

R A P I D P R O T O T Y P I N G
O F D I G I TA L S Y S T E M S

S O P C E D I T I O N

James O. Hamblen

School of Electrical and Computer Engineering

Georgia Institute of Technology

Tyson S. Hall

School of Computing

Southern Adventist University

Michael D. Furman

Department of Engineering

Cambridge University

R A P I D P R O T O T Y P I N G
O F D I G I TA L S Y S T E M S

S O P C E D I T I O N

James O. Hamblen Tyson S. Hall
Georgia Institute of Technology Southern Adventist University
Atlanta, GA Collegedale, TN

Michael D. Furman
University of Florida
Gainesville, FL

Library of Congress Control Number: 2007934543

ISBN 978-0-387-72670-0 e-ISBN 978-0-387-72671-7

Printed on acid-free paper.

© 2008 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed is forbidden. The use in this publication of trade names, trademarks, service ma rks and similar
terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they
are subject to proprietary rights.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs

Springer Science+Business Media, LLC or the author(s) make no warranty or representation, either express or
implied, with respect to this DVD or book, including their quality, mechantability, or fitness for a particular purpose.
In no event will Springer Science+Business Media, LLC or the author(s) be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to use the disc or book, even if Springer
Science+Business Media, LLC or the author(s) has been advised of the possibility of such damages.

Cover artwork based on FPGA image courtesy of Altera. Chip Images ©1995-2004 courtesy of Michael
Davidson, Florida State University, http://micro.magnet.fsu.edu/chipshots. Altera, Byteblaster*, Cyclone,
MAX, APEX, ACEX and QUARTUS are registered trademarks of Altera Corporation. XC4000 and Virtex
are registered trademarks of Xilinx, Inc. MIPS is a registered trademark of MIPS Technologies, Inc. Plexiglas
is a registered trademark of Rohn and Hass Company. This publication includes images from Corel Draw
which are protected by the copyright laws of the U.S., Canada and elsewhere. Used under license.

9 8 7 6 5 4 3 2 1

springer.com

Table of Contents

1

1.1 Design Entry using the Graphic Editor_______________________________________ 9
1.2 Compiling the Design __ 16
1.3 Simulation of the Design __ 17
1.4 Testing Your Design on an FPGA Board ____________________________________ 18
1.5 Downloading Your Design to the DE1 Board _________________________________ 19
1.6 Downloading Your Design to the DE2 Board _________________________________ 22
1.7 Downloading Your Design to the UP3 Board _________________________________ 25
1.8 Downloading Your Design to the UP2 or UP1 Board __________________________ 27
1.9 The 10 Minute VHDL Entry Tutorial _______________________________________ 29
1.10 Compiling the VHDL Design __ 32
1.11 The 10 Minute Verilog Entry Tutorial ______________________________________ 34
1.12 Compiling the Verilog Design__ 36
1.13 Timing Analysis ___ 38
1.14 The Floorplan Editor___ 39
1.15 Symbols and Hierarchy___ 40
1.16 Functional Simulation __ 41
1.17 Laboratory Exercises___ 42

2

2.1 FPGA and External Hardware Features_____________________________________ 47
2.2 The FPGA Board’s Memory Features_______________________________________ 48
2.3 The FPGA Board’s I/O Features ___ 49
2.4 Obtaining an FPGA Development Board and Cables __________________________ 53

3 Programmable Logic Technology______________________________ 56

3.1 CPLDs and FPGAs __ 59
3.2 Altera MAX 7000S Architecture – A Product Term CPLD Device _______________ 60

R A P I D P R O T O T Y P I N G
O F D I G I TA L S Y S T E M S

S O P C E D I T I O N

Tutorial I: The 15 Minute Design______________________________ 2

FPGA Development Board Hardware and I/O Features____________ 46

vi Rapid Prototyping of Digital Systems

3.3 Altera Cyclone Architecture – A Look-Up Table FPGA Device _________________ 62
3.4 Xilinx 4000 Architecture – A Look-Up Table FPGA Device ____________________ 65
3.5 Computer Aided Design Tools for Programmable Logic _______________________ 67
3.6 Next Generation FPGA CAD tools ___ 68
3.7 Applications of FPGAs___ 69
3.8 Features of New Generation FPGAs__ 69
3.9 For additional information ___ 70
3.10 Laboratory Exercises __ 71

