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The fundamental underpinnings of the well-known Bernoulli’s Equation, as used to describe steady state
two-dimensional flow of an ideal incompressible irrotational flow, are typically described in terms of partial
differential equations. However, it has been shown that the Cauchy Integral Theorem of standard com-
plex variables also explain the Bernoulli’s Equation and, hence, can be directly used to model problems of
ideal fluid flow (or other potential problems such as electrostatics among other topics) using approximation
function techniques such as the complex variable boundary element method (CVBEM). In this article, the
CVBEM is extended to include Laurent Series expansions about singular points located outside of the prob-
lem domain union boundary. It is shown that by including such negatively powered complex monomials in
the CVBEM formulation, considerable power is introduced to model potential flow problems. Published
2010 Wiley Periodicals, Inc.* Numer Methods Partial Differential Eq 28: 573–586, 2012
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I. INTRODUCTION

The linkage between complex variables and potential flow theory is described in Simmonds [1]
among other references and provides another basis for using the Cauchy Integral of complex
variables theory to describe potential flow such as the analysis of two-dimensional ideal flow of
incompressible irrotational fluid. The complex variable boundary element method or CVBEM is
an approximation of the Cauchy Integral where spline basis functions are used to describe a global
trial function which, in turn, is used to approximate the boundary values of the potential problem.
The global trial function is then used as the approximation of the potential function evaluated on
the problem boundary, which becomes the integrand in the Cauchy Integral. Because the global
trial function is continuous on the problem boundary, the resulting Cauchy Integral is analytic
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throughout the problem domain, guaranteeing an approximation function that exactly satisfies the
Laplace equation throughout the problem domain, which is a property not achieved by the widely
used numerical techniques such as finite difference and finite element methods. Also, from the
Maximum Modulus theorem of complex variables, the maximum value of the magnitude of the
analytic function occurs on the problem boundary, which means the maximum error between
the CVBEM approximation and the exact solution to the boundary value problem must occur on
the problem boundary, and therefore, the magnitude of the approximation error can be determined,
which is another property not afforded by the usual domain numerical schemes of finite differ-
ence and finite element methods. With the availability of mathematical computer programs such
as Mathematica, among others, the CVBEM can be readily implemented and computer graphics
utilized that provide remarkable insight into approximation of potential problems such as ideal
fluid flow.

Other numerical approximation techniques exist that are similar to the CVBEM. For example,
the method of fundamental solutions utilizes a linear combination of a set of particular solutions
(i.e., “fundamental solutions”) to the subject linear partial differential equation and then evaluates
the multiplicative coefficients by matching problem boundary conditions. The work of Obrist et al.
[2] is an example of this modeling technique and considers applications to the LaPlace equation.
The choice of fundamental solutions is open to the modeler. However, in the CVBEM and the cur-
rent Laurent Series extension, the basis functions used are of a particular type and are developed
from numerical integration of the Cauchy integral equation. Another similar numerical technique
is the method of complex panels (or the Vortex Panel technique, such as presented in Ref. [3] and
has found use in the modeling aerodynamics and flow field phenomena). An applet for using the
Vortex Panel method is found at http://www.engapplets.vt.edu/fluids/vpm/vpminfo.html. Again,
the CVBEM develops the numerical approximation by use of a numerical solution of the Cauchy
integral equation and as presented in this work, by inclusion of additional complex variable basis
functions such as developed in a Laurent series expansion.

Background into the CVBEM and related topics is provided in Hromadka and Whitley [4] and
in three dimensions in Hromadka [5], among other references. A recent review of the CVBEM
is found in the special issue of Engineering Analysis with Boundary Elements (see volume 30
(2006), issue 12). Recently, program Mathematica has been used to model potential flow problems
using the CVBEM [6] or its variant, the complex polynomial method [7]. In the development of
the CVBEM to date, little if any attention has been paid toward use of basis functions of the
type found in the expansion of complex variable Laurent Series, involving negative powers of
complex monomials. In this work, the CVBEM is used as the foundation for including negative
powers of complex monomials as additional basis functions, with points of expansion located
such as to optimize the reduction in modeling error in fitting problem boundary conditions. This
is accomplished by examining a set of possible Laurent Series poles and assessing the goodness
of fit in using each expansion point, one by one, in fitting the problem boundary conditions. It is
found that this new approach to modeling potential problems provides considerable strength in
modeling potential problems such as those occurring in ideal fluid flow.

II. CVBEM FORMULATION AND CPM FORMULATION

The complex variable boundary element method (or CVBEM) results in a series expansion of the
form:

ω̂(z) =
n∑

j=1

(z − zj )Ln(z − zj ) (1)
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where points zj are nodal points where complex logarithms are centered with branch-cuts oriented
to lie exterior to the study region.

