
Lecture 9 – Implementing
PID Controllers

CSE P567

Control Systems
  We want to control some system

  called a “Plant”

  There is an output value we want the system to achieve
  To be equal to a given goal value: set point
  Using a control input to the Plant

Control Systems
  If we have a good model of the Plant
  We can predict the output from the input
  Andthus we can compute the input needed to achieve a

given output
  ut = F(rt)

  In this case we can use an Open Loop Controller

Example Open Loop System
  Motor example
  Motor model: vt+1 = 0.7vt + 0.5ut + dt

  dt is any disturbance in the plant

  Control: F(rt) = P rt

  Linear function

Example Open Loop System
  Control: F(rt) = P rt

  What should P be?
  In steady state:

  vss = 0.7vss + 0.5P rt

  0.3vss = 0.5P rt

  vss = 1.667P rt

  P = 0.6 (steady state speed = set point)

Problems with Open Loop Systems
  They fly “blind”

  Dead reckoning

  Cannot respond to disturbances
  Extra friction/load, wearout, etc.

  Cannot adjust to different Plants (motors)
  Each has its own model

  Models may be difficult or impossible to derive

Closed Loop Systems
  Add feedback so controller knows results of actions
  We now know the difference between the set point and

the output
  And we try to make this zero

Proportional Controller
  Simplest controller
  F(et) = Kp(et)
  vt+1 = 0.7vt + 0.5 Kp (rt – vt) + dt

  vt+1 = (0.7 – 0.5 Kp) vt + 0.5 Kp rt + dt

  α = 0.7 – 0.5 Kp determines whether v stays within bounds

  if | α | > 1, then vt grows without bound

Proportional Controller

  | α = 0.7 – 0.5 Kp | < 1

  Kp > – 0.6
  Kp < 1.4
  The best convergence rate is for Kp = 1.4
  But for Kp <= 1.4, we cannot reach the set point in steady

state without oscillation

Adding a Integral Term
  How do we solve the problem where the output never reaches the goal?
  If we sum the total error over time, the output must reach the set point

  with some overcompensation

  F(et) = Kp(et) + KI(e0 + e1 + e2 + + et-1)
  The Integral term allows the output to reach goal

Integral “Windup”
  The integral term increases while the output is ramping

up
  This causes overshoot

  while the term “winds down”

  Can become oscillation
  Solution is to limit integral term

  or cause it to die out
  I = 0.99I + et

Adding a Derivative Term
  We look at rate of change of output:

  If too slow, increase the control input
  If too fast, decrease the control input

  F(et) = Kp(et) + KD(et – et-1)
  The Derivative term decreases oscillation

  especially caused by disturbances

Summary of PID Controller
  We can build a PID controller that works well in practice

in most situations without knowing control theory

Controller Performance
  Stability: The error variable should converge to a small

number, preferably 0
  i.e. little oscillation even with disturbances

  Performance:
  Rise time/Response: e.g. 10% to 90% of final value
  Peak time: Time to reach first peak
  Overshoot: Amount in excess of final value
  Settling time: Time before output settles to 1% of final value

  Disturbance rejection
  Robustness: Stability and performance should not be

greatly compromised by small differences in plant or
operating conditions

Tuning a PID Controller
  A search in 3 dimensions over all conditions
  If possible, use a large step function in the set point

  e.g. 0 – 100%

  Heuristic procedure #1:
  Set Kp to small value, KD and KI to 0
  Increase KD until oscillation, then decrease by factor of 2-4
  Increase Kp until oscillation or overshoot, decrease by factor

of 2-4
  Increase KI until oscillation or overshoot
  Iterate

Tuning a PID Controller
  Heuristic procedure #2:

  Set KD and KI to 0
  Increase Kp until oscillation, then decrease by factor of 2-4
  Increase KI until loss of stability, then back off
  Increase KD to increase performance in response to

disturbance
  Iterate

Tuning a PID Controller
  Heuristic procedure #3:

  Set KD and KI to 0
  Increase Kp until oscillation:

  KC = Kp, PC = period of oscillation

  Set Kp = 0.5 KC

  Set KD = Kp PC / 8
  Set KI = 2Kp / PC

Implementing a PID Controller
  Can be done with analog components
  Microcontroller is much more flexible
  Pick a good sampling time: 1/10 to 1/100 of settling time

  Should be relatively precise, within 1% – use a timer interrupt
  Not too fast – variance in delta t
  Not too slow – too much lag time
  Sampling time changes relative effect of P, I and D

  Use interactive commands to set Kp, KI, KD
  Possible to program an adaptive PID controller

  Perform a careful, automatic search
  Must be able to control Plant offline
  Complex

