
Section 1.5. Taylor Series Expansions
In the previous section, we learned that any power series represents a

function and that it is very easy to di¤erentiate or integrate a power series
function. In this section, we are going to use power series to represent and
then to approximate general functions. Let us start with the formula

1

1¡ x
=

1X
n=0

xn, for jxj < 1. (1)

We call the power series the power series representation (or expansion) for
the function

f (x) =
1

1¡ x
about x = 0.

It is very important to recognize that though the function f (x) = (1¡ x)¡1

is de…ned for all x 6= 1, the representation holds only for jxj < 1. In general,
if a function f (x) can be represented by a power series as

f (x) =

1X
n=0

cn (x ¡ a)n

then we call this power series

power series representation (or expansion) of f (x) about x = a.

We often refer to the power series as

Taylor series expansion of f (x) about x = a.

Note that for the same function f (x) , its Taylor series expansion about
x = b,

f (x) =
1X

n=0

dn (x ¡ b)n

if a 6= b, is completely di¤erent from the Taylor series expansion about x = a.
Generally speaking, the interval of convergence for the representing Taylor
series may be di¤erent from the domain of the function.

Example 5.1. Find Taylor series expansion at given point x = a :

(a) f (x) =
1

1 + x2
, a = 0;
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(b) g (x) =
x

x+ 2
, a = 0;

(c) h (x) =
1

2x+ 3
, a = 1.

Solution: (a) We shall use (1) by …rst rewriting the function as follows:

1

1 + x2
=

1

1¡ (¡x2)

y=¡x2

=
1

1¡ y
=

1X
n=0

yn, for jyj < 1.

Formula (1) leads to

1

1 + x2
=

1X
n=0

yn =

1X
n=0

¡¡x2
¢n
=

1X
n=0

(¡1)n x2n, for jyj < 1.

Note that, since y = ¡x2,and

jyj < 1 () ¯̄¡x2
¯̄
< 1 () jxj < 1 ,

we know conclude

1

1 + x2
=

1X
n=0

(¡1)n x2n, for jxj < 1.

(b) Write

g (x) =
x

x+ 2
= x

µ
1

2 + x

¶
= x

µ
1

2 (1 + x/2)

¶
(2)

=
x

2
¢ 1

1 + x/2
=

x

2
¢ 1

1¡ (¡x/2)
.

We now use (1) to derive

1

1¡ (¡x/2)

y=¡x/2
=

1

1¡ y
=

1X
n=0

yn

=
1X

n=0

³
¡x

2

´n

=
1X

n=0

(¡1)n
2n

xn, for jyj < 1.

Substituting this into (2), we obtain

x

x+ 2
=

x

2
¢ 1

1¡ (¡x/2)
=

x

2

1X
n=0

(¡1)n
2n

xn

=
1X

n=0

(¡1)n
2n+1

xn+1, for jyj < 1.
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Now since
jyj =

¯̄̄x
2

¯̄̄
< 1 () jxj < 2,

we conclude
x

x+ 2
=

1X
n=0

(¡1)n
2n+1

xn+1, for jxj < 2.

(c) For

h (x) =
1

2x+ 3
, a = 1,

we need to rewrite the denominator in terms of (x ¡ 1)as follows:

1

2x+ 3
=

1

2 [(x ¡ 1) + 1] + 3 =
1

2 (x ¡ 1) + 5
=

1

5 [1 + 2 (x ¡ 1) /5] =
1

5

1

1 + 2 (x ¡ 1) /5
y=¡2(x¡1)/5

=
1

5

1

1¡ y
=
1

5

1X
n=0

yn (for jyj < 1).

We then substitute y = ¡2 (x ¡ 1)
5

back to obtain

h (x) =
1

2x+ 3
=
1

5

1X
n=0

yn

=
1

5

1X
n=0

µ
¡2 (x ¡ 1)

5

¶n

(for jyj =
¯̄̄
¯2 (x ¡ 1)

5

¯̄̄
¯ < 1)

=
1

5

1X
n=0

(¡1)n
µ
2

5

¶n

(x ¡ 1)n

=
1X

n=0

(¡1)n 2n

5n+1
(x ¡ 1)n , for jx ¡ 1j <

5

2
.

Example 5.2. Find Taylor series about a = 0 for

(a) f (x) =
1

(1¡ x)2
;

(b) g (x) = ln (1¡ x) ;
(c) h (x) = arctanx.

