java database connectivity

tutor-lalspomt

MPLYEASYLEARN

www.tutorialspoint.com

ﬂ https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

About the Tutorial

JDBC API is a Java API that can access any kind of tabular data, especially data
stored in a Relational Database. JDBC works with Java on a variety of platforms,
such as Windows, Mac OS, and the various versions of UNIX.

Audience

This tutorial is designed for Java programmers who would like to understand the
JDBC framework in detail along with its architecture and actual usage.

Prerequisites

Before proceeding with this tutorial, you should have a good understanding of
Java programming language. As you are going to deal with RDBMS, you should
have prior exposure to SQL and Database concepts.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of
Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,
copy, distribute or republish any contents or a part of contents of this e-book in
any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as
precisely as possible, however, the contents may contain inaccuracies or errors.
Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,
timeliness or completeness of our website or its contents including this tutorial.
If you discover any errors on our website or in this tutorial, please notify us at
contact@tutorialspoint.com

@Futqria'snoi"t

mailto:contact@tutorialspoint.com

Table of Contents

ADOUL TNE TULOTTAL ...t b bbb bbb e e b b i

LN (o[1= o[0T T OO O TSP OTRRPROPRTOT i
€] £To DT 1 (= TR PP VR PR i

010 0) V[0 A3 D 1=1o] =V =T TR i
TaDIE OF CONMEENTS ... et r et e e sr e nr s e n e nresr e e nenne ii

1. INTRODUCTIQN.....iiittuiiiisirrnnnsmmmmsiernnsssssisissssssssmmnsssssssssssssessssssss s mmmnssssssssssnnnes 1
WWNAE IS IDBC? ..ttt ettt etttk h e s a e e bt e b et e s b bt e sh bt e e R bt e e bt e e ebe e e sa b e e sab e e sabe e e ebeeennbeesnbeean 1
PIE-REGUISITE ...ttt ettt bbbttt e b e e bttt e bt e bt e bt e bt e b et ettt e b e b e b e 1
JDBC AFCRITECTUIE ...ttt ettt b bbbt bt s b e sb e bt sb et e bt e s bt s b e nbe e nbe e nbe e nb e e nbeenbe e e e nan s 2
ComMmMON JDBC COMPONENTS......coiiiiiiieiree ittt ettt et r e sb e sa e s e s e nr e e nne e nnre s 2
THE JDBC 4.0 PACKAGES ...ttt ettt h bbbt b bt bbb bbbt e nbe e b 3

P2 T | I L 1V 4.
CrEALE DALADASEeivieerieteet ettt ettt r e E e r e R e r e R Rt r e r e R e r e e e e nreenre e 4

B ol D=1 = o - = PSPPI 4
CrEALE TADIE ... ettt r et r e r e r e r e r e e r e e r e r e e r e e nreenre e 4

D] (o 0T I 1] SRR 5

I =l - 1 - USSR 5
|08 I T | - LT O TP PP PR PTRRP 6
UPDATE DATAeeeeeeeeee ettt ettt et e e e e st e e e e e e s s bbb ettt e e e e s aaab bbb e e e e e e e s snb bbb e e e e e e s snnnbbbneeeaeeeas 6

B I = D | - F PP OPPPPPPP 7

3. ENVIRONMENT......... et cmmm e e s e e s mmmma s s e ren s s e ren s s e rnn s s s s e e e snnnnnes 8
INSTAIT JAVA ...t h e b b h et 8
INSTAIL DATADASEeeuveitieie ettt et 8
INSTAIl DATADASE DIIVELSeeiiieteetieie ettt 9

i

'@' tutorialspoint

MPLYEASYLEARNING

Set DAtabase CreUENTIAL........c..uveeiiie e e e e e e e e s s s e e e e e e e s s s bbb b e e e s e e e s sensrraeeeas 9

CrEALE DALADASEcueeveiiiieei ettt 10
CrEALE TADIE. ... e 10
Create Data RECONTScuieiieieetieite ettt ettt e 11
SAMPLE CODEE........ oottt ere e ree e e re s mmmm s e e aae s ee s s s eessmmmm s e s e ennnnns 13
Creating JDBC APPIICALIONcouiiiiiitiiitee ittt 13
RE 100 0] S 0o Lo L TP PPN 13
DRIVER TYRES.......oiii ittt i mmmmsss s nns s s mmmm s s s nssanss s 17
WAL IS JIDBC DIIVEI 7.ttt ettt r ettt r e s r e s r e e nre e nr e e nr e e nreenre e nreenreenreenneenreenre e 17
] =T B Y= £ Y7 o =T SR 17
Which Driver Should D USEA? ..o 20
CONNECTIONSoeeiiiiee i tmmme e e reea s rraa s s emmmm e rea s e e ren s s e ena s s s mmmm s eesaeseesan 21
IMPOIT IDBC PACKAGES ... ecuteeuteeiteete ettt ettt ettt ettt b e b e b e s b bt e s b e e s bt e sb e e sb e e sbeenbeesbeenbeenbeesbeenbeen 21
T =] g B O T 1= OO TS OTOPR 21
Database URL FOPMUIATIONoouiiiiiiiiiitieiie ittt sttt bbbt bbbt 23
Create CONNECTION ODJECToiuiiiiiiieitie ettt et be e 24
(0 [111 [0 T O 6o T T 1= T o g 1 SRR 25
STATEMENTS..... ..ot rrmmms s mmss s s r s s mmmm s nn s s s s nne 27
The STALEMENT ODJECESviiviirieie ettt ettt 27
The PreparedStatement ODJECTScc.ui ittt sb e sbe et e e e e be e sbee e snbeesnbeeans 32
Prepare - EXAMPIE COUEooiiiiieiieiietee ettt bbb bbbt bbb b nneenaees 34
The CallableStatemMeEnt ODJECTScooiieieeee bbb et et 37
RESULT SETS..... ettt s e e s s s s mmmm s e s s e e s s rna s s e mmmma s smn s e rnnnnsd 44
TYPE OF RESUILSEL ...t ettt et be bbb e 44
CONCUITENCY OF RESUITSET ...ttt bbb e e s rb e e sebe e sabeeans 45

iii

@' tutorialspoint

MPLYEASYLEARMNING

N V710 LT T e T LTI) S 46

N V10 (Tl e U 0] o] L= O Lo -SSR 47

RV Lo T T = R LT = RS 51
VIEWING - EXAMPIE COUR.....cuiiiiiiii ittt b e b e 52
UPAALING @ RESUIT SET.......iiieiieieet ettt bbbt bt bbbt b nb e b e b 56
Updating - EXAMPIE COUR..........eiiiiiieitieit ettt bbbt sb et se et nbe e 58

S TR I N I N I o = PPN 64
DAte & TIME DALA TYPES. .eeiiutiieeiitiiee e ittt e e et e e s st e e e st e e e e st e e e s ast e e e s bt e e e e snteeeesastaeeessbeeessnseeeeaantaneesnnrneens 67
HaNAING NULL VAIUESocoeeeie ettt et s e s e e e st te e e s sat e e e s nt e e e s sntae e e e nntaeeesnnneeens 68
10. TRANSACTIONS.. ...ccittuiiirimnnnnsmmmmsssrrrsssssnss s s ssssesnsssss s mmmnsssssssssnnns 69
COMMIL & ROIDACK ... s 69
COMMIL - EXAMPIE COUR ...ttt ettt et et 70
USING SAVEPOINTS.......eeutieitietiete ettt ettt ettt b e b e bt sb e s bt e sbe e sbe e sb et sb e e sbe e sbe e sb et eb et nbe e nbeenneenbnennn e e 74
SAVEPOINTS - EXAMPIE COUE ...ttt ettt ettt e be e 75

1. EXCEPTIONS.... ..ottt mmmm e s s enaas s s emnas s s e s smmmm e enna s sennnnsenn 81
SQLEXCEPLION IMETNOUS ...ttt ettt ettt 81
12.BATCH PROCESSING......ccoiiiiirriiuimmmmsrrrniissisnnsssss s ssssssssssnssssssss s mmsnssss s 86
Batching with Statement ODJECTcouviii it e e e ae e e nreee s 86
Batching - EXAMPIE COUE.........ueiiiiiie e et e e s st e e e s nb e e s st e e e e aataeaesnreeeas 88
Batching with PrepareStatement ODJECT............io i e 92
BatChing - EXAMPIE COURcotiiiieitieitie ettt nb e bbbt sb e b e b e b enaeenne e e e sneas 94
13. STORED PROCEDURE........co it itcceciet e s s s mmmm s ena s s s e s s enn s s en s mmmmaees 99
Creating CallableStatement ODJECTcoiiiiiiiie e 99
Closing CallableStatement ODJECL:coiiiiieiieiee e sree e 101
JDBC SQL ESCAPE SYNTAX.....teeeeiiitieeeettee ettt ettt ettt e ettt e e s et et e e s kb e e e e s bb e e e e sabb e e e s anbe e e e s anbe e e e annneeens 102

iv

§g)> tutorialspoint

EARNINEG

o B AR 3T 0] o SR 102

LoTTor Lo L=l (= VAT o SR 103

LT N4 o o 103
CAILKBYWOIT ...ttt h bbbt b e b e b e e bt e s b e e eb e e eb e e sbe e sbeenbeenbeenteenreen 103

O] KBYWOIT. ...ttt ettt b bbbt b bt e bt e bt e bt e bt e bt e bt e bt e sb e e e b e e ebeenb e e nbeenbeenbeenbeenteenreen 103
14.STREAMING DATA ... eeeettmmmm s ee e s e e sse s s s e e mmmm e s renna s s s e e e s s s mmmm e e mnanns 105
15.CREATE DATAEEAoiiieeeiieee e srmms s s s srnnns s s s s s s s mnsmmmm s s s e s s s seennn s mmmmennnnns 110
RS0 U (=0 IS =T oL 110

RS T 4] 0] L 0 Lo = SRS PR 110
16.SELECT DATABASEccoiiiiiimtimmmms i irrnnnis s mmms s ssssss s sansss s mmmm s s ansnns 113
RS0 U T =0 IS] =T oL 113

RE 1001 0] S 0o Lo L PP UPR PP PRRUPRPPIN 113
17.DROP DATABASE oottt cmmre s s rrenss s s s s s s mmmma s s s s e e seas s s eennnssmmmn s e ennnnnnn 116
R0 UL =T I] (=] oL PSSRV 116

R 1001 0] S O Lo LT TP PRPRRUPRPPN 116
18.CREATE TABLES.........cciiiiiiiriiimmme s s mmmm s s s r s s mmmn s 119
RS0 U T E=T0] =T oL SR 119

ST 141 0] LT 0 Lo = RSP 119
19.DROP TABLES.......cottttiiiiiiiitmmmees s s erenns s s s e s srsmmmm e ees s s eennnns s s mmmmrrnnsnsssnnees 122
Lo U E=To] =] o RTOURTRRPPI 122

R 100] 0] S 0o Lo LU 122
20.INSERT RECORDS........oieiiiii e rr s e e s o s e e e mmmm s s e 125
R0 [T =T I] (=] LTRSS 125

R 100] 0] S 0o Lo LU 125

v

i§)) tutorialspoint

21.SELECT RECORDS............iiiiiimmmnsssnniisnnin e mmss s sssssssssss s mmmm s 129

R0 UL =To I] (=T OSSR 129

KT 1001 o] L= 0 To [SR 129
22.UPDATE RECORDS........cuciiiiuiiicmmme s cren s erena s srenas s mmmma s sesna s sesnn s s sesnnssmmmmannseens 133
REGUITEO STEPS. ...ttt ettt ettt b e bt bt e bt e bt e bt e bt e bt e bt e bt e bt et e e b e et e e b e nne b e 133
SAMPIE COUER ...ttt ettt b bt b e bt bt e s bt e bt e sb e e bt e eb e e eb e e sb e e nb e e nbeesbeenbeenreenbeenreen 133
23.DELETE RECORDS..........ci oo iicmme et et s e s s mmm s s e s e s e e s e e s s mmmm s s 137
RS0 U Tt T0 IS] =T oL 137

RS T 4] 0] L 0 o = SRS PR 137
24, WHERE CLAUSE.........ciiiiiiiiumnmmmm s s s s s snnsssssss s s mmnnssssssnsens 141
RS0 U L= 0 IS =T oL 141

R 1001 0] (S 0 Lo L PP PPR PR PRRUPRPPN 141
25.LIKE CLAUSE oot me e e s e e s s e s e e e s e e s s e et s mm s e e na e e enan 146
R0 UL =T I (=] o1 PSRRI 146

R 100] 0] S 0 Lo L PP PR PR TPRPPN 146
26.SORTING DATA. ... ottt mmem s mmmn e e s nannans 151
RS0 U L= T0 IS =T oL U 151

ST 141 0] LT 0 To = SRR 151

Vi

i§)) tutorialspoint

1. INTRODUCTION

What is JDBC?

JDBC stands for Java Database Connectivity, which is a standard Java API for
database-independent connectivity between the Java programming language,
and a wide range of databases.

The JDBC library includes APIs for each of the tasks mentioned below that are
commonly associated with database usage.

¢ Making a connection to a database.

e Creating SQL or MySQL statements.

e Executing SQL or MySQL queries in the database.
e Viewing & Modifying the resulting records.

Fundamentally, JDBC is a specification that provides a complete set of interfaces
that allows for portable access to an underlying database. Java can be used to
write different types of executables, such as:

e Java Applications

e Java Applets

e Java Servlets

e Java ServerPages (JSPs)

e Enterprise JavaBeans (EJBs).

All of these different executables are able to use a IJDBC driver to access a
database, and take advantage of the stored data.

JDBC provides the same capabilities as ODBC, allowing Java programs to contain
database-independent code.

Pre-Requisite

Before moving further, you need to have a good understanding of the following
two subjects:

e Core JAVA Programming
¢ SQL or MySQL Database

@Fupqriglspoint

JDBC

JDBC Architecture

The JDBC API supports both two-tier and three-tier processing models for
database access but in general, JDBC Architecture consists of two layers:

e JDBC API: This provides the application-to-JDBC Manager connection.
e JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

The JDBC API uses a driver manager and database-specific drivers to provide
transparent connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each
data source. The driver manager is capable of supporting multiple concurrent
drivers connected to multiple heterogeneous databases.

Following is the architectural diagram, which shows the location of the driver
manager with respect to the JDBC drivers and the Java application:

Common JDBC Components

The JDBC API provides the following interfaces and classes:

¢ DriverManager: This class manages a list of database drivers. Matches
connection requests from the java application with the proper database
driver using communication subprotocol. The first driver that recognizes a
certain subprotocol under JDBC will be used to establish a database
Connection.

e Driver: This interface handles the communications with the database
server. You will interact directly with Driver objects very rarely. Instead,

@Fu?qriglspoing

2

JDBC

you use DriverManager objects, which manages objects of this type. It
also abstracts the details associated with working with Driver objects.

¢ Connection: This interface with all methods for contacting a database.
The connection object represents communication context, i.e., all
communication with database is through connection object only.

e Statement: You use objects created from this interface to submit the SQL
statements to the database. Some derived interfaces accept parameters
in addition to executing stored procedures.

e ResultSet: These objects hold data retrieved from a database after you
execute an SQL query using Statement objects. It acts as an iterator to
allow you to move through its data.

e SQLException: This class handles any errors that occur in a database
application.

The JDBC 4.0 Packages

The java.sql and javax.sql are the primary packages for JDBC 4.0. This is the
latest JDBC version at the time of writing this tutorial. It offers the main classes
for interacting with your data sources.

The new features in these packages include changes in the following areas:
e Automatic database driver loading.
e Exception handling improvements.
e Enhanced BLOB/CLOB functionality.
e Connection and statement interface enhancements.
e National character set support.
e SQL ROWID access.
e SQL 2003 XML data type support.

¢ Annotations.

@Fu?qriglspoing

2. SQISYNTA

Structured Query Language (SQL) is a standardized language that allows you to
perform operations on a database, such as creating entries, reading content,
updating content, and deleting entries.

SQL is supported by almost any database you will likely use, and it allows you to
write database code independently of the underlying database.

This chapter gives an overview of SQL, which is a prerequisite to understand
JDBC concepts. After going through this chapter, you will be able
to Create, Read, Update, and Delete (often referred to as CRUD operations) data
from a database.

For a detailed understanding on SQL, you can read our MySQL Tutorial.

Create Database

The CREATE DATABASE statement is used for creating a new database. The
syntax is:

SQLl> CREATE DATABASE DATABASE_INAME

Example
The following SQL statement creates a Database named EMP:

SQL> CREATE DATABASE EMP

Drop Database

The DROP DATABASE statement is used for deleting an existing database. The
syntax is:

SQL> DROP DATABASE DATABASE_NAME

Note: To create or drop a database you should have administrator privilege on
your database server. Be careful, deleting a database would loss all the data
stored in the database.

