
CHAPTER 5

Continuity & Momentum Equations

In this chapter we derive the continuity equation and the momentum equa-
tions for a fluid using the macroscopic continuum approach.

Continuity Equation: Consider an Eulerian volume V . The mass inside
V is given by M =

∫

ρdV . The rate at which this mass increases has to be
balanced by the rate at which mass flows in or out of V . This implies that

∂

∂t

∫

V

ρ dV = −

∫

S

ρ~u · d~S = −

∫

V

∇ · (ρ~u) dV

where the last equality follows from Gauss’ divergence theorem, and the mi-

nus sign is required becuase d~S is directed outwards. Since this has to hold
for any volume V , we obtain the continuity equation:

Vector Notation Index Notation

Lagrangian:
dρ

dt
+ ρ∇ · ~u = 0

dρ

dt
+ ρ

∂ui

∂xi

= 0

Eulerian:
∂ρ

∂t
+∇ · (ρ~u) = 0

∂ρ

∂t
+

∂ρui

∂xi

= 0

NOTE: A liquid is (to good approximation) an incompressible fluid which
means that ∇ρ = 0 and that ∂ρ/∂t = 0. The continuity equation then shows
that ∇ · ~u = 0 (i.e., the flow is divergence free, and thus solenoidal) and that
dρ/dt = 0 (i.e, the density of each fluid element is conserved over time. It is
important to distinguish an incompressible fluid from an incompressible flow,
which is defined by dρ/dt = 0. The continuity equation shows that an
incompressible flow is also divergence free (i.e,, has ∇·~u = 0). However, it is
not necessarily true that ∇ρ = 0 or that ∂ρ/∂t = 0. Hence, a compressible
fluid can undergo incompressible flow, but not vice versa.
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Momentum Equations: In order to derive the momentum equations, we
start with Newton’s second law of motion

~F = m~a =
d~p

dt

where ~p = m~v. Consider a fluid element δV =
∫

dV in an external force

field ~Fext. In most astrophysical cases of interest to us, this external force
will be gravity, which is conservative, so that we can write ~Fext = −m∇Φ,
with Φ the Newtonian gravitational potential. The momentum of our fluid
element is given by ~p =

∫

ρ~u dV . We thus can write Newton’s second law of
motion as

d

dt

[
∫

ρ~udV

]

=

∫

~F ′ dV

where ~F ′ is the total force (including the external one) per unit volume acting
on our fluid element.

Let us first consider the term on the left. Note that you may not take the
derivative inside of the integral! After all, V is the Lagrangian volume of
our fluid element, and is thus a function of time. Instead, we make the
assumption that the fluid element is sufficiently small that we may neglect
changes in ρ~u across its volume, so that

d

dt

[
∫

ρ~udV

]

=
d

dt
(ρ~u δV ) = ρ δV

d~u

dt

where the second equality follows from the fact that d(ρδV )/dt = 0 (i.e., the
mass of our fluid element is conserved).

Next we work out the
∫

~F ′dV term. The total force acting on our fluid ele-

ment consists of two components. The external force ~Fext and a surface force
due to the fluid’s pressure. In the case of gravity, we have that ~F ′

ext
= −ρ∇Φ.

For the contribution due to the fluid’s pressure, we assume for now that the
pressure is isotropic (in the next chapter we will relax this assumption).

The pressure force acting on an infinitessimal surface element of our fluid
element is−Pd~S, where the minus sign arises because d~S is directed outwards
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and ~F is the force acting on our fluid element. Hence, the total pressure force
acting on our fluid element in (cartesian) direction n̂ is

~F · n̂ = −

∫

S

P n̂ · ~S ==

∫

V

∇ · (P n̂) dV

where we have used Gauss’ divergence theorem. Hence, per unit volume we
have that

~F ′
· n̂ = −∇ · (P n̂) = −P ∇ · n̂−∇P · n̂ = −∇P · n̂

where the last equality follows from the fact that n̂ is a unit vector in a
constant direction. Combining all the above, and using that

∫

~F ′dV ≈ ~F ′δV
we obtain that

ρδV
d~u

dt
· n̂ = −ρ∇Φ · n̂δV −∇P · n̂δV

Since this must be true for any volume element δV , and along any direction
n̂, we have that

Vector Notation Index Notation

Lagrangian:
d~u

dt
= −

∇P

ρ
−∇Φ

dui

dt
= −

1

ρ

∂P

∂xi

−
∂Φ

∂xi

Eulerian:
∂~u

∂t
+ (~u · ∇)~u = −

∇P

ρ
−∇Φ

∂ui

∂t
+ uj

∂ui

∂xj

= −
1

ρ

∂P

∂xi

−
∂Φ

∂xi

The continuity and momentum equations derived above (sometimes in com-
bination with the energy equation to be derived in Chapter 14) are called the
Euler Equations. As we will see, they describe a fluid in which viscosity
can be ignored (called an inviscid fluid)..
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