The complex polynomial method (e.g., Bohannon and Hromadka [7]) is a series of complex
monomials of the form:

ω̂(z) =
n∑

j=1

cj z
j (2)

In both of these complex variable approximation methods, collocation may be used to deter-
mine the complex coefficients used in the respective coefficients, or a least-squares best fit to the
boundary condition values can be used in a Hilbert Space setting. Details of these methods and
computer programs to implement either of these modeling approaches can be found in the cited
literature.

It is noted that in the CPM, the resulting approximation function is entire (i.e., is analytic
throughout the entire complex plane), whereas the CVBEM is not analytic along branch points
and corresponding branch-cuts of the complex logarithm function (therefore, branch-cuts are ori-
ented to lie outside of the study region). It is also noted that the CVBEM involves use of a set of
nodal points where complex logarithms are evaluated and that these point locations are subject to
optimization such as discussed in Dean and Hromadka [6].

III. LAURENT SERIES FORMULATION

The complex variable boundary element method uses basis functions of the form of complex poly-
nomials (to the degree of the trial function used to interpolate boundary values in the global trial
function) and also products of complex polynomials with complex logarithms (e.g., Hromadka
and Whitley [4]). The complex logarithms are manipulated so that their respective branch-cuts lie
outside of the problem domain. The complex polynomial method (e.g., Bohannon and Hromadka
[7]) uses complex monomials as the basis functions. In this work, basis functions as obtained
from a partial sum of the Laurent series expansion are included with the basis functions used in
either of the above two complex variable approximation methods.

In a Laurent series expansion, complex variable monomials are summed including both pos-
itive and negative powers, expanded about a particular expansion point. The typical expansion
about point z0 is

ω(z) =
n∑

j=−m

cj (z − z0)
j (3)

In the above Eq. (3), a partial sum of the Laurent series is shown where n is the number of posi-
tive powered complex monomials and m is the number of negative powered complex monomials.
It is noted that although the above equation is expanded about point z0, expansion about other
points follows the same type of expansion relationship as seen for the expansion about point z0.

The theory of Laurent series, including regions of convergence and analyticity, can be found in
numerous texts including Mathews and Howell [8], among others. The series expansion involves
both positive and negative powers of complex monomials all expanded about the point z0. From
the series expansion, it is noted that point z0 is a singularity. However, all of these terms from
the series expansion are analytic in the study region if point z0 lies exterior of the study region.
Furthermore, several expansion points can be used in an approximation effort, resulting in several
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partial sums of different Laurent series expansions. For the case of several expansion points, the
ensemble of negatively powered complex monomials are all linearly independent functions, and,
therefore, can be included in a basis set of functions in the approximation effort.

From Eq. (3), the Laurent series expansion (about arbitrary expansion point z0) involves com-
plex monomials with negative and positive powers. If only the positive powers are used, then the
resulting approximation function is a complex polynomial (as expansions about several points zj

are not linearly independent) and the complex polynomial method (e.g., Bohannon [7]) results.
The opportunity to use several expansion points occurs when the negatively powered complex
monomials are used in the approximation function. Consequently, for several expansion points,
the ensemble of negatively powered complex monomials are all linearly independent and form a
larger dimension basis where linear combinations of these basis functions are analytic through-
out the entire complex plane less the set of expansion points (which is why locations of such
expansion points should generally be exterior of the study region). In comparison, the CVBEM
expansion of Eq. (1) involves a different family of basis functions that are analytic throughout
the entire complex plane less the set of branch points and corresponding branch cuts (which are
all oriented to not intersect with each other and all lie outside of the study region). The CVBEM
can be implemented using not only the basis functions shown in Eq. (1) but also including the
positively and negatively powered complex monomials of the Laurent series. Of course, only
the negatively powered monomials form a linearly independent set of functions. To isolate out the
approximation function strength of the negatively powered complex monomials in the Laurent
series expansion, the remainder of this articles deals with development of approximation func-
tions using only the negatively powered complex monomials. It is shown that this specialized
basis function set provides considerable computational power in approximating difficult potential
problems. Therefore, a CVBEM based upon using the basis functions from both families shown
in Eqs. (2) and (3) provides even higher approximation function accuracy and capability.

In this work, three new concepts are introduced in the modeling effort:

a. Consideration of the number of terms used in the partial sum of a Laurent series expansions
(for example, assessment of approximation improvement by including the Laurent series
terms for a larger partial sum);

b. the use of several Laurent series expansion by using several expansion points (or poles)
simultaneously;

c. optimization of the location of Laurent series expansion points.