4 Tutorial II: Sequential Design and Hierarchy ____________________ 74

4.1 Install the Tutorial Files and FPGAcore Library for your board ________________ 74
4.2 Open the tutor2 Schematic ___ 75
4.3 Browse the Hierarchy__ 76
4.4 Using Buses in a Schematic ___ 78
4.5 Testing the Pushbutton Counter and Displays _______________________________ 79
4.6 Testing the Initial Design on the Board _____________________________________ 80
4.7 Fixing the Switch Contact Bounce Problem__________________________________ 81
4.8 Testing the Modified Design on the FPGA Board _____________________________ 82
4.9 Laboratory Exercises __ 83

5 FPGAcore Library Functions _________________________________ 88

5.1 FPGAcore LCD_Display: LCD Panel Character Display ______________________ 90
5.2 FPGAcore DEC_7SEG: Hex to Seven-segment Decoder _______________________ 92
5.3 FPGAcore Debounce: Pushbutton Debounce ________________________________ 94
5.4 FPGAcore OnePulse: Pushbutton Single Pulse ______________________________ 95
5.5 FPGAcore Clk_Div: Clock Divider___ 96
5.6 FPGAcore VGA_Sync: VGA Video Sync Generation _________________________ 97
5.7 FPGAcore Char_ROM: Character Generation ROM_________________________ 99
5.8 FPGAcore Keyboard: Read Keyboard Scan Code ___________________________ 100
5.9 FPGAcore Mouse: Mouse Cursor___ 102
5.10 For additional information __ 103

6 Using VHDL for Synthesis of Digital Hardware _________________ 106

6.1 VHDL Data Types ___ 106
6.2 VHDL Operators __ 107
6.3 VHDL Based Synthesis of Digital Hardware ________________________________ 108
6.4 VHDL Synthesis Models of Gate Networks _________________________________ 108

 Table of Contents vii

6.5 VHDL Synthesis Model of a Seven-segment LED Decoder_____________________ 109
6.6 VHDL Synthesis Model of a Multiplexer ___________________________________ 111
6.7 VHDL Synthesis Model of Tri-State Output_________________________________ 112
6.8 VHDL Synthesis Models of Flip-flops and Registers __________________________ 112
6.9 Accidental Synthesis of Inferred Latches ___________________________________ 114
6.10 VHDL Synthesis Model of a Counter ______________________________________ 114
6.11 VHDL Synthesis Model of a State Machine _________________________________ 115
6.12 VHDL Synthesis Model of an ALU with an Adder/Subtractor and a Shifter ______ 117
6.13 VHDL Synthesis of Multiply and Divide Hardware __________________________ 118
6.14 VHDL Synthesis Models for Memory ______________________________________ 119
6.15 Hierarchy in VHDL Synthesis Models _____________________________________ 123
6.16 Using a Testbench for Verification __ 125
6.17 For additional information ___ 126
6.18 Laboratory Exercises__ 126

7 Using Verilog for Synthesis of Digital Hardware ________________ 130

7.1 Verilog Data Types ___ 130
7.2 Verilog Based Synthesis of Digital Hardware ________________________________ 130
7.3 Verilog Operators __ 131
7.4 Verilog Synthesis Models of Gate Networks _________________________________ 132
7.5 Verilog Synthesis Model of a Seven-segment LED Decoder ____________________ 132
7.6 Verilog Synthesis Model of a Multiplexer ___________________________________ 133
7.7 Verilog Synthesis Model of Tri-State Output ________________________________ 134
7.8 Verilog Synthesis Models of Flip-flops and Registers _________________________ 135
7.9 Accidental Synthesis of Inferred Latches ___________________________________ 136
7.10 Verilog Synthesis Model of a Counter ______________________________________ 136
7.11 Verilog Synthesis Model of a State Machine_________________________________ 137
7.12 Verilog Synthesis Model of an ALU with an Adder/Subtractor and a Shifter _____ 138
7.13 Verilog Synthesis of Multiply and Divide Hardware __________________________ 139
7.14 Verilog Synthesis Models for Memory _____________________________________ 140
7.15 Hierarchy in Verilog Synthesis Models _____________________________________ 143
7.16 For additional information ___ 144
7.17 Laboratory Exercises__ 144

