; this result yields later the genus of
an entire function by the rate of decrease of its Taylor coe�cients; and
from there, four years later, the important properties of ζ(s), and �nally,
as a consequence, the prime-number theorem. Clearly, one of the most
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beautiful theories on analytic continuation, so important by itself, and so
rich by its own consequences, seems to have been directed in Hadamard's
mind, consciously or not, towards one aim: the prime-number theorem.
He proved also the analogous theorems on the distribution of primes be-
longing to a given arithmetical progression, since by his methods he was
able to study Dirichlet series which, with respect to these primes, play
the same role as the ζ function plays with respect to all primes�.

We have above reported only two of the numerous witnesses about the
important Hadamard work, namely (Mandelbrojt & Schwartz 1965) and
(Mandelbrojt 1967), just those two strangely enough not quoted in (Maz'ya
& Shaposhnikova 1998) (to which we however refer for the bibliograph-
ical richness and completeness on the subject), however the most com-
plete and updated human and scienti�c biography devoted to the �living
legend� in mathematics as Hardy de�ned Hadamard when introduced
him to the London Mathematical Society in 1944 (see (Kahane 1991)).
Finally, in (Ayoub 1963, Chapter II, Section 4), the author says that,
relatively to (18) (see also next (54)), such a formula was not proved
rigorously until about 1892 when Hadamard constructed his general the-
ory of entire functions, and that Landau showed that it is possible to
avoid this theory. Moreover, in (Meier & Steuding 2009), the authors,
in relation to this Hadamard work of 1893, simply note that his gen-
eral theory for zeros of entire functions forms now an important part
of complex analysis, while (Rademacher 1973, Chapter 7, Section 56)
points out that the existence of in�nitely many non-trivial zeros of ζ(s)
is usually proved through the application of Hadamard's theory of entire
functions to the function s(s − 1)Φ(s) where Φ(s) = π−s/2Γ(s/2)ζ(s),
whereas usual arguments connect it with the existence of in�nitely many
primes. Of course Hadamard's theory yields much more than merely the
existence of in�nitely many non-trivial zeros. Riemann conjectured, and
Von Mangoldt proved in 1905 (see later), that the number N(T ) of zeros
ρ = β + iγ with 0 < γ ≤ T is

N(T ) =
T

2π

(
ln
T

2π
− 1

)
+O(lnT ),
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and Hardy showed �rst in 1914 (see (Hardy 1914)) that in�nitely many
of these zeros lie on the middle line σ = 1/2 of the critical strip, while a
better estimate in this direction was later provided by A. Selberg's the-
orem according to which the number N(T ) of zeros on σ = 1/2 satis�es
N0(T ) > AT lnT for a certain positive A. Selberg's result states too
that among all non-trivial zeros, those on the middle-line have a positive
density.

• The contributions of H. Von Mangoldt, E. Landau, and others. After
the pioneering 1893 work of Hadamard on Riemann ξ function, and its
next fruitful application to prove prime number theorem by Hadamard
himself, de la Vallée-Poussin and Von Mangoldt in the late 1890s, a few
works were carried out on Riemann ξ function, except some researches
which date back to early 1900s. Amongst the latter are the works of Ed-
mund Landau (1877-1938), namely (Landau 1909a) and (Landau 1927).
These works were accomplished by Landau after the publication of his fa-
mous treatise on the theory of prime numbers, namely (Landau 1909b),
where, therefore, these are not quoted but, nevertheless, a deep and
complete treatment of product formulas for ξ(s) function is given (see
(Landau 1909b, Band I, �� 67-81)), mainly reporting what was known
until then, that is to say, Hadamard work, as well as its applications to
number theory issues by Hadamard himself, de la Vallée-Poussin and Von
Mangoldt. In particular, Landau showed that, to estimate ζ ′(s)/ζ(s), it
was enough to study behavior of ζ(s) for ℜs > 0 considering, as done
by Riemann, the integral

1

2πi

∫ a+i∞

a−i∞
ln ζ(s)

xs

s
ds,

where a > 1 and x is not an integer, avoiding entire function theory
(see (Ayoub 1963, Chapter II, Sections 4 and 6)), applied to ξ function,
according to 1893 Hadamard route. In any case, almost all the subse-
quent works on Riemann ξ function were turned towards applications
to number theory, above all to estimate the number of zeros of Rie-
mann ζ function within a given �nite region of complex plane. Following
(Burkhardt et al. 1899-1927, II.C.8, pp. 759-779), such estimates were
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achieved considering the following product formula

(22) (s− 1)ζ(s) =
1

2
ebs

1

Γ
(
s
2 + 1

)∏
ρ

(
1− s

ρ

)
e

s
ρ

from which it is possible to deduce the following one

(23)
ζ ′(s)

ζ(s)
= b− 1

s− 1
− 1

2

Γ
(
1 +

s

2

)
Γ
(
1 +

s

2

) +
∑
ρ

(1
ρ
+

1

s− ρ

)
which will play a fundamental role in the subsequent analytic number
theory researches. As an ansatz already given by Riemann in his 1859
memoir and correctly proved, for the �rst time, by Hadamard, in 1893,
through (20), it was possible to estimate the number of zeros of ζ(s) as
follows (see (Landau 1909a, Section 2))

(24) N(T ) =
1

2π
T lnT − 1 + ln 2π

2π
T +O(lnT )

where N(T ) is the number of zeros s + it of ζ(s) with 0 < σ < 1 and
0 < t ≤ T . Subsequently, Von Mangoldt (see (Von Mangoldt 1905)) im-
proved this estimate through properties of either the ζ functional equa-
tion and the Gamma function, proving that

(25) N(T ) =
1

2π
T lnT − 1 + ln 2π

2π
T +

1

2πi

∫ 2+iT

−1+iT

ζ ′(s)

ζ(s)
ds+O(1),

an estimate which will be further improved later by E. Landau in the
years 1908-09 (see (Landau 1908; 1909a)) as well as by C. Hermite and
J. Stieltjes in the early 1905 (see (Landau 1909a) and references therein).
In any event, either Von Mangoldt and Landau have based their works
on the Hadamard one upon entire functions, whereas the next works of
R. Backlund (see (Backlund 1914; 1918)) gave too further improvements
of this estimate without appealing to Hadamard work but simply on
the basis of approximation properties of ζ(s). Further contributions to
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this subject, were also given later by J.P. Gram, H. Cramer, H. Bohr,
J.L.W. Jensen, J.E. Littlewood, F. Nevanlinna and R. Nevanlinna (see
(Borel 1921, Chapter IV), (Nevanlinna & Nevanlinna 1924) and refer-
ences therein). Von Mangoldt, in the long-paper (Von Mangoldt 1896),
considered Hadamard's work of 1893 for estimating the number of zeros
of zeta function into a given �nite region of the complex plane, start-
ing from the previous estimate already provided by Hadamard himself,
which will be extended and improved by Von Mangoldt, then deepening
and extending the various number theory issues considered by Riemann
in his 1859 original memoir, together to what will be achieved in the
next papers (Von Mangoldt 1898; 1905) in which the author takes into
account the well-known Hadamard's and de la Vallée-Poussin's works of
1896 even to number theory issues related to estimates of the number
of zeros of Riemann ζ function via ξ function. Afterwards, Edmund
Landau began to consider the previous work of Hadamard, de la Vallée-
Poussin and Von Mangoldt on analytic number theory, drawing up a
�rst long-paper in 16 sections (see (Landau 1908)) in which are gathered
a great number of methods and applications of the entire function the-
ory to number-theoretic questions and where, in particular, a detailed
treatment of the Riemann ξ function is achieved, taking into account
the related properties of entire functions - as, for example, exposed in
the 1906 German translation of the G. Vivanti treatise (see (Vivanti
1901)), which is quoted in (Landau 1908, p. 199, footnote 52) - even
in view of their applications to prime number distribution theory ques-
tions, but with a considerable attention to Hadamard's papers of 1893
and 1896. This 1908 Landau paper may be considered as a �rst lit-
tle monograph on analytic number theory applied to the distribution of
prime numbers, which will be shortly afterwards followed by the more
consistent treatise (Landau 1909b); in such a paper, Landau, amongst
other things, improves and recti�es previous Von Mangoldt's formula to
estimate the number of Riemann zeta function zeros through the ratio
ζ ′/ζ, as well as provides a proof of the so-called explicit formula for
the di�erence π(x)−li(x) between the prime-counting function π(x) and

the function li(x) =

∫ x

0

dt

ln t
. In the next Landau's paper of 1909 (see
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(Landau 1909a)), the author starts with a consideration of a product
expansion of the type (22) till to reach expression (23), on the basis of
what already made in his previous paper of 1908. Landau begins with the
consideration of some estimates achieved by Hadamard and Von Man-
goldt, extending this to the case of a general Dirichlet's series. In the
subsequent paper of 1927 (see (Landau 1927)), Landau starts with the
consideration of a work due to the Indian mathematician K. Ananda-Rau
(1893-1966), namely (Ananda-Rau 1924), saying that he was the �rst to
consider the following type of Hadamard's in�nite product expansion of
Riemann ξ function

(26) (s− 1)ζ(s) = eH(s)
∏
ρ

(
1− s

ρ

)
e

s
ρ

where H(s) is an arbitrary linear function, then applying this case study
to Riemann's ξ function and for further estimations of its zeros. The
paper (Aranda-Rau 1924) mainly is centered around the getting of the
equation (22) by means of Jensen's formula and some previous results
achieved by Landau himself (to which Ananda-Rau refers mentioning
(Landau 1909b)), rather that Hadamard's theory of entire functions (see
(Narkiewicz 2000, Chapter 5, Section 5.1, Number 2)), with formal pro-
cedure which will be further improved by Landau himself in (Landau
1927). Finally, following (Titchmarsh 1986) and references therein, fur-
ther works on Riemann ξ function were pursued by G.H. Hardy, E.K.
Haviland, N. Koshlyakov, O. Miyatake, S. Ramanujan, A. Wintner (see
(Wintner 1935; 1936; 1947)) and N. Levinson, most of them even re-
ferring to the previous pioneering 1893 work of J. Hadamard on entire
functions.

• The contribution of G. Pólya. After the contributions by Von Man-
goldt and Landau to Riemann ξ function as sketchily delineated above,
for our historical ends we should further deepen the next contribution to
Riemann ξ function due to George Pólya (1887-1985) in 1926, with the
paper (Pólya 1926), and that will be the truly joint point between the
entire function theory and the so-called Lee-Yang theorems. This pa-
per, entitled Bemerkung über die Integraldarstellung der Riemannschen
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ξ-Funktion, has been considered a minor contribution of Pólya to the
Riemann zeta function theory but, as we will see later, it instead has
contributed to open a new avenue in mathematical physics with very
interesting methods and outcomes which, successively, will turn out to
be useful also for some attempts to solve Riemann conjecture itself. Also
following (Hejhal 1990, Introduction), Pólya's paper starts with the con-
sideration of a Fourier integral representation of ξ(1/2+ it) to develop a
very tantalizing result in the general direction of the Riemann hypoth-
esis. To be precise, Pólya starts with the following transformation of
the Riemann ξ function (see also (Titchmarsh 1986, Chapter X, Section
10.1))

(27) ξ(iz) =
1

2

(
z2 − 1

4

)
π−

z
2−

1
4Γ

(z
2
+

1

4

)
ζ
(1
2
+ z

)
,

hence he considers the following integral transformation

(28) ξ(z) = 2

∫ ∞

0

Φ(u) cos zudu

where

(29) Φ(u) = 2πe
5u
2

∞∑
n=1

(
2πe2un2 − 3

)
n2e−n

2πe2u

with

(30) Φ(u) ∼ 4π2e
9u
2 −πe2u as u→ +∞,

so that, due to the parity condition of this last asymptotic approxima-
tion, we have as well

(31) Φ(u) ∼ 4π2
(
e

9u
2 + e−

9u
2

)
e−π(e

2u+e−2u) as u→ ±∞.

