
http://www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm Copyright © tutorialspoint.com

SDLC - ITERATIVE MODELSDLC - ITERATIVE MODEL

In Iterative model, iterative process starts with a simple implementation of a small set of the
software requirements and iteratively enhances the evolving versions until the complete system is
implemented and ready to be deployed.

An iterative life cycle model does not attempt to start with a full specification of requirements.
Instead, development begins by specifying and implementing just part of the software, which is
then reviewed in order to identify further requirements. This process is then repeated, producing a
new version of the software at the end of each iteration of the model.

Iterative Model design
Iterative process starts with a simple implementation of a subset of the software requirements and
iteratively enhances the evolving versions until the full system is implemented. At each iteration,
design modifications are made and new functional capabilities are added. The basic idea behind
this method is to develop a system through repeated cycles iterative and in smaller portions at a
time incremental.

Following is the pictorial representation of Iterative and Incremental model:

Iterative and Incremental development is a combination of both iterative design or iterative
method and incremental build model for development. "During software development, more than
one iteration of the software development cycle may be in progress at the same time." and "This
process may be described as an "evolutionary acquisition" or "incremental build" approach."

In incremental model the whole requirement is divided into various builds. During each iteration,
the development module goes through the requirements, design, implementation and testing
phases. Each subsequent release of the module adds function to the previous release. The process
continues till the complete system is ready as per the requirement.

The key to successful use of an iterative software development lifecycle is rigorous validation of
requirements, and verification & testing of each version of the software against those
requirements within each cycle of the model. As the software evolves through successive cycles,
tests have to be repeated and extended to verify each version of the software.

Iterative Model Application
Like other SDLC models, Iterative and incremental development has some specific applications in
the software industry. This model is most often used in the following scenarios:

Requirements of the complete system are clearly defined and understood.

Major requirements must be defined; however, some functionalities or requested
enhancements may evolve with time.

There is a time to the market constraint.

http://www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm


A new technology is being used and is being learnt by the development team while working
on the project.

Resources with needed skill set are not available and are planned to be used on contract
basis for specific iterations.

There are some high risk features and goals which may change in the future.

Iterative Model Pros and Cons
The advantage of this model is that there is a working model of the system at a very early stage of
development which makes it easier to find functional or design flaws. Finding issues at an early
stage of development enables to take corrective measures in a limited budget.

The disadvantage with this SDLC model is that it is applicable only to large and bulky software
development projects. This is because it is hard to break a small software system into further small
serviceable increments/modules.

The following table lists out the pros and cons of Iterative and Incremental SDLC Model:

Pros Cons

Some working functionality can be
developed quickly and early in the life
cycle.

Results are obtained early and
periodically.

Parallel development can be planned.

Progress can be measured.

Less costly to change the
scope/requirements.

Testing and debugging during smaller
iteration is easy.

Risks are identified and resolved during
iteration; and each iteration is an easily
managed milestone.

Easier to manage risk - High risk part is
done first.

With every increment operational
product is delivered.

Issues, challenges & risks identified from
each increment can be utilized/applied
to the next increment.

Risk analysis is better.

It supports changing requirements.

Initial Operating time is less.

Better suited for large and mission-
critical projects.

During life cycle software is produced
early which facilitates customer
evaluation and feedback.

More resources may be required.

Although cost of change is lesser but it is
not very suitable for changing
requirements.

More management attention is required.

System architecture or design issues
may arise because not all requirements
are gathered in the beginning of the
entire life cycle.

Defining increments may require
definition of the complete system.

Not suitable for smaller projects.

Management complexity is more.

End of project may not be known which is
a risk.

Highly skilled resources are required for
risk analysis.

Project.s progress is highly dependent
upon the risk analysis phase.



Loading [MathJax]/jax/output/HTML-CSS/jax.js