8 State Machine Design: The Electric Train Controller_____________ 148

8.1 The Train Control Problem __ 148

viii Rapid Prototyping of Digital Systems

8.2 Train Direction Outputs (DA1-DA0, and DB1-DB0) _________________________ 149
8.3 Switch Direction Outputs (SW1, SW2, and SW3)____________________________ 150
8.4 Train Sensor Input Signals (S1, S2, S3, S4, and S5) __________________________ 150
8.5 An Example Controller Design ___ 151
8.6 VHDL Based Example Controller Design __________________________________ 154
8.7 Verilog Based Example Controller Design__________________________________ 157
8.8 Automatically Generating a State Diagram of a Design _______________________ 160
8.9 Simulation Vector file for State Machine Simulation _________________________ 161
8.10 Running the Train Control Simulation ____________________________________ 162
8.11 Running the Video Train System (After Successful Simulation) ________________ 162
8.12 A Hardware Implementation of the Train System Layout_____________________ 164
8.13 Laboratory Exercises ___ 166

9 A Simple Computer Design: The µP 3 _________________________ 170

9.1 Computer Programs and Instructions _____________________________________ 171
9.2 The Processor Fetch, Decode and Execute Cycle_____________________________ 172

9.3 VHDL Model of the μP 3 __ 179

9.4 Verilog Model of the μP 3 ___ 182

9.5 Automatically Generating a State Diagram of the μP3________________________ 186

9.6 Simulation of the μP3 Computer__ 187
9.7 Laboratory Exercises ___ 188

10 VGA Video Display Generation using FPGAs ___________________ 192

10.1 Video Display Technology ___ 192
10.2 Video Refresh ___ 192
10.3 Using an FPGA for VGA Video Signal Generation __________________________ 195
10.4 A VHDL Sync Generation Example: FPGAcore VGA_SYNC _________________ 196
10.5 Final Output Register for Video Signals ___________________________________ 198
10.6 Required Pin Assignments for Video Output _______________________________ 198
10.7 Video Examples__ 199
10.8 A Character Based Video Design ___ 200
10.9 Character Selection and Fonts ___ 200
10.10 VHDL Character Display Design Examples ________________________________ 203
10.11 A Graphics Memory Design Example _____________________________________ 206
10.12 Video Data Compression __ 207
10.13 Video Color Mixing using Dithering_______________________________________ 207

 Table of Contents ix

10.14 VHDL Graphics Display Design Example __________________________________ 208
10.15 Higher Video Resolution and Faster Refresh Rates___________________________ 209
10.16 Laboratory Exercises__ 210

11 Interfacing to the PS/2 Keyboard and Mouse ___________________ 214

11.1 PS/2 Port Connections___ 214
11.2 Keyboard Scan Codes ___ 215
11.3 Make and Break Codes __ 215
11.4 The PS/2 Serial Data Transmission Protocol ________________________________ 216
11.5 Scan Code Set 2 for the PS/2 Keyboard_____________________________________ 218
11.6 The Keyboard FPGAcore __ 220
11.7 A Design Example Using the Keyboard FPGAcore ___________________________ 223
11.8 Interfacing to the PS/2 Mouse __ 224
11.9 The Mouse FPGAcore ___ 226
11.10 Mouse Initialization ___ 226
11.11 Mouse Data Packet Processing __ 227
11.12 An Example Design Using the Mouse FPGAcore_____________________________ 228
11.13 For Additional Information __ 229
11.14 Laboratory Exercises__ 229