Afterwards, Pólya deals with an approximation formula for ξ obtained
from (29) considering a �nite sum of N terms rather than an in�nite
series, and with most of exponentials replaced by hyperbolic cosines (see
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(Haglund 2009, Section 1) and (Balazard 2010)). Through this ansatz,
Pólya proves that the resulting integral (28) has only real zeros whenN =
1 (this result will asymptotically extended to an arbitrary N �nite by
D.A. Hejhal in (Hejhal 1990)). Pólya also showed that if we replace Φ(u)
by any function which is not an even function of u, then the resulting
integral (28) has only �nitely many real zeros. In regard to the so-called
Riemann Vermutung (i.e., the Riemann hypothesis), taking into account
the asymptotic conditions (30) and (31), Pólya, on the basis of a personal
discussion with E. Landau had in 1913, argues on the possible existence
or not of real zeros of such an approximation of the ξ function and, to
this end, he considers (28) with a �nite approximation for Φ given by
N = 1, under the asymptotic conditions (29) and (30), so obtaining

(32) ξ∗(z) = 8π2
∫ ∞

0

(
e

9u
2 + e−

9u
2

)
e−π(e

2u+e−2u) cos zudu,

whence questions inherent real zeros of ξ(z) reduce to questions inherent
real zeros of ξ∗. Then, Pólya argues that asymptotically we have ξ(z) ∼
ξ∗(z) within an in�nite angular sector comprehending the real axis, with
vertex in 0 and symmetrically opening with respect to the real axis.
Under this hypothesis, if N(r) [respectively N ∗(r)] is the number of
zeros of ξ [respectively of ξ∗] within this angular sector, the we have
N(r) ∼ N ∗(r) with N(r) − N∗(r) = O(ln r). Pólya, therefore, reduces
the study of real zeros of ξ(z) to the study of real zeros of ξ∗(z) (or to
the study of imaginary zeros of ξ∗(iz)), at least for the case N = 1. To
be precise, he considers ξ∗ and, to analyze this function, he introduces
an auxiliary entire function, namely the following one

(33) G(z) = G(z; a)
.
=

∫ +∞

−∞
e−a(e

u+e−u)+zudu,

where a is an arbitrary parameter even having positive values. Since we
have

(34) ξ∗(z) = 2π2
{
G
(iz
2
− 9

4
;π

)
+G

(iz
2
+

9

4
;π

)}
,
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it is evident that the study of the ξ∗ function may be reduced to the study
of the auxiliary function G, to be precise, the above question about the
imaginary zeros of ξ∗ function is reduced to the study of real zeros of the
function G(iz). Hence, Pólya keeps on with a detailed analysis of the
various formal properties and possible functional representations of this
auxiliary function G in view of their applications to Riemann ξ∗ function
and its zeros, starting to consider the case in which

(35) ξ∗(z) = 2

∫ ∞

0

Φ∗(u) cos zudu

and

(36) Φ∗(u) =
N∑
n=1

e−2πn2 cosh(2u)[8π2n4 cosh(9u/2)− 12πn2 cosh(5u/2)]

as an approximation to Φ(u) forN �nite. In particular, the caseN = 1 is
quite interesting, and Pólya was able to prove that all zeros of ξ∗ function
are real just in this case. Pólya also succeeded to �nd a Riemann-like
estimate of the number of zeros of G, in the form

(37)
y

π
ln
y

a
− y

π
+O(1).

Afterwards, Pólya introduces and proves two general lemmas which are
need just for proving the main aim of the paper, that is to say, to evaluate
the nature of the zeros of an approximation of the Riemann ξ function:
the �rst one concerns general analytic function theory, while the second
one regards instead entire functions. Due to the importance of the latter,
we stress what Pólya says in this regard, and, let us say immediately, he
attains a point in which necessarily intervenes Hadamard's factorization
theorem of entire functions applied to certain representations of G, just
to �nd its zeros. These Pólya lemmata will be just those formal out-
comes which will lead to the prove of the theorems of Lee and Yang. To
be precise, his �rst lemma, called Hilfssatz I, states that
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�Let F (u) be an analytic function which has real values for each real
value of u, and furthermore let

(a) lim
u→∞

u2F (n)(u) = 0

for n = 0, 1, 2, .... Then, when F (u) is not an even function, then we
have

(b) G(x) =

∫ ∞

0

F (u) cos xudu

for values of x great enough�.

Hence, Pólya considers the case in which the function F (u) of Hilfssatz
I is of the type (31), so that the corresponding function G(x) of (b) is
an entire function to which is now applicable the well-known Hadamard
factorization theorem of entire functions to �nd its zeros. To this end, ex-
tending to entire functions a previous result achieved by C. Hermite and
C. Biehler for polynomials68 (and already quoted in the previous chapter
about HB class - see (Biehler 1879) and (Hermite 1856a,b; 1873)), Pólya
considers a second lemma, called Hilfssatz II, which states that

�Let A be a positive constant and let G be an entire function of order
0 or 1, which has real values for real values of z, has, at least, on real
zero, and has real zeros only. Then the function G(z − ia) +G(z + ia)
has real zeros only�.

Due to the importance of this Pólya Hilfssatz II, herein we report the
brief and elegant proof given by Pólya, following (Cardon 2002, Section
1). Applying Hadamard's factorization theorem to the entire function
G(z), we have

G(z) = czqeαz
∏
n

(
1− z

αn

)
e

z
αn

68Following (Pólya & Szeg® 1998a, Part III, Exercise 25), this result, due to Hermite and Biehler,
is as follows. We assume that all the zeros of the polynomial P (z) = a0z

n+a1z
n−1+ ...+an−1z+an

are in the upper half-plane ℑz > 0. Let aν = αν + iβν , with αν , βν real, ν = 0, 1, 2, ..., n, and
U(z) = α0z

n + α1z
n−1 + αν−1z + α0, V (z) = β0z

n + β1z
n−1 + βν−1z + β0. Then the polynomials

U(z) and V (z) have only real zeros.
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where c, α1, α2, ... are real constant, αn ̸= 0 for each n, q ∈ N0 and∑
n |αn|2 is convergent. When z = x + iy is a zero of the function

G(z − ia) +G(z + ia), then we have |G(z − ia)| = |G(z + ia)|, so that,
by means of the above Hadamard factorization

(◦) 1 =
∣∣∣G(z − ia)

G(z + ia)

∣∣∣2 = (x2 + (y − a)2

x2 + (y + a)2

)q∏
n

(x− αn)
2 + (y − a)2

(x− αn)2 + (y + a)2
.

Now, if it were y > 0, then the right hand side of the last expression
would be lesser than 1, whereas if it were y < 0, then the right hand
side of the last expression would be greater than 1, and both of these
cases are impossible, so y = 0 whence G(z + ia) + G(z − ia) has only
real zeros. Accordingly, it follows that G(iz/2) has not real zeros when
we apply Hilfssatz II to the function G(z) = G(iz/2; π). From all this,
related considerations follow for ξ∗(z). In conclusion, we may say that
Hadamard factorization theorem has played a crucial role in proving
Hilfssatz II which, in turn, has helped in achieving the main aim of this
Pólya's paper. Furthermore, a good part of the next literature on the
argument, like that related to the work achieved by D.A. Cardon and
co-workers (see, for example (Adams & Cardon 2007)), makes wide and
frequent use of factorization theorems of the type Weierstrass-Hadamard.
Later on, Pólya improved this result for �nite values of N > 1 in (Pólya
1927a), this line of research results having been vastly generalized later
by D.A. Hejal in (Hejal 1990), whilst Hilfssatz II was generalized by D.A.
Cardon in (Cardon 2002). Following (Newman 1976), the problem of de-
termining whether a Fourier transform has only real zeros arises in two
rather disparate areas of mathematics: number theory and mathemati-
cal physics. In number theory, the problem is intimately associated with
the Riemann hypothesis (see (Titchmarsh 1980, Chapter X)), while in
mathematical physics it is closely connected with Lee-Yang theorems of
statistical mechanics and quantum �eld theory. Finally, this 1926 work
of Pólya was then commented by Mark Kac (1914-1984), when it was
inserted into the Collected Papers of Pólya, of which we shall talk about
in the next section.
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6.2. On the history of the theorems of T.L. Lee and C.N.

Yang. In regard to the just above mentioned Pólya's paper, Kac says
that, although this beautiful paper takes one to within an hair's breadth
of Riemann's hypothesis, it didn't seem to have inspired much further
work, and references to it, in the subsequent mathematical literature,
were rather poor. Nevertheless, Kac says that, because of this, it may
be of interest to refer that Pólya's paper did play a small, but perhaps
not wholly negligible, part in the development of an interesting and im-
portant chapter in Statistical Mechanics, as we will see later. Instead,
according to us, Pólya's paper played a notable, and not simply a small,
role (though quite implicit) not only as regard the pioneering work of
T.D. Lee and C.N. Yang in statistical mechanics of the early 1950s, but
also for some next developments of Riemann zeta function theory, as
witnessed by the latest researches on the subject as, for instance, those
made by D.A. Cardon and co-workers (see (Adams & Cardon 2007) and
references therein), in which Polya work is put into an interesting and
fruitful relationship with Lee-Yang theorems in view of its applications
just to Riemann zeta function. However, to begin in delineating the his-
tory of the Lee-Yang theorem, we �rst report the related comment and
witness due to Yang himself and drawn from (Yang 2005, pp. 14-16)