Create Table

The CREATE TABLE statement is used for creating a new table. The syntax is:

@Fupqriglspoint

JDBC

SQI> CREATE TABLE table_name
(

column_name column_data_type |,
column_name column_data_type |,

column_name column_data_type

);

Example
The following SQL statement creates a table named Employees with four
columns:

SQl> CREATE TABLEmMployees
(
id INT NOT NULL ,
age INT NOT NULL,
first VARCHAR (255),
last VARCHARS5S),
PRIMARY KEY(id)

Drop Table

The DROP TABLE statement is used for deleting an existing table. The syntax is:

SQI> DROP TABLE table_name

Example
The following SQL statement deletes a table named Employees:

SQL> DROP TABLEEmployees;

INSERT Data

The syntax for INSERT, looks similar to the following, where columnl, column2,
and so on represents the new data to appear in the respective columns:

SQLl> INSERT INTO table_name VALUES (columnl, column2, ..);

@Fupqriglspoint

JDBC

Example

The following SQL INSERT statement inserts a new row in the Employees
database created earlier:

SQL> INSERT INTO Employees VALUES(100, 18, 'Zara' , 'Al i');

SELECT Data

The SELECT statement is used to retrieve data from a database. The syntax for
SELECT is:

SQLl> SELECT column_name column_name
FROM table_name
WHERE conditions ;

The WHERE clause can use the comparison operators such as =, =, <, >,
<=,and >=, as well as the BETWEEN and LIKE operators.

Example

The following SQL statement selects the age, first and last columns from the
Employees table, where id column is 100:

SQl> SELECT first , last , age
FROMEmMployees
WHERE id= 100;

The following SQL statement selects the age, first and last columns from the
Employees table, where first column contains Zara :

SQLI> SELECT first , last , age
FROMEmMployees
WHERE first LIKE '%Zara%';

UPDATE Data

The UPDATE statement is used to update data. The syntax for UPDATE is:

SQLl> UPDATE table_name
SET column_name = value , column_name = value ,

WHERE conditions ;

@Fupqriglspoint

JDBC

The WHERE clause can use the comparison operators such as =, !=, <, >
<=,and >=, as well as the BETWEEN and LIKE operators.

Example

The following SQL UPDATE statement changes the age column of the employee
whose id is 100:

SQLl> UPDATEEmployees SET age=20 WHERE id-100;

DELETE Data

The DELETE statement is used to delete data from tables. The syntax for DELETE
is:

SQLl> DELETE FROM table_name WHERE conditions;

The WHERE clause can use the comparison operators such as =, I=, <
<=,and >=, as well as the BETWEEN and LIKE operators.

Example

The following SQL DELETE statement deletes the record of the employee whose
id is 100:

SQL> DELETE FROMEmployees WHERE i&100;

@Fupqriglspoint

3. ENVIRONMENT

To start developing with JDBC, you should setup your JDBC environment by
following the steps shown below. We assume that you are working on a Windows
platform.

Install Java

Install J2SE Development Kit 5.0 (JDK 5.0) from Java Official Site.
Make sure following environment variables are set as described below:

e JAVA_HOME: This environment variable should point to the directory
where you installed the IDK, e.g. C:\Program Files\Java\jdk1.5.0.

e CLASSPATH: This environment variable should have appropriate paths
set, e.g. C:\Program Files\Java\jdk1.5.0_20\jre\lib.

e PATH: This environment variable should point to appropriate JRE bin, e.g.
C:\Program Files\Java\jrel.5.0_20\bin.

It is possible you have these variable set already, but just to make sure here's
how to check.

e Go to the control panel and double-click on System. If you are a Windows
XP user, it is possible you have to open Performance and Maintenance,
before you will see the System icon.

e Go to the Advanced tab and click on the Environment Variables.
¢ Now check if all the above mentioned variables are set properly.

You automatically get both IJDBC packages java.sql and javax.sql, when you
install J2SE Development Kit 5.0 (JDK 5.0).

Install Database

The most important thing you will need, of course is an actual running database
with a table that you can query and modify.

Install a database that is most suitable for you. You can have plenty of choices
and most common are:

¢ MySQL DB: MySQL is an open source database. You can download it
from MySQL Official Site. We recommend downloading the full Windows
installation.

@Fupqriglspoint

JDBC

In addition, download and installMySQL Administratoras well
as MySQL Query Browser. These are GUI based tools that will make
your development much easier.

Finally, download and unzip MySQL Connector/J (the MySQL JIDBC
driver) in a convenient directory. For the purpose of this tutorial, we will
assume that you have installed the driver at C:\Program
Files\MySQL\mysqgl-connector-java-5.1.8.

Accordingly, set CLASSPATH variable to C:\Program Files\MySQL\mysql-
connector-java-5.1.8\mysql-connector-java-5.1.8-bin.jar. Your driver
version may vary based on your installation.

e PostgreSQL DB: PostgreSQL is an open source database. You can
download it from PostgreSQL Official Site.

The Postgres installation contains a GUI based administrative tool called
pgAdmin III. JDBC drivers are also included as part of the installation.

e Oracle DB: Oracle DB is a commercial database sold by Oracle. We
assume that you have the necessary distribution media to install it.

Oracle installation includes a GUI based administrative tool called
Enterprise Manager. JDBC drivers are also included as a part of the
installation.

Install Database Drivers

The latest JDK includes a IJDBC-ODBC Bridge driver that makes most Open
Database Connectivity (ODBC) drivers available to programmers using the JDBC
API.

Now-a-days, most of the Database vendors are supplying appropriate JDBC
drivers along with Database installation. So, you should not worry about this
part.

Set Database Credential

For this tutorial we are going to use MySQL database. When you install any of
the above database, its administrator ID is set to root and gives provision to set
a password of your choice.

Using root ID and password you can either create another user ID and
password, or you can use root ID and password for your JDBC application.

There are various database operations like database creation and deletion, which
would need administrator ID and password.

For rest of the JDBC tutorial, we would use MySQL Database with username as
ID and password as password.

@Fu?qriglspoing

JDBC

If you do not have sufficient privilege to create new users, then you can ask
your Database Administrator (DBA) to create a user ID and password for you.

Create Database

To create the EMP database, use the following steps:

Stepl

Open a Command Prompt and change to the installation directory as follows:

C\>
C \>cd Program Files \ MySQLbin
C \ Program Files \ MySQLbin >

Note: The path to mysqld.exe may vary depending on the install location of
MySQL on your system. You can also check documentation on how to start and
stop your database server.

Step 2

Start the database server by executing the following command, if it is already
not running.

C \ Program Files \ MySQLbin >mysqgld
C \ Program Files \ MySQLbin >

Step 3

Create the EMP database by executing the following command:

C \ Program Files \ MySQLbin > mysgladmin create EMP -uroot -p
Enter password: **xxkeek

C \ Program Files \ MySQLbin >

Create Table

To create the Employees table in EMP database, use the following steps:

Step 1

Open a Command Prompt and change to the installation directory as follows:

@Fu?qriglspoing

10

JDBC

C\>
C \>cd Program Files \ MySQLbin

C \ Program Files \ MySQLbin >

Step 2

Login to the database as follows:

C \ Program Files \ MySQLbin >mysqgl -uroot -p
Enter password: **#kkks*

mysql>

Step 3

Create the table Employee as follows:

mysql> use EMP
mysql> create table Employees
-> (
->id int not null ,
-> age int not null ,
-> first varchar (255),
-> last varchar (255)
->);
Query OK O rows affected (0.08 sec)

mysql >

Create Data Records

Finally you create few records in Employee table as follows:

mysqgl> INSERT INTO Employees VALUES(100, 18, 'Zara' , 'Ali');
Query OK 1 row affected (0.05 sec)

mygyl > INSERT INTO Employees VALUES(101, 25, 'Mahnaz', 'Fatma’);
Query OK 1 row affected (0.00 sec)

11

@Fupqriglspoint

JDBC

mysql> INSERT INTO Employees VALUES(102, 30, 'Zaid' , 'Khan');
Query OK 1 row affected (0.00 sec)

mysql> INSERT INTO Employees VALUES(103, 28, 'Sumit’ , ' Mittal');
Query OK 1 row affected (0.00 sec)

mysql >

For a complete understanding on MySQL database, study the MySQL Tutorial.

Now you are ready to start experimenting with JDBC. Next chapter gives you a
sample example on JDBC Programming.

12

@Fupqriglspoint

4. SAMPLEODE

This chapter provides an example of how to create a simple JDBC application.
This will show you how to open a database connection, execute a SQL query,
and display the results.

All the steps mentioned in this template example, would be explained in
subsequent chapters of this tutorial.

Creating JDBC Application

There are following six steps involved in building a JDBC application:

¢ Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sql.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communication channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnec tion() method to create a Connection object,
which represents a physical connection with the database.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to the database.

e Extract data from result set: Requires that you use the
appropriateResultSet.getXXX() method to retrieve the data from the result
set.

¢ Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

This sample example can serve as a template when you need to create your
own JDBC application in the future.

This sample code has been written based on the environment and database
setup done in the previous chapter.

Copy and past the following example in FirstExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

@Fupqriglspoint

13

JDBC

import java.sql.*;

public class FirstExample {
/I IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhosttEMP";

/I Database credentials
static final String USER = "username";

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

//ISTEP 3: Open a connection
System.out.printin("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

/ISTEP 4: Execute a query
System.out.printin("Creating statement...");

stmt = conn.createStatement();

String sq;

sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

/ISTEP 5: Extract data from resu It set
while(rs.next()){
/IRetrieve by column name

intid = rs.getint("id");

m’ tutorialspoint

MPLYEASYLEARNING

14

JDBC

int age = rs.getint("age");

String first = rs.getString("first");

String last = rs.getString("last");

/[Display value s
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);
}
/ISTEP 6: Clean - up environment
rs.close();
stmt. close();
conn.close();
}catch(SQLException se){
//Handle errors for JIDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
stmt.close();
}catch(SQLException se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();

Ylend finally try

15

@Fupqriglspoint

JDBC

Ylend try

System.out.printin("Goodbye!");

}Y/end main

Hlend FirstExample

Now let us compile the above example as follows:

C \>javac FirstExample . java

C\>

When you run FirstExample, it produces the following result:

C \>java FirstExample

Connecting to database

Creating
ID: 100,
ID: 101,
ID: 102,
ID: 103,
C\>

statement ...

Age 18, First :
Age 25, First :
Age 30, First :
Age 28, First :

Zara, Last: Ali
Mahnaz Last: Fatma
Zaid, Last: Khan
Sumit, Last: Mittal

@Fupqriglspoint

16

5. DRIVER TYPES

What is JDBC Driver?

JDBC drivers implement the defined interfaces in the JDBC API, for interacting
with your database server.

For example, using JDBC drivers enable you to open database connections and
to interact with it by sending SQL or database commands then receiving results
with Java.

The Java.sgl package that ships with JDK, contains various classes with their
behaviours defined and their actual implementaions are done in third-party
drivers. Third party vendors implements the java.sql.Driver interface in their
database driver.

JDBC Dirivers Types

JDBC driver implementations vary because of the wide variety of operating
systems and hardware platforms in which Java operates. Sun has divided the
implementation types into four categories, Types 1, 2, 3, and 4, which is
explained below:

Type 1: IDBC-ODBC Bridge Driver

In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on
each client machine. Using ODBC, requires configuring on your system a Data
Source Name (DSN) that represents the target database.

When Java first came out, this was a useful driver because most databases only
supported ODBC access but now this type of driver is recommended only for
experimental use or when no other alternative is available.

17

@Fupqriglspoint

JDBC

Local Computer

Java Application | DB
| Vendor —
Application Code | Driver

L — R —
} [
Type 1 | | opee | [—
JDBC ODEC Bridge [T~ Driver Local
DBMS

Proprietary Vendor I Network

Specific Protocol Communication

Database Server

The JDBC-ODBC Bridge that comes with JDK 1.2 is a good example of this kind
of driver.

Type 2: IDBC-Native API

In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls,
which are unique to the database. These drivers are typically provided by the
database vendors and used in the same manner as the JDBC-ODBC Bridge. The
vendor-specific driver must be installed on each client machine.

If we change the Database, we have to change the native API, as it is specific to
a database and they are mostly obsolete now, but you may realize some speed
increase with a Type 2 driver, because it eliminates ODBC's overhead.

Local Computer

Java Application [-t—= | DB Vendor Driver
Application Code L
t .
Lacal
Type 2 - Native API DBEMS
Proprietary Vendor Network
Specific Protocol Communication

R < YRR

Database Server

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.

@;upqriglspoint

18

JDBC

Type 3: IDBC-Net Pure Java

In a Type 3 driver, a three-tier approach is used to access databases. The JDBC
clients use standard network sockets to communicate with a middleware
application server. The socket information is then translated by the middleware
application server into the call format required by the DBMS, and forwarded to
the database server.

This kind of driver is extremely flexible, since it requires no code installed on the
client and a single driver can actually provide access to multiple databases.

Local Computer Middleware Server
Java Application
JDBC Type 1 Driver
Application Code |
3 - » JDBC Type 2 Driver
Type 3 l
JDBC — Net Pure Java JDBC Type 4 Driver
Praprietary Vendor MNatwark
Specific Protocol Communication

Database Server

You can think of the application server as a JDBC "proxy," meaning that it makes
calls for the client application. As a result, you need some knowledge of the
application server's configuration in order to effectively use this driver type.

Your application server might use a Type 1, 2, or 4 driver to communicate with
the database, understanding the nuances will prove helpful.

Type 4: 100% Pure Java

In a Type 4 driver, a pure Java-based driver communicates directly with the
vendor's database through socket connection. This is the highest performance
driver available for the database and is usually provided by the vendor itself.

This kind of driver is extremely flexible, you don't need to install special software
on the client or server. Further, these drivers can be downloaded dynamically.

19

@Fupqriglspoint

JDBC

Local Computer

Java Application

Application Code
: : . “—
Ype o
100% Pure Java s Local
X DEMS
Proprietary Vendor Metwork
Specific Protocol Communication

Database Server

MySQL's Connector/] driver is a Type 4 driver. Because of the proprietary nature
of their network protocols, database vendors usually supply type 4 drivers.

Which Driver should be Used?

If you are accessing one type of database, such as Oracle, Sybase, or IBM, the
preferred driver type is 4.

If your Java application is accessing multiple types of databases at the same
time, type 3 is the preferred driver.

Type 2 drivers are useful in situations, where a type 3 or type 4 driver is not
available yet for your database.

The type 1 driver is not considered a deployment-level driver, and is typically
used for development and testing purposes only.

20

@Fupqriglspoint

6. CONNECTIONS

After you've installed the appropriate driver, it is time to establish a database
connection using JDBC.

The programming involved to establish a JDBC connection is fairly simple. Here
are these simple four steps:

e Import IJDBC Packages: Add import statements to your Java program
to import required classes in your Java code.

¢ Register IJDBC Driver: This step causes the JVM to load the desired
driver implementation into memory so it can fulfill your JDBC requests.

e Database URL Formulation: This is to create a properly formatted
address that points to the database to which you wish to connect.

e Create Connection Object: Finally, code a call to
the DriverManager object'sgetConnection() method to establish actual
database connection.

Import JIDBC Packages

The Import statements tell the Java compiler where to find the classes you
reference in your code and are placed at the very beginning of your source code.

To use the standard JDBC package, which allows you to select, insert, update,
and delete data in SQL tables, add the following imports to your source code:

import java .sql .* ; //for standard JDBC programs

import java . math.* ; //for BigDecimal and Biglnteger support

Register JDBC Driver

You must register the driver in your program before you use it. Registering the
driver is the process by which the Oracle driver's class file is loaded into the
memory, so it can be utilized as an implementation of the JDBC interfaces.

You need to do this registration only once in your program. You can register a
driver in one of two ways.

Approach | - Class.forName()

The most common approach to register a driver is to use
Java's Class.forName() method, to dynamically load the driver's class file into

@Fupqriglspoint

21

JDBC

memory, which automatically registers it. This method is preferable because it
allows you to make the driver registration configurable and portable.

The following example uses Class.forName() to register the Oracle driver:

try {
Class . forName("oracle.jdbc.driver.OracleDriver");

}

catch (ClassNotFoundException ex) {
System. out . printin ("Error: unable to load driver class!");
System. exit (1);

}

You can use getInstance() method to work around noncompliant JVMs, but
then you'll have to code for two extra Exceptions as follows:

try {
Class . forName("oracle.jdbc.driver.OracleDriver"). newlnstance ();
}
catch (ClassNotFoundException ex) {
System. out . printin ("Error: unable to load driver class!");
System. exit (1);
catch (lllegalAccessException ex) {
System. out . printin ("Error: access problem while loading!");
System. exit (2);
catch (InstantiationException ex) {
System. out . printin ("Error: unable to instantiate driver!");

System. exit (3);

Approach Il - DriverManager.registerDriver()

The second approach you can use to register a driver, is to use the static
DriverManager.registerDriver() method.

You should use the registerDriver() method if you are using a non-JDK compliant
JVM, such as the one provided by Microsoft.