12 Legacy Digital I/O Interfacing Standards ______________________ 232

12.1 Parallel I/O Interface__ 232
12.2 RS-232C Serial I/O Interface ___ 233
12.3 SPI Bus Interface ___ 235
12.4 I2C Bus Interface ___ 237
12.5 For Additional Information __ 239
12.6 Laboratory Exercises__ 239

13 FPGA Robotics Projects ____________________________________ 242

13.1 The FPGA-bot Design ___ 242
13.2 FPGA-bot Servo Drive Motors__ 242
13.3 Modifying the Servos to make Drive Motors ________________________________ 243
13.4 VHDL Servo Driver Code for the FPGA-bot ________________________________ 244
13.5 Low-cost Sensors for an FPGA Robot Project _______________________________ 246
13.6 Assembly of the FPGA-bot Body __ 259
13.7 I/O Connections to the board’s Expansion Headers __________________________ 266
13.8 Robot Projects Based on R/C Toys, Models, and Robot Kits ___________________ 267

x Rapid Prototyping of Digital Systems

13.9 For Additional Information __ 275
13.10 Laboratory Exercises ___ 277

14 A RISC Design: Synthesis of the MIPS Processor Core ___________ 284

14.1 The MIPS Instruction Set and Processor ___________________________________ 284
14.2 Using VHDL to Synthesize the MIPS Processor Core ________________________ 287
14.3 The Top-Level Module__ 288
14.4 The Control Unit___ 291
14.5 The Instruction Fetch Stage__ 293
14.6 The Decode Stage __ 296
14.7 The Execute Stage__ 298
14.8 The Data Memory Stage __ 300
14.9 Simulation of the MIPS Design ___ 301
14.10 MIPS Hardware Implementation on the FPGA Board _______________________ 302
14.11 For Additional Information __ 303
14.12 Laboratory Exercises ___ 304

15 Introducing System-on-a-Programmable-Chip __________________ 310

15.1 Processor Cores__ 310
15.2 SOPC Design Flow ___ 311
15.3 Initializing Memory __ 313
15.4 SOPC Design versus Traditional Design Modalities __________________________ 315
15.5 An Example SOPC Design___ 316
15.6 Hardware/Software Design Alternatives ___________________________________ 317
15.7 For additional information __ 317
15.8 Laboratory Exercises ___ 318

16 Tutorial III: Nios II Processor Software Development ____________ 322

16.1 Install the DE board files __ 322
16.2 Starting a Nios II Software Project__ 322
16.3 The Nios II IDE Software__ 324
16.4 Generating the Nios II System Library ____________________________________ 325
16.5 Software Design with Nios II Peripherals __________________________________ 326
16.6 Starting Software Design – main() __ 329
16.7 Downloading the Nios II Hardware and Software Projects ____________________ 330
16.8 Executing the Software__ 331
16.9 Starting Software Design for a Peripheral Test Program _____________________ 331

 Table of Contents xi

16.10 Handling Interrupts___ 334
16.11 Accessing Parallel I/O Peripherals___ 335
16.12 Communicating with the LCD Display (DE2 only) ___________________________ 336
16.13 Testing SRAM ___ 339
16.14 Testing Flash Memory___ 340
16.15 Testing SDRAM __ 341
16.16 Downloading the Nios II Hardware and Software Projects ____________________ 346
16.17 Executing the Software __ 347
16.18 For additional information ___ 347
16.19 Laboratory Exercises__ 348

17 Tutorial IV: Nios II Processor Hardware Design ________________ 352

17.1 Install the DE board files __ 352
17.2 Creating a New Project __ 352
17.3 Starting SOPC Builder __ 353
17.4 Adding a Nios II Processor ___ 355
17.5 Adding UART Peripherals ___ 358
17.6 Adding an Interval Timer Peripheral ______________________________________ 359
17.7 Adding Parallel I/O Components__ 360
17.8 Adding an SRAM Memory Controller _____________________________________ 361
17.9 Adding an SDRAM Memory Controller ____________________________________ 362
17.10 Adding the LCD Module (DE2 Board Only) _________________________________ 362
17.11 Adding an External Bus ___ 363
17.12 Adding Components to the External Bus ___________________________________ 364
17.13 Global Processor Settings __ 364
17.14 Finalizing the Nios II Processor ___ 365
17.15 Add the Processor Symbol to the Top-Level Schematic _______________________ 366
17.16 Create a Phase-Locked Loop Component___________________________________ 367
17.17 Complete the Top-Level Schematic __ 368
17.18 Design Compilation ___ 368
17.19 Testing the Nios II Project ___ 369
17.20 For additional information ___ 370
17.21 Laboratory Exercises__ 370