�In the fall of 1951, T.D. Lee came to the Institute for Advanced
Study, and we resumed our collaboration. The �rst problem we tackled
was the susceptibility of the two-dimensional Ising model. As stated in a
previous Commentary, the Onsager-Kaufman method yielded informa-
tion about all eigenvectors of the transfer matrix. I had used some of
that information to evaluate the magnetization, and I thought we might
be able to use more of that information to evaluate the susceptibility by a
second-order perturbation method, one order beyond that used to obtain
equation (14) of the previous paper The Spontaneous Magnetization of
a Two-Dimensional Ising Model, The Physical Review, 85, 808 (1952).
This led to a formula that was, so to speak, an order of magnitude more
di�cult to evaluate than the magnetization. After a few weeks of labor we
gave up and turned our attention to the lattice gas, then to J. Mayer's
theory of gas-liquid transitions, and �nally to the unit-circle theorem.
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These considerations led to papers (Yang & Lee 1952) and (Lee & Yang
1952). The idea of the lattice gas was more or less in the minds of many
authors (see reference 2 of (Lee & Yang 1952)). We �rmed it up and
elaborated on it because with the result of (Yang & Lee 1952), we were
able to construct the exact two-phase region of a simple two-dimensional
lattice gas. (We were especially pleased by the �law of constant diam-
eter�, which resembled the experimental �law of rectilinear diameter�).
The two-phase region consists of �at portions of the P − V diagram,
bounded by the liquid and gas phases. We were thus led very naturally
to the question of why Mayer's theory of condensation gave isotherms
that stayed �at into the liquid phase, instead of becoming curves in the
liquid phase. Besides, Mayer theory of condensation was a milestone in
equilibrium statistical mechanics, for it broke away from the mean �eld
type of approach to phase transitions. It caused quite a stir at the Van
der Waals Centenary Congress on November 26, 1937. Mayer's the-
ory led to a number of papers by Mayer himself, by B. Kahn and G.E.
Uhlenbeck, and by others in succeeding years. In the early 1940s I had
attended a series of lectures by J.S. Wang in Kunming on these devel-
opments and had been very much interested in the subject ever since.
Using the lattice gas model, for which we had a lot of exact information,
Lee and I examined Mayer's theory as applied to this case. This led to
a study of the limiting process in the evaluation of the grand partition
function for in�nite volume. Paper (Yang & Lee 1952) resulted from
this study. It clari�ed the limiting process and made transparent the re-
lationship between the various portions of an isotherm and the limiting
process. In late 1952, after (Yang & Lee 1952) had appeared in print,
Einstein sent Bruria Kaufman, who was then his assistant, to ask me to
see him. I went with her to his o�ce, and he expressed great interest in
the paper. That was not surprising, since thermodynamics and statistical
mechanics were among his main interests. Unfortunately I did not get
very much out of that conversation, the most extensive one I had with
Einstein, since I had di�culty understanding him. He spoke very softly,
and I found it di�cult to concentrate on his words, being quite over-
whelmed by the nearness of a great physicist whom I had admired for so
long. Back in the fall of 1951, Lee and I, in familiarizing ourselves with
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lattice gases, computed the partition function for several small lattices
with 2, 3, 4, 5, etc. lattice points. We discovered to our amazement
that the roots of the partition functions, which are polynomials in the
fugacity, are all on the unit circle for attractive interactions. We were
fascinated by this phenomenon and soon conjectured that it was a gen-
eral theorem for a lattice of any size with attractive interactions. The
theorem, later called the unit circle theorem, became the main element
that was exploited in (Lee & Yang 1952) to discuss the thermodynamics
of a lattice gas. Our attempt at proving the conjecture was a struggle,
which I described in a letter to M. Kac, dated September 30, 1969, when
he was writing for the Collected Papers of George Pólya. I quote now
from that letter

When Lee arrived at Princeton, in the fall 1951, I was
just recovering from my computation of the magnetization
of the Ising model. I realized that the Ising model is equiv-
alent to the concept of a lattice gas. So, we worked on that
and �nally produced our paper (Yang & Lee 1952). In the
process of doing that, we discovered, by working on a number
of examples, the conjectured unit circle theorem. We then
formulated a physicist's �proof� based on no double roots
when the strength of the couplings were varied. Very soon
we recognized this was incorrect; and for, I would guess, at
least six weeks we were frustrated in trying to prove the
conjecture. I remember our checking into Hardy's book In-
equalities, our talking to Von Neumann and Selberg. We
were, of course, in constant contact with you all along (and I
remember with pleasure your later help in showing us Wint-
ner's work, which we acknowledged in our paper). Sometime
in early December, I believe, you showed us the proof of the
special case when all the couplings are there and are of equal
strength, the case that you are now writing about in connec-
tion with Pólya's collected works. The proof was �ne, but we
were still stuck on the general problem. Then one evening
around December 20, working at home, I suddenly recognized
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that by making zl, z2, ... independent variables and studying
their motions relative to the unit circle one could, through
an induction procedure, bring to bear a reasoning similar to
the one used in your argument and produce the complete
proof. Once this idea was there, it took only a few minutes
to tighten up all the details of the argument. The next morn-
ing I drove Lee to pick up some Christmas trees, and I told
him the proof in the car. Later on, we went to the Institute;
and I remember telling you about the proof at a blackboard.
I remember these quite distinctly because I'm quite proud of
both the conjecture and the proof. I t is not such a great
contribution, but I fondly consider it a minor gem.

The unit circle theorem was later generalized and extended to very inter-
esting additional types of interactions69. With the unit circle theorem,
it appeared to Lee and me in early 1952 that we could somehow �gure
out or guess at the root-distribution function g(θ) on the unit circle (see
(Lee & Yang 1952, Section V)) for the two-dimensional Ising model.
We thought that, with the exact expressions for the free energy and the
magnetization already known, we had powerful handles on the structure
of g(θ). Unfortunately these handles were not powerful enough, and the
exact form of g(θ) remains unknown today (the exact form of g(θ) is of
course transformable into the exact partition function of the Ising model
in a magnetic �eld). But our e�orts in this direction did lead to two
useful results. In listening to a seminar around the end of February,
1952, I learned about the new, ingenious combinatorial method of M.

69The theory of phase transitions and its rigorous results, was then improved, generalized, en-
larged and extended in many respects, through the works of D. Ruelle (see, for instance, (Ruelle
1969; 1994; 2000; 2010)), B.M. McCoy, T.T. Wu, T. Asano, M. Suzuki, M.E. Fischer, C.M. New-
man, J.L. Lebowitz, R.B, Gri�ths, E.R. Speer, B. Simon (see (Simon 1974) and references therein),
E.H. Lieb, O.J. Heilmann, A.D. Sokal, D.G. Wagner, R.L. Dobrushin, G. Gallavotti, S. Miracle-
Sole, D.W. Robinson, J. Fröhlich, P-F. Rodriguez (see (Frohlich & Rodriguez 2012)), J. Borcea,
P. Brändén (see (Borcea & Brändén 2008; 2009a,b), (Brändén 2011) and references therein), M.
Biskup, C. Borgs, J.T. Chayes, R. Kotecky, L.J. Kleinwaks, L.K. Runnels, J.B. Hubbard, A. Hinkka-
nen, C. Gruber, A. Hintermann, D. Merlini, and others. See (Georgii 2011, Bibliographical Notes)
as well as (Gruber et al. 1977), (Baracca 1980, Appendice), (Lebowitz et al. 2012) and references
therein. Of the interesting work of these authors, we shall deal with another, next paper.
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Kac and J. Ward for solving the Ising problem without a magnetic �eld.
It occurred to me during the seminar that, by a slight modi�cation of
the Kac-Ward method, one could �nd the partition function for the king
model with an imaginary magnetic �eld H = iπ/2. This requires the
evaluation of an 8 × 8 matrix, which Lee and I carried out in the next
couple of days, arriving at equation (48) of (Lee & Yang 1952) for the
free energy with H = iπ/2. Comparing this expression with the known
L. Onsager result for the same quantity for the case H = 0, Lee and
I observed that they are very similar except for some sign changes and
related alterations. Thus it seemed that the change H = 0 +H = iπ/2
is altogether minor. We therefore tried similar minor changes on the
magnetization for H = 0 and tested the results by checking whether they
were in agreement with the �rst few terms of a series expansion of the
magnetization for H = iπ/2. This was a very good method, and we
soon arrived at equation (49) of (Lee & Yang 1952), which we knew was
correct, but did not succeed in proving. It was �nally proved by B.M.
McCoy and T.T. Wu70 in 1967�.

Following (Huang 1987, Chapter 9), after pioneering work of Lee and
Yang, phase transitions are manifested in experiments by the occurrence
of singularities in thermodynamic functions, such as the pressure in a
liquid-gas system, or the magnetization in a ferromagnetic system, with
N particles. Huang asks: How is it possible that such singularities arise
from the partition function, which seems to be an analytic function of
its arguments? Huang says that the answer lies in the fact that a macro-
scopic system is close to the idealized thermodynamic limit - i.e., the limit
of in�nite volume with particle density held �xed. As we approach this
limit, the partition function can develop singularities, simply because the
limit function of a sequence of analytic functions need not be analytic.
Yang and Lee just proposed a de�nite framework for the occurrence of
singularities in the thermodynamic limit. Due to its formal character, it

70In (McCoy & Wu 1967a), using higher mathematical techniques of complex analysis, like
Wiener-Hopf method, Szeg®'s theorems for N × N Toeplitz determinants applied to determine
magnetization M(iπ/2) as N → ∞ (for β = 1), etc. See also (McCoy & Wu 1966; 1967b), (Cheng
& Wu 1967) and (McCoy & Wu 1973).
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belongs to a chapter of statistical physics sometimes known as �rigorous
statistical mechanics� (see the 1969 Ruelle's monograph). Following (Ma
1985, Chapter 9), if the number of particles N of a given thermodynam-
ical system is �nite, then the calculation of the various thermodynamic
potentials does not pose any problem. Although N is not in�nite, it is
nevertheless a very large number like 1023 (Avogadro's number), hence
the problem of the N → ∞ limit becomes a very important problem
for the application of the basic assumption in thermodynamics, i.e. the
so-called problem of the macroscopic limit. The rigorous mathematical
analysis of this limit is a branch of statistical mechanics. The pioneer-
ing work in this topic is just the Yang-Lee theorem of 1950s, which was
originally proposed for phase transitions. Following them, many have
applied rigorous mathematical analyzes to describe phase transitions,
because the model problems of phase transitions are not easily solvable
and less than rigorous analysis is not reliable. However the application
of the Yang-Lee theorem is quite universal. Following (McCoy & Wu
1973), the analyticity properties of the grand canonical partition func-
tion for Ising models correspond to qualitative features that appear in
the thermodynamic limit which are not possible in a system with a �nite
number of particles. These analytic properties are intimately related to
the physical notion of phase transition. The major reason for studying
the two-dimensional Ising model (as, for example, masterfully exposed in
(McCoy &Wu 1973)) is to attempt to make this connection more precise.
Following (Domb & Green 1972, Chapter 2, II. and IV.), a mathemat-
ically �sharp� phase transition can only occur in the thermodynamical
limit. It is also true in general that, only in the thermodynamic limit,
the di�erent statistical ensembles (i.e., microcanonical, canonical, and
grand canonical) yield equivalent thermodynamic functions. Hence this
limit permits a mathematically precise discussion of the question of phase
transitions. The problem of proving the existence of a thermodynamic
limit for the thermodynamic properties of a system of interacting parti-
cles seems �rst to have been discussed by L. Van Hove in 1949 in the case
of a continuum classical gas with hard cores in the canonical ensemble,
although the proof is incomplete due to an error in the appendix of the
paper. Later, Yang and Lee, in 1952, considered the same system in the
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grand ensemble and L. Witten, in 1954, extended their proof with a re-
laxation of the condition of hard cores. Then, D. Ruelle, in 1963, proved
the existence of limits in both the canonical and grand canonical case
under a �strong-tempering� condition on the potential, and extended the
results to quantum gases. Hence, R.L. Dobrushin and M.E. Fisher, in
1964, showed how Ruelle arguments could be extended to a more general
class of potentials, and Fisher considered in some detail the possible class
of domains tending to in�nity for which a limit exists. The thermody-
namic limit for lattice systems was discussed by R.B. Gri�ths in 1964
for both classical and quantum systems. Additional results have been
obtained in 1967 by G. Gallavotti and S. Miracle-Sole for classical lattice
systems and by D.W. Robinson for quantum lattice systems (see (Domb
& Green 1972, Chapter 2) for detailed bibliographical information). Lee
and Yang opened the way to the rigorous theory of phase transitions,
then included into the wider chapter of algebraic methods of statistical
mechanics (see (Lavis & Bell 1999, Volume 2, Chapter 4)); moreover, for
most recent formal developments of advanced statistical mechanics see
also (McCoy 2010).