The following example uses registerDriver() to register the Oracle driver:

@Fu?qriglspoing

22

JDBC

try {
Driver myDriver = new oracle . jdbc . driver . OracleDriver ();

DriverManager . registerDriver (myDriver);
}
catch (ClassNotFoundException ex) {
System. out . printin ("Error: unable to load driver class!");

System. exit (1);

Database URL Formulation

After you've loaded the driver, you can establish a connection using the
DriverManager.getConnection() method. For easy reference, let me list the
three overloaded DriverManager.getConnection() methods:

e getConnection(String url)
e getConnection(String url, Properties prop)
e getConnection(String url, String user, String password)

Here each form requires a database URL. A database URL is an address that
points to your database.

Formulating a database URL is where most of the problems associated with
establishing a connection occurs.

Following table lists down the popular JDBC driver names and database URL.

RDBMS JDBC driver name URL format
MySQL com.mysql.jdbc.Driver jdbc:mysql://hostname/
databaseName

ORACLE oracle.jdbc.driver.OracleDriver jdbc:oracle:thin:@hostname:port
Number:databaseName

DB2 COM.ibm.db2.jdbc.net.DB2Driver jdbc:db2:hostname:port
Number/databaseName

Sybase com.sybase.jdbc.SybDriver jdbc:sybase:Tds:hosthame: port
Number/databaseName

23

@Fu?qriglspoing

JDBC

All the highlighted part in URL format is static and you need to change only the
remaining part as per your database setup.

Create Connection Object

We have listed down three forms of DriverManager.getConnection() method
to create a connection object.

Using a Database URL with a username and password

The most commonly used form of getConnection() requires you to pass a
database URL, a username , and a password :

Assuming you are using Oracle's thin driver, you'll specify a
host:port:databaseName value for the database portion of the URL.

If you have a host at TCP/IP address 192.0.0.1 with a host name of amrood, and
your Oracle listener is configured to listen on port 1521, and your database
name is EMP, then complete database URL would be:

jdbc : oracle :thin : @amrood1521: EMP

Now you have to call getConnection() method with appropriate username and
password to get a Connection object as follows:

String URL = "jdbc:oracle:thin:@amrood:1521:EMP" :

String USER= "username" ;

String PASS= "password"

Connection conn = DriverManager . getConnection (URL USER PASS;

Using Only a Database URL

A second form of the DriverManager.getConnection() method requires only a
database URL:

DriverManager . getConnection (String url);

However, in this case, the database URL includes the username and password
and has the following general form:

jdbc : oracle :driver :username/ password@database

So, the above connection can be created as follows:

String URL = "jdbc:oracle:thin:username/password@amrood:1521:EMP"

@Fu?qriglspoing

24

JDBC

Connection conn = DriverManager . getConnection (URL;

Using a Database URL and a Properties Object

A third form of the DriverManager.getConnection() method requires a database
URL and a Properties object:

DriverManager . getConnection (String url , Properties info);

A Properties object holds a set of keyword-value pairs. It is used to pass driver
properties to the driver during a call to the getConnection() method.

To make the same connection made by the previous examples, use the following
code:

import java . util %

String URL = "jdbc:oracle:thin:@amro 0d:1521:EMP" ;

Properties info = new Properties ();
info . put("user" , "username");
info . put ("password" , “"password");

Connection conn = DriverManager . getConnection (URL info);

Closing JDBC Connections

At the end of your JDBC program, it is required explicitly to close all the
connections to the database to end each database session. However, if you
forget, Java's garbage collector will close the connection when it cleans up stale
objects.

Relying on the garbage collection, especially in database programming, is a very
poor programming practice. You should make a habit of always closing the
connection with the close() method associated with connection object.

To ensure that a connection is closed, you could provide a *finally’ block in your
code. A finall y block always executes, regardless of an exception occurs or not.

To close the above opened connection, you should call close() method as
follows:

conn. close ();

Explicitly closing a connection conserves DBMS resources, which will make your
database administrator happy.

@Fu?qriglspoing

25

JDBC

For a better understanding, we suggest you to study our JDBC - Sample Code
tutorial.

26

@Fupqriglspoint

7. STATEMENTS

Once a connection is obtained we can interact with the database. The
JDBC Statement, CallableStatement, and PreparedStatement interfaces define
the methods and properties that enable you to send SQL or PL/SQL commands
and receive data from your database.

They also define methods that help bridge data type differences between Java
and SQL data types used in a database.

The following table provides a summary of each interface's purpose to decide on
the interface to use.

Interfaces Recommended Use

Statement Use this for general-purpose access to your database.
Useful when you are using static SQL statements at
runtime. The Statement interface cannot accept
parameters.

PreparedStatement Use this when you plan to use the SQL statements many
times. The PreparedStatement interface accepts input
parameters at runtime.

CallableStatement Use this when you want to access the database stored
procedures. The CallableStatement interface can also
accept runtime input parameters.

The Statement Objects

Creating Statement Object

Before you can use a Statement object to execute a SQL statement, you need to
create one using the Connection object's createStatement() method, as in the
following example:

Statement stmt = null ;

try {
stmt = conn. createStatement ();

@Fupqriglspoint

27

JDBC

}
catch (SQLException e) {

}
finally {

}

Once you've created a Statement object, you can then use it to execute an SQL
statement with one of its three execute methods.

e boolean execute (String SQL): Returns a boolean value of true if a
ResultSet object can be retrieved; otherwise, it returns false. Use this
method to execute SQL DDL statements or when you need to use truly
dynamic SQL.

¢ int executeUpdate (String SQL): Returns the number of rows affected
by the execution of the SQL statement. Use this method to execute SQL
statements for which you expect to get a number of rows affected - for
example, an INSERT, UPDATE, or DELETE statement.

¢ ResultSet executeQuery (String SQL): Returns a ResultSet object. Use
this method when you expect to get a result set, as you would with a
SELECT statement.

Closing Statement Object

Just as you close a Connection object to save database resources, for the same
reason you should also close the Statement object.

A simple call to the close() method will do the job. If you close the Connection
object first, it will close the Statement object as well. However, you should
always explicitly close the Statement object to ensure proper cleanup.

Statement stmt = null ;

try {
stmt = conn. createStatement ();

}
catch (SQLException e) {

}
finally {

@Fu?qriglspoing

28

JDBC

stmt . close ();

}

For a better understanding, we suggest you to study the Statement - Example
Code tutorial.

Statement Object Example

Following is the example, which makes use of the following three queries along
with the opening and closing statment:

e boolean execute(String SQL): Returns a boolean value of true if a
ResultSet object can be retrieved; otherwise, it returns false. Use this
method to execute SQL DDL statements or when you need to use the
truly dynamic SQL.

¢ int executeUpdate(String SQL): Returns the number of rows affected
by the execution of the SQL statement. Use this method to execute SQL
statements, for which you expect to get a nhumber of rows affected - for
example, an INSERT, UPDATE, or DELETE statement.

¢ ResultSet executeQuery(String SQL): Returns a ResultSet object. Use
this method when you expect to get a result set, as you would with a
SELECT statement.

This sample code has been written based on the environment and database
setup done in the previous chapters.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://| ocalhost/EMP";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {

@Fu?qriglspoing

N
(<)

JDBC

Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Reg ister JDBC driver

Class.forName("com.mysql.jdbc.Driver"),

//STEP 3: Open a connection
System.out.printin("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

/ISTEP 4: Execute a query

System.out.printin("Creating statement...");

stmt = conn.createStatement();

String sql = "UPDATE Employees set age=30 WHERE id=103";

/I Let us check if it returns a true Result Set or not.
Boolean ret = stmt.execute(sql);

System.out.printin("Return value is : " + ret.toString());

Il Let us update age of the record with ID = 103;
int rows = stmt.executeUpdate(sql);

System.out.printin("Rows impacted : " + rows);

Il Let us select all the records and display them.
sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

/ISTEP 5: Extract data from result set
while(rs.next()){
/IRetrieve by column name
intid =rs.getint("id");
int age = rs.getint("age");
String first = rs.getString("first");
String last = rs.getString("last");

m’ tutorialspoint

MPLYEASYLEARNING

JDBC

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
Syst em.out.print(", First: " + first);
System.out.printin(", Last: " + last);
}
/ISTEP 6: Clean - up environment
rs.close();
stmt.close();
conn.close();
}catch(SQLException se){
//Handle errors for JIDBC
se.pr intStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
Hinally{
/ffinally block used to close resources
try{
if(stmt!=null)
stmt.close();
}catch(SQLException se 2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLEXxception se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

Hlend main

@Fupqriglspoint

31

JDBC

}/end JDBCExam ple

Now let us compile the above example as follows:

C:\ >javac JDBCExample.java
C:\>

When you run JDBCExample, it produces the following result:

C:\ >java JDBCExample

Connecting to database...

Creating statement...

Return value is : false

Rows impacted : 1

ID: 100, Age: 18, First: Zara, Last: Ali

ID: 101, Age: 25, First: Mahnaz, Last: Fatma
ID: 102, Age: 30, First: Zaid, Last: Khan
ID: 103, Age: 30, First: Sumit, Last: Mittal
Goodbye!

C:\>

The PreparedStatement Objects

The PreparedStatement interface extends the Statement interface, which gives
you added functionality with a couple of advantages over a generic Statement
object.

This statement gives you the flexibility of supplying arguments dynamically.

Creating PreparedStatement Object

PreparedStatement pstmt = null ;

try {
String SQL = "Update Employees SET age = ? WHERE id = ?"

pstmt = conn. prepareStatement (SQL);

}
catch (SQLException e) {

32

@Fu?qriglspoing

JDBC

}
finally {

}

All parameters in JDBC are represented by the ? symbol, which is known as the
parameter marker. You must supply values for every parameter before
executing the SQL statement.

The setXXX() methods bind values to the parameters, where XXX represents
the Java data type of the value you wish to bind to the input parameter. If you
forget to supply the values, you will receive an SQLException.

Each parameter marker is referred by its ordinal position. The first marker
represents position 1, the next position 2, and so forth. This method differs from
that of Java array indices, which starts at 0.

All of the Statement object's methods for interacting with the database (a)
execute(), (b) executeQuery(), and (c) executeUpdate() also work with the
PreparedStatement object. However, the methods are modified to use SQL
statements that can input the parameters.

Closing PreparedStatement Object

Just as you close a Statement object, for the same reason you should also close
the PreparedStatement object.

A simple call to the close() method will do the job. If you close the Connection
object first, it will close the PreparedStatement object as well. However, you
should always explicitly close the PreparedStatement object to ensure proper
cleanup.

PreparedStatement pstmt = null ;

try {
String SQL = "Update Employees SET age=? W HEREid="7?" ;

pstmt = conn. prepareStatement (SQL);

}
catch (SQLException e) {

}
finally {

pstmt . close ();

@Fu?qriglspoing

33

JDBC

}

For a better understanding, let us study Prepare - Example Code discussed
below.

Prepare - Example Code

Following is the example, which makes use of the PreparedStatement along with
opening and closing statments.

This sample code has been written based on the environment and database
setup done in the previous chapters.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
/I IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysq|.jdbc.Driver";
static final String DB _URL = "jdbc:mysql://localhost/EMP";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
PreparedStatement stmt = nul X
try{

/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");
/ISTEP 3: Open a connection

System.out.printin("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

@Fu?qriglspoing

JDBC

/ISTE P 4: Execute a query
System.out.printin("Creating statement...");
String sql = "UPDATE Employees set age=? WHERE id=?";

stmt = conn.prepareStatement(sql);

//Bind values into the parameters.
stmt.setint(1, 35); // This would set age
stmt.setInt(2, 102); // This would set ID

Il Let us update age of the record with ID = 102;
int rows = stmt.executeUpdate();

System.out.printin("Rows impacted : " + rows);

Il Let us select all the record s and display them.
sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

/ISTEP 5: Extract data from result set
while(rs.next(){
/[Retrieve by column name
intid =rs.getint ("id");
int age = rs.getint("age");
String first = rs.getString("first");
String last = rs.getString("last™);

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);
}
/ISTEP 6: Clean - up environment
rs.close();

stmt.close();

@Fupqriglspoint

JDBC

conn.close();
}catch(SQLException se){
//Handle errors for JIDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
Hinally{
/ffinally block used to close resources
try{
if(stmt!=null)
stmt.close();
}catch(SQLExcepti on se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
MYlend try
System.out.printin("Goodbye!");
}/end main
Hlend JDB CExample

Now let us compile the above example as follows:

C:\ >javac JDBCExample.java
C\>

When you run JDBCExample, it produces the following result:

C:\ >java JDBCExample
Connecting to database...
Creating statement...

Rows impacted : 1

@Fupqriglspoint

36

JDBC

ID: 100, Age: 18, F irst: Zara, Last: Ali
ID: 101, Age: 25, First: Mahnaz, Last: Fatma
ID: 102, Age: 35, First: Zaid, Last: Khan

ID: 103, Age: 30, First: Sumit, Last: Mittal
Goodbye!

C:\>

The CallableStatement Objects

Just as a Connection object creates the Statement and PreparedStatement
objects, it also creates the CallableStatement object, which would be used to
execute a call to a database stored procedure.

Creating CallableStatement Object

Suppose, you nheed to execute the following Oracle stored procedure:

CREATE OR REHACE PROCEDURE getEmpName
(EMP_ID IN NUMBER EMP_FIRST OUT VARCHARS
BEGIN
SELECT first INTO EMP_FIRST
FROMEmMployees
WHERE ID= EMP_ID
END

NOTE: Above stored procedure has been written for Oracle, but we are working
with MySQL database so, let us write same stored procedure for MySQL as
follows to create it in EMP database:

DELIMITER $$

DROP PROCEDURE IF EXISTEMP". ‘getEmpName’ $$
CREATE PROCEDUREMVIP". "getEmpName’

(INEMP_ID INT, OUT EMP_FIRST VARCHAR5))
BEGIN

SELECT first] NTO EMP_FIRST

FROMEmMployees

WHERE ID= EMP_ID

@Fupqriglspoint

37

JDBC

END$$

DELIMITER;

Three types of parameters exist: IN, OUT, and INOUT. The PreparedStatement
object only uses the IN parameter. The CallableStatement object can use all the
three.

Here are the definitions of each:

Parameter Description

IN A parameter whose value is unknown when the SQL
statement is created. You bind values to IN parameters with
the setXXX() methods.

ouT A parameter whose value is supplied by the SQL statement it
returns. You retrieve values from the OUT parameters with
the getXXX() methods.

INOUT A parameter that provides both input and output values. You
bind variables with the setXXX() methods and retrieve values
with the getXXX() methods.

The following code shippet shows how to employ
the Connection.prepareCall() method to instantiate
a CallableStatement object based on the preceding stored procedure:

CallableStatement cstmt = null ;

try {
String SQL = "{call getEmpName (?, ?)}"
cstmt = conn. prepareCall (SQL;

}
catch (SQLException e) {

}
finally {

@Fu?qriglspoing

38

JDBC

}

The String variable SQL, represents the stored procedure, with parameter
placeholders.

Using the CallableStatement objects is much like using the PreparedStatement
objects. You must bind values to all the parameters before executing the
statement, or you will receive an SQLException.

If you have IN parameters, just follow the same rules and techniques that apply
to a PreparedStatement object; use the setXXX() method that corresponds to
the Java data type you are binding.

When you use OUT and INOUT parameters you must employ an additional
CallableStatement method, registerOutParameter(). The registerOutParameter()
method binds the JDBC data type, to the data type that the stored procedure is
expected to return.

Once you call your stored procedure, you retrieve the value from the OUT
parameter with the appropriate getXXX() method. This method casts the
retrieved value of SQL type to a Java data type.

Closing CallableStatement Object

Just as you close other Statement object, for the same reason you should also
close the CallableStatement object.

A simple call to the close() method will do the job. If you close the Connection
object first, it will close the CallableStatement object as well. However, you
should always explicitly close the CallableStatement object to ensure proper
cleanup.

CallableStatement cstmt = null ;

try {
String SQL = "{call getEmpName (?, ?)}"
cstmt = conn. prepareCall (SQL;

}
catch (SQLException e) {

}
fina lly {

cstmt . close ();
}

39

@Fu?qriglspoing

JDBC

For a better understanding, I would suggest to study Callable - Example Code.

Callable - Example Code

Following is the example, which makes use of the CallableStatement along with
the following getEmpName() MySQL stored procedure:

Make sure you have created this stored procedure in your EMP Database. You
can use MySQL Query Browser to get it done.