18 Operating System Support for SOPC Design ____________________ 374

18.1 Nios II OS Support ___ 376

xii Rapid Prototyping of Digital Systems

18.2 eCos ___ 377
18.3 µC/OS-II ___ 378
18.4 µClinux __ 379
18.5 Implementing the µClinux on the DE Board ________________________________ 380
18.6 Hardware Design for µClinux Support ____________________________________ 380
18.7 Configuring the DE Board___ 382
18.8 Exploring µClinux on the DE Board_______________________________________ 385
18.9 PS/2 Device Support in µClinux __ 386
18.10 Video Display in µClinux __ 386
18.11 USB Devices in µClinux (DE2 Board Only) _________________________________ 387
18.12 Network Communication in µClinux (DE2 Board Only) ______________________ 387
18.13 For additional information __ 388
18.14 Laboratory Exercises ___ 388

Appendix A: Generation of Pseudo Random Binary Sequences _______ 391

Appendix B: Quartus II Design and Data File Extensions ____________ 393

Appendix C: Common FPGA Pin Assignments _____________________ 394

Appendix D: ASCII Character Code______________________________ 396

Appendix E: Common I/O Connector Pin Assignments ______________ 397

Glossary __ 399

Index __ 407

About the Accompanying DVD__________________________________ 411

PREFACE
Changes to the SOPC Edition

Rapid Prototyping of Digital Systems provides an exciting and challenging
laboratory component for undergraduate digital logic and computer design courses
using FPGAs and CAD tools for simulation and hardware implementation. The
more advanced topics and exercises also make this text useful for upper level
courses in digital logic, programmable logic, and embedded systems. The SOPC
edition includes Altera’s new Quartus II CAD tool and includes laboratory projects
for Altera’s DE2 and the new DE1 FPGA boards. Student laboratory projects
provided on the book’s DVD include video graphics and text, mouse and keyboard
input, and several computer designs.

Rapid Prototyping of Digital Systems includes four tutorials on the Altera Quartus
II and Nios II tool environment, an overview of programmable logic, and IP cores
with several easy-to-use input and output functions. These features were developed
to help students get started quickly. Early design examples use schematic capture
and IP cores developed for the Altera UP and DE FPGA boards. VHDL is used for
more complex designs after a short introduction to VHDL-based synthesis. Verilog
is also now supported as an option for the student projects.

New chapters in this edition provide an overview of System-On-a-Programmable
Chip (SOPC) technology and SOPC design examples for the DE1 & 2 boards using
Altera’s new Nios II Processor hardware, the C software development tools, an
overview of OS support for SOPC, and the uClinux operating system. A full set of
Altera’s FPGA CAD tools is included on the book’s DVD.

Intended Audience

This text is intended to provide an exciting and challenging laboratory
component for an undergraduate digital logic design class. The more advanced
topics and exercises are also appropriate for consideration at schools that have
an upper level course in digital logic or programmable logic. There are a
number of excellent texts on digital logic design. For the most part, these texts
do not include or fully integrate modern CAD tools, logic simulation, logic
synthesis using hardware description languages, design hierarchy, current
generation field programmable gate array (FPGA) technology and SOPC
design. The goal of this text is to introduce these topics in the laboratory
portion of the course. Even student laboratory projects can now implement
entire digital and computer systems with hundreds of thousands of gates.
Over the past eight years, we have developed a number of interesting and
challenging laboratory projects involving serial communications, state
machines with video output, video games and graphics, simple computers,
keyboard and mouse interfaces, robotics, and pipelined RISC processor cores.

xiv Rapid Prototyping of Digital Systems

Source files and additional example files are available on the DVD for all
designs presented in the text. The student version of the PC based CAD tool on
the DVD can be freely distributed to students. Students can purchase their own
FPGA board for little more than the price of a contemporary textbook. As an
alternative, a few of the low-cost FPGA boards can be shared among students
in a laboratory. Course instructors should contact the Altera University Program
for detailed information on obtaining full versions of the CAD tools for
laboratory PCs and educational FPGA boards for student laboratories.