3



Solution: (a) Di¤erentiate

1

1¡ x
=

1X
n=0

xn, for jxj < 1,

we obtain

f =
1

(1¡ x)2
=

µ
1

1¡ x

¶0
=

1X
n=0

(xn)0 =
1X

n=1

nxn¡1.

(b) Take anti-derivative on both sides of

1

1¡ x
=

1X
n=0

xn, for jxj < 1,

we obtain Z
1

1¡ x
dx =

1X
n=0

µZ
xndx

¶
=

1X
n=0

xn+1

n+ 1
+ C.

So

ln (1¡ x) = ¡
Z

1

1¡ x
dx = ¡

1X
n=0

xn+1

n+ 1
¡ C.

To determine the constant, we insert x = 0 into both sides:

0 = ln (1¡ 0) = ¡
" 1X

n=0

xn+1

n+ 1

#
x=0

¡ C = ¡C.

We have to choose C = 0 and

ln (1¡ x) = ¡
1X

n=0

xn+1

n+ 1
= ¡

1X
n=1

xn

n
. (Memorize it)

(c) Note

h0 =
d

dx
arctanx =

1

1 + x2
.

So

h (x) = arctanx =

Z
1

1 + x2
dx.
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From Example 5.1 (a), we know

1

1 + x2
=

1X
n=0

(¡1)n x2n.

Thus

arctanx =

Z
1

1 + x2
dx =

1X
n=0

(¡1)n
Z

x2ndx =
1X

n=0

(¡1)n
2n + 1

x2n+1 + C.

By setting x = 0 above, we …nd C = 0. So

arctan x =

1X
n=0

(¡1)n
2n+ 1

x2n+1.

Taylor Series for General Functions.
Consider power series expansion

f (x) =
1X

n=0

cn (x ¡ a)n = c0 + c1 (x ¡ a) + c2 (x ¡ a)2 + c3 (x ¡ a)3 + ... (3)

for general function f (x) about x = a. Setting x = a, we obtain

f (a) = c0.

Next, we take derivative on (3) so that

f 0 (x) =
1X

n=1

cnn (x ¡ a)n¡1 = c1+c2¢2 (x ¡ a)+c3¢3 (x ¡ a)2+c4¢4 (x ¡ a)3+...

(4)
Setting x = a, we have

f 0 (a) = c1.

We repeat the same process again and again: take derivative again on (4)

f 00 (x) =
1X

n=2

cnn (n ¡ 1) (x ¡ a)n¡2 = c2¢2¢1+c3¢3¢2 (x ¡ a)+c4¢4¢3 (x ¡ a)2+...

(5)
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and set x = a to obtain

f 00 (a) = c2 ¢ 2 ¢ 1 =) c2 =
f 00 (a)
2!

;

take derivative again on (5)

f (3) (x) =

1X
n=3

cnn (n ¡ 1) (n ¡ 2) (x ¡ a)n¡3 = c33¢2¢1+c44¢3¢2 (x ¡ a)+c55¢4¢3 (x ¡ a)2+...

and insert x = a to obtain

f (3) (a) = c33 ¢ 2 ¢ 1 =) c3 =
f (3) (a)

3!
.

In general, we have

cn =
f (n) (a)

n!
, n = 0, 1, 2, ...

here we adopt the convention that 0! = 1. All above process can be carried
on as long as any number of order of derivative at x = a exists, i.e., f (x)
must be a smooth function near a. Then, we have Taylor series expansion
formula

f (x) =
1X

n=0

f (n) (a)

n!
(x ¡ a)n . (Taylor Series)

When a = 0, it becomes

f (x) =
1X

n=0

f (n) (0)

n!
xn, (Maclaurin Series)

we call it Maclaurin Series of f (x) .
Example 5.3. Find Maclaurin series for
(a) f (x) = ex;
(b) g (x) = bx (b > 0)
Solution: (a) For f = ex, we know

f 0 = ex, f 00 = ex, ..., f (n) = ex.

Thus

cn =
f (n) (0)

n!
=
1

n!
,
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ex =

1X
n=0

f (n) (0)

n!
xn =

1X
n=0

1

n!
xn. (Maclaurin Series For ex)

This is one of the most useful Taylor series, and must be memorized.
(b) We o¤er two methods to solve this problem. First is the direct method

by using formula for Maclaurin Series. To this end, we compute derivatives

g0 = bx ln b

g00 = (bx)0 ln b = (bx ln b) ln b = bx (ln b)2 ,

...

g(n) = bx (ln b)n .