The first new concept (a) is handled by evaluating the modeling error in matching boundary
condition values with respect to using more terms in the Laurent series expansion. For example,
a series of modeling approximations is made by using successively more terms of the Laurent
series until little improvement is observed (within a tolerance) in matching boundary condition
values by the resulting approximation function. That is, a “trade-off” between using more terms
from the Laurent series versus improvement in modeling accuracy is assessed. Once a relative
optimum number of terms is determined, another pole is then introduced into the approximation
function to be similarly dealt with. In this way, more Laurent series poles are introduced until the
target error tolerance in matching boundary condition values is achieved. This concept is explored
in example problem 1.

The use of multiple Laurent series expansions is advantages for multiple reasons. By includ-
ing additional Laurent series, the complexity of the model is reduced due to the fact that more
terms can be included at a lower order. Additionally, the accuracy of a model can be improved
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by locating a pole near where a singularity exists in a problem. This concept is demonstrated in
example problem 2.

The third new concept (c) is discussed below.

IV. OPTIMIZATION OF LAURENT SERIES EXPANSION POINT (POLE) LOCATIONS

Because Laurent series poles can be established at any location exterior of the study region (to
avoid introducing a singularity inside the study region), the choice of where to locate such a pole
is an issue that can be handled by assessing modeling error in matching boundary condition values
versus test location. Many schemes for assessing such points are possible. The scheme used in this
work is to set a grid of test points located outside of the study region, and then to work with each
test point, one by one, and determine the respective modeling error in fitting the problem boundary
condition values. The final location for the next pole location is that test point that corresponds to
the minimum modeling error for the measure chosen (e.g., a maximum error magnitude is used
in this work). Because the computational effort involved in optimizing expansion point locations
is large, the set up of the grid of test point locations needs to be carefully laid out so as to not
arbitrarily use a dense grid of test points.

For example, the procedure used in this article to assess locations for the Laurent series pole
locations for the Example Problem 1 (ideal fluid flow in a 90-degree bend around a unit radius
cylinder) is to rotate a fixed test point grid template, shown in Figure 5, about the problem domain.
Each test point is considered, one at a time, as the test pole location, and the corresponding error
in matching boundary conditions is determined. After all the test points are evaluated, the cor-
responding modeling error in matching boundary conditions can be plotted against distance of
the test pole location from the problem domain, as shown in Figure 6. From Figure 6, the best
estimate of the pole location can be determined for the given positioning of the template. Then,
other template positions can be similarly evaluated. Once the best pole location is determined,
that location is held fixed, and then the next pole location is considered by introducing another
pole for another Laurent expansion.

V. MATHEMATICA CODE

The above concepts are developed on computer program Mathematica which, like other similar
programs, such as Matlab, provides considerable advantages to other computer programming
languages (e.g., FORTRAN, C) in handling complex variable and other detailed mathematical
manipulations, as well as simplified coding requirements to solve complex mathematical equations
as well as provide highly accurate computations and extensive graphical capabilities.

The use of program Mathematica does have disadvantages. A program run in Mathematica
will run slower than a similar compiled program written in C or FORTRAN. Additionally, while
Mathematica provides many built-in algorithms, the amount of control of the algorithms used
and the algorithms themselves is somewhat restricted. The use of Mathematica also reduces the
portability of the program, as the program can only be run with a Mathematica license.

Although this article considers Laurent series expansions in general, which can be used to
accommodate a variety of boundary conditions such as specified values of the potential or the
stream function, or a combinations of both, only the Dirichlet problem (i.e., specified values of the
potential function) is considered in this article. From the expansion of the Laurent series shown
in Eq. (3), the complex coefficients are each composed of two real numbers by cj = aj + ibj for
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coefficient j. Therefore, each complex coefficient requires two points of collocation to uniquely
determine the corresponding component values of the coefficients. However, as the problem con-
sidered is a Dirichlet problem, stream function values are not needed as boundary conditions and
so the constant b0 of c0 = a0 + ib0 can be arbitrarily set to zero reducing the collocation point
count by one. (It is noted that other means of determining the complex coefficients can be used
instead of collocation, such as a least squares approach to minimizing the difference between
approximation and specified values along the problem boundary.) This step of setting b0 = 0 is
used in the Mathematica code found in Supporting Information Appendix A.