Topic Selection and Organization

Chapter 1 is a short CAD tool tutorial that covers design entry, simulation, and
hardware implementation using an FPGA. The majority of students can enter
the design, simulate, and have the design successfully running on the FPGA
board in less than thirty minutes. After working through the tutorial and
becoming familiar with the process, similar designs can be accomplished in less
than 10 minutes.
Chapter 2 provides an overview of the various FPGA development boards. The
features of each board are briefly described. Several tables listing pin
connections of various I/O devices serve as an essential reference whenever a
hardware design is implemented on the DE1, DE2, UP3, or UP 2 FPGA boards.
Chapter 3 is an introduction to programmable logic technology. The
capabilities and internal architectures of the most popular CPLDs and FPGAs
are described. These include the Cyclone FPGA used on the FPGA board, and
the Xilinx 4000 family FPGAs.
Chapter 4 is a short CAD tool tutorial that serves as both a hierarchical and
sequential design example. A counter is clocked by a pushbutton and the output
is displayed in the seven-segment LEDs. The design is downloaded to the
FPGA board and some real world timing issues arising from switch contact
bounce are resolved. It uses several functions from the FPGAcore library which
greatly simplify use of the FPGA’s input and output capabilities.
Chapter 5 describes the available FPGAcore library I/O functions. The I/O
devices include switches, the LCD, a decoder for seven segment LEDs, a
multiple output clock divider, VGA output, keyboard input, and mouse input.
Chapter 6 is an introduction to the use of VHDL for the synthesis of digital
hardware. Rather than a lengthy description of syntax details, models of the
commonly used digital hardware devices are developed and presented. Most
VHDL textbooks use models developed only for simulation and frequently use
language features not supported in synthesis tools. Our easy to understand
synthesis examples were developed and tested on FPGAs using the Altera CAD
tools.
Chapter 7 is an introduction to the use of Verilog for the synthesis of digital
hardware. The same hardware designs as Chapter 6 as modeled in Verilog. It is
optional, but is included for those who would like an introduction to Verilog.
Chapter 8 is a state machine design example. The state machine controls a
virtual electric train simulation with video output generated directly by the
FPGA. Using track sensor input, students must control two trains and three

 Preface xv

track switches to avoid collisions. An actual model train layout can also built
using the new digital DCC trains interfaced to an FPGA board.
Chapter 9 develops a model of a simple computer. The fetch, decode, and
execute cycle is introduced and a brief model of the computer is developed
using VHDL. A short assembly language program can be entered in the FPGA’s
internal memory and executed in the simulator.
Chapter 10 describes how to design an FPGA-based digital system to output
VGA video. Numerous design examples are presented containing video with
both text and graphics. Fundamental design issues in writing simple video
games and graphics using an FPGA board are examined.
Chapter 11 describes the PS/2 keyboard and mouse operation and presents
interface examples for integrating designs on an FPGA board. Keyboard scan
code tables, mouse data packets, commands, status codes, and the serial
communications protocol are included. VHDL code for a keyboard and mouse
interface is also presented.
Chapter 12 describes several of the common I/O standards that are likely to be
encountered in FPGA systems. Parallel, RS232 serial, SPI, and I2C standards
and interfacing are discussed.
Chapter 13 develops a design for an adaptable mobile robot using an FPGA
board as the controller. Servo motors and several sensor technologies for a low
cost mobile robot are described. A sample servo driver design is presented.
Commercially available parts to construct the robot described can be obtained
for as little as $60. Several robots can be built for use in the laboratory.
Students with their own FPGA board may choose to build their own robot
following the detailed instructions found in section 13.6.
Chapter 14 describes a single clock cycle model of the MIPS RISC processor
based on the hardware implementation presented in the widely used Patterson
and Hennessy textbook, Computer Organization and Design the
Hardware/Software Interface. Laboratory exercises that add new instructions,
features, and pipelining are included at the end of the chapter.
Chapters 15, 16, and 17 introduce students to SOPC design using the Nios II
RISC processor core. Chapter 15 is an overview of the SOPC design approach.
Chapter 16 contains a tutorial for the Nios II IDE software development tool
and examples using the Nios II C/C++ compiler. Chapter 17 contains a tutorial
on the processor core hardware configuration tool, SOPC builder. A DE2, DE1,
or FPGA board is required for this new material since it is not supported on the
UP2 or UP1’s smaller FPGA.
Chapter 18 is new to the fourth edition and introduces students to a Linux
based Real-Time Operating System (RTOS). A tutorial shows how the μClinux
OS can be ported to the DE2 and DE1 FPGA boards.
We anticipate that some schools will still choose to begin with TTL designs on
a small protoboard for the first few labs. The first chapter can be started at this
time since only OR and NOT logic functions are used to introduce the CAD
tool environment. The CAD tool can also be used for simulation of TTL labs,
since a TTL parts library is included.