DELIMITER $$

DROP PROCEDURE IF EXISTS "EMP"."getEmpName” $$
CREATE PROCEDURE "EMP"."getEmpName’

(IN EMP_ID INT, OUT EMP_FIRST VARCHAR(255))
BEGIN

SELECT first INTO EMP_FIRST

FROM Employees

WHERE ID = EMP_ID;
END 3

DELIMITER ;

This sample code has been written based on the environment and database
setup done in the previous chapters.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB _URL = "jdbc:mysql://localhostEMP";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

40

I§gj> tutorialspoint

EARNINEG

JDBC

public static void main(String[] args) {
Connection conn = null;
CallableStatement stmt = nul ;
try{

/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver"),

/ISTEP 3: Open a connection
System.out.printin("Connecting to database...");
conn = DriverManager.getConnection(DB_URL,USER,PASS);

/ISTE P 4: Execute a query
System.out.printin("Creating statement...");
String sql = "{call getEmpName (?, ?)}";

stmt = conn.prepareCall(sql);

//Bind IN parameter first, then bind OUT parameter
int emplD = 102;

stmt.set Int(1, emplD); // This would set ID as 102
// Because second parameter is OUT so register it

stmt.registerOutParameter(2, java.sql.Types.VARCHAR);

//lUse execute method to run stored procedure.
System.out.printin("Executing st ored procedure...");

stmt.execute();

//Retrieve employee name with getXXX method
String empName = stmt.getString(2);
System.out.printin("Emp Name with ID:" +
emplD +"is " + empName);
stmt.close();
conn.close();
}catch(SQLException se){

5
[=Y

m’ tutorialspoint

MPLYEASYLEARNING

JDBC

//Handle errors for JIDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
Hinally{
/ffinally block used to close resources
tr y{
if(stmt!=null)
stmt.close();
}catch(SQLException se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
MYlend try
System.out.printin("Goodbye!");
}/end main

}/end JDBCExample

Now let us compile the above example as follows:

C:\ >javac JDBCExample.java
C\>

When you run JDBCExample, it produces the following result:

C:\ >java JDBCExample
Connectin g to database...
Creating statement...
Executing stored procedure...
Emp Name with 1D:102 is Zaid
Goodbye!

@Fupqriglspoint

42

JDBC

C\>

43

@Fupqriglspoint

8. RESULT SETS

The SQL statements that read data from a database query, return the data in a
result set. The SELECT statement is the standard way to select rows from a
database and view them in a result set. Thejava.sgl.ResultSet interface
represents the result set of a database query.

A ResultSet object maintains a cursor that points to the current row in the result
set. The term "result set" refers to the row and column data contained in a
ResultSet object.

The methods of the ResultSet interface can be broken down into three
categories:

¢ Navigational methods: Used to move the cursor around.

¢ Get methods: Used to view the data in the columns of the current row
being pointed by the cursor.

¢ Update methods: Used to update the data in the columns of the current
row. The updates can then be updated in the underlying database as well.

The cursor is movable based on the properties of the ResultSet. These properties
are designated when the corresponding Statement that generates the ResultSet
is created.

JDBC provides the following connection methods to create statements with
desired ResultSet:

¢ createStatement(int RSType, int RSConcurrency);
e prepareStatement(String SQL, int RSType, int RSConcurrency);
e prepareCall(String sql, int RSType, int RSConcurrency);

The first argument indicates the type of a ResultSet object and the second
argument is one of two ResultSet constants for specifying whether a result set is
read-only or updatable.

Type of ResultSet

The possible RSType are given below. If you do not specify any ResultSet type,
you will automatically get one that is TYPE_FORWARD_ONLY.

Type Description

ResultSet. TYPE_FORWARD_ONLY The cursor can only move forward in

@Fupqriglspoint

44

JDBC

the result set.

ResultSet. TYPE_SCROLL_INSENSITIVE The -cursor can scroll forward and
backward, and the result set is not
sensitive to changes made by others to
the database that occur after the result
set was created.

ResultSet. TYPE_SCROLL_SENSITIVE. The cursor can scroll forward and
backward, and the result set is sensitive
to changes made by others to the
database that occur after the result set
was created.

Concurrency of ResultSet

The possible RSConcurrency are given below. If you do not specify any
Concurrency type, you will automatically get one that is CONCUR_READ_ONLY.

Concurrency Description

ResultSet.CONCUR_READ_ONLY Creates a read-only result set. This is the
default

ResultSet. CONCUR_UPDATABLE Creates an updateable result set.

All our examples written so far can be written as follows, which initializes a
Statement object to create a forward-only, read only ResultSet object:

try {
Statement stmt = conn. createStatement (
ResultSet . TYPE_FORARD_ONLY
ResultSet . CONCUR_READ_ONLY
}

catch (Exception ex) {

}
finally {

45

@Fu?qriglspoing

JDBC

Navigating a Result Set

There are several methods in the ResultSet interface that involve moving the
cursor, including:

S.N. Methods & Description

1 public void beforeFirst() throws SQLException

Moves the cursor just before the first row.

2 public void afterLast() throws SQLException

Moves the cursor just after the last row.

3 public boolean first() throws SQLException

Moves the cursor to the first row.

4 public void last() throws SQLException

Moves the cursor to the last row.

5 public boolean absolute(int row) throws SQLException

Moves the cursor to the specified row.

6 public boolean relative(int row) throws SQLException

Moves the cursor the given number of rows forward or backward, from
where it is currently pointing.

7 public boolean previous() throws SQLException

Moves the cursor to the previous row. This method returns false if the
previous row is off the result set.

8 public boolean next() throws SQLException

Moves the cursor to the next row. This method returns false if there are
no more rows in the result set.

46

@;uyqri@lsnoim;

JDBC

9 public int getRow() throws SQLException

Returns the row number that the cursor is pointing to.

10 public void moveToInsertRow() throws SQLException

Moves the cursor to a special row in the result set that can be used to
insert a new row into the database. The current cursor location is
remembered.

11 public void moveToCurrentRow() throws SQLException

Moves the cursor back to the current row if the cursor is currently at the
insert row; otherwise, this method does nothing.

For a better understanding, let us study Navigate - Example Code as discussed
below.

Navigate - Example Code

Following is the example, which makes use of few navigation methods described
in the Result Set tutorial.

This sample code has been written based on the environment and database
setup done in the previous chapters.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/EMP";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {

47

@Fu?qriglspoing

JDBC

Connection conn = null;
Statement stmt = null;
try{
| ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver"),

//STEP 3: Open a connection
System.out.printin("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

/ISTEP 4: Execute a que ry to create statment with

Il required arguments for RS example.

System.out.printin("Creating statement...");

stmt = conn.createStatement(
ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_READ_ONLY);

String sq;

sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

/l Move cursor to the last row.
System.out.printin("Moving cursor to the last...");

rs.last();

/ISTEP 5: Extract data from result set
System.out.printin("Displaying record...");
//Retrieve by column name

intid = rs.getint("id");

int age = rs.getint("age");

String first = rs.getString("first");

String last = rs.getString("last");

/IDisplay values

System.out.print("ID: " + id);

5
(o]

m’ tutorialspoint

MPLYEASYLEARNING

JDBC

System.out.print(", Age: " + age);
System.out.print(", First: " + first);

System.out.printin(", Last: " + last);

/l Move cursor to the firs t row.
System.out.printin("Moving cursor to the first row...");

rs.first();

/ISTEP 6: Extract data from result set
System.out.printin("Displaying record...");
//[Retrieve by column name

id =rs.getint("id");

age = rs.getint("age");

first = rs.getString("first");

last = rs.getString("last");

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
Syst em.out.printin(", Last: " + last);

/I Move cursor to the first row.

System.out.printin("Moving cursor to the next row...");

rs.next();

/ISTEP 7: Extract data from result set
System.out.printin("Displaying record...");
id =rs.getint("id");

age = rs.getint("age");

first = rs.getString("first");

last = rs.getString("last");

/IDisplay values

@Fupqriglspoint

JDBC

System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print (", First: " + first);

System.out.printin(", Last: " + last);

/ISTEP 8: Clean - up environment
rs.close();
stmt.close();
conn.close();

}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();

}c atch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
stmt.close();
}catch(SQLEXxception se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLEXxception se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");
}/end main

}/end JDBCExample

Now let us compile the above example as follows:

@Fupqriglspoint

50

JDBC

C:\ >javac JDBCExample.java
C\>

When you run JDBCExample, it produces the following result:

C:\ >java JDBCExample

Connecting to database...

Creating statement...

Moving cursor to the last...

Displaying record...

ID: 103, Age: 30, First: Sumit, Last: Mittal
Moving cursor to the first row...

Displaying record...

ID: 100, Age: 18, First: Zara, Last: Ali
Moving cursor to the next row...

Displaying record...

ID: 101, Age: 25, First: Mahnaz, Last: Fatma
Goodbye!

C:\>

Viewing a Result Set

The ResultSet interface contains dozens of methods for getting the data of the
current row.

There is a get method for each of the possible data types, and each get method
has two versions:

¢ One that takes in a column name.
e One that takes in a column index.

For example, if the column you are interested in viewing contains an int, you
need to use one of the getInt() methods of ResultSet:

S.N. Methods & Description

1 public int getInt(String columnName) throws SQLException

Returns the int in the current row in the column named columnName .

51

I§gj> tutorialspoint

EARNINEG

JDBC

2 public int getInt(int columnIndex) throws SQLException

Returns the int in the current row in the specified column index. The
column index starts at 1, meaning the first column of a row is 1, the
second column of a row is 2, and so on.

Similarly, there are get methods in the ResultSet interface for each of the eight
Java primitive types, as well as common types such as java.lang.String,
java.lang.Object, and java.net.URL.

There are also methods for getting SQL data types java.sql.Date, java.sql.Time,
java.sqgl.TimeStamp, java.sql.Clob, and java.sql.Blob. Check the documentation
for more information about using these SQL data types.

For a better understanding, let us study theViewing - Example Code as
discussed below.

Viewing - Example Code

Following is the example, which makes use of
few getInt and getString methods described in the Result Set chapter. This
example is very similar to previous example explained in the Navigation Result
Set Section.

This sample code has been written based on the environment and the database
setup done in the previous chapters.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost EMP";

/I Database credentials
static final String USER = "us ername";

static final String PASS = "password";

public static void main(String[] args) {

@Fu?qriglspoing

52

JDBC

Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver"),

/ISTEP 3: Open a connection
System.out.printin("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

/ISTEP 4: Execute a query to create statment with

Il required arguments for RS example.

System.out.prin tIn("Creating statement...");

stmt = conn.createStatement(
ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_READ_ONLY);

String sq;

sql = "SELECT id, first, last, age FROM Employees "

ResultSet rs = stmt.executeQuery(sql);

/l Move cursor to the last row.
System.out.printin("Moving cursor to the last...");

rs.last();

/ISTEP 5: Extract data from result set
System.out.printin("Displaying recor d..");
//Retrieve by column name

intid = rs.getint("id");

int age = rs.getint("age");

String first = rs.getString("first");

String last = rs.getString("last");

/IDisplay values

System.out.print("ID: " + id);

m’ tutorialspoint

MPLYEASYLEARNING

JDBC

System.out.print(", Age: " + age);
System.out.print(", First: " + first);

System.out.printin(", Last: " + last);

// Move cursor to the first row.
System.out.printin("Moving cursor to the first row...");

rs.first();

/ISTEP 6: Extract data from result set
System.out.printin("Displaying record...");
//[Retrieve by column name

id =rs.getint("id");

age = rs.getint("age");

first = rs.getString("first");

last = rs.getString("las t");

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);

/I Move cursor to the first row.

System.out.p rintIn("Moving cursor to the next row...");

rs.next();

/ISTEP 7: Extract data from result set
System.out.printin("Displaying record...");
id =rs.getint("id");

age = rs.getint("age");

first = rs.getString("first");

last = rs.getString("last");

/IDisplay values

@Fupqriglspoint

JDBC

System.out.print("ID: " + id);

System.out.print(", Age: " + age);
System.out.print(", First: " + first);

System.out.printin(", Last: " + last);

/ISTEP 8: Clean - up environment

rs.close();

stmt.close();

conn.close();
}catch(SQLException se){

//Handle errors for JDBC

se.printStackTrace();

}catch(Exception e){

//Handle errors for Class.forName

e.printStackTrace();
Hi nally{

/ffinally block used to close resources

try{
if(stmt!=null)
stmt.close();
}catch(SQLEXxception se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLEXxcep tion se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");
}/end main
}/end JDBCExample

@Fupqriglspoint

55

JDBC

Now let us compile the above example as follows:

C:\ >javac JDBCExample.java
C:\>

When you run JDBCExample, it produces the following result:

C:\ >java JDBCExample

Connecting to database...

Creating statement...

Moving cursor to the last...

Displaying record...

ID: 103, Age: 30, First: Sumit, Last: Mittal
Moving cursor to the first row...
Displaying record...

ID: 1 00, Age: 18, First: Zara, Last: Ali
Moving cursor to the next row...
Displaying record...

ID: 101, Age: 25, First: Mahnaz, Last: Fatma
Goodbye!

C:\>

Updating a Result Set

The ResultSet interface contains a collection of update methods for updating the
data of a result set.

As with the get methods, there are two update methods for each data type:
¢ One that takes in a column name.
e One that takes in a column index.

For example, to update a String column of the current row of a result set, you
would use one of the following updateString() methods:

S.N. Methods & Description

1 public void updateString(int columnIndex, String s) throws
SQLException

56

@Fu?qriglspoing

JDBC

Changes the String in the specified column to the value of s.

public void updateString(String columnName, String s) throws
SQLException

Similar to the previous method, except that the column is specified by
its name instead of its index.

There are update methods for the eight primitive data types, as well as String,
Object, URL, and the SQL data types in the java.sql package.

Updating a row in the result set changes the columns of the current row in the
ResultSet object, but not in the underlying database. To update your changes to
the row in the database, you need to invoke one of the following methods.

S.N.

Methods & Description

public void updateRow()

Updates the current row by updating the corresponding row in the
database.

public void deleteRow()

Deletes the current row from the database.

public void refreshRow()

Refreshes the data in the result set to reflect any recent changes in the
database.

public void cancelRowUpdates()

Cancels any updates made on the current row.

public void insertRow()

Inserts a row into the database. This method can only be invoked when
the cursor is pointing to the insert row.

For a better understanding, let us study the Updating - Example Code as
discussed below.

@Fu;qriglspoing

57

JDBC

Updating - Example Code

Following is the example, which makes use of
the ResultSet.CONCUR_UPDATABLE and

ResultSet. TYPE_SCROLL_INSENSITIVE described in the Result Set tutorial.
This example would explain INSERT, UPDATE and DELETE operation on a table.

It should be noted that tables you are working on should have Primary Key set
properly.

This sample code has been written based on the environment and database
setup done in the previous chapters.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
// IDBC driver name and database U RL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/EMP";

/I Database credentials
static final String USER = "username";

static final String PASS = "password";

public st atic void main(String[] args) {
Connection conn = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to database...");

conn = Dri verManager.getConnection(DB_URL,USER,PASS);

/ISTEP 4: Execute a query to create statment with

@Fu?qriglspoing

58

JDBC

/l required arguments for RS example.
System.out.printin("Creating statement...");
Statement stmt = conn.createStatement(
ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_UPDATABLE);
/ISTEP 5: Execute a query
String sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

Syste m.out.printin("List result set for reference....");

printRs(rs);

/ISTEP 6: Loop through result set and add 5 in age
//Move to BFR postion so while - loop works properly
rs.beforeFirst();
[ISTEP 7: Extract data from result set
while(rs.next()){

//Retrieve by column name

int newAge = rs.getint("age”) + 5;

rs.updateDouble("age", newAge);

rs.updateRow();
}
System.out.printin(“List result set showing new ages...");
printRs (rs);
/I Insert a record into the table.
//Move to insert row and add column data with updateXXX()
System.out.printin("Inserting a new record...");
rs.moveTolnsertRow();
rs.updatelnt("id",104);
rs.updateString(“first”,"J ohn");
rs.updateString("last","Paul");
rs.updatelnt("age",40);
//Commit row

rs.insertRow();

@Fupqriglspoint

JDBC

System.out.printin("List result set showing new set...");

printRs(rs);

/I Delete second record from the table.

/I Set position to second record first

rs.absolute(2);

System.out.printin("List the record before deleting...");
//Retrieve by column name

intid =rs.getint("id");

int age = rs.getint("age");

String first = rs.get String("first");

String last = rs.getString("last");

/IDisplay values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);

System.out.printin(", Last: " + last);

/IDelete row
rs.deleteRow();

System.out.printin("List result set after \

deleting one records...

printRs(rs);

/ISTEP 8: Clean -up environment

rs.close();

stmt.close();

conn.clos e();
}catch(SQLException se){

//Handle errors for JDBC

se.printStackTrace();

}catch(Exception e){

@Fupqriglspoint

JDBC

//[Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(conn!=null)
conn.close();
}catch(SQLEXxception se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

}Y/end main

public static void printRs(ResultSet rs) throws SQLExcept
I/Ensure we start with first row
rs.beforeFirst();
while(rs.next(){
//Retrieve by column name
intid = rs.getint("id");
int age = rs.getint("age");
String first = rs.getString("first");
String last = rs.getString("last™);

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);

}

System.out.printin();

Hlend printRs()
Hlend JDBCExample

ion{

@Fupqriglspoint

61

JDBC

Now let us compile the above example as follows:

C:\ >javac JDBCExample.java
C:\>

When you run JDBCExample, it produces the following result:

C:\ >java JDBCExample

Connecting to database...

Creating statement...

List result set for reference....