From a direct analysis of the original papers (also following the mod-
ern treatment given by (Huang 1987, Chapter 9)), it turns out that al-
ready in (Yang & Lee 1952, Section III) the authors make use of simple
polynomial factorizations of the Weierstrassian type. Indeed, in (Yang
& Lee 1952, Section II), it is considered a system of N particles �lling a
region of �nite volume V , undergoing a two-body interaction by means of
a potential of the type U , whose partition function, de�ned on the grand
canonical ensemble in the complex variable y = A exp(µ/kT ) (fugacity),
is given by

(38) Qy =
M∑
N=0

QN

N !
yN

where
QN =

∫
...

∫
V

exp(− U

kT
)dτ1...dτN

where U = Σiju(rij) =
∑

ij u(|ri − rj|) is the sum of the various in-
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teraction potentials between the i-th and j-th particles, which undergo
particular restrictions, and M =M(V ) is the maximum number of par-
ticles which can be crammed into the �nite volume V . Then Yang and
Lee consider the following limits for in�nite volume

(39)
p

kT
= lim

V→∞

1

V
lnQy, ρ = lim

V→∞

∂

∂ ln y

1

V
lnQy

reaching two main theorems thanks to which it is possible to study these
limits for potentials of the type71

U(r) =

 ∞ for r < a,
−∞ < U(r) < −ϵ for a < r < r0,
0 for r > r0,

which is a reasonable approximation of a potential of the Lennard-Jones
type. In such a case, QN converges and Qy is a polynomial in y whose
degree depends on V and whose coe�cients are analytic functions of
β = 1/kT , de�ned to be positive for real values of β. Accordingly, the
zeros of Qy, in the complex plane y, are in a �nite number and lie out of
the positive real axis. Only in the thermodynamic limit V → ∞ (or in�-
nite volume limit), the zeros ofQy are in�nite and may approach positive
real axis72, with the appearance of singularities in the thermodynamic
potentials. To be precise, in both limits N → ∞ and V → ∞ in such a
way that the speci�c volume v = V/N is bounded, some of the zeros of
Qy may approach the positive real axis, so giving rise to possible phase

71It is said to be an hard-core potential. Such a potential is related to an impenetrable sphere
of radius a surrounded by an attractive potential with action radius r0 and maximal deep ϵ. The
occurrence of such an impenetrable potential implies that, for each �xed value of the total volume
V , only a �nite number of particles may be considered, and if Nmax(V ) = M is the maximum of
such a number, then we have that, when N > M , at least two particles are in touch, so the potential
U is in�nite, and Qy = 0. Therefore, Qy is a polynomial of degree M (see (41)). Nevertheless, the
thermodynamics of physical systems is ruled by the logarithm of the partition function, so that its
zeroes broke analyticity of thermodynamic functions, so giving rise to singularities which, on its
turn, are related to the occurrence of phase transitions.

72In this case, we feel allowable to refer to many theorems on the distribution of the zeros of entire
functions like, for example, expounded in (Levin 1980, Chapters VII, VIII) and mainly regarding
LP and HB classes of entire functions, some of which just provide necessary and/or su�cient
conditions for zeros of certain entire functions approach positive real axis.
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transitions. From these considerations applied to particular physical sys-
tems (amongst which ferromagnetic spin systems), Lee and Yang have
worked out a phase transition model whose one of the main characteris-
tics is having pointed out the close relationships between the existence of
phase transitions and general properties of the related potential on the
one hand, and between the thermodynamic limit and the occurrence of
singularities of thermodynamic potentials on the other hand. These lat-
ter relationships are, on its turn, related to the occurrence of zeros of the
partition function. In particular, for Ising models of ferromagnetic spin
systems, the distribution of the zeros of the partition function takes a
well-determined geometrical shape by means of the deduction of certain
general theorems proved by Lee and Yang in their two seminal papers of
1952. To be precise, we are interested in two of these theorems, namely
the so-called Theorem 1, according to which, for all positive real values
of y, the �rst limit approaches, as V → ∞, a limit which is independent
of the shape of V , this limit being moreover a continuous, monotonically
increasing function of y, and the so-called Theorem 2, which states that,
if in the complex y plane a region R containing a segment of the positive
real axis is always free of roots, then in this region as V → ∞, all the
quantities

(40)
1

V
lnQy,

∂

∂ ln y

1

V
lnQy,

( ∂

∂ ln y

)2 1

V
lnQy, ...,

approach limits which are analytic with respect to y. To study the limit

of
∂

∂ ln y

1

V
lnQy we notice that Qy is a polynomial in y of �nite degree

M . This is a direct consequence of the assumed impenetrable core of the
atoms (roughly formalized by an hard-core potential U as done above).
It is therefore possible to factorize Qy and write

(41) Qy =
M∏
i=1

(
1− y

yi

)
where y1, ..., yM are the roots of the algebraic equation Qy(y) = 0. Ev-
idently none of these roots can be real and positive, since all the coe�-
cients in the polynomial Qy are positive. Following (Yang & Lee 1952,
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Section IV), by Theorem 2 it follows that, as V increases, these roots
move about in the complex y plane and their number M increases (es-
sentially) linearly with V . Their distribution in the limit V → ∞ gives
the complete analytic behavior of the thermodynamic functions in the y
plane. On the other hand, the problem of phase transition is intrinsically
related to the form of the regions R described in Theorem 2, and Lee
and Yang discuss two main cases related to the geometry of this region
R, and the related roots of Qy(y) = 0, around real y axis, reaching the
conclusion that phase transitions of the system occur only at the points
on the positive real y axis onto which the roots of Qy(y) = 0 close in
as V → ∞ (which entails M → ∞ in (41)). For other values of the
fugacity y, a single phase system is obtained. The study of the equations
of state and phase transitions can thus be reduced to the investigation
of the distribution of roots of the grand partition function. In many
cases, as will be seen in (Lee & Yang 1952), such distributions will turn
out to have some surprisingly simple regularities. The above mentioned
theorems 1 and 2, will be proved respectively in Appendix I and II of
(Yang & Lee 1952), considering arbitrary circles lying inside R. On the
other hand, since the degree M of the polynomial Qy is function of V ,
so M → ∞ as V → ∞, following (Ruelle 1969, Chapter 3, Sections
3.2, 3.4; Exercise 3.E), under the hypothesis that Hamiltonian operator
of the physical system be bounded below (stability condition), we have
that the partition function in the grand canonical ensemble73 is given by
the following entire function of the fugacity (or activity) z (correspond-
ing to y of Lee and Yang notation) considered as a complex variable (in
the notations of Ruelle)

Ξ(Λ, z, β) = 1 +
∞∑
n=1

zn

n!

∫
...

∫
Λn

dx1 ... dxn exp[−βU(x1, ..., xn)] =

=
∞∑
n=0

znQ(Λ, n, z), with Q(Λ, 0, z) = 1

73Following (Huang 1987, Chapter 7, Section 7.3), such a function is often simply called the grand
partition function.
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which is of order at most 1, and of order 0 in the case of superstable
potentials, that is, potentials U satisfying, into a cube Λ of volume V , the
condition U(x1, ..., xn) ≥ n(−B+nC/V ) for certain constants B,C > 0,
in such last case Hadamard's factorization yielding

Ξ(z) =
∏
i

(
1− z

zi

)
,

where zi are the zeros of Ξ, and reducing to a polynomial when U is an
hard-core potential (Lee-Yang case). Nevertheless, the construction of
the partition function of a given physical system is one of the tricky task
of statistical mechanics.

Thus74, in (Yang & Lee 1952), the authors have seen that the prob-
lem of a statistical theory of phase transitions and equations of state is
closely connected with the distribution of roots of the grand partition
function. There, it was shown that the distribution of roots determines
completely the equation of state, and in particular its behavior near the
positive real axis prescribes the properties of the system in relation to
phase transitions. It was also shown there that the equation of state of
the condensed phases as well as the gas phase can be correctly obtained
from a knowledge of the distribution of roots. While this general and
abstract theory clari�es the problems underlying the statistical theory
of phase transitions and condensed phases, it is natural to ask whether
it also provides us with a means of obtaining practical approximation
methods for calculating properties pertaining to phase transitions and
condensed phases. The problem is clearly that of seeking for the proper-
ties of the distribution of roots of the grand partition function. At �rst
sight, this appears to be a formidable problem, as the roots are in gen-
eral complex and would naturally be expected to spread themselves for
an in�nite sample in the entire complex plane, or at least regions of the
complex plane, and make it very di�cult to calculate their distribution.
We were quite surprised, therefore, to �nd that for a large class of prob-
lems of practical interest, the roots behave remarkably well in that they
distribute themselves not all over the complex plane, but only on a �xed

74We here follow, almost verbatim, (Lee & Yang 1952).
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circle. This fact will be stated as a theorem in Section IV of (Lee & Yang
1952) and proved in the Appendix, while implications of the theorem are
discussed in Section V. Lee and Yang return to the general problem of the
condensation of gases, and shall in the following apply the results of the
previous paper (Yang & Lee 1952) to the problem of a lattice gas. There
was then no loss of generality in con�ning their attention to a lattice gas,
as a real continuum gas can be considered as the limit of a lattice gas
as the lattice constant becomes in�nitesimally small. The equivalence
proved in Section II of (Lee & Yang 1952) states that the problem of a
lattice gas is identical with that of an Ising model in a magnetic �eld,
and that the grand partition function in the former problem is propor-
tional to the partition function in the latter problem. It is convenient
to introduce in the Ising model problem the variable z = exp(−2H/kT )
which is proportional to the fugacity y of the lattice gas y = σz, where σ
is a constant. In terms of z the partition function exp(−NF/kT ) of the
Ising lattice is equal to exp(NH/kT ) times a polynomial P in z of degree
N , that is, exp(−NF/kT ) = P exp(NH/kT ) where P =

∑N
n=0 Pnz

n.
The coe�cients Pn, are the contribution to the partition function of the
Ising lattice in zero external �eld from con�gurations with the number of
↓ spin down equal to n. It should be noticed that Pn = Pn′ if n+n′ = N ,
with each Pn real and positive. Furthermore, the roots of the polynomial
P are never on the positive real z axis, and are in general complex. The
results of (Yang & Lee 1952), show that if at a given temperature as N
approaches in�nity, the roots of the polynomial P do not close in onto
the positive real axis in the complex z plane, the free energy F is an
analytic function of the positive real variable z. Physically this means
that the Ising model has a smooth isotherm in the I-H diagram (where
I is the intensity of magnetization and H is the magnetic �eld) and that
the corresponding lattice gas undergoes no phase transition at the given
temperature. If, on the other hand, the roots of the polynomial P do
close in onto the positive real z axis at the points z = tl, t2, ..., each of
these points would correspond to a discontinuity of the isotherm in the I-
H diagram of the Ising lattice and to a phase transition of the lattice gas.
To study the problem of phase transitions of a lattice gas as well as of an
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Ising model related to ferromagnetic spin systems, one therefore needs
only to study the distribution in the complex z plane of the roots of the
polynomial P . The surprising thing is that under quite general condi-
tions, this distribution shows a remarkably simple regularity, which may
be stated in the form a theorem, say Theorem 3 (see (Lee & Yang 1952,
Section IV)), stating that, if the interaction u between two gas atoms is
such that u = +∞ if the two atoms occupy the same lattice and u ≤ 0
otherwise, then all the roots of the polynomial P lie on the unit circle in
the complex z-plane. This theorem will be proved in Appendix II of (Lee
& Yang 1952). Thus, for the interaction of the theorem 3, the roots of P
lie on the unit circle, so its distribution as N → ∞ may be described as
a function g(θ) so that Ng(θ)dθ is the number of roots with z between

eiθ and ei(θ+dθ), with g(θ) = g(−θ) and
∫ π

0

g(θ)dθ = 1/2. The average

density of a �nite lattice gas is easily seen to be
∑

k z/(z − exp(iθk))
where z = exp(iθk) are the zeros of the grand partition function. The
results of (Yang & Lee 1952) show that this average density converges
to an analytic function in z both inside and outside of the unit circle
as the size of the lattice approaches in�nity. It seems intuitively clear
from this that the distribution of these roots should also approach a
limiting distribution on the unit circle for an in�nite lattice, this being
indeed the case whose a rigorous mathematical proof exists in the litera-
ture (see75 (Wintner 1934)), the authors acknowledging Professor Kac for
have shown them the proof. After having considered a certain number of
speci�c physical cases, the authors �nish stating that the previous results
have direct bearing on the distribution function g(θ) of the zeros of the
partition function on the unit circle, showing too that the motion of the
roots deploys toward the right along the unit circle as the temperature
decreases. They also say that, since the relation between the distribu-
tion of roots of a polynomial and its coe�cients is mathematically a very