xvi Rapid Prototyping of Digital Systems

Even though VHDL and Verilog are complex languages, we have found after
several years of experimentation that students can write HDL models to
synthesize hardware designs after a short overview with a few basic hardware
design examples. The use of HDL templates and online help files in the CAD
tool make this process easier. After the initial experience with HDL synthesis,
students dislike the use of schematic capture on larger designs since it can be
time consuming. Experience in industry has been much the same since large
productivity gains have been achieved using HDL based synthesis tools for
FPGAs and Application Specific Integrated Circuits (ASICs).
Most digital logic classes include a simple computer design such as the one
presented in Chapter 9 or a RISC processor such as the one presented in
Chapter 14. If this is not covered in the first digital logic course, it could be
used as a lab component for a subsequent computer architecture class.
A typical quarter or semester length course could not cover all of the topics
presented. The material in Chapters 7 through 17 can be used on a selective
basis. The keyboard and mouse are supported by FPGAcore library functions,
and the material presented in Chapter 11 is not required to use these library
functions for keyboard or mouse input. A DE1, DE2, or FPGA board is required
for the SOPC Nios designs in Chapters 16 and 17.
A video game based on the material in Chapter 10 can serve as the basis for a
final design project. We use robots with sensors from Chapter 13 that are
controlled by the simple computer in Chapter 9. Students really enjoy working
with the robot, and it presents almost infinite possibilities for an exciting design
competition. More advanced classes might want to develop projects based on
the Nios II processor reference design in Chapter 16 and 17 using C/C++ code
or use the uClinux material in Chapter 18 to develop more complex application
programs for embedded devices.

Software and Hardware Packages

We recommend the use of the new 7.1 SP1 web version of Quartus II FPGA
CAD included with this book; all exercises were tested using this version.
FPGA boards are available from the Altera University Program at special
student pricing. Although boards can be easily shared among several students in
a lab setting, pricing makes it possible for students who would like to purchase
their own to do so.
Details and suggestions for additional cables that may be required for a
laboratory setup can be found in Section 2.4. Source files for all designs
presented in the text are available on the DVD.

Additional Web Material and Resources

There is a web site for the text with additional course materials, slides, text
errata, and software updates at:

http://www.ece.gatech.edu/users/hamblen/book/book4e.htm

 Preface xvii

Acknowledgments

Over three thousand students and several hundred teaching assistants have
contributed to this work during the past eight years. In particular, we would like
to acknowledge Doug McAlister, Michael Sugg, Jurgen Vogel, Greg Ruhl, Eric
Van Heest, Mitch Kispet, Evan Anderson, Zachary Folkerts, and Nick Clark for
their help in testing and developing several of the laboratory assignments and
tools. Stephen Brown, Mike Phipps, Joe Hanson, Tawfiq Mossadak, and Eric
Shiflet at Altera provided software, hardware, helpful advice, and
encouragement.