Basis functions are expanded using the ComplexExpand function on Mathematica and sepa-
rated into their real and imaginary components. From here, the modeling procedure now moves
toward solving a matrix system to determine the 2N + 1 real-valued coefficient components by
collocating the approximation function to equal the boundary condition values at each of the
2N + 1 evaluation points. After solving the square (2N + 1) × (2N + 1) matrix system, the real-
valued coefficients are substituted back into the underlying approximation function, resulting in
an analytic function defined over the problem domain union problem boundary. Furthermore,
these same 2N + 1 coefficient real values can be directly used to develop the conjugate stream
function, for use in developing flow nets and other graphical plots.

The complete Mathematica code is contained in Supporting Information Appendix A.

VI. CONSIDERATIONS OF CONVERGENCE

In other work (for example, see Whitley and Hromadka (2009)), it is shown that there exists
a complex polynomial that can approximate pointwise arbitrarily close to the exact solution of
a potential problem. Because the sum of the partial sums of Laurent series expansions can be
rewritten as a product of a complex polynomial with a complex rational function (by rewriting the
sum of partial sums in terms of having a common denominator), then the approximation effort
can be viewed as approximating the product of the reciprocal of the above rational function with
the original potential function to be approximated. Therefore, the use of additional Laurent series
expansions (by using several expansion points) is analogous to using a larger powered complex
polynomial. Of course, an advantage to using more Laurent series expansion points instead of
higher powered complex monomials is the bypassing of the limitations of the underlying computer
program capability in dealing with high powers of monomials.

VII. EXAMPLE PROBLEMS

A. Example Problem 1: Ideal Fluid Flow

The two-dimensional flow of an ideal irrotational and incompressible fluid in a 90◦ bend around a
unit radius cylinder is a modeling problem that involves considerable complexity. To demonstrate
the approximation efficiency of the Laurent series approach, only the negative power terms of
complex monomials is used in the example problem. Figure 1 shows the problem domain con-
sidered, where � is the problem domain and � is the problem boundary. In this figure, the unit
radius cylinder is seen in the lower left, while the extent of the problem domain is seen as the
other straight line segments in the first quadrant. The exact solution to this particular problem is
well-known as ω(z) = z2 +z−2, as described in [1], and, therefore, can be used to provide not only
the problem boundary conditions to be used in the modeling application but also for comparing
with the modeling results to assess the modeling accuracy.
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FIG. 1. The exact solution for example problem 1. The flow is modeled by ω(z) = z2 + z−2. � is the
problem domain and � is the problem boundary. Dots represent the evaluation points.

Figure 1 also shows the combined plots of the exact solution streamlines and equipotentials,
forming the flow-net for the example problem over the problem domain considered. Using Fig. 1,
values of the potential function (from the exact solution) can be readily determined and then
used as the Dirichlet problem boundary conditions at the collocation point locations on the prob-
lem boundary. For the example problem, the collocation points are specified along the problem
boundary.

FIG. 2. Test setup used to determine the optimal placement of the pole used in the Laurent series expansion.
The cross marks the final chosen location.
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FIG. 3. Resulting squared error on the problem boundary versus distance from the center of the problem
domain.

Using the test pole location template of Fig. 2, a partial sum of the first 10 terms of the Lau-
rent series was determined using each test pole location of Fig. 2, and the corresponding error
in matching boundary conditions at the collocation points (Fig. 3) determined for assessing the
optimum location for a pole. By rotating the test pole template about the problem domain, other
assessments can be made.

FIG. 4. The approximation solution for example problem 1.
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FIG. 5. Error along the problem domain. Note that error is largest closer to the pole.

Using the optimum pole location determined above, the partial sum of the Laurent series
expansion is determined, resulting in the approximation function whose corresponding flow-net
is shown in Fig. 4. Nine terms were used in this expansion based on the nineteen evaluation
points used. The figure shows a flow net that extends beyond the problem domain to show
the ability of the model to provide computational results outside of the problem domain union
boundary.

Figure 5 provides a plot of the modeling estimates of the potential versus the exact solution
potential values along the problem boundary as evaluated at the specified collocation points on
the problem boundary. From Fig. 5, it is seen that using just a single pole in the above modeling
procedure results in an excellent model of the subject problem.

The effect of the number of terms used in the expansion can be seen in Fig. 6. Because of the
collocation technique used to fit the boundary values, the number of evaluations points must be
changed along with the number of terms in the Laurent series. Squared error along the boundary
consistently decreases as the number of terms increases; however, the computational complexity
of the model also rapidly increases.
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FIG. 6. Squared error along the problem boundary versus the number of terms used in the approximation.