75This work mainly deals with mathematical properties of asymptotic distributions σ of the values
of certain fast periodic and quasi-periodic functions (above all following many E. Helly and H. Bohr
works on this subject), by means of certain Cauchy transforms (see also (Müller-Hartmann 1977,
Section II.B)). Yang and Lee pointed out what fundamental role has played the paper of Aurel
Wintner of 1934, suggested them by M. Kac, in proving that roots of grand partition function are
distributed along a unit circle.
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complicated problem, it is therefore very surprising that the distribution
should exhibit such simple regularities as proved in Theorem 3 which
applies under very general conditions, so being tempted to generalize
such outcomes. One cannot escape the feeling that there is a very sim-
ple basis underlying the theorem, with much wider application, which
still has to be discovered. Finally, the authors express their gratitude
to Professor M. Kac for many stimulating and very pleasant discussions
from which they learned much in mathematics. The paper (Lee & Yang
1952) �nishes with the Appendix II in which Theorem 3 is proved in a
detailed manner. Usually, all the theorems contained in (Yang & Lee
1952) and (Lee & Yang 1952), are sometimes called Lee-Yang theorems
(or Yang-Lee theorems), while some other times, Theorem 3 is the one
to which is usually referred to the single expression Lee-Yang theorem,
when it is declined in the singular. Often, the latter is also referred to as
the Lee-Yang circle theorem (or Lee-Yang unit circle theorem). To sum-
marize, these theorems therefore imply that the zeros of a �nite physical
system cannot lie in the positive real axis, with consequent absence of
phase transitions. But a quite di�erent situation arises when we deal
with in�nite systems, in such a case being possible that the zeros of the
partition function may approach real axis and, in the thermodynamic
limit, produce that catastrophic situation given by a phase transition.
In the special case of a two-dimensional lattice Ising ferromagnetic sys-
tem, Lee and Yang proved that such zeros laid all into a unitary circle of
the complex plane of fugacity y, so that real axis is cut in y = 1 by this
circle, corresponding therefore to a phase transition with zero magnetic
�eld, while all the other positive real values of y are points of analytic-
ity for the thermodynamical functions. This pioneering idea of Lee and
Yang, albeit related to a particular case, will be the subject-matter of
further researches meant to generalize or extend it.

But, as a further historical deepening of this case, we report the wit-
ness of M. Kac inserted into the comment to 1926 Pólya paper included
into the the second volume of the Collected Papers of Pólya (see (Pólya
1926)). To be precise, Kac says that, in the fall of 1951 and in the spring
of 1952, Yang and Lee were developing their theory of phase transitions
which has since become justly celebrated. To illustrate the theory, they
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introduced the concept of a �lattice gas� and they were led to a remark-
able conjecture which (not quite in its most general form) can be stated
as follows. Let

(42) GN(z) =
∑
µk

exp
( N∑
k,l=1

Jklµkµl
)
exp

(
iz

N∑
k=1

µk
)

where Jkl ≥ 0 and the summation is over all 2N sequences (µ1, ..., µN)
with each µk assuming only values ±1. Then, Gn(z) has only real roots
(Lee-Yang theorem). Textually, Kac tells that, when he �rst heard of
this conjecture, he considered the simplest case Jk,l = ν/2 for all k, l,
and somehow Hilfssatz II of Pólya's paper came into his mind. Then,
Kac shows how, by a slight modi�cation of Polya proof, one can prove
the Lee-Yang theorem in the above special case. First of all, for all N ,
GN(z) is an entire function of order 1 which assumes real values for real
z. Note furthermore that(ν

2

)(N+1∑
k=1

µk
)2

+ iz

N+1∑
k=1

µk =

=
(ν
2

)( N∑
k=1

µk
)2

+ (νµN+1 + iz)
N∑
k=1

µk + izµN+1 +
(ν
2

)
and therefore

(43) e−ν/2GN+1(z) = eizGN(z − iν) + e−izGN(z + iν).

If z is a root of GN+1, we have

(44) |e2iz|2 =
∣∣∣GN(z + iν)

GN(z − iν)

∣∣∣2,
and if we assume that GN has only real roots, say α1, α2, ..., then, by
Hadamard factorization theorem, we have

(45) GN(z) = ceαz
∞∏
n=1

(1− z/αn)e
z/αn
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where c and α (as well as α1, α2, ...) are real. Equation (44) now becomes
(upon setting z = x+ iy)

(46) e−4y =
∞∏
n=1

(αn − x)2 + (y + ν)2

(αn − x)2 + (y − ν)2
.

Since ν > 0, each term of the product (and hence the product itself) is
greater than 1 if y > 0 and less than 1 if y < 0. On the other hand,
exp(−4y) is less than 1 for y > 0 and greater than 1 for y < 0. Thus
(46) can hold only if y = 0, i.e., all roots of GN+1 are also real. Since
for N = 2 a direct check shows that all roots of G2 are real, the theorem
for all N follows by induction. Then, Kac refers that he showed this
proof for the special case to Yang and Lee. A couple of weeks later,
they produced their proof of the general theorem (in (Lee & Yang 1952,
Appendix II)). Moreover, Kac also remembers Professor Yang telling him
at the time that Hilfssatz II of Pólya, in the form discussed above, was
one essential ingredient in their proof, as also recalled above. In any way,
one immediately realizes that the key tool of the above Kac's argument,
is just Hadamard factorization theorem.

Therefore, Pólya works (see (Pólya 1926a,b)) have opened new fruit-
ful avenues in pure and applied mathematics. Indeed, according to
(Dimitrov 2013), we consider the following question: suppose that K
is a positive kernel which decays su�ciently fast at ±∞, supposing
it belongs in the Schwartz class, and its Fourier transform F(z;K)

.
=∫ +∞

−∞
e−iztK(t)dt is an entire function. More generally, we consider pos-

itive Borel measures dµ with the property that Fµ(z)
.
=

∫ +∞

−∞
e−iztdµ(t)

de�nes an entire function. The problem to characterize the measures µ
for which Fµ has only real zeros has been of interest both in mathematics,
because of the Riemann hypothesis, and in physics, because of the valid-
ity of the so-called general Lee-Yang theorem for such measures. It seems
that Pólya was the �rst to formulate the problem explicitly in his works
(Pólya 1926a,b), beginning, mutatis mutandis, with the following issue:
What properties of the function K(u) are su�cient to secure that the
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integral 2
∫ +∞

−∞
K(u) cos zudu = F(z) has only real zeros? The origin

of this rather arti�cial question is the well-known hypothesis concerning
the Riemann zeta function, as the author himself recognizes in (Pólya
1926a). If we put K(u) = Φ(u) as given by (29), then F(z) is nothing
but that the Riemann ξ function. Since Φ(u) is an even kernel which
decreases extremely fast, the above de�nition of Pólya for F , in the case
when K is even, is exactly the one for the Fourier transform. The Rie-
mann's hypothesis, as formulated by Pólya himself, states that the zeros
of ξ are all real. The e�orts to approach Riemann hypothesis via ξ de-
�ned as a Fourier transform, have failed despite of the remarkable e�orts
due to Pólya, N.G. de Bruijn (see (de Bruijn 1950)) and many other
mathematicians for two chief reasons. The �rst one is that the above
question of Pólya still remains open, whilst the second one is that su�-
cient conditions for the kernels have turned out to be extremely di�cult
to be veri�ed for Φ or simply do not hold for it. Finally, the notable work
of C.M. Newman (see (Newman 1974) as well as (Kim 1999), (Ki & Kim
2003), (Ki et al. 2009), (Korevaar 2013) and references therein for a mod-
ern sight of the question and related arguments) based on an extension
and generalization of the above pioneering work of T.D. Lee and C.N.
Yang, has proved the latter to be equivalent to the above Pólya's ques-
tion. Moreover, following (Korevaar 2013), de Bruijn and J. Korevaar
were both inspired by work of Pólya on the zeros of entire functions. de
Bruijn was fascinated by Pólya's results of 1926 on the zeros of functions
given by trigonometric integrals, while Korevaar was attracted by other
Pólya's papers on the approximation of entire functions by polynomials
whose zeros satisfy certain conditions. All these articles by Pólya have
been reproduced with commentary in the second volume of his Collected
papers. Moreover, de Bruijn and Korevaar both published extensions
of Pólya's work in Duke Mathematical Journal, referring to (Korevaar
2013) for a deeper historical analysis of all that and for other notable
aspects of the history of entire function theory. Likewise, some works of
D.A. Cardon and collaborators (see (Cardon & Nielsen 2003), (Cardon
2002; 2005), (Adams & Cardon 2007) and references therein) have fruit-
fully combined and �tted very well together, on the basis of certain ex-
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tensions, formal comparative analogies and possible generalizations, the
1952 Lee-Yang formal approach to phase transitions with the original
1926 Pólya approach to Riemann ξ function revisited from the modern
setting given by entire function theory as exposed in (Levin 1980), to be
precise, reformulating the Pólya results within either the Hermite-Biehler
and Laguerre-Pólya classes of entire functions with related distributions
of zeros also using some tools drawn from stochastic and probabilistic
analysis. Finally, very interesting attempts to apply Lee-Yang theorem
for approaching Riemann conjecture have been pursued in (Knauf 1999)
and (Julia 1994) (see also references therein quoted). Following (Borcea
& Brändén 2009b, Introduction), the Lee-Yang theorem seems to have
retained an aura of mystique. In his 1988 Gibbs lecture, Ruelle pro-
claimed: �I have called this beautiful result a failure because, while it
has important applications in physics, it remains at this time isolated
in mathematics�. Ruelle's statement was apparently motivated by the
fact that the Lee-Yang theorem also inspired speculations about pos-
sible statistical mechanics models underlying the zeros of Riemann or
Selberg zeta functions and the Weil conjectures, but �the miracle has
not happened�. Nevertheless, only recently Lee-Yang theorem has re-
ceived new attention from mathematician, as witnessed, for instance, by
the recent works of J. Borcea and P. Brändén (see (Borcea & Brändén
2008; 2009a,b), (Brändén 2011) and references therein) whose research
program makes often reference to Laguerre-Pólya, Hermite-Bielher and
Pólya-Schur classes of complex functions. Indeed, recently Lee-Yang like
problems and techniques have appeared in various mathematical contexts
such as combinatorics, complex analysis, matrix theory and probability
theory. The past decade has also been marked by important develop-
ments on other aspects of phase transitions, conformal invariance, per-
colation theory. However, as A. Hinkkanen has observed, the power in
the ideas behind the Lee-Yang theorem has not yet been fully exploited:
�It seems that the theory of polynomials, linear in each variable, that do
not have zeros in a given multidisk or a more general set, has a long way
to go, and has so far unnoticed connections to various other concepts
in mathematics�. Anyway, from a general overview of almost all these
works concerning Riemann ξ function and related applications accord-
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ing to the line of thought opened by Polya's works of 1926 until up the
new directions provided by Lee-Yang theorem on the wake of Pólya's
work itself, it turns out that Weierstrass-Hadamard factorizations are
the key formal tools employed in these treatments, besides to be the piv-
otal source from most of entire function theory sprung out, as well as to
be crucial formal techniques widely employed in the modern treatment
of the theory of polynomials and their zeros (see (Gil' 2010), (Fisk 2008)
and (Rahman & Schmeisser 2002)).

