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PREFACE 
Changes to the SOPC Edition 

Rapid Prototyping of Digital Systems provides an exciting and challenging 
laboratory component for undergraduate digital logic and computer design courses 
using FPGAs and CAD tools for simulation and hardware implementation. The 
more advanced topics and exercises also make this text useful for upper level 
courses in digital logic, programmable logic, and embedded systems. The SOPC 
edition includes Altera’s new Quartus II CAD tool and includes laboratory projects 
for Altera’s DE2 and the new DE1 FPGA boards. Student laboratory projects 
provided on the book’s DVD include video graphics and text, mouse and keyboard 
input, and several computer designs. 

Rapid Prototyping of Digital Systems includes four tutorials on the Altera Quartus 
II and Nios II tool environment, an overview of programmable logic, and IP cores 
with several easy-to-use input and output functions. These features were developed 
to help students get started quickly. Early design examples use schematic capture 
and IP cores developed for the Altera UP and DE FPGA boards. VHDL is used for 
more complex designs after a short introduction to VHDL-based synthesis. Verilog 
is also now supported as an option for the student projects.  

New chapters in this edition provide an overview of System-On-a-Programmable 
Chip (SOPC) technology and SOPC design examples for the DE1 & 2 boards using 
Altera’s new Nios II Processor hardware, the C software development tools, an 
overview of OS support for SOPC, and the uClinux operating system. A full set of 
Altera’s FPGA CAD tools is included on the book’s DVD. 

Intended Audience 

This text is intended to provide an exciting and challenging laboratory 
component for an undergraduate digital logic design class. The more advanced 
topics and exercises are also appropriate for consideration at schools that have 
an upper level course in digital logic or programmable logic. There are a 
number of excellent texts on digital logic design. For the most part, these texts 
do not include or fully integrate modern CAD tools, logic simulation, logic 
synthesis using hardware description languages, design hierarchy, current 
generation field programmable gate array (FPGA) technology and SOPC 
design. The goal of this text is to introduce these topics in the laboratory 
portion of the course. Even student laboratory projects can now implement 
entire digital and computer systems with hundreds of thousands of gates.  
Over the past eight years, we have developed a number of interesting and 
challenging laboratory projects involving serial communications, state 
machines with video output, video games and graphics, simple computers, 
keyboard and mouse interfaces, robotics, and pipelined RISC processor cores.  
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Source files and additional example files are available on the DVD for all 
designs presented in the text. The student version of the PC based CAD tool on 
the DVD can be freely distributed to students. Students can purchase their own 
FPGA board for little more than the price of a contemporary textbook. As an 
alternative, a few of the low-cost FPGA boards can be shared among students 
in a laboratory. Course instructors should contact the Altera University Program 
for detailed information on obtaining full versions of the CAD tools for 
laboratory PCs and educational FPGA boards for student laboratories. 

