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Control Systems 
  We want to control some system 

  called a “Plant” 

  There is an output value we want the system to achieve 
  To be equal to a given goal value: set point 
  Using a control input to the Plant 



Control Systems 
  If we have a good model of the Plant 
  We can predict the output from the input 
  Andthus we can compute the input needed to achieve a 

given output 
  ut = F(rt) 

  In this case we can use an Open Loop Controller 



Example Open Loop System 
  Motor example 
  Motor model:  vt+1 = 0.7vt + 0.5ut + dt 

  dt is any disturbance in the plant 

  Control:  F(rt) = P rt 

  Linear function 



Example Open Loop System 
  Control:  F(rt) = P rt 

  What should P be? 
  In steady state: 

  vss = 0.7vss + 0.5P rt 

  0.3vss = 0.5P rt 

  vss = 1.667P rt 

  P = 0.6  (steady state speed = set point) 



Problems with Open Loop Systems 
  They fly “blind” 

  Dead reckoning 

  Cannot respond to disturbances 
  Extra friction/load, wearout, etc. 

  Cannot adjust to different Plants (motors) 
  Each has its own model 

  Models may be difficult or impossible to derive 



Closed Loop Systems 
  Add feedback so controller knows results of actions 
  We now know the difference between the set point and 

the output 
  And we try to make this zero 



Proportional Controller 
  Simplest controller 
  F(et) = Kp(et) 
  vt+1 = 0.7vt + 0.5 Kp (rt – vt) + dt 

  vt+1 = (0.7 – 0.5 Kp) vt  + 0.5 Kp rt + dt 

  α = 0.7 – 0.5 Kp  determines whether v stays within bounds 

  if  | α | > 1, then vt grows without bound 



Proportional Controller 

  | α = 0.7 – 0.5 Kp | < 1 

  Kp > – 0.6 
  Kp < 1.4 
  The best convergence rate is for Kp = 1.4 
  But for Kp <= 1.4, we cannot reach the set point in steady 

state without oscillation 



Adding a Integral Term 
  How do we solve the problem where the output never reaches the goal? 
  If we sum the total error over time, the output must reach the set point 

  with some overcompensation 

  F(et) = Kp(et) + KI(e0 + e1 + e2 +  + et-1) 
  The Integral term allows the output to reach goal 



Integral “Windup” 
  The integral term increases while the output is ramping 

up 
  This causes overshoot 

  while the term “winds down” 

  Can become oscillation 
  Solution is to limit integral term 

  or cause it to die out 
  I = 0.99I + et 



Adding a Derivative Term 
  We look at rate of change of output: 

  If too slow, increase the control input 
  If too fast, decrease the control input 

  F(et) = Kp(et) + KD(et – et-1) 
  The Derivative term decreases oscillation 

  especially caused by disturbances 



Summary of PID Controller 
  We can build a PID controller that works well in practice 

in most situations without knowing control theory 



Controller Performance 
  Stability: The error variable should converge to a small 

number, preferably 0 
  i.e.  little oscillation even with disturbances 

  Performance: 
  Rise time/Response:  e.g. 10% to 90% of final value 
  Peak time:  Time to reach first peak 
  Overshoot:  Amount in excess of final value 
  Settling time:  Time before output settles to 1% of final value 

  Disturbance rejection 
  Robustness:  Stability and performance should not be 

greatly compromised by small differences in plant or 
operating conditions 



Tuning a PID Controller 
  A search in 3 dimensions over all conditions 
  If possible, use a large step function in the set point 

  e.g. 0 – 100% 

  Heuristic procedure #1: 
  Set Kp to small value, KD and KI to 0 
  Increase KD until oscillation, then decrease by factor of 2-4 
  Increase Kp until oscillation or overshoot, decrease by factor 

of 2-4 
  Increase KI until oscillation or overshoot 
  Iterate 



Tuning a PID Controller 
  Heuristic procedure #2: 

  Set KD and KI to 0 
  Increase Kp until oscillation, then decrease by factor of 2-4 
  Increase KI until loss of stability, then back off 
  Increase KD to increase performance in response to 

disturbance 
  Iterate 



Tuning a PID Controller 
  Heuristic procedure #3: 

  Set KD and KI to 0 
  Increase Kp until oscillation:   

  KC = Kp, PC = period of oscillation 

  Set Kp = 0.5 KC 

  Set KD = Kp PC / 8 
  Set KI = 2Kp / PC  



Implementing a PID Controller 
  Can be done with analog components 
  Microcontroller is much more flexible 
  Pick a good sampling time: 1/10 to 1/100 of settling time 

  Should be relatively precise, within 1% – use a timer interrupt 
  Not too fast – variance in delta t 
  Not too slow – too much lag time 
  Sampling time changes relative effect of P, I and D 

  Use interactive commands to set Kp,  KI,  KD 
  Possible to program an adaptive PID controller 

  Perform a careful, automatic search 
  Must be able to control Plant offline 
  Complex 