So

bx =

1X
n=0

g(n) (0)

n!
xn =

1X
n=0

(ln b)n

n!
xn.

Another method is to use Taylor series for ex above. Write

bx = eln(b
x) = e(x ln b) y=x ln b

= ey =
1X

n=0

1

n!
yn =

1X
n=0

1

n!
(x ln b)n =

1X
n=0

(ln b)n

n!
xn.

Example 5.4. Find Maclaurin series for
(a) f (x) = sin x;
(b) g (x) = cos x.
Solution: (a) We observe that

f = sinx =) f (0) = 0,

f 0 = cos x =) f 0 (0) = 1,

f" = ¡ sinx =) f" (0) = 0,

f (3) = ¡ cos x =) f (3) (0) = ¡1
f (4) = sinx =) f (4) (0) = 0,

and that this cyclic pattern repeats every 4 times di¤erentiations. In partic-
ular, we see that when n is even, i.e., n = 2m, f (n) (0) = 0. When n is odd,
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i.e., n = 2m+ 1, f (n) (0) equals 1 and ¡1 alternating. Thus,

sinx =
1X

n=0

f (n) (0)

n!
xn

=
1X

n=0
n=odd

f (n) (0)

n!
xn

=
1X

m=0

f (2m+1) (0)

(2m+ 1)!
x2m+1

=
1X

m=0

(¡1)m
(2m+ 1)!

x2m+1 (Maclaurin Series for cosx)

= x ¡ x3

3!
+

x5

5!
¡ x7

7!
+ ....

(b) Maclaurin series for cosx may be derived analogously. Another simple
way to …nd Maclaurin series for cos x is to use the above Maclaurin series for
sinx. We know that cosx = (sin x)0 . So

cos x =

Ã 1X
m=0

(¡1)m
(2m+ 1)!

x2m+1

!0

=
1X

m=0

(¡1)m
(2m+ 1)!

(2m+ 1) x2m

=
1X

m=0

(¡1)m
(2m)!

x2m (Maclaruin Series for cosx)

= 1¡ x2

2!
+

x4

4!
¡ x6

6!
+ ....

Example 5.5. Some applications.
(a) Find Maclaurin series for x sin (2x) ;
(b) Find Maclaurin series for

R
e¡x2dx;

(c) Find the limit lim
x!0

ex ¡ 1¡ x ¡ x2/2

x3
.
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Solution: (a) Set y = 2x, and use Maclaurin Series for sin x to get

sin (2x) = sin y

=
1X

m=0

(¡1)m
(2m+ 1)!

y2m+1

=
1X

m=0

(¡1)m
(2m+ 1)!

(2x)2m+1

= (2x)¡ (2x)3

3!
+
(2x)5

5!
¡ ....

So

x sin (2x) = x

1X
m=0

(¡1)m
(2m+ 1)!

(2x)2m+1

=
1X

m=0

(¡1)m 22m+1
(2m+ 1)!

x2m+2.

(b) Letting y = ¡x2 and using Maclaurin Series for ex, we …nd

e¡x2 = ey

=
1X

n=0

1

n!
yn

=
1X

n=0

1

n!

¡¡x2
¢n
=

1X
n=0

(¡1)n
n!

x2n.

Therefore, Z
e¡x2dx =

1X
n=0

Z
(¡1)n

n!
x2n

=

1X
n=0

(¡1)n
n! (2n+ 1)

x2n+1 + C.

(c) Again, we use Maclaurin Series for ex

ex =

1X
n=0

1

n!
xn = 1 + x+

x2

2!
+

x3

3!
+O

¡
x4

¢
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to get

ex ¡ 1¡ x ¡ x2

2
=

x3

3!
+O

¡
x4

¢
and consequently

ex ¡ 1¡ x ¡ x2

2
x3

=
1

3!
+

O (x4)

x3
=
1

6
+O (x) .

So

lim
x!0

ex ¡ 1¡ x ¡ x2

2
x3

=
1

6
.