ID: 100, Age: 33, First: Zara, Last: Ali

ID: 101, Age: 40, First: Mahnaz, Last: Fatma
ID: 102, Age: 50, First: Zaid, Last: Khan

ID: 103, Age: 45, First: Sumit, Last: Mittal

List result set showing new ages..

ID: 100, Age: 38, First: Zara, Last: Al

ID: 101, Age: 45, First: Mahnaz, Last: Fatma
ID: 102, Age: 55, First: Zaid, Last: Khan

ID: 103, Age: 50, First: Sumit, Last: Mittal

Inserting a new record...

List result set showing new set...

ID: 100, Age: 38, F irst: Zara, Last: Al
ID: 101, Age: 45, First: Mahnaz, Last: Fatma
ID: 102, Age: 55, First: Zaid, Last: Khan

ID: 103, Age: 50, First: Sumit, Last: Mittal
ID: 104, Age: 40, First: John, Last: Paul

List the record before deleting...

ID: 101, Age: 45, First: Mahnaz, Last: Fatma
List result set after deleting one records...

ID: 100, Age: 38, First: Zara, Last: Al

ID: 102, Age: 55, First: Zaid, Last: Khan

ID: 103, Age: 50, First: Sumit, Last: Mittal

62

m’ tutorialspoint

MPLYEASYLEARNING

JDBC

ID: 104, Age: 40, First: John, Last: Paul

Goodbye!
C\>

63

@Fupqriglspoint

9. DARTYPES

The JIDBC driver converts the Java data type to the appropriate JDBC type,
before sending it to the database. It uses a default mapping for most data types.
For example, a Java int is converted to an SQL INTEGER. Default mappings were
created to provide consistency between drivers.

The following table summarizes the default JDBC data type that the Java data
type is converted to, when you call the setXXX() method of the
PreparedStatement or CallableStatement object or the ResultSet.updateXXX()
method.

SQL JDBC/Java setXXX updateXXX
VARCHAR java.lang.String setString updateString
CHAR java.lang.String setString updateString
LONGVARCHAR java.lang.String setString updateString
BIT boolean setBoolean updateBoolean
NUMERIC java.math.BigDecimal setBigDecimal updateBigDecimal
TINYINT byte setByte updateByte
SMALLINT short setShort updateShort
INTEGER int setlnt updatelnt
BIGINT long setLong updatelLong
REAL float setFloat updateFloat
FLOAT float setFloat updateFloat
DOUBLE double setDouble updateDouble

@Fupqriglspoint

64

VARBINARY

BINARY

DATE

TIME

TIMESTAMP

CLOB

BLOB

ARRAY

REF

STRUCT

byte[]

byte[]

java.sql.Date

java.sql.Time

java.sql.Timestamp

java.sql.Clob

java.sql.Blob

java.sql.Array

java.sql.Ref

java.sql.Struct

setBytes

setBytes

setDate

setTime

setTimestamp

setClob

setBlob

setARRAY

SetRef

SetStruct

JDBC

updateBytes

updateBytes

updateDate

updateTime

updateTimestamp

updateClob

updateBlob

updateARRAY

updateRef

updateStruct

JDBC 3.0 has enhanced support for BLOB, CLOB, ARRAY, and REF data types.
The ResultSet object now has updateBLOB(), updateCLOB(), updateArray(), and
updateRef() methods that enable you to directly manipulate the respective data

on the server.

The setXXX() and updateXXX() methods enable you to convert specific Java
types to specific JDBC data types. The methods, setObject() and updateObject(),

enable you to map almost any Java type to a JDBC data type.

ResultSet object provides corresponding getXXX() method for each data type to
retrieve column value. Each method can be used with column name or by its

ordinal position.

SQL

VARCHAR

CHAR

LONGVARCHAR

JDBC/Java

java.lang.String

java.lang.String

java.lang.String

@Fu?qriglspoing

setXXX

setString

setString

setString

getXxX

getString

getString

getString

65

BIT

NUMERIC

TINYINT

SMALLINT

INTEGER

BIGINT

REAL

FLOAT

DOUBLE

VARBINARY

BINARY

DATE

TIME

TIMESTAMP

CLOB

BLOB

ARRAY

REF

STRUCT

boolean

java.math.BigDecimal

byte

short

int

long

float

float

double

byte[]

byte[]

java.sqgl.Date

java.sql.Time

java.sqgl.Timestamp

java.sql.Clob

java.sql.Blob

java.sql.Array

java.sql.Ref

java.sql.Struct

@Fu?qriglspoing

setBoolean

setBigDecimal

setByte

setShort

setlnt

setlLong

setFloat

setFloat

setDouble

setBytes

setBytes

setDate

setTime

setTimestamp

setClob

setBlob

setARRAY

SetRef

SetStruct

JDBC

getBoolean

getBigDecimal

getByte

getShort

getint

getLong

getFloat

getFloat

getDouble

getBytes

getBytes

getDate

getTime

getTimestamp

getClob

getBlob

getARRAY

getRef

getStruct

66

JDBC

Date & Time Data Types

The java.sql.Date class maps to the SQL DATE type, and the java.sql.Time and
java.sqgl.Timestamp classes map to the SQL TIME and SQL TIMESTAMP data
types, respectively.

Following example shows how the Date and Time classes format the standard
Java date and time values to match the SQL data type requirements.

import java . sql . Date;
import java . sql . Time;
import java . sql . Timestamp;
import java . util %
public class SqglDateTime {
public static void main(String [] args) {
/IGet standard date and time
java . util . Date javaDate = new java . util . Date();
long javaTime = javaDate . getTime ();
System. out . prin tin ("The Java Date is:" +

javaDate . toString ());

//Get and display SQL DATE

java . sgl . Date sqglDate = new java . sgl . Date(javaTime);

System. out . printin ("The SQL DATE is: " +
sglDate . toString ());

//Get and dis play SQL TIME

java . sgl . Time sqglTime = new java .sqgl . Time(javaTime);

System. out . printin ("The SQL TIME is: " +
sglTime . toString ());

//Get and display SQL TIMESTAMP

java . sgl . Timestamp sqlTimestamp =

new java . sgl . Timestamp(javaTime);

System. out . printin ("The SQL TIMESTAMP is: "+
sqlTimestamp . toString ());

}//end main
}/lend SqglDateTime

67

@Fupqriglspoint

JDBC

Now let us compile the above example as follows:

C \>javac SqglDateTime . java
C\>

When you run JDBCExample, it produces the following result:

C\>java SqglDateTime

The Java Date is : Tue Aug 18 13: 46: 02 GM¥04: 00 2009
The SQL DATEis : 2009- 08- 18

The SQL TIME is : 13:46: 02

The SQL TIMESTAMRs : 2009- 08- 18 13: 46: 02.828

C\>

Handling NULL Values

SQL's use of NULL values and Java's use of null are different concepts. So, to
handle SQL NULL values in Java, there are three tactics you can use:

e Avoid using getXXX() methods that return primitive data types.

e Use wrapper classes for primitive data types, and use the ResultSet
object's wasNull() method to test whether the wrapper class variable that
received the value returned by the getXXX() method should be set to
null.

e Use primitive data types and the ResultSet object's wasNull() method to
test whether the primitive variable that received the value returned by the
getXXX() method should be set to an acceptable value that you've
chosen to represent a NULL.

Here is one example to handle a NULL value:

Statement stmt = conn. createStatement ();
String sgl = "SELECT id, first, last, age FROM Employees"
ResultSet rs = stmt . executeQuery (sql);
int id = rs.getint (1);
if (rs.wasNull ()) {
id = 0;

68

@Fu?qriglspoing

10. TRANSACTIONS

If your JDBC Connection is in auto -commit mode, which it is by default, then
every SQL statement is committed to the database upon its completion.

That may be fine for simple applications, but there are three reasons why you
may want to turn off the auto-commit and manage your own transactions:

e To increase performance,
e To maintain the integrity of business processes,
e To use distributed transactions.

Transactions enable you to control if, and when, changes are applied to the
database. It treats a single SQL statement or a group of SQL statements as one
logical unit, and if any statement fails, the whole transaction fails.

To enable manual- transaction support instead of the auto -commit mode that the
JDBC driver uses by default, use the Connection
object's setAutoCommit() method. If you pass a boolean false to
setAutoCommit(), you turn off auto-commit. You can pass a boolean true to
turn it back on again.

For example, if you have a Connection object named conn, code the following to
turn off auto-commit:

conn. setAutoCommit (false);

Commit & Rollback

Once you are done with your changes and you want to commit the changes then
call commit() method on connection object as follows:

conn. commit();

Otherwise, to roll back updates to the database made using the Connection
named conn, use the following code:

conn. rollback ();

The following example illustrates the use of a commit and rollback object:

try {
/[Assume a valid connection object conn

conn. setAutoCommit (false);

@Fupqriglspoint

JDBC

Statement stmt = conn. createStatement ();

String SQL = "INSERT INTO Employees " +
"VALUES (106, 20, 'Rita’, 'Tez")" ;

stmt . executeUpdate (SQL;

/ISubmit a malformed SQL statement that breaks

String SQL = "INSERTED IN Employees " +
"VALUES (107, 22, 'Sita’, 'Singh’)" ;

stmt . executeUpdate (SQL);

I If there is no error.

conn. commit();

} catch (SQLExcepion se){
/I If there is any error.

conn. rollback ();

}

In this case, none of the above INSERT statement would success and everything
would be rolled back.

For a better understanding, let us study the Commit - Example Code as
discussed below.

Commit - Example Code

Following is the example, which makes use of commit and rollback described
in the Transaction tutorial.

This sample code has been written based on the environment and database
setup done in the previous chapters.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driv er’;
static final String DB_URL = "jdbc:mysql://localhost EMP";

@Fu?qriglspoing

70

JDBC

/I Database credentials
static final String USER = "username";

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to database...");
conn = DriverManager.getConnection(DB_URL,US ER,PASS);

/ISTEP 4: Set auto commit as false.

conn.setAutoCommit(false);

//STEP 5: Execute a query to create statment with

// required arguments for RS example.

System.out.printin("Creating statement...");

stmt = conn. createStatement(
ResultSet. TYPE_SCROLL _INSENSITIVE,
ResultSet. CONCUR_UPDATABLE);

/ISTEP 6: INSERT a row into Employees table

System.out.printin("Inserting one row....");

String S QL ="INSERT INTO Employees " +
"VALUES (106, 20, 'Rita’, 'Tez")";

stmt.executeUpdate(SQL);

/ISTEP 7: INSERT one more row into Employees table
SQL = "INSERT INTO Employees " +

NI
=,

m’ tutorialspoint

MPLYEASYLEARNING

JDBC

"VALUES (107, 22,' Sita', 'Singh’)";
stmt.executeUpdate(SQL);

/ISTEP 8: Commit data here.
System.out.printin("Commiting data here....");

conn.commit();

/ISTEP 9: Now list all the available records.

String sql = "SELECT id, first, last, a ge FROM Employees";
ResultSet rs = stmt.executeQuery(sql);

System.out.printin("List result set for reference....");

printRs(rs);

/ISTEP 10: Clean - up environment
rs.close();
stmt.close();
conn.close();
}catch(SQ LException se){
//Handle errors for JIDBC
se.printStackTrace();
/I If there is an error then rollback the changes.
System.out.printin("Rolling back data here....");
try{
if(conn!=null)
conn.rollback();
}catch(SQLException se2){
se2.printStackTrace();
Mlend try

}catch(Exception e){
/[[Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

Nl
N

@Fupqriglspoint

JDBC

try{
if(stmt!=null)
stmt.close();
}catch(SQLException se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLEXxception se){
se.printStackTrace();
Ylend finally try
Ylend try
System. out.printin("Goodbye!");

}/end main

public static void printRs(ResultSet rs) throws SQLException{
I/Ensure we start with first row
rs.beforeFirst();
while(rs.next(){
/[Retrieve by column name
intid =rs.getint("i d");
int age = rs.getint("age");
String first = rs.getString("first");
String last = rs.getString("last™);

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);

}

System.out.printIn();

Hlend printRs()

@Fupqriglspoint

73

JDBC

}/end JDBCExample

Now, let us compile the above example as follows:

C:\ >javac JDBCExample.java
C:\>

When you run JDBCExample, it produces the following result:

C:\ >java JDBCExample

Connecting to database...

Creating statement...

Inserting one row....

Commiting data here....

List result set for reference....

ID: 100, Age: 18, First: Zara, Last: Ali

ID: 101, Age: 25, Firs t: Mahnaz, Last: Fatma
ID: 102, Age: 30, First: Zaid, Last: Khan
ID: 103, Age: 28, First: Sumit, Last: Mittal
ID: 106, Age: 20, First: Rita, Last: Tez
ID: 107, Age: 22, First: Sita, Last: Singh
Goodbye!

C:\>

Using Savepoints

The new JDBC 3.0 Savepoint interface gives you an additional transactional
control. Most modern DBMS, support savepoints within their environments such
as Oracle's PL/SQL.

When you set a savepoint you define a logical rollback point within a transaction.
If an error occurs past a savepoint, you can use the rollback method to undo
either all the changes or only the changes made after the savepoint.

The Connection object has two new methods that help you manage savepoints:

o setSavepoint(String savepointName): Defines a new savepoint. It also
returns a Savepoint object.

¢ releaseSavepoint(Savepoint savepointName): Deletes a savepoint.
Notice that it requires a Savepoint object as a parameter. This object is
usually a savepoint generated by the setSavepoint() method.

74

I§gj> tutorialspoint

EARNINEG

JDBC

There is one rollback (String savepointName) method, which rolls back work
to the specified savepoint.

The following example illustrates the use of a Savepoint object:

try {
/IAssume a valid connection object conn
conn. setAutoCommit (false);

Statement stmt = conn. createSt atement ();

/[set a Savepoint
Savepoint savepointl = conn. setSavepoint ("Savepointl");
String SQL = "INSERT INTO Employees " +
"VALUES (106, 20, 'Rita’, 'Tez")" ;
stmt . executeUpdate (SQL;
//Submit a malformed SQL statement that breaks
String SQL = "INSERTED IN Employees " +
"VALUES (107, 22, 'Sita’, 'Tez")" ;
stmt . executeUpdate (SQL);
/I If there is no error, commit the changes.

conn. commit();

} catch (SQLEXxception se){
I/ If there is any error.

conn. rollback (savepointl);

}

In this case, none of the above INSERT statement would success and everything
would be rolled back.

For a better understanding, let us study the Savepoints - Example Code as
discussed below.

Savepoints - Example Code

Following is the example, which makes use of setSavepoint and rollback
described in the Transaction tutorial.

This sample code has been written based on the environment and database
setup done in the previous chapters.

75

I§gj> tutorialspoint

EARNINEG

JDBC

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
/I IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
st atic final String DB_URL = "jdbc:mysql://localhost/EMP";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement s tmt = null;
try{
IISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to database...");
conn = DriverManager.getConnection(DB_URL,USER,PASS);

[ISTEP 4: Set auto commit as false.

conn.setAutoCommit(false);

/ISTEP 5: Execute a query to delete statment with
I/l required arguments for RS example.
System.out.printin("Creating statement...");

stmt = conn.createStateme nt();

[ISTEP 6: Now list all the available records.

@Fupqriglspoint

76

JDB

C

String sql = "SELECT id, first, last, age FROM Employees";
ResultSet rs = stmt.executeQuery(sql);
System.out.printin("List result set for reference....");

printRs(rs);

/1 STEP 7: delete rows having ID grater than 104
// But save point before doing so.
Savepoint savepointl = conn.setSavepoint("ROWS_DELETED_ 1");
System.out.printin("Deleting row....");
String SQL = "DELETE FROM Employees " +
"WHERE ID = 110"
stmt.executeUpdate(SQL);
/Il oops... we deleted too wrong employees!
IISTEP 8: Rollback the changes afetr save point 2.

conn.rollback(savepointl);

/l STEP 9: delete rows having ID grater than 104
// But save point before doing so.
Savepoint savepoint2 = conn.setSavepoint("ROWS_DELETED_ 2");
System.out.printin("Deleting row....");
SQL = "DELETE FROM Employees " +
"WHERE ID = 95"
stmt.executeUpdate(SQL);

/ISTEP 10: Now list all the available records.
sql = "SELECT id, first, last, age FROM Employees";
rs = stmt.executeQuery(sql);

System.out.printin("List result set for reference....");

printRs(rs);

/ISTEP 10: Clean -up environment
rs.close();
stmt.close();

conn.close();

m’ tutorialspoint

MPLYEASYLEARNING

Nl

N

JDBC

}catch(SQLException se){
//Handle errors for JIDBC
se.printStackTrace();
/I If there is an error then rollback the changes.
System.out.printin("Rolling back dat a here....");
try{
if(conn!=null)
conn.rollback();
}catch(SQLEXxception se2){
se2.printStackTrace();
Mlend try

}catch(Exception e){
/[Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
stmt.close();
}catch(SQLEXxception se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLException se) {
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

}/end main

public static void printRs(ResultSet rs) throws SQLException{

/IEnsure we start with first row

NI
]

@Fupqriglspoint

JDBC

rs.beforeFirst();

while(rs.next()){
//Retrieve by column name
intid = rs.getint("id");
int age = rs.getint("age");
String first = rs.getString("first™);
String last = rs.getString("last™);

/[Display values
Syst em.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);

}

System.out.printIn();

Hlend printRs()
Hlend JDBCExample

Now, let us compile the above example as follows:

C:\ >javac JDBCExample.java
C\>

When you run JDBCExample, it produces the following result:

C:\ >java JDBCExample

Connecting to database...