In conclusion, we may state that two main results have been at the
early origins of the Lee-Yang theorems, especially as regard the unit cir-
cle theorem, namely a 1934 paper of Aurel Wintner, from which Lee
and Yang have drawn useful hints for determine the properties of the
distribution function g(θ) and related geometrical settings of the zeros
of grand partition function for the physical systems analyzed by them,
and a trick used to prove a lemma due to Pólya, namely (◦) of his Hil-
fssatz II (see previous section), thanks to which Lee and Yang proved
the non-trivial basis of induction corresponding to the case n = 2 con-
cerning the auxiliary polynomial B(z1, ..., zn) - see (Lee & Yang 1952,
Appendix II) - used for proving, by induction, a more general theorem
than the Theorem 3 of section IV, that is to say, the unit circle theorem.
Nevertheless, as Lee and Yang themselves point out at the beginning
of Section V, Point A. of (Lee & Yang 1952), the distribution function
g(θ) has been used only to estimate the number of zeros in the unit cir-
cle, once this last geometrical arrangement had already been determined
by means of other routes (that is to say, via unit circle theorem), and
not to properly determine this last settlement. In any event, Lee and
Yang have been pioneers in opening a possible avenue in mathematical
physics, even if their appreciated work dealt only with particular phys-
ical systems, still waiting general mathematical tools which would have
generalized and extended this Lee and Yang model to a wider class of
physical systems. This truly di�cult task has been undertaken by other
authors (recalled above), amongst whom are T. Asano76, D. Ruelle, M.

76For instance, the interesting theory of polynomial contractions due to Taro Asano, might have
fruitful applications in algebraic geometry, and vice versa, i.e., tools and methods of this last subject
might turn out to be useful for statistical mechanics of phase transitions and its rigorous results,
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Suzuki, C.M. Newman, E.H. Lieb, and A.D. Sokal, with very interesting
results which, nevertheless, have not reached the expected goal. Nev-
ertheless, just due to the great di�cult to exactly determine the grand
canonical partition function of an arbitrary thermodynamical system,
often the Lee-Yang model runs well when is applied to the state equa-
tion and its possible singularities. Following (Ruelle 1988, Section 3),
Lee-Yang theorem, conjectured on a physical basis related to ferromag-
netic spin system, originally took some e�ort to prove. A later idea, due
to T. Asano in extending Lee-Yang model to quantum case, now per-
mits a di�erent but short proof (see (Ruelle 1969, Chapter 5) as well as
(Ruelle 1988, Appendix)) of this theorem. Notwithstanding its remark-
able importance, Ruelle has nevertheless said of this beautiful result to
be a failure because, while it has important applications in physics, it
remains at this time isolated in mathematical physics and mathemat-
ics. In textual words of Ruelle, one might think of a connection with
zeta functions (and the Weil conjectures), the idea of such a connection
being not absurd but the miracle has not happened, so that one still
does not know what to do with the circle theorem. Ruelle says too that
this connection with Riemann zeta function and related conjecture is not
fully meaningless because there exist interesting applications of certain
ideas of statistical mechanics to di�erentiable dynamics, made possible
by the introduction of Markov partitions which transform the problems
of ergodic theory for hyperbolic di�eomorphisms or �ows into problems
of statistical mechanics on the �lattice� Z. Among the many applica-
tions of the method, Ruelle mentions Ya.G. Sinai's beautiful proof that
hyperbolic di�eomorphisms do not necessarily have a smooth invariant
measure. Also, since the geodesic �ow on manifolds of negative curva-
ture is hyperbolic, one has the possibility of studying zeta functions of
A. Selberg's type, and, using Markov partitions, these zeta functions are
expressed as certain sorts of partition functions, which can be studied
by statistical mechanics. Thus, one obtains for instance a kind of �prime
number theorem� for the lengths of closed geodesies on a compact man-

always along the line outlined by Asano. In this regard, see the exposition given in (Ruelle 2007,
Chapter 17). See also (Glimm & Ja�e 1987, Chapter 4) for other modern treatments and extension
of Lee-Yang model, above all in relation to quantum �eld theory context.
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ifold of negative curvature not necessarily constant (see (Mayer 1980,
Chapter IV)).

6.3. On some other applications of the theory of entire func-

tions, and all that. In reviewing the main moments of the history
of Riemann zeta function and related still unsolved conjecture known
as Riemann Hypothesis (RH), as for instance masterfully exposed in
(Bombieri 2006) as well as in the various treatises, textbooks and sur-
vey papers on the subject (see, for instance, (Whittaker & Watson
1927), (Chandrasekharan 1958), (Ingham 1964), (Iviç 1985), (Titch-
marsh 1986), (Patterson 1988), (Karatsuba & Voronin 1992), (Karatsuba
1994), (Edwards 2001), (Chen 2003), (Conrey 2003), (Gonek 2004) and
(Borwein et al. 2008)), one realizes that a crucial point which would have
deserved major historical attention is the one concerning Hadamard fac-
torization theorem, which is the central point around which has revolved
our attention and that has casted a precious bridge with entire function
theory, opening a new avenue in complex analysis. This point has been
su�ciently treated in the above sections which have seen involved the
�gures of Riemann, Weierstrass and Hadamard, so that we herein sum
up, in passing, the main points of what has been before discussed in
such a manner to be a kind of preamble of what will be said herein.
As has been seen, Hadamard formulated his celebrated 1893 theorem
as a continuation and completion of a previous 1883 theorem stated by
Poincaré as regard the order of an entire function factorized according
to the Weierstrass factorization theorem of 1876, applying the results so
obtained to the Riemann ξ function which, in turn, had already been
factorized by Riemann himself in his 1859 seminal paper. This cele-
brated Hadamard result was the pivotal point through which the entire
function theory entered into the realm of Riemann zeta function. Af-
ter Hadamard, it was then Pólya, in the 1920s, to achieve some further
remarkable outcomes along this research's path emphasizing the entire
function theory perspective of Riemann zeta function also making use of
the 1893 Hadamard work, until to reach the recent outcomes of which
we will brie�y refer in this section. First of all, according to (Davenport
1980, Chapters 8, 11 and 12), in passing we recall that
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�In his epoch-making memoir of 1860 (his only paper on the theory
of numbers), Riemann showed that the key to the deeper investigation of
the distribution of the primes lies in the study of ζ(s) as a function of the
complex variable s. More than 30 years were to elapse, however, before
any of Riemann's conjectures were proved, or any speci�c results about
primes were established on the lines which he had indicated. Riemann
proved two main results: (a) The function ζ(s) can be continued analyt-
ically over the whole plane and is then meromorphic, its only pole being
a simple pole at s = 1 with residue 1. In other words, ζ(s)− (s− 1)−1

is an integral function. (b) ζ(s) satis�es the functional equation

(47) π−
s
2Γ(

s

2
)ζ(s) = π−

1−s
s Γ(

1− s

2
)ζ(1− s)

which can be expressed by saying that the function on the left is an even
function of s− 1. The functional equation allows the properties of ζ(s)
for σ < 0 to be inferred from its properties for σ > 1. In particular,
the only zeros of ζ(s) for σ < 0 are at the poles of Γ(s/2), that is, at
the points s = −2,−4,−6, .... These are called the trivial zeros. The
remainder of the plane, where 0 < σ < 1, is called the critical strip. [...]
Riemann further made a number of remarkable conjectures, amongst
which is the follows: the entire function ξ(s) de�ned by (entire function
because it has no pole for σ ≥ 1/2 and is an even function of s − 1/2)
has the product representation

(48) ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
e

s
ρ

where A and B are constants and ρ runs through the zeros of ζ(s) in
the critical strip. This was proved by Hadamard in 1893. It played an
important part in the proofs of the prime number theorem by Hadamard
and de la Vallée-Poussin. [...] The next important progress in the the-
ory of the ζ(s) function, after Riemann's pioneering paper, was made by
Hadamard, who developed the theory of entire functions of �nite order
in the early 1890s and applied it to ζ(s) via ξ(s). His results were used
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in both the proofs of the prime number theorem, given by himself and by
de la Vallée-Poussin, though later it was found that for the particular
purpose of proving the prime number theorem, they could be dispensed�.

Following (Bombieri 2006), one of the main tools to study the mathemat-
ical properties of Riemann zeta function ζ(s) (hereafter RZF), de�ned
by

(49) ζ(s)
.
=

∑
n∈N

1

ns
, s ∈ C, ℜ(s) > 1,

is the related Riemann functional equation, which was established in
(Riemann 1858) and is de�ned as follows (see also (Titchmarsh 1986,
Sections 2.4 and 2.6), (Katz & Sarnak 1999, Section 1))

(50) π−
s
2Γ(

s

2
)ζ(s) = π−

1−s
s Γ(

1− s

2
)ζ(1− s).

According to (Motohashi 1997, Preface), ever since Riemann's mastery
use of theta transformation formula in one of his proofs of the functional
equation for the zeta-function, number-theorists have been fascinated
by various interactions between zeta-function and automorphic forms
(see also (Maurin 1997)). From a proper historical viewpoint, following
(Cahen 1894, Introduction) and (Torelli 1901, Chapter VIII, Section 62),
it seems have been O.X. Schlömilch, in (Schlömilch 1858), to provide a
�rst form of functional equation satis�ed by ζ(s). Furthermore, following
(Davis 1959), around 1890s, it was discovered that �rst forms of the
functional equation ζ(s) = ζ(1− s)Γ(1− s)2sπs−1 sin(πs/2) seem to be
already present in some Eulerian studies on gamma function ever since
1740s, where there is no proof of it but a veri�cation of its validity only for
integer values and for some rational number, like 1/2 and 3/2. Anyway,
in�nite products have been at the basis of the theory of Riemann zeta
function since its institution: indeed, the primary relation upon which
Riemann based his 1859 paper, is the celebrated Euler's product (given
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in the 1748 Euler's Introductio in Analysin In�nitorum)

(51)
∑
n∈N

1

ns
=

∏
p∈P

1

1− p−s

for each s ∈ C, ℜ(s) > 1, where P = {p; p ∈ N, p prime, p > 1}.
Following (Ingham 1964, Introduction, 6.), as has been said above, this
latter Euler's identity was �rst used by Euler himself only for a �xed
value, namely s = 1 (besides for some rational number), while Tcheby-
che� used it with s real. Subsequently, Riemann considered the left hand
side of (13) as a complex function of s, called zeta function, denoted by
ζ(s) and de�ned for s ∈ C, ℜ(s) > 1; afterwards, Riemann will give the
analytical continuation of such a function to the whole complex plane
through the above mentioned functional equation, obtaining a meromor-
phic function with only a simple pole at s = 1, and using it to study
number theory questions through the right hand side of (4). It has been
this putting into relationship number theory with complex analysis via
(4), the �rst revolutionary and pioneering result77 achieved by Riemann
in his seminal paper.