Topic Selection and Organization 

Chapter 1 is a short CAD tool tutorial that covers design entry, simulation, and 
hardware implementation using an FPGA. The majority of students can enter 
the design, simulate, and have the design successfully running on the FPGA 
board in less than thirty minutes. After working through the tutorial and 
becoming familiar with the process, similar designs can be accomplished in less 
than 10 minutes. 
Chapter 2 provides an overview of the various FPGA development boards. The 
features of each board are briefly described. Several tables listing pin 
connections of various I/O devices serve as an essential reference whenever a 
hardware design is implemented on the DE1, DE2, UP3, or UP 2 FPGA boards. 
Chapter 3 is an introduction to programmable logic technology. The 
capabilities and internal architectures of the most popular CPLDs and FPGAs 
are described. These include the Cyclone FPGA used on the FPGA board, and 
the Xilinx 4000 family FPGAs.  
Chapter 4 is a short CAD tool tutorial that serves as both a hierarchical and 
sequential design example. A counter is clocked by a pushbutton and the output 
is displayed in the seven-segment LEDs. The design is downloaded to the 
FPGA board and some real world timing issues arising from switch contact 
bounce are resolved. It uses several functions from the FPGAcore library which 
greatly simplify use of the FPGA’s input and output capabilities. 
Chapter 5 describes the available FPGAcore library I/O functions. The I/O 
devices include switches, the LCD, a decoder for seven segment LEDs, a 
multiple output clock divider, VGA output, keyboard input, and mouse input. 
Chapter 6 is an introduction to the use of VHDL for the synthesis of digital 
hardware. Rather than a lengthy description of syntax details, models of the 
commonly used digital hardware devices are developed and presented. Most 
VHDL textbooks use models developed only for simulation and frequently use 
language features not supported in synthesis tools. Our easy to understand 
synthesis examples were developed and tested on FPGAs using the Altera CAD 
tools. 
Chapter 7 is an introduction to the use of Verilog for the synthesis of digital 
hardware. The same hardware designs as Chapter 6 as modeled in Verilog. It is 
optional, but is included for those who would like an introduction to Verilog. 
Chapter 8 is a state machine design example. The state machine controls a 
virtual electric train simulation with video output generated directly by the 
FPGA. Using track sensor input, students must control two trains and three 
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track switches to avoid collisions. An actual model train layout can also built 
using the new digital DCC trains interfaced to an FPGA board. 
Chapter 9 develops a model of a simple computer. The fetch, decode, and 
execute cycle is introduced and a brief model of the computer is developed 
using VHDL. A short assembly language program can be entered in the FPGA’s 
internal memory and executed in the simulator. 
Chapter 10 describes how to design an FPGA-based digital system to output 
VGA video. Numerous design examples are presented containing video with 
both text and graphics. Fundamental design issues in writing simple video 
games and graphics using an FPGA board are examined. 
Chapter 11 describes the PS/2 keyboard and mouse operation and presents 
interface examples for integrating designs on an FPGA board. Keyboard scan 
code tables, mouse data packets, commands, status codes, and the serial 
communications protocol are included. VHDL code for a keyboard and mouse 
interface is also presented. 
Chapter 12 describes several of the common I/O standards that are likely to be 
encountered in FPGA systems. Parallel, RS232 serial, SPI, and I2C standards 
and interfacing are discussed. 
Chapter 13 develops a design for an adaptable mobile robot using an FPGA 
board as the controller. Servo motors and several sensor technologies for a low 
cost mobile robot are described. A sample servo driver design is presented. 
Commercially available parts to construct the robot described can be obtained 
for as little as $60. Several robots can be built for use in the laboratory. 
Students with their own FPGA board may choose to build their own robot 
following the detailed instructions found in section 13.6. 
Chapter 14 describes a single clock cycle model of the MIPS RISC processor 
based on the hardware implementation presented in the widely used Patterson 
and Hennessy textbook, Computer Organization and Design the 
Hardware/Software Interface. Laboratory exercises that add new instructions, 
features, and pipelining are included at the end of the chapter. 
Chapters 15, 16, and 17 introduce students to SOPC design using the Nios II 
RISC processor core. Chapter 15 is an overview of the SOPC design approach. 
Chapter 16 contains a tutorial for the Nios II IDE software development tool 
and examples using the Nios II C/C++ compiler. Chapter 17 contains a tutorial 
on the processor core hardware configuration tool, SOPC builder. A DE2, DE1, 
or FPGA board is required for this new material since it is not supported on the 
UP2 or UP1’s smaller FPGA. 
Chapter 18 is new to the fourth edition and introduces students to a Linux 
based Real-Time Operating System (RTOS). A tutorial shows how the μClinux 
OS can be ported to the DE2 and DE1 FPGA boards.  
We anticipate that some schools will still choose to begin with TTL designs on 
a small protoboard for the first few labs. The first chapter can be started at this 
time since only OR and NOT logic functions are used to introduce the CAD 
tool environment. The CAD tool can also be used for simulation of TTL labs, 
since a TTL parts library is included. 
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Even though VHDL and Verilog are complex languages, we have found after 
several years of experimentation that students can write HDL models to 
synthesize hardware designs after a short overview with a few basic hardware 
design examples. The use of HDL templates and online help files in the CAD 
tool make this process easier. After the initial experience with HDL synthesis, 
students dislike the use of schematic capture on larger designs since it can be 
time consuming. Experience in industry has been much the same since large 
productivity gains have been achieved using HDL based synthesis tools for 
FPGAs and Application Specific Integrated Circuits (ASICs). 
Most digital logic classes include a simple computer design such as the one 
presented in Chapter 9 or a RISC processor such as the one presented in 
Chapter 14. If this is not covered in the first digital logic course, it could be 
used as a lab component for a subsequent computer architecture class. 
A typical quarter or semester length course could not cover all of the topics 
presented. The material in Chapters 7 through 17 can be used on a selective 
basis. The keyboard and mouse are supported by FPGAcore library functions, 
and the material presented in Chapter 11 is not required to use these library 
functions for keyboard or mouse input. A DE1, DE2, or FPGA board is required 
for the SOPC Nios designs in Chapters 16 and 17. 
A video game based on the material in Chapter 10 can serve as the basis for a 
final design project. We use robots with sensors from Chapter 13 that are 
controlled by the simple computer in Chapter 9. Students really enjoy working 
with the robot, and it presents almost infinite possibilities for an exciting design 
competition. More advanced classes might want to develop projects based on 
the Nios II processor reference design in Chapter 16 and 17 using C/C++ code 
or use the uClinux material in Chapter 18 to develop more complex application 
programs for embedded devices. 

Software and Hardware Packages 

We recommend the use of the new 7.1 SP1 web version of Quartus II FPGA 
CAD included with this book; all exercises were tested using this version. 
FPGA boards are available from the Altera University Program at special 
student pricing. Although boards can be easily shared among several students in 
a lab setting, pricing makes it possible for students who would like to purchase 
their own to do so. 
Details and suggestions for additional cables that may be required for a 
laboratory setup can be found in Section 2.4. Source files for all designs 
presented in the text are available on the DVD.  

Additional Web Material and Resources 

There is a web site for the text with additional course materials, slides, text 
errata, and software updates at: 

http://www.ece.gatech.edu/users/hamblen/book/book4e.htm  
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