Creating statement...

List result set for reference....

ID: 95, Age: 20, First: Sim a, Last: Chug
ID: 100, Age: 18, First: Zara, Last: Ali

ID: 101, Age: 25, First: Mahnaz, Last: Fatma
ID: 102, Age: 30, First: Zaid, Last: Khan

ID: 103, Age: 30, First: Sumit, Last: Mittal

ID: 110, Age: 20, First: Sima, Last: Chug

@Fupqriglspoint

79

JDBC

Deleting row....

Deleting row....

List result set for reference....

ID: 100, Age: 18, First: Zara, Last: Ali

ID: 101, Age: 25, First: Mahnaz, Last: Fatma
ID: 102, Age: 30, First: Zaid, Last: Khan

ID: 103, Age: 30, First: Sumit, Last: Mittal
ID: 110, Age: 20, First: Sima, Last: Chug

Goodbye!
C\>

80

@Fupqriglspoint

11. EXCEPTIONS

Exception handling allows you to handle exceptional conditions such as program-
defined errors in a controlled fashion.

When an exception condition occurs, an exception is thrown. The term thrown
means that current program execution stops, and the control is redirected to the
nearest applicable catch clause. If no applicable catch clause exists, then the
program's execution ends.

JDBC Exception handling is very similar to the Java Excpetion handling but for
JDBC, the most common exception you'll deal with is java.sql.SQLException.

SQLEXxception Methods

An SQLException can occur both in the driver and the database. When such an
exception occurs, an object of type SQLException will be passed to the catch
clause.

The passed SQLException object has the following methods available for
retrieving additional information about the exception:

Method Description
getErrorCode() Gets the error number associated with the
exception.
getMessage() Gets the IDBC driver's error message for an

error, handled by the driver or gets the Oracle
error number and message for a database
error.

getSQLState() Gets the XOPEN SQLstate string. For a IJDBC
driver error, no useful information is returned
from this method. For a database error, the
five-digit XOPEN SQLstate code is returned.
This method can return null.

getNextException() Gets the next Exception object in the exception
chain.

81

@Fupqriglspoint

JDBC

printStackTrace() Prints the current exception, or throwable, and

its backtrace to a standard error stream.

printStackTrace(PrintStream Prints this throwable and it's backtrace to the

s)

print stream you specify.

printStackTrace(PrintWriter Prints this throwable and it's backtrace to the

w) print writer you specify.

By utilizing the information available from the Exception object, you can catch
an exception and continue your program appropriately. Here is the general form

of a try block:

try {
/I 'Your risky code goes between these curly braces!!!

}
catch(Exception ex) {
/I 'Your exception handling code goes betwee n these
/I curly braces, similar to the exception clause
/l'in a PL/SQL block.
}
finally {
/' Your must - always - be- executed code goes between these

I curly braces. Like closing database connection.

}
Example
Study the following example code to understand the usage
of try....catch...finally blocks.
/ISTEP 1. Import required packages
import java.sql.*;
public class JDBCExample {
// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
staticf inal String DB_URL = "jdbc:mysql://localhost/EMP";
82

@Fupqriglspoint

JDBC

/I Database credentials
static final String USER = "username";

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
try{

/IS TEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to database...");
conn = DriverManager.getConnection(DB_URL,USER,PASS);

/ISTEP 4: Execute a query
System.out.printin("Creating statement...");
Statement stmt = conn.createStatement();

String sq;

sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

/ISTEP 5: Extract data from r esult set
while(rs.next()){

//Retrieve by column name

intid =rs.getint("id");

int age = rs.getint("age");

String first = rs.getString("first");

String last = rs.getString("last™);

/[Display va lues
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);

System.out.printin(", Last: " + last);

@Fupqriglspoint

JDBC

}

/ISTEP 6: Clean -up environment
rs.close();
st mt.close();
conn.close();
}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to clo se resources

try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
MYlend try
System.out.printin("Goodbye!");
}/end main
H/end JDBCExample

Now, let us compile the above example as follows:

C \>javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result if there is no
problem, otherwise the corresponding error would be caught and error message
would be displayed:

C \>java JDBCExarmip
Connecting to database
Creating statement ...
ID: 100, Age 18, First : Zara, Last: Al

@Fupqriglspoint

(o]
5

JDBC

ID: 101, Age 25, First : Mahnaz Last: Fatma
ID: 102, Age 30, First : Zaid, Last: Khan
ID: 103, Age 28, First : Sumit, Last: Mittal
C\>

Try the above example by passing wrong database name or wrong username or
password and check the result.

85

@Fupqriglspoint

12. BATCHPROCESSING

Batch Processing allows you to group related SQL statements into a batch and
submit them with one call to the database.

When you send several SQL statements to the database at once, you reduce the
amount of communication overhead, thereby improving performance.

JDBC drivers are not required to support this feature. You should use the
DatabaseMetaData.supportsBatchUpdates() method to determine if the
target database supports batch update processing. The method returns
true if your JDBC driver supports this feature.

The addBatch() method of Statement,
PreparedStatement, and CallableStatement is used to add individual
statements to the batch. The executeBatch()is used to start the
execution of all the statements grouped together.

The executeBatch() returns an array of integers, and each element of
the array represents the update count for the respective update
statement.

Just as you can add statements to a batch for processing, you can remove
them with the clearBatch() method. This method removes all the
statements you added with the addBatch() method. However, you cannot
selectively choose which statement to remove.

Batching with Statement Object

Here is a typical sequence of steps to use Batch Processing with Statment
Object:

Create a Statement object using either createStatement() = methods.
Set auto-commit to false using setAutoCommit()

Add as many as SQL statements vyou Ilike into batch
using addBatch() method on created statement object.

Execute all the SQL statements using executeBatch() method on created
statement object.

Finally, commit all the changes using commit() method.

Example

The following code snippet provides an example of a batch update using
Statement object:

@Fupqriglspoint

86

JDBC

/I Create statement object

Statement stmt = conn. createStatement ();

/l Set auto - commit to false

conn. setAutoCommit (false);

/I Create SQL statement

String SQL = "INSERT INTO Employees (id, first, last, age) "
"VALUES(200,'zia’, 'Ali", 30)" ;

/I Add above SQL statement in the batch.

stmt . addBatch (SQL;

/I Create one more SQL statement

String SQL = "INSERT INTO Employees (id, first, last, age) "
"VALUES(201,'Raj', 'Kumar', 35)" ;

/I Add above SQL sta tement in the batch.

stmt . addBatch (SQL);

/I Create one more SQL statement

String SQL = "UPDATE Employees SET age=35" +
"WHERE id = 100" ;

/I Add above SQL statement in the batch.

stmt . addBatch (SQL;

/I Create an int[] to hold returned valu es

int [count = stmt . executeBatch ();

/[Explicitly commit statements to apply changes

conn. commit();

For a better understanding, let us study the Batching
discussed below.

@Fupqriglspoint

- Example Code as

87

JDBC

Batching - Example Code

Here is a typical sequence of steps to use Batch Processing with Statement
Object:

1.
2.
3.

5.

Create a Statement object using either createStatement() = methods.
Set auto-commit to false using setAutoCommit()

Add as many as SQL statements vyou like into Dbatch
using addBatch() method on created statement object.

Execute all the SQL statements using executeBatch() method on created
statement object.

Finally, commit all the changes using commit() method.

This sample code has been written based on the environment and database
setup done in the previous chapters.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/I Import required packages

import java.sql.*;

public class JDBCExample {
// IDBC driver name and database URL
static final String JDBC_DRIVER =" com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhostEMP";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {
Conrection conn = null;

Statement stmt = null;

try{

I/l Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

// Open a connection

®
¢ 2]

@Fupqriglspoint

JDBC

System.out.printin("Connecting to database...");
conn = DriverManager.getConnection(DB _URL,USER,PASS);

Il Create statement
System.out.printin("Creating statement...");

stmt = conn.createStatement();

/l Set auto - commit to false

conn.setAutoCommit(false);

Il First, let us select all the records and displ ay them.

printRows(stmt);

/I Create SQL statement

String SQL = "INSERT INTO Employees (id, first, last, age) " +
"VALUES(200,'Zia’, 'Ali", 30)";

// Add above SQL statement in the batch.

stmt.addBatch(S QL);

I/l Create one more SQL statement

SQL ="INSERT INTO Employees (id, first, last, age) " +
"VALUES(201,'Raj', 'Kumar', 35)";

/I Add above SQL statement in the batch.

stmt.addBatch(SQL);

/I Create one more SQL statement

SQL ="UPDATE Employees SET age =35" +
"WHERE id = 100";

/I Add above SQL statement in the batch.

stmt.addBatch(SQL);

I/l Create an int[] to hold returned values

int[] count = stmt.executeBatch();

@Fupqriglspoint

JDBC

I/Explicitly commit statements to apply changes

conn.commit();

/I Again, let us select all the records and display them.

printRows(stmt);

// Clean - up environment
stmt.close();
conn.close();
}catch(SQLExceptions e}
//Handle errors for JDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
Hinally{
/ffinally block used to close resources
try{
if(stmt!=null)
stmt.close();
}catch(SQLEXxception se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
Hlend try
System.out.pr intin("Goodbye!");

}/end main

public static void printRows(Statement stmt) throws SQLException{

System.out.printin("Displaying available rows...");

@Fupqriglspoint

JDBC

/I Let us select all the records and display them.
String sql = "SELECT id, first, last, age FROM Employees™;

ResultSet rs = stmt.executeQuery(sql);

while(rs.next()){
//[Retrieve by column name
intid =rs.getint("id");
int age = rs.getint("age™);
String first = rs.getString("first");
String last = rs.getString("la st");

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);
}
System.out.printin();
rs.close();
Mlend printR ows()
}/end JDBCExample

Now let us compile the above example as follows:

C:\ >javac JDBCExample.java
C\>

When you run JDBCExample, it produces the following result:

C:\ >java JDBCExample

Connecting to database...

Creating statement...

Displaying available rows...

ID: 95, Age: 20, First: Sima, Last: Chug

ID: 100, Age: 18, First: Zara, Last: Ali

ID: 101, Age: 25, First: Mahnaz, Last: Fatma

@Fupqriglspoint

91

JDBC

ID: 102, Age: 30, First: Zaid, Last: Khan
ID: 103, Age: 30, First: Sumit, Last: Mittal
ID: 110, Age: 20, First: Sima, Las t: Chug

Displaying available rows...

ID: 95, Age: 20, First: Sima, Last: Chug
ID: 100, Age: 35, First: Zara, Last: Ali

ID: 101, Age: 25, First: Mahnaz, Last: Fatma
ID: 102, Age: 30, First: Zaid, Last: Khan
ID: 103, Age: 30, First: Sumit, Last: Mittal
ID: 110, Age: 20, First: Sima, Last: Chug
ID: 200, Age: 30, First: Zia, Last: Ali

ID: 201, Age: 35, First: Raj, Last: Kumar
Goodbye!

C:\>

Batching with PrepareStatement Object

Here is a typical sequence of steps to use Batch Processing with
PrepareStatement Object:

1. Create SQL statements with placeholders.

2. Create PrepareStatement object using either prepareStatement()
methods.

3. Set auto-commit to false using setAutoCommit()

4. Add as many as SQL statements you |like into batch
using addBatch() method on created statement object.

5. Execute all the SQL statements using executeBatch() method on created
statement object.

6. Finally, commit all the changes using commit() method.

The following code snippet provides an example of a batch update using
PrepareStatement object:

/I Create SQL statement
String SQL = "INSERT INTO Employees (id, first, last, age) " +
"VALUES(?, ?, ?, ?)"

92

I§gj> tutorialspoint

EARNINEG

JDBC

/I Create PrepareStatement object

PreparedStatemen pstmt = conn. prepareStatement (SQL;

/ISet auto - commit to false

conn. setAutoCommit (false);

/I Set the variables

pstmt . setint (1, 400);
pstmt . setString (2, "Pappu");
pstmt . setString (3, "Singh");
pstmt . setint (4, 33);

// Add it to the batch

pstmt . addBatch ();

/I Set the variables

pstmt . setint (1, 401);
pstmt . setString (2, "Pawan");
pstmt . setString (3, "Singh");
pstmt . setint (4, 31);

/l Add it to the batch

pstmt . addBatch ();

/ladd more batches

/[Create an int[] to hold returned values

int [count = stmt . executeBatch ();

/[Explicitly commit statements to apply changes

conn. commit();

93

@Fupqriglspoint

JDBC

For a better understanding, let us to study the Batching - Example Code with
PrepareStatement object as discussed below.

Batching - Example Code

Here is a typical sequence of steps to use Batch Processing with
PrepareStatement Object:

e Create SQL statements with placeholders.

e Create PrepareStatement object using either prepareStatement()
methods.

e Set auto-commit to false using setAutoCommit()

e Add as many as SQL statements you |like into batch
using addBatch() method on created statement object.

e Execute all the SQL statements using executeBatch() method on created
statement object.

e Finally, commit all the changes using commit() method.

This sample code has been written based on the environment and database
setup done in the previous chapters.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/I Import required packages

import java.sql.*;

public class JDBCExample {
// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mys gl.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost EMP";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;

PreparedStatement stmt = null;

94

@Fu?qriglspoing

JDBC

try{
/l Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

// Open a connection
System.out.printin("Connecting to database...");
conn = DriverManager.getConnection(D B_URL,USER,PASS);

/l Create SQL statement
String SQL = "INSERT INTO Employees(id,first,last,age) " +
"VALUES(?, ?, ?, ?2)";

/I Create preparedStatemen
System.out.printin("Creating statement...");

stmt = con n.prepareStatement(SQL);

/| Set auto - commit to false

conn.setAutoCommit(false);

/I First, let us select all the records and display them.

printRows(stmt);

/I Set the variables
stmt.setint(1, 400);

stmt.set String(2, "Pappu");
stmt.setString(3, "Singh");
stmt.setint(4, 33);

// Add it to the batch
stmt.addBatch();

/I Set the variables
stmt.setint(1, 401);
stmt.setString(2, "Pawan");

stmt.setString(3, "Singh");

@Fupqriglspoint

JDBC

stmt.setint(4, 31);
// Add it to the batch
stmt.addBatch();

I/l Create an int[] to hold returned values

int[] count = stmt.executeBatch();

I/Explicitly commit statements to apply changes

conn.commit() ;

/I Again, let us select all the records and display them.

printRows(stmt);

/l Clean - up environment
stmt.close();
conn.close();
}catch(SQLException se){
//Handle errors for JIDBC
se.printStackTrace();
}ca tch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
stmt.close();
}catch(SQLException se2){
Y/ nothingw e cando
try{
if(conn!=null)
conn.close();
}catch(SQLException se){

se.printStackTrace();

@Fupqriglspoint

JDBC

Ylend finally try
Ylend try
System.out.printin("Goodbye!");

}Y/end main

public static void printRows(Statemen t stmt) throws SQLException{
System.out.printin("Displaying available rows...");
I/l Let us select all the records and display them.
String sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

while(rs.n ext(){
//Retrieve by column name
intid = rs.getint("id");
int age = rs.getint("age");
String first = rs.getString("first");
String last = rs.getString("last");

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(, Last: " + last);
}
System.out.printin();
rs.close();
Hlend printRows()
H/end JDBCExample

Now let us compile above example as follows:

C:\ >javac JDBCExample.java
C\>

When you run JDBCExample, it produces following result:

@Fupqriglspoint

97

JDBC

C:\ >java JDBCExample

Connecting to database...

Creating statement...

Displaying available rows...
ID: 95, Age: 20, First: Sima, Last: Chug

ID: 100, Age:
ID: 101, Age:
ID: 102, Age:
ID: 103, Age:
ID: 110, Age:
ID: 200, Age:
ID: 201, Age:

35, First:
25, First:
30, First:
30, First:
20, First:
30, First:
35, First:

Zar a, Last: Ali
Mahnaz, Last: Fatma
Zaid, Last: Khan
Sumit, Last: Mittal
Sima, Last: Chug

Zia, Last: Ali

Raj, Last: Kumar

Displaying available rows...
ID: 95, Age: 20, First: Sima, Last: Chug

ID: 100, Age:
ID: 101, Age:
ID: 102, Age:
ID: 103, Age:
ID: 110, Age:
ID: 200, Age:
ID: 201, Age:
ID: 400, Age:
ID: 401, Age:

Goodbye!
C\>

35, First:
25, First:
30, First:
30, First:
20, First:
30, First:
35, First:
33, First:
31, First:

Zara, Last: Ali
Mahnaz, Last: Fatma
Zaid, Last: Khan
Sumit, Last: Mittal
Sima, Last: Chug
Zia, Last: Ali

Raj, Last: Kumar
Pappu, Last: Singh

Pawan, Last: Singh

@Fupqriglspoint

98

13. STOREPROCEDURE

We have learnt how to use Stored Proceduresin JDBC while discussing
the JDBC - Statements chapter. This chapter is similar to that section, but it
would give you additional information about JDBC SQL escape syntax.