As has been said above, from the symmetric form of (12) (see (Iviç
1986, Section 1.2), it is possible, in turn, to de�ne the Riemann ξ function
(Riemann 1858) as follows (see (Whittaker &Watson 1927, Section 13.4))

(52) ξ(t) =
(
1/2s(s− 1)π−s/2Γ(s/2)ζ(s)

)
s=1

2+it

which is an even entire function of order one with simple poles in s =
0, 1, and whose zeros verify78 |ℑ(t)| ≤ 1/2 (Riemann 1858). This last
estimate was then improved in |ℑ(t)| < 1/2 both by Hadamard (1896a)

77From an epistemological standpoint, this revolutionary idea's correlation, sets up by the two
sides of equation (51), is quite similar to that provided, for example, by Einstein's �eld equations
(1915) of General Relativity, Rµν − (1/2)gµνR = 8πGTµν (in the natural units), which relates
geometrical properties of space-time (on the left-hand side) with physical �eld properties (on the
right-hand-side). Besides Riemann and Einstein, also H. Weyl was a pioneer in putting into relation
conceptual areas before considered very far between them. This type of conceptual correlation of
ideas is one of the main epistemological processes with which often scienti�c creativity expresses
(see also what has been said by K. Maurin in the above Hors d'÷uvre).

78Indeed, let t = a + ib and s = c + id, so that, from s = 1
2 + it, it follows that is = 1

2 i − t,
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and by de la Vallée-Poussin (1896), but independently of each other. The
RH asserts that ℑ(t) = 0, that is to say t ∈ R. Following (Iviç 1989)
and (Gonek 2004), it is plausible to conjecture that all the zeros of RZF,
along the critical line, are simple, this assertion being supported by all
the existing numerical evidences (see for example (van de Lune et al.
1986)). Subsequently, Hadamard (1893) gave a fundamental Weierstrass
in�nite product expansion of Riemann zeta function, of the following
type (see, for example, (Karatsuba 1994, Chapter 1, Section 3.2) and
(Bateman & Diamond 2004, Chapter 8, Section 8.3))

(53) ξ(t) = aebt
∏

ρ∈Z(ζ)

(
1− t

ρ

)
e

t
ρ

where a, b are constants and Z(ζ) is the set of all the complex non-trivial
zeros of the Riemann zeta function ζ(s), so that Z(ζ) ⊆ t; t ∈ C, 0 < ℜ(t) < 1,
with cardZ(ζ) = ∞ (G.H. Hardy). This Hadamard paper was consid-
ered by H. Von Mangoldt (1854-1925) as �the �rst real progress in the
�eld in 34 years� since the only number theory Riemann 1859 paper (see
(Von Mangoldt 1896) and (Edwards 2001, Section 2.1)), having provided
the �rst basic link between Riemann zeta function theory and entire
function theory. Nevertheless, in relation to the Riemann zeta function,
Hadamard work didn't have that right historical attention which it would
have deserved, since a very few recalls to it have been paid in the related
literature. From above Hadamard product formula, it follows an in�nite
product expansion of Riemann zeta function of the following type (see,
for example, (Landau 1909, Band I, Erstes Kapitel, � 5.III-IV), (Ayoub
1963, Chapter II, Section 4), (Erdélyi 1981, Section 17.7), (Titchmarsh
1986, Section 2.12), (Narkiewicz 2000, Chapter 5, Section 5.1, Number

whence t = 1
2 i − is = i( 12 − s), that is t = a + ib = i( 12 − s) = i( 12 − (c + id)) = i( 12 − c − id) =

i(( 12 −c)−id) = d+i( 12 −c) whence a = d and b = 1
2 −c, that is to say ℜ(t) = ℑ(s),ℑ(t) = 1

2 −ℜ(s),
whence |ℑ(t)| = | 12 − ℜ(s)| ≤ 1

2 since c = ℜ(s) ∈ [0, 1] in the critical strip. In fact, if 1
2 ≤ c ≤ 1,

then | 12 − c| = c − 1
2 ≤ 1 − 1

2 = 1
2 because c ≤ 1, whereas, if 0 ≤ c ≤ 1

2 , then | 12 − c| = 1
2 − c ≤ 1

2
since 0 ≤ c, so that, anyway, we have | 12 − c| ≤ 1

2 .
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2) and (Voros 2010, Chapter 4, Section 4.3))

(54) ζ(s) =
e(ln 2π−1−γ

2 )s

2(s− 1)Γ(1 + s
2)

∏
ρ∈Z(ζ)

(1− s

ρ
)e

s
ρ = Θ(s)

∏
ρ∈Z(ζ)

(1− s

ρ
)e

s
ρ

where γ is the Euler-Maclaurin constant. The function Θ(s) is non-zero
into the critical strip 0 < ℜ(s) < 1, so that it is quickly realized that
any question about zeros of ζ(s) might be addressed to the above in�nite
product factor, which is an entire function, and, likewise, as regard the
above Hadamard product formula for ξ. Therefore, it seems quite obvi-
ous to account for the possible relationships existing with entire function
theory, following this fruitful perspective opened by Hadamard. Out of
the best treatises on entire function theory, there are those of Boris Ya.
Levin (see (Levin 1980; 1996)). In particular, the treatise (Levin 1980)
is hitherto the most complete one on the distributions of zeros of en-
tire functions, which deserves a considerable attention. As regard, then,
the above Hadamard product formula, in reviewing the main textbooks
on Riemann zeta function, amongst which (Chandrasekharan 1958, Lec-
tures 4, 5 and 6), (Titchmarsh 1986, Chapter II), (Iviç 1986, Section
1.3), (Patterson 1988, Chapter 3), (Karatsuba & Voronin 1992, Sections
5 and 6), (Edwards 2001, Chapter 2) and (Chen 2003, Chapter 6), it
turns out that such a fundamental factorization, like the one provided
by Hadamard, has been used to study some properties of this special
function, for instance in relation to its Euler in�nite product expansion
or in relation to its growth order questions. But, in such treatises, it isn't
exposed those results properly related to the possible links between Rie-
mann zeta function theory and entire function theory, from Hadamard
and Pólya works onward. Only recently, there have been various stud-
ies which have dealt with entire function theory aspects of Riemann ξ
function d'aprés Pólya and Hadamrd work, and, in this regard, we begin
mentioning some valuable considerations very kindly communicated to
me by Professor Je�rey C. Lagarias (private communication). He �rst
says that, although there are strong circumstantial evidences for RH, no
one knows how to prove it and no promising mechanism for a proof is
currently known. In particular, there are many approaches to it, and it is
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not clear whether the complex variables approaches based on Laguerre-
Pólya (LP ) and Hermite-Biehler (HB) connections with Riemann zeta
function theory via Riemann ξ function (see (Levin 1980, Chapters VII
and VIII)) are going to get anywhere. He refers that, maybe, Pólya might
have been the �rst to have established the LP connection on the basis of
the previous work made by J.L.W. Jensen, and recalled in the previous
sections. The truth of Riemann hypothesis requires that ξ(s) falls into
the HB class under suitable change of variable (see (Lagarias 2005)),
even if Lagarias stresses the fact that this was already known for a long
time, by which reason it requires further historical examination. Also
Louis De Branges has made some interesting works in this direction, no
matter by his attempts to prove Riemann hypothesis which yet deserve as
well a certain attention because they follow a historical method, as kindly
De Branges himself said to me (private communication). Nevertheless,
Lagarias refers too that who has been the �rst to state this connection to
HB class is historically yet not wholly clear. Further studies even along
this direction have been then made, amongst others, by G. Csordas, R.S.
Varga, M.L. Patrick, W. Smith, A.M. Odlyzko, J.C. Lagarias, D. Mon-
tague, D.A. Hejhal, D.A. Cardon, S.R. Adams and some other. Finally,
Lagarias concludes stating that the big problem is to �nd a mechanism
that would explain why the Riemann ξ function would fall into this HB
class of functions.

Herein, we brie�y remember the main lines of some of these works.
For instance, the work (Cardon & de Gaston 2005) starts considering the
Laguerre-Pólya class which, as is known, consists of the entire functions
having only real zeros with Weierstrass products of the form

(55) czmeαz−βz
2
∏
k

(
1− z

αk

)
e

z
αk

where c, α, β, αk are real, β ≥ 0, αk ̸= 0, m is a non-negative integer,
and

∑
k(1/α

2
k) < ∞. An entire function belongs to LP if and only if it

is the uniform limit on compact sets of a sequence of real polynomials
having only real zeros (see (Levin 1980, Chapter VIII, Theorem 3)). One
of the reasons for studying the Laguerre-Pólya class is its relationship to
the Riemann zeta function. Let ξ(s) = (1/2)s(s − 1)π−s/2Γ(s/2)ζ(s),
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where ζ(s) is the Riemann zeta function. Then ξ(1/2 + iz) is an even
entire function of genus 1 that is real for real z. The Riemann hypothesis,
which predicts that the zeros of ξ(s) have real part 1/2, can be stated
as ξ(1/2 + iz) ∈ LP . Furthermore, evidence suggests that most, if
not all, of the zeros of ξ(s) are simple. Hence, functions in LP with
simple zeros are especially interesting also in issues concerning Riemann
hypothesis. Then, following (Lagarias & Montague 2011, Section 1.1)
and references therein, there have been many studies of properties of
the Riemann ξ-function. This function motivated the study of functions
in the LP class (see (Pólya 1927) and (Levin 1980, Chapter VIII)), to
which the function ξ(z) would belong if the Riemann hypothesis were
true. It motivated the study of properties of entire functions represented
by Fourier integrals that are real and bounded on the real axis (see
(Pólya 1926a,b; 1927a) as well as (Titchmarsh 1980, Chapter X)) and
related Fourier transforms (see (Wintner 1936)). It led to the study of
the e�ect of various operations on entire functions, including di�erential
operators and convolution integral operators, preserving the property
of having zeros on a line, as well as various necessary conditions for
the ξ-function to have real zeros, have been veri�ed, amongst others by
D. Craven, G. Csordas, W. Smith, P.P. Nielsen, D.A. Cardon, S.A. de
Gaston, T.S.Norfolk, and R.S. Varga. In (Newman 1976), the author
introduced a one-parameter family of Fourier cosine integrals, given for