Taylor Polynomials.
Consider Taylor series expansion

f (x) =
1X

n=0

f (n) (a)

n!
(x ¡ a)n

for a function f (x) . The partial sum of order n,

Tn (x) =
nX

k=0

f (k) (a)

k!
(x ¡ a)k ,

is called Taylor Polynomial of order n. This is often used for approximation.
When n = 1,

T1 (x) =
1X

k=0

f (k) (a)

k!
(x ¡ a)k = f (a) + f 0 (a) (x ¡ a)

is exactly the linear approximation of f (x) about x = a, as we learned in
Calculus I. When n = 2,

T2 (x) =

2X
k=0

f (k) (a)

k!
(x ¡ a)k = f (a) + f 0 (a) (x ¡ a) +

f" (a)

2!
(x ¡ a)2

is called Quadratic approximation. In general, Tn (x) is considered as the
approximation to f (x) of order n, and this approximation is valid only when
x is very close to a.
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Example 5.6. Find T3 (x) about x = 0 for
(a) ex sin x;
(b) tanx.
Solution. (a) Using Maclaurin expansions, we have

ex sinx =

Ã 1X
n=0

xn

n!

!ÃX
n=0

(¡1)n x2n+1

(2n+ 1)!

!

=

µ
1 + x+

x2

2
+

x3

3!
+ ...

¶µ
x ¡ x3

3!
+ ...

¶

=

µ
x ¡ x3

3!

¶
+ x (x) +

x2

2
(x) +O

¡
x4

¢

= x+ x2 +
x3

3
+O

¡
x4

¢
,

where

O
¡
x4

¢
indicates the sum of all terms being equal or higher order than x4.

So

T3 = x+ x2 +
x3

3
.
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(b) Solution 1.

tan x =
sin x

cos x
=

P
n=0

(¡1)n x2n+1

(2n + 1)!P
n=0

(¡1)n x2n

(2n)!

=

µ
x ¡ x3

3!
+O (x5)

¶
µ
1¡ x2

2!
+O (x4)

¶

=

µ
x ¡ x3

3!
+O (x5)

¶
1¡ y

(y =
x2

2!
+O

¡
x4

¢
)

=

µ
x ¡ x3

3!
+O

¡
x5

¢¶ ¡
1 + y + y2 + ...

¢

=

µ
x ¡ x3

3!
+O

¡
x5

¢¶µ
1 +

x2

2!
+O

¡
x4

¢¶

=

µ
x ¡ x3

3!

¶
+ x

µ
x2

2!

¶
+O

¡
x4

¢

= x+
x3

3
+O

¡
x4

¢
.

So

T3 = x+
x3

3
.

Solution 2: We use formula

T3 (x) =
3X

k=0

f (k) (0)

k!
xk.

Now

tan 0 = 0,

(tanx)0 = sec2 x, (tanx)0 jx=0 = 1
(tan x)00 = 2 tan x sec2 x, (tanx)00 jx=0 = 0
(tanx)000 = 2 (tanx)0 sec2 x+ 2 tanx

¡
sec2 x

¢0
(tan x)000 jx=0 = 2 (tanx)0 jx=0 = 2.
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So

T3 (x) =
3X

k=0

f (k) (0)

k!
xk = x+

2

3!
x3 = x+

x3

3
.

Homework (problems marked with * are optional):

1. Find Taylor series and determine the interval of convergence.

(a) f (x) =
3

1¡ x4
, a = 0

(b) f (x) =
x

4x+ 1
, a = 0

(c) f (x) = ln (x+ 1) , a = 0

(d) *f (x) = lnx, a = 2 (hint : write lnx = ln (1¡ (2¡ x)) )

(e) *f (x) = x¡1, a = 1 (hint : write x¡1 =
1

1¡ (1¡ x)
)

(f) *f (x) = 2x, a = 1

2. Using a Maclaurin series derived in this section to obtain the Maclaurin
series for the given function.

(a) f (x) = e¡x/2

(b) f (x) = x cos (2x)

(c) f (x) = sin (x4)

3. Find the Taylor polynomial of degree 3 about the given point a.

(a) f (x) = cos (2x) e¡x/2 , a = 0.

(b) f (x) =
2x

1¡ x
, a = 0.

4. *Evaluate the inde…nite integral as a power series, and determine the
radius of convergence.

(a) *
R 3

1¡ x4
dx

(b) *
R ln (1¡ t)

t
dt
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5. *Use the …rst 3 terms of a power series to approximate the de…nite
integral: Z 0.4

0

ln
¡
1 + x2

¢
dx.
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