Lecture 9 – Implementing PID Controllers

CSE P567

Control Systems

- We want to control some system
 - called a "Plant"
- There is an output value we want the system to achieve
- To be equal to a given goal value: set point
- Using a control input to the Plant

Control Systems

- If we have a good model of the Plant
- We can predict the output from the input
- Andthus we can compute the input needed to achieve a given output
 - ut = F(rt)
- In this case we can use an Open Loop Controller

Example Open Loop System

- Motor example
- Motor model: $v_{t+1} = 0.7v_t + 0.5u_t + d_t$
 - dt is any disturbance in the plant
- Control: $F(r_t) = P r_t$
 - Linear function

Example Open Loop System

- Control: F(rt) = P rt
- What should P be?
- In steady state:
 - ▶ v_{ss} = 0.7v_{ss} + 0.5P rt
 - 0.3vss = 0.5P rt
 - ▶ vss = 1.667P rt

P = 0.6 (steady state speed = set point)

Problems with Open Loop Systems

- They fly "blind"
 - Dead reckoning
- Cannot respond to disturbances
 - Extra friction/load, wearout, etc.
- Cannot adjust to different Plants (motors)
 - Each has its own model
- Models may be difficult or impossible to derive

Closed Loop Systems

- Add feedback so controller knows results of actions
- We now know the difference between the set point and the output
 - And we try to make this zero

Proportional Controller

- Simplest controller
- $F(et) = K_p(et)$

- $v_{t+1} = 0.7v_t + 0.5 K_p (r_t v_t) + d_t$
- $v_{t+1} = (0.7 0.5 \text{ K}_p) v_t + 0.5 \text{ K}_p r_t + d_t$
- $\alpha = 0.7 0.5 \text{ K}_{\text{P}}$ determines whether v stays within bounds
- if $|\alpha| > 1$, then vt grows without bound

Proportional Controller

- $| \alpha = 0.7 0.5 K_P | < 1$
- ▶ Kp > 0.6
- ▶ Kp < I.4
- The best convergence rate is for Kp = 1.4
- But for Kp <= 1.4, we cannot reach the set point in steady state without oscillation

Adding a Integral Term

- How do we solve the problem where the output never reaches the goal?
- If we sum the total error over time, the output must reach the set point
 - with some overcompensation
- $F(e_t) = K_p(e_t) + K_l(e_0 + e_1 + e_2 + + e_{t-1})$
- The Integral term allows the output to reach goal

Integral "Windup"

- The integral term increases while the output is ramping up
- This causes overshoot
 - while the term "winds down"
- Can become oscillation
- Solution is to limit integral term
 - or cause it to die out
 - ▶ | = 0.99| + et

Adding a Derivative Term

We look at rate of change of output:

- If too slow, increase the control input
- If too fast, decrease the control input
- $F(e_t) = K_p(e_t) + K_D(e_t e_{t-1})$
- The Derivative term decreases oscillation
 - especially caused by disturbances

Summary of PID Controller

We can build a PID controller that works well in practice in most situations without knowing control theory

Controller Performance

- Stability: The error variable should converge to a small number, preferably 0
 - i.e. little oscillation even with disturbances
- Performance:
 - Rise time/Response: e.g. 10% to 90% of final value
 - Peak time: Time to reach first peak
 - Overshoot: Amount in excess of final value
 - Settling time: Time before output settles to 1% of final value
- Disturbance rejection
- Robustness: Stability and performance should not be greatly compromised by small differences in plant or operating conditions

Tuning a PID Controller

- A search in 3 dimensions over all conditions
- If possible, use a large step function in the set point
 - ▶ e.g. 0 100%
- Heuristic procedure #I:
 - Set Kp to small value, KD and KI to 0
 - ▶ Increase K_D until oscillation, then decrease by factor of 2-4
 - Increase Kp until oscillation or overshoot, decrease by factor of 2-4
 - Increase KI until oscillation or overshoot
 - Iterate

Tuning a PID Controller

- Heuristic procedure #2:
 - Set KD and KI to 0
 - Increase Kp until oscillation, then decrease by factor of 2-4
 - Increase KI until loss of stability, then back off
 - Increase KD to increase performance in response to disturbance
 - Iterate

Tuning a PID Controller

- Heuristic procedure #3:
 - ► Set KD and KI to 0
 - Increase Kp until oscillation:
 - Kc = Kp, Pc = period of oscillation
 - Set Kp = 0.5 Kc
 - Set KD = Kp Pc / 8
 - Set K_I = 2K_P / P_C

Implementing a PID Controller

- Can be done with analog components
- Microcontroller is much more flexible
- Pick a good sampling time: I/10 to I/100 of settling time
 - ▶ Should be relatively precise, within 1% use a timer interrupt
 - Not too fast variance in delta t
 - Not too slow too much lag time
 - Sampling time changes relative effect of P, I and D
- ▶ Use interactive commands to set Kp, KI, KD
- Possible to program an adaptive PID controller
 - > Perform a careful, automatic search
 - Must be able to control Plant offline
 - Complex