B. Example Problem 2: Potential Flow Between a Source and a Sink

In this example problem, a source and a sink term, both of equal strength, are positioned equidis-
tant from the origin and on the x-axis. See Ref. [4] for an more in-depth treatment of this problem.
The problem domain is rectangular in shape, but with the boundary designed to locate the prob-
lem’s source and sink points to be exterior of the problem domain (see Fig. 7). Because sources
and sinks are important components of many potential problems in a variety of situations (e.g.,
electrostatics, ideal fluid flow, groundwater flow, torsion, among other potential problems), con-
sideration of such a test problem is appropriate to consider. Because both components are of equal
strength, the resulting plots of equipotentials and streamlines that form the flow net apply to other
equal strength situations. The flow net corresponding to the exact solution as applied to the prob-
lem domain is also shown in the figure. Additionally, the exact solution to this problem is readily
determined to be ω(z) = Ln(z+1)−Ln(z−1), and therefore, can be used to assess the goodness

FIG. 7. The exact solution for example problem 2: potential flow between a source and a sink. � is the
problem domain and � is the problem boundary. Dots represent the evaluation points.
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FIG. 8. Laurent series expansion test pole locations near source and sink.

of the Laurent series approximation within the problem domain. Using the exact solution, as done
in the first example problem, boundary condition values of the potential function (for the con-
sidered Dirichlet problem) are determined from the real part of the exact solution. By specifying
the boundary condition values at the collocations points set on the problem boundary (shown on
boundary of Fig. 7), the Laurent series approximation method can proceed, by optimizing the
location of the first introduced expansion point (or pole) as discussed previously. Holding the first
pole location fixed, a second pole was introduced and its location optimized. The approximation
error in matching the boundary condition values was found to be quite small with only the first two
poles in the approximation, and no further poles were introduced for the purposes of this example
problem. As before, the partial sum of the first 8 terms of the respective Laurent series expansions
was used. The optimized locations of the two poles were determined to be immediately below the
locations of the problem’s source and sink locations (see Fig. 8). The flow net corresponding to the

FIG. 9. The approximation solution for example problem 2.
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FIG. 10. Error along the problem domain. Error is largest on the x-axis, and decreases with distance from
the poles.

two pole Laurent series approximation function is shown in Fig. 9. From this figures, the Laurent
series approximation function is seen to provide good approximation results with just the use of
two poles, when the location of the poles are optimized as discussed above, the numerical error
can be seen in Fig. 10. It is noted that the resulting approximation function is analytic throughout
the problem domain and so the real and also the imaginary parts of the approximation function

FIG. 11. Magnitude of error resulting from the modeling the example problem number two with only a
single pole.
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FIG. 12. Error along the boundary from modeling example problem two using a CPM expansion.

exactly solve the governing partial differential equation (i.e., the Laplace equation) throughout
the problem domain.

This problem also demonstrates the technique of using multiple poles in the Laurent expan-
sion. Figure 11 shows the computational results from using only a single pole to evaluate the
same problem. Not only does the solution oscillate between collocation points but also the model
becomes more complex as the model now requires much high-power complex monomials to be
evaluated. These result show that modeling accuracy strongly depends on the location and number
of Laurent series poles.

The Laurent series type of model can be compared other similar complex-variable-based mod-
eling techniques such as the complex polynomial method (see Ref. [7]). Figure 12 shows the
boundary error resulting from using the CPM to model the same demonstration problem with
the same collocation points and number of expansion terms. For this demonstration problem, the
CPM approximation resulted in a much larger magnitude of error.

VIII. TOPICS FOR FUTURE RESEARCH

Several topics for future research have been mentioned in the above development including but not
limited to (i) development of more efficient methods for optimizing the location of Laurent series
expansion points, (ii) development of more efficient methods to assess the extent of the Laurent
series partial sum expansion, and (iii) fitting the model to the problem boundary conditions using
a Hilbert-space setting to reduce Runge-type oscillations in the model.

IX. CONCLUSIONS

A new approach to modeling potential problems is presented that is based upon the theory of
Laurent series expansions for complex variable analytic functions. Using poles located outside
of the problem domain, partial sums of the Laurent series expansions about each pole are used
as basis functions to be combined to form an approximation function. Because these partial sums
are analytic functions within the problem region being studied, their real and imaginary function
components exactly solve the well-known Laplace equation throughout the study region and also
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outside of the study region except at the actual pole locations themselves. Optimized locations
for the poles are determined by pointwise testing and assessment of the goodness of it between
the problem boundary conditions and the resulting approximation function values on the problem
boundary. Two example problems are considered where exact solutions are known assess the effi-
ciency and strength of the new approximation technique. Use of such Laurent series expansions
can be combined with other families of basis functions to improve computational accuracy, with
less computational effort, for both the complex variable boundary element method and the real
variable boundary element method.
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have guided and encouraged the research effort leading to this work.
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