real λ by ξλ(z)
.
= 2

∫ ∞

0

eλu
2

Φ(u) cos zudu with Φ(u) given by (29). Here

ξ0(z) = ξ(z) as given by (28), so this family of functions ξλ can be viewed
as deformations of the ξ-function. It follows from a 1950 result of N.G.
de Bruijn that the entire function ξλ(z) has only real zeros for λ ≥ 1/8.
In (Newman 1976), the author proved that there exists a real number
λ0 such that ξλ(t) has all real zeros for λ ≥ λ0, and has some non-real
zeros for each λ < λ0. The Riemann hypothesis holds if and only if λ0 ≤
0, and C.M. Newman conjectured that the converse inequality λ ≥ 0
holds. Newman also stated that his conjecture represents a quantitative
version of the assertion that the Riemann hypothesis, if true, is just
barely true. The rescaled value Λ = 4λ0 was later named by Csordas,
Norfolk and Varga, the de Bruijn-Newman constant, and they proved
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that Λ ≥ −50. Successive authors obtained better bounds obtaining
by �nding two zeros of the Riemann zeta function that were unusually
close together. Successive improvements of examples on close zeta zeros
led to the lower bound Λ > −2.7 × 10−9, obtained by A.M. Odlyzko.
Recently H. Ki, Y-O. Kim and J. Lee established that Λ < 1/2. The
conjecture that Λ = 0 is now termed the de Bruijn-Newman conjecture.
Odlyzko observed that the existence of very close spacings of zeta zeros,
would imply the truth of the de Bruijn-Newman conjecture. In another
direction, one may consider the e�ects of di�erentiation on the location
and spacing of zeros of an entire function F (z). In 1943 Pólya (see (Pólya
1943)) conjectured that an entire function F(z) of order less than 2 that
has only a �nite number of zeros o� the real axis, has the property that
there exists a �nite m0 ≥ 0 such that all successive derivatives F (m)(z)
for m0 ≥ 0 have only real zeros. This was proved by Craven, Csordas
and Smith in 1987, with a new proof given by Ki and Kim in 2000.
In 2005, D.W. Farmer and R.C. Rhoades have shown (under certain
hypotheses) that di�erentiation of an entire function with only real zeros
will yield a function having real zeros whose zero distribution on the
real line is �smoothed�. Their results apply to the Riemann ξ-function,
and imply that if the Riemann hypothesis holds, then the same will be
true for all derivatives ξ(m)(s) = dmξ(s)/dsm,m ≥ 1. Various general
results are given (Cardon & de Gaston 2004), while for more extensive
informations about other researches on Riemann ξ function, we refer to
(Lagarias & Montague 2011) and references therein. In any way, from
what has just been said above, it turns out quite clear what fundamental
role has played many part of Pólya work on Riemann ξ function in the
development of entire function theory. We refer to (Korevaar 2013) and
reference therein for more historical informations in this regard.

Finally, what follows is the content of a private communication with
which Enrico Bombieri who has very kindly replied to my request to
have some his comments and hints about some possible applications of
entire function theory on Riemann zeta function theory. He kindly refers
that, very likely, the 1893 Hadamard work was mainly motivated by the
possible applications to Riemann zeta function, as we have above widely
discussed. On the other hand, the general theory of complex and spe-
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cial functions had a great growth impulse just after the middle of 18th
century above all thanks to the pioneering works of Weierstrass, H.A.
Schwarz, Nevanlinna brothers and others. But Hadamard was the �rst
to found a general theory which will receive its highest appreciation with
the next works of Nevanlinna brothers. Afterwards, the attempts to iso-
late entire function classes comprising Riemann zeta function (properly
modi�ed to avoid its single poles in s = 0, 1) have been quite numerous
(amongst which those by De Branges), with interesting results but un-
fruitful as regard the possible applications to Riemann hypothesis. Nev-
ertheless, nowadays only a few mathematicians carry on along this path,
amongst whom G. Csordas and co-workers with interesting works, be-
sides those other scholars mentioned above. For instance, along the line
of research opened by Pólya, in a recent conference, in which Bombieri
was attended, Csordas proposed to consider the class of Mellin trans-
formation Mf(x) of fast decreasing functions f as x → ∞ such that
each (xd/dx)nf(x) has exactly n zeros for each n ∈ N0. Now, it would
seem that the Riemann zeta function may be related with this class of
functions, but, at this time, there is no exact proof of this idea to which
Bombieri himself was pursuing through other ways. Many mathemati-
cians have besides worked on Lee-Yang theorem area hoping to meet
along their routes a possible insight for the Riemann zeta function and
related conjecture, but after an initial enthusiasm, every further attempt
didn't have any sequel. As regard, then, the general context of complex
function theory, this reached its apex around 1960s, above all with the
works achieved by the English school of W. Hayman on meromorphic
functions and by the Russian school of B.Ya. Levin. However, it is
noteworthy to mention the recent statistical mechanics approach which
seems promising as regard zero distribution of Riemann zeta function
whose behavior is however quite anomalous with respect other complex
functions, and seems to follow a Gaussian Circular Unitary Ensemble
(GCUE) law (see (Katz & Sarnak 1999) in relation to random matrix
theory). Bombieri, then, �nishes mentioning some very interesting re-
sults achieved, amongst others, by A. Beurling, B. Nyman and L. Báez-
Duarte, hence concluding saying that, today, there still exists a little
but serious group of researchers working on the relationships between
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Riemann ξ function, its Fourier transform and entire function theory,
d'aprés Pólya work. As regard what has just been said about GCUE
law, following (Lagarias 2005), there is a great deal of evidence sug-
gesting that the normalized spacings between the nontrivial zeros of the
Riemann zeta function have a �random� character described by the eigen-
value statistics of a random Hermitian matrix whose size N → ∞. The
resulting statistics are the large N limit of normalized eigenvalue spac-
ings for random Hermitian matrices drawn from the GUE distribution
(�Gaussian unitary ensemble�). This limiting distribution is identical to
the large N limit of normalized eigenvalue spacings for random unitary
matrices drawn from the GUE distribution (�circular unitary ensemble�),
i.e., eigenvalues of matrices drawn from U(N) using Haar measure, and
taking into account that the GUE and CUE spacing distributions are
not the same for �nite N . More precisely, one compares the normalized
spacings of k consecutive zeros with the limiting joint probability distri-
bution of the normalized spacings of k adjacent eigenvalues of random
hermitian N ×N matrices, as N → ∞. The relation of zeta zeros with
random matrix theory was �rst suggested by the work of H. Montgomery
in 1973 which concerned the pair correlation of zeros of the zeta function.
Montgomery's results showed (conditional on the Riemnan hypothesis)
that there must be some randomness in the spacings of zeros, and were
consistent with the prediction of the GUE distribution. Hence, A.M.
Odlyzko, in 1987, made extensive numerical computations with zeta ze-
ros, now up to height T = 1022, which show an extremely impressive
�t of zeta zero spacings with predictions of the GUE distribution. The
GUE distribution of zero spacings is now thought to hold for all auto-
morphic L-functions, speci�cally for principal L-functions attached to
GL(n), (see (Katz & Sarnak 1999) and (Gonek 2004)). Further evidence
for this was given by Z. Rudnick and P. Sarnak in 1996, conditionally
on a suitable generalized Riemann hypothesis. They showed that the
evaluation of consecutive zero gaps against certain test functions (of lim-
ited compact support) agrees with the GUE predictions. There is also
supporting numerical evidence for certain principal L-functions attached
to GL(2). As regard, however, Riemann zeta function theory and ran-
dom matrix theory, see (Borwein et al. 2008, Chapter 4, Section 4.3).
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Finally, following (Conrey & Li 2000), the theory of Hilbert spaces of
entire functions was developed by Louis de Branges in the late 1950s
and early 1960s (see (de Branges 1968)). It is a generalization of the
part of Fourier analysis involving Fourier transforms and the Plancherel
formula. To be precise, the origins of Hilbert spaces of entire functions
are found in a theorem of R.E. Paley and N. Wiener that characterizes
�nite Fourier transforms as entire functions of exponential type which
are square integrable on the real axis. The known examples of Hilbert
spaces of entire functions belong to the theory of special functions, a
subject which is very old in relation to most of modern analysis. The
foundations of the theory were laid by Euler in the century following
the discovery of the calculus whose historical approach to the subject is
already so well represented by the treatise (Whittaker & Watson 1927).
In 1986 (see (de Branges 1986)), de Branges proposed an approach to the
generalized Riemann hypothesis, that is, the hypothesis that not only the
Riemann zeta function ζ(s) but also all the Dirichlet L-functions L(s, χ)
with χ primitive, have their nontrivial zeros lying on the critical line
ℜs = 1/2. In his 1986 paper (see (de Branges 1986)), de Branges said
that his approach to the generalized Riemann hypothesis using Hilbert
spaces of entire functions is related to the so-called Lax-Phillips theory
of scattering, exposed in (Lax & Phillips 1976), where interesting appli-
cations to Riemann zeta function, following the so-called Hilbert-Polya
approach, are exposed as well, but explaining too the di�culties of ap-
proaching the Riemann hypothesis by using the scattering theory (see
also (Lax & Phillips 1989) and (Lapidus 2008)). However, also on the
basis of what has been said above, de Branges' approach to Riemann
hypothesis formulated for Hilbert spaces of entire functions has its early
historical origins above all in a theorem on Fourier analysis due either to
A. Beurling and P. Malliavin of the late 1950s (see (Beurling & Malliavin
1962)), and later improved by N. Levinson, as well as in other results
achieved by M. Rosenblum, J. Von Neumann and N. Wiener. Finally, we
refer to (Borwein et al. 2008) for an updated and complete survey of the
most valuable approaches and attempts to solve RH, and all that, while
we refer to (Lapidus 2008) and references therein, for a comprehensive,
detailed and adjourned review of almost all attempts to approach RH

190



through mathematical physics methods.
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7. Conclusions

In a few words, here we sketchily outline a summary of the historical work
made in this research study. To be precise, our initial subject-matter
of historical investigation has been the so-called Riemann ξ function,
a truly particular entire function formulated by Riemann in 1858 to
study distribution of prime numbers, and then roughly expressed by
himself as an in�nite product. Just from this last factorization due to
Riemann - who moreover didn't give any proof of this his statement -
started our historical interest that has moved our intention toward a
deeper historical investigation. Therefore, we have been forced to study
the history of the techniques and tools regarding factorization of entire
functions, until to reach �rst de�nitive results in this direction, that is
to say, Weierstrass' and Hadamard's factorization theorems. Exactly,
the Hadamard's pioneering work of 1893, rigorously proved for the �rst
time Riemann's initial factorization of his ξ function, so opening the
way to entire function theory. Therefore, the factorization of ξ function
provided by Riemann in 1858, seems to have been the �rst starting point
from which entire function theory sprung out as an autonomous chapter
of complex function theory after the works by Weierstrass of 1876 and by
Hadamard of 1893. On its turn, meanwhile entire function theory grew
up, constant attention was being put toward possible applications to the
various unsolved questions raised by the seminal 1858 paper of Riemann,
amongst which the proof of prime number theorem and the estimates of
prime numbers. In this regard, entire function theory aspects applied to
Riemann ξ function, were considered, amongst others, by Hadamard, de
la Vallée-Poussin, Landau, Von Mangoldt, and Pólya. In particular, the
latter has published considerable works on entire function theory, some
of which were concerned with integral representations of the Riemann ξ
function, trying to solve RH in some approximation cases. In so doing,
in 1926 Pólya obtained some results, amongst other just making also
use of Hadamard factorization theorem, to prove some lemmata which
will turn out to be useful in proving some rigorous results of statistical
mechanics achieved by Lee and Yang in the 1950s which, in turn, opened
new avenues to approach Riemann conjecture itself. This has been, in
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a few words, the historical line roughly followed above, which has seen
mainly involved the �gures of Riemann, Weierstrass, Hadamard, Pólya,
Lee and Yang, together other notable mathematicians and physicists who
inherently joined too the chief pathway routed by these latter scholars.
So doing, we have touched both history of mathematics and history of
physics, according to a modern perspective of history of science as, for
example, recently demanded by J. Gray in (Gray 2011).
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