Just as a Connection object creates the Statement and PreparedStatement
objects, it also creates the CallableStatement object, which would be used to
execute a call to a database stored procedure.

Creating CallableStatement Object

Suppose, you need to execute the following Oracle stored procedure:

CREATE OR REPLACE PROCEDURE getEmpName
(EMP_ID IN NUMBER EMP_FIRST OUT VARCHARS
BEGIN
SELECT first INTO EMP_FIRST
FROMEmMployees
WHERE ID= EMP_ID
END

NOTE: Above stored procedure has been written for Oracle, but we are working
with MySQL database so, let us write same stored procedure for MySQL as
follows to create it in EMP database:

DELIMITER $$

DROP PROCEDURE IF EXISTEMP". ‘getEmpName” $$
CREATE PROCEDUREMP". "getEmpName’

(INEMP_ID INT, OUT EMP_FIRST VARCHARR5))
BEGIN

SELECT first INTO EMP_FIRST

FROMEmMployees

WHERE ID= EMP_ID
END$$

29

@Fupqriglspoint

JDBC

DELIMITER;

Three types of parameters exist: IN, OUT, and INOUT. The PreparedStatement
object only uses the IN parameter. The CallableStatement object can use all the
three.

Here are the definitions of each:

Parameter Description

IN A parameter whose value is unknown when the SQL
statement is created. You bind values to IN parameters with
the setXXX() methods.

ouT A parameter whose value is supplied by the SQL statement it
returns. You retrieve values from the OUT parameters with
the getXXX() methods.

INOUT A parameter that provides both input and output values. You
bind variables with the setXXX() methods and retrieve values
with the getXXX() methods.

The following code snippet shows how to employ the
Connection.prepareCall() method to instantiate a CallableStatement object
based on the preceding stored procedure:

CallableStatement cstmt = null ;

try {
String SQL = "{call getEmpName (?, ?2)}" ;

cstmt = conn. prepareCall (SQL;

}
catch (SQLException e) {

}
finally {

100

@Fu?qriglspoing

JDBC

The String variable SQL represents the stored procedure, with parameter
placeholders.

Using CallableStatement objects is much like using PreparedStatement objects.
You must bind values to all the parameters before executing the statement, or
you will receive an SQLException.

If you have IN parameters, just follow the same rules and techniques that apply
to a PreparedStatement object; use the setXXX() method that corresponds to
the Java data type you are binding.

When you use OUT and INOUT parameters, you must employ an additional
CallableStatement method, registerOutParameter(). The registerOutParameter()
method binds the JDBC data type to the data type the stored procedure is
expected to return.

Once you call your stored procedure, you retrieve the value from the OUT
parameter with the appropriate getXXX() method. This method casts the
retrieved value of SQL type to a Java data type.

Closing CallableStatement Object:

Just as you close other Statement object, for the same reason you should also
close the CallableStatement object.

A simple call to the close() method will do the job. If you close the Connection
object first, it will close the CallableStatement object as well. However, you
should always explicitly close the CallableStatement object to ensure proper
cleanup.

CallableStatement cstmt = null ;
try {
String SQL = "{call getEmpName (?, ?)}"

cstmt = conn. prepareCall (SQL;

}
catch (SQLException e) {

}
finally {

cstmt . close ();
}

We have studied more details in the Callable - Example Code section earlier.

@Fu?qriglspoing

101

JDBC

JDBC SQL Escape Syntax

The escape syntax gives you the flexibility to use database specific features
unavailable to you by using standard JDBC methods and properties.

The general SQL escape syntax format is as follows:

{keyword ‘'parameters’ }

Here are the following escape sequences, which you would find very useful while
performing the JDBC programming:

d, t, ts Keywords

They help identify date, time, and timestamp literals. As you know, no two
DBMSs represent time and date the same way. This escape syntax tells the
driver to render the date or time in the target database's format. For Example:

{d 'yyyy -mmdd' }

Where yyyy = year, mm = month; dd = date. Using this syntax {d '2009-09-
03'} is March 9, 2009.

Here is a simple example showing how to INSERT date in a table:

/ICreate a Statement object

stmt = conn. createStatement ();

/linse rt data ==> ID, First Name, Last Name, DOB

String sl ="INSERT INTO STUDENTS VALUES+
"(100,'Zara’,'Ali", {d '2001 -12-16)"

stmt . executeUpdate (sql);

Similarly, you can use one of the following two syntaxes, either t orts:

{t 'hh:mm:ss' }

Where hh = hour; mm = minute; ss = second. Using this syntax {t '13:30:29'}
is 1:30:29 PM.

{ts 'yyyy -mmdd hh:mm:ss' }

This is combined syntax of the above two syntax for 'd' and 't' to represent
timestamp.

@Fupqriglspoint

102

JDBC

escape Keyword

This keyword identifies the escape character used in LIKE clauses. Useful when
using the SQL wildcard %, which matches zero or more characters. For example:

String sql = "SELECT symbol FROM MathSymbols
WHERE symbol LIKE ' \ %' {escape' \'}" ;

stmt . execute (sql);

If you use the backslash character (\) as the escape character, you also have to
use two backslash characters in your Java String literal, because the backslash is
also a Java escape character.

fn Keyword

This keyword represents scalar functions used in a DBMS. For example, you can
use SQL function length to get the length of a string:

{fnlength ('Hello World")}

This returns 11, the length of the character string 'Hello World'.

call Keyword

This keywork is used to call the stored procedures. For example, for a stored
procedure requiring an IN parameter, use the following syntax:

{call my_procedure (?)};

For a stored procedure requiring an IN parameter and returning an OUT
parameter, use the following syntax:

{? = callmy_procedure (?)};

o] Keyword

This keyword is used to signify outer joins. The syntax is as follows:

{ojouter -join }

Where outer-join = table {LEFT|RIGHT|FULL} OUTERIJOIN {table | outer-join}
on search-condition. For example:

String sqgl = "SELECT Employees
FROM {oj ThisTable RIGHT

@Fupqriglspoint

103

JDBC

OUTR JOIN ThatTable on id ='100}" ;

stmt . execute (sql);

104

@Fuwi@'spoi"ﬁ

14. STREAMING DATA

A PreparedStatement object has the ability to use input and output streams to
supply parameter data. This enables you to place entire files into database
columns that can hold large values, such as CLOB and BLOB data types.

There are following methods, which can be used to stream data:
e setAsciiStream(): This method is used to supply large ASCII values.

e setCharacterStream(): This method is used to supply large UNICODE
values.

¢ setBinaryStream(): This method is used to supply large binary values.

The setXXXStream() method requires an extra parameter, the file size, besides
the parameter placeholder. This parameter informs the driver how much data
should be sent to the database using the stream.

Example

Consider we want to upload an XML file XML_Data.xml into a database table.
Here is the content of this XML file:

<?xml version ="1.0" ?>
<Employee>

<id> 100</id>

<first> Zara</first>
<last> Ali </last>
<Salary> 10000</Salary>
<Dob>18- 08- 1978</Dob>
<Empyee>

Keep this XML file in the same directory where you are going to run this
example.

This example would create a database table XML_Data and then file
XML_Data.xml would be uploaded into this table.

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/I Import required packages
import java.sql.*;

import java.io.*;

@Fupqriglspoint

11y

JDBC

import java.util.*;

public class JDBCExample {
/I IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
stat ic final String DB_URL = "jdbc:mysql://localhost/EMP";

/I Database credentials
static final String USER = "username";

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
PreparedSt atement pstmt = null;
Statement stmt = null;
ResultSet rs = null;
try{

// Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

// Open a connection
System.out.printin("Connecting to database...");

conn = Driv erManager.getConnection(DB_URL,USER,PASS);

/[Create a Statement object and build table
stmt = conn.createStatement();

createXMLTable(stmt);

//Open a FilelnputStream
File f = new File("XML_Data.xml");
long fileLength = f.length();

FilelnputStream fis = new FilelnputStream(f);

/ICreate PreparedStatement and stream data

[N
(=]
(<))

m’ tutorialspoint

MPLYEASYLEARNING

JDBC

String SQL ="INSERT INTO XML_Data VALUES (?,?)";
pstmt = conn.prepareStatement(SQL);
pstmt.setint(1,100);

pstmt.setAs ciiStream(2,fis,(int)fileLength);

pstmt.execute();

/[Close input stream

fis.close();

// Do a query to get the row

SQL ="SELECT Data FROM XML_Data WHERE id=100";

rs = stmt.executeQuery (SQL);

/I Get the first row

if (rs.next ()X
//IRetrieve data from input stream
InputStream xmlIinputStream = rs.getAsciiStream (1);
int c;
ByteArrayOutputStream bos = new ByteArrayOutputStream();
while ((¢ = xmlInputStream.read ()) I= -1)

bos.write(c);

/IPrint results
System.out.printin(bos.toString());

}

/I Clean -up environment

rs.close();

stmt.close();

pstmt.close();

conn.close();

}catch(SQLException se){
/I Handle errors for JDBC
se.printStackTrace();
}catch(Exception e){
/[Handle errors for Class.forName

e.printStackTrace();

[N
(=]
Nl

@Fupqriglspoint

JDBC

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
stmt.clo se();
}catch(SQLEXxception se2){
Y/ nothing we can do
try{
if(pstmt!=null)
pstmt.close();
}catch(SQLException se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
MYlend try
System.out.printin("Goodbye!");

}/end main

public static void createXMLTable(Statement stmt)
throws SQLException{
System.out.printin("Creating XML_Da ta table...");
/ICreate SQL Statement
String streamingDataSql = "CREATE TABLE XML_Data " +
"(id INTEGER, Data LONG)";
//Drop table first if it exists.
try{
stmt.executeUpdate("DROP TABLE XML_Data");
}catch (SQLException se){
M/ do nothing
//Build table.

[N
(=]
(]

@Fupqriglspoint

JDBC

stmt.executeUpdate(streamingDataSq|l);
}lend createXMLTable
Hlend JDBCExample

Now let us compile the above example as follows:

C \>javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample
Connecting to database
Creating XML_Data table ...
<?xml version ="1.0" ?>
<Employee>

<id>100</id >

<first> Zara</first >
<last> Ali </last >
<Salary >10000</ Salary >
<Dob>18- 08- 1978</ Dob>
<Employee>

Goodbyé

C\>

109

@Fupqriglspoint

15. CREATBEATABASE

This tutorial provides an example on how to create a Database using JDBC
application. Before executing the following example, make sure you have the
following in place:

e You should have admin privilege to create a database in the given
schema. To execute the following example, you need to replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with the database server.

e To create a new database, you need not give any database name while
preparing database URL as mentioned in the below example.

¢ Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to the database.

e Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {

@Fupqriglspoint

=
==
Q

JDBC

// JDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/";

/I Database credentials
static final Str ing USER = "username";

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to database...");

conn = DriverManager.getConnection(DB_URL, USER, PASS);

/ISTEP 4: Execute a query
System.out.printin("Creating database...");

stmt = conn.cr eateStatement();

String sql = "CREATE DATABASE STUDENTS";
stmt.executeUpdate(sql);
System.out.printin("Database created successfully...");
}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();
}c atch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

[N
=
=

@Fupqriglspoint

JDBC

try{
if(stmt!=null)
stmt.close();
}catch(SQLException se2){
Y/ nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLEXxception se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");
}/end main
Hlend JDBCExample

Now, let us compile the above example as follows:

C \>javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample
Connecting to database
Creating database ...
Database created successfully
Goodbyé

C\>

112

@Fupqriglspoint

16. SELE@MATABSE

This chapter provides an example on how to select a Database using JDBC
application. Before executing the following example, make sure you have the
following in place:

e To execute the following example you need to replace
the username and passw ord with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e Import the packages: Requires that you include the packages
containing the JDBC classes needed for the database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a selected database.

e Selection of database is made while you prepare database URL. Following
example would make connection with STUDENTS database.

¢ Clean up the environment: Requires explicitly closing all the database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and past the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java . sql .%;
public class JDBCExample{

// JDBC driver name and database URL
static final String JDBC_DRIVER: "com.mysql.jdbc.Driver"

@Fupqriglspoint

113

JDBC

static final String DB_URL= "jdbc:mysql://lo calhost/STUDENTS";

/I Database credentials
static final String USER= "username" ;

static final String PASS= "password" ;

public static void main(String [] args) {
Connection conn = null ;
try {

/ISTEP 2: Register JDBC driver

Class . forName("com.mysq|l.jdbc.Driver");

/ISTEP 3: Open a connection
System. out . printin ("Connecting to a selected database...");
conn = DriverManager . getConnection (DB_URL USER PASS,
System. out . printin ("Connected database succes sfully...");
} catch (SQLException se){
//Handle errors for JIDBC
se. printStackTrace ();
} catch (Exception e){
//Handle errors for Class.forName
e. printStackTrace ();

Hinally {
/ffinally block used to close resources

try {
if (connl=null)
conn. close ();
} catch (SQLException se){
se. printStackTrace ();
}//end finally try
}/lend try
System. out . printin ("Goodbye!");

}/lend main

@Fupqriglspoint

114

JDBC

} //end JDBCExample

Now, let us compile the above example as follows:

C \>javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample
Connecting to a selected database
Connected database successfully
Goodbyé

C\>

115

@Fupqriglspoint

1/7. DROP DATABASE

This chapter provides an example on how to drop an existing Database using
JDBC application. Before executing the following example, make sure you have
the following in place:

e To execute the following example you need to replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

NOTE: This is a serious operation and you have to make a firm decision before
proceeding to delete a database because everything you have in your database
would be lost.

Required Steps

The following steps are required to create a new Database using JDBC
application:

¢ Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

e Deleting a database does not require database name to be in your
database URL. Following example would delete STUDENTS database.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to delete the database.

e Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

116

@Fupqriglspoint

JDBC

public class JDBCExample {
/I IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String D B_URL = "jdbc:mysql://localhost/";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

//STEP 3: Open a connection
System.out.printin("Connecting to a selected database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Connected database successfully...");

/ISTEP 4: Execute a query
System.out.printin("Deleting database...");

stmt = conn.createStatement();

String sql = "DROP DATABASE STUDENTS";
stmt.executeUpdat e(sql);
System.out.printin("Database deleted successfully...");
}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();
}catch(Exception e){

//Handle errors for Class.forName

=
==
N

@Fupqriglspoint

JDBC

e.printStackTrace();

Hina IIy{
/ffinally block used to close resources

try{
if(stmt!=null)
conn.close();
}catch(SQLEXxception se){
}/ do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");
}/end main
}/end JDBCExample

Now, let us compile the above example as follows:

C \ >javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample
Connecting to a selected database
Connected database successfully
Deleting database ...

Database deleted successfully
Goodbyé

C\>

@Fupqriglspoint

118

18. CREATE TABLES

This chapter provides an example on how to create a table using JDBC
application. Before executing the following example, make sure you have the
following in place:

e To execute the following example you can replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to create a table in a seleted database.

¢ Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

importj ava.sql.*;
public class JDBCExample {

// JDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";

@Fupqriglspoint

119

JDBC

static final String DB_URL = "jdbc:mysql://localhost/STUDENTS";

/I Database credentials
static final S tring USER = "username";

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysgl.jdbc.Driver")i

/ISTEP 3: Open a connection
System.out.printin("Connecting to a selected database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Connected database successfully...");

/ISTEP 4: Exe cute a query
System.out.printin("Creating table in given database...");

stmt = conn.createStatement();

String sql = "CREATE TABLE REGISTRATION " +
"(id INTEGER not NULL, " +
" first VARCHAR(255), " +
" last VARCHAR(255), " +
" age INTEGER, " +
" PRIMARY KEY (id))";

stmt.executeUpdate(sql);

System.out.printin("Created table in given database...");
}catch(SQLExceptions e){

//Handle errors for JDBC

se.printStackTrace();

[N
N
Q

@Fupqriglspoint

JDBC

}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
conn.close();
}catch(SQLEXxception se){
}/ do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
MYlend try
System.out.printin("G oodbye!");
}/end main
}/end JDBCExample

Now, let us compile the above example as follows:

C \ >javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample
Connecting to a selected database
Connected data base successfully
Creating table in given database
Created table in given database
Goodbyé

C\>

@Fupqriglspoint

121

19. DROP TABLES

This chapter provides an example on how to delete a table using JDBC
application. Before executing the following example, make sure you have the
following in place:

e To execute the following example you can replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

NOTE: This is a serious operation and you have to make a firm decision before
proceeding to delete a table, because everything you have in your table would
be lost.

Required Steps

The following steps are required to create a new Database using JDBC
application:

¢ Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

e Register the JDBC driver: Requires that you initialize a driver so, you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to drop a table in a seleted database.

e Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {

@Fupqriglspoint

[N
N
N

JDBC

// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysq|.jdbc.Driver";
static final String DB_UR L = "jdbc:mysql://localhost/STUDENTS";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to a selected database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Connected database successfully...");

/ISTEP 4: Execute a query
System.out.printin("Deleting table in given database...");

stmt = conn.createStatement();

String sql = "DROP TABLE REGISTRATION *;

stmt.executeUpdate(sql);

System.out.printin("Table deleted in given database...");
}catch(SQLException se){

//Handle errors for JDBC

se.printStackTrace();
}catch(Exception e){

/[Handle errors for Class.forName

e.p rintStackTrace();

[N
N
()

@Fupqriglspoint

JDBC

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
conn.close();
}catch(SQLEXxception se){
}/ do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");
}Y/end main
}/end JDBCExample

Now, let us compile the above example as follows:

C \ >javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample
Connecting to a selected database
Connected database successfully
Deleting table in given database
Table deleted in given database
Goodbyé

C\>

@Fupqriglspoint

124

20. INSERT RECORDS

This chapter provides an example on how to insert records in a table using JDBC
application. Before executing following example, make sure you have the
following in place:

e To execute the following example you can replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to insert records into a table.

e Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

[ISTEP 1. Import required packages

import java.sql.*;
public class JDBCExample {

// JDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";

@Fupqriglspoint

125

JDBC

static final String DB_URL = "jdbc:mysql://localhost/STUDENTS";

/I Database credentials
static final String USER = "username";

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to a selected database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Connected database suc cessfully...");

/ISTEP 4: Execute a query
System.out.printin("Inserting records into the table...");

stmt = conn.createStatement();

String sql = "INSERT INTO Registration " +

"VALUES (100, 'Zara', 'A li', 18)";
stmt.executeUpdate(sql);
sgl = "INSERT INTO Registration " +

"VALUES (101, 'Mahnaz', 'Fatma’, 25)";
stmt.executeUpdate(sql);
sgl = "INSERT INTO Registration " +

"VALUES (102, 'Zaid', '‘Khan', 30)";
stmt.executeUpdate(sql);
sqgl = "INSERT INTO Registration " +

"VALUES(103, 'Sumit', 'Mittal', 28)";

stmt.executeUpdate(sql);

[N
N
(<))

@Fupqriglspoint

JDBC

System.out.printin("Inserted records into the table...");

}catch(SQLExc eption se){
//Handle errors for JIDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
conn.close();
}catch(SQLException se){
}I do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
MYlend try
System.out.pr intin("Goodbye!");
}Y/end main
H/end JDBCExample

Now, let us compile the above example as follows:

C \ >javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample
Connecting to a selected database

Conneded database successfully

127

@Fupqriglspoint

JDBC

Inserting records into the table
Inserted records into the table
Goodbyé

C\>

128

@Fupqriglspoint

21. SELECT RECORDS

This chapter provides an example on how to select/fetch records from a table
using JDBC application. Before executing the following example, make sure you
have the following in place:

e To execute the following example you can replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to select (i.e. fetch) records from a
table.

e Extract Data: Once SQL query is executed, you can fetch records from
the table.

e Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {

@Fupqriglspoint

[N
N
O

JDBC

/I IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysq|.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localho St/'STUDENTS",

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Regi ster JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to a selected database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Conn ected database successfully...");

/ISTEP 4: Execute a query
System.out.printin("Creating statement...");

stmt = conn.createStatement();

String sql = "SELECT id, first, last, age FROM Registration";
ResultSet rs = stmt. executeQuery(sql);
/ISTEP 5: Extract data from result set
while(rs.next()){
/IRetrieve by column name
intid = rs.getint("id");
int age = rs.getint("age");
String first = rs.getString("first");
Stri ng last = rs.getString("last");

@Fupqriglspoint

JDBC

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);
}
rs. close();
}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
Hinally{
/ffinally block used to close resources
try{
if(stmt!=null)
conn.close();
}catch(SQLException se){
}/ do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
Y lend try
System.out.printin("Goodbye!");
}/end main

}/end JDBCExample

Now, let us compile the above example as follows:

C \ >javac JDBCExamplejava

@Fupqriglspoint

131

JDBC

C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample

Connecting to ase lected database

Connected database successfully

Creating statement ...

ID: 100, Age 18, First : Zara, Last: Al

ID: 101, Age 25, First : Mahnaz Last: Fatma
ID: 102, Age 30, First : Zaid, Last: Khan
ID: 103, Age 28, First : Sumit, Last: Mittal
Goodbyé

C\>

132

@Fupqriglspoint

22. UPDATRECORDS

This chapter provides an example on how to update records in a table using
JDBC application. Before executing the following example, make sure you have
the following in place:

e To execute the following example you can replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to update records in a table. This Query
makes use of IN and WHERE clause to update conditional records.

¢ Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
/I IDBC driver name and database URL

@Fupqriglspoint

133

JDBC

sta tic final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/STUDENTS";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public stat ic void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to a selec ted database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Connected database successfully...");

/ISTEP 4: Execute a query
System.out.printin("Creating statement...");
stmt = conn.cre ateStatement();
String sql = "UPDATE Registration " +
"SET age = 30 WHERE id in (100, 101)";

stmt.executeUpdate(sql);

/I Now you can extract all the records
/ to see the updated records
sql ="SELECT id, f irst, last, age FROM Registration™;

ResultSet rs = stmt.executeQuery(sql);

while(rs.next()){
//IRetrieve by column name

intid = rs.getint("id");

@Fupqriglspoint

JDBC

int age = rs.getint("age");
String first = rs.getString("firs
String last = rs.getString("last");

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);
}
rs.close();
}catch(SQLException se){
//Handle errors for JIDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
Hinally{
/ffinally block used to close re
try{
if(stmt!=null)
conn.close();
}catch(SQLException se){
}I do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLEXxception se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

Hlend main

sources

@Fupqriglspoint

135

JDBC

}/end JDBCExample

Now, let us compile the above example as follows:

C \>javac JDBCExamplejava

C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample

Connecting

to a selected database

Connected database successfully

Creating
ID: 100,
ID: 101,
ID: 102,
ID: 103,
Goodbyé
C\>

statement ...

Age
Age
Age
Age

30,
30,
30,
28,

First :
First :
First :
First :

Zara, Last: Ali
Mahnaz Last: Fatma
Zaid, Last: Khan
Sumit, Last: Mittal

@Fupqriglspoint

136

23. DELETE RECORDS

This chapter provides an example on how to delete records from a table using
JDBC application. Before executing following example, make sure you have the
following in place:

e To execute the following example you can replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to delete records from a table. This
Query makes use of the WHERE clause to delete conditional records.

¢ Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {
/I JIDBC driver name and databas e URL

@Fupqriglspoint

137

JDBC

static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/STUDENTS";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connectin g to a selected database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Connected database successfully...");

/ISTEP 4: Execute a query

System.out.printin("Creating statement...");

stmt = conn.createStatement();

String sql = "DELETE FROM Registration " +
"WHERE id = 101";

stmt.executeUpdate(sql);

/I Now you can extract all the records
/I to see the remaining records
sql = "SELECT id, fir st, last, age FROM Registration";

ResultSet rs = stmt.executeQuery(sql);

while(rs.next()){
//IRetrieve by column name

intid = rs.getint("id");

m’ tutorialspoint

MPLYEASYLEARNING

JDBC

int age = rs.getint("age");
String first = rs.getString("first"
String last = rs.getString("last");

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);
}
rs.close();
}catch(SQLException se){
//Handle errors for JIDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
Hinally{
/ffinally block used to close reso
try{
if(stmt!=null)
conn.close();
}catch(SQLException se){
}I do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLEXxception se){
se.printStackTrace();
Ylend f inally try
Ylend try
System.out.printin("Goodbye!");

Hlend main

urces

@Fupqriglspoint

139

JDBC

}/end JDBCExample

Now, let us compile the above example as follows:

C \>javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample

Caonecting to a selected database

Connected database successfully

Creating statement ...

ID: 100, Age 30, First : Zara, Last: Al
ID: 102, Age 30, First : Zaid, Last: Khan
ID: 103, Age 28, First : Sumit, Last: Mittal
Goodbyé

C\>

140

@Fupqriglspoint

24. WHERELAUSE

This chapter provides an example on how to select records from a table using
JDBC application. This would add additional conditions using WHERE clause while
selecting records from the table. Before executing the following example, make
sure you have the following in place:

e To execute the following example you can replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e Import the packages: Requires that you include the packages
containing the JDBC classes needed for the database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to fetch records from a table, which
meet the given condition. This Query makes use of the WHERE clause to
select records.

¢ Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

impor t java.sql.*;

public class JDBCExample {

141

@Fupqriglspoint

JDBC

// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysq|.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/STUDENTS";

/I Database credentials
static fina | String USER = "username";

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driv er;

/ISTEP 3: Open a connection
System.out.printin("Connecting to a selected database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Connected database successfully...");

/ISTEP 4: Execute a query
System.out.printin("Creating statement...");

stmt = conn.createStatement();

I/l Extract records without any condition.
System.out.printin("Fetching records without condition...");
String sql = "SELECT id, first , last, age FROM Registration”;

ResultSet rs = stmt.executeQuery(sql);

while(rs.next()){
/IRetrieve by column name
intid =rs.getint("id");
int age = rs.getint("age");

String first = rs.getString("first");

==
5
N

@Fupqriglspoint

JDBC

String last = rs.getString("last");

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);

System.out.printin(", Last: " + last);

Il Select all records having ID equal or greater than 101

System.out.printin("Fetching records with condition...");

sql = "SELECT id, first, last, age FROM Registration" +
"WHERE id >= 101 ";

rs = stmt.exec uteQuery(sql);

while(rs.next()){
/[Retrieve by column name
intid = rs.getint("id");
int age = rs.getint("age");
String first = rs.getString("first");
String last = rs.getString(“last™);

/[Disp lay values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);
}
rs.close();
}catch(SQLException se){
//Han dle errors for JDBC
se.printStackTrace();
}catch(Exception e){

//Handle errors for Class.forName

@Fupqriglspoint

==
5
W

JDBC

e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
conn.close();
}catch(SQLEXxception se){
}/ do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");
}Y/e nd main
}/end JDBCExample

Now, let us compile the above example as follows:

C \ >javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample

Connecting to a selected database

Connected database successful ly ...

Creating statement ...

Fetching records without condition

ID: 100, Age 30, First : Zara, Last: Al
ID: 102, Age 30, First : Zaid, Last: Khan
ID: 103, Age 28, First : Sumit, Last: Mittal
Fetching records with condition

ID: 102, Age 30, First : Zaid, Last: Khan

@Fupqriglspoint

144

JDBC

ID: 103, Age 28, First : Sumit, Last: Mittal
Goodbyé
C\>

145

@Fupqriglspoint

25. LIKE CLAUSE

This chapter provides an example on how to select records from a table using
JDBC application. This would add additional conditions using LIKE clause while
selecting records from the table. Before executing the following example, make
sure you have the following in place:

e To execute the following example you can replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the JDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

¢ Open a connection: Requires using
the DriverManage r.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

e Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to fetch records from a table which
meet given condition. This Query makes use of LIKE clause to select
records to select all the students whose first name starts with "za".

e Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java.sql.*;

public class JDBCExample {

@Fupqriglspoint

146

JDBC

// IDBC driver name and database URL
static final String J DBC_DRIVER = "com.mysgl.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/STUDENTS";

/I Database credentials
static final String USER = "username”;

static final String PASS = "password";

public static void main(Strin g[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to a selected database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Connected database successfully...");

/ISTEP 4: Execute a query
System.out.printin("Creating statement...");

stmt = conn.createStatement();

I/l Extract records without any condition.
System.out.printin("Fetching records without condition...");
String sql = "SELECT id, first, last, age FROM Registration";

ResultSet rs = stmt.executeQuery(sql);

while(rs.next()){
/IRetrieve by column name
intid =rs.getint("id");
int age = rs.getint("age");

String first = rs.getString("first");

==
5
Nl

@Fupqriglspoint

JDBC

String last = rs.getString("last");

/[Display values
System.out.print("ID: " +id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);

System.out.printin(", Last: " + last);

Il Select all records having ID equal or greater than 101
System.out.printin("Fetching r ecords with condition...");
sql = "SELECT id, first, last, age FROM Registration" +

" WHERE first LIKE '%za%' ",

rs = stmt.executeQuery(sql);

while(rs.next()){
/[Retrieve by column name
intid =rs.g etint("id");
int age = rs.getint("age");
String first = rs.getString("first");
String last = rs.getString(“last™);

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);
}
rs.close();
}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();
}catch(Exception e){

//[Handle errors for Class.forName

@Fupqriglspoint

==
5
(¢))

JDBC

e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
conn.close();
}catch(SQLEXxception se){
}/ do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");
}/end main
}/end JDBCExample

Now, let us compile the above example as follows:

C \ >javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample

Connecting to a selected database

Connected database successfully

Creating statement ...

Fetching records without condition

ID: 100, Age 30, First : Zara, Last: Al
ID: 102, Age 30, First : Zaid, Last: Khan
ID: 103, Age 28, First : Sumit, Last: Mittal
Fetching records with condition

ID: 100, Age 30, First : Zara, Last: Al

@Fupqriglspoint

149

JDBC

ID: 102, Age 30, First : Zaid, Last: Khan
Goodbyé
C\>

150

@Fupqriglspoint

26. SORINGDATA

This chapter provides an example on how to sort records from a table using
JDBC application. This would use asc and desc keywords to sort records in
ascending or descending order. Before executing the following example, make
sure you have the following in place:

e To execute the following example you can replace
the username and password with your actual user name and password.

e Your MySQL or whatever database you are using, is up and running.

Required Steps

The following steps are required to create a new Database using JDBC
application:

e« Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sgl.* will suffice.

¢ Register the IJDBC driver: Requires that you initialize a driver so you
can open a communications channel with the database.

e Open a connection: Requires using
the DriverManager.getConnection() method to create a Connection object,
which represents a physical connection with a database server.

¢ Execute a query: Requires using an object of type Statement for building
and submitting an SQL statement to sort records from a table. These
Queries make use of asc and desc clauses to sort data in ascending and
descening orders.

¢ Clean up the environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection.

Sample Code

Copy and paste the following example in JDBCExample.java, compile and run as
follows:

/ISTEP 1. Import required packages

import java. sql.*;

public class JDBCExample {

@Fupqriglspoint

151

JDBC

// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysq|.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/STUDENTS";

/I Database credentials
static final Strin g USER ="username";

static final String PASS = "password";

public static void main(String[] args) {
Connection conn = null;
Statement stmt = null;
try{
/ISTEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

/ISTEP 3: Open a connection
System.out.printin("Connecting to a selected database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);

System.out.printin("Connected database successfully...");

/ISTEP 4: Execute a query
System.out.printin("Creating statement...");

stmt = conn.createStatement();

/I Extract records in ascending order by first name.

System.out.printin("Fetching records in ascending order...");

String sql = "SELECT id, first, last, age FROM Registration" +
" ORDER BY first ASC";

ResultSet rs = stmt.executeQuery(sql);

while(rs.next()){
/IRetrieve by column name
intid = rs.getint("id");

int age = rs.getint("age”) ;

@Fupqriglspoint

JDBC

String first = rs.getString("first");
String last = rs.getString("last");

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);

System.out.printin(", Last: " + last);

/I Extract records in descending order by first name.

sql = "SELECT id, first, last, age FROM Registration" +
" ORDER BY first DESC";

rs = stmt.executeQuery(sql);

while(rs.next(){
//Retrieve by column name
intid = rs.getint("id");
int age = rs.getint("age");
String first = rs.getString("first");
String last = rs.getString("last™);

/[Display values
System.out.print("ID: " + id);
System.out.print(", Age: " + age);
System.out.print(", First: " + first);
System.out.printin(", Last: " + last);

}

rs.close();

}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();

}catch(Exception e){

System.out.printin("Fetching records in descending order...

@Fupqriglspoint

JDBC

//[Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(stmt!=null)
conn.close();
}catch(SQLEXxception se){
}/ do nothing
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");
}/end main
}/end JDBCExample

Now, let us compile the above example as follows:

C \ >javac JDBCExamplejava
C\>

When you run JDBCExample, it produces the following result:

C \>java JDBCExample

Connecting to a selected database

Connected database successfully

Creating statement ...

Fetching records in ascending order

ID: 103, Age 28, First : Sumit, Last: Mittal
ID: 102, Age 30, First : Zaid, Last: Khan
ID: 100, Age 30, First : Zara, Last: Al

Fetching records in descending order ...

@Fupqriglspoint

154

JDBC

ID: 100, Age 30, First : Zara, Last: Ali
ID: 102, Age 30, First : Zaid, Last: Khan
ID: 103, Age 28, First : Sumit, Last: Mittal
Goodbyé

C\>

155

@Fupqriglspoint

